diff --git "a/perf-df-awq-1xA10.csv" "b/perf-df-awq-1xA10.csv" --- "a/perf-df-awq-1xA10.csv" +++ "b/perf-df-awq-1xA10.csv" @@ -1,5 +1,5 @@ -config.name,config.backend.name,config.backend.version,config.backend._target_,config.backend.task,config.backend.library,config.backend.model,config.backend.processor,config.backend.device,config.backend.device_ids,config.backend.seed,config.backend.inter_op_num_threads,config.backend.intra_op_num_threads,config.backend.model_kwargs.trust_remote_code,config.backend.processor_kwargs.trust_remote_code,config.backend.hub_kwargs.trust_remote_code,config.backend.no_weights,config.backend.device_map,config.backend.torch_dtype,config.backend.eval_mode,config.backend.to_bettertransformer,config.backend.low_cpu_mem_usage,config.backend.attn_implementation,config.backend.cache_implementation,config.backend.autocast_enabled,config.backend.autocast_dtype,config.backend.torch_compile,config.backend.torch_compile_target,config.backend.quantization_scheme,config.backend.quantization_config.bits,config.backend.quantization_config.version,config.backend.deepspeed_inference,config.backend.peft_type,config.scenario.name,config.scenario._target_,config.scenario.iterations,config.scenario.duration,config.scenario.warmup_runs,config.scenario.input_shapes.batch_size,config.scenario.input_shapes.num_choices,config.scenario.input_shapes.sequence_length,config.scenario.new_tokens,config.scenario.latency,config.scenario.memory,config.scenario.energy,config.scenario.generate_kwargs.max_new_tokens,config.scenario.generate_kwargs.min_new_tokens,config.launcher.name,config.launcher._target_,config.launcher.device_isolation,config.launcher.device_isolation_action,config.launcher.numactl,config.launcher.start_method,config.environment.cpu,config.environment.cpu_count,config.environment.cpu_ram_mb,config.environment.system,config.environment.machine,config.environment.platform,config.environment.processor,config.environment.python_version,config.environment.gpu,config.environment.gpu_count,config.environment.gpu_vram_mb,config.environment.optimum_benchmark_version,config.environment.optimum_benchmark_commit,config.environment.transformers_version,config.environment.transformers_commit,config.environment.accelerate_version,config.environment.accelerate_commit,config.environment.diffusers_version,config.environment.diffusers_commit,config.environment.optimum_version,config.environment.optimum_commit,config.environment.timm_version,config.environment.timm_commit,config.environment.peft_version,config.environment.peft_commit,report.traceback,report.prefill.memory.unit,report.prefill.memory.max_ram,report.prefill.memory.max_global_vram,report.prefill.memory.max_process_vram,report.prefill.memory.max_reserved,report.prefill.memory.max_allocated,report.prefill.latency.unit,report.prefill.latency.count,report.prefill.latency.total,report.prefill.latency.mean,report.prefill.latency.stdev,report.prefill.latency.p50,report.prefill.latency.p90,report.prefill.latency.p95,report.prefill.latency.p99,report.prefill.latency.values,report.prefill.throughput.unit,report.prefill.throughput.value,report.prefill.energy.unit,report.prefill.energy.cpu,report.prefill.energy.ram,report.prefill.energy.gpu,report.prefill.energy.total,report.prefill.efficiency.unit,report.prefill.efficiency.value,report.decode.memory.unit,report.decode.memory.max_ram,report.decode.memory.max_global_vram,report.decode.memory.max_process_vram,report.decode.memory.max_reserved,report.decode.memory.max_allocated,report.decode.latency.unit,report.decode.latency.count,report.decode.latency.total,report.decode.latency.mean,report.decode.latency.stdev,report.decode.latency.p50,report.decode.latency.p90,report.decode.latency.p95,report.decode.latency.p99,report.decode.latency.values,report.decode.throughput.unit,report.decode.throughput.value,report.decode.energy.unit,report.decode.energy.cpu,report.decode.energy.ram,report.decode.energy.gpu,report.decode.energy.total,report.decode.efficiency.unit,report.decode.efficiency.value,report.per_token.memory,report.per_token.latency.unit,report.per_token.latency.count,report.per_token.latency.total,report.per_token.latency.mean,report.per_token.latency.stdev,report.per_token.latency.p50,report.per_token.latency.p90,report.per_token.latency.p95,report.per_token.latency.p99,report.per_token.latency.values,report.per_token.throughput.unit,report.per_token.throughput.value,report.per_token.energy,report.per_token.efficiency,config.backend.quantization_config.exllama_config.version,config.backend.quantization_config.exllama_config.max_input_len,config.backend.quantization_config.exllama_config.max_batch_size,config.backend.hub_kwargs.revision,config.backend.hub_kwargs.force_download,config.backend.hub_kwargs.local_files_only -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,.,.,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +config.name,config.backend.name,config.backend.version,config.backend._target_,config.backend.task,config.backend.library,config.backend.model,config.backend.processor,config.backend.device,config.backend.device_ids,config.backend.seed,config.backend.inter_op_num_threads,config.backend.intra_op_num_threads,config.backend.model_kwargs.trust_remote_code,config.backend.processor_kwargs.trust_remote_code,config.backend.hub_kwargs.trust_remote_code,config.backend.no_weights,config.backend.device_map,config.backend.torch_dtype,config.backend.eval_mode,config.backend.to_bettertransformer,config.backend.low_cpu_mem_usage,config.backend.attn_implementation,config.backend.cache_implementation,config.backend.autocast_enabled,config.backend.autocast_dtype,config.backend.torch_compile,config.backend.torch_compile_target,config.backend.quantization_scheme,config.backend.quantization_config.bits,config.backend.quantization_config.version,config.backend.quantization_config.exllama_config.version,config.backend.quantization_config.exllama_config.max_input_len,config.backend.quantization_config.exllama_config.max_batch_size,config.backend.deepspeed_inference,config.backend.peft_type,config.scenario.name,config.scenario._target_,config.scenario.iterations,config.scenario.duration,config.scenario.warmup_runs,config.scenario.input_shapes.batch_size,config.scenario.input_shapes.num_choices,config.scenario.input_shapes.sequence_length,config.scenario.new_tokens,config.scenario.latency,config.scenario.memory,config.scenario.energy,config.scenario.generate_kwargs.max_new_tokens,config.scenario.generate_kwargs.min_new_tokens,config.launcher.name,config.launcher._target_,config.launcher.device_isolation,config.launcher.device_isolation_action,config.launcher.numactl,config.launcher.start_method,config.environment.cpu,config.environment.cpu_count,config.environment.cpu_ram_mb,config.environment.system,config.environment.machine,config.environment.platform,config.environment.processor,config.environment.python_version,config.environment.gpu,config.environment.gpu_count,config.environment.gpu_vram_mb,config.environment.optimum_benchmark_version,config.environment.optimum_benchmark_commit,config.environment.transformers_version,config.environment.transformers_commit,config.environment.accelerate_version,config.environment.accelerate_commit,config.environment.diffusers_version,config.environment.diffusers_commit,config.environment.optimum_version,config.environment.optimum_commit,config.environment.timm_version,config.environment.timm_commit,config.environment.peft_version,config.environment.peft_commit,report.traceback,report.prefill.memory.unit,report.prefill.memory.max_ram,report.prefill.memory.max_global_vram,report.prefill.memory.max_process_vram,report.prefill.memory.max_reserved,report.prefill.memory.max_allocated,report.prefill.latency.unit,report.prefill.latency.count,report.prefill.latency.total,report.prefill.latency.mean,report.prefill.latency.stdev,report.prefill.latency.p50,report.prefill.latency.p90,report.prefill.latency.p95,report.prefill.latency.p99,report.prefill.latency.values,report.prefill.throughput.unit,report.prefill.throughput.value,report.prefill.energy.unit,report.prefill.energy.cpu,report.prefill.energy.ram,report.prefill.energy.gpu,report.prefill.energy.total,report.prefill.efficiency.unit,report.prefill.efficiency.value,report.decode.memory.unit,report.decode.memory.max_ram,report.decode.memory.max_global_vram,report.decode.memory.max_process_vram,report.decode.memory.max_reserved,report.decode.memory.max_allocated,report.decode.latency.unit,report.decode.latency.count,report.decode.latency.total,report.decode.latency.mean,report.decode.latency.stdev,report.decode.latency.p50,report.decode.latency.p90,report.decode.latency.p95,report.decode.latency.p99,report.decode.latency.values,report.decode.throughput.unit,report.decode.throughput.value,report.decode.energy.unit,report.decode.energy.cpu,report.decode.energy.ram,report.decode.energy.gpu,report.decode.energy.total,report.decode.efficiency.unit,report.decode.efficiency.value,report.per_token.memory,report.per_token.latency.unit,report.per_token.latency.count,report.per_token.latency.total,report.per_token.latency.mean,report.per_token.latency.stdev,report.per_token.latency.p50,report.per_token.latency.p90,report.per_token.latency.p95,report.per_token.latency.p99,report.per_token.latency.values,report.per_token.throughput.unit,report.per_token.throughput.value,report.per_token.energy,report.per_token.efficiency,config.backend.hub_kwargs.revision,config.backend.hub_kwargs.force_download,config.backend.hub_kwargs.local_files_only +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,.,.,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -27,8 +27,8 @@ ChildProcessError: Traceback (most recent call last): raise EnvironmentError( OSError: . does not appear to have a file named config.json. Checkout 'https://huggingface.co/./tree/None' for available files. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mixtral-8x7B-v0.1,mistralai/Mixtral-8x7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/phi-1_5,microsoft/phi-1_5,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -48,29 +48,92 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,s,s,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/s/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948cf5-14674d57480a8ec364baf34f;f2fe8072-c785-4e38-b61e-b7213914da04) + +Repository Not Found for url: https://huggingface.co/s/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + raise EnvironmentError( +OSError: s is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-72B,Qwen/Qwen2-beta-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -90,29 +153,51 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-66b,facebook/opt-66b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-180B,tiiuae/falcon-180B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,i,i,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -124,11 +209,21 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/i/resolve/main/config.json The above exception was the direct cause of the following exception: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn @@ -139,28 +234,13 @@ Traceback (most recent call last): response = _request_wrapper( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status - raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66949949-4b302278458c510215cc2ae4;1e1a56f7-55f7-4a20-a761-437ba8cc1f59) - -403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json. -If you are trying to create or update content,make sure you have a token with the `write` role. - -The above exception was the direct cause of the following exception: + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694901f-2e15a68418ddccc2779299bf;2a2fa148-e713-4bf1-8808-c10e9fbc56ce) -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error - raise LocalEntryNotFoundError( -huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. +Repository Not Found for url: https://huggingface.co/i/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. The above exception was the direct cause of the following exception: @@ -181,13 +261,13 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like tiiuae/falcon-180B is not the path to a directory containing a file named config.json. -Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. +OSError: i is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-4B,Qwen/Qwen1.5-4B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-6.7b,EleutherAI/pythia-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -197,56 +277,32 @@ Checkout your internet connection or see how to run the library in offline mode ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1221, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1023, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 763, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 349, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm-20b,internlm/internlm-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-0.5B,Qwen/Qwen1.5-0.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -256,56 +312,32 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 976, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 866, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 583, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 411, in forward - query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-1_6b,stabilityai/stablelm-2-1_6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-16B-nl,Salesforce/codegen-16B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -315,56 +347,126 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 1268, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 1062, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 792, in forward - self_attn_output, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 560, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: CodeGenForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-j-6b,EleutherAI/gpt-j-6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: GPTJForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2-large,openai-community/gpt2-large,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.42.3,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,1240.674304,2645.03296,0.0,1998.585856,1692.386816,s,10,0.18838963317871094,0.018838963317871094,0.000668527770232222,0.01876473617553711,0.019819794464111327,0.020010393524169924,0.0201628727722168,"[0.020200992584228517, 0.018689184188842772, 0.018129568099975586, 0.018872800827026366, 0.018840288162231444, 0.018487136840820314, 0.01897756767272949, 0.018571807861328126, 0.01977743911743164, 0.01784284782409668]",tokens/s,13588.858138343114,kWh,2.1014254247072237e-07,1.1514753753080715e-07,6.21637013718738e-07,9.469270937202676e-07,tokens/kWh,270348162.70198005,MB,1241.542656,2645.03296,0.0,1998.585856,1714.454528,s,10,11.323864135742188,1.1323864135742188,0.011448048499887543,1.1325510864257813,1.1412751220703123,1.1484743530273438,1.1542337377929688,"[1.155673583984375, 1.1301966552734375, 1.125267822265625, 1.13967529296875, 1.1369483642578124, 1.1275675048828124, 1.134905517578125, 1.137067626953125, 1.128013916015625, 1.1085478515625]",tokens/s,55.634719071866414,kWh,1.3173522658266065e-05,7.218674734789249e-06,2.631794009349133e-05,4.6710137486546655e-05,tokens/kWh,1348743.6216205768,,s,629,11.47224270248413,0.018238859622391305,0.0022825385783415146,0.017979391098022462,0.018243788528442384,0.01849487419128418,0.036483277893066435,"[0.01969254493713379, 0.019286016464233398, 0.018386943817138672, 0.01817087936401367, 0.018189311981201172, 0.018092031478881835, 0.017952768325805665, 0.01804902458190918, 0.01804287910461426, 0.018106367111206053, 0.018114559173583983, 0.018313215255737304, 0.01825279998779297, 0.018108415603637695, 0.018390016555786134, 0.018233343124389647, 0.01801215934753418, 0.018094079971313477, 0.018000896453857423, 0.018353151321411132, 0.018100223541259765, 0.018144256591796876, 0.01808896064758301, 0.018141183853149414, 0.018148351669311523, 0.0180633602142334, 0.01801625633239746, 0.018678783416748047, 0.021622783660888673, 0.02020147132873535, 0.01885593605041504, 0.018364416122436524, 0.01823744010925293, 0.018144287109375, 0.01806947135925293, 0.018033664703369142, 0.01805619239807129, 0.018111488342285157, 0.01805721664428711, 0.01799782371520996, 0.018125823974609375, 0.018130943298339842, 0.018159616470336915, 0.018207744598388673, 0.01799065589904785, 0.01802956771850586, 0.017930240631103517, 0.018335744857788085, 0.018184192657470705, 0.01800294494628906, 0.018115583419799804, 0.01796403121948242, 0.017979391098022462, 0.01794767951965332, 0.017952735900878907, 0.01824358367919922, 0.01883443260192871, 0.018513919830322266, 0.019216384887695313, 0.018311168670654295, 0.018207744598388673, 0.018132991790771484, 0.03711590576171875, 0.018126848220825196, 0.018250751495361327, 0.018081792831420897, 0.01820057678222656, 0.018028543472290038, 0.018085887908935547, 0.01806540870666504, 0.018287616729736327, 0.01806438446044922, 0.018077695846557617, 0.01805721664428711, 0.01807257652282715, 0.01805619239807129, 0.018027519226074217, 0.01808793640136719, 0.01816268730163574, 0.017923072814941408, 0.017959936141967774, 0.017911808013916015, 0.017880064010620117, 0.017904640197753906, 0.017917951583862304, 0.017812480926513673, 0.017854463577270507, 0.017885183334350584, 0.01789952087402344, 0.017932287216186525, 0.017929216384887696, 0.017934335708618163, 0.017915903091430666, 0.017862655639648437, 0.017945600509643556, 0.01789952087402344, 0.017789951324462892, 0.01761689567565918, 0.017846271514892577, 0.017707008361816406, 0.01761484718322754, 0.01819443130493164, 0.017971200942993162, 0.017912832260131836, 0.018914304733276367, 0.018008064270019532, 0.017911808013916015, 0.01794867134094238, 0.017984512329101563, 0.017914880752563478, 0.01775923156738281, 0.01762611198425293, 0.017617919921875, 0.017911808013916015, 0.017870847702026366, 0.017944576263427735, 0.017878015518188475, 0.01788313674926758, 0.01760358428955078, 0.017565696716308594, 0.017853439331054686, 0.017912832260131836, 0.017679359436035155, 0.01764352035522461, 0.017670143127441407, 0.0357386245727539, 0.01742438316345215, 0.017318912506103516, 0.017556480407714844, 0.018902015686035157, 0.018452512741088868, 0.018180063247680664, 0.018086912155151368, 0.017971200942993162, 0.01794047927856445, 0.017310720443725586, 0.017369087219238282, 0.017303552627563477, 0.017358848571777344, 0.017308671951293944, 0.017299455642700197, 0.017254400253295898, 0.017160192489624023, 0.017280000686645508, 0.017236991882324217, 0.01718681526184082, 0.01723494338989258, 0.017777664184570312, 0.018258943557739257, 0.017957887649536132, 0.018033664703369142, 0.01795686340332031, 0.018017280578613282, 0.017992704391479493, 0.018125823974609375, 0.018062335968017578, 0.01807257652282715, 0.018371583938598633, 0.018070528030395508, 0.01819340705871582, 0.01804902458190918, 0.017950719833374023, 0.01796505546569824, 0.01794047927856445, 0.01800601577758789, 0.01795996856689453, 0.017928159713745118, 0.017942527770996093, 0.01794047927856445, 0.017959936141967774, 0.017950719833374023, 0.017957887649536132, 0.01839414405822754, 0.01804489517211914, 0.01803468894958496, 0.018081792831420897, 0.01798246383666992, 0.01798963165283203, 0.017976320266723633, 0.018009088516235353, 0.017979391098022462, 0.017935359954833984, 0.01799577522277832, 0.0180633602142334, 0.017704959869384765, 0.017729536056518554, 0.017947647094726564, 0.01823539161682129, 0.03723571014404297, 0.01800499153137207, 0.01802137565612793, 0.018008064270019532, 0.01804800033569336, 0.01798041534423828, 0.018050048828125, 0.018017280578613282, 0.018017280578613282, 0.01801625633239746, 0.01802649688720703, 0.017946624755859376, 0.018349056243896485, 0.018127872467041017, 0.018093088150024413, 0.018162656784057617, 0.018086912155151368, 0.017929216384887696, 0.018070528030395508, 0.018010112762451173, 0.018086912155151368, 0.018000896453857423, 0.018121728897094725, 0.01808896064758301, 0.01804800033569336, 0.018101247787475586, 0.01803775978088379, 0.01799884796142578, 0.018012191772460936, 0.018047967910766603, 0.01800704002380371, 0.01801420783996582, 0.018051071166992186, 0.01809516716003418, 0.018114559173583983, 0.018010047912597655, 0.017934335708618163, 0.018033664703369142, 0.018043903350830077, 0.01803980827331543, 0.01802137565612793, 0.01807360076904297, 0.01805619239807129, 0.01800294494628906, 0.01850060844421387, 0.01800294494628906, 0.018044927597045898, 0.01801215934753418, 0.01780735969543457, 0.017903615951538086, 0.018132991790771484, 0.01822105598449707, 0.018119680404663087, 0.018314239501953124, 0.018135040283203126, 0.019092479705810548, 0.018257919311523436, 0.01820057678222656, 0.018122751235961913, 0.018153472900390624, 0.018118656158447266, 0.018137088775634767, 0.018069503784179687, 0.03716403198242187, 0.018043903350830077, 0.018045984268188476, 0.0180930233001709, 0.01803059196472168, 0.018078720092773438, 0.018091007232666014, 0.01803468894958496, 0.01803264045715332, 0.01808896064758301, 0.018115583419799804, 0.01807974433898926, 0.01805721664428711, 0.0182609920501709, 0.01886720085144043, 0.01839411163330078, 0.018025472640991212, 0.018324480056762696, 0.018110464096069336, 0.017944576263427735, 0.019140607833862306, 0.018117631912231445, 0.01798963165283203, 0.0179814395904541, 0.01799782371520996, 0.017936384201049805, 0.017999872207641602, 0.017979391098022462, 0.01804902458190918, 0.018182144165039063, 0.01805721664428711, 0.017922048568725587, 0.017914880752563478, 0.01790771293640137, 0.017983488082885742, 0.017889280319213868, 0.017697792053222656, 0.017358848571777344, 0.017933311462402343, 0.017617919921875, 0.017758207321166994, 0.017855487823486327, 0.018168832778930662, 0.018528255462646484, 0.018096128463745118, 0.01825279998779297, 0.018225151062011717, 0.018009088516235353, 0.017928192138671875, 0.01790771293640137, 0.01789030456542969, 0.017947647094726564, 0.018000896453857423, 0.017963008880615236, 0.017904640197753906, 0.017999872207641602, 0.017941503524780272, 0.018561023712158203, 0.017903615951538086, 0.017975296020507812, 0.017901567459106444, 0.017920000076293945, 0.0176363525390625, 0.036772865295410156, 0.01801215934753418, 0.017957887649536132, 0.017976320266723633, 0.017951744079589844, 0.01795686340332031, 0.017892351150512697, 0.017918975830078124, 0.017987583160400392, 0.01798246383666992, 0.0179835205078125, 0.017826784133911134, 0.017147903442382813, 0.017548288345336914, 0.017847295761108398, 0.017969152450561524, 0.018092031478881835, 0.017920000076293945, 0.01825382423400879, 0.018135040283203126, 0.018070528030395508, 0.0178606071472168, 0.017378303527832033, 0.01724723243713379, 0.017333248138427734, 0.01743974494934082, 0.017967103958129883, 0.01782476806640625, 0.017868799209594728, 0.017937408447265626, 0.017921024322509766, 0.01763737678527832, 0.017697792053222656, 0.017699840545654297, 0.01781657600402832, 0.01763942337036133, 0.0176680965423584, 0.017870847702026366, 0.018321407318115233, 0.017889280319213868, 0.017992704391479493, 0.01799065589904785, 0.017797119140625, 0.01782374382019043, 0.017903615951538086, 0.017903615951538086, 0.017949695587158202, 0.01796403121948242, 0.01800396728515625, 0.017991680145263672, 0.0180316162109375, 0.0180633602142334, 0.018183168411254884, 0.017985536575317384, 0.017979391098022462, 0.017993728637695314, 0.017938432693481447, 0.017954816818237306, 0.017943552017211914, 0.017901567459106444, 0.018130943298339842, 0.017933311462402343, 0.018486272811889647, 0.03722956848144531, 0.01803980827331543, 0.01794047927856445, 0.018132991790771484, 0.018092031478881835, 0.018223104476928712, 0.01792207908630371, 0.01806230354309082, 0.018544639587402344, 0.01904844856262207, 0.018386943817138672, 0.01824460792541504, 0.01803468894958496, 0.01803775978088379, 0.018050048828125, 0.018197504043579102, 0.01807974433898926, 0.017966079711914062, 0.017991680145263672, 0.017913856506347657, 0.017904640197753906, 0.017971200942993162, 0.017966079711914062, 0.018096128463745118, 0.01803775978088379, 0.01800396728515625, 0.018041856765747072, 0.01805414390563965, 0.01805721664428711, 0.018181119918823242, 0.01798246383666992, 0.01801318359375, 0.017979391098022462, 0.01784832000732422, 0.01763430404663086, 0.017954816818237306, 0.017957887649536132, 0.01799782371520996, 0.017955839157104494, 0.017955839157104494, 0.017897472381591797, 0.017986560821533205, 0.0179814395904541, 0.017994752883911135, 0.017902591705322265, 0.017938432693481447, 0.017884191513061524, 0.017903583526611328, 0.018058240890502928, 0.018147327423095702, 0.017924095153808595, 0.017313791275024415, 0.017262592315673828, 0.017283071517944337, 0.01724313545227051, 0.01841868782043457, 0.018120704650878908, 0.018076671600341796, 0.01804902458190918, 0.017914880752563478, 0.018092031478881835, 0.018143232345581056, 0.01803059196472168, 0.037408767700195314, 0.018696191787719727, 0.018634752273559572, 0.018241535186767577, 0.018098175048828127, 0.017975296020507812, 0.01807155227661133, 0.01803468894958496, 0.018076671600341796, 0.01801420783996582, 0.018050048828125, 0.01805516815185547, 0.018017280578613282, 0.01805516815185547, 0.01799884796142578, 0.018074623107910158, 0.018207744598388673, 0.017936384201049805, 0.017967103958129883, 0.01798041534423828, 0.01808896064758301, 0.018104320526123048, 0.017953792572021485, 0.017905664443969727, 0.01802444839477539, 0.01810534477233887, 0.018036735534667968, 0.017945600509643556, 0.018009088516235353, 0.017758207321166994, 0.017710079193115236, 0.01790771293640137, 0.017830911636352538, 0.017674240112304687, 0.017918975830078124, 0.017930240631103517, 0.017897472381591797, 0.017970176696777345, 0.017894399642944335, 0.017925119400024413, 0.01785753631591797, 0.017978368759155275, 0.01784524726867676, 0.01762713623046875, 0.01818623924255371, 0.0182476806640625, 0.017957887649536132, 0.01804595184326172, 0.01788313674926758, 0.018009088516235353, 0.01800294494628906, 0.017983488082885742, 0.0180633602142334, 0.017942527770996093, 0.017999872207641602, 0.01803980827331543, 0.01800601577758789, 0.01803468894958496, 0.01803980827331543, 0.017936384201049805, 0.017760255813598632, 0.01760870361328125, 0.020915199279785156, 0.03822387313842773, 0.017963008880615236, 0.017894399642944335, 0.017931264877319338, 0.018061311721801757, 0.017958911895751953, 0.017924095153808595, 0.017893375396728514, 0.017904640197753906, 0.0178657283782959, 0.017979391098022462, 0.017985536575317384, 0.01798963165283203, 0.018050048828125, 0.017963008880615236, 0.017953792572021485, 0.017947647094726564, 0.018153472900390624, 0.017994752883911135, 0.017887231826782226, 0.017880064010620117, 0.017892351150512697, 0.017903615951538086, 0.017954816818237306, 0.017916927337646483, 0.017955839157104494, 0.017898496627807618, 0.017864704132080078, 0.01788211250305176, 0.017979391098022462, 0.01789132881164551, 0.017946624755859376, 0.017966079711914062, 0.017938432693481447, 0.017761280059814453, 0.01759539222717285, 0.01756876754760742, 0.017901567459106444, 0.017921024322509766, 0.01789030456542969, 0.017916927337646483, 0.017934335708618163, 0.017902591705322265, 0.017913856506347657, 0.018020351409912108, 0.017938432693481447, 0.017943552017211914, 0.01785958480834961, 0.017953792572021485, 0.017912832260131836, 0.01795686340332031, 0.01790771293640137, 0.017918975830078124, 0.01789952087402344, 0.017983488082885742, 0.01819443130493164, 0.017913856506347657, 0.017915903091430666, 0.01796505546569824, 0.017887231826782226, 0.01768448066711426, 0.017138687133789063, 0.017300479888916014, 0.03538022232055664, 0.017307647705078123, 0.017283071517944337, 0.01721241569519043, 0.017349632263183593, 0.017378303527832033, 0.017240095138549804, 0.017227743148803713, 0.01722777557373047, 0.017311744689941407, 0.017301504135131835, 0.017290239334106446, 0.017257471084594727, 0.017282047271728516, 0.01723904037475586, 0.017351680755615235, 0.017242111206054688, 0.017192960739135742, 0.017285120010375975, 0.01720832061767578, 0.017253376007080077, 0.017376256942749024, 0.017876991271972655, 0.017971200942993162, 0.017885183334350584, 0.01787392044067383, 0.01839206314086914, 0.01800704002380371, 0.017971200942993162, 0.018276351928710938, 0.017876991271972655, 0.017870847702026366, 0.017926143646240233, 0.017906688690185548, 0.01783500862121582, 0.017947647094726564, 0.017884159088134767, 0.017943552017211914, 0.01803878402709961, 0.018421760559082033, 0.01859993553161621, 0.018069503784179687, 0.017920000076293945, 0.017926143646240233, 0.01790771293640137, 0.017934335708618163, 0.017869855880737303, 0.017647584915161132, 0.01760358428955078, 0.0176312313079834, 0.01762816047668457, 0.017338367462158204, 0.017317888259887695, 0.017361919403076173, 0.017257471084594727, 0.017260543823242186, 0.017282047271728516, 0.017294336318969726, 0.017277952194213866, 0.01724825668334961, 0.017250303268432618, 0.01740492820739746, 0.017288192749023438]",tokens/s,54.82798928790097,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mistral-7B-v0.1,mistralai/Mistral-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,1,1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,r,r,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -376,7 +478,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/1/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/r/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -403,9 +505,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669495d8-6e7bc83278d01246445ae00e;c5c31fda-fd9f-42e7-9e41-3a985ee5d71a) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694911f-054c52293cb3ecb65d01522b;bd28ec7e-e9ad-4bd5-9d84-b99e74b5434c) -Repository Not Found for url: https://huggingface.co/1/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/r/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -430,119 +532,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: 1 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: r is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-1.8B,Qwen/Qwen1.5-1.8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1221, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1023, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 763, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 349, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) -TypeError: DeciCoderAttention.forward() got an unexpected keyword argument 'cache_position' - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,s,s,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,l,l,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -554,7 +548,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/s/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/l/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -581,9 +575,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948d09-6e8ec95503e713c10280dff3;b6161f37-5655-4d59-b412-f838e3c3f1d4) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669491c6-16e5cc07103660a311ab2310;d3f549f5-adbc-4caa-962c-5405faa4a87a) -Repository Not Found for url: https://huggingface.co/s/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/l/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -608,11 +602,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: s is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: l is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,TencentARC/Mistral_Pro_8B_v0.1,TencentARC/Mistral_Pro_8B_v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,a,a,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -620,248 +614,46 @@ If this is a private repository, make sure to pass a token having permission to File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 1200, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 976, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 718, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 325, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/a/resolve/main/config.json -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-12b,EleutherAI/pythia-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward - outputs = self.gpt_neox( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward - outputs = layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward - attention_layer_outputs = self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 339, in forward - query, key, value, present = self._attn_projections_and_rope( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope - qkv = self.query_key_value(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels +The above exception was the direct cause of the following exception: -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/polyglot-ko-12.8b,EleutherAI/polyglot-ko-12.8b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward - outputs = self.gpt_neox( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward - outputs = layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward - attention_layer_outputs = self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 339, in forward - query, key, value, present = self._attn_projections_and_rope( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope - qkv = self.query_key_value(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949171-3125b6236ec631226f52bbaa;0f758913-8bcf-45b1-9fb1-baf7fa54916e) -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-3b,stabilityai/stablelm-base-alpha-3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward - outputs = self.gpt_neox( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward - outputs = layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward - attention_layer_outputs = self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 339, in forward - query, key, value, present = self._attn_projections_and_rope( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope - qkv = self.query_key_value(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels +Repository Not Found for url: https://huggingface.co/a/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,/,/,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run @@ -878,73 +670,13 @@ ChildProcessError: Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 373, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: / does not appear to have a file named config.json. Checkout 'https://huggingface.co///tree/None' for available files. - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-70m,EleutherAI/pythia-70m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward - outputs = self.gpt_neox( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward - outputs = layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward - attention_layer_outputs = self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 339, in forward - query, key, value, present = self._attn_projections_and_rope( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope - qkv = self.query_key_value(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels +OSError: a is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-2b,google/gemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,1,1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -956,11 +688,21 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/gemma-2b/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/1/resolve/main/config.json The above exception was the direct cause of the following exception: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn @@ -971,28 +713,13 @@ Traceback (most recent call last): response = _request_wrapper( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status - raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66948131-3b9e312013a4f2f05b0d57cc;a5e7424f-1441-4583-a3cb-67182b0313e4) - -403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/google/gemma-2b/resolve/main/config.json. -If you are trying to create or update content,make sure you have a token with the `write` role. - -The above exception was the direct cause of the following exception: + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669495c2-2020169116cf5c8a72628056;0d20cce6-94d9-4d7a-b675-b3e90e52a5bc) -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error - raise LocalEntryNotFoundError( -huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. +Repository Not Found for url: https://huggingface.co/1/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. The above exception was the direct cause of the following exception: @@ -1013,13 +740,13 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/gemma-2b is not the path to a directory containing a file named config.json. -Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. +OSError: 1 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciLM-7B,Deci/DeciLM-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-7b,huggyllama/llama-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -1027,133 +754,34 @@ Checkout your internet connection or see how to run the library in offline mode File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciLM-7B/c3c9f4226801dc0433f32aebffe0aac68ee2f051/transformers_v4_35_2__modeling_llama.py"", line 1034, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciLM-7B/c3c9f4226801dc0433f32aebffe0aac68ee2f051/modeling_decilm.py"", line 274, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciLM-7B/c3c9f4226801dc0433f32aebffe0aac68ee2f051/transformers_v4_35_2__modeling_llama.py"", line 672, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciLM-7B/c3c9f4226801dc0433f32aebffe0aac68ee2f051/modeling_decilm.py"", line 84, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,databricks/dbrx-base,databricks/dbrx-base,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status - raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66947b5a-14378b9a30e3d0c35418818b;b3683f41-9fa5-4d56-9dfe-a678c491ca92) - -403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json. -If you are trying to create or update content,make sure you have a token with the `write` role. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error - raise LocalEntryNotFoundError( -huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file - raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like databricks/dbrx-base is not the path to a directory containing a file named config.json. -Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-7.5B,facebook/xglm-7.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-2.7b,EleutherAI/pythia-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -1173,16 +801,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation - cls._check_and_enable_flash_attn_2( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 - raise ValueError( -ValueError: XGLMForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmptiq_oici/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,B,B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,B,B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -1221,7 +855,7 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669493f7-2380cd24135617be1ae4dd2d;c2b5372d-44f8-49c6-9a7a-a9413a12d142) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669493e1-057546d81e5e67da3c9b6320;98b57586-874e-4539-8e6a-aa20ea0103aa) Repository Not Found for url: https://huggingface.co/B/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. @@ -1251,67 +885,8 @@ Traceback (most recent call last): OSError: B is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-14B,Qwen/Qwen1.5-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1221, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1023, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 763, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 349, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-30b,huggyllama/llama-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -1321,56 +896,32 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 414, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,v,v,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,2,2,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -1382,7 +933,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/v/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/2/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -1409,9 +960,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669494ad-6d9704883731337648b27f8a;e3cad4c8-cb4e-4089-83b2-bd05e47a0d0a) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949384-64791c6830106fee54d20bde;b6eb150d-e320-45d0-b121-1e789f263508) -Repository Not Found for url: https://huggingface.co/v/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/2/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -1436,11 +987,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: v is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: 2 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.3b,EleutherAI/pythia-1.3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-350m,facebook/opt-350m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -1450,58 +1001,26 @@ If this is a private repository, make sure to pass a token having permission to ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward - outputs = self.gpt_neox( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward - outputs = layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward - attention_layer_outputs = self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 339, in forward - query, key, value, present = self._attn_projections_and_rope( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope - qkv = self.query_key_value(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-40b,tiiuae/falcon-40b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-MoE-A2.7B,Qwen/Qwen1.5-MoE-A2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -1519,18 +1038,24 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation - cls._check_and_enable_flash_attn_2( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 - raise ValueError( -ValueError: FalconForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpuur1cgl9/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neox-20b,EleutherAI/gpt-neox-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-70B,meta-llama/Meta-Llama-3-70B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -1540,58 +1065,39 @@ ValueError: FalconForCausalLM does not support Flash Attention 2.0 yet. Please r ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward - outputs = self.gpt_neox( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward - outputs = layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward - attention_layer_outputs = self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 339, in forward - query, key, value, present = self._attn_projections_and_rope( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope - qkv = self.query_key_value(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-13b,facebook/opt-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/polyglot-ko-12.8b,EleutherAI/polyglot-ko-12.8b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -1601,57 +1107,32 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 1118, in forward - outputs = self.model.decoder( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 884, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 525, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 292, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2-large,openai-community/gpt2-large,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1237.069824,2645.03296,0.0,1998.585856,1692.285952,s,10,0.19134716606140137,0.019134716606140138,0.0005608761432091296,0.018977791786193847,0.0197670597076416,0.02017293758392334,0.02049763988494873,"[0.02057881546020508, 0.0190994873046875, 0.0187042236328125, 0.018728607177734374, 0.01878009605407715, 0.018654111862182618, 0.01891535949707031, 0.019040224075317382, 0.019169376373291015, 0.019676864624023436]",tokens/s,13378.823698797409,kWh,2.1992317273112132e-07,1.2050741516561284e-07,6.735971662309277e-07,1.014027754127662e-06,tokens/kWh,252458573.2076231,MB,1237.069824,2645.03296,0.0,1998.585856,1740.085248,s,10,11.554657470703125,1.1554657470703125,0.013645969689330972,1.1534767456054689,1.1682131958007813,1.1769882507324219,1.1840082946777344,"[1.1857633056640624, 1.14386572265625, 1.1522501220703125, 1.1418011474609375, 1.154703369140625, 1.1461051025390625, 1.1383001708984375, 1.1644542236328126, 1.16626318359375, 1.161151123046875]",tokens/s,54.52346827219822,kWh,1.387793931927391e-05,7.604759108500891e-06,2.8986009894769086e-05,5.0468708322543894e-05,tokens/kWh,1248298.244475944,,s,629,11.705972766876219,0.0186104495498827,0.0023066301847454542,0.018160640716552736,0.01886699562072754,0.01908162498474121,0.03717550079345703,"[0.019216384887695313, 0.018964479446411133, 0.018840576171875, 0.01904947280883789, 0.01902387237548828, 0.019145727157592773, 0.01901568031311035, 0.018939903259277344, 0.018876415252685547, 0.018917375564575196, 0.019091455459594727, 0.019136512756347656, 0.018971647262573242, 0.018998271942138673, 0.019066879272460938, 0.018921472549438476, 0.018934783935546876, 0.019094528198242186, 0.019323904037475585, 0.019158016204833983, 0.01887027168273926, 0.01883955192565918, 0.01860095977783203, 0.019615743637084963, 0.019579904556274414, 0.019698720932006836, 0.018974687576293944, 0.018787328720092773, 0.01881292724609375, 0.01901055908203125, 0.018912256240844725, 0.018939903259277344, 0.018815999984741212, 0.01886617660522461, 0.018852863311767578, 0.018775039672851563, 0.0186746883392334, 0.018123775482177733, 0.018050048828125, 0.018131967544555663, 0.018062335968017578, 0.018153472900390624, 0.018135040283203126, 0.01808076858520508, 0.018112512588500978, 0.018164735794067383, 0.018568191528320312, 0.01880166435241699, 0.018711551666259766, 0.018769920349121092, 0.01878937530517578, 0.018946048736572265, 0.018766847610473633, 0.01879347229003906, 0.0188221435546875, 0.01882111930847168, 0.01923788833618164, 0.01900748825073242, 0.018765823364257812, 0.018397184371948243, 0.01823232078552246, 0.018239488601684572, 0.03753472137451172, 0.018603008270263673, 0.018795520782470702, 0.018242559432983398, 0.01817087936401367, 0.018142208099365235, 0.01823232078552246, 0.018128896713256838, 0.018149375915527344, 0.018166784286499024, 0.01822719955444336, 0.018189311981201172, 0.0182108154296875, 0.018174976348876954, 0.018280448913574218, 0.01822822380065918, 0.01816166305541992, 0.018155519485473632, 0.018177024841308592, 0.01824563217163086, 0.018111520767211915, 0.018137056350708006, 0.018149375915527344, 0.018100223541259765, 0.01813811111450195, 0.01783500862121582, 0.01787494468688965, 0.017894399642944335, 0.017953792572021485, 0.017885183334350584, 0.017896448135375977, 0.017854463577270507, 0.01788313674926758, 0.017912832260131836, 0.017934335708618163, 0.018101247787475586, 0.01818726348876953, 0.018156543731689453, 0.018149375915527344, 0.018177024841308592, 0.01805619239807129, 0.01822003173828125, 0.018223104476928712, 0.018168832778930662, 0.018167808532714845, 0.018589696884155273, 0.018256895065307616, 0.018077695846557617, 0.018156543731689453, 0.018137088775634767, 0.018282495498657226, 0.018156543731689453, 0.018117631912231445, 0.01825484848022461, 0.018134016036987305, 0.018223104476928712, 0.018164735794067383, 0.018197504043579102, 0.01816985511779785, 0.018124799728393554, 0.018155519485473632, 0.018290687561035156, 0.018130943298339842, 0.037168128967285156, 0.01818009567260742, 0.018239551544189454, 0.018205631256103517, 0.018103296279907227, 0.018289663314819335, 0.018159616470336915, 0.018160640716552736, 0.01822208023071289, 0.01824563217163086, 0.018258943557739257, 0.0182794246673584, 0.01820569610595703, 0.01816268730163574, 0.01822822380065918, 0.018748416900634765, 0.01879859161376953, 0.018307071685791015, 0.018050048828125, 0.01819340705871582, 0.01815449523925781, 0.01820569610595703, 0.01810534477233887, 0.0184268798828125, 0.018166784286499024, 0.018199552536010744, 0.018164735794067383, 0.01816268730163574, 0.018464767456054687, 0.018880512237548826, 0.01871670341491699, 0.01874940872192383, 0.0186562557220459, 0.018355199813842774, 0.018729984283447267, 0.018807807922363282, 0.01882009506225586, 0.018563072204589845, 0.018144256591796876, 0.01816985511779785, 0.018226175308227538, 0.018223104476928712, 0.01814630317687988, 0.018119680404663087, 0.018130943298339842, 0.018096128463745118, 0.018131967544555663, 0.018359296798706053, 0.018117631912231445, 0.018168832778930662, 0.018172927856445312, 0.018096128463745118, 0.018293760299682618, 0.01820057678222656, 0.018135040283203126, 0.018155519485473632, 0.018283519744873047, 0.01820057678222656, 0.018164735794067383, 0.01820364761352539, 0.018145280838012694, 0.01822412872314453, 0.01813811111450195, 0.03717836761474609, 0.01821388816833496, 0.018144256591796876, 0.018122751235961913, 0.018102272033691406, 0.018163711547851562, 0.018121728897094725, 0.018184192657470705, 0.018119680404663087, 0.01819545555114746, 0.01816166305541992, 0.018160640716552736, 0.018266111373901366, 0.01821696090698242, 0.018255872726440428, 0.018323455810546875, 0.018198528289794923, 0.01815449523925781, 0.018103296279907227, 0.018280448913574218, 0.018265087127685545, 0.018174976348876954, 0.018153472900390624, 0.018174976348876954, 0.018192384719848635, 0.018147327423095702, 0.018134016036987305, 0.018181119918823242, 0.018050048828125, 0.01806438446044922, 0.018141183853149414, 0.018076671600341796, 0.01815760040283203, 0.018163679122924804, 0.018155519485473632, 0.018151424407958985, 0.01803468894958496, 0.01807360076904297, 0.018167808532714845, 0.018008064270019532, 0.017787904739379884, 0.017830911636352538, 0.017772544860839845, 0.01799782371520996, 0.018382848739624022, 0.018126848220825196, 0.017991680145263672, 0.01817087936401367, 0.018077695846557617, 0.018139135360717772, 0.018092031478881835, 0.018158592224121094, 0.018059263229370116, 0.018089984893798827, 0.018041856765747072, 0.018061311721801757, 0.018103296279907227, 0.018142208099365235, 0.018017280578613282, 0.018050048828125, 0.018076671600341796, 0.01803468894958496, 0.017994752883911135, 0.03722649765014648, 0.018111488342285157, 0.01818623924255371, 0.017994752883911135, 0.01804800033569336, 0.01926246452331543, 0.019359743118286133, 0.01949286460876465, 0.01882316780090332, 0.01883033561706543, 0.018815999984741212, 0.019165184020996092, 0.018874368667602538, 0.01860915184020996, 0.01880166435241699, 0.018739200592041014, 0.018692096710205077, 0.018678783416748047, 0.018107391357421874, 0.018124799728393554, 0.018082815170288084, 0.018174976348876954, 0.018091007232666014, 0.018122751235961913, 0.018191360473632814, 0.018147327423095702, 0.018148351669311523, 0.018145280838012694, 0.01804287910461426, 0.018082815170288084, 0.017983488082885742, 0.01805721664428711, 0.018076671600341796, 0.018067455291748045, 0.018149375915527344, 0.018094079971313477, 0.018135040283203126, 0.01814630317687988, 0.018142208099365235, 0.018115583419799804, 0.018166784286499024, 0.018386943817138672, 0.019382272720336914, 0.018767871856689454, 0.018694143295288086, 0.01863270378112793, 0.01861427116394043, 0.018083839416503905, 0.018103296279907227, 0.018050048828125, 0.018113536834716795, 0.018058240890502928, 0.01802342414855957, 0.01777663993835449, 0.017921024322509766, 0.01782681655883789, 0.017921024322509766, 0.01846784019470215, 0.018112512588500978, 0.018089984893798827, 0.018061311721801757, 0.018089984893798827, 0.01805516815185547, 0.036992000579833983, 0.018264064788818358, 0.0181790714263916, 0.01810534477233887, 0.018128896713256838, 0.018123775482177733, 0.018157567977905274, 0.018098175048828127, 0.01805516815185547, 0.018114559173583983, 0.01809715270996094, 0.01816166305541992, 0.018075647354125975, 0.018110464096069336, 0.018122751235961913, 0.018165760040283203, 0.01822208023071289, 0.018057247161865235, 0.018113504409790038, 0.01807360076904297, 0.018062335968017578, 0.018144256591796876, 0.01813811111450195, 0.018101247787475586, 0.018135040283203126, 0.018324480056762696, 0.018190336227416993, 0.018036735534667968, 0.017916927337646483, 0.017898496627807618, 0.01784012794494629, 0.01798454475402832, 0.018193376541137694, 0.018103328704833985, 0.018072544097900392, 0.018150400161743165, 0.01800601577758789, 0.01804595184326172, 0.01846784019470215, 0.02028441619873047, 0.019355648040771483, 0.018916351318359375, 0.019009536743164062, 0.01843404769897461, 0.018092031478881835, 0.017987583160400392, 0.018111488342285157, 0.01802444839477539, 0.01803775978088379, 0.018012191772460936, 0.018046943664550782, 0.018084863662719726, 0.018102272033691406, 0.018140159606933593, 0.018076671600341796, 0.01803878402709961, 0.018139135360717772, 0.018066432952880858, 0.018126848220825196, 0.018110464096069336, 0.018114559173583983, 0.018098175048828127, 0.01814630317687988, 0.037294078826904296, 0.018145280838012694, 0.018086912155151368, 0.018075647354125975, 0.018165760040283203, 0.018132991790771484, 0.018043903350830077, 0.018018304824829103, 0.018028543472290038, 0.01806540870666504, 0.018144256591796876, 0.018074623107910158, 0.018058240890502928, 0.0180316162109375, 0.01807974433898926, 0.018182144165039063, 0.018156543731689453, 0.017967103958129883, 0.01810534477233887, 0.018052095413208007, 0.018083839416503905, 0.017984512329101563, 0.01803878402709961, 0.018317312240600587, 0.018141183853149414, 0.01800396728515625, 0.018159616470336915, 0.018051071166992186, 0.017992704391479493, 0.01800499153137207, 0.01804287910461426, 0.01803059196472168, 0.01802649688720703, 0.017954816818237306, 0.018076671600341796, 0.018121728897094725, 0.01807257652282715, 0.018082815170288084, 0.01803059196472168, 0.01807974433898926, 0.017958911895751953, 0.01796505546569824, 0.01797532844543457, 0.018025440216064455, 0.01803878402709961, 0.01806540870666504, 0.01796505546569824, 0.018125823974609375, 0.018075647354125975, 0.018061311721801757, 0.0180316162109375, 0.018134016036987305, 0.018086912155151368, 0.018164735794067383, 0.01799679946899414, 0.01802137565612793, 0.01804083251953125, 0.017947647094726564, 0.018076671600341796, 0.018101247787475586, 0.018081792831420897, 0.018067455291748045, 0.018050079345703126, 0.037448673248291015, 0.01804595184326172, 0.01804287910461426, 0.01805721664428711, 0.018019327163696287, 0.017979391098022462, 0.01803878402709961, 0.01813811111450195, 0.018076671600341796, 0.01804287910461426, 0.018136064529418947, 0.01821286392211914, 0.01808076858520508, 0.01781862449645996, 0.017942527770996093, 0.017855487823486327, 0.018158592224121094, 0.01843507194519043, 0.018691072463989256, 0.018387968063354493, 0.018655231475830078, 0.018695167541503906, 0.018689023971557618, 0.01859891128540039, 0.018722816467285155, 0.018726911544799805, 0.018397184371948243, 0.018044927597045898, 0.018075647354125975, 0.018089984893798827, 0.01805721664428711, 0.018367488861083983, 0.01881907272338867, 0.018697216033935548, 0.01864499282836914, 0.01866649627685547, 0.01862860870361328, 0.018646015167236327, 0.01884160041809082, 0.021174272537231444, 0.019122175216674805, 0.018735103607177735, 0.01868083190917969, 0.01863167953491211, 0.018770944595336913, 0.01869004821777344, 0.018700288772583007, 0.018790399551391602, 0.018677759170532226, 0.01881395149230957, 0.01878937530517578, 0.018729984283447267, 0.018126848220825196, 0.018069503784179687, 0.018150400161743165, 0.018163711547851562, 0.018404352188110353, 0.01885593605041504, 0.018689023971557618, 0.018748416900634765, 0.018749439239501953, 0.018803712844848632, 0.018762752532958983, 0.037664768218994144, 0.01887539291381836, 0.018889728546142577, 0.018763776779174804, 0.01877507209777832, 0.0187412166595459, 0.018119680404663087, 0.01802342414855957, 0.018107391357421874, 0.018082815170288084, 0.018150400161743165, 0.018117631912231445, 0.018062335968017578, 0.018276351928710938, 0.018740224838256835, 0.01885798454284668, 0.01875660705566406, 0.018753536224365236, 0.018559999465942383, 0.01843302345275879, 0.018131967544555663, 0.01803878402709961, 0.018724863052368163, 0.018746368408203123, 0.018697216033935548, 0.018694143295288086, 0.01867263984680176, 0.018733055114746093, 0.018939903259277344, 0.019005439758300782, 0.018803712844848632, 0.018717695236206054, 0.01846886444091797, 0.018082815170288084, 0.018060287475585936, 0.01808793640136719, 0.01844428825378418, 0.018759679794311524, 0.018736127853393555, 0.0185743350982666, 0.018044927597045898, 0.01803264045715332, 0.01802444839477539, 0.01799884796142578, 0.018070528030395508, 0.01820364761352539, 0.018120704650878908, 0.01862758445739746, 0.01864192008972168, 0.018712575912475587, 0.018655231475830078, 0.018743295669555664, 0.01866547203063965, 0.01861734390258789, 0.0187238712310791, 0.018577375411987306, 0.01866035270690918, 0.018686975479125977, 0.01861324882507324, 0.01904742431640625, 0.018710527420043945, 0.018672672271728516, 0.018756576538085937, 0.03872665786743164, 0.0188272647857666, 0.018716672897338867, 0.01861529541015625, 0.018856000900268555, 0.01869100761413574, 0.018774015426635742, 0.0186746883392334, 0.018679807662963867, 0.01840947151184082, 0.017886207580566405, 0.017796096801757814, 0.01823539161682129, 0.018374656677246092, 0.018529279708862305, 0.018464767456054687, 0.018569215774536133, 0.01862348747253418, 0.019160064697265625, 0.01885593605041504, 0.01883545684814453, 0.018778112411499022, 0.018763776779174804, 0.018713600158691408, 0.018767871856689454, 0.018744319915771485, 0.01897881507873535, 0.02040934371948242, 0.020281343460083007, 0.018932735443115235, 0.018964479446411133, 0.01883852767944336, 0.018106367111206053, 0.018100223541259765, 0.018060287475585936, 0.018084863662719726, 0.01822003173828125, 0.018050048828125, 0.018067455291748045, 0.01802444839477539, 0.018092031478881835, 0.0180633602142334, 0.018075647354125975, 0.018059263229370116, 0.01801215934753418, 0.018120704650878908, 0.018118656158447266, 0.018052095413208007, 0.018059263229370116, 0.01803264045715332, 0.01808076858520508, 0.018027519226074217, 0.018068479537963866, 0.018044927597045898, 0.018103296279907227, 0.018051071166992186, 0.018059263229370116, 0.018085887908935547, 0.018165760040283203, 0.018076671600341796, 0.018082815170288084, 0.018075647354125975, 0.018073631286621095]",tokens/s,53.73325331661872,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-72B,Qwen/Qwen1.5-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-65b,huggyllama/llama-65b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -1690,10 +1171,10 @@ ChildProcessError: Traceback (most recent call last): self._buffers[key] = fn(buf) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 86.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,M,M,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-14B,Qwen/Qwen1.5-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -1701,11 +1182,81 @@ torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GP File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-12b,stabilityai/stablelm-2-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,8,8,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/M/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/8/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -1732,9 +1283,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948fdf-05786cce5e0d8cde3ad0a625;4bc435f5-be22-438a-92ab-4db3dc87c0ac) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949279-179e332e37ddb64d1199134d;65b6f76d-0b6a-441d-8027-7987328985dc) -Repository Not Found for url: https://huggingface.co/M/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/8/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -1759,11 +1310,116 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: M is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: 8 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-7b,google/gemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-8B,meta-llama/Meta-Llama-3-8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/rho-math-1b-v0.1,microsoft/rho-math-1b-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-70m,EleutherAI/pythia-70m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,databricks/dbrx-base,databricks/dbrx-base,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -1775,7 +1431,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/gemma-7b/resolve/main/config.json +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -1792,10 +1448,10 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66948191-30cb704d77ac1aa928a61db8;fe0bf4d6-477a-4fed-ada3-5ca129fe865f) +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66947b45-3ab3dc9f5668660522884602;84cef30c-c870-4aa7-80ff-9cad99d8710b) 403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/google/gemma-7b/resolve/main/config.json. +Cannot access content at: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json. If you are trying to create or update content,make sure you have a token with the `write` role. The above exception was the direct cause of the following exception: @@ -1834,11 +1490,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/gemma-7b is not the path to a directory containing a file named config.json. +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like databricks/dbrx-base is not the path to a directory containing a file named config.json. Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-2.7b,EleutherAI/pythia-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-2.7B,EleutherAI/gpt-neo-2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -1848,58 +1504,26 @@ Checkout your internet connection or see how to run the library in offline mode ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward - outputs = self.gpt_neox( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward - outputs = layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward - attention_layer_outputs = self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 339, in forward - query, key, value, present = self._attn_projections_and_rope( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope - qkv = self.query_key_value(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: GPTNeoForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-7B,Qwen/Qwen1.5-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-2.7b,facebook/opt-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -1909,56 +1533,55 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1221, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1023, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 763, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 349, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciLM-7B,Deci/DeciLM-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: DeciLMForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,-,-,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-7b,google/recurrentgemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -1966,13 +1589,42 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/google/recurrentgemma-7b/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 106, in _inner_fn - validate_repo_id(arg_value) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 160, in validate_repo_id - raise HFValidationError( -huggingface_hub.errors.HFValidationError: Repo id must use alphanumeric chars or '-', '_', '.', '--' and '..' are forbidden, '-' and '.' cannot start or end the name, max length is 96: '-'. + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948251-4fd60f9855ebf2762d8a5603;0013c02f-4384-491c-98d7-d611f6809796) + +Repository Not Found for url: https://huggingface.co/google/recurrentgemma-7b/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. The above exception was the direct cause of the following exception: @@ -1993,71 +1645,13 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 466, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: Incorrect path_or_model_id: '-'. Please provide either the path to a local folder or the repo_id of a model on the Hub. - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-125m,facebook/opt-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 1118, in forward - outputs = self.model.decoder( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 884, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 525, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 292, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels +OSError: google/recurrentgemma-7b is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-6.7b,EleutherAI/pythia-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -2067,58 +1661,26 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward - outputs = self.gpt_neox( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward - outputs = layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward - attention_layer_outputs = self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 339, in forward - query, key, value, present = self._attn_projections_and_rope( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope - qkv = self.query_key_value(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: GPTNeoForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-14B,Qwen/Qwen-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-4B,Qwen/Qwen1.5-4B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -2136,77 +1698,24 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained - model_class = get_class_from_dynamic_module( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module - final_module = get_cached_module_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file - modules_needed = check_imports(resolved_module_file) - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports - raise ImportError( -ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-12b,stabilityai/stablelm-2-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 1268, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 1062, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 792, in forward - self_attn_output, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 560, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-30b,huggyllama/llama-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-4.5B,facebook/xglm-4.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -2216,56 +1725,26 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 414, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: XGLMForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-3b-4e1t,stabilityai/stablelm-3b-4e1t,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -2275,62 +1754,32 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 970, in forward - transformer_outputs = self.transformer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 838, in forward - outputs = block( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 565, in forward - attn_outputs = self.attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 517, in forward - return self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 318, in forward - query = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-8B,meta-llama/Meta-Llama-3-8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-30b,facebook/opt-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -2340,56 +1789,26 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 414, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,x,x,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-2b,google/recurrentgemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -2401,21 +1820,11 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/x/resolve/main/config.json +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json The above exception was the direct cause of the following exception: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn @@ -2426,13 +1835,28 @@ Traceback (most recent call last): response = _request_wrapper( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669492e4-684f91a4746cfedf34b1046c;d06f3984-dae6-4629-9c3e-de9065198821) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status + raise HfHubHTTPError(message, response=response) from e +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-669481de-41f6776a37cf8d5c484750e8;67d51f55-5550-4111-9616-e7ea9fe9dc15) -Repository Not Found for url: https://huggingface.co/x/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. +403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. +Cannot access content at: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json. +If you are trying to create or update content,make sure you have a token with the `write` role. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error + raise LocalEntryNotFoundError( +huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. The above exception was the direct cause of the following exception: @@ -2453,13 +1877,181 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file raise EnvironmentError( -OSError: x is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/recurrentgemma-2b is not the path to a directory containing a file named config.json. +Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mixtral-8x7B-v0.1,mistralai/Mixtral-8x7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-125m,facebook/opt-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm-20b,internlm/internlm-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3710, in from_pretrained + model = cls(config, *model_args, **model_kwargs) + File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 906, in __init__ + self.model = InternLMModel(config) + File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 729, in __init__ + self.layers = nn.ModuleList([InternLMDecoderLayer(config) for _ in range(config.num_hidden_layers)]) + File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 729, in + self.layers = nn.ModuleList([InternLMDecoderLayer(config) for _ in range(config.num_hidden_layers)]) + File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 545, in __init__ + self.self_attn = INTERNLM_ATTENTION_CLASSES[config.attn_implementation](config=config) +KeyError: 'sdpa' + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-7.5B,facebook/xglm-7.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: XGLMForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-3B-v1,togethercomputer/RedPajama-INCITE-Base-3B-v1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,i,i,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,M,M,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -2471,7 +2063,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/i/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/M/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -2498,9 +2090,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949038-2a225c2360edfe3456f52d62;6532c1cd-5cdd-44e3-8da0-76861e388423) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948fca-43cc037e15d3884f71859cb8;2a60cb70-b6a3-4ec8-8e6f-187c49c6c685) -Repository Not Found for url: https://huggingface.co/i/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/M/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -2525,11 +2117,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: i is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: M is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-72B,Qwen/Qwen-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-3b,stabilityai/stablelm-base-alpha-3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -2547,79 +2139,24 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained - model_class = get_class_from_dynamic_module( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module - final_module = get_cached_module_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file - modules_needed = check_imports(resolved_module_file) - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports - raise ImportError( -ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.4b,EleutherAI/pythia-1.4b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward - outputs = self.gpt_neox( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward - outputs = layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward - attention_layer_outputs = self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 339, in forward - query, key, value, present = self._attn_projections_and_rope( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope - qkv = self.query_key_value(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-3B-v1,togethercomputer/RedPajama-INCITE-Base-3B-v1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-13b,huggyllama/llama-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -2629,58 +2166,32 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward - outputs = self.gpt_neox( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward - outputs = layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward - attention_layer_outputs = self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 339, in forward - query, key, value, present = self._attn_projections_and_rope( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope - qkv = self.query_key_value(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-0.5B,Qwen/Qwen1.5-0.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-7b-hf,meta-llama/Llama-2-7b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -2690,56 +2201,32 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1221, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1023, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 763, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 349, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-7B,Qwen/Qwen-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,-,-,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -2747,28 +2234,39 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 106, in _inner_fn + validate_repo_id(arg_value) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 160, in validate_repo_id + raise HFValidationError( +huggingface_hub.errors.HFValidationError: Repo id must use alphanumeric chars or '-', '_', '.', '--' and '..' are forbidden, '-' and '.' cannot start or end the name, max length is 96: '-'. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained - model_class = get_class_from_dynamic_module( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module - final_module = get_cached_module_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file - modules_needed = check_imports(resolved_module_file) - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports - raise ImportError( -ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 466, in cached_file + raise EnvironmentError( +OSError: Incorrect path_or_model_id: '-'. Please provide either the path to a local folder or the repo_id of a model on the Hub. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-14B,Qwen/Qwen2-beta-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-410m,EleutherAI/pythia-410m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -2778,56 +2276,32 @@ ImportError: This modeling file requires the following packages that were not fo ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1221, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1023, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 763, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 349, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-7b,google/recurrentgemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,/,/,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -2835,46 +2309,6 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/google/recurrentgemma-7b/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948272-5ba0203a4f38e7e2422d20e0;37272a59-d7ff-496c-ab1f-986badf65d9c) - -Repository Not Found for url: https://huggingface.co/google/recurrentgemma-7b/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run @@ -2891,13 +2325,12 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 373, in cached_file raise EnvironmentError( -OSError: google/recurrentgemma-7b is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` +OSError: / does not appear to have a file named config.json. Checkout 'https://huggingface.co///tree/None' for available files. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-rw-1b,tiiuae/falcon-rw-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-13b,facebook/opt-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -2915,18 +2348,18 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation - cls._check_and_enable_flash_attn_2( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa raise ValueError( -ValueError: FalconForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpyyymrp2c/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new +ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-70B,meta-llama/Meta-Llama-3-70B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.4b,EleutherAI/pythia-1.4b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -2946,29 +2379,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-65b,huggyllama/llama-65b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-1_6b,stabilityai/stablelm-2-1_6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -2988,29 +2414,51 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 86.00 MiB. GPU + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-rw-1b,tiiuae/falcon-rw-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: FalconForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,l,l,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-2b,google/gemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -3022,21 +2470,11 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/l/resolve/main/config.json +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/gemma-2b/resolve/main/config.json The above exception was the direct cause of the following exception: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn @@ -3047,13 +2485,28 @@ Traceback (most recent call last): response = _request_wrapper( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669491da-14392e250078240e4874a1fe;ce456542-069f-4140-ac2f-0547584442ec) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status + raise HfHubHTTPError(message, response=response) from e +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-6694811b-0dd7ab7e6f4beb8f4a7871bb;0eee426c-63cc-4c8b-b34a-3af47f69d6f9) -Repository Not Found for url: https://huggingface.co/l/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. +403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. +Cannot access content at: https://huggingface.co/google/gemma-2b/resolve/main/config.json. +If you are trying to create or update content,make sure you have a token with the `write` role. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error + raise LocalEntryNotFoundError( +huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. The above exception was the direct cause of the following exception: @@ -3074,13 +2527,13 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file raise EnvironmentError( -OSError: l is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/gemma-2b is not the path to a directory containing a file named config.json. +Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-4.5B,facebook/xglm-4.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-7b,tiiuae/falcon-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -3098,18 +2551,18 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation - cls._check_and_enable_flash_attn_2( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa raise ValueError( -ValueError: XGLMForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpa90x580i/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new +ValueError: FalconForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-110B,Qwen/Qwen1.5-110B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-12b,EleutherAI/pythia-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -3129,29 +2582,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 32.00 MiB. GPU + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,8,8,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-180B,tiiuae/falcon-180B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -3163,21 +2609,11 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/8/resolve/main/config.json +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json The above exception was the direct cause of the following exception: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn @@ -3188,13 +2624,28 @@ Traceback (most recent call last): response = _request_wrapper( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694928f-1be66f637da322ac444cb0f9;d74fbd72-54b4-41b2-b79b-99d9308e1104) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status + raise HfHubHTTPError(message, response=response) from e +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66949933-1b77766b705eb5a433c7f9ef;8b47ed0d-68a3-43c9-bc4d-82b9241e1b47) -Repository Not Found for url: https://huggingface.co/8/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. +403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. +Cannot access content at: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json. +If you are trying to create or update content,make sure you have a token with the `write` role. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error + raise LocalEntryNotFoundError( +huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. The above exception was the direct cause of the following exception: @@ -3215,249 +2666,13 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file raise EnvironmentError( -OSError: 8 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/rho-math-1b-v0.1,microsoft/rho-math-1b-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 414, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-7b-hf,meta-llama/Llama-2-7b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 414, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-13b-hf,meta-llama/Llama-2-13b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 414, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mistral-7B-v0.1,mistralai/Mistral-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 1200, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 976, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 718, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 325, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like tiiuae/falcon-180B is not the path to a directory containing a file named config.json. +Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-32B,Qwen/Qwen1.5-32B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,TencentARC/Mistral_Pro_8B_v0.1,TencentARC/Mistral_Pro_8B_v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -3467,56 +2682,32 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1221, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1023, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 763, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 349, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,r,r,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,m,m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -3528,7 +2719,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/r/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/m/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -3555,9 +2746,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949133-1763ea6738638c21768845eb;c6347db2-66bb-45eb-b8b7-e60822dbdd0a) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948c52-7c4106786b4cbcc30e45aab2;cf14755c-9cfa-4a50-9669-5f6c6d283e1a) -Repository Not Found for url: https://huggingface.co/r/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/m/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -3582,11 +2773,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: r is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: m is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-564M,facebook/xglm-564M,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-72B,Qwen/Qwen1.5-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -3606,16 +2797,29 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation - cls._check_and_enable_flash_attn_2( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 - raise ValueError( -ValueError: XGLMForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmp9pfso7np/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-2.7B,EleutherAI/gpt-neo-2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-70b-hf,meta-llama/Llama-2-70b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -3625,62 +2829,39 @@ ValueError: XGLMForCausalLM does not support Flash Attention 2.0 yet. Please req ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 970, in forward - transformer_outputs = self.transformer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 838, in forward - outputs = block( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 565, in forward - attn_outputs = self.attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 517, in forward - return self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 318, in forward - query = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 112.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-410m,EleutherAI/pythia-410m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-13b-hf,meta-llama/Llama-2-13b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -3690,58 +2871,96 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward - outputs = self.gpt_neox( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward - outputs = layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward - attention_layer_outputs = self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 339, in forward - query, key, value, present = self._attn_projections_and_rope( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope - qkv = self.query_key_value(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-7b,stabilityai/stablelm-base-alpha-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-72B,Qwen/Qwen-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained + model_class = get_class_from_dynamic_module( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module + final_module = get_cached_module_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file + modules_needed = check_imports(resolved_module_file) + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports + raise ImportError( +ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,0,0,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,0,0,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -3780,7 +2999,7 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694950d-516c3f0169bcae4b776073fe;1bda9735-8ee9-483f-938a-6b820cbd2888) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669494ef-46683afd36305f4903f44e62;7a692a93-b6f4-44ee-80ba-4e03cfde403c) Repository Not Found for url: https://huggingface.co/0/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. @@ -3810,79 +3029,8 @@ Traceback (most recent call last): OSError: 0 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-6B-nl,Salesforce/codegen-6B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation - cls._check_and_enable_flash_attn_2( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 - raise ValueError( -ValueError: CodeGenForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmprehxokgb/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-70b-hf,meta-llama/Llama-2-70b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 112.00 MiB. GPU - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,2,2,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-7b,google/gemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -3894,21 +3042,11 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/2/resolve/main/config.json +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/gemma-7b/resolve/main/config.json The above exception was the direct cause of the following exception: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn @@ -3919,13 +3057,28 @@ Traceback (most recent call last): response = _request_wrapper( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694939a-394731614e35532d646178ed;29d4ce01-bbb2-4bb4-87f8-d34ca42d88b0) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status + raise HfHubHTTPError(message, response=response) from e +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66948173-0fc09be31629c0fa1e00a691;78481430-3770-441c-b657-eca5ac09d6ac) -Repository Not Found for url: https://huggingface.co/2/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. +403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. +Cannot access content at: https://huggingface.co/google/gemma-7b/resolve/main/config.json. +If you are trying to create or update content,make sure you have a token with the `write` role. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error + raise LocalEntryNotFoundError( +huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. The above exception was the direct cause of the following exception: @@ -3946,13 +3099,13 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file raise EnvironmentError( -OSError: 2 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/gemma-7b is not the path to a directory containing a file named config.json. +Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,a,a,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,x,x,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -3964,7 +3117,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/a/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/x/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -3991,9 +3144,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949186-2778934b2e9c92af5add50ad;2c178255-a962-4296-8157-6faa1fa7e578) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669492ce-3d98ae233f66e68119bd3167;d20df17a-c04b-40ff-853f-c6accd1abacb) -Repository Not Found for url: https://huggingface.co/a/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/x/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -4018,117 +3171,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: a is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: x is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-350m,facebook/opt-350m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 1118, in forward - outputs = self.model.decoder( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 836, in forward - inputs_embeds = self.project_in(inputs_embeds) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/phi-1_5,microsoft/phi-1_5,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/phi/modeling_phi.py"", line 1268, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/phi/modeling_phi.py"", line 1064, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/phi/modeling_phi.py"", line 804, in forward - attn_outputs, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/phi/modeling_phi.py"", line 435, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-2.7b,facebook/opt-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm2-20b,internlm/internlm2-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -4138,56 +3185,32 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 1118, in forward - outputs = self.model.decoder( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 884, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 525, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 292, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-13b,huggyllama/llama-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -4197,56 +3220,32 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 414, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-7b,tiiuae/falcon-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-6.7b,facebook/opt-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -4264,18 +3263,18 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation - cls._check_and_enable_flash_attn_2( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa raise ValueError( -ValueError: FalconForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpp9d7838n/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new +ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-MoE-A2.7B,Qwen/Qwen1.5-MoE-A2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-14B,Qwen/Qwen2-beta-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -4295,27 +3294,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3724, in from_pretrained - hf_quantizer.preprocess_model( - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 182, in preprocess_model - return self._process_model_before_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 85, in _process_model_before_weight_loading - model, has_been_replaced = replace_with_awq_linear( - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear - _, has_been_replaced = replace_with_awq_linear( - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear - _, has_been_replaced = replace_with_awq_linear( - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear - _, has_been_replaced = replace_with_awq_linear( - [Previous line repeated 1 more time] - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 166, in replace_with_awq_linear - model._modules[name] = target_cls( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 46, in __init__ - assert out_features % (32 // self.w_bit) == 0 -AssertionError + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-7b,huggyllama/llama-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-110B,Qwen/Qwen1.5-110B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -4325,56 +3319,39 @@ AssertionError ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 414, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 32.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-564M,facebook/xglm-564M,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -4384,56 +3361,26 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 414, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: XGLMForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-2b,google/recurrentgemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,t,t,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -4445,11 +3392,21 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/t/resolve/main/config.json The above exception was the direct cause of the following exception: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn @@ -4460,28 +3417,13 @@ Traceback (most recent call last): response = _request_wrapper( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status - raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-669481f8-2e51f5f66252b0f32e379376;c3945018-fff2-4be5-8f45-759d29442b9e) - -403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json. -If you are trying to create or update content,make sure you have a token with the `write` role. - -The above exception was the direct cause of the following exception: + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669490cd-5670af7d50823e5925c31534;4524844e-3120-4598-a881-3652146e5428) -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error - raise LocalEntryNotFoundError( -huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. +Repository Not Found for url: https://huggingface.co/t/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. The above exception was the direct cause of the following exception: @@ -4502,13 +3444,13 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/recurrentgemma-2b is not the path to a directory containing a file named config.json. -Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. +OSError: t is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-30b,facebook/opt-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neox-20b,EleutherAI/gpt-neox-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -4518,56 +3460,32 @@ Checkout your internet connection or see how to run the library in offline mode ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 1118, in forward - outputs = self.model.decoder( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 884, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 525, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 292, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-160m,EleutherAI/pythia-160m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -4577,58 +3495,32 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward - outputs = self.gpt_neox( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward - outputs = layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward - attention_layer_outputs = self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 339, in forward - query, key, value, present = self._attn_projections_and_rope( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope - qkv = self.query_key_value(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-7b,stabilityai/stablelm-base-alpha-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-72B,Qwen/Qwen2-beta-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -4638,58 +3530,39 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward - outputs = self.gpt_neox( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward - outputs = layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward - attention_layer_outputs = self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 339, in forward - query, key, value, present = self._attn_projections_and_rope( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope - qkv = self.query_key_value(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,m,m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-7B,Qwen/Qwen1.5-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -4697,69 +3570,34 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/m/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948c66-58d18afd55a71057301549eb;9c2d6a95-43a8-4a7e-99a9-332a4a4e8f29) - -Repository Not Found for url: https://huggingface.co/m/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file - raise EnvironmentError( -OSError: m is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-3b-4e1t,stabilityai/stablelm-3b-4e1t,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-32B,Qwen/Qwen1.5-32B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -4769,56 +3607,32 @@ If this is a private repository, make sure to pass a token having permission to ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 1268, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 1062, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 792, in forward - self_attn_output, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 560, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-125m,EleutherAI/gpt-neo-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-40b,tiiuae/falcon-40b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -4828,63 +3642,26 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 970, in forward - transformer_outputs = self.transformer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 838, in forward - outputs = block( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 565, in forward - attn_outputs = self.attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 517, in forward - return self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 318, in forward - query = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: FalconForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2,openai-community/gpt2,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1213.62432,1005.060096,0.0,358.612992,318.913024,s,23,0.17213225698471069,0.007484011173248292,0.0002954761638434772,0.00736678409576416,0.007821849536895752,0.007996079683303832,0.008394954490661622,"[0.008502976417541504, 0.007853087902069091, 0.007601344108581543, 0.007378464221954346, 0.007268896102905273, 0.007655648231506348, 0.007272704124450684, 0.0072911038398742675, 0.007318528175354004, 0.007696896076202392, 0.007447904109954834, 0.007239327907562256, 0.0075630397796630855, 0.00736678409576416, 0.00744265604019165, 0.0073199357986450195, 0.0072409920692443844, 0.007361631870269775, 0.008011967658996581, 0.007415616035461426, 0.007298208236694336, 0.007331200122833252, 0.007253344058990478]",tokens/s,34206.25571953657,kWh,8.567134822637681e-08,4.694379339333844e-08,1.8252431812478173e-07,3.1513945974449696e-07,tokens/kWh,812338766.4862884,MB,1213.919232,1005.060096,0.0,358.612992,328.804864,s,23,10.179620391845702,0.44259219094981317,0.01146519580496095,0.440910888671875,0.4509195068359375,0.45184952392578126,0.47989753540039065,"[0.48779537963867187, 0.448875732421875, 0.44378817749023436, 0.45189608764648437, 0.4514304504394531, 0.44095208740234376, 0.4469196472167969, 0.44514892578125, 0.4451697692871094, 0.4480313720703125, 0.43288784790039064, 0.4424725341796875, 0.43655374145507814, 0.4358661193847656, 0.43621551513671875, 0.43264309692382813, 0.43890673828125, 0.4397151184082031, 0.440910888671875, 0.43340951538085937, 0.4314309692382812, 0.4308625793457031, 0.43773809814453124]",tokens/s,142.34322540757108,kWh,5.0166983791335025e-06,2.748945515611113e-06,8.752610144789825e-06,1.6518254039534438e-05,tokens/kWh,3813962.4108708547,,s,1448,10.335379461288454,0.007137692998127384,0.0009868185197434377,0.006937600135803222,0.007357337760925293,0.007660748958587645,0.014534717473983765,"[0.008195072174072266, 0.00812339210510254, 0.00801587200164795, 0.008057855606079101, 0.008011775970458984, 0.007906303882598878, 0.00791756820678711, 0.007833600044250488, 0.007880703926086426, 0.007682047843933106, 0.007670783996582031, 0.007756800174713135, 0.007795711994171142, 0.007764992237091065, 0.007696383953094482, 0.007667712211608887, 0.0077578239440917966, 0.00774348783493042, 0.007739391803741455, 0.007702527999877929, 0.007682047843933106, 0.007706624031066894, 0.007713791847229004, 0.007598144054412842, 0.007613376140594482, 0.007663616180419922, 0.007570432186126709, 0.007678976058959961, 0.007840767860412597, 0.00774451208114624, 0.007902207851409913, 0.007857151985168457, 0.007699456214904785, 0.007651328086853027, 0.0077608962059021, 0.007738368034362793, 0.007944191932678223, 0.007785535812377929, 0.007604159832000732, 0.007642111778259277, 0.007798783779144287, 0.00800153636932373, 0.007988224029541016, 0.007651328086853027, 0.007670783996582031, 0.007618559837341309, 0.007618559837341309, 0.0076871681213378906, 0.007786496162414551, 0.007779327869415284, 0.007712768077850342, 0.0077209601402282715, 0.007654399871826172, 0.00759500789642334, 0.007616511821746826, 0.007543807983398438, 0.007494656085968018, 0.007342080116271973, 0.0075345921516418455, 0.007566336154937744, 0.0072427520751953125, 0.007305215835571289, 0.015635456085205078, 0.007311359882354736, 0.007363584041595459, 0.007344128131866455, 0.0074403839111328125, 0.007830527782440186, 0.008690688133239746, 0.008432703971862793, 0.00839571189880371, 0.007342112064361572, 0.007289824008941651, 0.007284736156463623, 0.007127039909362793, 0.007045119762420654, 0.007054336071014404, 0.007201791763305664, 0.006994944095611572, 0.006974463939666748, 0.006927360057830811, 0.007143424034118652, 0.0069550080299377445, 0.006974463939666748, 0.00693555212020874, 0.006971392154693603, 0.0069816322326660156, 0.006960159778594971, 0.006988768100738525, 0.0069632000923156735, 0.006927360057830811, 0.00689356803894043, 0.007094272136688232, 0.006958079814910889, 0.0069621758460998535, 0.006900735855102539, 0.006949888229370117, 0.006958144187927246, 0.006945727825164795, 0.006938623905181885, 0.006916128158569336, 0.00694268798828125, 0.007147520065307617, 0.007170048236846924, 0.006980607986450196, 0.006986752033233643, 0.0069816322326660156, 0.006958079814910889, 0.007050240039825439, 0.006980607986450196, 0.006947840213775635, 0.00692633581161499, 0.006940671920776367, 0.007095295906066895, 0.006964223861694336, 0.00694374418258667, 0.006953983783721924, 0.006959104061126709, 0.006947840213775635, 0.006913023948669434, 0.0069550080299377445, 0.006953983783721924, 0.006941696166992187, 0.007145472049713135, 0.007001088142395019, 0.014993408203125, 0.00709222412109375, 0.006938623905181885, 0.006882304191589355, 0.006881279945373535, 0.006842368125915528, 0.006936575889587402, 0.006913023948669434, 0.006815743923187256, 0.006918144226074219, 0.006865920066833496, 0.006867968082427979, 0.0068577280044555666, 0.006858751773834228, 0.006863872051239014, 0.006875135898590088, 0.006853631973266602, 0.007525375843048096, 0.007489535808563232, 0.007001088142395019, 0.00703385591506958, 0.00728166389465332, 0.007162879943847656, 0.007536640167236328, 0.007039999961853028, 0.007048192024230957, 0.007231488227844239, 0.0069283838272094726, 0.006907904148101806, 0.0068055038452148435, 0.006906879901885986, 0.0068986878395080565, 0.0068249602317810056, 0.006871039867401123, 0.006906879901885986, 0.006820864200592041, 0.006870016098022461, 0.006823935985565186, 0.006914048194885254, 0.006959136009216309, 0.0072754878997802735, 0.007408639907836914, 0.007152703762054444, 0.007389120101928711, 0.007087103843688965, 0.007016448020935059, 0.007097343921661377, 0.007047167778015137, 0.0071157760620117185, 0.007316480159759522, 0.00704204797744751, 0.006982656002044678, 0.007080959796905518, 0.007049215793609619, 0.007058432102203369, 0.00704307222366333, 0.006999040126800537, 0.006974463939666748, 0.007352320194244385, 0.007324672222137451, 0.007363584041595459, 0.007136256217956543, 0.007076863765716553, 0.014966815948486327, 0.007409696102142334, 0.007022528171539306, 0.00738099193572998, 0.00745472002029419, 0.007050240039825439, 0.007060480117797851, 0.006982656002044678, 0.007408639907836914, 0.007277567863464355, 0.007288832187652588, 0.007314432144165039, 0.007117824077606201, 0.0073471999168395995, 0.007028736114501953, 0.007010303974151612, 0.007296000003814697, 0.00727347183227539, 0.007276576042175293, 0.007039968013763428, 0.0069621758460998535, 0.0071905279159545895, 0.00707583999633789, 0.007655424118041992, 0.0072427520751953125, 0.0071157760620117185, 0.007131135940551757, 0.007264256000518799, 0.007327744007110596, 0.007291903972625732, 0.00704204797744751, 0.0073820161819458, 0.0073175039291381834, 0.007080959796905518, 0.0070256638526916505, 0.007310336112976074, 0.007068672180175781, 0.007049215793609619, 0.007359488010406494, 0.0070266880989074704, 0.007018496036529541, 0.007278592109680176, 0.007113728046417236, 0.007501823902130127, 0.0073175039291381834, 0.007334911823272705, 0.007279615879058838, 0.0070830078125, 0.007013376235961914, 0.007484416007995606, 0.007090176105499267, 0.007300096035003662, 0.007268352031707764, 0.007077888011932373, 0.00702569580078125, 0.00705020809173584, 0.0067727680206298825, 0.006994912147521973, 0.0068577280044555666, 0.00687718391418457, 0.0069621758460998535, 0.0068392958641052244, 0.006848512172698974, 0.01468825626373291, 0.007111680030822754, 0.007364607810974121, 0.007379968166351319, 0.007293951988220215, 0.007302144050598145, 0.006940671920776367, 0.007279615879058838, 0.007326720237731933, 0.006956031799316406, 0.007027711868286133, 0.007060480117797851, 0.007076863765716553, 0.007342080116271973, 0.007336959838867187, 0.007346176147460938, 0.007097343921661377, 0.007057407855987549, 0.0070522880554199216, 0.0072837119102478025, 0.007009280204772949, 0.007290880203247071, 0.006999040126800537, 0.007349247932434082, 0.007264256000518799, 0.006982656002044678, 0.007415808200836181, 0.0070553598403930665, 0.007288832187652588, 0.0072540159225463864, 0.00703385591506958, 0.007256063938140869, 0.007058432102203369, 0.007041024208068848, 0.007236608028411865, 0.007375872135162354, 0.0073062400817871095, 0.007067647933959961, 0.007071743965148926, 0.006905856132507324, 0.006862847805023193, 0.006831103801727295, 0.006933504104614257, 0.007030784130096435, 0.007114751815795899, 0.006961184024810791, 0.007378911972045899, 0.007236608028411865, 0.0070860800743103025, 0.007071743965148926, 0.007001120090484619, 0.007321568012237549, 0.0070266880989074704, 0.007316480159759522, 0.007300096035003662, 0.007020544052124023, 0.00733900785446167, 0.00739737606048584, 0.007048192024230957, 0.007324672222137451, 0.006982656002044678, 0.0072765440940856935, 0.007237631797790528, 0.01510707187652588, 0.006985727787017822, 0.006979584217071533, 0.007490560054779053, 0.007256063938140869, 0.007046144008636474, 0.0067348480224609375, 0.006822912216186523, 0.006837247848510742, 0.006843391895294189, 0.006853631973266602, 0.006819839954376221, 0.006825984001159668, 0.006837247848510742, 0.0069283838272094726, 0.006841343879699707, 0.006808576107025147, 0.006806528091430664, 0.006895616054534912, 0.006815743923187256, 0.006829055786132812, 0.006858751773834228, 0.00704204797744751, 0.007030784130096435, 0.007068672180175781, 0.00708403205871582, 0.006973440170288086, 0.006959104061126709, 0.006964223861694336, 0.006947840213775635, 0.0069621758460998535, 0.00695091199874878, 0.006960127830505371, 0.006967296123504638, 0.006970367908477783, 0.006953983783721924, 0.006884352207183838, 0.006816768169403077, 0.006875135898590088, 0.006854656219482422, 0.006850560188293457, 0.006810624122619629, 0.006873087882995605, 0.006870016098022461, 0.007052320003509522, 0.007278560161590576, 0.007266304016113281, 0.0069847040176391605, 0.007292960166931152, 0.007252960205078125, 0.007074816226959229, 0.00704204797744751, 0.006967296123504638, 0.007014431953430176, 0.007003104209899903, 0.007286784172058106, 0.006977568149566651, 0.00709935998916626, 0.007393280029296875, 0.0073359360694885255, 0.007111680030822754, 0.0069928960800170895, 0.0073359360694885255, 0.014533632278442383, 0.006855679988861084, 0.007506944179534912, 0.007064576148986816, 0.007284736156463623, 0.0070522880554199216, 0.007080959796905518, 0.00704204797744751, 0.006953983783721924, 0.007001088142395019, 0.007280640125274658, 0.006976511955261231, 0.006967296123504638, 0.00738099193572998, 0.007073791980743408, 0.00704204797744751, 0.007324672222137451, 0.006993919849395752, 0.007066624164581299, 0.007356416225433349, 0.007020544052124023, 0.006980607986450196, 0.0068884482383728025, 0.007078911781311035, 0.007345183849334717, 0.007293920040130616, 0.007304192066192627, 0.007058432102203369, 0.007054336071014404, 0.006940671920776367, 0.007336959838867187, 0.007268352031707764, 0.007261184215545655, 0.007383039951324463, 0.007385087966918945, 0.007312384128570557, 0.007021567821502686, 0.0069959678649902345, 0.007068672180175781, 0.006961152076721191, 0.007123968124389648, 0.007250944137573242, 0.007342080116271973, 0.007113728046417236, 0.00704204797744751, 0.007173120021820068, 0.007278592109680176, 0.007329792022705078, 0.007449600219726562, 0.00695091199874878, 0.006851583957672119, 0.006880256175994873, 0.006897664070129395, 0.006848512172698974, 0.007051263809204102, 0.0069253120422363285, 0.006867968082427979, 0.006882304191589355, 0.006858751773834228, 0.006792191982269287, 0.006841343879699707, 0.006779903888702392, 0.006895616054534912, 0.01447219181060791, 0.007172095775604248, 0.0073471999168395995, 0.007576576232910156, 0.007465983867645264, 0.007352320194244385, 0.007072768211364746, 0.007324672222137451, 0.007292928218841553, 0.007303167819976806, 0.006990848064422607, 0.007078911781311035, 0.006947840213775635, 0.0070266880989074704, 0.007362559795379638, 0.0069816322326660156, 0.007054336071014404, 0.0070348801612854, 0.007058432102203369, 0.006946815967559815, 0.006883359909057617, 0.006878176212310791, 0.006874112129211426, 0.006825984001159668, 0.007016448020935059, 0.007073791980743408, 0.007029759883880615, 0.006994944095611572, 0.007189504146575928, 0.007060480117797851, 0.007044095993041993, 0.006945792198181152, 0.007048192024230957, 0.006937600135803222, 0.006941696166992187, 0.006807551860809326, 0.006872064113616944, 0.00687820816040039, 0.006831103801727295, 0.006799359798431396, 0.0067870721817016606, 0.006863872051239014, 0.00684441614151001, 0.006880256175994873, 0.00683622407913208, 0.0068351998329162595, 0.007450623989105225, 0.00693452787399292, 0.007296000003814697, 0.0073768959045410155, 0.006998015880584717, 0.007038976192474365, 0.007259136199951172, 0.007058432102203369, 0.007111680030822754, 0.007057407855987549, 0.007038976192474365, 0.007117824077606201, 0.007286784172058106, 0.007263232231140137, 0.007035903930664063, 0.007259136199951172, 0.00704307222366333, 0.01439027214050293, 0.00682700777053833, 0.006859776020050049, 0.007128064155578613, 0.007023615837097168, 0.0073175039291381834, 0.006998015880584717, 0.007355391979217529, 0.007331840038299561, 0.00693555212020874, 0.007288832187652588, 0.007228415966033935, 0.007097343921661377, 0.006993919849395752, 0.006975488185882568, 0.006969344139099121, 0.007475200176239013, 0.007070720195770264, 0.0070225920677185055, 0.007303167819976806, 0.006873087882995605, 0.006823935985565186, 0.00674508810043335, 0.006897664070129395, 0.0068392958641052244, 0.007434239864349365, 0.006982656002044678, 0.007323647975921631, 0.0073062400817871095, 0.007073791980743408, 0.006951935768127441, 0.007050240039825439, 0.006871039867401123, 0.006867968082427979, 0.0067717118263244626, 0.0068915200233459475, 0.006905856132507324, 0.006823935985565186, 0.006816768169403077, 0.006823935985565186, 0.006849535942077637, 0.006812672138214112, 0.006834239959716797, 0.0068269438743591305, 0.006854656219482422, 0.006822912216186523, 0.006806528091430664, 0.007372799873352051, 0.0073431038856506346, 0.007008255958557129, 0.007047167778015137, 0.007320576190948487, 0.006998015880584717, 0.007415808200836181, 0.006987775802612305, 0.007264256000518799, 0.007129087924957276, 0.00744755220413208, 0.007197696208953858, 0.007391232013702393, 0.007756800174713135, 0.00724889612197876, 0.007106560230255127, 0.015258624076843261, 0.007053311824798584, 0.00704307222366333, 0.00687718391418457, 0.0068986878395080565, 0.006837247848510742, 0.006834176063537598, 0.006780928134918213, 0.006927360057830811, 0.006812672138214112, 0.006830080032348633, 0.006882304191589355, 0.006819839954376221, 0.006924287796020508, 0.006856704235076904, 0.007327744007110596, 0.0070225920677185055, 0.007003136157989502, 0.00709222412109375, 0.007301119804382325, 0.007288832187652588, 0.0069959678649902345, 0.0072724480628967286, 0.007219200134277344, 0.00728985595703125, 0.007054336071014404, 0.007180287837982178, 0.007039999961853028, 0.007304192066192627, 0.007309343814849854, 0.007380959987640381, 0.00703385591506958, 0.006970367908477783, 0.006937600135803222, 0.007117824077606201, 0.006958079814910889, 0.007385087966918945, 0.006951935768127441, 0.007331840038299561, 0.007268352031707764, 0.0072837119102478025, 0.006937600135803222, 0.007274496078491211, 0.007081984043121338, 0.007299071788787842, 0.006993919849395752, 0.007104512214660645, 0.007288832187652588, 0.0070563840866088865, 0.007156735897064209, 0.00703385591506958, 0.007282688140869141, 0.00704307222366333, 0.0074035201072692874, 0.006968319892883301, 0.007314432144165039, 0.007324672222137451, 0.007074816226959229, 0.006970367908477783, 0.008046591758728027, 0.007085055828094483, 0.0070522880554199216, 0.007054336071014404, 0.01510912036895752, 0.0069918718338012695, 0.007070720195770264, 0.0072724480628967286, 0.006951935768127441, 0.006856704235076904, 0.006837247848510742, 0.006831103801727295, 0.006818816184997558, 0.006773759841918945, 0.006811647891998291, 0.006907904148101806, 0.0067983360290527345, 0.0068689918518066405, 0.006816768169403077, 0.006976511955261231, 0.006865920066833496, 0.006833151817321777, 0.006848512172698974, 0.006790143966674805, 0.00694374418258667, 0.006790143966674805, 0.006804480075836182, 0.006815743923187256, 0.006832159996032715, 0.006866911888122559, 0.00683622407913208, 0.006862847805023193, 0.006796288013458252, 0.006811647891998291, 0.006863872051239014, 0.006809599876403808, 0.006937600135803222, 0.006829055786132812, 0.006810624122619629, 0.0068618240356445315, 0.00677785587310791, 0.006871039867401123, 0.006795263767242431, 0.006913023948669434, 0.0068392958641052244, 0.0069212160110473635, 0.0068249602317810056, 0.006859776020050049, 0.006917119979858399, 0.006814720153808594, 0.006841343879699707, 0.006848512172698974, 0.006887423992156983, 0.006906879901885986, 0.006881279945373535, 0.006870016098022461, 0.006802432060241699, 0.0068403840065002445, 0.006761407852172852, 0.00687820816040039, 0.006825984001159668, 0.00673689603805542, 0.006892543792724609, 0.0068884482383728025, 0.006841343879699707, 0.006825984001159668, 0.006799359798431396, 0.014756863594055175, 0.007226367950439453, 0.007236608028411865, 0.00809267234802246, 0.0074700798988342285, 0.007097343921661377, 0.007128064155578613, 0.0073431038856506346, 0.007114751815795899, 0.00722431993484497, 0.007000063896179199, 0.007351295948028564, 0.007067647933959961, 0.007016448020935059, 0.00714137601852417, 0.007134208202362061, 0.007184383869171143, 0.007386112213134765, 0.007300096035003662, 0.0072837119102478025, 0.007336959838867187, 0.007326720237731933, 0.007062560081481934, 0.007136223793029785, 0.006829055786132812, 0.006880256175994873, 0.006904863834381104, 0.006792160034179687, 0.006924287796020508, 0.006826015949249267, 0.0067604160308837894, 0.006821887969970703, 0.006882304191589355, 0.006898719787597657, 0.006868959903717041, 0.006837247848510742, 0.006811647891998291, 0.006829055786132812, 0.006916096210479736, 0.006834176063537598, 0.006846464157104492, 0.006814720153808594, 0.006897664070129395, 0.006904831886291504, 0.006899712085723877, 0.006858751773834228, 0.006920191764831543, 0.006802495956420899, 0.006924223899841308, 0.006905856132507324, 0.006837247848510742, 0.006739967823028564, 0.006881311893463134, 0.006877151966094971, 0.006774784088134766, 0.006870016098022461, 0.0068689918518066405, 0.006977536201477051, 0.0067348480224609375, 0.006831103801727295, 0.007082047939300537, 0.007328735828399658, 0.007105504035949707, 0.015265791893005372, 0.007007232189178467, 0.007094272136688232, 0.007019519805908203, 0.007029759883880615, 0.007334911823272705, 0.007013376235961914, 0.007321599960327148, 0.007360511779785156, 0.006967296123504638, 0.007035903930664063, 0.007107583999633789, 0.006987775802612305, 0.007321599960327148, 0.006990848064422607, 0.007080959796905518, 0.007327744007110596, 0.006852608203887939, 0.006818816184997558, 0.006819839954376221, 0.006850560188293457, 0.006814720153808594, 0.006842368125915528, 0.006866943836212158, 0.006765567779541016, 0.006838272094726563, 0.006903808116912841, 0.006816768169403077, 0.0068351998329162595, 0.006870016098022461, 0.006903808116912841, 0.0067420158386230465, 0.00682700777053833, 0.006851583957672119, 0.00683622407913208, 0.006849535942077637, 0.00695091199874878, 0.006930431842803955, 0.006820864200592041, 0.006825984001159668, 0.006842368125915528, 0.006903840065002441, 0.006749152183532715, 0.006801407814025879, 0.0068321280479431154, 0.006884352207183838, 0.0067983360290527345, 0.006927360057830811, 0.0068659520149230956, 0.006851552009582519, 0.006815743923187256, 0.006879231929779053, 0.006770688056945801, 0.006820864200592041, 0.0068351998329162595, 0.006905856132507324, 0.006778880119323731, 0.006809599876403808, 0.0069324798583984375, 0.006813695907592773, 0.0068884482383728025, 0.006900735855102539, 0.006858751773834228, 0.014593024253845215, 0.006931519985198974, 0.006945727825164795, 0.0068577280044555666, 0.006807551860809326, 0.00687820816040039, 0.006846464157104492, 0.0068321280479431154, 0.006821887969970703, 0.006852608203887939, 0.006850560188293457, 0.00689356803894043, 0.006864895820617676, 0.006930431842803955, 0.006833151817321777, 0.006841343879699707, 0.006866943836212158, 0.006849535942077637, 0.0072499198913574215, 0.007202816009521484, 0.006822912216186523, 0.006814720153808594, 0.006889472007751465, 0.006825984001159668, 0.006730751991271973, 0.006906879901885986, 0.00687820816040039, 0.006924287796020508, 0.006841407775878906, 0.006832064151763916, 0.006874112129211426, 0.006864895820617676, 0.006862847805023193, 0.006816768169403077, 0.006825984001159668, 0.006821887969970703, 0.006904831886291504, 0.006820864200592041, 0.006754303932189941, 0.006837247848510742, 0.006806528091430664, 0.0069632000923156735, 0.006896639823913574, 0.006838272094726563, 0.0068690237998962405, 0.006818784236907959, 0.006925343990325928, 0.006814688205718994, 0.006924287796020508, 0.006721536159515381, 0.006793216228485107, 0.006865920066833496, 0.006818880081176757, 0.0068269438743591305, 0.0068884482383728025, 0.007058432102203369, 0.008130559921264649, 0.007341055870056152, 0.007233535766601563, 0.00708403205871582, 0.00703385591506958, 0.0070256638526916505, 0.006979584217071533, 0.01458892822265625, 0.006846464157104492, 0.006864895820617676, 0.006960127830505371, 0.006848512172698974, 0.00684441614151001, 0.006829055786132812, 0.006831103801727295, 0.006892543792724609, 0.0068618240356445315, 0.006882304191589355, 0.006905856132507324, 0.006882304191589355, 0.006827040195465088, 0.006789087772369385, 0.006854656219482422, 0.0068249602317810056, 0.0068280320167541505, 0.006865920066833496, 0.006848512172698974, 0.006830080032348633, 0.00687820816040039, 0.0069253120422363285, 0.006853631973266602, 0.006829055786132812, 0.00682700777053833, 0.006895616054534912, 0.006739967823028564, 0.006937600135803222, 0.006820864200592041, 0.006876160144805908, 0.006912000179290771, 0.006804512023925781, 0.006790143966674805, 0.00677785587310791, 0.00704099178314209, 0.007131135940551757, 0.007195648193359375, 0.00703385591506958, 0.007274496078491211, 0.007260159969329834, 0.007279615879058838, 0.007324672222137451, 0.006994944095611572, 0.006920191764831543, 0.006999040126800537, 0.007361536026000977, 0.0070553598403930665, 0.007038976192474365, 0.006946815967559815, 0.007103487968444824, 0.006858751773834228, 0.006846464157104492, 0.006766592025756836, 0.0068689918518066405, 0.006909952163696289, 0.006982656002044678, 0.006907904148101806, 0.006811647891998291, 0.00682700777053833, 0.0067870721817016606, 0.006804480075836182, 0.006803455829620361, 0.014484479904174804, 0.00684441614151001, 0.0068618240356445315, 0.006823935985565186, 0.006817791938781738, 0.0067573761940002445, 0.0068076162338256835, 0.00683513593673706, 0.00682700777053833, 0.006851583957672119, 0.0067758078575134275, 0.0068351998329162595, 0.0068392958641052244, 0.0068618240356445315, 0.006919167995452881, 0.006856704235076904, 0.006812672138214112, 0.0068055038452148435, 0.006791168212890625, 0.006724607944488525, 0.006815743923187256, 0.00690176010131836, 0.006831103801727295, 0.006850560188293457, 0.0068392958641052244, 0.006795263767242431, 0.0067338237762451176, 0.006799359798431396, 0.006945792198181152, 0.006814720153808594, 0.0068853759765625, 0.006910975933074951, 0.006845471858978272, 0.006775775909423828, 0.006874112129211426, 0.006841343879699707, 0.0068689918518066405, 0.00678604793548584, 0.006905856132507324, 0.006766592025756836, 0.006804480075836182, 0.006808576107025147, 0.006880256175994873, 0.006937600135803222, 0.006846464157104492, 0.006829055786132812, 0.006797311782836914, 0.006800384044647217, 0.0068986878395080565, 0.006799359798431396, 0.006816768169403077, 0.006882304191589355, 0.00695091199874878, 0.006711296081542969, 0.00687718391418457, 0.006760447978973389, 0.006851583957672119, 0.006994944095611572, 0.007008255958557129, 0.007278592109680176, 0.007364607810974121, 0.007021567821502686, 0.007110655784606934, 0.014486528396606446, 0.0067983360290527345, 0.0067758078575134275, 0.006808576107025147, 0.006819839954376221, 0.006845439910888672, 0.006817791938781738, 0.006862847805023193, 0.006850560188293457, 0.006914048194885254, 0.006873087882995605, 0.006830080032348633, 0.006825984001159668, 0.006924287796020508, 0.0068055038452148435, 0.006867968082427979, 0.0068986878395080565, 0.006773759841918945, 0.006887423992156983, 0.006834176063537598, 0.006807551860809326, 0.006825984001159668, 0.006724607944488525, 0.006808576107025147, 0.006781951904296875, 0.006873087882995605, 0.006897664070129395, 0.006820864200592041, 0.006953983783721924, 0.006814720153808594, 0.0068055038452148435, 0.006864895820617676, 0.007054336071014404, 0.007000063896179199, 0.006851583957672119, 0.00693452787399292, 0.006875135898590088, 0.006767615795135498, 0.006912000179290771, 0.006930431842803955, 0.007072768211364746, 0.007323647975921631, 0.007137343883514404, 0.007246784210205078, 0.007519231796264648, 0.007401472091674805, 0.007305215835571289, 0.007124991893768311, 0.007411712169647216, 0.007051263809204102, 0.00744652795791626, 0.007027711868286133, 0.007122943878173828, 0.006968319892883301, 0.007057407855987549, 0.006961152076721191, 0.007019519805908203, 0.006977536201477051, 0.007052351951599121, 0.00700819206237793, 0.006982656002044678, 0.007037951946258545, 0.007131135940551757, 0.014568448066711426, 0.00683622407913208, 0.006825984001159668, 0.00679423999786377, 0.006896639823913574, 0.006814720153808594, 0.00689356803894043, 0.006833151817321777, 0.006890495777130127, 0.0068577280044555666, 0.006875135898590088, 0.006852608203887939, 0.00677785587310791, 0.006897664070129395, 0.006802432060241699, 0.006900735855102539, 0.006795263767242431, 0.006851583957672119, 0.006871039867401123, 0.0067758078575134275, 0.0068249602317810056, 0.006874112129211426, 0.0068280320167541505, 0.006838272094726563, 0.0067123198509216305, 0.006875135898590088, 0.006866943836212158, 0.006851615905761718, 0.006802400112152099, 0.0067983360290527345, 0.006980607986450196, 0.0067338237762451176, 0.006904831886291504, 0.006790143966674805, 0.006918144226074219, 0.006833151817321777, 0.006924287796020508, 0.007085055828094483, 0.007234560012817383, 0.007293951988220215, 0.006968319892883301, 0.0069202561378479, 0.007036863803863525, 0.007241727828979493, 0.00728166389465332, 0.007208960056304932, 0.00697657585144043, 0.00704095983505249, 0.006946815967559815, 0.00724889612197876, 0.007309311866760254, 0.007264256000518799, 0.007353343963623047, 0.006953983783721924, 0.007078911781311035, 0.00727347183227539, 0.007308288097381592, 0.007346176147460938, 0.007018496036529541, 0.007307263851165771, 0.007106560230255127, 0.007044095993041993, 0.007268352031707764, 0.0158341121673584, 0.0071833600997924804, 0.007159808158874512, 0.007171072006225586, 0.007048192024230957, 0.007072768211364746, 0.007048192024230957, 0.007138304233551026, 0.007122943878173828, 0.007095295906066895, 0.007088128089904785, 0.007096320152282715, 0.007090176105499267, 0.0070553598403930665, 0.006953983783721924, 0.007385087966918945, 0.007057407855987549, 0.0069928960800170895, 0.0069621758460998535, 0.006957056045532227, 0.0069632000923156735, 0.0069632000923156735, 0.006944767951965332, 0.006987775802612305, 0.006967296123504638, 0.0069959678649902345, 0.006947840213775635, 0.006946815967559815, 0.006946815967559815, 0.006977536201477051, 0.006964223861694336, 0.007103487968444824, 0.006945792198181152, 0.007001088142395019, 0.006977536201477051, 0.0069847040176391605, 0.006988800048828125, 0.006998015880584717, 0.006968319892883301, 0.006985727787017822, 0.006965248107910156, 0.0070266880989074704, 0.0069959678649902345, 0.006982656002044678, 0.007024640083312988, 0.007001088142395019, 0.006975488185882568, 0.006843391895294189, 0.006909952163696289, 0.006802495956420899, 0.00689247989654541, 0.006854688167572022, 0.0068873920440673825, 0.006812672138214112, 0.006874112129211426, 0.006903808116912841, 0.006825984001159668, 0.006889472007751465, 0.0068618240356445315, 0.006879231929779053, 0.006908927917480469, 0.006876160144805908, 0.006922239780426025, 0.014621696472167968, 0.006899712085723877, 0.00693555212020874, 0.006847519874572754, 0.006882271766662598, 0.00687820816040039, 0.006944767951965332, 0.006766592025756836, 0.006940671920776367, 0.006897664070129395, 0.006865920066833496, 0.006841407775878906, 0.006919104099273682, 0.00689356803894043, 0.006847487926483154, 0.006870016098022461, 0.00690176010131836, 0.006906879901885986, 0.006912000179290771, 0.006965248107910156, 0.006863872051239014, 0.006830080032348633, 0.006730751991271973, 0.00690176010131836, 0.006927360057830811, 0.006810624122619629, 0.007012351989746094, 0.00689356803894043, 0.00691919994354248, 0.006855648040771484, 0.006883327960968018, 0.0069253120422363285, 0.006875135898590088, 0.006892543792724609, 0.006822912216186523, 0.006840320110321045, 0.006876160144805908, 0.006833151817321777, 0.006819839954376221, 0.006812672138214112, 0.006814720153808594, 0.006903808116912841, 0.006895616054534912, 0.0068321280479431154, 0.006881279945373535, 0.006841343879699707, 0.006731776237487793, 0.006875135898590088, 0.0069918718338012695, 0.006924287796020508, 0.0068351998329162595, 0.006939648151397705, 0.00687718391418457, 0.006896639823913574, 0.006813695907592773, 0.006858751773834228, 0.006916096210479736, 0.0068884482383728025, 0.0069027838706970214, 0.006879231929779053, 0.00689356803894043, 0.006807551860809326, 0.006790143966674805, 0.0144650239944458, 0.006765567779541016, 0.006876160144805908, 0.00690176010131836, 0.006822912216186523, 0.006920191764831543, 0.006781951904296875, 0.006908927917480469, 0.006758399963378906, 0.0068884482383728025, 0.006837247848510742, 0.006825984001159668, 0.006895616054534912, 0.006811647891998291, 0.006904831886291504, 0.006757440090179444, 0.006893504142761231, 0.006813695907592773, 0.006830080032348633, 0.006797311782836914, 0.0068853759765625, 0.00674508810043335, 0.00678604793548584, 0.006873087882995605, 0.006900735855102539, 0.006816768169403077, 0.006854656219482422, 0.00682700777053833, 0.006744063854217529, 0.006923264026641846, 0.006816768169403077, 0.006825984001159668, 0.006808576107025147, 0.006788095951080322, 0.006864895820617676, 0.0067983360290527345, 0.007007232189178467, 0.006815743923187256, 0.006808576107025147, 0.006830080032348633, 0.006899712085723877, 0.006894591808319092, 0.006729728221893311, 0.006913023948669434, 0.006912000179290771, 0.007111680030822754, 0.006854656219482422, 0.006816768169403077, 0.006829055786132812, 0.006802432060241699, 0.0068986878395080565, 0.006889472007751465, 0.0068392958641052244, 0.0067358717918396, 0.006773759841918945, 0.006892543792724609, 0.0067686400413513184, 0.006929408073425293, 0.006807551860809326, 0.006790143966674805, 0.006814720153808594, 0.006875135898590088, 0.006815743923187256, 0.014535679817199706, 0.006904863834381104, 0.006907872200012207, 0.006808576107025147, 0.006803455829620361, 0.006793216228485107, 0.00690176010131836, 0.006812672138214112, 0.006782976150512696, 0.006817791938781738, 0.006718463897705078, 0.006838304042816162, 0.006800352096557617, 0.006853631973266602, 0.006856704235076904, 0.006875135898590088, 0.006808576107025147, 0.006815743923187256, 0.006871039867401123, 0.006882304191589355, 0.0067123198509216305, 0.00693555212020874, 0.0069928960800170895, 0.0067983360290527345, 0.006738944053649902, 0.006795263767242431, 0.006780928134918213, 0.0068915200233459475, 0.006890495777130127, 0.006781951904296875, 0.006867968082427979, 0.00683622407913208, 0.006870016098022461, 0.0068055038452148435, 0.006714367866516113, 0.006806528091430664, 0.006781951904296875, 0.006781951904296875, 0.006825984001159668, 0.006850560188293457, 0.006818816184997558, 0.006812672138214112, 0.006882368087768554, 0.006911935806274414, 0.006807551860809326, 0.00689356803894043, 0.006797311782836914, 0.006874176025390625, 0.00681056022644043, 0.006914048194885254, 0.006818816184997558, 0.006825984001159668, 0.00682700777053833, 0.006793216228485107, 0.006847487926483154, 0.0068351998329162595, 0.0068055038452148435, 0.006850560188293457, 0.006801407814025879, 0.006872064113616944, 0.0068986878395080565, 0.0068689918518066405, 0.006813695907592773, 0.014460927963256836, 0.006829055786132812, 0.006843391895294189, 0.00684441614151001, 0.006938623905181885, 0.006749184131622315, 0.0068392958641052244, 0.00688640022277832, 0.006897664070129395, 0.00684441614151001, 0.006819839954376221, 0.0068280320167541505, 0.006834176063537598, 0.006892543792724609, 0.00687718391418457, 0.006845439910888672, 0.0069632000923156735, 0.006806528091430664, 0.0068915200233459475, 0.0069283838272094726, 0.00688640022277832, 0.006917119979858399, 0.006831103801727295, 0.006825984001159668, 0.0069918718338012695, 0.007312384128570557, 0.007332863807678222, 0.007145503997802735, 0.0069437122344970705, 0.00729702377319336, 0.00725708818435669, 0.006986752033233643, 0.007379968166351319, 0.0073359360694885255, 0.007027711868286133, 0.007037951946258545, 0.007255040168762207, 0.007329792022705078, 0.006730751991271973, 0.007303167819976806, 0.007400447845458984, 0.006849535942077637, 0.006818816184997558, 0.0067983360290527345, 0.006873087882995605, 0.006714367866516113, 0.006894591808319092, 0.0069027838706970214, 0.006818816184997558, 0.006830080032348633, 0.006841343879699707, 0.006900735855102539, 0.0067348480224609375, 0.006866943836212158, 0.006940671920776367, 0.00672870397567749, 0.006923264026641846, 0.0068055038452148435, 0.006945856094360351, 0.00685152006149292, 0.006808576107025147, 0.006906879901885986, 0.0068280320167541505]",tokens/s,140.10129046771218,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-j-6b,EleutherAI/gpt-j-6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-160m,EleutherAI/pythia-160m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -4894,56 +3671,32 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gptj/modeling_gptj.py"", line 1124, in forward - transformer_outputs = self.transformer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gptj/modeling_gptj.py"", line 950, in forward - outputs = block( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gptj/modeling_gptj.py"", line 578, in forward - attn_outputs = self.attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gptj/modeling_gptj.py"", line 317, in forward - query = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-16B-nl,Salesforce/codegen-16B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.3b,EleutherAI/pythia-1.3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -4963,16 +3716,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation - cls._check_and_enable_flash_attn_2( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 - raise ValueError( -ValueError: CodeGenForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmple6q2po4/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-6.7b,facebook/opt-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-1.8B,Qwen/Qwen1.5-1.8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -4982,56 +3741,32 @@ ValueError: CodeGenForCausalLM does not support Flash Attention 2.0 yet. Please ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 1118, in forward - outputs = self.model.decoder( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 884, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 525, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 292, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-6B-nl,Salesforce/codegen-6B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -5041,58 +3776,27 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward - outputs = self.gpt_neox( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward - outputs = layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward - attention_layer_outputs = self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 339, in forward - query, key, value, present = self._attn_projections_and_rope( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope - qkv = self.query_key_value(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: CodeGenForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm2-20b,internlm/internlm2-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2,openai-community/gpt2,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.42.3,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,1222.918144,1002.962944,0.0,356.51584,319.013888,s,24,0.17108643198013304,0.007128601332505545,0.00023506038056566344,0.0071254239082336425,0.00730543360710144,0.007380452966690063,0.007901603527069092,"[0.008055839538574219, 0.0070044159889221195, 0.006933440208435058, 0.006980544090270996, 0.007076032161712646, 0.007130688190460205, 0.006901663780212402, 0.00719379186630249, 0.006775263786315918, 0.007147552013397217, 0.006987008094787597, 0.007127007961273193, 0.007123839855194092, 0.0069337282180786134, 0.006967872142791748, 0.007136064052581787, 0.007171455860137939, 0.007136960029602051, 0.007385248184204101, 0.0071905279159545895, 0.007149151802062988, 0.007353280067443848, 0.00712220811843872, 0.007102848052978516]",tokens/s,35911.67299995744,kWh,8.20515813007031e-08,4.496026881836977e-08,1.723284557638797e-07,2.9934030588295257e-07,tokens/kWh,855213931.9991895,MB,1222.918144,1002.962944,0.0,356.51584,319.016448,s,24,10.024570068359376,0.417690419514974,0.009639100573855391,0.4168327026367188,0.4219854522705078,0.42297065277099605,0.4497069650268555,"[0.4576481628417969, 0.4167873229980469, 0.4013796691894531, 0.41602001953125, 0.4197399597167969, 0.41845706176757813, 0.41359945678710935, 0.41306964111328126, 0.41490817260742185, 0.4164496765136719, 0.41565142822265627, 0.413171875, 0.417815185546875, 0.41687808227539064, 0.404253173828125, 0.4180263671875, 0.415652587890625, 0.4194432373046875, 0.4231212158203125, 0.4190736083984375, 0.42167742919921875, 0.4221174621582031, 0.4120869445800781, 0.4175423278808594]",tokens/s,150.82941110585247,kWh,4.878610027839004e-06,2.673259573047272e-06,8.213615752983987e-06,1.5765485353870266e-05,tokens/kWh,3996071.074623411,,s,1511,10.180687867164602,0.0067377153323392525,0.0009229027913049718,0.006619135856628418,0.006779903888702392,0.007192575931549072,0.013923225975036629,"[0.007412735939025879, 0.00744755220413208, 0.007483391761779785, 0.0073994240760803225, 0.007536640167236328, 0.007288832187652588, 0.007184383869171143, 0.007219200134277344, 0.007250944137573242, 0.0071495680809020995, 0.007094272136688232, 0.007154687881469727, 0.007214079856872559, 0.007896063804626464, 0.007287807941436767, 0.007271423816680909, 0.007174208164215088, 0.007232448101043701, 0.007291903972625732, 0.007258111953735351, 0.007313439846038819, 0.007170015811920166, 0.007235583782196045, 0.0073175039291381834, 0.007245823860168457, 0.0071198720932006835, 0.007203839778900147, 0.007159808158874512, 0.007173120021820068, 0.007256063938140869, 0.0072540159225463864, 0.007328767776489258, 0.007588863849639893, 0.007350272178649903, 0.007271423816680909, 0.0072325119972229, 0.007336959838867187, 0.007259136199951172, 0.007278592109680176, 0.007124000072479248, 0.007150559902191162, 0.0071905279159545895, 0.007312384128570557, 0.007115839958190918, 0.00720684814453125, 0.007279615879058838, 0.007194623947143554, 0.0072325119972229, 0.007303167819976806, 0.007305215835571289, 0.007370751857757568, 0.0073471999168395995, 0.007316480159759522, 0.00733900785446167, 0.007209983825683594, 0.0071833600997924804, 0.007266304016113281, 0.007063551902770996, 0.007123968124389648, 0.006914048194885254, 0.007126016139984131, 0.006872064113616944, 0.013767680168151856, 0.006612991809844971, 0.0068055357933044435, 0.0070184640884399414, 0.007288832187652588, 0.007051263809204102, 0.0071526398658752445, 0.00723967981338501, 0.006957056045532227, 0.00682700777053833, 0.006904831886291504, 0.006914048194885254, 0.006833151817321777, 0.0074291200637817386, 0.006706175804138184, 0.006618112087249756, 0.006719488143920899, 0.0067358717918396, 0.006503424167633057, 0.006547520160675049, 0.0065924482345581055, 0.006811647891998291, 0.006649856090545654, 0.006663167953491211, 0.006638591766357422, 0.006681600093841553, 0.006639616012573242, 0.00662937593460083, 0.006624288082122802, 0.006625279903411865, 0.006634463787078857, 0.006653952121734619, 0.006660096168518067, 0.006622208118438721, 0.006669312000274658, 0.006585343837738037, 0.006519807815551758, 0.006428671836853027, 0.0065064959526062015, 0.0065075201988220215, 0.006525951862335205, 0.006609920024871826, 0.006543360233306885, 0.006285376071929931, 0.006284224033355713, 0.0062945599555969236, 0.0063159999847412105, 0.006336575984954834, 0.006356927871704101, 0.006312960147857666, 0.006337535858154297, 0.006352896213531494, 0.006377471923828125, 0.006362112045288086, 0.006487040042877197, 0.00638976001739502, 0.006368256092071533, 0.006372352123260498, 0.006360064029693604, 0.006396927833557129, 0.006378560066223144, 0.006458303928375244, 0.006375423908233643, 0.013642751693725585, 0.006362112045288086, 0.006369279861450195, 0.006368256092071533, 0.006377471923828125, 0.006344704151153564, 0.006386688232421875, 0.006358016014099121, 0.0064133119583129885, 0.006368256092071533, 0.006345727920532227, 0.0063569917678833006, 0.006347775936126709, 0.0063508481979370115, 0.006388735771179199, 0.006345727920532227, 0.0063610877990722655, 0.006331391811370849, 0.006377503871917724, 0.006363103866577149, 0.00642252779006958, 0.006384640216827392, 0.006384640216827392, 0.00637440013885498, 0.006342656135559082, 0.006366208076477051, 0.006367231845855713, 0.006340608119964599, 0.006343679904937744, 0.006337535858154297, 0.0064737281799316405, 0.006309887886047363, 0.006277120113372803, 0.006291456222534179, 0.006271999835968017, 0.006305791854858398, 0.006260735988616943, 0.0063539199829101565, 0.006333439826965332, 0.006277120113372803, 0.006294591903686524, 0.006271935939788818, 0.006261760234832763, 0.006304768085479737, 0.006252543926239014, 0.006292479991912842, 0.006278143882751465, 0.006305791854858398, 0.006262784004211426, 0.006259712219238281, 0.0062740478515625, 0.006270976066589356, 0.006278143882751465, 0.006260735988616943, 0.0062576642036437985, 0.0064849920272827145, 0.006639616012573242, 0.006626304149627686, 0.006595583915710449, 0.006602752208709717, 0.006615039825439453, 0.0066007041931152345, 0.006666240215301514, 0.013848575592041015, 0.006554624080657959, 0.006558720111846924, 0.0065382399559021, 0.006540287971496582, 0.006557695865631104, 0.006494207859039307, 0.006524928092956543, 0.0065146880149841305, 0.006554624080657959, 0.00653926420211792, 0.00653004789352417, 0.006576128005981445, 0.006567935943603515, 0.00653004789352417, 0.006549503803253174, 0.00658022403717041, 0.006554624080657959, 0.006533120155334473, 0.006550528049468994, 0.006508543968200684, 0.006524928092956543, 0.006527999877929688, 0.006545407772064209, 0.006617087841033936, 0.0065812478065490725, 0.006529024124145508, 0.006592512130737305, 0.006603775978088379, 0.0066416640281677245, 0.006628352165222168, 0.006606847763061524, 0.006625279903411865, 0.006633535861968994, 0.006624192237854004, 0.006643743991851807, 0.006575071811676025, 0.006703135967254639, 0.006697951793670654, 0.006589439868927002, 0.006616064071655273, 0.006540287971496582, 0.006535168170928955, 0.006783999919891357, 0.00693452787399292, 0.006716415882110595, 0.006651904106140137, 0.006653952121734619, 0.006609983921051025, 0.006612927913665772, 0.006668320178985596, 0.0065965762138366696, 0.006608895778656006, 0.006614016056060791, 0.006594560146331787, 0.006658048152923584, 0.0066119680404663084, 0.006605823993682861, 0.006628352165222168, 0.006657023906707763, 0.006617119789123535, 0.006628320217132568, 0.006690815925598144, 0.01406771183013916, 0.006669312000274658, 0.006616064071655273, 0.006605823993682861, 0.006593535900115967, 0.006903808116912841, 0.0066826238632202144, 0.006944767951965332, 0.006823935985565186, 0.007096320152282715, 0.007384064197540283, 0.006724607944488525, 0.00667955207824707, 0.006643712043762207, 0.0066744318008422855, 0.006673471927642822, 0.006619103908538818, 0.006709216117858886, 0.006681600093841553, 0.006652927875518798, 0.0066641921997070315, 0.006657023906707763, 0.006631423950195312, 0.006589439868927002, 0.0065177597999572755, 0.006503424167633057, 0.00653004789352417, 0.006574143886566162, 0.006555583953857422, 0.006545407772064209, 0.006633471965789795, 0.006624256134033203, 0.006626304149627686, 0.0065781760215759275, 0.006595583915710449, 0.006606912136077881, 0.006654911994934082, 0.006585343837738037, 0.00663046407699585, 0.0065924482345581055, 0.006612991809844971, 0.006606847763061524, 0.0065771517753601075, 0.0066119680404663084, 0.0066007041931152345, 0.006591487884521485, 0.006599679946899414, 0.006575104236602783, 0.006628352165222168, 0.006615039825439453, 0.0068321280479431154, 0.006767615795135498, 0.0066109437942504885, 0.006635519981384277, 0.006599679946899414, 0.006711296081542969, 0.006590464115142822, 0.0067123517990112305, 0.006628320217132568, 0.006584320068359375, 0.006609920024871826, 0.006616064071655273, 0.0065710082054138185, 0.014100480079650878, 0.0066447358131408694, 0.006599679946899414, 0.006623231887817383, 0.006631423950195312, 0.0066304001808166506, 0.006638591766357422, 0.006631423950195312, 0.006601727962493896, 0.006616064071655273, 0.00684441614151001, 0.006636544227600098, 0.006599679946899414, 0.006639616012573242, 0.0066375679969787596, 0.006628352165222168, 0.00657919979095459, 0.006729728221893311, 0.006616064071655273, 0.006595583915710449, 0.006638591766357422, 0.006619135856628418, 0.0065771517753601075, 0.006623231887817383, 0.006595583915710449, 0.006585343837738037, 0.006602752208709717, 0.0066375679969787596, 0.006621183872222901, 0.006656000137329102, 0.006621183872222901, 0.0066304001808166506, 0.006622208118438721, 0.006920191764831543, 0.006619135856628418, 0.006656000137329102, 0.006635519981384277, 0.0066109437942504885, 0.006660096168518067, 0.0066304001808166506, 0.0066007041931152345, 0.006620160102844238, 0.006638591766357422, 0.006605823993682861, 0.006626304149627686, 0.006624256134033203, 0.006559743881225586, 0.006598656177520752, 0.006622208118438721, 0.006592512130737305, 0.006656000137329102, 0.0066007041931152345, 0.006809599876403808, 0.00676966381072998, 0.006660096168518067, 0.006616064071655273, 0.006612991809844971, 0.006670335769653321, 0.006624288082122802, 0.00667952013015747, 0.006633471965789795, 0.0066119680404663084, 0.006625343799591064, 0.01360582447052002, 0.006369279861450195, 0.006322175979614258, 0.006368256092071533, 0.006367231845855713, 0.006349855899810791, 0.006337503910064698, 0.006335487842559814, 0.0063539199829101565, 0.006343679904937744, 0.0063498239517211915, 0.006377471923828125, 0.006339583873748779, 0.006369279861450195, 0.006277120113372803, 0.0062863359451293946, 0.0063632001876831054, 0.006559679985046387, 0.006557695865631104, 0.00653004789352417, 0.006723584175109864, 0.006628352165222168, 0.006583295822143555, 0.006676479816436768, 0.006598656177520752, 0.006603775978088379, 0.00667955207824707, 0.00662937593460083, 0.0066826238632202144, 0.007476223945617676, 0.006923264026641846, 0.00662937593460083, 0.006625279903411865, 0.00662937593460083, 0.006648831844329834, 0.006622208118438721, 0.006627327919006347, 0.006619135856628418, 0.006661119937896728, 0.006663167953491211, 0.006616064071655273, 0.006624256134033203, 0.006542335987091064, 0.00652396821975708, 0.0065054078102111815, 0.0066826238632202144, 0.006606847763061524, 0.006606847763061524, 0.006627327919006347, 0.006651904106140137, 0.00658022403717041, 0.006604800224304199, 0.006597631931304931, 0.006625279903411865, 0.006626304149627686, 0.006617087841033936, 0.0066119680404663084, 0.006606847763061524, 0.006595583915710449, 0.006601727962493896, 0.0066007041931152345, 0.006569983959197998, 0.006602752208709717, 0.014182463645935058, 0.00659449577331543, 0.006605823993682861, 0.006616064071655273, 0.006615039825439453, 0.006638591766357422, 0.006428671836853027, 0.006589439868927002, 0.0065781760215759275, 0.0066119680404663084, 0.006597663879394531, 0.006642655849456787, 0.006558720111846924, 0.0066344962120056155, 0.006590464115142822, 0.006589439868927002, 0.006726655960083008, 0.0066007041931152345, 0.006597631931304931, 0.006614016056060791, 0.006599679946899414, 0.006591519832611084, 0.006626272201538086, 0.006591487884521485, 0.006618112087249756, 0.006617087841033936, 0.006589439868927002, 0.006617087841033936, 0.006601727962493896, 0.006565887928009034, 0.006592512130737305, 0.006591487884521485, 0.006586368083953857, 0.006599679946899414, 0.006622208118438721, 0.006667263984680176, 0.0065771517753601075, 0.006598656177520752, 0.006585343837738037, 0.0065075201988220215, 0.0064767999649047855, 0.006506559848785401, 0.006499263763427734, 0.0064880638122558594, 0.006511616230010986, 0.006495232105255127, 0.006471680164337158, 0.0065177597999572755, 0.006503424167633057, 0.006497280120849609, 0.006503424167633057, 0.006499328136444092, 0.006496255874633789, 0.006584320068359375, 0.006481919765472412, 0.006559743881225586, 0.006508543968200684, 0.006489088058471679, 0.006508543968200684, 0.006358016014099121, 0.006275072097778321, 0.00626585578918457, 0.006271999835968017, 0.01334169578552246, 0.0062494721412658695, 0.006322175979614258, 0.006260735988616943, 0.006278143882751465, 0.006286399841308594, 0.006353856086730957, 0.006494207859039307, 0.006524928092956543, 0.006524928092956543, 0.006515711784362793, 0.0065136637687683106, 0.006543360233306885, 0.0065372161865234375, 0.0065136637687683106, 0.006545407772064209, 0.006558720111846924, 0.006500351905822754, 0.006492159843444824, 0.006520832061767578, 0.006516736030578613, 0.006515711784362793, 0.006518784046173095, 0.00653926420211792, 0.006526976108551025, 0.006503424167633057, 0.007187456130981445, 0.006808576107025147, 0.006639616012573242, 0.006661119937896728, 0.00658841609954834, 0.006639616012573242, 0.006702079772949219, 0.006563839912414551, 0.006907904148101806, 0.006646783828735352, 0.006625279903411865, 0.006619135856628418, 0.006623231887817383, 0.006564864158630371, 0.007068672180175781, 0.006636544227600098, 0.006612991809844971, 0.006597631931304931, 0.006617087841033936, 0.006592512130737305, 0.0066344962120056155, 0.006673408031463623, 0.006559743881225586, 0.006606847763061524, 0.006609920024871826, 0.006573056221008301, 0.00659660816192627, 0.006716415882110595, 0.006948863983154297, 0.0066826238632202144, 0.006673408031463623, 0.0066375679969787596, 0.0066713600158691405, 0.006602752208709717, 0.0065136637687683106, 0.00657919979095459, 0.0064880638122558594, 0.014107647895812989, 0.006604800224304199, 0.006589439868927002, 0.00659660816192627, 0.006616096019744873, 0.0065965762138366696, 0.006593535900115967, 0.006632448196411133, 0.006594560146331787, 0.006598656177520752, 0.006585343837738037, 0.006618112087249756, 0.0066119680404663084, 0.006623231887817383, 0.006659071922302246, 0.006657023906707763, 0.006614016056060791, 0.006620160102844238, 0.006605823993682861, 0.006597631931304931, 0.006626304149627686, 0.006633471965789795, 0.006767615795135498, 0.006643712043762207, 0.006583295822143555, 0.00658739185333252, 0.006628352165222168, 0.006645760059356689, 0.00662224006652832, 0.006647808074951172, 0.006631392002105713, 0.006622208118438721, 0.006614016056060791, 0.006670335769653321, 0.006593535900115967, 0.006608895778656006, 0.006608895778656006, 0.00658841609954834, 0.0066119680404663084, 0.006653952121734619, 0.006590464115142822, 0.006606847763061524, 0.006604800224304199, 0.006606847763061524, 0.006592512130737305, 0.006573056221008301, 0.00673689603805542, 0.006714367866516113, 0.006563839912414551, 0.006609920024871826, 0.006626304149627686, 0.006592512130737305, 0.006608895778656006, 0.00657919979095459, 0.006510591983795166, 0.006554624080657959, 0.006527999877929688, 0.006492159843444824, 0.0065136637687683106, 0.006621183872222901, 0.006511616230010986, 0.006520832061767578, 0.0065064959526062015, 0.013931520462036133, 0.0066119680404663084, 0.006621183872222901, 0.006615039825439453, 0.006592512130737305, 0.0066406397819519045, 0.006624256134033203, 0.006606847763061524, 0.006616064071655273, 0.006636544227600098, 0.006585343837738037, 0.006627327919006347, 0.00662937593460083, 0.006596640110015869, 0.006647776126861573, 0.006661119937896728, 0.00656489610671997, 0.006495200157165528, 0.006501376152038574, 0.00658841609954834, 0.006501376152038574, 0.006496255874633789, 0.0065136637687683106, 0.006508543968200684, 0.006564864158630371, 0.006609951972961426, 0.006609888076782227, 0.00658841609954834, 0.006608895778656006, 0.006618112087249756, 0.0066109437942504885, 0.006592512130737305, 0.006608895778656006, 0.006608895778656006, 0.00658841609954834, 0.0066744318008422855, 0.006743040084838867, 0.006790143966674805, 0.006713344097137451, 0.0066109437942504885, 0.006657023906707763, 0.0066119680404663084, 0.006625311851501465, 0.006631392002105713, 0.006659071922302246, 0.006608895778656006, 0.006642687797546387, 0.006816768169403077, 0.006625279903411865, 0.0065372161865234375, 0.006508543968200684, 0.006494207859039307, 0.006550528049468994, 0.006509568214416504, 0.0065075201988220215, 0.006590464115142822, 0.006479872226715088, 0.006499328136444092, 0.006538271903991699, 0.00648905611038208, 0.006513728141784668, 0.006510528087615966, 0.006516736030578613, 0.014094335556030273, 0.006583295822143555, 0.006668288230895996, 0.0066498880386352535, 0.006615007877349853, 0.006656000137329102, 0.006551551818847656, 0.006372352123260498, 0.006388768196105957, 0.006356959819793701, 0.0063805441856384275, 0.006368256092071533, 0.006385663986206055, 0.006379519939422608, 0.006598656177520752, 0.0065443840026855465, 0.006545407772064209, 0.00672051191329956, 0.006673408031463623, 0.006669312000274658, 0.006614016056060791, 0.0066416640281677245, 0.006662144184112549, 0.006608895778656006, 0.006653952121734619, 0.006667263984680176, 0.006623231887817383, 0.006631423950195312, 0.0066375679969787596, 0.006616064071655273, 0.00667852783203125, 0.006632448196411133, 0.006620160102844238, 0.0066416640281677245, 0.006661119937896728, 0.006612991809844971, 0.006647808074951172, 0.006628352165222168, 0.006639616012573242, 0.006624256134033203, 0.006603775978088379, 0.006643712043762207, 0.006624256134033203, 0.006603775978088379, 0.006683648109436035, 0.006377471923828125, 0.006328320026397705, 0.006337535858154297, 0.006367231845855713, 0.0063805761337280276, 0.006385632038116455, 0.006344704151153564, 0.006343679904937744, 0.006366208076477051, 0.006387712001800537, 0.006379519939422608, 0.006369279861450195, 0.006379519939422608, 0.00683622407913208, 0.006717440128326416, 0.006616064071655273, 0.006659071922302246, 0.006650879859924317, 0.01406156826019287, 0.006552576065063476, 0.00662937593460083, 0.006673408031463623, 0.0066344962120056155, 0.0066641921997070315, 0.006643712043762207, 0.006604800224304199, 0.006687776088714599, 0.006708191871643066, 0.0066744318008422855, 0.006726655960083008, 0.0067051520347595215, 0.0066447358131408694, 0.0067041277885437015, 0.006714367866516113, 0.006649856090545654, 0.006677504062652588, 0.0066908798217773435, 0.0066221442222595215, 0.006620160102844238, 0.0066375679969787596, 0.006619135856628418, 0.006658048152923584, 0.006638591766357422, 0.006656000137329102, 0.006762495994567871, 0.0066457920074462894, 0.006626272201538086, 0.006645760059356689, 0.006651904106140137, 0.006598656177520752, 0.006618112087249756, 0.006621183872222901, 0.006632448196411133, 0.006625279903411865, 0.006651904106140137, 0.006796288013458252, 0.006672383785247803, 0.006635519981384277, 0.006540287971496582, 0.006524928092956543, 0.006523903846740723, 0.0065669121742248536, 0.0065443840026855465, 0.006558720111846924, 0.006542335987091064, 0.0066416640281677245, 0.006523903846740723, 0.006565887928009034, 0.006543360233306885, 0.006543360233306885, 0.006519807815551758, 0.006540287971496582, 0.006635519981384277, 0.006616064071655273, 0.006602752208709717, 0.006643775939941406, 0.006604735851287842, 0.006605823993682861, 0.0066344962120056155, 0.006631423950195312, 0.006632448196411133, 0.01363046360015869, 0.006363135814666748, 0.006354944229125976, 0.0063610877990722655, 0.006343679904937744, 0.006358016014099121, 0.007881728172302246, 0.006760447978973389, 0.006873087882995605, 0.006906879901885986, 0.006669312000274658, 0.006677504062652588, 0.00667955207824707, 0.006677504062652588, 0.006649856090545654, 0.0066375679969787596, 0.006605823993682861, 0.006631423950195312, 0.006782976150512696, 0.006667263984680176, 0.006597631931304931, 0.006651904106140137, 0.0066375679969787596, 0.0066344962120056155, 0.006649856090545654, 0.0066304001808166506, 0.006657023906707763, 0.0066713600158691405, 0.006625279903411865, 0.006691840171813965, 0.006626304149627686, 0.0066406397819519045, 0.006662144184112549, 0.006652927875518798, 0.006617087841033936, 0.0066406397819519045, 0.006691840171813965, 0.006864895820617676, 0.006680575847625733, 0.006628352165222168, 0.0066406397819519045, 0.006685696125030518, 0.006675456047058105, 0.006592512130737305, 0.006623231887817383, 0.006605823993682861, 0.0065894718170166015, 0.006627295970916748, 0.006621183872222901, 0.006617087841033936, 0.0066375679969787596, 0.006602752208709717, 0.00657919979095459, 0.006604800224304199, 0.006534143924713135, 0.00636518383026123, 0.0063508481979370115, 0.006352896213531494, 0.006369279861450195, 0.006419456005096436, 0.006345727920532227, 0.006393856048583985, 0.006351871967315674, 0.013632512092590332, 0.006351871967315674, 0.006325247764587402, 0.006335487842559814, 0.006329343795776367, 0.006355967998504639, 0.006363135814666748, 0.006375423908233643, 0.006378496170043945, 0.006376448154449463, 0.006355967998504639, 0.006329343795776367, 0.006344704151153564, 0.006337535858154297, 0.006375423908233643, 0.0063569917678833006, 0.006333439826965332, 0.006346752166748047, 0.006351871967315674, 0.0063569917678833006, 0.006367231845855713, 0.00632422399520874, 0.0063539199829101565, 0.006363135814666748, 0.006352896213531494, 0.006458367824554443, 0.006360064029693604, 0.006363135814666748, 0.006342656135559082, 0.00628227186203003, 0.006288352012634277, 0.0062679038047790524, 0.006275072097778321, 0.006255616188049316, 0.006262784004211426, 0.0062638077735900875, 0.00628223991394043, 0.006231040000915527, 0.0062975997924804685, 0.006253568172454834, 0.006287424087524414, 0.006264768123626709, 0.006277120113372803, 0.0062638077735900875, 0.006675456047058105, 0.006616064071655273, 0.00658022403717041, 0.0066007041931152345, 0.006614016056060791, 0.006746111869812011, 0.006563839912414551, 0.006576128005981445, 0.006606847763061524, 0.0065669121742248536, 0.006586368083953857, 0.006594560146331787, 0.006612991809844971, 0.006656000137329102, 0.006606847763061524, 0.006591487884521485, 0.006604800224304199, 0.006606847763061524, 0.006589439868927002, 0.014072832107543945, 0.006594560146331787, 0.006690815925598144, 0.0066406397819519045, 0.006585343837738037, 0.006612991809844971, 0.006654975891113281, 0.006593535900115967, 0.006582272052764892, 0.006615039825439453, 0.006591487884521485, 0.00663046407699585, 0.006618048191070557, 0.0066007041931152345, 0.006575104236602783, 0.0066119680404663084, 0.006660096168518067, 0.00660588788986206, 0.006574016094207763, 0.006597631931304931, 0.006848512172698974, 0.0068321280479431154, 0.006599679946899414, 0.006649856090545654, 0.006628352165222168, 0.006632448196411133, 0.006633471965789795, 0.006657055854797363, 0.006719456195831299, 0.006617087841033936, 0.006602752208709717, 0.006632448196411133, 0.006656000137329102, 0.00658841609954834, 0.00662937593460083, 0.006636544227600098, 0.006595583915710449, 0.006631423950195312, 0.006615039825439453, 0.006595583915710449, 0.006667263984680176, 0.006670335769653321, 0.006564864158630371, 0.006623231887817383, 0.006683648109436035, 0.0066078720092773435, 0.006621183872222901, 0.0066826238632202144, 0.0066304001808166506, 0.006648831844329834, 0.006744063854217529, 0.00675328016281128, 0.006692863941192627, 0.006601727962493896, 0.006508543968200684, 0.0065771517753601075, 0.006516736030578613, 0.006511616230010986, 0.006556672096252441, 0.006564864158630371, 0.006582272052764892, 0.006591487884521485, 0.006819839954376221, 0.014217215538024902, 0.006583295822143555, 0.006612991809844971, 0.006651904106140137, 0.006640704154968262, 0.00665388822555542, 0.006659071922302246, 0.006606847763061524, 0.006609920024871826, 0.006620160102844238, 0.00662937593460083, 0.006650879859924317, 0.00673689603805542, 0.006623231887817383, 0.006650879859924317, 0.0066795840263366695, 0.006654943943023682, 0.006602752208709717, 0.0065812478065490725, 0.00653107213973999, 0.0065669121742248536, 0.006585343837738037, 0.006500351905822754, 0.0065443840026855465, 0.006519807815551758, 0.006553599834442139, 0.006525951862335205, 0.006533120155334473, 0.006670335769653321, 0.006550528049468994, 0.0065177597999572755, 0.006542399883270263, 0.006552512168884277, 0.006475776195526123, 0.006536191940307618, 0.00653926420211792, 0.006557695865631104, 0.006645760059356689, 0.006582272052764892, 0.006617087841033936, 0.00666323184967041, 0.006596543788909912, 0.006612991809844971, 0.006688767910003662, 0.006617087841033936, 0.006604800224304199, 0.006612991809844971, 0.006576128005981445, 0.006593535900115967, 0.006658112049102783, 0.0064757118225097655, 0.006543360233306885, 0.006564864158630371, 0.006467584133148193, 0.006532095909118653, 0.0066416640281677245, 0.0065372161865234375, 0.006532095909118653, 0.006549503803253174, 0.006604800224304199, 0.0066375679969787596, 0.006618112087249756, 0.006680575847625733, 0.014107647895812989, 0.0066007041931152345, 0.006592512130737305, 0.006648831844329834, 0.0066304001808166506, 0.006669312000274658, 0.006659071922302246, 0.006652927875518798, 0.006677504062652588, 0.006639616012573242, 0.006676511764526367, 0.00667952013015747, 0.006652927875518798, 0.006651904106140137, 0.006688767910003662, 0.006649856090545654, 0.006646783828735352, 0.0066202239990234375, 0.006640575885772705, 0.006663167953491211, 0.006636544227600098, 0.006635519981384277, 0.006680575847625733, 0.0066119680404663084, 0.006713344097137451, 0.0066416640281677245, 0.006515711784362793, 0.006573056221008301, 0.0065781760215759275, 0.00658739185333252, 0.006589439868927002, 0.006575104236602783, 0.006510591983795166, 0.006624256134033203, 0.006673408031463623, 0.006606847763061524, 0.006624256134033203, 0.0066416640281677245, 0.006667263984680176, 0.0066713600158691405, 0.006715392112731934, 0.006684671878814697, 0.006702079772949219, 0.006626304149627686, 0.00657919979095459, 0.006594560146331787, 0.006558720111846924, 0.006585343837738037, 0.006598656177520752, 0.006559743881225586, 0.006586368083953857, 0.006612991809844971, 0.00662937593460083, 0.00674508810043335, 0.006699007987976074, 0.006650879859924317, 0.0071015038490295414, 0.006799295902252197, 0.00669593620300293, 0.007017471790313721, 0.006725632190704346, 0.006669312000274658, 0.006666240215301514, 0.014368767738342286, 0.006797311782836914, 0.006669312000274658, 0.006615071773529053, 0.006666207790374756, 0.006676479816436768, 0.006661119937896728, 0.0067051520347595215, 0.00669593620300293, 0.006633471965789795, 0.006677504062652588, 0.006674496173858643, 0.0066211199760437016, 0.006677504062652588, 0.006703104019165039, 0.006627327919006347, 0.006699007987976074, 0.00667955207824707, 0.006642687797546387, 0.006683648109436035, 0.0066641921997070315, 0.007554048061370849, 0.0068249602317810056, 0.006938623905181885, 0.007472127914428711, 0.0069212160110473635, 0.006665215969085693, 0.006681600093841553, 0.006743040084838867, 0.0066754879951477055, 0.006725599765777588, 0.006972415924072266, 0.006754303932189941, 0.006662144184112549, 0.0067276802062988285, 0.006739967823028564, 0.006623231887817383, 0.006656000137329102, 0.006686719894409179, 0.006612031936645508, 0.006796224117279053, 0.0067010560035705566, 0.006658048152923584, 0.006667263984680176, 0.006719488143920899, 0.006653952121734619, 0.006708223819732666, 0.006681663990020752, 0.006625216007232666, 0.006688767910003662, 0.006691840171813965, 0.0065781760215759275, 0.006618112087249756, 0.006604800224304199, 0.0065413122177124024, 0.0065781760215759275, 0.006559743881225586, 0.006562816143035889, 0.006625279903411865, 0.006624256134033203, 0.006686719894409179, 0.0066938881874084475, 0.006770688056945801, 0.014256128311157227, 0.006601727962493896, 0.0067123198509216305, 0.006761472225189209, 0.006686719894409179, 0.0067041277885437015, 0.006691840171813965, 0.006648831844329834, 0.006724607944488525, 0.006722559928894043, 0.006683648109436035, 0.0066641921997070315, 0.006699007987976074, 0.006687744140625, 0.006688767910003662, 0.00672870397567749, 0.006650879859924317, 0.006647808074951172, 0.006594560146331787, 0.0065484800338745115, 0.006557695865631104, 0.006603775978088379, 0.006592512130737305, 0.006557695865631104, 0.006594560146331787, 0.006574079990386963, 0.00653926420211792, 0.0065771517753601075, 0.006700032234191895, 0.006551551818847656, 0.006543360233306885, 0.00658739185333252, 0.0066304001808166506, 0.006604800224304199, 0.006622208118438721, 0.006689792156219483, 0.0066713600158691405, 0.006699007987976074, 0.006731776237487793, 0.006668288230895996, 0.006703104019165039, 0.006722559928894043, 0.006645760059356689, 0.006675456047058105, 0.00667955207824707, 0.006624256134033203, 0.006686719894409179, 0.006707200050354004, 0.006656000137329102, 0.0066109437942504885, 0.00658841609954834, 0.0065443840026855465, 0.006564864158630371, 0.006584320068359375, 0.006560768127441406, 0.006614016056060791, 0.006668288230895996, 0.006685696125030518, 0.006688767910003662, 0.00673689603805542, 0.006662144184112549, 0.006684671878814697, 0.006643712043762207, 0.014236672401428223, 0.006684671878814697, 0.006696959972381592, 0.006686719894409179, 0.0066406397819519045, 0.006670335769653321, 0.006689792156219483, 0.006631455898284912, 0.00667849588394165, 0.006680575847625733, 0.006628352165222168, 0.00673689603805542, 0.006723584175109864, 0.006696959972381592, 0.006719488143920899, 0.006743040084838867, 0.0066416640281677245, 0.006887423992156983, 0.00684441614151001, 0.0066713600158691405, 0.006700032234191895, 0.0066826238632202144, 0.00666323184967041, 0.006700992107391357, 0.006660096168518067, 0.006643712043762207, 0.006717440128326416, 0.006726655960083008, 0.006665215969085693, 0.006723584175109864, 0.006663167953491211, 0.006603807926177979, 0.006680543899536133, 0.006645760059356689, 0.006585343837738037, 0.006866943836212158, 0.006668288230895996, 0.006576128005981445, 0.0066713600158691405, 0.006624256134033203, 0.006639616012573242, 0.006696959972381592, 0.0066375679969787596, 0.006638591766357422, 0.0066826558113098145, 0.00662937593460083, 0.006691808223724365, 0.006779903888702392, 0.006768703937530518, 0.00694163179397583, 0.0067717118263244626, 0.006684671878814697, 0.006723584175109864, 0.006661119937896728, 0.006642687797546387, 0.0067123198509216305, 0.006628352165222168, 0.006646783828735352, 0.006667263984680176, 0.006606847763061524, 0.006631423950195312, 0.0067041277885437015, 0.006604800224304199, 0.01434931182861328, 0.006623231887817383, 0.006648831844329834, 0.006688767910003662, 0.006618112087249756, 0.00667955207824707, 0.006669312000274658, 0.006657023906707763, 0.006662144184112549, 0.006690815925598144, 0.006612991809844971, 0.006651904106140137, 0.006677504062652588, 0.006643712043762207, 0.006601727962493896, 0.006650879859924317, 0.006628352165222168, 0.006595583915710449, 0.006665215969085693, 0.006627327919006347, 0.006631423950195312, 0.006663167953491211, 0.0066109437942504885, 0.0066119680404663084, 0.006681600093841553, 0.006603775978088379, 0.0066416640281677245, 0.006664224147796631, 0.006680543899536133, 0.007458816051483155, 0.0073820161819458, 0.007127039909362793, 0.0068249602317810056, 0.006905856132507324, 0.006700032234191895, 0.006703104019165039, 0.006656000137329102, 0.006643712043762207, 0.006624256134033203, 0.006626304149627686, 0.0066406397819519045, 0.006659071922302246, 0.0066447358131408694, 0.006676479816436768, 0.006658048152923584, 0.006649856090545654, 0.006681600093841553, 0.006667263984680176, 0.006649856090545654, 0.006666240215301514, 0.0066713600158691405, 0.006657023906707763, 0.006652927875518798, 0.006685696125030518, 0.006657023906707763, 0.006683648109436035, 0.006660096168518067, 0.006617087841033936, 0.006669312000274658, 0.006709248065948486, 0.00662937593460083, 0.006684671878814697, 0.00684441614151001, 0.014042112350463867, 0.006527999877929688, 0.006525951862335205, 0.0065146880149841305, 0.00653107213973999, 0.0065372161865234375, 0.006565887928009034, 0.006639616012573242, 0.006625279903411865, 0.0066304001808166506, 0.006650879859924317, 0.006643712043762207, 0.00667852783203125, 0.006645760059356689, 0.006628352165222168, 0.006640704154968262, 0.006639552116394043, 0.006526976108551025, 0.006576128005981445, 0.006633471965789795, 0.006534143924713135, 0.006568960189819336, 0.00662937593460083, 0.0066416640281677245, 0.006621183872222901, 0.0066375679969787596, 0.006652927875518798, 0.006638591766357422, 0.00662937593460083, 0.006626304149627686, 0.006639616012573242, 0.006625279903411865, 0.006652927875518798, 0.006561791896820069, 0.006331391811370849, 0.006592512130737305, 0.006418432235717773, 0.006364160060882569, 0.006404096126556396, 0.006343679904937744, 0.006371327877044678, 0.006340608119964599, 0.00636518383026123, 0.006366208076477051, 0.006364160060882569, 0.006371327877044678, 0.006339583873748779, 0.006410304069519043, 0.006392767906188965, 0.006396927833557129, 0.006333439826965332, 0.006336512088775635, 0.006355967998504639, 0.006423552036285401, 0.006400000095367431, 0.006660096168518067, 0.0066109437942504885, 0.006874112129211426, 0.006673408031463623, 0.006654975891113281, 0.006623231887817383, 0.006549503803253174, 0.0065064959526062015, 0.014049280166625976, 0.0066304001808166506, 0.006616064071655273, 0.006620160102844238, 0.006614016056060791, 0.006619135856628418, 0.006598656177520752, 0.006657023906707763, 0.006594560146331787, 0.0066744318008422855, 0.006616064071655273, 0.00672870397567749, 0.006714367866516113, 0.006683648109436035, 0.006619135856628418, 0.00662937593460083, 0.006631423950195312, 0.006602752208709717, 0.006620160102844238, 0.006619135856628418, 0.006616064071655273, 0.006625279903411865, 0.00662937593460083, 0.006621183872222901, 0.006684671878814697, 0.006653952121734619, 0.006656032085418701, 0.0066303682327270505, 0.006614016056060791, 0.006626304149627686, 0.006622208118438721, 0.006599679946899414, 0.006632448196411133, 0.006633471965789795, 0.006592512130737305, 0.006820864200592041, 0.0066406397819519045, 0.006590464115142822, 0.006585343837738037, 0.0066109437942504885, 0.006575104236602783, 0.006614016056060791, 0.006603775978088379, 0.006601727962493896, 0.006603775978088379, 0.006623231887817383, 0.006589439868927002, 0.006598656177520752, 0.006599679946899414, 0.006605823993682861, 0.006604800224304199, 0.00658022403717041, 0.006605823993682861, 0.006590464115142822, 0.00658131217956543, 0.006609856128692627, 0.006622208118438721, 0.006593535900115967, 0.006598656177520752, 0.006688767910003662, 0.006590464115142822, 0.006602752208709717, 0.00659660816192627]",tokens/s,148.4182620776904,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-14B,Qwen/Qwen-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -5102,56 +3806,55 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/dc0130882132de7cb2eb1fa54ba5294b8c922076/modeling_internlm2.py"", line 1204, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/dc0130882132de7cb2eb1fa54ba5294b8c922076/modeling_internlm2.py"", line 1004, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/dc0130882132de7cb2eb1fa54ba5294b8c922076/modeling_internlm2.py"", line 738, in forward - hidden_states, self_attn_weights, present_key_value = self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/dc0130882132de7cb2eb1fa54ba5294b8c922076/modeling_internlm2.py"", line 410, in forward - qkv_states = self.wqkv(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained + model_class = get_class_from_dynamic_module( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module + final_module = get_cached_module_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file + modules_needed = check_imports(resolved_module_file) + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports + raise ImportError( +ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,t,t,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-7B,Qwen/Qwen-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained + model_class = get_class_from_dynamic_module( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module + final_module = get_cached_module_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file + modules_needed = check_imports(resolved_module_file) + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports + raise ImportError( +ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,v,v,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -5163,7 +3866,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/t/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/v/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -5190,9 +3893,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669490e2-2b6888404018696802e4f36e;bd4a434d-36d8-4fcd-9dfa-8c23f1940452) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949493-47ff0fe300b4d32926f9c0ec;18b0c9e6-9652-4091-acd4-53bc4eb7f644) -Repository Not Found for url: https://huggingface.co/t/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/v/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -5217,11 +3920,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: t is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: v is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-66b,facebook/opt-66b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-125m,EleutherAI/gpt-neo-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -5241,29 +3944,16 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 162.00 MiB. GPU + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: GPTNeoForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,.,.,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,.,.,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -5291,8 +3981,9 @@ ChildProcessError: Traceback (most recent call last): raise EnvironmentError( OSError: . does not appear to have a file named config.json. Checkout 'https://huggingface.co/./tree/None' for available files. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mixtral-8x7B-v0.1,mistralai/Mixtral-8x7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/phi-1_5,microsoft/phi-1_5,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1358.589952,2103.967744,0.0,1457.52064,1272.881664,s,10,1.3631298065185549,0.1363129806518555,0.0008682167068706195,0.13635552215576174,0.1370564453125,0.13756546936035158,0.13797268859863282,"[0.13807449340820313, 0.13481919860839844, 0.13663923645019532, 0.13648768615722656, 0.1363610534667969, 0.13634999084472657, 0.13634962463378905, 0.1369433288574219, 0.13605657958984374, 0.13504861450195313]",tokens/s,1878.030975302537,kWh,1.5893511683852586e-06,8.706513991564859e-07,6.58916082688051e-06,9.049163394422252e-06,tokens/kWh,28289908.010479063,MB,1358.589952,2103.967744,0.0,1457.52064,1369.424896,s,10,80.1509423828125,8.01509423828125,0.04758558328935424,8.03790185546875,8.060850390625001,8.06196572265625,8.06285798828125,"[7.943890625, 7.97273681640625, 8.0463369140625, 8.0606025390625, 8.06037841796875, 8.0630810546875, 8.0572548828125, 8.029466796875, 7.960978515625, 7.9562158203125]",tokens/s,7.860169590907975,kWh,9.384463308144499e-05,5.143388635707014e-05,0.00037368961561811727,0.0005189681350566323,tokens/kWh,121394.73648632616,,s,629,81.24969168090827,0.12917280076455995,0.016234788877661135,0.127678466796875,0.12822896728515623,0.12854743347167968,0.26253706176757813,"[0.12623462677001954, 0.12626534271240233, 0.12749107360839843, 0.12655411529541016, 0.12602880096435548, 0.12595507049560548, 0.12608409881591798, 0.125949951171875, 0.12577792358398437, 0.1258967056274414, 0.12588851165771484, 0.12596736145019533, 0.12578099060058595, 0.1260912628173828, 0.12604723358154296, 0.12598169708251952, 0.12593971252441405, 0.12601139068603515, 0.12579634857177735, 0.12603392028808594, 0.12579840087890626, 0.12579532623291015, 0.1258967056274414, 0.1258086395263672, 0.1257297897338867, 0.12582093048095702, 0.1259315185546875, 0.12595609283447265, 0.12572783660888673, 0.12588227081298828, 0.12573081970214844, 0.12737945556640626, 0.1259468765258789, 0.12588646697998046, 0.12581478118896483, 0.12592435455322265, 0.1258792953491211, 0.1258588180541992, 0.12746444702148438, 0.12731187438964844, 0.12609945678710938, 0.12609843444824217, 0.12581478118896483, 0.12597452545166016, 0.12607078552246093, 0.12630118560791015, 0.12647833251953125, 0.12594483184814453, 0.12569087982177735, 0.12633702087402343, 0.12602880096435548, 0.1259898910522461, 0.126023681640625, 0.12634214019775392, 0.12730879974365233, 0.12593357086181642, 0.1258250274658203, 0.12601036834716797, 0.1260175323486328, 0.12602060699462891, 0.1258598403930664, 0.1257185287475586, 0.2625024108886719, 0.12606771087646484, 0.1269903335571289, 0.12595507049560548, 0.12662681579589843, 0.1257164764404297, 0.12573081970214844, 0.12580966186523437, 0.1257676773071289, 0.12584345245361328, 0.12604723358154296, 0.12586700439453125, 0.125876220703125, 0.12575027465820313, 0.12595507049560548, 0.12601856231689454, 0.12643840026855468, 0.12581068420410157, 0.12602265930175782, 0.12638412475585936, 0.12576153564453124, 0.12624486541748048, 0.12597964477539061, 0.12647833251953125, 0.12601856231689454, 0.12584652709960936, 0.12577792358398437, 0.12563763427734376, 0.12597145843505858, 0.1260359649658203, 0.12596121978759767, 0.1258055648803711, 0.12600422668457031, 0.1259345932006836, 0.12581273651123046, 0.12602674865722657, 0.12610355377197266, 0.12577279663085938, 0.12581375885009766, 0.12614963531494142, 0.1260062713623047, 0.12613426971435546, 0.1257359390258789, 0.1258567657470703, 0.12633190155029297, 0.1259694061279297, 0.12657254028320314, 0.12820480346679688, 0.12799180603027344, 0.12775526428222655, 0.127710205078125, 0.127857666015625, 0.1278545913696289, 0.12770918273925783, 0.12889190673828124, 0.1281597442626953, 0.12789145660400392, 0.12811878967285156, 0.12782284545898437, 0.128, 0.12832972717285157, 0.12828466796875, 0.12807577514648438, 0.26479617309570314, 0.12780953979492188, 0.1277501449584961, 0.12807475280761718, 0.12764979553222655, 0.1277470703125, 0.12904141235351563, 0.12810957336425782, 0.12779315185546875, 0.12776959991455078, 0.12783103942871094, 0.128247802734375, 0.1280174102783203, 0.12772045135498047, 0.12871270751953126, 0.12824371337890625, 0.12798976135253906, 0.12790579223632811, 0.12783103942871094, 0.12777574157714844, 0.1258086395263672, 0.12573798370361328, 0.12613222503662108, 0.12614860534667968, 0.12590592193603517, 0.12583219146728516, 0.12566630554199218, 0.12582093048095702, 0.12807679748535156, 0.1276159973144531, 0.12811672973632812, 0.1279078369140625, 0.1277327346801758, 0.12819967651367187, 0.12767539215087892, 0.1281658935546875, 0.12766515350341798, 0.12815565490722655, 0.12822528076171874, 0.12830618286132814, 0.12780748748779297, 0.1277286376953125, 0.12833279418945312, 0.1282723846435547, 0.12803890991210937, 0.12805836486816408, 0.12844236755371094, 0.12783411407470704, 0.12770611572265625, 0.12779724884033203, 0.1281546173095703, 0.1276159973144531, 0.12784230041503905, 0.12783206176757814, 0.12786688232421875, 0.128142333984375, 0.12768051147460938, 0.12766822052001953, 0.12811264038085937, 0.1277491226196289, 0.12756582641601563, 0.1288970184326172, 0.1281495056152344, 0.26441317749023435, 0.12781977844238282, 0.12796927642822264, 0.12775628662109376, 0.12817613220214844, 0.12858061218261718, 0.12771942138671874, 0.12783513641357422, 0.1279508514404297, 0.12757606506347657, 0.12777369689941406, 0.12777164459228516, 0.12801126098632812, 0.12763545227050782, 0.12789043426513672, 0.1276436462402344, 0.1276559371948242, 0.12776959991455078, 0.1282856903076172, 0.12782080078125, 0.12882330322265625, 0.1280614471435547, 0.12808090209960937, 0.12776959991455078, 0.1277675552368164, 0.12821708679199217, 0.12763033294677734, 0.12757708740234375, 0.1277347869873047, 0.12844032287597656, 0.12804812622070313, 0.12764979553222655, 0.12763545227050782, 0.12835430908203124, 0.12770918273925783, 0.12769075012207032, 0.12814131164550782, 0.1277491226196289, 0.12796934509277344, 0.1278842239379883, 0.12797337341308593, 0.1286594543457031, 0.12793036651611328, 0.12776448059082032, 0.12818226623535156, 0.12790886688232422, 0.12799488067626952, 0.12788121795654298, 0.1278054428100586, 0.12845158386230468, 0.12768870544433594, 0.12787404632568358, 0.12859596252441408, 0.1280563201904297, 0.1278013458251953, 0.12784435272216796, 0.12770508575439454, 0.12821197509765625, 0.12766719818115235, 0.12801228332519532, 0.12829901123046875, 0.1277675552368164, 0.12806965637207032, 0.2643558044433594, 0.12766515350341798, 0.12768051147460938, 0.12765286254882813, 0.12751462554931642, 0.12763545227050782, 0.12779519653320312, 0.12767129516601564, 0.12799078369140626, 0.1276590042114258, 0.1277655029296875, 0.12870144653320312, 0.12818226623535156, 0.12776242828369141, 0.1278699493408203, 0.1276272659301758, 0.128184326171875, 0.12763545227050782, 0.12879769897460938, 0.12881100463867187, 0.12820684814453126, 0.12788735961914063, 0.1276211166381836, 0.12761087799072265, 0.12819456481933594, 0.12811878967285156, 0.12794572448730468, 0.12788735961914063, 0.12781465911865234, 0.12768563079833983, 0.1276211166381836, 0.12834815979003905, 0.12801945495605468, 0.1278720016479492, 0.12835430908203124, 0.1289707489013672, 0.12773990631103516, 0.12778495788574218, 0.12773990631103516, 0.1278167037963867, 0.12815155029296876, 0.12765081787109375, 0.1277675552368164, 0.12948786926269532, 0.12794265747070313, 0.1282826232910156, 0.1276600341796875, 0.12820378112792968, 0.12769792175292968, 0.1278238754272461, 0.12797235107421875, 0.12779212951660157, 0.12791193389892577, 0.12792217254638671, 0.12759859466552734, 0.12793548583984374, 0.12773580932617187, 0.12768563079833983, 0.12795597076416015, 0.12788633728027343, 0.12800306701660155, 0.1278238754272461, 0.127710205078125, 0.264237060546875, 0.12841676330566407, 0.12879667663574218, 0.12799590301513672, 0.12780032348632814, 0.12786688232421875, 0.1277480926513672, 0.12770201873779297, 0.1276231689453125, 0.12800204467773438, 0.12798976135253906, 0.12791295623779297, 0.12839730834960938, 0.1277163543701172, 0.12764569854736327, 0.12788428497314452, 0.12782284545898437, 0.12786585235595704, 0.12791705322265626, 0.12781362915039063, 0.12769792175292968, 0.12772147369384765, 0.12825599670410157, 0.1278382110595703, 0.12759859466552734, 0.12937522888183595, 0.1279283218383789, 0.12773990631103516, 0.127857666015625, 0.12759859466552734, 0.12825804138183594, 0.1278167037963867, 0.12803482055664062, 0.12878028869628907, 0.128005126953125, 0.1279477767944336, 0.12773785400390625, 0.12787814331054687, 0.12846284484863282, 0.12783001708984376, 0.12776345825195312, 0.12814437866210937, 0.12812594604492186, 0.1279324188232422, 0.12761395263671876, 0.12771737670898436, 0.128427001953125, 0.12770508575439454, 0.1278883819580078, 0.12929638671875, 0.1278699493408203, 0.12793856048583985, 0.12772147369384765, 0.12795597076416015, 0.12789965057373046, 0.1279477767944336, 0.127678466796875, 0.1288642578125, 0.12818534851074218, 0.1278371810913086, 0.12756070709228515, 0.1280880584716797, 0.1277829132080078, 0.26441522216796876, 0.12775321960449218, 0.1284147186279297, 0.12843110656738282, 0.12777062225341798, 0.12808601379394532, 0.12776242828369141, 0.12883660888671875, 0.12807986450195313, 0.1278924789428711, 0.12769280242919923, 0.1283819580078125, 0.12761497497558594, 0.12829286193847655, 0.1278545913696289, 0.12783411407470704, 0.12800921630859374, 0.12785151672363282, 0.12760985565185548, 0.1278935012817383, 0.127604736328125, 0.12804197692871094, 0.12766207885742187, 0.1277276153564453, 0.12755661010742186, 0.12782284545898437, 0.12766310119628907, 0.12764876556396484, 0.1277317123413086, 0.1276006393432617, 0.12769280242919923, 0.12792729949951173, 0.12772249603271485, 0.1276211166381836, 0.1279477767944336, 0.12771942138671874, 0.12809625244140624, 0.12782080078125, 0.12788121795654298, 0.1286420440673828, 0.12810751342773438, 0.12785151672363282, 0.12791603088378906, 0.12781362915039063, 0.1283072052001953, 0.12790271759033203, 0.1278935012817383, 0.12861235046386718, 0.1277870101928711, 0.12774092864990233, 0.12795699310302736, 0.1275709457397461, 0.12798976135253906, 0.12764262390136719, 0.128, 0.12771942138671874, 0.12753817749023438, 0.12765081787109375, 0.12802047729492189, 0.12789657592773437, 0.1276610565185547, 0.12777369689941406, 0.12768972778320312, 0.2650091552734375, 0.12773990631103516, 0.1276764144897461, 0.12778598022460938, 0.1281781768798828, 0.12770611572265625, 0.12761190032958986, 0.12885093688964844, 0.12839730834960938, 0.12804608154296876, 0.12754431915283204, 0.12804301452636718, 0.128110595703125, 0.12830003356933595, 0.1278771209716797, 0.1279293441772461, 0.12791705322265626, 0.1275125732421875, 0.12755865478515624, 0.12813107299804688, 0.12789657592773437, 0.12766413116455078, 0.12822528076171874, 0.12799488067626952, 0.1279774703979492, 0.12805223083496095, 0.1276610565185547, 0.12801023864746094, 0.12790271759033203, 0.12759347534179688, 0.12863999938964843, 0.1278760986328125, 0.12768768310546874, 0.127783935546875, 0.12769075012207032, 0.12832972717285157, 0.127678466796875, 0.12767948913574217, 0.12722994995117187, 0.1263267822265625, 0.12628173065185547, 0.1263114242553711, 0.12657766723632813, 0.12635852813720702, 0.12587315368652344, 0.12590592193603517, 0.12597657775878907, 0.12586598205566407, 0.1257543716430664, 0.1258301467895508, 0.12576563262939452, 0.12673535919189452, 0.12682342529296875, 0.12621414184570312, 0.12802662658691405, 0.12777574157714844, 0.12764569854736327, 0.12707532501220703, 0.12799078369140626, 0.12770816040039062, 0.12756787109375, 0.12807475280761718, 0.12647731018066405, 0.262550537109375, 0.1261670379638672, 0.12625305938720705, 0.12649779510498046, 0.12646707153320313, 0.12611174774169923, 0.12602777862548828, 0.12611993408203126, 0.12626739501953124, 0.12624588775634765, 0.12608512115478515, 0.12602572631835937, 0.12627763366699218, 0.12701081848144533, 0.12849766540527344, 0.12709273529052734, 0.12640460968017578, 0.1259356155395508, 0.12617932891845704, 0.12601856231689454, 0.12573184204101562, 0.1274439697265625, 0.1281474609375, 0.12596428680419922, 0.12658790588378907, 0.12630016326904298, 0.12737535858154297, 0.1271398391723633, 0.12651622772216797, 0.12802867126464842, 0.127494140625, 0.12671385955810546, 0.12621517181396485, 0.12586495971679687, 0.125949951171875, 0.12607692718505858, 0.12581990051269532, 0.1269585952758789, 0.12647628784179688, 0.1260400619506836, 0.1257011184692383, 0.1262888946533203, 0.12585062408447265, 0.1261506576538086, 0.1261619186401367, 0.12615885162353516, 0.12634521484375, 0.1262909469604492, 0.1259857940673828, 0.12619468688964844, 0.1256785888671875, 0.1258751983642578, 0.12573184204101562, 0.12563251495361327, 0.1259898910522461, 0.12623462677001954, 0.12567244720458984, 0.12609228515625, 0.12659916687011719, 0.12599807739257812, 0.12612505340576172, 0.1267558364868164, 0.12647731018066405, 0.2608926696777344, 0.12610150146484375, 0.1264158706665039, 0.12645785522460937, 0.126740478515625, 0.12682240295410158, 0.1262356491088867, 0.1261957092285156, 0.1260359649658203, 0.12633805084228517, 0.12569292449951172, 0.1258086395263672, 0.12725145721435546, 0.12759859466552734, 0.12629708862304687, 0.1263790054321289, 0.12595916748046876, 0.12631346893310547, 0.12617113494873047, 0.12567961883544923, 0.12705587005615235, 0.12577689361572267, 0.1257011184692383, 0.12581581115722656, 0.12577792358398437, 0.1261629409790039, 0.1258905563354492, 0.12567244720458984, 0.1256079330444336, 0.1280921630859375, 0.1263073272705078, 0.12712857818603515, 0.12635340881347656, 0.1265233917236328, 0.12599603271484375, 0.1261506576538086, 0.1261844482421875, 0.1280061492919922, 0.12627763366699218, 0.12625305938720705, 0.12565094757080078, 0.12626022338867188, 0.12611686706542968, 0.12614860534667968, 0.12619161224365236, 0.12624486541748048, 0.12653772735595703, 0.12628070068359376, 0.1262581787109375, 0.12623872375488282, 0.12604415893554688, 0.12649472045898438, 0.12680703735351562, 0.12633395385742188, 0.1260031967163086, 0.12610867309570312, 0.1264230422973633, 0.12621107482910157, 0.12615679931640625, 0.12624486541748048, 0.1259898910522461, 0.12594892883300782, 0.1265080337524414]",tokens/s,7.741567838438954,,,,, +4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,s,s,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -5300,42 +3991,71 @@ OSError: . does not appear to have a file named config.json. Checkout 'https://h File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-72B,Qwen/Qwen2-beta-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/s/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948ccc-4aa524e44773ac6e2fbb1a0d;7fc4bb38-2856-4d9d-a5cd-537123b54f21) + +Repository Not Found for url: https://huggingface.co/s/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + raise EnvironmentError( +OSError: s is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,,MB,1767.067648,22129.672192,0.0,21483.225088,20799.168,s,10,28.05056616210938,2.805056616210938,0.0027095714336187707,2.804907958984375,2.8082408447265625,2.808313903808594,2.808372351074219,"[2.805282470703125, 2.808224609375, 2.803196533203125, 2.80234619140625, 2.80277294921875, 2.800419677734375, 2.804533447265625, 2.80722705078125, 2.80817626953125, 2.808386962890625]",tokens/s,91.26375507735885,kWh,3.3081144508388305e-05,1.8129723654910774e-05,0.00015725384802519894,0.000208464716188498,tokens/kWh,1228025.5607789264,MB,1772.261376,22129.672192,0.0,21483.225088,20902.144,s,10,1667.162484375,166.71624843749996,0.015085835868376713,166.71732031250002,166.73279531249997,166.73349140624998,166.73404828124998,"[166.730125, 166.715734375, 166.68440625, 166.724703125, 166.7341875, 166.71721875, 166.708265625, 166.717421875, 166.69778125, 166.732640625]",tokens/s,0.377887581987055,kWh,0.0019678901955319777,0.0010785770549249355,0.009270038554913802,0.012316505805370715,tokens/kWh,5115.087103074991,,s,629,1689.7617126464822,2.686425616290118,0.33327430639158717,2.64620947265625,2.6474256835937497,2.647894970703125,5.4507228125000005,"[2.646453369140625, 2.646373291015625, 2.64631591796875, 2.6454580078125, 2.646531982421875, 2.647617431640625, 2.64826171875, 2.647658447265625, 2.647793701171875, 2.64637646484375, 2.64711376953125, 2.64620947265625, 2.646602783203125, 2.646426513671875, 2.64635498046875, 2.64557568359375, 2.644958251953125, 2.647402587890625, 2.64601904296875, 2.646287353515625, 2.647202880859375, 2.64688525390625, 2.646246337890625, 2.646867919921875, 2.64715478515625, 2.647743408203125, 2.646212646484375, 2.647287841796875, 2.648404052734375, 2.64638671875, 2.64559912109375, 2.647835693359375, 2.648161376953125, 2.6474189453125, 2.647456787109375, 2.6468076171875, 2.646687744140625, 2.64502880859375, 2.646285400390625, 2.646274169921875, 2.64652490234375, 2.64616455078125, 2.64710546875, 2.6460908203125, 2.646740966796875, 2.645139404296875, 2.646036376953125, 2.646411376953125, 2.64627099609375, 2.64452197265625, 2.64525830078125, 2.647901123046875, 2.64601806640625, 2.645980224609375, 2.64719677734375, 2.64639990234375, 2.64538720703125, 2.645042236328125, 2.64540576171875, 2.646120361328125, 2.646118408203125, 2.64612353515625, 5.45506494140625, 2.64526025390625, 2.6462626953125, 2.64690576171875, 2.646042724609375, 2.64546826171875, 2.646393798828125, 2.647192626953125, 2.644919189453125, 2.644935791015625, 2.645579833984375, 2.647086181640625, 2.646035400390625, 2.644955078125, 2.645644287109375, 2.645537841796875, 2.644991943359375, 2.645560302734375, 2.646414306640625, 2.645199951171875, 2.646506591796875, 2.646548583984375, 2.64702880859375, 2.64570166015625, 2.644788330078125, 2.64700732421875, 2.646330322265625, 2.64543017578125, 2.645243896484375, 2.646043701171875, 2.645831787109375, 2.6459453125, 2.64614697265625, 2.64631494140625, 2.64669091796875, 2.646116455078125, 2.647741455078125, 2.6478857421875, 2.645671875, 2.647362548828125, 2.646822998046875, 2.648393798828125, 2.647374755859375, 2.64627294921875, 2.646519775390625, 2.645937255859375, 2.6523720703125, 2.647458740234375, 2.646916015625, 2.6467646484375, 2.644612060546875, 2.645245849609375, 2.64698779296875, 2.646232177734375, 2.645567626953125, 2.645909423828125, 2.64679541015625, 2.64620947265625, 2.645465087890625, 2.646067138671875, 2.6467060546875, 2.6458798828125, 2.6457109375, 5.4513837890625, 2.647235595703125, 2.645803955078125, 2.64654443359375, 2.64496533203125, 2.64464892578125, 2.645158935546875, 2.646266845703125, 2.64560546875, 2.646096923828125, 2.64475537109375, 2.64629052734375, 2.644760498046875, 2.64480859375, 2.6463427734375, 2.64760009765625, 2.645761962890625, 2.645760986328125, 2.646381591796875, 2.646036376953125, 2.64513134765625, 2.646679443359375, 2.6458369140625, 2.6495498046875, 2.646917236328125, 2.644770751953125, 2.645843017578125, 2.644592529296875, 2.6452919921875, 2.6457333984375, 2.64617578125, 2.64542822265625, 2.645474365234375, 2.644977783203125, 2.6475703125, 2.645327880859375, 2.64601611328125, 2.64604052734375, 2.644948974609375, 2.645347412109375, 2.64539453125, 2.64572314453125, 2.645024658203125, 2.64540771484375, 2.64523681640625, 2.64541796875, 2.644529052734375, 2.649079833984375, 2.645666748046875, 2.646816650390625, 2.645528564453125, 2.645729248046875, 2.6472724609375, 2.646464599609375, 2.644356201171875, 2.644589599609375, 2.64574267578125, 2.645088134765625, 2.6443017578125, 2.644094970703125, 2.64595556640625, 2.645572509765625, 2.644812744140625, 5.4503955078125, 2.645255126953125, 2.645544921875, 2.64656884765625, 2.648037353515625, 2.645263427734375, 2.64638671875, 2.6460732421875, 2.6460478515625, 2.645971923828125, 2.645147705078125, 2.646581298828125, 2.6468291015625, 2.64502880859375, 2.645927978515625, 2.64683935546875, 2.64574365234375, 2.645297119140625, 2.64578662109375, 2.645689453125, 2.64529296875, 2.645930908203125, 2.64618798828125, 2.64557373046875, 2.645583984375, 2.64784375, 2.6465341796875, 2.645923828125, 2.648280029296875, 2.647232421875, 2.64726220703125, 2.646688720703125, 2.646456298828125, 2.647128173828125, 2.64785009765625, 2.6451201171875, 2.645867431640625, 2.645412841796875, 2.647185302734375, 2.644790283203125, 2.645506103515625, 2.64781005859375, 2.6459228515625, 2.64651171875, 2.6510693359375, 2.647773193359375, 2.6475908203125, 2.648330322265625, 2.646329345703125, 2.64608349609375, 2.64578759765625, 2.64604150390625, 2.646233154296875, 2.647012451171875, 2.644991943359375, 2.6461533203125, 2.646445068359375, 2.6459423828125, 2.646255615234375, 2.647103515625, 2.64721826171875, 2.6459013671875, 2.646496337890625, 5.45085009765625, 2.646131591796875, 2.647123046875, 2.64625244140625, 2.6469755859375, 2.645900146484375, 2.64694384765625, 2.6482001953125, 2.647193603515625, 2.646340576171875, 2.646576171875, 2.647742431640625, 2.645885986328125, 2.64563916015625, 2.645662841796875, 2.646833251953125, 2.64673291015625, 2.648217529296875, 2.645130126953125, 2.648642578125, 2.64700732421875, 2.6464482421875, 2.645592041015625, 2.646584228515625, 2.64501953125, 2.64555224609375, 2.64648388671875, 2.6452490234375, 2.646088623046875, 2.64539453125, 2.646591552734375, 2.645818359375, 2.6455, 2.645107666015625, 2.647025634765625, 2.64500830078125, 2.647201904296875, 2.6471865234375, 2.647762939453125, 2.6468916015625, 2.646411376953125, 2.645792724609375, 2.647160888671875, 2.64576611328125, 2.645645263671875, 2.646044677734375, 2.647015380859375, 2.64671435546875, 2.645159912109375, 2.646703125, 2.646371337890625, 2.646978515625, 2.6460908203125, 2.648290283203125, 2.646096923828125, 2.646834228515625, 2.6468515625, 2.654116943359375, 2.646571044921875, 2.646265869140625, 2.647033935546875, 2.645507080078125, 2.64506884765625, 5.44818896484375, 2.646950927734375, 2.64728466796875, 2.64570068359375, 2.647045166015625, 2.645780517578125, 2.64650341796875, 2.647185302734375, 2.647396240234375, 2.64726416015625, 2.645887939453125, 2.646220947265625, 2.646308837890625, 2.6452724609375, 2.645916748046875, 2.6456513671875, 2.64530029296875, 2.645833740234375, 2.64532275390625, 2.646921142578125, 2.645572509765625, 2.646182861328125, 2.646026123046875, 2.646593505859375, 2.646531005859375, 2.646508544921875, 2.646131591796875, 2.647275634765625, 2.646612060546875, 2.646274169921875, 2.645583984375, 2.646960205078125, 2.647244873046875, 2.6451845703125, 2.6467060546875, 2.646052001953125, 2.64616650390625, 2.645667724609375, 2.652001220703125, 2.64635693359375, 2.645919677734375, 2.646162353515625, 2.64641845703125, 2.645307373046875, 2.644989013671875, 2.646035400390625, 2.645531494140625, 2.645157958984375, 2.645906494140625, 2.645951416015625, 2.646036376953125, 2.645796875, 2.64467041015625, 2.645960693359375, 2.64549267578125, 2.64652294921875, 2.64587255859375, 2.647626708984375, 2.646477783203125, 2.646447021484375, 2.646128662109375, 2.64745263671875, 2.646246337890625, 5.45296484375, 2.646928466796875, 2.647333984375, 2.646259765625, 2.64629443359375, 2.64618701171875, 2.6448466796875, 2.646443115234375, 2.646686767578125, 2.6447626953125, 2.64540576171875, 2.64494287109375, 2.645835693359375, 2.645675048828125, 2.64589404296875, 2.64648095703125, 2.64646044921875, 2.646432861328125, 2.646467529296875, 2.645669921875, 2.64584814453125, 2.6454580078125, 2.64523486328125, 2.650271728515625, 2.647341064453125, 2.64589306640625, 2.64591064453125, 2.64768505859375, 2.64700830078125, 2.64631201171875, 2.645865478515625, 2.647047119140625, 2.646507568359375, 2.64665087890625, 2.647560302734375, 2.645760986328125, 2.645769287109375, 2.645876708984375, 2.645303466796875, 2.646839111328125, 2.646023193359375, 2.645792724609375, 2.64610400390625, 2.646148193359375, 2.646067138671875, 2.64551416015625, 2.645665771484375, 2.64494482421875, 2.645905517578125, 2.645917724609375, 2.645688232421875, 2.64422705078125, 2.64477587890625, 2.64602001953125, 2.646118408203125, 2.645832763671875, 2.64635888671875, 2.646981689453125, 2.645694580078125, 2.6462197265625, 2.6456484375, 2.647057373046875, 2.646053955078125, 5.45440771484375, 2.64606103515625, 2.64624853515625, 2.645525390625, 2.6462197265625, 2.646288330078125, 2.64601806640625, 2.6458369140625, 2.6465341796875, 2.64682080078125, 2.6460498046875, 2.645517333984375, 2.646379638671875, 2.645887939453125, 2.645572509765625, 2.645886962890625, 2.6497626953125, 2.645772216796875, 2.64593603515625, 2.64641748046875, 2.64673681640625, 2.645414794921875, 2.644895751953125, 2.6456689453125, 2.646624267578125, 2.64646142578125, 2.645294921875, 2.646984619140625, 2.646635498046875, 2.64559619140625, 2.644748291015625, 2.64690576171875, 2.64658642578125, 2.645821533203125, 2.6462392578125, 2.647307373046875, 2.64610205078125, 2.647371826171875, 2.64780078125, 2.64745263671875, 2.646867919921875, 2.64559814453125, 2.646322265625, 2.6461328125, 2.6461328125, 2.6467666015625, 2.64734619140625, 2.647150634765625, 2.6465341796875, 2.646138916015625, 2.645937255859375, 2.64439697265625, 2.645222412109375, 2.646958984375, 2.646992919921875, 2.647083984375, 2.64567822265625, 2.646795166015625, 2.645927978515625, 2.646295654296875, 2.64530224609375, 2.646948974609375, 2.646352783203125, 5.45413623046875, 2.646625244140625, 2.6464501953125, 2.647415771484375, 2.64749462890625, 2.64658837890625, 2.645314453125, 2.647509033203125, 2.647132080078125, 2.64675537109375, 2.646547607421875, 2.646182861328125, 2.64610302734375, 2.6463896484375, 2.646077392578125, 2.64599853515625, 2.646762451171875, 2.64707080078125, 2.646077392578125, 2.64540576171875, 2.646277099609375, 2.64477392578125, 2.645159912109375, 2.6459638671875, 2.64671240234375, 2.646478759765625, 2.645445556640625, 2.646115234375, 2.646445068359375, 2.645536865234375, 2.64454443359375, 2.646118408203125, 2.645505126953125, 2.644704345703125, 2.6460517578125, 2.64701953125, 2.645275634765625, 2.64492431640625, 2.645380126953125, 2.645751708984375, 2.64485888671875, 2.64445654296875, 2.645286865234375, 2.646550537109375, 2.646221923828125, 2.645315673828125, 2.6454169921875, 2.64634375, 2.645382080078125, 2.6473984375, 2.646042724609375, 2.64547119140625, 2.644828125, 2.64538720703125, 2.646898681640625, 2.646388671875, 2.64596484375, 2.6477158203125, 2.64626171875, 2.6452685546875, 2.645350341796875, 2.6460498046875, 2.644905029296875, 5.4557060546875, 2.64730419921875, 2.64740966796875, 2.646350830078125, 2.645677978515625, 2.6465546875, 2.64831689453125, 2.64722119140625, 2.646279052734375, 2.645445556640625, 2.646408203125, 2.646245361328125, 2.646921142578125, 2.64698974609375, 2.646667236328125, 2.646288330078125, 2.64876953125, 2.647458740234375, 2.645729248046875, 2.645494873046875, 2.646150146484375, 2.6453955078125, 2.6452890625, 2.6467861328125, 2.647785400390625, 2.646699951171875, 2.65012744140625, 2.64613671875, 2.646697998046875, 2.6466845703125, 2.646642578125, 2.6476943359375, 2.64681787109375, 2.645788818359375, 2.646158203125, 2.647160888671875, 2.645675048828125, 2.64652490234375, 2.64439306640625, 2.64669189453125, 2.646427734375, 2.64625146484375, 2.646435791015625, 2.645409912109375, 2.646538330078125, 2.64618505859375, 2.6468310546875, 2.647814208984375, 2.645505126953125, 2.645622802734375, 2.6466826171875, 2.646696044921875, 2.6457548828125, 2.6469130859375, 2.6469990234375, 2.64591259765625, 2.64690185546875, 2.64622705078125, 2.64720703125, 2.646657958984375, 2.645370849609375, 2.645916748046875, 2.646266845703125]",tokens/s,0.3722418346281902,,,,, +4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-66b,facebook/opt-66b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) @@ -5373,10 +4093,10 @@ ChildProcessError: Traceback (most recent call last): self._buffers[key] = fn(buf) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 162.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-180B,tiiuae/falcon-180B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,i,i,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -5388,11 +4108,21 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/i/resolve/main/config.json The above exception was the direct cause of the following exception: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn @@ -5403,28 +4133,13 @@ Traceback (most recent call last): response = _request_wrapper( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status - raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66949957-036bce287e56b0fd0a500625;86efad4a-6dcc-416b-bfa4-fa4ce6b119a6) - -403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json. -If you are trying to create or update content,make sure you have a token with the `write` role. - -The above exception was the direct cause of the following exception: + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948ff4-490b5da27371db416ba8b2b0;c8eb74d6-1499-4ace-8392-7542c3b2b752) -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error - raise LocalEntryNotFoundError( -huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. +Repository Not Found for url: https://huggingface.co/i/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. The above exception was the direct cause of the following exception: @@ -5445,13 +4160,18 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like tiiuae/falcon-180B is not the path to a directory containing a file named config.json. -Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. +OSError: i is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-4B,Qwen/Qwen1.5-4B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-6.7b,EleutherAI/pythia-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1368.223744,6256.328704,0.0,5609.8816,5292.617728,s,10,5.657606628417969,0.5657606628417968,0.0009498936514595362,0.5654808349609375,0.5660143920898437,0.5672829833984374,0.5682978564453125,"[0.5685515747070312, 0.5654931030273438, 0.565177734375, 0.5654685668945313, 0.5652743530273437, 0.5651702880859375, 0.5656128540039063, 0.5657227172851562, 0.5657324829101562, 0.5654029541015625]",tokens/s,452.48815764977473,kWh,6.682694372203615e-06,3.660675940348786e-06,3.1253065125888854e-05,4.159643543844126e-05,tokens/kWh,6154373.50103846,MB,1368.551424,6256.328704,0.0,5609.8816,5503.949312,s,10,330.81899609375,33.081899609375,0.006904428548072782,33.079876953125,33.091131640625,33.0930072265625,33.0945076953125,"[33.07798046875, 33.078234375, 33.07119921875, 33.0948828125, 33.09071484375, 33.08729296875, 33.08378515625, 33.07924609375, 33.0805078125, 33.07515234375]",tokens/s,1.9043646448327465,kWh,0.0003903993130889204,0.00021397087349180462,0.001808246989806311,0.0024126171763870358,tokens/kWh,26112.721328770578,,s,629,335.3824949340819,0.5331995149985406,0.06720644230645373,0.5250816040039062,0.52554873046875,0.52574228515625,1.0904419140625001,"[0.5248307495117187, 0.5246986083984375, 0.5245040893554688, 0.524674072265625, 0.52523828125, 0.5248563232421875, 0.5253027954101562, 0.5246597290039062, 0.5248173828125, 0.5247999877929688, 0.5255188598632813, 0.5246453247070313, 0.5245347900390624, 0.5246586303710937, 0.525032470703125, 0.5246986083984375, 0.5246525268554687, 0.5253273315429687, 0.5247651977539063, 0.5249915161132812, 0.5252413330078125, 0.5252423706054687, 0.5247785034179687, 0.5247273559570312, 0.5247057495117188, 0.5248440551757813, 0.5247232055664063, 0.5247467651367187, 0.5255465087890625, 0.5256212768554688, 0.5258025512695312, 0.5255167846679687, 0.5248409423828125, 0.5254369506835938, 0.5253928833007813, 0.5247928466796875, 0.5255188598632813, 0.5249791870117188, 0.5249310913085937, 0.5250969848632813, 0.5247672119140625, 0.5248972778320312, 0.5248655395507813, 0.5252689819335937, 0.5248040771484375, 0.525211669921875, 0.5255167846679687, 0.525169677734375, 0.5251573486328125, 0.524832763671875, 0.5248081665039063, 0.5248256225585938, 0.5252925415039063, 0.5251204833984375, 0.525022216796875, 0.5254482421875, 0.525276123046875, 0.5254348754882813, 0.5250242309570312, 0.5254471435546875, 0.5251328125, 0.5251553344726563, 1.0913822021484374, 0.5247088623046875, 0.52463818359375, 0.5248921508789063, 0.5250447387695313, 0.52459423828125, 0.5247610473632812, 0.524621826171875, 0.5250303955078125, 0.5247098999023437, 0.5248706665039062, 0.52496484375, 0.524769287109375, 0.525318115234375, 0.5248880615234375, 0.5248450317382812, 0.5251092529296875, 0.5249443969726563, 0.5248491821289063, 0.5246842651367187, 0.524643310546875, 0.5247713012695312, 0.5255167846679687, 0.5258618774414062, 0.5249320678710937, 0.5256673583984375, 0.5253673095703125, 0.525570068359375, 0.5251849975585937, 0.5251604614257812, 0.5255874633789063, 0.5250549926757813, 0.5249617309570312, 0.5247528686523437, 0.5250518798828125, 0.525127685546875, 0.5249607543945313, 0.5249474487304687, 0.525033447265625, 0.5248983154296875, 0.5250068359375, 0.52510205078125, 0.5252761840820312, 0.5249771728515625, 0.5250181274414063, 0.5249228515625, 0.5253406982421875, 0.5251481323242188, 0.5250140380859375, 0.5252628784179687, 0.525149169921875, 0.5251195068359376, 0.5251184692382812, 0.5249095458984375, 0.5248972778320312, 0.5250303955078125, 0.525391845703125, 0.524969970703125, 0.5247293701171875, 0.5249556274414062, 0.5251163940429687, 0.5255157470703125, 0.5251348266601562, 1.090335693359375, 0.524874755859375, 0.5245787963867188, 0.524506103515625, 0.5248809204101562, 0.5247160034179688, 0.5246280517578125, 0.5246934204101562, 0.5246658325195312, 0.5245573120117187, 0.5246976928710938, 0.5247764282226562, 0.524717041015625, 0.5248132934570312, 0.52461669921875, 0.52514306640625, 0.525487060546875, 0.5247119140625, 0.524663818359375, 0.524600341796875, 0.524516357421875, 0.524632080078125, 0.5244651489257812, 0.5252577514648438, 0.5246760864257812, 0.524959716796875, 0.5246556396484375, 0.5247354736328125, 0.5250734252929687, 0.5248143310546876, 0.5247682495117187, 0.5251287231445313, 0.5246996459960938, 0.5248102416992187, 0.5250416870117187, 0.5254154052734376, 0.5251204833984375, 0.524943359375, 0.5247672119140625, 0.5249054565429687, 0.5247723388671875, 0.5249924926757813, 0.5250969848632813, 0.5248839721679688, 0.524780517578125, 0.5248870239257812, 0.5249146728515625, 0.525117431640625, 0.5246310424804688, 0.5249474487304687, 0.5247897338867188, 0.52493310546875, 0.5250109252929688, 0.5253570556640625, 0.5257471923828125, 0.5256693725585937, 0.52505908203125, 0.5255249633789062, 0.5257697143554687, 0.5254031372070312, 0.5251993408203125, 0.5257103271484375, 0.5251307373046875, 1.090680908203125, 0.525180908203125, 0.524788818359375, 0.5252505493164062, 0.5254584350585938, 0.5254379272460937, 0.52552294921875, 0.5255587768554687, 0.525601806640625, 0.5258516235351562, 0.5258157958984375, 0.5254614868164063, 0.5251604614257812, 0.5255485229492187, 0.5253007202148438, 0.5253621826171875, 0.5256417236328125, 0.525749267578125, 0.5251840209960937, 0.5252259521484375, 0.5253324584960938, 0.5253058471679688, 0.52491162109375, 0.5250846557617187, 0.525254638671875, 0.525391845703125, 0.52520654296875, 0.5254430541992188, 0.5258055419921875, 0.525138916015625, 0.5251840209960937, 0.5249403076171875, 0.525707275390625, 0.5251296997070313, 0.52486962890625, 0.5257564086914063, 0.5252894897460938, 0.5254993896484375, 0.5254983520507812, 0.5253345336914063, 0.5253857421875, 0.5251768188476562, 0.52502734375, 0.5253447875976562, 0.5251942138671875, 0.52514306640625, 0.5253836669921875, 0.5265366821289063, 0.5247119140625, 0.5249392700195312, 0.5253396606445313, 0.5246771240234375, 0.5253150634765625, 0.5247682495117187, 0.5253621826171875, 0.5255966796875, 0.5253765258789063, 0.5253641967773437, 0.5249669189453126, 0.5252526245117187, 0.5254635009765625, 0.5250498657226562, 0.5251553344726563, 1.090404296875, 0.524969970703125, 0.5259376831054687, 0.5252003784179687, 0.5258106689453125, 0.5252955932617187, 0.5250447387695313, 0.525154296875, 0.5248737182617188, 0.5253058471679688, 0.5248440551757813, 0.524874755859375, 0.5246546020507813, 0.5248102416992187, 0.5245665283203125, 0.5248348388671875, 0.5247498168945313, 0.5249761352539063, 0.5246576538085937, 0.5247181396484375, 0.5246954956054688, 0.5256632080078125, 0.5248604125976563, 0.524747802734375, 0.5248604125976563, 0.5250211791992188, 0.5254573974609374, 0.5250242309570312, 0.52548095703125, 0.5251154174804687, 0.5251461181640625, 0.5252608032226562, 0.52522607421875, 0.5251276245117188, 0.5253990478515626, 0.5256478881835938, 0.525464599609375, 0.5254779052734375, 0.5252710571289062, 0.5255720825195312, 0.5254932250976563, 0.52564892578125, 0.5251912231445313, 0.5251798095703125, 0.5252771606445312, 0.5259796752929687, 0.5252730712890625, 0.5259386596679687, 0.5251870727539063, 0.525286376953125, 0.52527001953125, 0.5250816040039062, 0.525275146484375, 0.52520654296875, 0.5252454833984375, 0.5256109619140625, 0.5253765258789063, 0.52531201171875, 0.5252474975585938, 0.5265930786132812, 0.525812744140625, 0.5261884765625, 0.5251481323242188, 1.09045654296875, 0.5245020141601563, 0.5246781616210937, 0.5249658813476562, 0.5249915161132812, 0.5245040893554688, 0.52481640625, 0.5248297119140625, 0.5247836303710938, 0.524885986328125, 0.5248921508789063, 0.52484814453125, 0.5248286743164062, 0.524632080078125, 0.5257512817382812, 0.524990478515625, 0.5250908203125, 0.5249392700195312, 0.5247129516601563, 0.5252608032226562, 0.5249863891601563, 0.5254144287109375, 0.524600341796875, 0.5249567260742187, 0.5247467041015625, 0.5249075317382812, 0.5252260131835937, 0.5248870239257812, 0.5250662231445312, 0.5250048828125, 0.5253692626953125, 0.5249249267578125, 0.524853271484375, 0.5260421142578126, 0.5258383178710937, 0.5250867309570313, 0.5253775634765625, 0.524843017578125, 0.525390869140625, 0.5253294067382812, 0.5256530151367188, 0.5254686889648438, 0.525365234375, 0.525201416015625, 0.5253119506835937, 0.5253365478515625, 0.5253560180664063, 0.5255802612304687, 0.5252782592773437, 0.5253252563476563, 0.5253990478515626, 0.52508056640625, 0.5262468872070313, 0.5258137817382813, 0.525549560546875, 0.5252843627929688, 0.5254717407226562, 0.525453369140625, 0.5256119384765625, 0.5255628662109375, 0.5259458618164062, 0.5253795776367187, 0.52560693359375, 1.0914058837890626, 0.5248624877929687, 0.5247764282226562, 0.5250928344726562, 0.5249915161132812, 0.5249924926757813, 0.524921875, 0.5255986938476562, 0.525233154296875, 0.5249976196289062, 0.525106201171875, 0.525254638671875, 0.5254993896484375, 0.52495361328125, 0.5254133911132812, 0.5256365966796875, 0.5252393188476563, 0.5251287231445313, 0.5250734252929687, 0.5250263061523438, 0.5252188110351562, 0.5251512451171875, 0.5254318237304687, 0.5252034301757813, 0.5248993530273437, 0.5250560302734375, 0.5257349243164062, 0.5247313842773438, 0.5247518920898437, 0.5246392211914063, 0.5248256225585938, 0.5250816040039062, 0.5247979736328126, 0.5251195068359376, 0.5250089111328125, 0.525053955078125, 0.5249034423828125, 0.5249392700195312, 0.525000732421875, 0.5251604614257812, 0.5249515380859375, 0.5250344848632813, 0.5250201416015625, 0.524843017578125, 0.5250570068359375, 0.525391845703125, 0.5252781982421875, 0.5252321166992188, 0.5249515380859375, 0.5251287231445313, 0.5253140258789063, 0.524959716796875, 0.5254113159179687, 0.5252976684570313, 0.5251635131835938, 0.525433837890625, 0.5251604614257812, 0.5252894897460938, 0.5252474975585938, 0.5253939208984375, 0.5253867797851562, 0.5253079223632813, 0.525212646484375, 1.0918123779296875, 0.5249392700195312, 0.5248511962890625, 0.5250714111328125, 0.525445068359375, 0.5252464599609376, 0.5249423217773438, 0.5251881103515625, 0.5252290649414062, 0.5253109741210937, 0.5252495727539063, 0.524802001953125, 0.52481640625, 0.5247365112304687, 0.5250303955078125, 0.5251235961914062, 0.5250078735351562, 0.5248880615234375, 0.5249197998046875, 0.5250938720703126, 0.525497314453125, 0.5250078735351562, 0.5247528686523437, 0.5247733764648438, 0.524821533203125, 0.524938232421875, 0.5251942138671875, 0.5249832763671874, 0.5250949096679688, 0.5249238891601562, 0.524906494140625, 0.5249658813476562, 0.5247979736328126, 0.5248522338867188, 0.52481640625, 0.52491162109375, 0.5247928466796875, 0.5249320678710937, 0.5248573608398438, 0.5247938842773437, 0.5249791870117188, 0.52478466796875, 0.5247897338867188, 0.5247600708007812, 0.52487890625, 0.5249884033203125, 0.5252925415039063, 0.5250416870117187, 0.5249464111328125, 0.5251000366210937, 0.5250816040039062, 0.5249525756835938, 0.5252413940429688, 0.5255003662109375, 0.5252474975585938, 0.5254031372070312, 0.5251502075195312, 0.5256693725585937, 0.5256007690429687, 0.5253478393554688, 0.5253816528320312, 0.525201416015625, 0.5253990478515626, 1.0916168212890625, 0.52502734375, 0.5249310913085937, 0.524822509765625, 0.5248081665039063, 0.5246361694335937, 0.5247744140625, 0.5250693359375, 0.5248952026367187, 0.5249024047851563, 0.5249915161132812, 0.5248173828125, 0.525412353515625, 0.5252208862304687, 0.5250160522460937, 0.524969970703125, 0.525085693359375, 0.5248706665039062, 0.5251307373046875, 0.5251522827148437, 0.5256038208007813, 0.5248409423828125, 0.5249832763671874, 0.5250211791992188, 0.524906494140625, 0.524864501953125, 0.52510107421875, 0.5247754516601563, 0.5251942138671875, 0.5250908203125, 0.5250857543945312, 0.5254880981445312, 0.5257154541015625, 0.5253683471679688, 0.5251204833984375, 0.5250826416015625, 0.525117431640625, 0.525169677734375, 0.5254266967773438, 0.525581298828125, 0.5249771728515625, 0.5250396118164062, 0.5251522827148437, 0.5250263061523438, 0.5251163940429687, 0.5250775146484375, 0.5251696166992188, 0.5251348266601562, 0.5248726806640625, 0.5248040771484375, 0.525322265625, 0.5251829833984375, 0.5251051635742188, 0.5248706665039062, 0.5250303955078125, 0.5250109252929688, 0.5251963500976562, 0.5250313720703125, 0.5255403442382812, 0.5248737182617188, 0.5250242309570312, 0.5249843139648438, 0.5250836181640625, 1.0909224853515624, 0.5246965942382813, 0.5248829345703125, 0.5249362182617188, 0.5247160034179688, 0.5250303955078125, 0.5250089111328125, 0.5251287231445313, 0.5249238891601562, 0.5249658813476562, 0.5249515380859375, 0.5246607055664062, 0.52463720703125, 0.525317138671875, 0.5247047729492188, 0.5247109375, 0.5245911254882812, 0.5245593872070312, 0.5245286254882813, 0.5245368041992188, 0.5244630737304687, 0.5245419311523437, 0.5247344360351562, 0.5246781616210937, 0.5250242309570312, 0.525285400390625, 0.5248081665039063, 0.5248297119140625, 0.5248153686523438, 0.5249310913085937, 0.5255239868164062, 0.5253621826171875, 0.5255106811523438, 0.5247969360351562, 0.52493115234375, 0.5251900634765625, 0.525365234375, 0.52534375, 0.52518603515625, 0.5249095458984375, 0.524705810546875, 0.5250477905273437, 0.5248071899414063, 0.5250426635742188, 0.5253519287109375, 0.52510205078125, 0.5249894409179687, 0.5251450805664063, 0.52478466796875, 0.5255065307617187, 0.5247191162109375, 0.5256325073242187, 0.5251266479492187, 0.5251030883789063, 0.5249208374023437, 0.5255485229492187, 0.525053955078125, 0.5254256591796875, 0.525159423828125, 0.525106201171875, 0.5251512451171875, 0.5250416870117187, 0.5253683471679688]",tokens/s,1.8754705731544732,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-0.5B,Qwen/Qwen1.5-0.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1460.260864,1709.703168,0.0,1063.256064,942.605312,s,10,0.8792122802734375,0.08792122802734374,0.0017793873831683257,0.08834756851196289,0.08902708129882812,0.09042998733520508,0.09155231216430663,"[0.09183289337158203, 0.08871532440185546, 0.08646198272705079, 0.08839430236816406, 0.08854621124267578, 0.08836022186279296, 0.08833491516113282, 0.08542150115966797, 0.08774205017089844, 0.08540287780761718]",tokens/s,2911.6972742962976,kWh,1.0152025072210082e-06,5.56282725791299e-07,2.6184398915211728e-06,4.1899251245334795e-06,tokens/kWh,61098943.869194776,MB,1460.588544,1709.703168,0.0,1063.256064,942.607872,s,10,54.0859736328125,5.40859736328125,0.07705683066534309,5.45104150390625,5.477568017578125,5.481690747070313,5.484988930664063,"[5.4858134765625, 5.457708984375, 5.47665185546875, 5.46595458984375, 5.472109375, 5.4443740234375, 5.39297412109375, 5.29275341796875, 5.29816357421875, 5.29947021484375]",tokens/s,11.648121641981426,kWh,6.466018401433034e-05,3.543631727276219e-05,0.00015379821301947998,0.0002538947143065725,tokens/kWh,248134.35038245353,,s,629,54.78888442230225,0.08710474470954252,0.010581359575427846,0.08675225830078125,0.08761917724609375,0.0884242431640625,0.17260260864257815,"[0.08388607788085937, 0.08398233795166016, 0.08383897399902343, 0.08367718505859376, 0.08453632354736328, 0.0890890884399414, 0.08862201690673828, 0.08834764862060547, 0.08846745300292969, 0.08839679718017578, 0.08905522918701173, 0.08837939453125, 0.08853196716308594, 0.08820326232910156, 0.08852684783935547, 0.08853094482421875, 0.08833126068115234, 0.0883599395751953, 0.08833229064941406, 0.08829747009277343, 0.08771071624755859, 0.08838553619384766, 0.08845721435546874, 0.08875212860107422, 0.08825856018066407, 0.08850534057617188, 0.08816230773925782, 0.08822886657714844, 0.08858009338378907, 0.0882339859008789, 0.08867430114746094, 0.08864665222167968, 0.08844902038574219, 0.08828108978271484, 0.0884295654296875, 0.08401407623291016, 0.08382259368896484, 0.0838635482788086, 0.08400077056884765, 0.08771788787841797, 0.0872069091796875, 0.08849203491210937, 0.08865280151367187, 0.08827187347412109, 0.08736563110351563, 0.08729804992675781, 0.08718950653076171, 0.08671231842041016, 0.08691506958007812, 0.08681779479980468, 0.0866529312133789, 0.086940673828125, 0.08705535888671875, 0.08424960327148437, 0.08400383758544921, 0.08397414398193359, 0.08412364959716796, 0.08525926208496094, 0.08683622741699219, 0.08680038452148438, 0.08671949005126953, 0.08692940521240235, 0.1763768310546875, 0.08659661102294922, 0.08731238555908204, 0.0868884506225586, 0.08696832275390624, 0.08851148986816407, 0.08714854431152344, 0.08598323059082032, 0.08636518096923829, 0.08685465240478515, 0.08704512023925781, 0.08686284637451172, 0.08745779418945313, 0.08453529357910156, 0.0869775390625, 0.08696627044677735, 0.08664575958251954, 0.0876072998046875, 0.08689766693115235, 0.08705535888671875, 0.08679936218261719, 0.0866550064086914, 0.08538006591796875, 0.08647270202636718, 0.08609996795654297, 0.08713215637207031, 0.08740147399902344, 0.08702365112304687, 0.08689250946044921, 0.08694169616699218, 0.08711577606201172, 0.08716902160644531, 0.08723149108886719, 0.0867747802734375, 0.08696012878417969, 0.08699494171142579, 0.0842239990234375, 0.08377855682373046, 0.08404684448242188, 0.08385945892333985, 0.08593510437011719, 0.08742301177978516, 0.08683209228515625, 0.08660889434814453, 0.0867952651977539, 0.08660377502441406, 0.08784178924560547, 0.08544153594970703, 0.08774246215820312, 0.08707891082763672, 0.08705331420898438, 0.08723865509033203, 0.08705843353271485, 0.08711577606201172, 0.08695193481445312, 0.08490188598632813, 0.08705741119384766, 0.08451789093017578, 0.08685260772705078, 0.08724787139892579, 0.08672563171386719, 0.08705638122558594, 0.08634572601318359, 0.1737533416748047, 0.08698675537109375, 0.08697344207763671, 0.08704000091552734, 0.08702982330322266, 0.08781715393066407, 0.08694579315185547, 0.08745369720458984, 0.08681785583496093, 0.08706249237060547, 0.08565961456298828, 0.0864000015258789, 0.0841502685546875, 0.08501248168945312, 0.08692018890380859, 0.08674201965332032, 0.0869222412109375, 0.08693862152099609, 0.0867041244506836, 0.08703385925292968, 0.08675225830078125, 0.086761474609375, 0.08619315338134766, 0.08686489868164063, 0.08680652618408204, 0.08746598052978516, 0.08694783782958984, 0.08730828857421875, 0.08752537536621094, 0.08693350219726563, 0.08705023956298828, 0.08706867218017578, 0.08747212982177735, 0.0880005111694336, 0.08732262420654296, 0.08604876708984376, 0.08707180786132812, 0.08670201873779297, 0.0873164825439453, 0.08682189178466797, 0.08709529876708984, 0.08716492462158203, 0.08606719970703125, 0.08672358703613281, 0.08690790557861328, 0.0867962875366211, 0.08702361297607422, 0.08684031677246094, 0.08695507049560547, 0.08671123504638673, 0.08706867218017578, 0.08863744354248047, 0.08740863800048829, 0.08729503631591796, 0.08682080078125, 0.08690380859375, 0.08818892669677734, 0.08729702758789062, 0.08700415802001953, 0.08678809356689453, 0.0868106231689453, 0.08693657684326171, 0.08690995025634765, 0.17623654174804687, 0.08711167907714844, 0.08703897857666015, 0.08722227478027343, 0.08726322937011718, 0.08703590393066406, 0.08675942230224609, 0.08699088287353515, 0.08680445098876953, 0.08698777770996094, 0.08604876708984376, 0.08687308502197266, 0.08715878295898437, 0.08707379150390625, 0.087108642578125, 0.08752022552490234, 0.08703385925292968, 0.08690995025634765, 0.0869939193725586, 0.08686182403564453, 0.08672665405273437, 0.08708710479736329, 0.086866943359375, 0.08725094604492188, 0.08706047821044922, 0.08675945281982422, 0.08477897644042968, 0.08724479675292969, 0.08646656036376953, 0.086866943359375, 0.08677273559570313, 0.08715058898925782, 0.08593714904785156, 0.08755712127685547, 0.08769945526123046, 0.08737586975097657, 0.0873512954711914, 0.08723763275146484, 0.08681779479980468, 0.08708710479736329, 0.08671129608154297, 0.08673894500732422, 0.08689766693115235, 0.0878828125, 0.08707987213134766, 0.08682710266113282, 0.08714435577392578, 0.08673996734619141, 0.08677581024169922, 0.08577126312255859, 0.08668160247802735, 0.08681574249267578, 0.0868136978149414, 0.08693555450439452, 0.08668364715576173, 0.0859504623413086, 0.08378470611572265, 0.08481996917724609, 0.08730931091308594, 0.08659455871582031, 0.08389631652832032, 0.08560025787353516, 0.08680038452148438, 0.17275801086425782, 0.08369971466064453, 0.08384204864501953, 0.08377139282226563, 0.08545689392089843, 0.08574976348876953, 0.08727859497070313, 0.08688025665283203, 0.0867799072265625, 0.08705741119384766, 0.08711580657958984, 0.08679933166503906, 0.0867962875366211, 0.08704307556152344, 0.08686386871337891, 0.08696320343017579, 0.08698880004882813, 0.08742403411865235, 0.0870973129272461, 0.08734207916259766, 0.08837529754638672, 0.08715980529785156, 0.08705023956298828, 0.086793212890625, 0.0869744644165039, 0.08696217346191407, 0.08680550384521485, 0.08711167907714844, 0.08749362945556641, 0.08701235198974609, 0.08706150054931641, 0.08685772705078125, 0.08689766693115235, 0.08696115112304688, 0.0865955810546875, 0.08719564819335937, 0.08694989013671875, 0.08730931091308594, 0.08871324920654297, 0.08721711730957031, 0.08766668701171874, 0.08723865509033203, 0.08547942352294922, 0.088416259765625, 0.08738614654541016, 0.08706454467773438, 0.08716083526611328, 0.08708815765380859, 0.08697238159179688, 0.08681676483154296, 0.08706559753417968, 0.0872499237060547, 0.08688639831542969, 0.08803123474121094, 0.0873512954711914, 0.08714649963378907, 0.08679936218261719, 0.08706047821044922, 0.08689254760742188, 0.08732466888427734, 0.0865843505859375, 0.08680239868164062, 0.08697548675537109, 0.1747763214111328, 0.08670310211181641, 0.08710451507568359, 0.08699903869628907, 0.08693657684326171, 0.08607334136962891, 0.0869969940185547, 0.08681574249267578, 0.08696627044677735, 0.08683827209472657, 0.08736153411865234, 0.08679219055175781, 0.08696012878417969, 0.086830078125, 0.0871352310180664, 0.08736870574951172, 0.08679424285888672, 0.08719462585449218, 0.08674508666992188, 0.08693862152099609, 0.08799231719970703, 0.08773529815673828, 0.08741171264648437, 0.08712397003173829, 0.08704512023925781, 0.08727654266357422, 0.08699903869628907, 0.08696729278564454, 0.0868853759765625, 0.08697344207763671, 0.08712499237060548, 0.08712499237060548, 0.0865771484375, 0.08749158477783203, 0.08688127899169922, 0.08696524810791016, 0.08687923431396484, 0.08711475372314453, 0.08697856140136719, 0.08686489868164063, 0.08696832275390624, 0.0843724822998047, 0.08361881256103515, 0.08333516693115234, 0.08410316467285156, 0.08653314971923828, 0.0870778579711914, 0.08714342498779297, 0.08421171569824219, 0.08394239807128906, 0.08393215942382813, 0.08404377746582031, 0.08362393951416015, 0.08348060607910156, 0.08413180541992188, 0.08405094146728516, 0.08691302490234375, 0.08714854431152344, 0.08712191772460938, 0.08708812713623047, 0.08714649963378907, 0.08697241973876953, 0.08708812713623047, 0.175857666015625, 0.08723865509033203, 0.08733695983886719, 0.08694886779785156, 0.08750080108642579, 0.08700927734375, 0.0869959716796875, 0.08687718200683593, 0.08966963195800781, 0.0872069091796875, 0.08702873229980469, 0.0869713897705078, 0.08688333129882812, 0.08693247985839844, 0.08705228424072266, 0.08724275207519532, 0.0872847671508789, 0.08704819488525391, 0.08684848022460938, 0.08682803344726563, 0.08715570831298829, 0.08688742065429687, 0.08504934692382812, 0.08777011108398437, 0.08640819549560547, 0.08897232055664063, 0.08616751861572265, 0.0871905288696289, 0.0890224609375, 0.0864686050415039, 0.08654438018798828, 0.08633036804199219, 0.08477593231201172, 0.08412876892089843, 0.08437452697753907, 0.08408985900878906, 0.08387686157226562, 0.08403353881835937, 0.08393318176269532, 0.08396185302734376, 0.08435302734375, 0.08403558349609375, 0.08378470611572265, 0.0841338882446289, 0.08378470611572265, 0.08367820739746094, 0.08367922973632813, 0.0835563507080078, 0.08376831817626954, 0.08383078765869141, 0.08380723571777343, 0.0837734375, 0.08563814544677735, 0.08487833404541016, 0.08407552337646484, 0.0837580795288086, 0.0836485137939453, 0.08376012420654297, 0.08358809661865234, 0.08362290954589843, 0.08371814727783203, 0.08357478332519531, 0.08497869110107421, 0.1696030731201172, 0.08372121429443359, 0.08371916961669922, 0.0837918701171875, 0.08386457824707032, 0.08376319885253906, 0.08395263671875, 0.08374784088134765, 0.08342527770996094, 0.08687206268310547, 0.08412262725830078, 0.08380416107177735, 0.08415436553955079, 0.0838440933227539, 0.08380316925048828, 0.08431715393066407, 0.08392499542236329, 0.08376319885253906, 0.08381747436523437, 0.08540467071533203, 0.08532991790771484, 0.08402022552490235, 0.084421630859375, 0.0841195526123047, 0.08383897399902343, 0.08380623626708984, 0.08381231689453125, 0.08393830108642578, 0.08379705810546875, 0.08394233703613281, 0.08370175933837891, 0.08405811309814454, 0.08380210876464844, 0.0837734375, 0.08362290954589843, 0.08380006408691407, 0.08357478332519531, 0.08359935760498047, 0.08378470611572265, 0.0834549789428711, 0.08362188720703125, 0.08369152069091797, 0.08387686157226562, 0.08376627349853516, 0.08377961730957031, 0.0838430404663086, 0.08387686157226562, 0.08553778839111328, 0.0837232666015625, 0.08371916961669922, 0.08374476623535156, 0.08370073699951172, 0.08382259368896484, 0.08384921264648437, 0.08401203155517578, 0.08357990264892579, 0.08365055847167968, 0.08378575897216797, 0.08367919921875, 0.08369055938720703, 0.0851127700805664, 0.08426700592041016, 0.08618905639648437, 0.1722030029296875, 0.08384819030761718, 0.08397721862792969, 0.0837570571899414, 0.08369664001464844, 0.0834549789428711, 0.08403865814208984, 0.08388505554199219, 0.08392908477783204, 0.08388198089599609, 0.08392704010009766, 0.08387379455566406, 0.0837027816772461, 0.08390860748291015, 0.08369254302978515, 0.08369766235351563, 0.08587161254882812, 0.0840478744506836, 0.08396288299560548, 0.08394649505615234, 0.08418099212646485, 0.08524288177490234, 0.08649318695068359, 0.0840816650390625, 0.08387174224853515, 0.08375603485107422, 0.08405811309814454, 0.08390758514404296, 0.0839393310546875, 0.08409497833251953, 0.08389836883544922, 0.08448000335693359, 0.08434893035888671, 0.08451583862304687, 0.0842639389038086, 0.08398745727539063, 0.08408370971679688, 0.08378880310058594, 0.08385740661621094, 0.08418406677246094, 0.08394035339355468, 0.08402124786376954, 0.08522137451171875, 0.08547840118408204, 0.08503705596923829, 0.08401510620117188, 0.08397516632080078, 0.08380723571777343, 0.08466022491455077, 0.0840079345703125, 0.08379193878173828, 0.08372525024414063, 0.08389631652832032, 0.0839393310546875, 0.08357071685791016, 0.08390652465820313, 0.08391577911376953, 0.0837550048828125, 0.08391474914550781, 0.08372633361816406, 0.08374476623535156, 0.08390758514404296, 0.0837550048828125, 0.1732474822998047, 0.08425472259521484, 0.0840273895263672, 0.08414924621582032, 0.08400179290771484, 0.08393830108642578, 0.08408268737792969, 0.08393727874755859, 0.08398745727539063, 0.08395468902587891, 0.08501862335205078, 0.08602214050292968, 0.08572313690185547, 0.08382463836669922, 0.08390962982177734, 0.08375296020507812, 0.08380928039550781, 0.0840263671875, 0.08383385467529297, 0.08391986846923828, 0.08388505554199219, 0.083666015625, 0.08356137847900391, 0.08396697235107421, 0.08387481689453125, 0.08371916961669922, 0.08389119720458985, 0.08397926330566406, 0.0838656005859375, 0.08394751739501953, 0.08407244873046875, 0.0837232666015625, 0.08388813018798828, 0.08374578857421874, 0.08396185302734376, 0.08385330963134766, 0.08368434906005859, 0.08367206573486329, 0.08419328308105468, 0.08365875244140625, 0.08380825805664062, 0.08445235443115234, 0.0841533432006836, 0.08358707427978515, 0.0837027816772461, 0.08361472320556641, 0.08509645080566407, 0.08371302032470704, 0.08371097564697266, 0.08373248291015625, 0.08388198089599609, 0.08400691223144531, 0.08375910186767578, 0.08609996795654297, 0.08662732696533203, 0.08376422119140625, 0.08392396545410157, 0.08380006408691407, 0.08389119720458985, 0.0837754898071289, 0.0837734375, 0.0838175048828125, 0.08397615814208985]",tokens/s,11.480430869002337,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-16B-nl,Salesforce/codegen-16B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1736.183808,12352.749568,0.0,11706.302464,11035.465216,s,10,13.024343627929689,1.3024343627929689,0.002338564901261307,1.30185107421875,1.3038882202148436,1.3064520446777343,1.3085031042480468,"[1.309015869140625, 1.3033184814453125, 1.3003494873046875, 1.3011973876953125, 1.3011253662109374, 1.300955810546875, 1.301638427734375, 1.302063720703125, 1.3022261962890624, 1.302452880859375]",tokens/s,196.55501061184225,kWh,1.5360654360718197e-05,8.415124671664671e-06,7.215477994602094e-05,9.593055897840379e-05,tokens/kWh,2668596.9802139024,MB,1736.183808,12352.749568,0.0,11706.302464,11329.172992,s,10,763.3166562499999,76.331665625,0.01404827179512581,76.33404687500001,76.34705,76.34801328125,76.34878390625,"[76.3116171875, 76.3329609375, 76.3489765625, 76.3411171875, 76.3468359375, 76.331546875, 76.3441953125, 76.3351328125, 76.31521875, 76.3090546875]",tokens/s,0.8253455428249735,kWh,0.0009011750282347202,0.0004939259724664952,0.0042084087556131695,0.005603509756314386,tokens/kWh,11242.953566558468,,s,629,773.821041748047,1.2302401299650985,0.15462762199250651,1.21159375,1.2122087890625,1.2124819091796875,2.513270859375,"[1.2114217529296876, 1.2109813232421875, 1.2112762451171875, 1.2113695068359376, 1.2109967041015626, 1.21078369140625, 1.210820556640625, 1.2114083251953125, 1.211473876953125, 1.2109915771484374, 1.2110264892578124, 1.211177001953125, 1.2111329345703126, 1.2108482666015625, 1.210894287109375, 1.2108328857421875, 1.2114595947265625, 1.21109912109375, 1.2110377197265625, 1.2114605712890625, 1.21109814453125, 1.2109107666015626, 1.2113837890625, 1.211439208984375, 1.2113089599609375, 1.2114852294921874, 1.2108953857421876, 1.211968505859375, 1.2109854736328125, 1.2114114990234375, 1.211503662109375, 1.2115701904296876, 1.2111954345703124, 1.212129150390625, 1.211504638671875, 1.2116378173828124, 1.21143701171875, 1.211441162109375, 1.2110633544921876, 1.21100390625, 1.210900390625, 1.2119766845703126, 1.21135302734375, 1.211661376953125, 1.21140625, 1.211376708984375, 1.21117578125, 1.211125732421875, 1.2112117919921874, 1.2114166259765624, 1.2111329345703126, 1.2116644287109375, 1.2111021728515625, 1.211261962890625, 1.2113489990234374, 1.2112978515625, 1.211167724609375, 1.211284423828125, 1.2117083740234376, 1.2115958251953125, 1.2114329833984374, 1.2118804931640625, 2.514330810546875, 1.210652587890625, 1.2109178466796875, 1.21115234375, 1.210639404296875, 1.2111728515625, 1.2111964111328124, 1.2109495849609375, 1.210982421875, 1.210829833984375, 1.211577392578125, 1.2116376953125, 1.2123822021484374, 1.2119183349609375, 1.2111278076171874, 1.2120401611328124, 1.2116695556640624, 1.2114871826171876, 1.2117001953125, 1.2118865966796875, 1.211429931640625, 1.2113817138671874, 1.21173095703125, 1.2116612548828125, 1.211536376953125, 1.211513916015625, 1.2119930419921876, 1.2118671875, 1.2117279052734375, 1.211217041015625, 1.2116253662109375, 1.211358154296875, 1.211610107421875, 1.21132958984375, 1.2115968017578125, 1.2115753173828125, 1.212295166015625, 1.211431884765625, 1.211931640625, 1.21170947265625, 1.21185791015625, 1.2116807861328125, 1.211569091796875, 1.2115169677734374, 1.2117945556640626, 1.211475830078125, 1.2115762939453125, 1.2120863037109375, 1.211937744140625, 1.2119654541015625, 1.2116817626953125, 1.2118035888671874, 1.212337158203125, 1.2117073974609376, 1.2118385009765624, 1.2118773193359376, 1.21191015625, 1.2120863037109375, 1.21194091796875, 1.212105712890625, 1.2121497802734376, 1.2118917236328124, 1.211799560546875, 2.513431640625, 1.2114862060546876, 1.2116961669921875, 1.2118785400390626, 1.2121865234375, 1.2122286376953124, 1.2120013427734375, 1.2121025390625, 1.21226953125, 1.211442138671875, 1.2113643798828124, 1.2111483154296876, 1.2115557861328126, 1.2120247802734374, 1.2112076416015625, 1.2115435791015625, 1.2116663818359374, 1.2110797119140626, 1.2113746337890625, 1.2114166259765624, 1.2112281494140624, 1.2118333740234375, 1.211620361328125, 1.2116275634765625, 1.211684814453125, 1.2115281982421875, 1.212507080078125, 1.2123299560546874, 1.211989990234375, 1.2121068115234375, 1.212232666015625, 1.2115784912109375, 1.21185888671875, 1.211282470703125, 1.211768798828125, 1.2113284912109374, 1.2114544677734376, 1.2116142578125, 1.2119736328125, 1.21160400390625, 1.2118660888671875, 1.211783203125, 1.211763671875, 1.21185888671875, 1.211821044921875, 1.211894775390625, 1.212494873046875, 1.2119080810546874, 1.2119388427734374, 1.2123709716796875, 1.211740234375, 1.2130374755859374, 1.212662841796875, 1.212389404296875, 1.21267919921875, 1.2124569091796875, 1.212505126953125, 1.212078125, 1.2119132080078125, 1.2119111328125, 1.2119111328125, 1.2122039794921875, 1.212859375, 2.513799072265625, 1.2114248046875, 1.211298828125, 1.2112598876953125, 1.2111002197265626, 1.211157470703125, 1.2119388427734374, 1.2117012939453125, 1.211177001953125, 1.21225927734375, 1.2121456298828126, 1.212099609375, 1.2122501220703126, 1.212095458984375, 1.2122705078125, 1.212464111328125, 1.21236474609375, 1.21200439453125, 1.211461669921875, 1.21135107421875, 1.2123013916015626, 1.2120933837890624, 1.2120391845703125, 1.2125921630859375, 1.2116397705078126, 1.21157421875, 1.2111861572265625, 1.21097216796875, 1.2113848876953126, 1.2114390869140625, 1.21153125, 1.211658203125, 1.2115947265625, 1.2115711669921876, 1.2116275634765625, 1.211242431640625, 1.21172998046875, 1.2113121337890624, 1.2114923095703125, 1.211609130859375, 1.2118292236328125, 1.2115927734375, 1.21164794921875, 1.2114503173828124, 1.2116920166015626, 1.2116182861328124, 1.2114801025390625, 1.211564208984375, 1.21261865234375, 1.2118896484375, 1.211937744140625, 1.2124937744140625, 1.2117872314453124, 1.2115753173828125, 1.2119429931640624, 1.211613037109375, 1.212316650390625, 1.211663330078125, 1.2121661376953126, 1.2119859619140625, 1.2116695556640624, 1.2118455810546875, 1.2117862548828124, 2.5132001953125, 1.21116162109375, 1.2113070068359375, 1.2113653564453124, 1.211356201171875, 1.2111585693359375, 1.21143505859375, 1.211683837890625, 1.2116121826171875, 1.2118189697265624, 1.2116448974609375, 1.21178515625, 1.2120279541015626, 1.21154052734375, 1.211658203125, 1.211451416015625, 1.21213134765625, 1.2125296630859375, 1.2122440185546874, 1.212705810546875, 1.2123677978515626, 1.2122071533203125, 1.2123084716796875, 1.2123751220703125, 1.2121220703125, 1.2126556396484376, 1.2121026611328125, 1.21187841796875, 1.212506103515625, 1.21231982421875, 1.212422119140625, 1.2116009521484374, 1.2117115478515625, 1.2120238037109374, 1.2117667236328125, 1.2115660400390624, 1.2122071533203125, 1.211494384765625, 1.211684814453125, 1.21158251953125, 1.211788330078125, 1.2116644287109375, 1.211957275390625, 1.2114073486328125, 1.211895751953125, 1.2115875244140626, 1.2115179443359374, 1.211845703125, 1.2115126953125, 1.2115343017578124, 1.2121968994140624, 1.2115262451171875, 1.211950927734375, 1.2120555419921875, 1.211916259765625, 1.2119879150390624, 1.2116162109375, 1.2115435791015625, 1.212336181640625, 1.2118609619140626, 1.21176171875, 1.211826171875, 1.2119696044921875, 2.513016845703125, 1.2115302734375, 1.21221533203125, 1.211273193359375, 1.211552734375, 1.21154248046875, 1.211378662109375, 1.2118077392578126, 1.2109425048828124, 1.2108125, 1.211199462890625, 1.2112393798828125, 1.2109864501953125, 1.2110008544921875, 1.2113499755859376, 1.21132958984375, 1.211335693359375, 1.2113797607421875, 1.211218994140625, 1.21196240234375, 1.211410400390625, 1.2120770263671874, 1.2116243896484375, 1.2119141845703125, 1.2118671875, 1.211895751953125, 1.2114534912109376, 1.2118670654296875, 1.211398193359375, 1.2112353515625, 1.21159375, 1.2112230224609375, 1.211525146484375, 1.211252685546875, 1.2116796875, 1.21173095703125, 1.2115252685546876, 1.21129150390625, 1.211832275390625, 1.211515869140625, 1.21154052734375, 1.21152001953125, 1.2113541259765626, 1.211916259765625, 1.211999267578125, 1.211557861328125, 1.2116612548828125, 1.2116644287109375, 1.211683837890625, 1.2118814697265625, 1.2116859130859374, 1.21154248046875, 1.212590087890625, 1.211631591796875, 1.21187841796875, 1.2120863037109375, 1.211619384765625, 1.2120166015625, 1.2119869384765625, 1.2120177001953125, 1.2121640625, 1.211704345703125, 1.211842529296875, 2.51329833984375, 1.2113704833984376, 1.2111278076171874, 1.21133056640625, 1.2119141845703125, 1.2111728515625, 1.2112230224609375, 1.2113807373046874, 1.2113182373046876, 1.211325439453125, 1.2114288330078125, 1.211557861328125, 1.211810791015625, 1.2117626953125, 1.21128759765625, 1.2117484130859375, 1.21141650390625, 1.2113756103515625, 1.2116080322265625, 1.211427978515625, 1.2113477783203126, 1.2119552001953124, 1.211189208984375, 1.2114248046875, 1.211610107421875, 1.21135205078125, 1.2119481201171876, 1.2117523193359374, 1.211484130859375, 1.2121180419921875, 1.21152099609375, 1.2116326904296875, 1.211673583984375, 1.2113121337890624, 1.2119869384765625, 1.2122685546875, 1.2123853759765626, 1.2128603515625, 1.2124027099609376, 1.2125235595703125, 1.2127314453125, 1.2127191162109374, 1.212885986328125, 1.2127242431640626, 1.2118333740234375, 1.211953125, 1.2121129150390626, 1.2117801513671875, 1.212015625, 1.211763671875, 1.2117012939453125, 1.2120667724609375, 1.21187939453125, 1.2117197265625, 1.2119981689453125, 1.21179443359375, 1.2120340576171875, 1.212147705078125, 1.21187841796875, 1.2120791015625, 1.21209033203125, 1.211905029296875, 1.2124200439453126, 2.514125732421875, 1.2114227294921875, 1.211292724609375, 1.211658203125, 1.2115589599609375, 1.2113983154296875, 1.2119888916015624, 1.2113704833984376, 1.211610107421875, 1.211758544921875, 1.2114852294921874, 1.21145654296875, 1.211821044921875, 1.2112169189453126, 1.2116602783203125, 1.211989990234375, 1.2113223876953125, 1.2115517578125, 1.2113489990234374, 1.2112762451171875, 1.2118035888671874, 1.211737060546875, 1.2115977783203125, 1.2129249267578126, 1.21261767578125, 1.2122420654296875, 1.211623291015625, 1.2114923095703125, 1.212148681640625, 1.2119019775390625, 1.21175146484375, 1.2118385009765624, 1.2116920166015626, 1.2118294677734376, 1.21165185546875, 1.2111922607421874, 1.2113212890625, 1.2114442138671875, 1.211694091796875, 1.21236474609375, 1.212018798828125, 1.211768798828125, 1.211747314453125, 1.2114288330078125, 1.2113223876953125, 1.2116746826171876, 1.21150048828125, 1.21159375, 1.21177294921875, 1.21147802734375, 1.212080078125, 1.21192138671875, 1.2113746337890625, 1.2114554443359375, 1.2115548095703126, 1.21162646484375, 1.211575439453125, 1.2113038330078125, 1.211806640625, 1.2116695556640624, 1.211400146484375, 1.2115343017578124, 1.2114677734375, 2.5139150390625, 1.2104947509765625, 1.2104796142578125, 1.2110601806640624, 1.210818603515625, 1.21080419921875, 1.2113817138671874, 1.2107110595703126, 1.2115599365234375, 1.210962890625, 1.21103466796875, 1.2109844970703125, 1.2109957275390626, 1.210639404296875, 1.210967041015625, 1.210735595703125, 1.211298828125, 1.2114892578125, 1.210882080078125, 1.2117001953125, 1.211292724609375, 1.2112998046875, 1.211736083984375, 1.2114698486328126, 1.2116868896484374, 1.212020751953125, 1.2116572265625, 1.2118538818359375, 1.211252685546875, 1.2111072998046875, 1.211619384765625, 1.2111688232421876, 1.211368408203125, 1.2118763427734376, 1.2112978515625, 1.211556884765625, 1.211440185546875, 1.2111011962890625, 1.21163671875, 1.2113223876953125, 1.2111298828125, 1.2116162109375, 1.2110653076171876, 1.2111217041015625, 1.211494384765625, 1.211451416015625, 1.2114759521484375, 1.21181689453125, 1.2115538330078126, 1.2116080322265625, 1.211831298828125, 1.211515869140625, 1.21173193359375, 1.211282470703125, 1.2113018798828126, 1.21145654296875, 1.2112281494140624, 1.2112547607421875, 1.2116612548828125, 1.21142578125, 1.21210986328125, 1.2116920166015626, 1.2119910888671874, 2.51358935546875, 1.21063427734375, 1.211430908203125, 1.210544189453125, 1.2111871337890625, 1.21103564453125, 1.2112589111328125, 1.2109700927734375, 1.2114503173828124, 1.2111072998046875, 1.21147802734375, 1.210945556640625, 1.2111922607421874, 1.211684814453125, 1.2114554443359375, 1.2112486572265626, 1.2119346923828125, 1.2112281494140624, 1.2114483642578124, 1.2110079345703124, 1.2108524169921875, 1.2109935302734376, 1.2109833984375, 1.2113858642578126, 1.2111492919921876, 1.210892333984375, 1.2111124267578126, 1.2112025146484375, 1.2109700927734375, 1.211509765625, 1.21159375, 1.2114063720703125, 1.211040771484375, 1.21109814453125, 1.210799072265625, 1.210892333984375, 1.210966064453125, 1.210841064453125, 1.2113079833984375, 1.21124560546875, 1.2112608642578124, 1.2112496337890626, 1.2110306396484376, 1.2115035400390626, 1.211241455078125, 1.2117279052734375, 1.2114945068359375, 1.2111419677734374, 1.2113212890625, 1.211431884765625, 1.2111728515625, 1.2113961181640625, 1.211167724609375, 1.210883056640625, 1.21160498046875, 1.211494384765625, 1.2115814208984375, 1.2117698974609374, 1.2115025634765626, 1.2116275634765625, 1.2118814697265625, 1.211230224609375, 1.21170947265625]",tokens/s,0.8128494394247809,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-j-6b,,cuda,0,42,,,,,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,MB,2082.578432,5566.365696,0.0,4919.918592,4635.53792,s,10,5.0974686889648435,0.5097468688964844,0.002523113409812242,0.5091204681396484,0.5118887878417968,0.5140431793212891,0.5157666925048828,"[0.5161975708007812, 0.508827880859375, 0.5094269104003907, 0.508350830078125, 0.5081865539550782, 0.5073575439453125, 0.5094130554199219, 0.5110750427246094, 0.5072232666015625, 0.5114100341796874]",tokens/s,502.2100489880333,kWh,5.994651640454928e-06,3.28480666631549e-06,2.7987258500894452e-05,3.726671680766487e-05,tokens/kWh,6869400.417569034,MB,2082.578432,5566.365696,0.0,4919.918592,4794.464768,s,10,295.3985,29.53985,0.004666201106872227,29.538681640625,29.5469361328125,29.54772978515625,29.548364707031247,"[29.534837890625, 29.546759765625, 29.542654296875, 29.540826171875, 29.5363359375, 29.535224609375, 29.54083984375, 29.5359609375, 29.5485234375, 29.536537109375]",tokens/s,2.132712251416307,kWh,0.0003485870901164082,0.0001910528620806053,0.0016025825737317144,0.002142222525928728,tokens/kWh,29408.709523623045,,s,629,299.5096441345215,0.47616795569876236,0.06052059742525611,0.46878207397460936,0.46948126220703124,0.4697759826660156,0.977483603515625,"[0.4688783264160156, 0.46847384643554685, 0.46878515625, 0.4694343566894531, 0.4695541687011719, 0.46879034423828125, 0.4688465270996094, 0.46848306274414064, 0.46828851318359377, 0.4686806945800781, 0.46836428833007815, 0.4685475769042969, 0.4686540832519531, 0.46948455810546874, 0.4689162292480469, 0.46845745849609377, 0.4684011535644531, 0.4683714599609375, 0.4684134521484375, 0.46870220947265623, 0.468790283203125, 0.4682076110839844, 0.4684062805175781, 0.46837042236328125, 0.469607421875, 0.46908721923828123, 0.4688885803222656, 0.4687656860351562, 0.4693012390136719, 0.4686929931640625, 0.46864382934570314, 0.468430908203125, 0.4682413330078125, 0.4685291442871094, 0.46904525756835935, 0.4706498413085938, 0.46837042236328125, 0.4685875244140625, 0.4687718505859375, 0.4685537414550781, 0.46882406616210937, 0.46856805419921876, 0.4686806945800781, 0.46866943359375, 0.4686581726074219, 0.4682403869628906, 0.4695777893066406, 0.4685884704589844, 0.4686663818359375, 0.4685537414550781, 0.46855987548828126, 0.4685066223144531, 0.4687831115722656, 0.46864794921875, 0.4684666748046875, 0.4691046447753906, 0.46919476318359377, 0.4684984436035156, 0.4691128234863281, 0.4691221008300781, 0.46927557373046874, 0.46959002685546875, 0.977623046875, 0.46814208984375, 0.4683407287597656, 0.46863873291015623, 0.46877490234375, 0.46880459594726565, 0.4687513732910156, 0.46857113647460935, 0.468421630859375, 0.46894284057617186, 0.4688281555175781, 0.46850765991210935, 0.4687431640625, 0.4691404724121094, 0.4699504699707031, 0.46978561401367186, 0.46937701416015626, 0.4690975341796875, 0.4691311950683594, 0.47030169677734374, 0.4690933837890625, 0.4689039306640625, 0.4690298767089844, 0.46860595703125, 0.4687359924316406, 0.4692275085449219, 0.46936166381835936, 0.46901248168945314, 0.46843902587890623, 0.46878106689453125, 0.46938113403320314, 0.46973849487304686, 0.46935861206054685, 0.4687390441894531, 0.4685845031738281, 0.46890591430664064, 0.46899813842773436, 0.4688281555175781, 0.4687083435058594, 0.4687564697265625, 0.4687308654785156, 0.4687615966796875, 0.4689858703613281, 0.4688762817382813, 0.46893264770507814, 0.46929302978515625, 0.46915994262695315, 0.4696995849609375, 0.4688701477050781, 0.4687912902832031, 0.4691885986328125, 0.46969558715820314, 0.4696114196777344, 0.4692490234375, 0.46899301147460937, 0.46896435546875, 0.4694558715820312, 0.46925927734375, 0.4685393981933594, 0.4686530456542969, 0.46877902221679685, 0.4687155151367188, 0.46934527587890623, 0.9787330322265625, 0.468917236328125, 0.46886502075195313, 0.46889984130859375, 0.4691875915527344, 0.4684267578125, 0.46861004638671877, 0.46856500244140625, 0.46833560180664063, 0.4684933166503906, 0.4683735046386719, 0.4683263854980469, 0.4683735046386719, 0.468236328125, 0.46872265625, 0.4684236755371094, 0.46842572021484374, 0.46854452514648437, 0.46859982299804687, 0.4687155151367188, 0.46844732666015626, 0.4685188293457031, 0.4686991577148438, 0.46980194091796873, 0.46855987548828126, 0.4690032653808594, 0.46884454345703125, 0.4687575073242187, 0.4688609313964844, 0.4688558044433594, 0.4689459228515625, 0.46866329956054686, 0.4685557861328125, 0.46875238037109374, 0.4686827392578125, 0.46909747314453126, 0.46889984130859375, 0.4689756164550781, 0.46924798583984373, 0.46901144409179685, 0.4689469299316406, 0.46897048950195314, 0.46984909057617186, 0.4700190734863281, 0.4696781005859375, 0.469550048828125, 0.4697763977050781, 0.47159500122070314, 0.46917837524414063, 0.4684482421875, 0.4692193298339844, 0.46906060791015625, 0.4689141845703125, 0.46894284057617186, 0.468885498046875, 0.469064697265625, 0.46948043823242186, 0.4687861633300781, 0.4690513916015625, 0.46873907470703124, 0.46875341796875, 0.4690708618164062, 0.46917938232421874, 0.9775615844726563, 0.46874624633789064, 0.46858853149414065, 0.4686796875, 0.46987161254882814, 0.46889370727539065, 0.4687656860351562, 0.468790283203125, 0.4687278137207031, 0.46867864990234376, 0.4685322265625, 0.46837454223632813, 0.4686530456542969, 0.46875955200195313, 0.46893466186523436, 0.468706298828125, 0.4689858703613281, 0.46853018188476564, 0.46881585693359373, 0.46894796752929685, 0.4691353454589844, 0.46871038818359373, 0.46851071166992186, 0.468632568359375, 0.46843902587890623, 0.46874725341796875, 0.468890625, 0.4688670654296875, 0.46844723510742187, 0.468490234375, 0.4689090576171875, 0.46941900634765626, 0.46909030151367187, 0.4689100952148437, 0.4687175598144531, 0.46938113403320314, 0.4690616455078125, 0.4687718505859375, 0.46904730224609376, 0.4689336242675781, 0.4687933349609375, 0.46920501708984375, 0.46855471801757814, 0.4687718505859375, 0.47131646728515625, 0.4688424987792969, 0.46912005615234376, 0.4692090148925781, 0.4688189392089844, 0.4685926513671875, 0.4688619384765625, 0.46930743408203124, 0.4693247680664063, 0.4690636901855469, 0.46892135620117187, 0.4687145690917969, 0.4691373291015625, 0.4687145080566406, 0.4686673889160156, 0.46867352294921877, 0.46872677612304686, 0.4689254455566406, 0.46927871704101565, 0.9772830810546875, 0.46864077758789063, 0.4684922790527344, 0.46857421875, 0.46906878662109375, 0.4690033264160156, 0.46841543579101563, 0.4685895690917969, 0.46849639892578127, 0.468279296875, 0.46869912719726564, 0.4685619201660156, 0.4687575073242187, 0.46905242919921875, 0.46849432373046873, 0.46846875, 0.46872576904296875, 0.46877490234375, 0.4686592102050781, 0.4684892272949219, 0.4687974548339844, 0.46863565063476564, 0.4685844421386719, 0.46846157836914065, 0.46825778198242185, 0.4684994506835938, 0.4686448669433594, 0.46830081176757815, 0.46856805419921876, 0.4685209655761719, 0.46874929809570315, 0.4689264526367187, 0.46845541381835937, 0.4686520385742188, 0.46867770385742186, 0.46937490844726565, 0.46933709716796873, 0.4687554626464844, 0.4690616455078125, 0.46915789794921875, 0.46891213989257813, 0.46888754272460936, 0.4687278137207031, 0.46915277099609376, 0.4688332824707031, 0.4693790588378906, 0.46926437377929686, 0.46878515625, 0.4690831298828125, 0.46895718383789065, 0.4689776611328125, 0.4690616455078125, 0.46907391357421874, 0.46851788330078126, 0.46869195556640625, 0.4686376953125, 0.46900634765625, 0.4722012023925781, 0.4687718505859375, 0.4688670654296875, 0.46880459594726565, 0.468642822265625, 0.4693155822753906, 0.9763594360351563, 0.46846771240234375, 0.46886502075195313, 0.4687083740234375, 0.4689837646484375, 0.4684646301269531, 0.4687247314453125, 0.46836224365234375, 0.4683929748535156, 0.4685619201660156, 0.46836737060546874, 0.4687503356933594, 0.46857830810546874, 0.46878411865234376, 0.4683345947265625, 0.468358154296875, 0.46845849609375, 0.4687032470703125, 0.4686520385742188, 0.4686458740234375, 0.46885784912109374, 0.46872677612304686, 0.4685823974609375, 0.46873095703125, 0.4685475158691406, 0.468790283203125, 0.46927053833007815, 0.46861822509765627, 0.46847589111328125, 0.46836224365234375, 0.470181884765625, 0.4690575256347656, 0.4688353271484375, 0.4692449340820313, 0.4685137939453125, 0.46857217407226565, 0.46875238037109374, 0.46873190307617185, 0.4689664001464844, 0.4691271667480469, 0.4686090087890625, 0.4692101135253906, 0.4687974548339844, 0.469317626953125, 0.4686315612792969, 0.46899917602539065, 0.4692490234375, 0.4690309143066406, 0.4687646789550781, 0.46850253295898436, 0.4687083435058594, 0.46883941650390626, 0.46927871704101565, 0.4686152038574219, 0.4694292297363281, 0.4691435546875, 0.46974566650390626, 0.4686940307617187, 0.468969482421875, 0.46890188598632815, 0.46895001220703125, 0.4687564697265625, 0.46904730224609376, 0.9786060791015625, 0.46841650390625, 0.4683786315917969, 0.46915994262695315, 0.46917938232421874, 0.4692777099609375, 0.46883636474609375, 0.468716552734375, 0.46857318115234375, 0.4691128234863281, 0.468600830078125, 0.4694783935546875, 0.46952960205078126, 0.4696739807128906, 0.4687196044921875, 0.46852505493164065, 0.46841854858398435, 0.4683591613769531, 0.4683100280761719, 0.4684431457519531, 0.4690411376953125, 0.4687923278808594, 0.4687216491699219, 0.46836224365234375, 0.4686090087890625, 0.4691363830566406, 0.46857113647460935, 0.46862335205078126, 0.46869094848632814, 0.4686581726074219, 0.4694435729980469, 0.4694640502929687, 0.46918450927734373, 0.46924288940429687, 0.4694343566894531, 0.4690462646484375, 0.469317626953125, 0.46890188598632815, 0.46938323974609375, 0.4693267822265625, 0.46866329956054686, 0.4690370483398438, 0.468864013671875, 0.4687575073242187, 0.4686438598632813, 0.46876776123046876, 0.46984698486328125, 0.4690380859375, 0.46935552978515627, 0.46853836059570314, 0.46839910888671876, 0.46874008178710935, 0.46875955200195313, 0.4687667236328125, 0.4688209838867187, 0.4691302490234375, 0.46921624755859376, 0.4689674377441406, 0.46906777954101564, 0.46867864990234376, 0.46859161376953123, 0.46864794921875, 0.4688332824707031, 0.980326416015625, 0.468701171875, 0.46863360595703124, 0.468738037109375, 0.46885989379882814, 0.4684267578125, 0.468389892578125, 0.46853839111328127, 0.46828131103515624, 0.4683601989746094, 0.46820352172851565, 0.467962890625, 0.4681553955078125, 0.4686499938964844, 0.4686612548828125, 0.4687503356933594, 0.46850253295898436, 0.4680570983886719, 0.4683458557128906, 0.46834994506835936, 0.46889471435546876, 0.46862130737304686, 0.4687196044921875, 0.46831512451171875, 0.4685035400390625, 0.4694077453613281, 0.4687421569824219, 0.4688087158203125, 0.4701829528808594, 0.4684830322265625, 0.4688619384765625, 0.4692244567871094, 0.46869094848632814, 0.4689715270996094, 0.46905548095703126, 0.4686315612792969, 0.468864013671875, 0.4689029235839844, 0.46895001220703125, 0.46892340087890627, 0.46898687744140627, 0.469212158203125, 0.46885272216796875, 0.4688230285644531, 0.46921624755859376, 0.46866943359375, 0.46926849365234374, 0.46906777954101564, 0.469248046875, 0.4691763000488281, 0.46952960205078126, 0.4694057006835938, 0.46893157958984377, 0.4688035888671875, 0.4690667419433594, 0.4687615966796875, 0.4690288696289063, 0.46915890502929686, 0.46848818969726563, 0.4687585144042969, 0.4686315612792969, 0.4686049194335937, 0.46867352294921877, 0.9793843383789063, 0.4697733154296875, 0.46955825805664064, 0.46915890502929686, 0.46897869873046877, 0.4683345947265625, 0.46859982299804687, 0.468316162109375, 0.46864694213867186, 0.4686110534667969, 0.46845745849609377, 0.46816357421875, 0.4684892272949219, 0.46949169921875, 0.46866842651367185, 0.46861312866210936, 0.4686090087890625, 0.4685424499511719, 0.46886605834960937, 0.4688752746582031, 0.46871353149414063, 0.4691127624511719, 0.46852615356445315, 0.46842361450195313, 0.46897665405273437, 0.4689141845703125, 0.4685926513671875, 0.46885989379882814, 0.468421630859375, 0.4683888549804687, 0.46856600952148436, 0.4689182739257812, 0.46858547973632814, 0.46870220947265623, 0.4691896362304688, 0.46975283813476565, 0.46981631469726565, 0.4697753601074219, 0.470096923828125, 0.469834716796875, 0.46959820556640625, 0.4698542175292969, 0.46952243041992187, 0.4697272338867188, 0.4697907104492188, 0.4687656860351562, 0.4691937255859375, 0.46966680908203123, 0.46944461059570314, 0.46914764404296877, 0.469760009765625, 0.4693544921875, 0.46949993896484377, 0.4696063537597656, 0.46877694702148437, 0.4688281555175781, 0.4692244567871094, 0.468706298828125, 0.4684646301269531, 0.46868582153320315, 0.4686725158691406, 0.46858547973632814, 0.4686612548828125, 0.9803509521484375, 0.46829159545898436, 0.4681697387695313, 0.4690083923339844, 0.46880972290039064, 0.46866329956054686, 0.4685547485351563, 0.46837042236328125, 0.468105224609375, 0.4683243713378906, 0.46842364501953127, 0.4681779174804688, 0.4683816833496094, 0.4685599365234375, 0.4682454528808594, 0.46819635009765626, 0.46841036987304685, 0.46834994506835936, 0.468537353515625, 0.46845849609375, 0.46887115478515623, 0.46867352294921877, 0.46852197265625, 0.46868377685546875, 0.46900018310546876, 0.46878207397460936, 0.4686499938964844, 0.4685537414550781, 0.46879437255859374, 0.4684031982421875, 0.4687779846191406, 0.4690032653808594, 0.4684912719726563, 0.46856298828125, 0.46899917602539065, 0.4696033020019531, 0.4696708984375, 0.469855224609375, 0.4690411376953125, 0.468674560546875, 0.46875442504882814, 0.469359619140625, 0.4701552734375, 0.469064697265625, 0.46861312866210936, 0.4686315612792969, 0.4697047119140625, 0.4690083923339844, 0.46888754272460936, 0.46868582153320315, 0.469073974609375, 0.4693411254882813, 0.4695132141113281, 0.46920089721679686, 0.46941696166992186, 0.46919271850585936, 0.46985626220703125, 0.46913946533203127, 0.46915789794921875, 0.4686253967285156, 0.46875955200195313, 0.468642822265625, 0.4691517333984375]",tokens/s,2.1000993200656053,,,main,False,False +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2-large,openai-community/gpt2-large,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1263.47264,2645.03296,0.0,1998.585856,1692.285952,s,10,0.24304076957702642,0.02430407695770264,0.0005675228251535707,0.024276448249816895,0.024567701721191406,0.025167994689941405,0.025648229064941408,"[0.025768287658691408, 0.024286592483520508, 0.02426630401611328, 0.024318464279174806, 0.024434303283691405, 0.02419811248779297, 0.02437276840209961, 0.023690656661987306, 0.024211936950683594, 0.023493343353271485]",tokens/s,10533.212203266434,kWh,2.780947089195252e-07,1.5238005259914857e-07,8.187235307952231e-07,1.2491982923138968e-06,tokens/kWh,204931436.0859474,MB,1263.767552,2645.03296,0.0,1998.585856,1740.091904,s,10,13.987102905273439,1.3987102905273439,0.014214042604732734,1.4048785400390624,1.412000280761719,1.4145778381347656,1.416639884033203,"[1.4171553955078124, 1.4012147216796875, 1.405033935546875, 1.411427490234375, 1.4068282470703124, 1.40472314453125, 1.405282958984375, 1.3729639892578125, 1.3760699462890624, 1.386403076171875]",tokens/s,45.04149317171867,kWh,1.62772132953008e-05,8.91975746257787e-06,3.22519140368052e-05,5.7448884794683886e-05,tokens/kWh,1096627.0315804249,,s,629,14.179969017028807,0.022543670933273148,0.0029405698135304874,0.02225868797302246,0.02251775932312012,0.02303631362915039,0.046451998291015664,"[0.023488512039184572, 0.023197696685791015, 0.02246143913269043, 0.02229555130004883, 0.022401023864746093, 0.02228326416015625, 0.02222489547729492, 0.02231091117858887, 0.0225218563079834, 0.023541759490966797, 0.023616512298583983, 0.02328985595703125, 0.023191551208496093, 0.023250944137573244, 0.023595008850097656, 0.023343103408813477, 0.023159807205200195, 0.02307788848876953, 0.023666688919067383, 0.023583744049072267, 0.023846912384033202, 0.022800384521484376, 0.02242355155944824, 0.022296575546264647, 0.02229043197631836, 0.022129663467407225, 0.022167552947998048, 0.022289407730102538, 0.022231039047241212, 0.022359039306640623, 0.022163455963134765, 0.022146047592163084, 0.022198272705078126, 0.022213632583618165, 0.022329343795776366, 0.021812223434448243, 0.021354496002197267, 0.02143436813354492, 0.02147225570678711, 0.021506048202514647, 0.021397504806518555, 0.02148659133911133, 0.02149478340148926, 0.021702655792236326, 0.023331840515136718, 0.022391807556152343, 0.022338560104370117, 0.022211584091186523, 0.022155263900756835, 0.022253568649291993, 0.02229145622253418, 0.022244352340698242, 0.022239231109619142, 0.02221670341491699, 0.022311935424804686, 0.022478847503662108, 0.022331392288208008, 0.02230681610107422, 0.022419456481933595, 0.02239897537231445, 0.02230169677734375, 0.0223242244720459, 0.04737433624267578, 0.022154239654541014, 0.02226483154296875, 0.02230271911621094, 0.02144972801208496, 0.02142617607116699, 0.021544960021972655, 0.021599231719970705, 0.02222489547729492, 0.022396928787231447, 0.022296575546264647, 0.022246400833129884, 0.022206464767456056, 0.022237184524536133, 0.022380544662475587, 0.022543359756469726, 0.022381568908691408, 0.022289407730102538, 0.022167552947998048, 0.02228428840637207, 0.022130687713623046, 0.022371328353881836, 0.02229145622253418, 0.022179840087890625, 0.022157312393188477, 0.022328319549560546, 0.02233344078063965, 0.02234982490539551, 0.022245376586914063, 0.022261760711669923, 0.02227712059020996, 0.02226483154296875, 0.02225868797302246, 0.0223191032409668, 0.022218751907348632, 0.022326271057128907, 0.022303743362426756, 0.02248806381225586, 0.022181888580322266, 0.022226943969726562, 0.02222591972351074, 0.022255615234375, 0.02224844741821289, 0.022112255096435548, 0.022326271057128907, 0.022156288146972656, 0.022769664764404295, 0.022261760711669923, 0.02227507209777832, 0.0222740478515625, 0.022338560104370117, 0.02231500816345215, 0.02227609634399414, 0.022260736465454102, 0.02228326416015625, 0.02230784034729004, 0.022261760711669923, 0.022268928527832032, 0.02252390480041504, 0.02224947166442871, 0.02229555130004883, 0.0222423038482666, 0.02222591972351074, 0.04691865539550781, 0.022223871231079103, 0.022368255615234374, 0.02228121566772461, 0.02227712059020996, 0.02224844741821289, 0.022231039047241212, 0.022236160278320313, 0.02225049591064453, 0.022305791854858398, 0.022199296951293947, 0.022161407470703123, 0.02229350471496582, 0.02231603240966797, 0.022381568908691408, 0.022329343795776366, 0.022428672790527345, 0.022311935424804686, 0.022203392028808593, 0.02231705665588379, 0.022589439392089843, 0.02243891143798828, 0.022245376586914063, 0.02247372817993164, 0.022378496170043945, 0.02221670341491699, 0.022323200225830078, 0.02222489547729492, 0.022269952774047853, 0.022195199966430663, 0.022361087799072265, 0.0221942081451416, 0.022280160903930663, 0.022350847244262697, 0.022339584350585938, 0.02242355155944824, 0.022280191421508787, 0.022199296951293947, 0.022214656829833986, 0.022261760711669923, 0.022237184524536133, 0.0222423038482666, 0.022214656829833986, 0.022581247329711913, 0.022334463119506837, 0.022419456481933595, 0.022260736465454102, 0.022581247329711913, 0.0222423038482666, 0.02211020851135254, 0.022381568908691408, 0.022228992462158204, 0.02225868797302246, 0.02223411178588867, 0.022211584091186523, 0.022369279861450195, 0.02228121566772461, 0.02229452705383301, 0.022181888580322266, 0.022215679168701173, 0.022194175720214843, 0.022372352600097657, 0.022351871490478514, 0.04692172622680664, 0.02230988883972168, 0.02225868797302246, 0.02221772766113281, 0.022237184524536133, 0.02212761688232422, 0.02230169677734375, 0.022252544403076172, 0.02224127960205078, 0.02227302360534668, 0.022236160278320313, 0.022244352340698242, 0.022401023864746093, 0.022337535858154296, 0.022404096603393556, 0.02231808090209961, 0.022379520416259766, 0.022289407730102538, 0.023015424728393553, 0.022839296340942384, 0.023625728607177734, 0.02254643249511719, 0.022501375198364256, 0.022212608337402344, 0.02230886459350586, 0.022192127227783204, 0.02186751937866211, 0.02225868797302246, 0.022220800399780274, 0.022244352340698242, 0.02232729530334473, 0.022322175979614257, 0.022200319290161134, 0.02231603240966797, 0.022213632583618165, 0.022260736465454102, 0.02225971221923828, 0.022184959411621095, 0.022322175979614257, 0.022223871231079103, 0.02229350471496582, 0.022244352340698242, 0.02253824043273926, 0.02221772766113281, 0.022656000137329102, 0.022313983917236328, 0.02267238426208496, 0.022330400466918945, 0.022226911544799804, 0.02228326416015625, 0.026193920135498046, 0.02267852783203125, 0.022219776153564453, 0.022269952774047853, 0.022245376586914063, 0.022183935165405275, 0.022200319290161134, 0.022311935424804686, 0.022221824645996095, 0.022288383483886717, 0.02233241653442383, 0.02232524871826172, 0.02229452705383301, 0.04700876617431641, 0.022387712478637696, 0.022311935424804686, 0.022374399185180666, 0.02227712059020996, 0.022320127487182616, 0.022426624298095704, 0.02230271911621094, 0.0225167350769043, 0.022564863204956053, 0.02248806381225586, 0.022361087799072265, 0.022419456481933595, 0.022410240173339844, 0.022541311264038084, 0.02245737648010254, 0.022437856674194335, 0.02248192024230957, 0.02223411178588867, 0.022358015060424806, 0.02230886459350586, 0.022378496170043945, 0.02230784034729004, 0.022552576065063477, 0.022374399185180666, 0.022311935424804686, 0.02235699272155762, 0.022362112045288086, 0.02224742317199707, 0.02226790428161621, 0.022237184524536133, 0.022477823257446287, 0.022300703048706055, 0.022344671249389648, 0.02226688003540039, 0.022345727920532226, 0.022303743362426756, 0.022238208770751954, 0.022254592895507814, 0.022183935165405275, 0.02230169677734375, 0.022226943969726562, 0.02231603240966797, 0.022246400833129884, 0.02222591972351074, 0.022192127227783204, 0.022269952774047853, 0.02223411178588867, 0.022280191421508787, 0.02234060859680176, 0.02229555130004883, 0.02225766372680664, 0.02227507209777832, 0.022221824645996095, 0.022200319290161134, 0.022208511352539064, 0.02225049591064453, 0.022527999877929687, 0.02226688003540039, 0.022324256896972657, 0.022201311111450194, 0.02225868797302246, 0.02229862403869629, 0.04681727981567383, 0.0222873592376709, 0.022252544403076172, 0.02227609634399414, 0.02228531265258789, 0.022226943969726562, 0.022236160278320313, 0.02235699272155762, 0.022329343795776366, 0.022527999877929687, 0.022365184783935548, 0.022367231369018553, 0.02240716743469238, 0.022360063552856444, 0.022312959671020507, 0.022500352859497072, 0.02227712059020996, 0.02225663948059082, 0.022190080642700196, 0.02223411178588867, 0.02221670341491699, 0.022297599792480468, 0.022380544662475587, 0.02223411178588867, 0.0222740478515625, 0.022218751907348632, 0.02250547218322754, 0.022362112045288086, 0.022189056396484375, 0.022197248458862305, 0.022175743103027345, 0.0222423038482666, 0.02221670341491699, 0.02226585578918457, 0.022161407470703123, 0.022182912826538087, 0.022428672790527345, 0.022236160278320313, 0.02267344093322754, 0.022254560470581056, 0.022212608337402344, 0.022169599533081053, 0.022261760711669923, 0.022228992462158204, 0.022177791595458983, 0.022404096603393556, 0.022181888580322266, 0.022383615493774413, 0.02244915199279785, 0.022458368301391602, 0.022296575546264647, 0.022377471923828125, 0.022180864334106445, 0.02232729530334473, 0.02223308753967285, 0.0223191032409668, 0.022232063293457033, 0.022355968475341798, 0.022238208770751954, 0.022271999359130858, 0.02221670341491699, 0.022223871231079103, 0.022175743103027345, 0.04688896179199219, 0.022303743362426756, 0.022354944229125977, 0.022297599792480468, 0.022215679168701173, 0.022192127227783204, 0.022171648025512695, 0.02224844741821289, 0.02211327934265137, 0.02228531265258789, 0.023112703323364257, 0.023995391845703123, 0.02248089599609375, 0.02227609634399414, 0.02220134353637695, 0.022296575546264647, 0.022337535858154296, 0.02222489547729492, 0.022120447158813478, 0.022183935165405275, 0.02221670341491699, 0.022187007904052734, 0.022220800399780274, 0.022237184524536133, 0.02226790428161621, 0.022206464767456056, 0.02225971221923828, 0.022140928268432617, 0.02229452705383301, 0.02228531265258789, 0.02229350471496582, 0.022176767349243166, 0.022361087799072265, 0.02225152015686035, 0.022210559844970702, 0.022215679168701173, 0.02226380729675293, 0.022187007904052734, 0.022213632583618165, 0.02224332809448242, 0.022754304885864256, 0.02226585578918457, 0.02221772766113281, 0.022206464767456056, 0.02226483154296875, 0.021966848373413086, 0.02205183982849121, 0.022099967956542968, 0.022203392028808593, 0.022363136291503907, 0.022364160537719727, 0.022344703674316405, 0.02223308753967285, 0.022335487365722655, 0.0224399356842041, 0.022565887451171874, 0.0225218563079834, 0.022244352340698242, 0.02223411178588867, 0.02225663948059082, 0.022342655181884767, 0.02221878433227539, 0.02215318489074707, 0.04551270294189453, 0.021498880386352538, 0.021541887283325196, 0.021501951217651367, 0.021432319641113282, 0.021425151824951173, 0.02147327995300293, 0.02146406364440918, 0.021530624389648437, 0.021445632934570313, 0.021526527404785157, 0.021679103851318358, 0.02146611213684082, 0.021538816452026367, 0.0215285758972168, 0.021593088150024413, 0.021651456832885742, 0.02127257537841797, 0.021340160369873046, 0.021440511703491212, 0.021550079345703126, 0.02147737693786621, 0.021549055099487305, 0.02142207908630371, 0.02148249626159668, 0.021562368392944335, 0.021440511703491212, 0.02149171257019043, 0.021424127578735352, 0.021378047943115236, 0.021389312744140625, 0.021445632934570313, 0.02142720031738281, 0.02143948745727539, 0.021332992553710937, 0.021432319641113282, 0.021433343887329103, 0.02142617607116699, 0.02143129539489746, 0.02147327995300293, 0.02142617607116699, 0.021556224822998047, 0.021329919815063478, 0.021178367614746094, 0.02149478340148926, 0.02295091247558594, 0.024001535415649415, 0.02289151954650879, 0.022328319549560546, 0.02247270393371582, 0.022336511611938475, 0.022393856048583984, 0.022271999359130858, 0.02305023956298828, 0.0224399356842041, 0.02233241653442383, 0.022658048629760744, 0.022633472442626954, 0.022371360778808594, 0.022270944595336913, 0.02266726493835449, 0.022451200485229493, 0.02231091117858887, 0.04704051208496094, 0.022401023864746093, 0.022451200485229493, 0.022221824645996095, 0.022182912826538087, 0.023061504364013673, 0.022665216445922853, 0.022202367782592772, 0.02227302360534668, 0.022352895736694335, 0.022350847244262697, 0.022240255355834963, 0.02226585578918457, 0.022435840606689454, 0.022339584350585938, 0.023191551208496093, 0.022448160171508788, 0.022245344161987306, 0.022419456481933595, 0.02229555130004883, 0.022278144836425783, 0.022253568649291993, 0.022322175979614257, 0.02143539237976074, 0.021354496002197267, 0.021412864685058593, 0.021437440872192383, 0.021246976852416992, 0.021206016540527343, 0.021312511444091797, 0.02145996856689453, 0.021396480560302734, 0.02141900825500488, 0.021416959762573243, 0.021406719207763672, 0.02141798400878906, 0.021346303939819337, 0.021408767700195314, 0.02161664009094238, 0.02151219177246094, 0.021358591079711914, 0.021411840438842773, 0.021358591079711914, 0.021420032501220702, 0.02142416000366211, 0.021448671340942384, 0.021368831634521485, 0.02146611213684082, 0.021394432067871092, 0.02146099281311035, 0.021359615325927735, 0.021428224563598632, 0.021392383575439454, 0.021569536209106444, 0.02145996856689453, 0.02147020721435547, 0.0214835205078125, 0.021580799102783203, 0.02149478340148926, 0.02230169677734375, 0.0222873592376709, 0.022323200225830078, 0.02229964828491211, 0.045434879302978515, 0.02152448081970215, 0.02148044776916504, 0.021498880386352538, 0.021572608947753907, 0.021533695220947266, 0.021521408081054686, 0.02148454475402832, 0.02149990463256836, 0.02147737693786621, 0.021549055099487305, 0.02145484733581543, 0.02142207908630371, 0.02142310333251953, 0.021547008514404296, 0.021576704025268553, 0.021511167526245118, 0.021346303939819337, 0.021358591079711914, 0.02142720031738281, 0.021970943450927736, 0.02230169677734375, 0.022139904022216796, 0.022558719635009765, 0.022374399185180666, 0.022157312393188477, 0.022334463119506837, 0.022297599792480468, 0.02227712059020996, 0.022139904022216796, 0.02226585578918457, 0.022194175720214843, 0.022185983657836913, 0.022076416015625, 0.022228992462158204, 0.02224844741821289, 0.02190336036682129, 0.022204416275024414, 0.022226943969726562, 0.022199296951293947, 0.022120447158813478, 0.02222591972351074, 0.02211327934265137, 0.02224745559692383, 0.022212575912475586, 0.022345727920532226, 0.022420480728149415, 0.022236160278320313, 0.022222848892211915, 0.02214297676086426, 0.02222591972351074, 0.022152191162109376, 0.02224127960205078, 0.022139904022216796, 0.022162431716918944, 0.022288383483886717, 0.022170623779296874, 0.02231705665588379, 0.022303743362426756, 0.022345727920532226, 0.0222423038482666, 0.022157312393188477, 0.02229964828491211]",tokens/s,44.35834797978967,,,,, +4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -5461,32 +4181,47 @@ Checkout your internet connection or see how to run the library in offline mode ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) +TypeError: DeciCoderAttention.forward() got an unexpected keyword argument 'cache_position' -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm-20b,internlm/internlm-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mistral-7B-v0.1,mistralai/Mistral-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2173.579264,6201.802752,0.0,5555.355648,5274.11712,s,10,6.188704040527344,0.6188704040527343,0.001630006512575581,0.6182249450683593,0.6205656127929687,0.6214197998046874,0.6221031494140624,"[0.6199492797851562, 0.6180035400390625, 0.6172139282226563, 0.6179977416992187, 0.618110595703125, 0.6165477905273438, 0.6183392944335937, 0.6222739868164062, 0.61989208984375, 0.6203757934570312]",tokens/s,413.65687924896486,kWh,7.2883394029405375e-06,3.9920504876135965e-06,3.5213917060001095e-05,4.649430695055522e-05,tokens/kWh,5506050.456290174,MB,2173.579264,6201.802752,0.0,5555.355648,5324.909056,s,10,366.72262109375004,36.672262109375005,0.03669260702690663,36.653501953125,36.74228671875,36.744877734375,36.746950546875006,"[36.7417109375, 36.74746875, 36.65041015625, 36.64756640625, 36.6498203125, 36.6483046875, 36.65363671875, 36.6533671875, 36.662453125, 36.6678828125]",tokens/s,1.7179196585174519,kWh,0.0004329811916251978,0.000237312961880707,0.002063029955978196,0.0027333241094841007,tokens/kWh,23048.858267997675,,s,629,371.7092334594727,0.5909526764061569,0.0735102746996128,0.581843994140625,0.5835925537109375,0.584360986328125,1.1999008935546875,"[0.5815029907226562, 0.58220849609375, 0.58231396484375, 0.5818121948242188, 0.581771240234375, 0.581728271484375, 0.581939208984375, 0.5820538940429687, 0.5821102294921875, 0.581634033203125, 0.5816616821289062, 0.5819156494140625, 0.581291015625, 0.5822781372070313, 0.5820303344726563, 0.5819361572265624, 0.581734375, 0.5818613891601563, 0.5819801635742188, 0.582466552734375, 0.5818736572265625, 0.581818359375, 0.5841039428710938, 0.58378955078125, 0.584427490234375, 0.58435791015625, 0.5840650024414062, 0.5840220336914063, 0.584052734375, 0.584026123046875, 0.5835888671875, 0.5834075927734375, 0.583383056640625, 0.5840967407226563, 0.5844940795898438, 0.5843302612304687, 0.5861007080078126, 0.5830584106445312, 0.5844940795898438, 0.5844203491210938, 0.5834240112304687, 0.58357861328125, 0.5838602294921875, 0.5845339965820312, 0.5830901489257813, 0.5837598876953125, 0.5830502319335937, 0.58431591796875, 0.5842994995117188, 0.5837005004882813, 0.5831137084960938, 0.5829529418945313, 0.5845821533203125, 0.5848340454101563, 0.5842728881835938, 0.5823283081054688, 0.5856133422851563, 0.5826621704101562, 0.5840762939453125, 0.5840148315429687, 0.5838244018554688, 0.583173095703125, 1.2010567626953126, 0.5827809448242187, 0.58383154296875, 0.58437939453125, 0.5838694458007813, 0.58402099609375, 0.5823805541992187, 0.5836072998046875, 0.5824061279296875, 0.5832857666015625, 0.5830154418945312, 0.5828423461914063, 0.5844193115234375, 0.583710693359375, 0.5833215942382812, 0.5818582763671875, 0.5821634521484375, 0.5816187133789062, 0.5839032592773438, 0.5848248291015625, 0.5831044921875, 0.5835745239257812, 0.5840752563476562, 0.58448486328125, 0.5853388671875, 0.5839749145507812, 0.5822197875976562, 0.5817006225585938, 0.581855224609375, 0.5835755615234375, 0.5830338745117187, 0.5852354736328125, 0.584363037109375, 0.5837445068359375, 0.58349365234375, 0.58421142578125, 0.585006103515625, 0.5831065673828125, 0.5816985473632813, 0.5817743530273437, 0.5817098388671875, 0.5845473022460937, 0.5823252563476562, 0.5827501831054688, 0.5815951538085937, 0.5826806030273437, 0.5863434448242187, 0.5844859008789063, 0.5844592895507813, 0.584052734375, 0.5841151733398438, 0.5830891723632813, 0.5820047607421875, 0.5847992553710938, 0.5855047607421875, 0.582703125, 0.5821572875976563, 0.5824225463867188, 0.5825310668945313, 0.58260888671875, 0.5822177124023438, 0.5819852905273437, 0.5815715942382812, 1.1993958740234374, 0.5825433349609375, 0.5819463500976563, 0.5820119018554688, 0.581875732421875, 0.5813340454101562, 0.5827901611328125, 0.5819699096679688, 0.581412841796875, 0.5816166381835938, 0.5814906616210938, 0.5816627197265625, 0.5826836547851563, 0.5817589721679688, 0.5819658203125, 0.5817825317382812, 0.5814906616210938, 0.5817098388671875, 0.582255615234375, 0.5815142211914063, 0.5814528198242187, 0.5813032836914063, 0.5811845092773438, 0.5815469970703125, 0.5824461059570313, 0.5814261474609375, 0.58144970703125, 0.5815429077148437, 0.5813892822265625, 0.5822146606445312, 0.5814312744140625, 0.581739501953125, 0.5815429077148437, 0.5813053588867187, 0.5817047119140625, 0.58222900390625, 0.5819566040039063, 0.5814466552734375, 0.5814537963867188, 0.5814927368164062, 0.581306396484375, 0.5819422607421875, 0.581738525390625, 0.5812838134765625, 0.5814528198242187, 0.5814886474609375, 0.5819361572265624, 0.5819166870117187, 0.5818040161132813, 0.5816985473632813, 0.5815736083984375, 0.5821388549804688, 0.5815367431640625, 0.582192138671875, 0.5816207275390625, 0.5815726318359375, 0.5814241333007812, 0.5814957885742188, 0.582708251953125, 0.581718017578125, 0.58149169921875, 0.5818613891601563, 0.5822637939453125, 1.2004178466796875, 0.5815613403320312, 0.5825177612304687, 0.5818429565429688, 0.5822146606445312, 0.5813770141601563, 0.5820886840820313, 0.5818121948242188, 0.5816586303710938, 0.5821511840820313, 0.58155517578125, 0.582277099609375, 0.5820498046875, 0.5820149536132813, 0.5815562133789063, 0.5816012573242187, 0.58168115234375, 0.5823037719726563, 0.5814323120117187, 0.5812920532226562, 0.5816371459960937, 0.5818091430664063, 0.5820221557617188, 0.5824839477539062, 0.5814835205078125, 0.581549072265625, 0.5811885986328125, 0.5815357666015625, 0.5823446655273438, 0.5814722290039063, 0.5815715942382812, 0.5821900634765625, 0.5817610473632813, 0.5821563110351563, 0.5818327026367187, 0.5814814453125, 0.5814220581054688, 0.5811742553710938, 0.5813903198242187, 0.5816350708007813, 0.581591064453125, 0.5814251708984375, 0.5813258056640624, 0.5812254638671875, 0.5822904052734375, 0.5816094970703125, 0.58172314453125, 0.58190234375, 0.5816903686523438, 0.581370849609375, 0.5813626708984375, 0.5817210693359375, 0.581518310546875, 0.5814149169921875, 0.5811558227539062, 0.581285888671875, 0.5823262939453125, 0.5823775024414063, 0.5814466552734375, 0.5813217163085938, 0.5813084106445312, 0.581475341796875, 0.5812244262695313, 1.2000972900390625, 0.5818818359375, 0.5816494140625, 0.5814087524414062, 0.5819525146484374, 0.5813268432617188, 0.5813104858398438, 0.5814395141601563, 0.5813831787109375, 0.5815377807617188, 0.5815398559570313, 0.5813851928710938, 0.5812265014648438, 0.5813248291015625, 0.581285888671875, 0.5814814453125, 0.58180712890625, 0.58216650390625, 0.5817006225585938, 0.581665771484375, 0.581285888671875, 0.5814927368164062, 0.5819913940429687, 0.5817118530273437, 0.58148046875, 0.5813248291015625, 0.5815654296875, 0.5814271850585937, 0.5818184204101563, 0.581286865234375, 0.5811497192382813, 0.58169140625, 0.5815244750976563, 0.5822689208984375, 0.5820487670898438, 0.5819586791992187, 0.5819259033203125, 0.5818101806640625, 0.582055908203125, 0.5828423461914063, 0.5817907104492187, 0.5819053955078125, 0.5818429565429688, 0.5818910522460937, 0.5818316650390625, 0.5823355102539063, 0.5815357666015625, 0.5818480834960937, 0.5816524658203125, 0.5814456176757813, 0.5823866577148438, 0.5815685424804687, 0.5816985473632813, 0.5815982055664063, 0.5815838623046875, 0.5819381713867188, 0.5823416137695312, 0.5835530395507813, 0.5818255615234375, 0.581444580078125, 0.5817507934570313, 0.58191259765625, 0.5820006103515625, 1.1981956787109376, 0.5812254638671875, 0.58144873046875, 0.5819668579101562, 0.5815818481445313, 0.5812940673828125, 0.5811456298828125, 0.5813626708984375, 0.5811497192382813, 0.58141796875, 0.5813995361328125, 0.5813135375976562, 0.58134423828125, 0.58155517578125, 0.5815787353515625, 0.5828638916015625, 0.5816575927734375, 0.5815111694335937, 0.5813616943359375, 0.5820538940429687, 0.5820927734375, 0.5819678955078125, 0.5817692260742188, 0.5816145629882813, 0.5816954956054687, 0.5814374389648438, 0.5818951416015625, 0.5821614379882812, 0.5817313232421875, 0.5813452758789063, 0.581381103515625, 0.5819310302734375, 0.5822279663085937, 0.5815029907226562, 0.5817210693359375, 0.5818112182617188, 0.5817722778320312, 0.5819627685546875, 0.583836669921875, 0.5821726684570312, 0.5814364013671875, 0.5819780883789063, 0.5817313232421875, 0.5815214233398438, 0.5822955322265625, 0.5814681396484375, 0.5818040161132813, 0.58149169921875, 0.5819668579101562, 0.5824163818359375, 0.5818613891601563, 0.5814384765625, 0.581412841796875, 0.5816555786132812, 0.58149169921875, 0.5826007080078125, 0.5815326538085938, 0.5814886474609375, 0.5814763793945312, 0.5815326538085938, 0.5814620361328126, 0.5819299926757813, 0.5814906616210938, 1.2004239501953125, 0.5820057373046875, 0.5815797729492187, 0.5823160400390625, 0.5817426147460938, 0.5813114624023438, 0.5819115600585938, 0.5817979125976562, 0.5821522216796875, 0.5816882934570312, 0.5816770629882813, 0.581875732421875, 0.5819259033203125, 0.5819658203125, 0.582761474609375, 0.582223876953125, 0.5820333862304687, 0.5817845458984375, 0.5826467895507812, 0.5818388061523437, 0.5823938598632813, 0.5820436401367187, 0.581734375, 0.5818245239257812, 0.5811896362304687, 0.5817927856445313, 0.5819688720703124, 0.5817190551757813, 0.5813688354492188, 0.5810667724609375, 0.5812234497070312, 0.581843994140625, 0.5815643920898438, 0.58111181640625, 0.5813903198242187, 0.5819085083007812, 0.58183984375, 0.582118408203125, 0.5814773559570312, 0.5814302978515625, 0.5815347290039062, 0.581191650390625, 0.5816688842773438, 0.5815234375, 0.5817190551757813, 0.5818490600585937, 0.5814508056640625, 0.5813779907226563, 0.5813463134765625, 0.5819893798828125, 0.581802978515625, 0.5817333984375, 0.5816944580078125, 0.58290380859375, 0.582845458984375, 0.5820845947265625, 0.5818582763671875, 0.5815060424804688, 0.5813718872070313, 0.5813084106445312, 0.58233447265625, 0.58221875, 0.582023193359375, 1.2042802734375, 0.5814743041992188, 0.5829151000976562, 0.581739501953125, 0.582096923828125, 0.5818674926757812, 0.5823180541992188, 0.5825535888671876, 0.581813232421875, 0.5818327026367187, 0.5814989013671875, 0.5814200439453125, 0.58134326171875, 0.5823580322265625, 0.5821480712890625, 0.5814957885742188, 0.581401611328125, 0.58191357421875, 0.5817169799804688, 0.5821388549804688, 0.5816801147460937, 0.581734375, 0.58136474609375, 0.5820723266601563, 0.5818541870117188, 0.5822105712890625, 0.5819094848632812, 0.5814200439453125, 0.5814589233398437, 0.5813892822265625, 0.5821788330078125, 0.5815685424804687, 0.5816401977539063, 0.5814948120117187, 0.5815224609375, 0.58134326171875, 0.5816104736328125, 0.5815562133789063, 0.5814251708984375, 0.5814835205078125, 0.5819678955078125, 0.5815869140625, 0.5825003662109375, 0.5818951416015625, 0.5816432495117188, 0.5817241821289062, 0.5819412231445312, 0.5827870483398437, 0.5818347778320313, 0.5818951416015625, 0.5817241821289062, 0.5815101318359375, 0.5815992431640625, 0.5828341674804688, 0.58174462890625, 0.5817559204101562, 0.5814732666015625, 0.5818153076171875, 0.5818726196289062, 0.5815941162109375, 0.5818357543945313, 0.5814814453125, 0.581423095703125, 1.20260302734375, 0.5818193969726563, 0.581865478515625, 0.581950439453125, 0.5817681884765625, 0.5818214111328125, 0.5814395141601563, 0.5819514770507812, 0.5817221069335937, 0.5816934204101563, 0.5817293090820312, 0.581970947265625, 0.5828628540039062, 0.5817088012695313, 0.5820282592773437, 0.5821061401367188, 0.5815398559570313, 0.5825218505859375, 0.5821337890625, 0.5817528076171875, 0.5816156005859375, 0.5817528076171875, 0.5815244750976563, 0.5816012573242187, 0.5817876586914063, 0.5815234375, 0.5816299438476562, 0.5816361083984375, 0.58243994140625, 0.5818275756835938, 0.581982177734375, 0.5820805053710938, 0.5815951538085937, 0.5817456665039062, 0.5822423095703125, 0.5822945556640625, 0.5821808471679687, 0.5818050537109375, 0.58201806640625, 0.5817753295898438, 0.5820897216796875, 0.5823733520507812, 0.5820651245117188, 0.5818265380859375, 0.581950439453125, 0.5819739990234375, 0.5821327514648438, 0.5821265869140625, 0.5822382202148437, 0.5820354614257812, 0.5818521728515625, 0.582096923828125, 0.5824255981445312, 0.5819852905273437, 0.58187060546875, 0.581559326171875, 0.5813483276367187, 0.5814466552734375, 0.5824675903320312, 0.5822116088867187, 0.582044677734375, 0.5817651977539062, 0.5824183959960938, 1.2028917236328125, 0.5816196899414062, 0.5820651245117188, 0.58216650390625, 0.5816453247070312, 0.5824542846679688, 0.58161767578125, 0.5813831787109375, 0.5814927368164062, 0.5813555297851563, 0.5818265380859375, 0.5822269287109375, 0.5816893310546875, 0.5816524658203125, 0.5816483764648438, 0.582150146484375, 0.5817559204101562, 0.5817753295898438, 0.5819832153320312, 0.58170263671875, 0.5822689208984375, 0.58190234375, 0.5830420532226562, 0.5826693115234375, 0.5818050537109375, 0.5818674926757812, 0.5821439819335937, 0.5822811889648437, 0.582197265625, 0.5828679809570313, 0.5820733642578125, 0.5823170776367188, 0.582361083984375, 0.5818163452148437, 0.5824215087890625, 0.5816258544921875, 0.5819381713867188, 0.5818787841796875, 0.5817630615234375, 0.5824501953125, 0.5823272705078125, 0.5820313720703125, 0.5818060913085937, 0.5822310180664062, 0.58191259765625, 0.5820538940429687, 0.5824081420898437, 0.5817354125976563, 0.5822463989257812, 0.5826129760742188, 0.5819381713867188, 0.5827451171875, 0.58174462890625, 0.5820057373046875, 0.5819617309570313, 0.581875732421875, 0.5822545776367187, 0.5817784423828125, 0.5824000244140625, 0.5813032836914063, 0.5822054443359375, 0.5817518310546875, 0.5821992797851563]",tokens/s,1.6921828767769354,,,,, +4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,r,r,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -5494,32 +4229,69 @@ NameError: name 'exlv2_ext' is not defined File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code - answer = input( -EOFError: EOF when reading a line + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/r/resolve/main/config.json -During handling of the above exception, another exception occurred: +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669490f6-54ff6a371973c24632aecd5c;051c96c8-4369-4d30-b801-0f3cd954464d) + +Repository Not Found for url: https://huggingface.co/r/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. + +The above exception was the direct cause of the following exception: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights - self.create_no_weights_model() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model - meta_model = self.automodel_class.from_config(self.pretrained_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config - trust_remote_code = resolve_trust_remote_code( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code - raise ValueError( -ValueError: The repository for internlm/internlm-20b contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/internlm/internlm-20b. -Please pass the argument `trust_remote_code=True` to allow custom code to be run. + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + raise EnvironmentError( +OSError: r is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-1_6b,stabilityai/stablelm-2-1_6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,l,l,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -5527,34 +4299,69 @@ Please pass the argument `trust_remote_code=True` to allow custom code to be run File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/l/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694919b-5b27d2c22e7a588847b7b749;69efa352-6180-4411-ab7d-4ccc409e27f8) + +Repository Not Found for url: https://huggingface.co/l/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + raise EnvironmentError( +OSError: l is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,1,1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,a,a,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -5566,7 +4373,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/1/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/a/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -5593,9 +4400,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669495e6-24c5fec26b2eb15737096d10;cc3c1055-4df3-49a1-9aee-62dd0699dcde) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949147-39661df06dc372185a19cac3;64568921-0650-4593-88c7-3037a39950ba) -Repository Not Found for url: https://huggingface.co/1/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/a/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -5620,11 +4427,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: 1 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: a is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-1.8B,Qwen/Qwen1.5-1.8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,1,1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -5632,34 +4439,71 @@ If this is a private repository, make sure to pass a token having permission to File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/1/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694958f-529911556505267b75f3ce9b;baf86dc0-c37b-49ce-8e47-31cfeb96b820) + +Repository Not Found for url: https://huggingface.co/1/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + raise EnvironmentError( +OSError: 1 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-7b,huggyllama/llama-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1938.939904,5480.382464,0.0,4833.93536,4503.41376,s,10,5.748573669433593,0.5748573669433594,0.0017742246285147622,0.5745578002929688,0.5774038818359375,0.5778909057617188,0.5782805249023437,"[0.5783779296875, 0.577295654296875, 0.57393994140625, 0.573126220703125, 0.5733052978515625, 0.5724807739257812, 0.5741940307617187, 0.5749215698242187, 0.5756366577148437, 0.5752955932617188]",tokens/s,445.32785821499897,kWh,6.7656206220020495e-06,3.7063076173277895e-06,3.206590528233145e-05,4.2537833521661295e-05,tokens/kWh,6018172.0319545325,MB,1940.045824,5480.382464,0.0,4833.93536,4688.700416,s,10,334.972359375,33.49723593750001,0.0033039843001841955,33.498505859375,33.500188281250004,33.500191796875,33.500194609375,"[33.5001953125, 33.49962890625, 33.4886484375, 33.4951328125, 33.496859375, 33.49850390625, 33.49586328125, 33.5001875, 33.49883203125, 33.4985078125]",tokens/s,1.8807521945257513,kWh,0.0003954924626188515,0.00021676498843461862,0.0018363540061190774,0.0024486114571725475,tokens/kWh,25728.867605948046,,s,629,339.6100241088865,0.5399205470729518,0.06828609533356728,0.531684326171875,0.532189599609375,0.5323219116210938,1.1051400146484376,"[0.5314457397460938, 0.5318953247070313, 0.5313341674804688, 0.5320222778320313, 0.53230078125, 0.5322966918945312, 0.532052978515625, 0.5319219360351563, 0.5317222290039062, 0.5324605712890625, 0.5316915283203125, 0.5319751586914062, 0.5320540161132813, 0.532116455078125, 0.5318584594726562, 0.5316935424804687, 0.5311477661132813, 0.5319874267578125, 0.5314037475585938, 0.5320007934570312, 0.5313106079101563, 0.5315860595703125, 0.5312788696289062, 0.5318707275390625, 0.5317847290039063, 0.5322864379882812, 0.5312890625, 0.5320038452148438, 0.5311918334960938, 0.5317908325195313, 0.53142529296875, 0.5319515991210938, 0.5317119750976562, 0.5320806274414063, 0.5313812255859375, 0.53172119140625, 0.5311549682617187, 0.532105224609375, 0.5318379516601562, 0.5316167602539063, 0.5311580200195313, 0.5316771850585937, 0.5315532836914062, 0.532158447265625, 0.531968017578125, 0.5320550537109375, 0.5314191284179688, 0.5322158203125, 0.5313853149414063, 0.5317304077148437, 0.5311661987304688, 0.5319700317382813, 0.5315399780273438, 0.5316935424804687, 0.531431396484375, 0.5315706787109375, 0.53121435546875, 0.5316372680664062, 0.5313402709960937, 0.531820556640625, 0.5316812744140625, 0.532168701171875, 1.109749755859375, 0.531346435546875, 0.5321318359375, 0.5310955810546875, 0.5315061645507813, 0.531493896484375, 0.5316331787109375, 0.5316638793945313, 0.5315604248046875, 0.531146728515625, 0.5316085815429688, 0.5309306640625, 0.5317273559570312, 0.5312214965820312, 0.5316608276367187, 0.5313013916015625, 0.5319352416992188, 0.5315829467773437, 0.5317447509765625, 0.5317273559570312, 0.53187890625, 0.5315963134765626, 0.53159423828125, 0.5313740844726562, 0.532463623046875, 0.5318870849609375, 0.5320325317382812, 0.5313720092773437, 0.531726318359375, 0.5309389038085938, 0.5318615112304688, 0.5310996704101563, 0.5315245971679687, 0.5312379150390625, 0.5315072021484375, 0.5316474609375, 0.5321410522460938, 0.5322495727539063, 0.5316792602539062, 0.5317243041992188, 0.5318717651367187, 0.531431396484375, 0.5317796020507812, 0.5316239624023438, 0.5317867431640625, 0.5317509155273438, 0.533918701171875, 0.5316608276367187, 0.5317805786132812, 0.5316536254882812, 0.5319649047851562, 0.531599365234375, 0.531768310546875, 0.5318400268554687, 0.5323099975585938, 0.5319802856445313, 0.5322926025390625, 0.5316300659179688, 0.532094970703125, 0.5318133544921875, 0.531968017578125, 0.5319454956054688, 0.5321953125, 1.106044921875, 0.5311734008789063, 0.5317723999023437, 0.5311109008789062, 0.5316505737304688, 0.5316710205078125, 0.5314662475585937, 0.531103759765625, 0.5316044921875, 0.531599365234375, 0.5319229736328125, 0.5315625, 0.5319280395507813, 0.5312767944335938, 0.5315369262695312, 0.5314559936523438, 0.531651611328125, 0.5313187866210938, 0.5317222290039062, 0.5312973022460937, 0.5317273559570312, 0.5311549682617187, 0.531431396484375, 0.531472412109375, 0.532068359375, 0.5310628051757813, 0.5315819702148438, 0.5311876831054687, 0.5319567260742187, 0.5312583618164063, 0.5321011352539062, 0.5313074951171874, 0.5321062622070313, 0.531146728515625, 0.5314539794921875, 0.5311528930664062, 0.5316218872070313, 0.531188720703125, 0.531778564453125, 0.53129931640625, 0.53172021484375, 0.53125634765625, 0.5316557006835938, 0.5312962646484375, 0.5317734375, 0.531356689453125, 0.5318450927734375, 0.5314447631835938, 0.5319024658203125, 0.531715087890625, 0.5318553466796875, 0.5314600830078124, 0.5316638793945313, 0.5312317504882812, 0.5315184936523437, 0.5314949340820313, 0.5321676635742187, 0.5318441162109375, 0.5320765380859375, 0.5313792114257813, 0.5318953247070313, 0.5314150390625, 0.53174169921875, 1.1051417236328125, 0.531535888671875, 0.5323489379882812, 0.5317929077148438, 0.53146728515625, 0.5314027709960938, 0.5317069091796875, 0.5312337646484375, 0.5317662963867188, 0.531146728515625, 0.5315819702148438, 0.531715087890625, 0.5320007934570312, 0.531135498046875, 0.5316823120117188, 0.5312440185546875, 0.531652587890625, 0.5312808837890625, 0.53197314453125, 0.53145703125, 0.5322874755859375, 0.5318850708007813, 0.5318379516601562, 0.5312071533203125, 0.531473388671875, 0.531135498046875, 0.531435546875, 0.5312982788085937, 0.5317243041992188, 0.5311580200195313, 0.5318113403320313, 0.5314652099609375, 0.5317734375, 0.53153076171875, 0.5319024658203125, 0.5314232177734375, 0.5322066040039063, 0.5310986328125, 0.5315245971679687, 0.53191064453125, 0.5318922119140626, 0.53157275390625, 0.5320130615234375, 0.5313024291992188, 0.5326827392578125, 0.5315870971679687, 0.5319966430664063, 0.5312655639648437, 0.5317652587890624, 0.5317560424804687, 0.532094970703125, 0.5314744262695312, 0.5314744262695312, 0.5314232177734375, 0.5318430786132813, 0.531373046875, 0.5317376098632812, 0.5314959106445313, 0.53226904296875, 0.5319168090820312, 0.5326305541992188, 0.5315430297851562, 0.5318215942382812, 1.1051356201171876, 0.5312973022460937, 0.5315819702148438, 0.5314774780273438, 0.531794921875, 0.5313423461914063, 0.5317007446289063, 0.5312061157226563, 0.532337646484375, 0.5311897583007813, 0.5318450927734375, 0.5311968994140625, 0.5319700317382813, 0.5320519409179687, 0.5319915771484375, 0.531267578125, 0.5318911743164062, 0.531177490234375, 0.5319485473632812, 0.5313751220703125, 0.5316874389648437, 0.5312163696289063, 0.5318246459960938, 0.5318041381835937, 0.5321021728515625, 0.5312501831054688, 0.5314898071289063, 0.5313935546875, 0.5318809814453125, 0.5312296752929687, 0.5316013793945312, 0.5316351928710937, 0.5323223266601562, 0.5317406616210938, 0.5318369140625, 0.5311907958984375, 0.5315348510742187, 0.5314457397460938, 0.531673095703125, 0.53165771484375, 0.5315717163085938, 0.531652587890625, 0.5317069091796875, 0.5313167114257813, 0.53161474609375, 0.5311897583007813, 0.5315440673828125, 0.5312553100585937, 0.5322280883789062, 0.5312880859375, 0.5325035400390625, 0.5322506103515625, 0.5319270629882813, 0.5315594482421875, 0.53212158203125, 0.5314180908203125, 0.5320048828125, 0.5329141845703125, 0.5321277465820312, 0.5319035034179688, 0.5321103515625, 0.5317222290039062, 0.5319536743164063, 1.104712646484375, 0.531314697265625, 0.531794921875, 0.531409912109375, 0.5321390380859375, 0.5317406616210938, 0.5324042358398438, 0.5315665893554687, 0.531862548828125, 0.5314232177734375, 0.5315747680664062, 0.5311682739257813, 0.5318154296875, 0.53142529296875, 0.5318092651367188, 0.5314898071289063, 0.5318870849609375, 0.531378173828125, 0.53172119140625, 0.5311692504882812, 0.531430419921875, 0.5313966064453125, 0.531857421875, 0.5313710327148438, 0.5323397216796875, 0.5316075439453125, 0.5323120727539062, 0.5317294311523437, 0.5321543579101562, 0.5312010498046875, 0.5318461303710937, 0.5319188232421875, 0.532210693359375, 0.5314221801757812, 0.5321881713867187, 0.5314324340820312, 0.5315921630859375, 0.5312501831054688, 0.5330370483398438, 0.531240966796875, 0.5315143432617188, 0.5314150390625, 0.5320355834960937, 0.531736572265625, 0.532005859375, 0.5315584106445312, 0.5322998046875, 0.5318276977539063, 0.5317406616210938, 0.53136279296875, 0.5315768432617187, 0.531726318359375, 0.5317335205078125, 0.5318584594726562, 0.5316566772460938, 0.531314697265625, 0.5316884765625, 0.5317488403320313, 0.5318338623046875, 0.5312901000976562, 0.53187890625, 0.5315584106445312, 0.5323212890625, 1.1061114501953124, 0.5317314453125, 0.5319290771484375, 0.531072998046875, 0.5316290283203124, 0.5314488525390625, 0.5314508666992187, 0.5313126220703125, 0.5319659423828125, 0.5314447631835938, 0.5315645141601563, 0.5322833862304688, 0.5317775268554688, 0.5313228759765625, 0.5322045288085937, 0.53157373046875, 0.5320222778320313, 0.53178369140625, 0.5322998046875, 0.5316710205078125, 0.5317069091796875, 0.531219482421875, 0.5317181396484375, 0.5315245971679687, 0.531736572265625, 0.5315369262695312, 0.53231103515625, 0.5319618530273438, 0.5321339111328125, 0.5312696533203125, 0.5317406616210938, 0.53157275390625, 0.5317908325195313, 0.5312593994140625, 0.5319639282226563, 0.5313003540039063, 0.5317816162109374, 0.5313792114257813, 0.531936279296875, 0.5312071533203125, 0.5314293823242188, 0.5310996704101563, 0.531589111328125, 0.5313955688476563, 0.53193115234375, 0.5313556518554687, 0.5319588012695312, 0.531583984375, 0.532021240234375, 0.5315205078125, 0.5315798950195313, 0.5314150390625, 0.5316608276367187, 0.53139453125, 0.5319014282226563, 0.5313863525390625, 0.5320611572265626, 0.5318748168945312, 0.5321339111328125, 0.5318461303710937, 0.5317355346679687, 0.5316792602539062, 0.5318819580078125, 1.1075174560546874, 0.531072021484375, 0.5316382446289063, 0.5312890625, 0.53142529296875, 0.531535888671875, 0.5324411010742187, 0.5314232177734375, 0.5321287841796875, 0.5315972900390625, 0.5322034912109375, 0.5314857177734374, 0.5315389404296875, 0.531357666015625, 0.5317713623046875, 0.5311488037109375, 0.5317294311523437, 0.5311682739257813, 0.531652587890625, 0.5319782104492188, 0.5317386474609375, 0.5313341674804688, 0.5316669311523438, 0.5313074951171874, 0.5316454467773437, 0.5311918334960938, 0.5317662963867188, 0.5315706787109375, 0.5321380004882813, 0.5316188354492187, 0.5322280883789062, 0.5312737426757812, 0.5317304077148437, 0.5311057739257813, 0.5317775268554688, 0.5316751098632813, 0.5317723999023437, 0.5313269653320313, 0.532220947265625, 0.531409912109375, 0.531726318359375, 0.5313054809570312, 0.5317427368164063, 0.5314866943359375, 0.5319229736328125, 0.5314406127929687, 0.532294677734375, 0.5323673706054688, 0.5322874755859375, 0.5322711181640625, 0.5320068969726562, 0.5316044921875, 0.5322977294921875, 0.531583984375, 0.5319116821289063, 0.5315798950195313, 0.532516845703125, 0.5323622436523437, 0.5323622436523437, 0.5315491943359375, 0.5319935913085938, 0.5320017700195312, 0.531962890625, 1.1080765380859374, 0.5319547119140625, 0.5317703857421875, 0.53150927734375, 0.5314652099609375, 0.5311805419921874, 0.53163623046875, 0.5313218383789062, 0.531493896484375, 0.531631103515625, 0.5318482055664062, 0.5316925659179688, 0.5316792602539062, 0.5311713256835937, 0.53180517578125, 0.5314037475585938, 0.531620849609375, 0.5318748168945312, 0.5327401123046875, 0.5320171508789062, 0.5328353271484375, 0.5319864501953125, 0.5319833374023437, 0.5312788696289062, 0.53235302734375, 0.5315451049804687, 0.5321615600585937, 0.5315635375976563, 0.5320089721679687, 0.5313218383789062, 0.5321666259765625, 0.5312501831054688, 0.5315911865234375, 0.5312686157226563, 0.5321390380859375, 0.531409912109375, 0.531768310546875, 0.5311641845703124, 0.5316935424804687, 0.5315829467773437, 0.5322066040039063, 0.5317447509765625, 0.5320120239257813, 0.5312399291992187, 0.5316751098632813, 0.5313863525390625, 0.5317621459960937, 0.531684326171875, 0.5316658935546875, 0.5314549560546875, 0.5319035034179688, 0.531262451171875, 0.5315963134765626, 0.5311375122070312, 0.5317283935546875, 0.5315194702148438, 0.5318932495117188, 0.532084716796875, 0.5324154663085937, 0.5319188232421875, 0.5318717651367187, 0.5313474731445312, 0.5320181884765625, 1.10763720703125, 0.5311539306640625, 0.5317109985351562, 0.5316484985351563, 0.5316484985351563, 0.5312767944335938, 0.5317509155273438, 0.5310279541015624, 0.5314611206054688, 0.5312849731445313, 0.53146728515625, 0.5310648193359375, 0.5322076416015625, 0.53161572265625, 0.5324257202148438, 0.5314857177734374, 0.5316536254882812, 0.5312450561523437, 0.5317069091796875, 0.5315901489257813, 0.5321072387695313, 0.5315020751953125, 0.531820556640625, 0.5321041870117188, 0.5318809814453125, 0.5312317504882812, 0.532041748046875, 0.5315451049804687, 0.5318154296875, 0.5316792602539062, 0.5321062622070313, 0.5322495727539063, 0.5319905395507812, 0.531694580078125, 0.5317621459960937, 0.5315451049804687, 0.5317488403320313, 0.5312747802734376, 0.5321328735351563, 0.531746826171875, 0.5318154296875, 0.5317119750976562, 0.531684326171875, 0.5313290405273438, 0.5314979858398438, 0.5311682739257813, 0.5318164672851563, 0.5316884765625, 0.53195263671875, 0.5318246459960938, 0.532116455078125, 0.5315665893554687, 0.5320376586914063, 0.5314426879882812, 0.5319772338867188, 0.5315123291015625, 0.53215234375, 0.53184716796875, 0.5321748657226563, 0.5318123779296875, 0.5321236572265625, 0.5316618041992187, 0.5318829956054687]",tokens/s,1.8521243642629592,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-2.7b,EleutherAI/pythia-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2265.919488,3330.801664,0.0,2684.35456,2447.59552,s,10,2.4030111236572265,0.24030111236572266,0.0012440053970201484,0.24010930633544922,0.24119976043701172,0.24230707931518555,0.24319293441772463,"[0.2434143981933594, 0.2409536895751953, 0.23907139587402343, 0.23946762084960938, 0.2396122589111328, 0.23890797424316407, 0.23970700073242188, 0.2405301055908203, 0.24051161193847656, 0.24083506774902344]",tokens/s,1065.330066430923,kWh,2.8237744456245787e-06,1.5472998550649208e-06,1.2583984934904673e-05,1.6955059235594172e-05,tokens/kWh,15098738.166751605,MB,2265.919488,3330.801664,0.0,2684.35456,2597.681664,s,10,139.56764257812497,13.9567642578125,0.0037662168729373563,13.95505322265625,13.962588671875,13.96323818359375,13.963757792968751,"[13.95483984375, 13.95481640625, 13.9549306640625, 13.95517578125, 13.9599765625, 13.9638876953125, 13.9624443359375, 13.953060546875, 13.952154296875, 13.9563564453125]",tokens/s,4.513940254076789,kWh,0.00016469605360239274,9.026671937368518e-05,0.0007221266028330957,0.0009770893758091737,tokens/kWh,64477.21320050864,,s,629,141.50236668396,0.22496401698562793,0.028578568615475336,0.22146662902832032,0.22197882690429688,0.222200830078125,0.46145660278320316,"[0.222501953125, 0.22133958435058593, 0.22126080322265626, 0.22115533447265626, 0.22122291564941407, 0.22115737915039063, 0.22111334228515625, 0.2211881561279297, 0.22123001098632813, 0.22108671569824218, 0.22202674865722657, 0.2213621826171875, 0.22130892944335936, 0.221412353515625, 0.22178816223144532, 0.22125669860839844, 0.22154550170898438, 0.22125155639648436, 0.22184141540527344, 0.22194586181640624, 0.22131817626953126, 0.22113481140136718, 0.22139187622070314, 0.22203596496582031, 0.22120550537109376, 0.22182707214355468, 0.22148197937011718, 0.22121574401855468, 0.22116249084472656, 0.22113999938964843, 0.22153315734863283, 0.22137344360351563, 0.22128536987304687, 0.22147686767578126, 0.22139497375488282, 0.2215167694091797, 0.22115020751953124, 0.22119526672363282, 0.2216222686767578, 0.22131507873535156, 0.2215731201171875, 0.22197042846679688, 0.2214871063232422, 0.22137344360351563, 0.22149530029296874, 0.2211829833984375, 0.22195916748046876, 0.22144102478027344, 0.22115122985839844, 0.22134988403320313, 0.2216417236328125, 0.22153318786621093, 0.2213396453857422, 0.22140824890136718, 0.2213949432373047, 0.22160794067382814, 0.22140109252929688, 0.22149017333984375, 0.22158233642578126, 0.2214686737060547, 0.2215290832519531, 0.2215116729736328, 0.4632596435546875, 0.22171238708496094, 0.221233154296875, 0.22143283081054688, 0.2215679931640625, 0.22207183837890626, 0.22199087524414063, 0.2218137664794922, 0.22159461975097655, 0.2211604766845703, 0.22112969970703125, 0.22134375, 0.22146156311035156, 0.2211706237792969, 0.2218250274658203, 0.2215004119873047, 0.2212454376220703, 0.22122291564941407, 0.22121881103515625, 0.22129049682617188, 0.22144000244140624, 0.22122496032714845, 0.22121574401855468, 0.22197247314453125, 0.2214799346923828, 0.22136012268066407, 0.22134066772460936, 0.22136422729492186, 0.22131097412109374, 0.22127923583984374, 0.22128128051757812, 0.22142156982421876, 0.22127308654785155, 0.22122598266601562, 0.22121676635742188, 0.22201344299316406, 0.2224384002685547, 0.22226841735839845, 0.22168576049804686, 0.22131507873535156, 0.2211666259765625, 0.22145021057128905, 0.2213509063720703, 0.2210908203125, 0.2211420135498047, 0.2215116729736328, 0.22274458312988282, 0.22148300170898438, 0.2212454376220703, 0.22115327453613282, 0.22183013916015626, 0.22141746520996095, 0.22183628845214845, 0.2215557098388672, 0.22127104187011717, 0.2220482635498047, 0.2213693389892578, 0.22153421020507813, 0.22129356384277343, 0.22213938903808594, 0.22136114501953125, 0.22106112670898437, 0.22137957763671876, 0.4608409729003906, 0.22114405822753908, 0.2210918426513672, 0.22119833374023437, 0.22196018981933593, 0.2215413818359375, 0.22137139892578125, 0.2214246368408203, 0.22122802734375, 0.22138983154296876, 0.2213478698730469, 0.2211327667236328, 0.22113591003417968, 0.2211645050048828, 0.22161613464355467, 0.22142771911621092, 0.22118502807617188, 0.22131715393066406, 0.22171746826171876, 0.22127410888671875, 0.22118911743164063, 0.22119740295410156, 0.22118185424804687, 0.22219775390625, 0.22114816284179686, 0.22126797485351563, 0.22138265991210937, 0.22202163696289062, 0.221623291015625, 0.22125567626953124, 0.2214297637939453, 0.22170930480957032, 0.22169293212890626, 0.22206874084472655, 0.22159257507324218, 0.2214799346923828, 0.22199090576171876, 0.22157720947265624, 0.22174208068847656, 0.22161613464355467, 0.2212843475341797, 0.22151271057128907, 0.22158233642578126, 0.22143283081054688, 0.22131404113769532, 0.22166323852539063, 0.22163046264648437, 0.22240870666503906, 0.22161407470703126, 0.22181785583496094, 0.22200831604003907, 0.22142874145507813, 0.22144102478027344, 0.22163661193847656, 0.22149530029296874, 0.22142668151855469, 0.22134169006347656, 0.2213683166503906, 0.2215076141357422, 0.2218208923339844, 0.221412353515625, 0.2214072265625, 0.22158233642578126, 0.46169601440429686, 0.2212136993408203, 0.22105702209472655, 0.2211266632080078, 0.2211031036376953, 0.22123622131347656, 0.22111846923828124, 0.22110105895996093, 0.22219468688964844, 0.22128536987304687, 0.2216058807373047, 0.22124237060546875, 0.22226022338867188, 0.22136323547363282, 0.2218741455078125, 0.22145741271972658, 0.22111538696289063, 0.22111231994628905, 0.22129766845703125, 0.22105702209472655, 0.22113792419433595, 0.22142874145507813, 0.2212351989746094, 0.22122496032714845, 0.22117068481445312, 0.22113279724121093, 0.22115122985839844, 0.22112973022460938, 0.2212024383544922, 0.2211102752685547, 0.2212956085205078, 0.22164582824707033, 0.2216058807373047, 0.22137548828125, 0.22140524291992186, 0.22150752258300782, 0.22146560668945312, 0.22119526672363282, 0.22161715698242188, 0.22124032592773438, 0.22137651062011718, 0.221770751953125, 0.22136524963378906, 0.22113690185546875, 0.22289407348632811, 0.22195814514160156, 0.22175027465820313, 0.22173286437988282, 0.2216048583984375, 0.221559814453125, 0.22163661193847656, 0.22160383605957032, 0.22145741271972658, 0.22292991638183593, 0.22169804382324218, 0.22141644287109374, 0.22166732788085938, 0.22217625427246093, 0.2222335968017578, 0.22209843444824218, 0.22188134765625, 0.2213939208984375, 0.22153727722167968, 0.46185061645507813, 0.2211788787841797, 0.22111436462402342, 0.22129049682617188, 0.22150553894042968, 0.22128128051757812, 0.2212024383544922, 0.22144000244140624, 0.22146969604492187, 0.22136114501953125, 0.22112562561035157, 0.2214481964111328, 0.2222335968017578, 0.22209536743164063, 0.22137548828125, 0.2215034942626953, 0.22125567626953124, 0.22210150146484375, 0.22135398864746095, 0.22115122985839844, 0.22146560668945312, 0.22135501098632812, 0.2211973114013672, 0.2217144317626953, 0.22152809143066407, 0.22151266479492188, 0.2218260498046875, 0.22138777160644532, 0.22115327453613282, 0.22133042907714845, 0.2219438018798828, 0.22181068420410155, 0.22151679992675782, 0.22163967895507813, 0.22198374938964843, 0.222202880859375, 0.2216089630126953, 0.22158848571777343, 0.22197964477539062, 0.2219304962158203, 0.2216058807373047, 0.22188236999511718, 0.2217144317626953, 0.2216990966796875, 0.22185162353515625, 0.22161509704589843, 0.22144825744628907, 0.2215761260986328, 0.22152294921875, 0.22147789001464843, 0.22122189331054687, 0.22149017333984375, 0.22142054748535156, 0.2215905303955078, 0.2212833251953125, 0.22145535278320314, 0.2214256591796875, 0.22370611572265625, 0.22159666442871093, 0.22157209777832032, 0.22164889526367187, 0.22127622985839843, 0.2215331268310547, 0.4607232055664062, 0.2214246368408203, 0.22150758361816406, 0.22157212829589842, 0.22139695739746093, 0.22143283081054688, 0.22193766784667968, 0.22149017333984375, 0.22146456909179688, 0.22140824890136718, 0.22149533081054687, 0.22149014282226562, 0.22156288146972655, 0.22154342651367187, 0.22170623779296875, 0.2220062713623047, 0.22157107543945312, 0.22163865661621093, 0.22165196228027345, 0.22187519836425781, 0.22198477172851563, 0.22197862243652344, 0.22181272888183592, 0.22163456726074218, 0.22144921875, 0.2217902069091797, 0.22170623779296875, 0.22131404113769532, 0.22122291564941407, 0.22189158630371095, 0.22152499389648436, 0.2215362548828125, 0.22123417663574219, 0.2213365783691406, 0.2216407012939453, 0.22166015625, 0.22149221801757812, 0.22126182556152343, 0.22392626953125, 0.2219438018798828, 0.22167347717285157, 0.22165606689453124, 0.22170930480957032, 0.22157626342773437, 0.2213846435546875, 0.22152499389648436, 0.2214307861328125, 0.2218014678955078, 0.22188134765625, 0.22133042907714845, 0.22165298461914062, 0.22161407470703126, 0.22176870727539064, 0.22166835021972656, 0.22149017333984375, 0.22150656127929688, 0.22176768493652343, 0.22180863952636717, 0.22148101806640624, 0.221297607421875, 0.22151373291015625, 0.222308349609375, 0.22171034240722656, 0.46220184326171876, 0.22253363037109375, 0.22171034240722656, 0.22214041137695312, 0.22114816284179686, 0.2212351989746094, 0.22153932189941405, 0.22129664611816408, 0.2211778564453125, 0.22154853820800782, 0.22134176635742187, 0.22164781188964844, 0.22147378540039062, 0.22127615356445313, 0.2212843475341797, 0.22165913391113282, 0.2215885467529297, 0.22137234497070313, 0.22157516479492187, 0.22207180786132813, 0.22170623779296875, 0.22145126342773438, 0.22118502807617188, 0.22266777038574218, 0.22152601623535156, 0.2213744659423828, 0.22128947448730468, 0.22164991760253908, 0.2218076171875, 0.22161920166015625, 0.22146969604492187, 0.22127513122558592, 0.22119424438476562, 0.22168269348144531, 0.22124441528320313, 0.22097100830078126, 0.221085693359375, 0.22113381958007813, 0.22170008850097656, 0.22122700500488282, 0.22127923583984374, 0.22145330810546876, 0.22255923461914062, 0.22140007019042968, 0.22144613647460937, 0.22161509704589843, 0.222023681640625, 0.22214041137695312, 0.22231552124023438, 0.2217574462890625, 0.22175949096679687, 0.22195610046386718, 0.22176666259765626, 0.221739013671875, 0.22195001220703126, 0.22145529174804687, 0.2223953857421875, 0.22163661193847656, 0.22160281372070312, 0.22152294921875, 0.22183322143554687, 0.2217840576171875, 0.2217410583496094, 0.46331597900390625, 0.22162431335449218, 0.22123930358886718, 0.2212843475341797, 0.2211409912109375, 0.22146662902832032, 0.22136729431152344, 0.22115020751953124, 0.22153216552734376, 0.22155059814453126, 0.22213427734375, 0.2212034606933594, 0.221412353515625, 0.22128640747070313, 0.22130995178222657, 0.22144102478027344, 0.22194688415527344, 0.22158131408691406, 0.22149632263183594, 0.22149427795410156, 0.2216222686767578, 0.22129664611816408, 0.22110617065429689, 0.22211993408203126, 0.2216058807373047, 0.22146456909179688, 0.22136012268066407, 0.22197760009765624, 0.2215905303955078, 0.22179327392578124, 0.2214993896484375, 0.22128230285644532, 0.2213017578125, 0.22127410888671875, 0.22146456909179688, 0.22121778869628905, 0.22168576049804686, 0.22120037841796875, 0.22118406677246094, 0.22135084533691407, 0.22131301879882812, 0.22129869079589845, 0.22116659545898437, 0.2210508728027344, 0.2215045166015625, 0.22192332458496095, 0.2215854034423828, 0.22149325561523436, 0.22160076904296874, 0.2215669708251953, 0.22166323852539063, 0.22128536987304687, 0.22132333374023438, 0.22139077758789064, 0.22124549865722656, 0.22128941345214845, 0.221665283203125, 0.22161613464355467, 0.22151577758789062, 0.22136524963378906, 0.2216407012939453, 0.22126693725585939, 0.22150860595703126, 0.4624425048828125, 0.22111744689941407, 0.22104473876953126, 0.2211829833984375, 0.22187826538085936, 0.22165196228027345, 0.2212290496826172, 0.22156083679199218, 0.22200729370117187, 0.22158950805664063, 0.22172671508789063, 0.221380615234375, 0.221306884765625, 0.22107449340820312, 0.22128428649902343, 0.22132121276855468, 0.221306884765625, 0.22197042846679688, 0.22143589782714843, 0.2213027801513672, 0.22142771911621092, 0.22136524963378906, 0.22115225219726561, 0.22165811157226561, 0.22134988403320313, 0.22114303588867187, 0.22162124633789063, 0.22177484130859376, 0.22148812866210937, 0.2213570556640625, 0.22117170715332032, 0.22172569274902343, 0.221444091796875, 0.22128640747070313, 0.22114816284179686, 0.22123423767089845, 0.22163040161132813, 0.22124134826660155, 0.22113900756835939, 0.22141433715820313, 0.22133351135253906, 0.22119833374023437, 0.22116659545898437, 0.2211727294921875, 0.2214256591796875, 0.22142771911621092, 0.22107034301757814, 0.2211973114013672, 0.22134579467773438, 0.22134988403320313, 0.2222950439453125, 0.22165298461914062, 0.22142361450195314, 0.22213938903808594, 0.22171749877929686, 0.2223206329345703, 0.2216816711425781, 0.22124032592773438, 0.22122700500488282, 0.22170623779296875, 0.22179840087890626, 0.22177587890625, 0.2214297637939453, 0.4629862365722656, 0.22168269348144531, 0.22135910034179687, 0.22179840087890626, 0.22143487548828125, 0.2214686737060547, 0.22133042907714845, 0.22189260864257812, 0.22169088745117188, 0.22153421020507813, 0.22115327453613282, 0.22121165466308593, 0.22176153564453124, 0.221380615234375, 0.22127308654785155, 0.22127206420898438, 0.2213959655761719, 0.22139085388183594, 0.22160592651367186, 0.2212945556640625, 0.22128128051757812, 0.2216611785888672, 0.22154751586914062, 0.22151373291015625, 0.2215004119873047, 0.22142361450195314, 0.22282957458496094, 0.22140313720703125, 0.22110617065429689, 0.22118502807617188, 0.22146456909179688, 0.2219325408935547, 0.22170828247070312, 0.22170008850097656, 0.22203187561035156, 0.22157005310058595, 0.22241897583007814, 0.22136521911621093, 0.22132940673828125, 0.22154444885253907, 0.22126284790039064, 0.22154444885253907, 0.22126080322265626, 0.22116966247558595, 0.22158335876464844, 0.22131199645996094, 0.2215188446044922, 0.22126797485351563, 0.22128128051757812, 0.22140518188476563, 0.22145126342773438, 0.221559814453125, 0.22204620361328126, 0.22181068420410155, 0.22146456909179688, 0.22160794067382814, 0.22161715698242188, 0.22150553894042968, 0.22128640747070313, 0.22156185913085938, 0.22152806091308594, 0.22130995178222657, 0.2214297637939453]",tokens/s,4.445155333725598,,,,, +4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,B,B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -5667,32 +4511,70 @@ NameError: name 'exlv2_ext' is not defined File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code - answer = input( -EOFError: EOF when reading a line + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/B/resolve/main/config.json -During handling of the above exception, another exception occurred: +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669493af-07a0696f7b37cf132d2642fe;02f94de0-9875-4055-96c5-25d6f155b65d) + +Repository Not Found for url: https://huggingface.co/B/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. + +The above exception was the direct cause of the following exception: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights - self.create_no_weights_model() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model - meta_model = self.automodel_class.from_config(self.pretrained_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config - trust_remote_code = resolve_trust_remote_code( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code - raise ValueError( -ValueError: The repository for Deci/DeciCoder-1b contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/Deci/DeciCoder-1b. -Please pass the argument `trust_remote_code=True` to allow custom code to be run. + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + raise EnvironmentError( +OSError: B is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,s,s,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-30b,huggyllama/llama-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,6416.572416,20902.838272,0.0,20256.391168,19273.842688,s,10,27.008011230468746,2.700801123046875,0.0043850724799974665,2.700565551757813,2.7060529296875,2.7063339599609373,2.7065587841796876,"[2.703509521484375, 2.7029794921875, 2.69485400390625, 2.69747705078125, 2.696227783203125, 2.69636279296875, 2.698151611328125, 2.705843505859375, 2.706614990234375, 2.705990478515625]",tokens/s,94.7866904436106,kWh,3.1842278407679666e-05,1.7448346880028112e-05,0.00015081939843319958,0.00020011002372090735,tokens/kWh,1279296.2353402255,MB,6420.922368,20902.838272,0.0,20256.391168,19862.693376,s,10,1586.4640625,158.64640624999998,0.022306639855444715,158.64365625,158.67640156250002,158.68144296875,158.68547609375,"[158.63340625, 158.605671875, 158.67528125, 158.686484375, 158.659984375, 158.625515625, 158.642296875, 158.6395, 158.65090625, 158.645015625]",tokens/s,0.3971095311211943,kWh,0.0018735859500534004,0.0010268917923910701,0.0086674246283786,0.011567902370823072,tokens/kWh,5446.104054171531,,s,629,1608.2408713378911,2.556821735036392,0.3208393016972219,2.518036376953125,2.5194736328125003,2.520285693359375,5.21544693359375,"[2.518319091796875, 2.519310302734375, 2.51766064453125, 2.517339111328125, 2.51743017578125, 2.51803955078125, 2.517208984375, 2.517015625, 2.516982666015625, 2.5182587890625, 2.51766064453125, 2.517487548828125, 2.5175009765625, 2.51837646484375, 2.5176474609375, 2.517837890625, 2.517665771484375, 2.51789208984375, 2.517560302734375, 2.517328857421875, 2.517376953125, 2.51846044921875, 2.517990478515625, 2.517222412109375, 2.517308349609375, 2.518451171875, 2.5171455078125, 2.518161376953125, 2.51881884765625, 2.518177734375, 2.517626953125, 2.5173310546875, 2.51724072265625, 2.517538818359375, 2.51719384765625, 2.5173740234375, 2.517359619140625, 2.518120361328125, 2.517709716796875, 2.51768310546875, 2.51764013671875, 2.51835400390625, 2.51860791015625, 2.51725927734375, 2.518401123046875, 2.5179462890625, 2.518530029296875, 2.51753466796875, 2.517834716796875, 2.518044677734375, 2.517002197265625, 2.5178828125, 2.51770361328125, 2.5193173828125, 2.519462890625, 2.51964306640625, 2.51835595703125, 2.51885986328125, 2.51799560546875, 2.51936767578125, 2.519690185546875, 2.5200732421875, 5.22134814453125, 2.517864501953125, 2.51825244140625, 2.51934716796875, 2.5177138671875, 2.5171435546875, 2.517161865234375, 2.51721826171875, 2.51709326171875, 2.517622802734375, 2.518835205078125, 2.51759912109375, 2.517168212890625, 2.517455810546875, 2.518162353515625, 2.517591064453125, 2.51749365234375, 2.517919677734375, 2.517905517578125, 2.51747216796875, 2.51761669921875, 2.517444580078125, 2.51732373046875, 2.516890625, 2.517098388671875, 2.517686279296875, 2.517358642578125, 2.516806640625, 2.516729736328125, 2.51791259765625, 2.517181396484375, 2.516504638671875, 2.5171435546875, 2.517117919921875, 2.517271484375, 2.516725830078125, 2.5167197265625, 2.5176513671875, 2.517125, 2.51666015625, 2.51749365234375, 2.518317138671875, 2.5185751953125, 2.51751025390625, 2.517790771484375, 2.517456787109375, 2.5185126953125, 2.517084228515625, 2.517465087890625, 2.51748974609375, 2.517200927734375, 2.51684033203125, 2.51730126953125, 2.518183837890625, 2.518331298828125, 2.51782861328125, 2.51742919921875, 2.51755615234375, 2.517507080078125, 2.517507080078125, 2.517161865234375, 2.517621826171875, 2.517966796875, 5.21453759765625, 2.5204541015625, 2.52109814453125, 2.519462890625, 2.518677490234375, 2.519301025390625, 2.518960205078125, 2.516992919921875, 2.517800048828125, 2.517873779296875, 2.51792578125, 2.517770263671875, 2.5189140625, 2.517824462890625, 2.517718994140625, 2.518151123046875, 2.51847998046875, 2.518257568359375, 2.518415283203125, 2.51804052734375, 2.518096923828125, 2.5183427734375, 2.518391845703125, 2.517865478515625, 2.519243896484375, 2.51814501953125, 2.518434814453125, 2.518415283203125, 2.518769775390625, 2.519129150390625, 2.518907958984375, 2.519370849609375, 2.5190185546875, 2.518751220703125, 2.52101416015625, 2.518179931640625, 2.519162841796875, 2.518454345703125, 2.519679931640625, 2.5194833984375, 2.5204951171875, 2.518433837890625, 2.51841650390625, 2.5182412109375, 2.519734375, 2.519425048828125, 2.518444091796875, 2.51785205078125, 2.518681640625, 2.518297607421875, 2.518287353515625, 2.51755517578125, 2.519033935546875, 2.518720458984375, 2.5197587890625, 2.519648193359375, 2.518752197265625, 2.51768212890625, 2.51812255859375, 2.51717626953125, 2.51780908203125, 2.517684326171875, 2.5175439453125, 5.2187802734375, 2.519068603515625, 2.518744140625, 2.51738525390625, 2.518098876953125, 2.51873681640625, 2.519017578125, 2.51888427734375, 2.519688232421875, 2.52031396484375, 2.518892578125, 2.519817138671875, 2.5199248046875, 2.51848388671875, 2.518221923828125, 2.517916748046875, 2.519314453125, 2.518415283203125, 2.517685302734375, 2.51694287109375, 2.51803857421875, 2.52027587890625, 2.520306640625, 2.518614013671875, 2.520572998046875, 2.517498779296875, 2.517350341796875, 2.5175869140625, 2.51862841796875, 2.517562255859375, 2.51831201171875, 2.51706982421875, 2.518307861328125, 2.517770263671875, 2.518127685546875, 2.517791748046875, 2.51879833984375, 2.51784912109375, 2.518008056640625, 2.5185615234375, 2.518908935546875, 2.5175224609375, 2.517482421875, 2.517506103515625, 2.5204541015625, 2.518011962890625, 2.521114501953125, 2.5210244140625, 2.520853515625, 2.52010693359375, 2.52200244140625, 2.52052880859375, 2.52000048828125, 2.51896728515625, 2.519782470703125, 2.51968603515625, 2.51883935546875, 2.51808251953125, 2.51833349609375, 2.517741455078125, 2.51945068359375, 2.518738037109375, 2.51962060546875, 5.21556396484375, 2.51751025390625, 2.517732421875, 2.51755712890625, 2.51782666015625, 2.51806005859375, 2.518541259765625, 2.517211181640625, 2.51755322265625, 2.516893798828125, 2.517453857421875, 2.517432373046875, 2.517993408203125, 2.517221435546875, 2.517614501953125, 2.518161376953125, 2.5184521484375, 2.518592529296875, 2.517885986328125, 2.517688232421875, 2.51909326171875, 2.51841015625, 2.518773681640625, 2.518697998046875, 2.51839892578125, 2.518539306640625, 2.51853515625, 2.51841845703125, 2.51909326171875, 2.5179013671875, 2.5176484375, 2.5175888671875, 2.51825146484375, 2.518151123046875, 2.51841015625, 2.518299560546875, 2.518412353515625, 2.518192138671875, 2.5184072265625, 2.518162353515625, 2.519458740234375, 2.518036376953125, 2.517877685546875, 2.518980712890625, 2.520924072265625, 2.518964111328125, 2.520530029296875, 2.520292236328125, 2.5202412109375, 2.519448486328125, 2.519780517578125, 2.519730224609375, 2.5202646484375, 2.5176298828125, 2.51782763671875, 2.51780908203125, 2.51826171875, 2.51890185546875, 2.5179423828125, 2.518106201171875, 2.518285400390625, 2.5179658203125, 2.518643798828125, 5.21514599609375, 2.51869384765625, 2.518576171875, 2.51751318359375, 2.5187890625, 2.51831298828125, 2.51842138671875, 2.518813720703125, 2.51734619140625, 2.51774267578125, 2.51757568359375, 2.51732177734375, 2.51702783203125, 2.516744140625, 2.5167646484375, 2.517622802734375, 2.516887451171875, 2.5171630859375, 2.517233642578125, 2.517984375, 2.517812255859375, 2.517107666015625, 2.517927978515625, 2.5184912109375, 2.51740478515625, 2.517085205078125, 2.517383056640625, 2.518287353515625, 2.518308837890625, 2.51829248046875, 2.517562255859375, 2.51860888671875, 2.517875732421875, 2.517098388671875, 2.517589111328125, 2.518604736328125, 2.517823486328125, 2.517308349609375, 2.518150146484375, 2.518289306640625, 2.51751220703125, 2.51789208984375, 2.518724609375, 2.5184931640625, 2.5175673828125, 2.51732373046875, 2.517525390625, 2.5192119140625, 2.51820849609375, 2.519125, 2.518769775390625, 2.5183896484375, 2.5181767578125, 2.51797705078125, 2.51743017578125, 2.517621826171875, 2.517073974609375, 2.517191650390625, 2.51754296875, 2.517603271484375, 2.517738525390625, 2.51803857421875, 2.518088623046875, 5.21595068359375, 2.518022216796875, 2.518259765625, 2.517396484375, 2.517515380859375, 2.5171640625, 2.51678515625, 2.51755517578125, 2.51660693359375, 2.51696337890625, 2.5178798828125, 2.51924169921875, 2.518275146484375, 2.516697021484375, 2.51698486328125, 2.517755859375, 2.51724072265625, 2.518010986328125, 2.517244873046875, 2.5173779296875, 2.517291015625, 2.517590087890625, 2.518003662109375, 2.518558837890625, 2.519623779296875, 2.519237548828125, 2.520456298828125, 2.51768115234375, 2.518234130859375, 2.519458740234375, 2.52040283203125, 2.519605224609375, 2.518929443359375, 2.520151123046875, 2.51915869140625, 2.519528564453125, 2.51947119140625, 2.5201142578125, 2.519734375, 2.518724609375, 2.51780517578125, 2.51755224609375, 2.51803857421875, 2.5180732421875, 2.517747802734375, 2.517359619140625, 2.518424560546875, 2.51807421875, 2.518046630859375, 2.51700439453125, 2.51778759765625, 2.517309326171875, 2.51774365234375, 2.51673291015625, 2.517708740234375, 2.517607421875, 2.518066162109375, 2.51755517578125, 2.51816845703125, 2.518012939453125, 2.518370361328125, 2.51797412109375, 2.51844189453125, 5.22497119140625, 2.517222412109375, 2.51845947265625, 2.51675537109375, 2.517399658203125, 2.517277587890625, 2.518365234375, 2.517622802734375, 2.5181572265625, 2.517368896484375, 2.51894580078125, 2.51837548828125, 2.51816845703125, 2.517992431640625, 2.517802001953125, 2.5172060546875, 2.5187685546875, 2.517329833984375, 2.519754638671875, 2.5192744140625, 2.51748046875, 2.516811767578125, 2.517927001953125, 2.51881884765625, 2.5180302734375, 2.516874267578125, 2.518129638671875, 2.517221435546875, 2.517310546875, 2.517367919921875, 2.517562255859375, 2.516991943359375, 2.518096923828125, 2.516927490234375, 2.5179677734375, 2.517698486328125, 2.51718359375, 2.517350341796875, 2.51825244140625, 2.517243896484375, 2.5187900390625, 2.52037109375, 2.519783447265625, 2.51812255859375, 2.51873291015625, 2.5181962890625, 2.5185771484375, 2.518066162109375, 2.518571044921875, 2.51795361328125, 2.51880029296875, 2.5177548828125, 2.518213623046875, 2.51785009765625, 2.519160888671875, 2.518510498046875, 2.51831201171875, 2.51875830078125, 2.51904931640625, 2.51761865234375, 2.5184912109375, 2.51787158203125, 2.519330810546875, 5.22598291015625, 2.518825927734375, 2.518971435546875, 2.51806103515625, 2.518127685546875, 2.518425537109375, 2.51801806640625, 2.516579345703125, 2.51692041015625, 2.517222412109375, 2.517351318359375, 2.517392333984375, 2.51871630859375, 2.518453369140625, 2.518960205078125, 2.51763720703125, 2.517210205078125, 2.517708740234375, 2.517718017578125, 2.517530517578125, 2.51915478515625, 2.518562744140625, 2.51778759765625, 2.517306396484375, 2.5181123046875, 2.518414306640625, 2.520138671875, 2.517626953125, 2.518436767578125, 2.518436767578125, 2.518345703125, 2.517001220703125, 2.51755615234375, 2.518391845703125, 2.518742919921875, 2.51820751953125, 2.517982177734375, 2.52077978515625, 2.5205986328125, 2.51875634765625, 2.518046630859375, 2.5188701171875, 2.5200302734375, 2.517751708984375, 2.51822998046875, 2.51795458984375, 2.518422607421875, 2.520731689453125, 2.5178388671875, 2.518604736328125, 2.518803466796875, 2.517551025390625, 2.517665771484375, 2.518455322265625, 2.5181337890625, 2.516989013671875, 2.517697509765625, 2.518129638671875, 2.517895263671875, 2.517632080078125, 2.51766162109375, 2.518906982421875, 2.519458740234375, 5.22549267578125, 2.51939111328125, 2.518699951171875, 2.51726025390625, 2.517559326171875, 2.51808349609375, 2.5171669921875, 2.51778857421875, 2.517769287109375, 2.5189755859375, 2.520603759765625, 2.517000244140625, 2.5173525390625, 2.517968994140625, 2.517775390625, 2.517918701171875, 2.517655517578125, 2.51848193359375, 2.517267333984375, 2.517482421875, 2.51776708984375, 2.5178828125, 2.5175009765625, 2.517536865234375, 2.518390869140625, 2.51835498046875, 2.5190810546875, 2.519309326171875, 2.5178818359375, 2.51835791015625, 2.51839697265625, 2.51793505859375, 2.517909423828125, 2.517781494140625, 2.517467041015625, 2.517106689453125, 2.51734228515625, 2.518115234375, 2.518010986328125, 2.517520263671875, 2.51814404296875, 2.517705810546875, 2.517486572265625, 2.517609375, 2.51786865234375, 2.518467529296875, 2.51749169921875, 2.517338134765625, 2.51806005859375, 2.5187646484375, 2.518148193359375, 2.51829248046875, 2.51822705078125, 2.518614990234375, 2.518023193359375, 2.517477294921875, 2.51810107421875, 2.518518798828125, 2.517971923828125, 2.517927978515625, 2.518328369140625, 2.5179638671875, 2.51816455078125]",tokens/s,0.39111056758353424,,,,, +4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,2,2,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -5704,7 +4586,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/s/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/2/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -5731,9 +4613,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948d16-35fd6b2d61e9f87045c55932;d36d9f9e-ee85-417b-9445-b62706b71319) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694934c-552c89d22edaa57c5d86bf4f;e5416f28-8c5b-4dea-ab57-2ffa4c6dbce2) -Repository Not Found for url: https://huggingface.co/s/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/2/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -5758,11 +4640,12 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: s is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: 2 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,TencentARC/Mistral_Pro_8B_v0.1,TencentARC/Mistral_Pro_8B_v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-350m,facebook/opt-350m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1308.95872,1044.905984,0.0,398.45888,290.479104,s,10,0.7298112030029297,0.07298112030029298,0.0019203205238493336,0.07210595321655273,0.07568494338989258,0.07613730201721192,0.07649918891906739,"[0.07658966064453125, 0.07404208374023437, 0.0716014404296875, 0.07261046600341797, 0.07435145568847656, 0.07145033264160157, 0.07128550720214843, 0.07136418914794922, 0.07093164825439453, 0.07558441925048828]",tokens/s,3507.7565121862385,kWh,8.692573962940111e-07,4.763112833442766e-07,2.233504646279191e-06,3.579073325917479e-06,tokens/kWh,71526894.44672821,MB,1309.261824,1044.905984,0.0,398.45888,337.28256,s,10,45.10692724609375,4.510692724609375,0.02785183557667033,4.507988037109375,4.524690771484375,4.5543905517578125,4.578150375976563,"[4.4999814453125, 4.51792333984375, 4.49663525390625, 4.50728076171875, 4.5086953125, 4.47609033203125, 4.5180908203125, 4.4837802734375, 4.514359375, 4.58409033203125]",tokens/s,13.966812604255988,kWh,5.335015537424221e-05,2.9239079429191457e-05,0.0001294696562717161,0.00021205889107514978,tokens/kWh,297087.2840114681,,s,629,45.688359863281214,0.07263650216737877,0.008731184173797845,0.07209983825683594,0.0731078628540039,0.07340298156738281,0.14137104125976563,"[0.07185408020019532, 0.07194009399414063, 0.07217356872558593, 0.07269068908691406, 0.07360717010498047, 0.0735498275756836, 0.07288934326171875, 0.07259142303466797, 0.07237420654296875, 0.07188172912597657, 0.07213568115234376, 0.0719452133178711, 0.07213875579833984, 0.07207730865478515, 0.07207014465332032, 0.0719257583618164, 0.06970162963867188, 0.06967910766601562, 0.0696995849609375, 0.07190425872802735, 0.07216028594970703, 0.07225545501708984, 0.07087206268310547, 0.06890290832519531, 0.06927776336669922, 0.06949574279785156, 0.06937395477294922, 0.06961663818359375, 0.06992694091796875, 0.07223088073730469, 0.07267635345458984, 0.07262620544433594, 0.07189091491699219, 0.07197593688964844, 0.07230976104736328, 0.07216025543212891, 0.07246540832519531, 0.07132262420654296, 0.07190016174316406, 0.07246745300292969, 0.07053619384765625, 0.06935552215576171, 0.06963097381591797, 0.07147932434082031, 0.06940361785888671, 0.0716410903930664, 0.07243264007568359, 0.07219302368164063, 0.07221145629882812, 0.07042355346679688, 0.06942002868652344, 0.06980608367919922, 0.06986752319335937, 0.07069696044921875, 0.0722165756225586, 0.0733306884765625, 0.07286374664306641, 0.07210086059570313, 0.07077069091796875, 0.07022796630859375, 0.07062940979003907, 0.07200457763671875, 0.14657945251464843, 0.07262617492675781, 0.07222579193115235, 0.07230054473876953, 0.07205580902099609, 0.07209779357910157, 0.07216537475585938, 0.07003648376464844, 0.07229849243164063, 0.07284019470214843, 0.07227597045898437, 0.07243981170654297, 0.07234457397460937, 0.07199948883056641, 0.07222169494628906, 0.07268147277832031, 0.07375667572021484, 0.07214591979980468, 0.07202201843261719, 0.07222271728515625, 0.07206604766845703, 0.0720025634765625, 0.07187251281738281, 0.0722913589477539, 0.072248291015625, 0.07194624328613282, 0.07201999664306641, 0.07205987548828124, 0.07217356872558593, 0.0712837142944336, 0.06940569305419922, 0.06932991790771484, 0.06942310333251953, 0.06952140808105468, 0.06934835052490235, 0.06939238739013671, 0.06940774536132813, 0.06954188537597657, 0.06909951782226563, 0.0694824981689453, 0.06964530944824218, 0.06932991790771484, 0.07233843231201172, 0.07286271667480469, 0.06985113525390625, 0.06934528350830078, 0.07116902160644531, 0.0729722900390625, 0.0716072998046875, 0.07257907104492188, 0.0729917449951172, 0.07322112274169922, 0.07285657501220703, 0.07319859313964844, 0.07252787017822265, 0.07272038269042969, 0.07294668579101563, 0.0729886703491211, 0.07285350036621094, 0.07272959899902344, 0.07295283508300782, 0.07268556976318359, 0.07238143920898438, 0.1415720977783203, 0.0693934097290039, 0.06967814636230468, 0.06940972900390625, 0.06931148529052734, 0.06929817962646484, 0.06965049743652343, 0.0701173095703125, 0.07237427520751953, 0.07200054168701171, 0.07237423706054688, 0.07208857727050781, 0.07215309143066406, 0.07220838165283203, 0.07202713775634766, 0.0719810562133789, 0.07221862030029297, 0.07206092834472656, 0.07223705291748046, 0.07211007690429687, 0.07236300659179687, 0.07231590270996094, 0.07095603179931641, 0.0694814682006836, 0.06937395477294922, 0.06936780548095703, 0.07176601409912109, 0.07184486389160157, 0.0720343017578125, 0.07231897735595703, 0.07199129486083984, 0.07193299102783203, 0.0723834228515625, 0.07228825378417969, 0.07213260650634766, 0.07228108978271484, 0.07208448028564453, 0.07200153350830078, 0.07205990600585938, 0.07209983825683594, 0.07197491455078125, 0.07196057891845703, 0.0720547866821289, 0.073133056640625, 0.07183769226074219, 0.07257807922363281, 0.0721899185180664, 0.07195340728759765, 0.0722677764892578, 0.07214284515380859, 0.07201487731933594, 0.06975177764892578, 0.06966681671142579, 0.06874931335449219, 0.06921011352539062, 0.06935346984863282, 0.06987059020996093, 0.07226265716552735, 0.07209164428710937, 0.07197081756591797, 0.07196057891845703, 0.0713338851928711, 0.07061196899414063, 0.1456865234375, 0.0722279052734375, 0.07271212768554687, 0.07285043334960938, 0.0725432357788086, 0.07223500823974609, 0.0720865249633789, 0.07014915466308594, 0.06968726348876954, 0.06959820556640625, 0.06964019012451172, 0.0694681625366211, 0.07034880065917969, 0.07004876708984376, 0.06967193603515626, 0.06940160369873047, 0.07108914947509766, 0.07227597045898437, 0.07151821136474609, 0.06967501068115234, 0.06957772827148437, 0.0698071060180664, 0.07123967742919922, 0.07210086059570313, 0.07223603057861328, 0.07214284515380859, 0.07249510192871093, 0.07254835510253907, 0.07294361877441406, 0.07138508605957031, 0.07067545318603516, 0.07234969329833985, 0.07242546844482421, 0.07169741058349609, 0.07204966735839843, 0.06960543823242188, 0.06955718231201172, 0.07074406433105469, 0.07213772583007813, 0.07239683532714844, 0.07193702697753906, 0.07239676666259766, 0.0722012176513672, 0.07219200134277344, 0.07279411315917969, 0.07149260711669922, 0.07210393524169922, 0.07228211212158203, 0.07218380737304687, 0.07210598754882812, 0.07205171203613281, 0.07216435241699219, 0.07028326416015625, 0.06974668884277344, 0.07239577484130859, 0.07243673706054687, 0.07223094177246094, 0.07230358123779297, 0.07244390106201172, 0.07284838104248047, 0.07209062194824219, 0.072163330078125, 0.07201894378662109, 0.14699827575683594, 0.07176294708251953, 0.0707747802734375, 0.0720343017578125, 0.0722135009765625, 0.07226268768310547, 0.0720823974609375, 0.07234976196289063, 0.07255648040771484, 0.07198515319824218, 0.07197798156738282, 0.07256678771972656, 0.07222476959228516, 0.07208755493164062, 0.07251971435546875, 0.07147618865966797, 0.06935346984863282, 0.06952550506591797, 0.06944051361083985, 0.06955213165283203, 0.06944255828857422, 0.06934323120117188, 0.07061299133300782, 0.07203533172607422, 0.07238861083984376, 0.07203225708007813, 0.07213568115234376, 0.0720374755859375, 0.07249091339111328, 0.0709017562866211, 0.06946304321289062, 0.07154790496826172, 0.07224217224121093, 0.07243673706054687, 0.07215615844726563, 0.07217459106445312, 0.07221247863769531, 0.07201894378662109, 0.07098880004882813, 0.06991667175292969, 0.07119564819335937, 0.07190630340576172, 0.0721786880493164, 0.07199334716796875, 0.06973235321044922, 0.06972415924072266, 0.06972930908203125, 0.06958694458007812, 0.06966268920898437, 0.07221145629882812, 0.07257907104492188, 0.07218688201904297, 0.07213772583007813, 0.07218380737304687, 0.07208345794677734, 0.07205068969726562, 0.07378431701660157, 0.07249612426757812, 0.07221862030029297, 0.0720650863647461, 0.07227897644042969, 0.07233740997314453, 0.07240601348876953, 0.1438771514892578, 0.07196463775634766, 0.07234867095947266, 0.07229952239990234, 0.07298047637939453, 0.07293030548095703, 0.07180902099609375, 0.07185408020019532, 0.07234047698974609, 0.07194316864013672, 0.07218278503417969, 0.07320985412597657, 0.07245516967773437, 0.07180287933349609, 0.07000985717773438, 0.0729917449951172, 0.07227187347412109, 0.07225958251953125, 0.07234047698974609, 0.07209677124023438, 0.07210393524169922, 0.07231283569335938, 0.07199436950683594, 0.07164825439453125, 0.06944358062744141, 0.0694302749633789, 0.06980812835693359, 0.06952652740478515, 0.06984703826904297, 0.07122022247314454, 0.07212850952148438, 0.06986752319335937, 0.06965248107910156, 0.06977843475341797, 0.06978047943115234, 0.06932173156738282, 0.0697364501953125, 0.0695572509765625, 0.06944153594970703, 0.07092131042480469, 0.07262095642089844, 0.07213362884521485, 0.0723927001953125, 0.0719974365234375, 0.07194422149658203, 0.0721714859008789, 0.07187967681884766, 0.0721244125366211, 0.07195852661132812, 0.07079424285888672, 0.06962790679931641, 0.06972518157958985, 0.06952345275878906, 0.06946918487548828, 0.06943539428710938, 0.06939238739013671, 0.06983372497558593, 0.06957260894775391, 0.06938521575927735, 0.06923776245117187, 0.07017164611816407, 0.06932582092285157, 0.06944461059570313, 0.1413570556640625, 0.06928076934814453, 0.07196774291992188, 0.0723220443725586, 0.07226573181152343, 0.07199231719970703, 0.07206502532958985, 0.07222476959228516, 0.07213875579833984, 0.06940057373046875, 0.06947840118408204, 0.07286784362792968, 0.07213260650634766, 0.0724295654296875, 0.07200563049316407, 0.07263334655761719, 0.07273677062988282, 0.07225856018066407, 0.0693411865234375, 0.0695367660522461, 0.07020543670654297, 0.07206809234619141, 0.07203020477294922, 0.0722001953125, 0.07224012756347656, 0.07218688201904297, 0.07218694305419922, 0.07206291198730469, 0.07192678070068359, 0.0715857925415039, 0.07136051177978515, 0.0714076156616211, 0.07242240142822266, 0.07221453094482422, 0.07244499206542969, 0.07197689819335938, 0.07119974517822265, 0.07206297302246094, 0.0721981430053711, 0.0724316177368164, 0.07192473602294921, 0.07172608184814454, 0.06988082885742188, 0.06962483215332031, 0.07035497283935546, 0.06945276641845703, 0.06980198669433593, 0.07191449737548829, 0.07256678771972656, 0.07234457397460937, 0.07288422393798828, 0.07266918182373047, 0.07230668640136718, 0.07237324523925781, 0.0723978271484375, 0.07207526397705079, 0.07200057220458984, 0.07223903656005859, 0.07222172546386718, 0.07205680084228516, 0.0722012176513672, 0.07250841522216797, 0.07297948455810546, 0.14137648010253906, 0.06947328186035157, 0.069607421875, 0.06972518157958985, 0.07188377380371094, 0.07261798095703124, 0.07253196716308594, 0.07225138854980469, 0.0723763198852539, 0.07227289581298828, 0.0724869155883789, 0.0720404510498047, 0.07224832153320312, 0.0722790756225586, 0.07235478210449219, 0.07247462463378906, 0.07243059539794922, 0.07224217224121093, 0.07231999969482422, 0.07176908874511718, 0.07236198425292968, 0.07177011108398437, 0.06941900634765626, 0.0709969940185547, 0.07273983764648438, 0.07211827087402344, 0.07241318511962891, 0.07507456207275391, 0.07245209503173829, 0.07226681518554688, 0.07216531372070313, 0.07257190704345703, 0.07180902099609375, 0.07219200134277344, 0.07004978942871094, 0.06961151885986328, 0.06961663818359375, 0.06986041259765625, 0.06977324676513671, 0.06963404846191407, 0.06956646728515625, 0.06976614379882813, 0.06975692749023438, 0.06940774536132813, 0.07025663757324219, 0.06947020721435547, 0.07162265777587891, 0.07189810943603515, 0.07244185638427734, 0.07230054473876953, 0.07227497863769532, 0.07341053009033204, 0.07264460754394532, 0.07066521453857422, 0.06972415924072266, 0.0694620132446289, 0.06928281402587891, 0.06948761749267578, 0.0691251220703125, 0.06890598297119141, 0.06905343627929687, 0.06960025787353516, 0.06945689392089843, 0.14089112854003907, 0.0694128646850586, 0.069570556640625, 0.06914662170410156, 0.06950399780273438, 0.07003545379638672, 0.06975794982910156, 0.06944870758056641, 0.070181884765625, 0.06986444854736328, 0.069607421875, 0.0728453140258789, 0.07321395111083985, 0.07279718780517579, 0.07399935913085938, 0.07330099487304688, 0.07279718780517579, 0.07354777526855469, 0.07338188934326172, 0.073301025390625, 0.07308284759521484, 0.0729917449951172, 0.07306854248046875, 0.0727388153076172, 0.07293440246582031, 0.0727357406616211, 0.07297023773193359, 0.07296102142333985, 0.07303270721435547, 0.07281462097167969, 0.07316886138916015, 0.073059326171875, 0.0725074234008789, 0.07300093078613282, 0.07273785400390625, 0.07161849975585938, 0.06959820556640625, 0.06925823974609376, 0.06970883178710938, 0.06981629180908203, 0.06969036865234375, 0.06949683380126953, 0.06930738830566406, 0.06938419342041016, 0.06971298980712891, 0.0707419204711914, 0.07269376373291016, 0.07251353454589844, 0.07328562927246093, 0.06910873413085937, 0.06949581146240234, 0.06906163024902344, 0.07005286407470702, 0.07312281799316406, 0.07338393402099609, 0.07292108917236328, 0.07231078338623047, 0.07324467468261718, 0.07336345672607422, 0.07308595275878907, 0.07299993896484375, 0.07279001617431641, 0.07310745239257813, 0.14934938049316407, 0.07343206024169922, 0.07323033905029297, 0.07366553497314453, 0.07251865386962891, 0.07295795440673829, 0.07302963256835937, 0.073480224609375, 0.07338902282714843, 0.07340748596191406, 0.0733655014038086, 0.07314534759521485, 0.07351602935791016, 0.07292825317382813, 0.07283715057373047, 0.07243465423583985, 0.07391846466064453, 0.07298047637939453, 0.07312384033203125, 0.07325183868408203, 0.07271321868896484, 0.07309209442138671, 0.07304192352294922, 0.07337062072753907, 0.0729354248046875, 0.07303884887695312, 0.07325081634521484, 0.0731668472290039, 0.07339622497558594, 0.07318016052246094, 0.07310028839111328, 0.07337574768066406, 0.07324774169921874, 0.07300300598144531, 0.07360620880126953, 0.0735692138671875, 0.07393798065185547, 0.07294355010986328, 0.07357542419433594, 0.07405875396728516, 0.07427174377441406, 0.07364198303222656, 0.07310950469970703, 0.07334912109375, 0.0739277114868164, 0.07357746887207031, 0.07303472137451172, 0.07309414672851562, 0.07331635284423828, 0.07301529693603516, 0.0722135009765625, 0.07023104095458985, 0.07103794860839843, 0.06991667175292969, 0.0706355209350586, 0.0701685791015625, 0.06987264251708984, 0.0711445083618164, 0.0702627182006836, 0.0697343978881836, 0.06988800048828125, 0.07153561401367188, 0.07306034851074218]",tokens/s,13.767182754693582,,,,, +4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-MoE-A2.7B,Qwen/Qwen1.5-MoE-A2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -5782,22 +4665,27 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3724, in from_pretrained + hf_quantizer.preprocess_model( + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 182, in preprocess_model + return self._process_model_before_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 85, in _process_model_before_weight_loading + model, has_been_replaced = replace_with_awq_linear( + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear + _, has_been_replaced = replace_with_awq_linear( + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear + _, has_been_replaced = replace_with_awq_linear( + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear + _, has_been_replaced = replace_with_awq_linear( + [Previous line repeated 1 more time] + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 166, in replace_with_awq_linear + model._modules[name] = target_cls( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemm.py"", line 102, in __init__ + assert out_features % (32 // self.w_bit) == 0 +AssertionError -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-12b,EleutherAI/pythia-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-70B,meta-llama/Meta-Llama-3-70B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -5817,22 +4705,30 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/polyglot-ko-12.8b,EleutherAI/polyglot-ko-12.8b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/polyglot-ko-12.8b,EleutherAI/polyglot-ko-12.8b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,,MB,1740.263424,9941.024768,0.0,9294.577664,8910.102528,s,10,10.642888305664064,1.0642888305664062,0.0008435144191809837,1.06450927734375,1.0651936889648437,1.065327557373047,1.0654346520996094,"[1.065136474609375, 1.06546142578125, 1.063631591796875, 1.063218505859375, 1.06368701171875, 1.0628612060546876, 1.0644658203125, 1.064552734375, 1.0647095947265626, 1.0651639404296875]",tokens/s,240.5362084498799,kWh,1.2557922783825134e-05,6.880571250694628e-06,6.097363211219897e-05,8.041212614671872e-05,tokens/kWh,3183599.4428614704,MB,1740.86144,9941.024768,0.0,9294.577664,9220.867072,s,10,630.7354296875,63.07354296875,0.00490218127220892,63.07426171875,63.081011718750005,63.081064453125,63.081106640625,"[63.0750703125, 63.07307421875, 63.081, 63.075046875, 63.07416015625, 63.0811171875, 63.07436328125, 63.0665078125, 63.06765234375, 63.0674375]",tokens/s,0.9988340124037992,kWh,0.0007445980064074199,0.0004081038876869388,0.003603297882636,0.004755999776730358,tokens/kWh,13246.426189555263,,s,629,639.312124511719,1.016394474581429,0.12643667238363906,1.0011002807617186,1.0017415283203124,1.002017578125,2.065029130859375,"[1.0008678588867188, 1.0004398193359374, 1.001291748046875, 1.0011023559570313, 1.0010675048828126, 1.0010203857421875, 1.0008780517578124, 1.000616943359375, 1.0006917114257812, 1.0008555297851562, 1.0007982177734376, 1.000685546875, 1.0008023071289063, 1.000985595703125, 1.0008780517578124, 1.0010081787109375, 1.0006251220703124, 1.0007255249023437, 1.000806396484375, 1.0009149169921876, 1.0006405029296874, 1.0007285766601564, 1.0012835693359374, 1.0011812133789062, 1.0010265502929687, 1.0012303466796875, 1.0011586303710938, 1.0011637573242187, 1.0010664672851564, 1.0014730224609374, 1.0011238403320313, 1.0014033813476562, 1.0011033325195313, 1.0013900756835938, 1.0010501098632814, 1.0017617797851563, 1.0014638061523438, 1.0016256103515624, 1.0009415893554687, 1.0013726806640626, 1.000985595703125, 1.0008145751953126, 1.001359375, 1.0016143188476563, 1.0011217651367188, 1.0013255615234375, 1.0009302978515624, 1.001133056640625, 1.0009508056640626, 1.001533447265625, 1.0019143676757813, 1.0015897827148437, 1.0020361938476563, 1.0020464477539062, 1.00206591796875, 1.0012640991210937, 1.0014044189453124, 1.001734130859375, 1.0015846557617187, 1.00234033203125, 1.0014207763671874, 1.0013255615234375, 2.067092529296875, 1.0008361206054688, 1.0011576538085938, 1.0006384887695312, 1.001079833984375, 1.0007879638671875, 1.0012293090820312, 1.0010501098632814, 1.001322509765625, 1.0013265991210938, 1.0013900756835938, 1.000838134765625, 1.001486328125, 1.0010675048828126, 1.0011484375, 1.0016091918945313, 1.001449462890625, 1.0011023559570313, 1.0005330200195313, 1.0008074340820312, 1.0010623779296874, 1.0006220703125, 1.0009927978515625, 1.0007716064453125, 1.001026611328125, 1.0008770141601562, 1.0014136352539063, 1.0009508056640626, 1.0009508056640626, 1.00097021484375, 1.001290771484375, 1.00075830078125, 1.0016583862304687, 1.0007131958007813, 1.0006619873046876, 1.0005339965820312, 1.0010706176757813, 1.0007859497070313, 1.0006456298828126, 1.0009036865234375, 1.00139111328125, 1.0010776977539062, 1.0015672607421875, 1.0008135375976563, 1.0011463623046875, 1.000784912109375, 1.0035189819335937, 1.00113818359375, 1.0015252685546876, 1.0012507934570312, 1.0016573486328124, 1.0014893798828124, 1.001533447265625, 1.0010839233398436, 1.0011525268554688, 1.0011566162109375, 1.0015396118164062, 1.0014955444335938, 1.0011074829101563, 1.0009037475585938, 1.0016132202148438, 1.0009343872070313, 1.002029052734375, 2.06504150390625, 1.0005913696289062, 1.0010398559570313, 1.00097021484375, 1.0005196533203125, 1.0015057983398437, 1.0011084594726563, 1.0007337036132813, 1.0012190551757814, 1.0008473510742188, 1.0012252197265625, 1.0008402099609375, 1.0011617431640625, 1.0010194091796876, 1.0008719482421875, 1.0009927978515625, 1.0008237915039062, 1.00075927734375, 1.0011688842773439, 1.000806396484375, 1.0008606567382812, 1.0010132446289062, 1.0011740112304688, 1.00221337890625, 1.0005995483398438, 1.000721435546875, 1.00090673828125, 1.0007039794921875, 1.001343994140625, 1.001470947265625, 1.0014852905273437, 1.00143408203125, 1.0017413330078124, 1.002018798828125, 1.0018693237304688, 1.0017587280273437, 1.0011954956054687, 1.0007203979492187, 1.0011064453125, 1.00105419921875, 1.0013839111328124, 1.0012108764648437, 1.001881591796875, 1.0012119140625, 1.0016245727539062, 1.0019154052734376, 1.0013501586914062, 1.0026547241210937, 1.0016737060546874, 1.0011678466796874, 1.00153857421875, 1.0014085083007813, 1.0018191528320313, 1.001275390625, 1.0014157104492187, 1.0018908081054687, 1.0011791381835937, 1.0009927978515625, 1.0019522705078125, 1.0013368530273437, 1.0016307373046875, 1.0016552734375, 1.001829345703125, 2.064997314453125, 1.001175048828125, 1.0011033935546876, 1.0011688232421876, 1.001164794921875, 1.0007736206054687, 1.001064453125, 1.0007973022460936, 1.00076025390625, 1.0006077270507812, 1.0007183227539063, 1.0011361083984376, 1.0011351318359376, 1.0006005859375, 1.0008688354492188, 1.000642578125, 1.00075830078125, 1.0010562744140625, 1.001421875, 1.0009476318359376, 1.000995849609375, 1.0008811645507814, 1.001438232421875, 1.000816650390625, 1.0011361083984376, 1.0006569213867187, 1.0008370971679688, 1.0008350830078125, 1.00099072265625, 1.0007787475585936, 1.0014464111328125, 1.0013634643554687, 1.0017720336914062, 1.001069580078125, 1.001523193359375, 1.0014351196289062, 1.002029052734375, 1.001865234375, 1.0020095825195312, 1.0007572631835937, 1.0010081176757812, 1.0010040283203125, 1.000943603515625, 1.001080810546875, 1.0031155395507811, 1.000857666015625, 1.00139208984375, 1.001006103515625, 1.0015139770507813, 1.0011719970703126, 1.0016010131835937, 1.0014443359375, 1.0011443481445312, 1.0013952026367188, 1.0011340942382811, 1.0010603637695312, 1.0010203857421875, 1.0011033935546876, 1.0015077514648438, 1.00125390625, 1.002071044921875, 1.0015109252929688, 1.0014412841796876, 2.065207275390625, 1.0004561767578124, 1.0008197021484375, 1.0008104858398437, 1.0015027465820312, 1.0008872680664063, 1.0009497680664063, 1.0020311279296874, 1.0013726806640626, 1.0015405883789064, 1.00103271484375, 1.0013511962890624, 1.0011668701171874, 1.0011986083984374, 1.00210791015625, 1.0007920532226562, 1.0011351318359376, 1.0023803100585937, 1.0009579467773437, 1.0010460205078124, 1.0012252197265625, 1.0007500610351563, 1.001091064453125, 1.0007879638671875, 1.0017576904296874, 1.0010828857421874, 1.0014474487304688, 1.0011094970703125, 1.0007890014648437, 1.0009169921875, 1.0007787475585936, 1.0004838256835937, 1.0008545532226563, 1.0006609497070313, 1.0009682006835938, 1.0007777099609374, 1.0011300048828125, 1.00124365234375, 1.000796142578125, 1.0009343872070313, 1.0009251708984375, 1.000722412109375, 1.0007971801757813, 1.0006896362304687, 1.0014924926757813, 1.0007080688476562, 1.0007705688476562, 1.0013204345703124, 1.001218017578125, 1.0010511474609376, 1.0009517822265626, 1.0008607177734374, 1.0009199829101563, 1.00119140625, 1.0017146606445313, 1.0010194091796876, 1.0013358154296874, 1.003936767578125, 1.001802734375, 1.0014443359375, 1.0012477416992187, 1.0015396118164062, 1.0018938598632812, 2.064691162109375, 1.0003916625976563, 1.0009784545898437, 1.0010337524414064, 1.0008944702148437, 1.00107470703125, 1.0008616943359374, 1.001354248046875, 1.00143408203125, 1.0012088623046875, 1.0020802612304687, 1.0009651489257811, 1.001312255859375, 1.0014505004882812, 1.0007481079101563, 1.0010009155273438, 1.0012723388671876, 1.0009712524414063, 1.0011033325195313, 1.0011371459960938, 1.0015723266601562, 1.0016163940429688, 1.0008381958007813, 1.0017801513671876, 1.0015897827148437, 1.0014259033203126, 1.0019799194335937, 1.0012518310546874, 1.0014515380859375, 1.0014484252929687, 1.001759765625, 1.00107568359375, 1.0014505004882812, 1.0014423217773438, 1.001112548828125, 1.0011678466796874, 1.0010286254882812, 1.0009210815429688, 1.0033643798828125, 1.0010767211914062, 1.001469970703125, 1.0009139404296874, 1.001143310546875, 1.00132763671875, 1.0011791381835937, 1.001169921875, 1.0012620849609375, 1.0009456787109374, 1.0010347290039063, 1.00092724609375, 1.0015047607421874, 1.00096923828125, 1.0009251708984375, 1.0013870239257812, 1.0013132934570312, 1.0014105834960938, 1.0011658325195312, 1.0012948608398438, 1.0014935302734376, 1.0009978637695311, 1.0015344848632812, 1.001290771484375, 1.0020157470703126, 2.0664228515625, 1.001302001953125, 1.000827880859375, 1.0009938354492187, 1.0006937255859376, 1.0006784057617188, 1.000911865234375, 1.0006487426757813, 1.0011852416992189, 1.0008043823242188, 1.0012477416992187, 1.0013726806640626, 1.0013101806640625, 1.0008023071289063, 1.0008514404296875, 1.0008248291015625, 1.0011658325195312, 1.001006103515625, 1.0012498168945312, 1.0011207885742188, 1.0012610473632813, 1.0012415771484375, 1.0010951538085937, 1.0023833618164062, 1.0010685424804688, 1.0005288696289063, 1.000853515625, 1.000543212890625, 1.0008811645507814, 1.0009784545898437, 1.0013153076171875, 1.0010859375, 1.0009425659179687, 1.0009343872070313, 1.000748046875, 1.000453125, 1.0013388671875, 1.00075927734375, 1.000826904296875, 1.00143310546875, 1.0011207885742188, 1.0015027465820312, 1.001175048828125, 1.0009395141601563, 1.0011279296875, 1.0010224609375, 1.0013798217773437, 1.0013460693359375, 1.00193896484375, 1.00166552734375, 1.0014197998046874, 1.0018252563476562, 1.0011893920898438, 1.0011268920898437, 1.0015764770507813, 1.0016574096679687, 1.0018969116210938, 1.0011760864257813, 1.0016829223632813, 1.0013952026367188, 1.0015078125, 1.0017791748046876, 1.001365478515625, 2.065933349609375, 1.00049609375, 1.0008944702148437, 1.00080126953125, 1.0008135375976563, 1.0008340454101563, 1.0008822021484376, 1.001302001953125, 1.0008237915039062, 1.0006292724609376, 1.0011105346679687, 1.0010654907226562, 1.0013255615234375, 1.0006692504882813, 1.0007797241210938, 1.0010091552734375, 1.0015211791992187, 1.0007367553710937, 1.0007234497070312, 1.0005473022460938, 1.0006712036132812, 1.00077978515625, 1.0011351318359376, 1.001279541015625, 1.0010480346679687, 1.0010921020507813, 1.000892333984375, 1.001080810546875, 1.00067431640625, 1.0010296020507812, 1.0010767822265625, 1.0005595703125, 1.0013173828125, 1.0010501098632814, 1.0013409423828126, 1.0012006225585937, 1.0011443481445312, 1.0012139282226562, 1.0008053588867187, 1.0007408447265624, 1.0009384765625, 1.0005883178710937, 1.0010715942382813, 1.0009569091796875, 1.0010900268554688, 1.0009027099609376, 1.000849365234375, 1.0009651489257811, 1.0008524780273438, 1.001027587890625, 1.0014033813476562, 1.0012498168945312, 1.00135009765625, 1.001059326171875, 1.0014095458984376, 1.0020269775390624, 1.0020638427734374, 1.0020095825195312, 1.0013235473632813, 1.0012037353515626, 1.0014484252929687, 1.0009476928710936, 1.0012733154296876, 2.066282470703125, 1.0010859375, 1.0004767456054688, 1.0010264892578125, 1.0008135375976563, 1.0007572631835937, 1.0011146240234374, 1.0009620361328124, 1.0013931274414063, 1.0009630737304687, 1.0009375, 1.0007900390625, 1.0008340454101563, 1.0009886474609375, 1.0007900390625, 1.0007756958007812, 1.0007982177734376, 1.0019952392578124, 1.0009794311523437, 1.0006138916015626, 1.0008309936523438, 1.0008893432617187, 1.0010368041992188, 1.0011248779296875, 1.0005238037109374, 1.0006343383789063, 1.0008145751953126, 1.0007039794921875, 1.0007521362304688, 1.0009896850585938, 1.0010880126953126, 1.0012303466796875, 1.00091796875, 1.0013450317382813, 1.000784912109375, 1.0007367553710937, 1.0009825439453126, 1.0009108276367187, 1.001238525390625, 1.0008944702148437, 1.0009989013671876, 1.0009886474609375, 1.0009651489257811, 1.0011422729492188, 1.0012374877929688, 1.0012569580078126, 1.00099072265625, 1.0008780517578124, 1.0009682006835938, 1.0007080688476562, 1.001248779296875, 1.0015518798828125, 1.0010582885742187, 1.0014033813476562, 1.001016357421875, 1.0009476318359376, 1.0012354736328124, 1.0020833129882813, 1.0019143676757813, 1.0018539428710938, 1.0019850463867188, 1.0015999755859375, 1.0015641479492188, 2.0665712890625, 1.0007060546875, 1.0006599731445311, 1.00056884765625, 1.000685546875, 1.0005678100585937, 1.0009722900390625, 1.000806396484375, 1.0007203979492187, 1.0008207397460938, 1.0005872802734375, 1.0005545043945312, 1.00069384765625, 1.0008534545898438, 1.0013716430664064, 1.0008811645507814, 1.0013511962890624, 1.0014893798828124, 1.0010726318359375, 1.0017157592773438, 1.0011299438476562, 1.00086376953125, 1.00071728515625, 1.0005729370117187, 1.0008995971679688, 1.0005995483398438, 1.0024898681640626, 1.0008678588867188, 1.000722412109375, 1.0012149658203124, 1.0008237915039062, 1.00071728515625, 1.00101220703125, 1.0010562744140625, 1.0010572509765625, 1.00170751953125, 1.00140234375, 1.000974365234375, 1.0007828369140626, 1.0009139404296874, 1.0011300048828125, 1.0010675048828126, 1.0013562622070313, 1.000953857421875, 1.0009722900390625, 1.0011146240234374, 1.0015631103515625, 1.000975341796875, 1.0017495727539063, 1.0013224487304688, 1.0012518310546874, 1.001439208984375, 1.0012415771484375, 1.0010685424804688, 1.0010286254882812, 1.00105419921875, 1.0016696166992187, 1.0011002807617186, 1.0011443481445312, 1.0017423095703124, 1.0011033325195313, 1.0011924438476563, 1.0012406005859376]",tokens/s,0.9838699688049951,,,,, +4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-65b,huggyllama/llama-65b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -5852,22 +4748,31 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 86.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-3b,stabilityai/stablelm-base-alpha-3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-14B,Qwen/Qwen1.5-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,3951.190016,12732.33408,0.0,12085.886976,11337.496064,s,10,10.983638916015623,1.0983638916015628,0.002145812483257245,1.0982380981445312,1.1009110717773436,1.1018160705566407,1.1025400695800782,"[1.1027210693359375, 1.1007099609375, 1.0960345458984375, 1.0957255859375, 1.0965640869140625, 1.096655029296875, 1.0976143798828124, 1.09886181640625, 1.0996507568359375, 1.0991016845703125]",tokens/s,233.07394021003134,kWh,1.2942184060811996e-05,7.0910633564744784e-06,6.339727294000231e-05,8.343052035728877e-05,tokens/kWh,3068421.4709879244,MB,3951.190016,12732.33408,0.0,12085.886976,11686.800384,s,10,637.80165234375,63.780165234375,0.009100497531913991,63.777451171875,63.784855859375,63.7953341796875,63.8037168359375,"[63.775953125, 63.7747265625, 63.78252734375, 63.77445703125, 63.77937109375, 63.7818203125, 63.8058125, 63.7783125, 63.77208203125, 63.77658984375]",tokens/s,0.9877679019565393,kWh,0.0007529117455250688,0.00041266306092793453,0.003710265523765599,0.004875840330218602,tokens/kWh,12920.849686063342,,s,629,646.6700090332033,1.028092224218129,0.13044395391192767,1.0122936401367189,1.0129029296874998,1.0132424438476564,2.1090928125,"[1.0118082275390625, 1.0120591430664063, 1.0121963500976563, 1.0122721557617187, 1.0119987182617187, 1.0119086303710938, 1.0127564697265625, 1.0119772338867188, 1.013127197265625, 1.0117877807617188, 1.0121246948242189, 1.0118850708007812, 1.0127083740234375, 1.0122250366210936, 1.0122311401367188, 1.01222705078125, 1.0121298217773438, 1.01207958984375, 1.0122537231445312, 1.0121769409179688, 1.0120580444335938, 1.0120304565429687, 1.0126674194335938, 1.0122168579101563, 1.0119823608398437, 1.0118645629882812, 1.0125404052734375, 1.0122362670898437, 1.01228955078125, 1.012083740234375, 1.0118092651367188, 1.0122362670898437, 1.0126837768554688, 1.0127236938476563, 1.0127257690429687, 1.0131476440429688, 1.0123878784179687, 1.0122587280273438, 1.0124882202148437, 1.0123243408203124, 1.0121123657226563, 1.0124574584960937, 1.012696044921875, 1.0123038940429687, 1.012063232421875, 1.01218408203125, 1.0126653442382811, 1.012890625, 1.0124677124023438, 1.0129090576171875, 1.0120939331054688, 1.01304931640625, 1.0123591918945312, 1.0120345458984374, 1.0119608154296875, 1.0121820068359375, 1.0124882202148437, 1.0120724487304686, 1.01193115234375, 1.0123868408203125, 1.0123858642578125, 1.0128014526367188, 2.113512451171875, 1.0119444580078125, 1.0120970458984375, 1.0116249389648437, 1.0117980346679687, 1.0118410034179688, 1.0118922119140625, 1.0117406616210938, 1.012063232421875, 1.0121236572265624, 1.0118225708007813, 1.0117457885742187, 1.012200439453125, 1.0118594360351563, 1.0123018188476562, 1.0119075927734376, 1.0119393310546876, 1.0118450927734375, 1.0121697387695312, 1.0119772338867188, 1.0117940063476563, 1.0117733764648438, 1.0121502685546875, 1.0117877807617188, 1.0121226196289062, 1.0117345581054686, 1.011778564453125, 1.0116874389648438, 1.0122762451171874, 1.0118328247070312, 1.0120519409179687, 1.0118645629882812, 1.0123099975585939, 1.0122506103515625, 1.012801513671875, 1.0120089721679688, 1.0126571655273438, 1.0122014770507812, 1.0129817504882812, 1.0126458740234374, 1.012490234375, 1.0121615600585938, 1.0127646484375, 1.0119393310546876, 1.0128711547851563, 1.011999755859375, 1.0165934448242187, 1.0120037841796874, 1.0129735717773438, 1.0124287719726563, 1.0122291259765626, 1.0124595336914062, 1.01273291015625, 1.0122619018554688, 1.0127390747070313, 1.0128394165039063, 1.0125383911132813, 1.01269091796875, 1.013369873046875, 1.0124830932617188, 1.0126510009765626, 1.0123509521484375, 1.0127933349609375, 2.1089033203125, 1.0117857055664063, 1.0120253295898438, 1.012158447265625, 1.0124718017578125, 1.0120816650390625, 1.0120447998046875, 1.0125680541992188, 1.0123571166992187, 1.0120724487304686, 1.0127575073242188, 1.01252001953125, 1.0122987060546875, 1.0124451904296874, 1.0127728881835938, 1.011794921875, 1.011989501953125, 1.0122485961914063, 1.0122066040039062, 1.0119823608398437, 1.012210693359375, 1.0119772338867188, 1.01199462890625, 1.0123724975585937, 1.0123673706054688, 1.0120867919921874, 1.0119280395507813, 1.0121994018554688, 1.0121431274414063, 1.0121226196289062, 1.0124666748046875, 1.0119382934570313, 1.012031494140625, 1.0129346313476562, 1.012621337890625, 1.0127984619140624, 1.0124257202148437, 1.012552734375, 1.0124932861328124, 1.0126151733398439, 1.0124769287109374, 1.0124185791015625, 1.0123202514648437, 1.0127390747070313, 1.0145853271484375, 1.0121594848632813, 1.0121994018554688, 1.016111083984375, 1.01210009765625, 1.012337646484375, 1.0126919555664062, 1.0125444946289062, 1.0131015625, 1.0132469482421875, 1.0124186401367188, 1.0119146728515624, 1.0125578002929687, 1.0123294677734376, 1.0121595458984376, 1.0121768798828126, 1.0121963500976563, 1.0120345458984374, 1.0120714111328124, 2.108083251953125, 1.0117611694335937, 1.0117723999023438, 1.0123253784179687, 1.0121656494140625, 1.011751953125, 1.011820556640625, 1.0120601806640626, 1.0119454956054688, 1.01188916015625, 1.0119761962890625, 1.0117877807617188, 1.0130258178710938, 1.0123018188476562, 1.0121328735351562, 1.01246875, 1.0121953125, 1.0118369140625, 1.0122199096679687, 1.0124267578125, 1.0122546997070312, 1.0124503173828125, 1.0120703735351562, 1.0122537231445312, 1.0119536743164061, 1.0123397216796874, 1.0123960571289063, 1.0120325317382812, 1.0122772216796876, 1.012115478515625, 1.012005859375, 1.011937255859375, 1.0124103393554686, 1.0128527221679688, 1.012220947265625, 1.0126182250976563, 1.0130596313476563, 1.012464599609375, 1.0132828369140625, 1.0123468627929688, 1.0119547119140626, 1.0120048828125, 1.0124175415039063, 1.012010986328125, 1.0151219482421876, 1.0123069458007812, 1.0124124145507813, 1.0122076416015624, 1.0128138427734374, 1.0126878662109375, 1.0123939819335936, 1.0121318359375, 1.01235302734375, 1.011895263671875, 1.0121062622070311, 1.0122885131835937, 1.0123724975585937, 1.012242431640625, 1.012421630859375, 1.0123786010742188, 1.0121113891601563, 1.0120017700195312, 1.0122393798828124, 2.10916650390625, 1.0120038452148437, 1.0127247314453125, 1.0125916137695312, 1.0125660400390626, 1.0119761962890625, 1.0121748657226564, 1.0119721069335939, 1.0121370239257812, 1.0121942138671876, 1.0123048706054687, 1.0119403686523438, 1.0117099609375, 1.01187890625, 1.0121195678710937, 1.0117509155273436, 1.0118615112304687, 1.013433349609375, 1.012052978515625, 1.0117959594726562, 1.0120274047851563, 1.0121123657226563, 1.012421630859375, 1.012052978515625, 1.0121298217773438, 1.0119987182617187, 1.0118973388671875, 1.0125066528320312, 1.0120836791992187, 1.0121307983398438, 1.01264697265625, 1.0120714111328124, 1.0120857543945312, 1.0123540649414062, 1.0124544067382812, 1.0121564331054687, 1.0122383422851562, 1.0122454833984376, 1.0119935913085938, 1.0119239501953126, 1.0125363159179688, 1.0117755126953125, 1.011968017578125, 1.0119495239257812, 1.0124840698242188, 1.0122025146484375, 1.0122854614257812, 1.01258447265625, 1.0125885620117188, 1.0125301513671876, 1.012516845703125, 1.012400146484375, 1.0123970336914063, 1.0127892456054688, 1.01247998046875, 1.01256396484375, 1.0124237060546875, 1.0165504150390625, 1.0126458740234374, 1.0126848754882813, 1.0138418579101562, 1.0126428833007812, 1.0132418212890626, 2.10956298828125, 1.0119423828125, 1.0119608154296875, 1.0120847778320312, 1.011984375, 1.0120007934570312, 1.0124031982421875, 1.01182568359375, 1.0117908325195313, 1.0122680053710937, 1.012263916015625, 1.0119035034179686, 1.0124677734375, 1.0120057983398438, 1.0118276977539062, 1.011904541015625, 1.0125209350585938, 1.012252685546875, 1.0120653076171875, 1.0124205932617187, 1.0122495727539063, 1.0123724975585937, 1.0126407470703125, 1.012590576171875, 1.0119659423828125, 1.0125209350585938, 1.0127493286132812, 1.0124779663085937, 1.0127708129882813, 1.0121123657226563, 1.0121646118164063, 1.0116229248046875, 1.0122229614257812, 1.0120335083007812, 1.0120325317382812, 1.0120078735351563, 1.0126233520507812, 1.0124185791015625, 1.01650634765625, 1.0135787353515624, 1.012727783203125, 1.0122936401367189, 1.0128947143554687, 1.0121277465820313, 1.012600830078125, 1.0126612548828124, 1.0123960571289063, 1.012105224609375, 1.0127769775390625, 1.01275341796875, 1.012274169921875, 1.012279296875, 1.0123386840820312, 1.0121942749023438, 1.0125885620117188, 1.012947998046875, 1.0124779663085937, 1.0123930053710937, 1.0128373413085938, 1.0122721557617187, 1.01233251953125, 1.0123386840820312, 1.0127564697265625, 2.110841796875, 1.0128209838867188, 1.0126233520507812, 1.012595703125, 1.0131865844726562, 1.01278515625, 1.0128342895507811, 1.0131220703125, 1.0128527221679688, 1.012337646484375, 1.0124810180664063, 1.0129080200195313, 1.012747314453125, 1.0124318237304688, 1.0134036254882812, 1.0129408569335938, 1.0123612060546876, 1.0120929565429688, 1.0134886474609375, 1.0132265014648438, 1.0129080200195313, 1.0132152099609375, 1.0127984619140624, 1.0145208129882812, 1.013728271484375, 1.0132162475585937, 1.0127083740234375, 1.0127789916992187, 1.012833251953125, 1.0120120239257813, 1.0122465209960938, 1.0125762329101562, 1.0127605590820312, 1.0129448852539062, 1.01275341796875, 1.0117826538085937, 1.0119331665039062, 1.0120591430664063, 1.0131445922851563, 1.0131220703125, 1.0128814086914062, 1.0128875732421876, 1.0127513427734376, 1.013012451171875, 1.0131896362304686, 1.0130308837890625, 1.0130473022460937, 1.0133401489257812, 1.0132930297851563, 1.0126981201171874, 1.0128568115234375, 1.012906982421875, 1.0124503173828125, 1.0124984130859376, 1.0132520751953125, 1.0128076782226563, 1.0122936401367189, 1.0126827392578126, 1.0122035522460937, 1.0120509033203124, 1.0123540649414062, 1.0125946655273437, 1.0123171997070313, 2.112021484375, 1.0123406982421874, 1.0120253295898438, 1.0121513061523437, 1.0124144897460938, 1.012274169921875, 1.012401123046875, 1.0119710693359374, 1.012263916015625, 1.0128281860351562, 1.0122537231445312, 1.0122373046875, 1.0121615600585938, 1.0122373046875, 1.0120325317382812, 1.0120929565429688, 1.01382861328125, 1.0119669799804687, 1.0119239501953126, 1.0123489379882813, 1.0119403686523438, 1.0117539672851563, 1.0119976806640625, 1.0121533203125, 1.0122137451171875, 1.0119065551757813, 1.0129019165039062, 1.0124779052734374, 1.0123939819335936, 1.0126571655273438, 1.0125834350585938, 1.0119721069335939, 1.0120038452148437, 1.012474853515625, 1.0120499267578125, 1.0122383422851562, 1.0124830932617188, 1.0124758911132812, 1.0127083740234375, 1.012632568359375, 1.0122034912109374, 1.0120222778320314, 1.012178955078125, 1.0122977294921875, 1.0122034912109374, 1.01212158203125, 1.0132428588867188, 1.0123274536132814, 1.0125435180664062, 1.0123755493164062, 1.0122383422851562, 1.01226904296875, 1.0125250854492187, 1.0119833374023437, 1.0120601806640626, 1.0121134033203125, 1.012974609375, 1.0124656372070313, 1.01243798828125, 1.012580322265625, 1.0127124633789062, 1.0127247314453125, 1.0126704711914063, 2.11262353515625, 1.0118778686523437, 1.0124564208984375, 1.0118143920898437, 1.0125772705078124, 1.0121441040039063, 1.0118225708007813, 1.0119639892578125, 1.0122833251953125, 1.011894287109375, 1.0119280395507813, 1.0119198608398436, 1.0127401123046875, 1.01235205078125, 1.012570068359375, 1.011726318359375, 1.0117744750976563, 1.013375, 1.0122465209960938, 1.01218505859375, 1.0120325317382812, 1.011989501953125, 1.0127339477539063, 1.0121031494140624, 1.0123878173828125, 1.0119874267578124, 1.011962890625, 1.0119680786132812, 1.0123140258789063, 1.0120407104492188, 1.012220947265625, 1.0121410522460939, 1.0122772216796876, 1.011979248046875, 1.0125343017578126, 1.01197412109375, 1.01228955078125, 1.0118973388671875, 1.0122465209960938, 1.0119423828125, 1.012041748046875, 1.0123131103515626, 1.0124677124023438, 1.0119342041015624, 1.012621337890625, 1.012105224609375, 1.0122291259765626, 1.0119669799804687, 1.0125332641601563, 1.0122034912109374, 1.0122045288085937, 1.0123519897460938, 1.012875244140625, 1.0126397705078125, 1.0126233520507812, 1.0123182373046875, 1.0127708129882813, 1.0124646606445313, 1.0125987548828126, 1.0120775756835938, 1.012442138671875, 1.012552734375, 1.012252685546875, 2.11210546875, 1.011620849609375, 1.0120519409179687, 1.0119721069335939, 1.0122485961914063, 1.0120714111328124, 1.0120621948242188, 1.0127001342773438, 1.0125178833007813, 1.012548583984375, 1.01243701171875, 1.0118604736328125, 1.0117130126953124, 1.0120304565429687, 1.0122587890625, 1.01167822265625, 1.0118010864257811, 1.0119813232421875, 1.011894287109375, 1.0122905883789062, 1.01184716796875, 1.0117959594726562, 1.0116761474609375, 1.0118410034179688, 1.0117744750976563, 1.0119515991210937, 1.0144215087890625, 1.0122987670898438, 1.012021240234375, 1.0126315307617189, 1.0124862060546875, 1.0122158203125, 1.0121727905273437, 1.0125875244140625, 1.0124472045898438, 1.0122403564453124, 1.0122117309570313, 1.0127349853515626, 1.0121431274414063, 1.012495361328125, 1.012738037109375, 1.0124758911132812, 1.0128773193359375, 1.0123079833984374, 1.0123099975585939, 1.0121298217773438, 1.0122557373046874, 1.0126878662109375, 1.0124810180664063, 1.013000244140625, 1.012516845703125, 1.0124298095703126, 1.012358154296875, 1.0124656372070313, 1.0123171997070313, 1.01239501953125, 1.01268994140625, 1.0127656860351562, 1.01236328125, 1.0124308471679688, 1.012527099609375, 1.0123038940429687, 1.0129132080078125]",tokens/s,0.972675384993313,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-12b,stabilityai/stablelm-2-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2280.779776,9584.508928,0.0,8938.061824,8629.0688,s,10,10.176551086425778,1.0176551086425778,0.0015328797671352301,1.0172308959960938,1.018193273925781,1.0201789428710937,1.0217674780273438,"[1.0221646118164063, 1.0172261352539063, 1.0167738647460938, 1.0172377319335937, 1.0172356567382812, 1.0169893188476562, 1.0167650146484375, 1.017517822265625, 1.016888916015625, 1.0177520141601561]",tokens/s,251.55870375521562,kWh,1.2027085920174918e-05,6.590293178160209e-06,5.696557335020391e-05,7.558295244853905e-05,tokens/kWh,3387007.145219666,MB,2281.074688,9584.508928,0.0,8938.061824,8715.66592,s,10,595.0380507812499,59.50380507812499,0.008158332777429248,59.504548828124996,59.5143921875,59.51552421875,59.51642984375,"[59.500625, 59.49740234375, 59.49325390625, 59.50875, 59.50894140625, 59.514140625, 59.4951328125, 59.50847265625, 59.49467578125, 59.51665625]",tokens/s,1.0587558210316923,kWh,0.0007025720743172699,0.00038506887292403917,0.0033221314077029936,0.004409772354944303,tokens/kWh,14286.451755125965,,s,629,603.2482678222655,0.9590592493199772,0.12088183404247937,0.9444280395507813,0.945362939453125,0.9457379272460937,1.96203095703125,"[0.9439191284179688, 0.9438074951171875, 0.9435494384765625, 0.9451939697265626, 0.9448151245117188, 0.9447935791015625, 0.94410546875, 0.9439744262695312, 0.9437614135742187, 0.9440634765625, 0.94390576171875, 0.9446031494140625, 0.9444812622070312, 0.945565673828125, 0.9449103393554688, 0.9443286743164062, 0.9433487548828124, 0.9437614135742187, 0.943837158203125, 0.9445468139648437, 0.9442355346679687, 0.9440911254882812, 0.9451141357421875, 0.9447239379882812, 0.9452031860351563, 0.9445714111328125, 0.9450618896484375, 0.9444659423828125, 0.9439969482421875, 0.9436231689453125, 0.944216064453125, 0.9437163696289063, 0.9447649536132813, 0.9448642578125, 0.9447239379882812, 0.9447444458007812, 0.944990234375, 0.9443727416992187, 0.9441873779296875, 0.9447096557617187, 0.9451028442382813, 0.9457059936523438, 0.9445437622070313, 0.9448652954101563, 0.9439764404296875, 0.945954833984375, 0.9447557373046875, 0.9458032836914062, 0.9443123168945312, 0.9440501708984375, 0.9439887084960937, 0.9450444946289063, 0.9437235107421875, 0.944195556640625, 0.9443512573242188, 0.9439027099609375, 0.9452513427734375, 0.9451724853515625, 0.94409521484375, 0.9442816162109375, 0.9435177001953124, 0.943952880859375, 1.961964599609375, 0.9452953491210937, 0.9439201049804687, 0.9446041870117188, 0.9441761474609375, 0.9450936279296875, 0.9438955688476562, 0.944521240234375, 0.9442867431640625, 0.944669677734375, 0.9439436645507813, 0.9444669189453125, 0.9447761840820312, 0.9443717041015625, 0.9457489624023437, 0.9448304443359375, 0.9437224731445313, 0.943720458984375, 0.943825927734375, 0.9439569702148437, 0.9447649536132813, 0.9438760986328125, 0.94512744140625, 0.9446553344726563, 0.9442754516601563, 0.9448980712890624, 0.944395263671875, 0.9436589965820312, 0.9441065063476562, 0.9436221313476563, 0.94472705078125, 0.9441556396484375, 0.9437644653320313, 0.94514892578125, 0.9441781616210938, 0.9451366577148438, 0.943805419921875, 0.9449574584960938, 0.94401025390625, 0.9444935913085938, 0.9444280395507813, 0.9449482421875, 0.9444423828125, 0.944490478515625, 0.9455534057617188, 0.9445355224609375, 0.944510986328125, 0.9453905639648438, 0.944805908203125, 0.9447341918945312, 0.9445673217773437, 0.9435391845703125, 0.94436865234375, 0.9436989135742188, 0.9443194580078125, 0.9437255859375, 0.943572998046875, 0.9442672729492188, 0.9445857543945313, 0.9441392822265625, 0.9437747192382813, 0.9438228759765624, 0.9449410400390625, 1.9620567626953125, 0.94470556640625, 0.9442181396484375, 0.945459228515625, 0.944817138671875, 0.944289794921875, 0.9441679077148437, 0.943963134765625, 0.9437173461914062, 0.9446461181640625, 0.9440194702148438, 0.9441679077148437, 0.9439436645507813, 0.94363134765625, 0.9440819091796875, 0.9446000366210937, 0.9443461303710937, 0.9433681640625, 0.9446809692382813, 0.945306640625, 0.9444782104492188, 0.9442139892578125, 0.9447669677734375, 0.9443020629882812, 0.9446246337890625, 0.9445652465820312, 0.9445877685546875, 0.94449560546875, 0.9440122680664063, 0.9438228759765624, 0.9451950073242188, 0.9438597412109375, 0.9438197631835937, 0.9448263549804687, 0.9439232177734375, 0.9453045654296875, 0.9447987060546875, 0.944822265625, 0.944021484375, 0.9442969360351563, 0.9446051635742188, 0.945090576171875, 0.9438689575195313, 0.9441822509765625, 0.9437224731445313, 0.9438904418945312, 0.9443860473632812, 0.9447403564453125, 0.944142333984375, 0.9441279907226563, 0.94382080078125, 0.9441802368164063, 0.9439436645507813, 0.9441648559570313, 0.9440030517578125, 0.9440491333007812, 0.944716796875, 0.9447926025390625, 0.9442672729492188, 0.9440327758789062, 0.9443020629882812, 0.944078857421875, 0.9440512084960937, 1.962303466796875, 0.9448621826171875, 0.9440481567382812, 0.945122314453125, 0.9454274291992187, 0.9450147705078125, 0.9446143798828125, 0.9449840698242188, 0.9448417358398438, 0.94497998046875, 0.9441136474609375, 0.9453189086914062, 0.9442518920898437, 0.9458114624023437, 0.9444659423828125, 0.9440430297851562, 0.943193115234375, 0.9432238159179688, 0.9438320922851563, 0.9455195922851563, 0.9445857543945313, 0.9451468505859375, 0.9443491821289063, 0.9451049194335938, 0.9449103393554688, 0.945438720703125, 0.9439078369140625, 0.9441853637695312, 0.9438812255859375, 0.9447454833984374, 0.9449072875976563, 0.9441033935546875, 0.9460459594726562, 0.9442908325195313, 0.9438238525390625, 0.9456240844726562, 0.9443204956054687, 0.9439620971679688, 0.9440112915039063, 0.944047119140625, 0.9453885498046875, 0.94415771484375, 0.9452503051757812, 0.9443839721679688, 0.9442600708007812, 0.9446881103515625, 0.9450864868164063, 0.944437255859375, 0.9439979248046875, 0.94411572265625, 0.9444382934570312, 0.9443983154296876, 0.9445570678710937, 0.9448038330078125, 0.944584716796875, 0.9450680541992188, 0.9447341918945312, 0.944616455078125, 0.9441351928710937, 0.9442734375, 0.944194580078125, 0.9450393676757812, 0.9440450439453125, 1.96240380859375, 0.944021484375, 0.9450997924804687, 0.9445232543945312, 0.944395263671875, 0.9442621459960937, 0.9440450439453125, 0.9442600708007812, 0.9443963012695312, 0.944542724609375, 0.9447127075195313, 0.944289794921875, 0.9443440551757812, 0.9460879516601562, 0.9445314331054687, 0.944732177734375, 0.9441167602539062, 0.9434654541015625, 0.9446461181640625, 0.9446021118164063, 0.9455134887695312, 0.94460107421875, 0.944163818359375, 0.9440798950195313, 0.9460429077148438, 0.9448857421875, 0.9443890991210937, 0.944552978515625, 0.9442201538085937, 0.945523681640625, 0.9453793334960937, 0.946145263671875, 0.9447127075195313, 0.9450925903320313, 0.9457950439453126, 0.9460930786132813, 0.9446625366210938, 0.9440460815429688, 0.9442805786132813, 0.9451847534179687, 0.9439201049804687, 0.9439293212890625, 0.9453352661132812, 0.9441095581054687, 0.9442600708007812, 0.9441249389648437, 0.9455513305664063, 0.9446041870117188, 0.9449758911132813, 0.944733154296875, 0.9457428588867187, 0.9441658935546875, 0.9438597412109375, 0.9436641235351563, 0.94344189453125, 0.945201171875, 0.9446563720703125, 0.9440634765625, 0.9435924682617187, 0.9437214965820313, 0.9441249389648437, 0.9439600830078125, 0.94362109375, 1.9618406982421874, 0.9449922485351563, 0.9445714111328125, 0.946429931640625, 0.9437757568359375, 0.9441884155273438, 0.943705078125, 0.94535986328125, 0.9445396728515625, 0.9449246826171875, 0.943847412109375, 0.9441607666015625, 0.9455728759765625, 0.9447864379882812, 0.9441095581054687, 0.9441699829101563, 0.9446051635742188, 0.9435985717773437, 0.9450465087890625, 0.9443768310546875, 0.9445549926757812, 0.944733154296875, 0.9450895385742187, 0.9451468505859375, 0.945554443359375, 0.9442498779296875, 0.9442662353515625, 0.9444259643554688, 0.945138671875, 0.9445048217773437, 0.9450762329101563, 0.944775146484375, 0.9441412963867187, 0.9443184814453125, 0.945238037109375, 0.9445673217773437, 0.9456680908203124, 0.9446410522460937, 0.9445181274414063, 0.9456373901367188, 0.9438515014648438, 0.9446522827148438, 0.9439600830078125, 0.944447509765625, 0.9449236450195313, 0.9451837158203125, 0.944015380859375, 0.944595947265625, 0.9445867309570313, 0.944869384765625, 0.9447772216796875, 0.9439764404296875, 0.9448857421875, 0.9445509033203126, 0.9448018188476562, 0.9448990478515625, 0.94510693359375, 0.944690185546875, 0.9443369140625, 0.9444546508789062, 0.9454674072265625, 0.9442078857421875, 0.9450659790039062, 1.9620792236328124, 0.9442550048828126, 0.9450751953125, 0.9438463745117187, 0.9439702758789063, 0.944837646484375, 0.9442098999023437, 0.9442938842773437, 0.9439365234375, 0.94470556640625, 0.9441126098632813, 0.944058349609375, 0.9444188232421875, 0.9445037841796875, 0.943837158203125, 0.9439406127929687, 0.9434613647460938, 0.9443983154296876, 0.944353271484375, 0.9448919067382813, 0.9447465209960938, 0.9449727783203125, 0.9444126586914062, 0.9454131469726562, 0.945016845703125, 0.9439498291015626, 0.9441412963867187, 0.9441597290039062, 0.9443522338867187, 0.9438381958007812, 0.9442887573242188, 0.944189453125, 0.9438013305664062, 0.9440122680664063, 0.9451192016601563, 0.9441802368164063, 0.944279541015625, 0.9441546020507813, 0.944953369140625, 0.9451735229492187, 0.9439866943359375, 0.9443461303710937, 0.9438648071289063, 0.9442754516601563, 0.9446963500976563, 0.944337890625, 0.9436928100585937, 0.9441341552734375, 0.9442744140625, 0.9443624877929687, 0.9439539184570312, 0.9444546508789062, 0.9440614624023438, 0.9443717041015625, 0.9440122680664063, 0.9457305297851563, 0.9445120239257813, 0.9440767822265625, 0.9440235595703125, 0.944637939453125, 0.9447669677734375, 0.9439303588867187, 0.9450260620117188, 1.96250830078125, 0.945138671875, 0.94508544921875, 0.9441658935546875, 0.944089111328125, 0.9439273071289063, 0.944532470703125, 0.9449574584960938, 0.9450444946289063, 0.9448878173828125, 0.9445734252929687, 0.9452164916992187, 0.9463602905273437, 0.9454663696289063, 0.9445283813476563, 0.944996337890625, 0.9449359130859375, 0.9434193725585938, 0.9439549560546875, 0.9449943237304688, 0.9439518432617188, 0.9447526245117187, 0.94417919921875, 0.9459722290039062, 0.943705078125, 0.9437808837890626, 0.9436303100585938, 0.945122314453125, 0.9443286743164062, 0.9444597778320313, 0.9451847534179687, 0.944753662109375, 0.9440460815429688, 0.9454346313476563, 0.9441884155273438, 0.9441730346679688, 0.9445990600585937, 0.9442191162109375, 0.9447506103515625, 0.94445361328125, 0.9448314819335938, 0.9444966430664062, 0.9454448852539062, 0.9437501220703125, 0.9454315795898437, 0.943909912109375, 0.9438177490234375, 0.9439487915039062, 0.944637939453125, 0.944753662109375, 0.9441044311523438, 0.9440993041992187, 0.9442928466796875, 0.9440347900390625, 0.9455585327148438, 0.9453936767578125, 0.9444710693359375, 0.9441751098632812, 0.944163818359375, 0.9446604614257812, 0.9442406616210938, 0.9449768676757813, 0.9444280395507813, 1.9621160888671876, 0.9457469482421875, 0.94449560546875, 0.9444403076171874, 0.9441771240234375, 0.9445068969726562, 0.9441464233398438, 0.9440808715820312, 0.9447423706054687, 0.9440921630859375, 0.9448734741210938, 0.944405517578125, 0.945375244140625, 0.944026611328125, 0.9439928588867188, 0.9442150268554688, 0.9443993530273438, 0.9442857055664062, 0.9451458740234375, 0.9446522827148438, 0.944701416015625, 0.9448027954101562, 0.9459158935546875, 0.9446707153320313, 0.9441566772460938, 0.9440133056640625, 0.9440880737304688, 0.944232421875, 0.9440133056640625, 0.9441699829101563, 0.9440634765625, 0.9437409057617188, 0.943952880859375, 0.944626708984375, 0.944152587890625, 0.9444495239257813, 0.9439201049804687, 0.945048583984375, 0.9437726440429688, 0.9444515991210938, 0.94368359375, 0.9439324340820312, 0.9438914794921875, 0.9448427734375, 0.9442590942382812, 0.9434368286132813, 0.9441812744140625, 0.9437726440429688, 0.9446533203125, 0.9439723510742187, 0.9444556884765625, 0.9440726928710937, 0.9439303588867187, 0.94407373046875, 0.9452779541015625, 0.9441228637695313, 0.9435852661132812, 0.9436907348632813, 0.943984619140625, 0.944078857421875, 0.9446338500976562, 0.9449257202148438, 0.9452236938476563, 1.963953125, 0.9454633178710937, 0.9447341918945312, 0.9460571899414062, 0.94517041015625, 0.9456434936523438, 0.9455032348632812, 0.9461248168945312, 0.9460029296875, 0.9438279418945312, 0.9447096557617187, 0.94533837890625, 0.94419970703125, 0.943636474609375, 0.943752197265625, 0.9444884643554687, 0.9433948364257813, 0.9433794555664062, 0.9446205444335938, 0.9441167602539062, 0.9440307006835937, 0.9440122680664063, 0.9449257202148438, 0.9440286865234375, 0.943515625, 0.9437122802734375, 0.9445457763671875, 0.9440726928710937, 0.9442130126953125, 0.9443328247070313, 0.9440071411132812, 0.9451980590820312, 0.9459169311523438, 0.944890869140625, 0.9443102416992187, 0.9445673217773437, 0.9445437622070313, 0.9452554321289063, 0.9446389770507813, 0.9451735229492187, 0.9450977172851562, 0.944343017578125, 0.9447926025390625, 0.9471918334960937, 0.9450096435546875, 0.9446543579101563, 0.9449779052734375, 0.9458626708984375, 0.9440061645507812, 0.9450895385742187, 0.945090576171875, 0.9444638671875, 0.9445816040039062, 0.944679931640625, 0.9448161010742188, 0.944236572265625, 0.9442642211914063, 0.9439815673828125, 0.9447567138671875, 0.944205810546875, 0.9459619750976562, 0.9442539672851562, 0.9440655517578125]",tokens/s,1.0426884477773943,,,,, +4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,8,8,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -5875,41 +4780,46 @@ NameError: name 'exlv2_ext' is not defined File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/8/resolve/main/config.json -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,/,/,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694924f-3b04e21119c6c72c3d6c0267;30325367-f9c9-4612-be1a-4512abe6b463) + +Repository Not Found for url: https://huggingface.co/8/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run @@ -5926,47 +4836,16 @@ ChildProcessError: Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 373, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: / does not appear to have a file named config.json. Checkout 'https://huggingface.co///tree/None' for available files. - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-70m,EleutherAI/pythia-70m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined +OSError: 8 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-2b,google/gemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-8B,meta-llama/Meta-Llama-3-8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1612.562432,7598.505984,0.0,6952.05888,6314.304512,s,10,6.256621520996093,0.6256621520996093,0.00177274849590911,0.6261759033203125,0.6270674194335938,0.6281453430175781,0.6290076818847656,"[0.6292232666015625, 0.6262135009765625, 0.6265690307617188, 0.6241492919921875, 0.6230667114257813, 0.6232349853515625, 0.624854736328125, 0.6261383056640625, 0.6263438110351562, 0.626827880859375]",tokens/s,409.16651125677043,kWh,7.363675038019816e-06,4.0350039173812114e-06,3.4213050246233903e-05,4.561172920163493e-05,tokens/kWh,5612591.420691497,MB,1612.562432,7598.505984,0.0,6952.05888,6464.047616,s,10,369.81373437499997,36.981373437500004,0.03993526863753842,36.962308593749995,37.0309203125,37.048473828125,37.062516640625,"[37.02584375, 37.06602734375, 37.02701953125, 36.95202734375, 36.96666796875, 36.9451328125, 36.9648984375, 36.9521875, 36.95971875, 36.9542109375]",tokens/s,1.7035603100699468,kWh,0.0004362355767852731,0.00023909502275260607,0.0019567083202673705,0.0026320389198052495,tokens/kWh,23935.816270019863,,s,629,374.855053039551,0.5959539793951523,0.07432782764438475,0.5866659545898437,0.589058251953125,0.5894471923828125,1.2107634912109375,"[0.586392578125, 0.5868226318359375, 0.5859829711914063, 0.5863291015625, 0.5865410766601562, 0.5872220458984375, 0.586271728515625, 0.5857536010742187, 0.5860116577148438, 0.585923583984375, 0.5870950317382813, 0.5866148071289062, 0.5868349609375, 0.5866342163085938, 0.5861621704101563, 0.586134521484375, 0.5858928833007813, 0.58690869140625, 0.586186767578125, 0.5873684692382812, 0.5866659545898437, 0.5863311157226563, 0.588506103515625, 0.5890938720703125, 0.5862461547851563, 0.5873582153320313, 0.5887150268554687, 0.5900718383789062, 0.5890580444335938, 0.589464599609375, 0.5892474975585937, 0.5888132934570313, 0.5892208862304688, 0.5892362060546875, 0.58881640625, 0.587177978515625, 0.5861478271484375, 0.5872230224609375, 0.5890713500976562, 0.5897615356445313, 0.5891819458007812, 0.5891215209960937, 0.588368896484375, 0.5868963623046874, 0.5877462768554688, 0.587673583984375, 0.5883515014648437, 0.5891358642578125, 0.5892372436523438, 0.5901947021484375, 0.5882511596679687, 0.5863966674804687, 0.5867079467773437, 0.5862789306640624, 0.5875824584960937, 0.589075439453125, 0.5904906005859375, 0.5885787963867187, 0.5882501220703125, 0.5885009765625, 0.5887518920898438, 0.5892843627929687, 1.21577880859375, 0.5866813354492187, 0.58638232421875, 0.5860689697265625, 0.586250244140625, 0.5862062377929688, 0.5863833618164063, 0.5862236328125, 0.5872701416015625, 0.5891921997070313, 0.5893621826171875, 0.5892301025390625, 0.5891163940429688, 0.589286376953125, 0.58905908203125, 0.5892198486328125, 0.5870059814453125, 0.58844775390625, 0.5890242309570313, 0.5887774658203125, 0.5890150146484375, 0.5887242431640625, 0.5887866821289063, 0.5895270385742187, 0.5885030517578125, 0.5896734619140624, 0.5887754516601562, 0.5896263427734375, 0.5871104125976563, 0.5881671752929688, 0.5891235961914062, 0.5891962890625, 0.5888031005859375, 0.5896325073242188, 0.5887764282226563, 0.5869895629882812, 0.5890662231445313, 0.5892987060546875, 0.5882552490234375, 0.5869424438476563, 0.588790771484375, 0.5888245849609375, 0.5896591186523438, 0.5890518798828125, 0.589486083984375, 0.5889976196289063, 0.5883146362304688, 0.58652978515625, 0.5864765625, 0.5863751831054688, 0.586809326171875, 0.5878477172851563, 0.5889166870117187, 0.589169677734375, 0.5894891357421875, 0.5896304931640625, 0.5890713500976562, 0.5871114501953125, 0.5880750122070313, 0.5888890991210938, 0.588980224609375, 0.588822509765625, 0.588010498046875, 1.2160072021484376, 0.5894573974609375, 0.5897778930664063, 0.5893355712890626, 0.589739013671875, 0.5899202270507813, 0.5896151123046875, 0.58777294921875, 0.5865891723632812, 0.5862645874023438, 0.5884047241210938, 0.5887549438476563, 0.5893632202148438, 0.587030517578125, 0.589475830078125, 0.5881303100585937, 0.588000244140625, 0.5885706176757812, 0.5890109252929687, 0.5895772094726562, 0.5876244506835937, 0.5894738159179688, 0.58935400390625, 0.5891471557617187, 0.589496337890625, 0.5882972412109375, 0.5862020874023437, 0.5883658447265625, 0.58893310546875, 0.589431884765625, 0.5892074584960938, 0.5897041625976562, 0.5888942260742187, 0.5887662353515625, 0.589075439453125, 0.5871063232421875, 0.5874237670898438, 0.586166259765625, 0.5869127807617187, 0.5871524047851563, 0.5860792236328125, 0.5860894775390625, 0.5864212646484375, 0.5861089477539062, 0.5861775512695313, 0.586134521484375, 0.586650634765625, 0.586608642578125, 0.5868236694335938, 0.5863117065429687, 0.5860730590820312, 0.5861652221679687, 0.5863720703125, 0.587325439453125, 0.5869486083984375, 0.5867796630859375, 0.586829833984375, 0.5859512329101563, 0.586598388671875, 0.5858897705078125, 0.5857484741210938, 0.5861038208007813, 0.5859328002929688, 1.21084521484375, 0.5868482666015625, 0.58640283203125, 0.5865072631835937, 0.58753125, 0.5866895141601562, 0.5865697021484375, 0.5866485595703125, 0.5865379638671875, 0.5872005004882812, 0.5859409790039063, 0.5867479248046875, 0.5860208740234375, 0.5864622192382812, 0.5861642456054688, 0.5862113037109375, 0.5866629028320313, 0.5866127319335938, 0.5868892211914063, 0.5860433959960938, 0.5860228881835937, 0.585712646484375, 0.5860034790039063, 0.5866076049804687, 0.5860700073242188, 0.5865840454101563, 0.5865113525390625, 0.5863505859375, 0.5864140625, 0.5859491577148438, 0.586281982421875, 0.5866659545898437, 0.5862092895507812, 0.5860966186523437, 0.586608642578125, 0.5861068725585937, 0.5864765625, 0.585987060546875, 0.5858989868164063, 0.5861160888671875, 0.587757568359375, 0.586156005859375, 0.5871318969726562, 0.5865809936523437, 0.5864468383789062, 0.5861632080078125, 0.5858989868164063, 0.586124267578125, 0.5864806518554687, 0.5860403442382812, 0.5868748779296875, 0.586625, 0.5871697998046875, 0.586534912109375, 0.5867571411132813, 0.5872445678710938, 0.5864386596679687, 0.5876326293945312, 0.588031982421875, 0.5878978271484375, 0.5873828735351563, 0.5863617553710937, 0.5862686767578125, 1.20973828125, 0.5866116943359375, 0.5870663452148438, 0.5871646728515625, 0.586650634765625, 0.5869865112304687, 0.586355712890625, 0.5865973510742187, 0.5867642822265625, 0.5863895263671876, 0.586640380859375, 0.5864683227539063, 0.5873387451171875, 0.587441162109375, 0.5863936157226562, 0.5867008056640625, 0.5865328369140625, 0.5866751708984375, 0.5866547241210938, 0.5867018432617187, 0.5871431884765625, 0.5867120361328125, 0.5885173950195313, 0.58661376953125, 0.5860853881835938, 0.5864765625, 0.5864909057617187, 0.587452392578125, 0.587109375, 0.5869700927734375, 0.5880678100585938, 0.5873899536132813, 0.5867468872070313, 0.5864356079101563, 0.5865267333984375, 0.586555419921875, 0.5870673828125, 0.5869865112304687, 0.5871329345703125, 0.5876347045898438, 0.5866997680664062, 0.586439697265625, 0.5864110107421875, 0.5860280151367188, 0.586935302734375, 0.5874688110351562, 0.5872630004882813, 0.5882040405273438, 0.5861519165039063, 0.5861754760742187, 0.5864959716796875, 0.5864253540039063, 0.5865482177734375, 0.586439697265625, 0.58705615234375, 0.586955810546875, 0.5866649169921875, 0.586872802734375, 0.5867396850585938, 0.5856685791015624, 0.585691162109375, 0.5862932739257812, 0.5861509399414062, 1.2105533447265624, 0.5868963623046874, 0.5862307739257813, 0.5858088989257813, 0.5863147583007813, 0.5863117065429687, 0.5865164794921875, 0.5869424438476563, 0.5864171752929688, 0.5864099731445312, 0.5860372314453125, 0.5859174194335938, 0.5860126953125, 0.5862420654296875, 0.5864284057617187, 0.5860905151367187, 0.5861795654296875, 0.5876797485351563, 0.5864632568359375, 0.5860034790039063, 0.5856358642578126, 0.5858897705078125, 0.5856849975585937, 0.5860556640625, 0.5864069213867188, 0.5858795776367187, 0.5864683227539063, 0.5857034301757813, 0.586197998046875, 0.5860546264648437, 0.5868114013671875, 0.5869946899414062, 0.586625, 0.5865584716796876, 0.5874636840820312, 0.5859491577148438, 0.586603515625, 0.5859368896484375, 0.5866004638671874, 0.585970703125, 0.5859840087890625, 0.5862932739257812, 0.5863259887695312, 0.58724658203125, 0.586335205078125, 0.5863598022460937, 0.5860515747070313, 0.5862676391601562, 0.586872802734375, 0.5865533447265625, 0.5867427978515625, 0.5866065673828125, 0.5869660034179688, 0.5869803466796875, 0.5866997680664062, 0.5868963623046874, 0.5864785766601562, 0.58616015625, 0.5860546264648437, 0.5872752685546875, 0.5869076538085938, 0.5865799560546875, 0.586840087890625, 1.211283447265625, 0.5869813842773437, 0.5866997680664062, 0.5866414184570312, 0.587345947265625, 0.5873807373046875, 0.5871063232421875, 0.5870315551757812, 0.5875353393554688, 0.58697216796875, 0.5863075561523438, 0.586588134765625, 0.5869383544921875, 0.587821044921875, 0.5868165283203125, 0.5868810424804688, 0.5863833618164063, 0.5862512817382812, 0.5872967529296875, 0.5871339721679687, 0.5874821166992188, 0.5877125244140625, 0.5862809448242188, 0.5868349609375, 0.58678271484375, 0.5863117065429687, 0.5862789306640624, 0.586708984375, 0.5875824584960937, 0.5870919799804688, 0.5866690673828125, 0.586181640625, 0.5861775512695313, 0.5859921875, 0.5867694091796875, 0.58703564453125, 0.5866270751953125, 0.586419189453125, 0.5869496459960938, 0.5864642333984375, 0.5868062744140625, 0.5862686767578125, 0.5867919311523437, 0.5862195434570312, 0.58638232421875, 0.5867694091796875, 0.5868318481445313, 0.586829833984375, 0.5861826782226562, 0.586302490234375, 0.5865001220703125, 0.5866393432617187, 0.5861959838867188, 0.5873704833984374, 0.5870489501953124, 0.5865164794921875, 0.5868236694335938, 0.5866116943359375, 0.58705712890625, 0.5863731079101563, 0.58650830078125, 0.5867161865234375, 0.5862952880859374, 1.2128675537109375, 0.586335205078125, 0.5866659545898437, 0.5865216064453125, 0.586155029296875, 0.5867110595703126, 0.587025390625, 0.5866659545898437, 0.5868226318359375, 0.5863649291992188, 0.5859788818359375, 0.5858211669921874, 0.5860321044921875, 0.5860249633789063, 0.5860086059570313, 0.5864939575195313, 0.586608642578125, 0.586387451171875, 0.586119140625, 0.5861437377929688, 0.5861488647460937, 0.586313720703125, 0.5860751342773437, 0.5867427978515625, 0.5866076049804687, 0.5862164306640625, 0.5868421020507812, 0.5864365844726562, 0.5864765625, 0.5864837036132813, 0.5860372314453125, 0.586925048828125, 0.5860485229492187, 0.58665673828125, 0.5867642822265625, 0.5860065307617187, 0.5863987426757813, 0.586060791015625, 0.586392578125, 0.5863106689453125, 0.5877749633789062, 0.58640283203125, 0.5868861694335937, 0.5868216552734375, 0.5870684204101563, 0.586323974609375, 0.5864427490234375, 0.5864703979492187, 0.5862952880859374, 0.586693603515625, 0.5876336669921876, 0.5873316040039063, 0.5868585205078125, 0.58693017578125, 0.5867694091796875, 0.5865830688476562, 0.586429443359375, 0.5870018310546875, 0.5871503295898437, 0.5864939575195313, 0.5877985229492187, 0.586144775390625, 0.5863424072265625, 1.2129935302734376, 0.5862727661132813, 0.5863915405273438, 0.5866475219726562, 0.5876971435546875, 0.5864058837890626, 0.5863065795898438, 0.5865758666992188, 0.5865635986328125, 0.5862164306640625, 0.5869281005859375, 0.586840087890625, 0.5862543334960938, 0.5875742797851562, 0.5865205688476562, 0.5862706909179688, 0.5863649291992188, 0.5861734619140625, 0.5863147583007813, 0.5860198364257813, 0.58655126953125, 0.5865543823242187, 0.58614990234375, 0.5865379638671875, 0.5857679443359375, 0.5859266357421875, 0.58583447265625, 0.5874698486328125, 0.5878701782226563, 0.5867161865234375, 0.5876551513671875, 0.5866875, 0.587071533203125, 0.5868062133789063, 0.586630126953125, 0.5871063232421875, 0.5867059326171875, 0.5871452026367188, 0.5867632446289063, 0.587125732421875, 0.5870151977539062, 0.5868308715820313, 0.5868052368164063, 0.5859778442382813, 0.5877913818359375, 0.5867008056640625, 0.5866905517578125, 0.58863818359375, 0.5863485717773438, 0.5870551147460937, 0.5870684204101563, 0.586407958984375, 0.58616015625, 0.5859154052734376, 0.5867008056640625, 0.5863854370117187, 0.5862307739257813, 0.5860966186523437, 0.5860198364257813, 0.5865277709960938, 0.5865287475585937, 0.5874104614257812, 0.586376220703125, 1.215204345703125, 0.586377197265625, 0.5866434326171875, 0.586534912109375, 0.5863895263671876, 0.5870858154296875, 0.5862635498046875, 0.5872025756835938, 0.586982421875, 0.5865861206054688, 0.5865164794921875, 0.586608642578125, 0.5866710815429688, 0.5860003662109375, 0.5871441650390625, 0.5867550659179688, 0.586144775390625, 0.5870264282226563, 0.5859225463867187, 0.5859358520507812, 0.5861325073242187, 0.5858846435546875, 0.58669873046875, 0.5869383544921875, 0.5876326293945312, 0.587109375, 0.5869526977539062, 0.5863679809570312, 0.5862573852539062, 0.5862011108398437, 0.5859225463867187, 0.586871826171875, 0.5864949951171875, 0.5862635498046875, 0.5871820678710937, 0.5862850341796875, 0.5865062255859375, 0.5861990356445312, 0.5862440795898437, 0.5863117065429687, 0.58606591796875, 0.5864724731445312, 0.5863618774414062, 0.5869076538085938, 0.5863720703125, 0.5866680297851562, 0.5867079467773437, 0.5861099243164063, 0.5866577758789062, 0.5864990844726562, 0.5863792724609375, 0.5876592407226563, 0.586555419921875, 0.5861253051757812, 0.5861632080078125, 0.586450927734375, 0.5867694091796875, 0.5861539916992188, 0.5869639892578125, 0.58669775390625, 0.5874268188476562, 0.586555419921875, 0.5859317626953126]",tokens/s,1.6779819156756426,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/rho-math-1b-v0.1,microsoft/rho-math-1b-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1441.001472,1646.788608,0.0,1000.341504,901.382144,s,10,1.2824376068115233,0.12824376068115234,0.0013381948349874154,0.12786808013916018,0.12959590759277345,0.1305943862915039,0.13139316925048827,"[0.13159286499023437, 0.12686815643310548, 0.1274053421020508, 0.1281833953857422, 0.12710332489013673, 0.12755276489257814, 0.12878483581542968, 0.12818998718261718, 0.1273829116821289, 0.1293740234375]",tokens/s,1996.1984788989712,kWh,1.5084334378001057e-06,8.263029694510034e-07,5.418130213543536e-06,7.752866620794645e-06,tokens/kWh,33020044.394077398,MB,1441.001472,1646.788608,0.0,1000.341504,932.76416,s,10,76.77896875,7.677896875,0.023249628538630225,7.67915625,7.703863232421875,7.706249243164062,7.708158051757812,"[7.64836474609375, 7.62882421875, 7.67977490234375, 7.69081591796875, 7.67853759765625, 7.7033330078125, 7.70863525390625, 7.67114794921875, 7.67421923828125, 7.69531591796875]",tokens/s,8.205371995179345,kWh,9.095814451596237e-05,4.985198124346679e-05,0.0003132890969742542,0.00045409922273368346,tokens/kWh,138736.19871168057,,s,629,77.8087404022218,0.12370228998763382,0.015267564948821125,0.12151500701904297,0.12351795043945313,0.12392367401123047,0.24871362792968751,"[0.12091289520263672, 0.12134502410888671, 0.1254635543823242, 0.12273868560791015, 0.12172492980957031, 0.12116480255126953, 0.12129894256591797, 0.12113715362548828, 0.12124364471435548, 0.12089241790771485, 0.12106547546386719, 0.12196761322021485, 0.12150886535644531, 0.12106854248046875, 0.12139520263671875, 0.12140544128417968, 0.12128768157958984, 0.12113919830322266, 0.12091187286376953, 0.12113407897949219, 0.1221427230834961, 0.12104601287841797, 0.12148633575439453, 0.12152934265136718, 0.1209886703491211, 0.12108493041992187, 0.12132966613769532, 0.1210931167602539, 0.12157440185546875, 0.12151500701904297, 0.12138393402099609, 0.12142899322509766, 0.12107263946533203, 0.12096717071533203, 0.12105113220214844, 0.1210091552734375, 0.12110643005371094, 0.12125798034667969, 0.12106854248046875, 0.12104908752441407, 0.12095283508300782, 0.12088114929199219, 0.12084735870361328, 0.12105830383300781, 0.12114125061035157, 0.12377804565429687, 0.12163993835449219, 0.12108595275878906, 0.12111154937744141, 0.12169010925292968, 0.12106240081787109, 0.12132556915283203, 0.12277247619628906, 0.12324864196777344, 0.12130406188964844, 0.12083404541015624, 0.12118937683105468, 0.12106240081787109, 0.1208463363647461, 0.1210245132446289, 0.12098560333251954, 0.12108799743652343, 0.2477936706542969, 0.12073062133789063, 0.12093030548095703, 0.12108595275878906, 0.12114227294921875, 0.12072959899902344, 0.12111666870117188, 0.12076544189453126, 0.12109209442138671, 0.12101427459716797, 0.12082688140869141, 0.12099072265625, 0.12134092712402343, 0.12110028839111328, 0.12076236724853516, 0.12246937561035157, 0.12178125, 0.12127129364013672, 0.12102041625976563, 0.12081561279296875, 0.12112179565429687, 0.12079513549804688, 0.12220722961425781, 0.12136243438720704, 0.12094873809814453, 0.12121804809570312, 0.12110131072998047, 0.12102553558349609, 0.12125389099121094, 0.12094258880615234, 0.12103270721435547, 0.12157030487060547, 0.12122316741943359, 0.1208832015991211, 0.12120269012451172, 0.12115455627441406, 0.12125081634521484, 0.12102861022949218, 0.1209169921875, 0.12092518615722657, 0.12124262237548829, 0.1210808334350586, 0.12104806518554688, 0.12156313323974609, 0.12109209442138671, 0.12071321868896484, 0.12101837158203126, 0.12109721374511719, 0.12089241790771485, 0.1209139175415039, 0.1210613784790039, 0.12095283508300782, 0.12115455627441406, 0.12093030548095703, 0.12107366180419922, 0.1208770523071289, 0.12091187286376953, 0.12103679656982422, 0.12085862731933594, 0.12101427459716797, 0.12090982055664062, 0.12072550201416016, 0.12163686370849609, 0.25078988647460937, 0.12208128356933594, 0.12245606231689453, 0.12228813171386718, 0.12169420623779297, 0.12159283447265624, 0.12156620788574218, 0.12150067138671874, 0.12323635101318359, 0.12156723022460937, 0.12253695678710938, 0.12134194946289062, 0.12189183807373047, 0.12104499053955078, 0.12240998077392579, 0.12145868682861329, 0.12170240020751953, 0.12159999847412109, 0.1212907485961914, 0.12119961547851563, 0.12125183868408203, 0.12093644714355468, 0.12158975982666016, 0.1212252197265625, 0.12197376251220703, 0.12266598510742187, 0.12199116516113281, 0.12252272033691407, 0.12169821166992187, 0.12251750183105468, 0.12150272369384765, 0.12135321807861328, 0.12139315032958985, 0.12348518371582032, 0.12360601806640625, 0.12340531158447265, 0.12198707580566406, 0.12240486145019532, 0.12276121520996094, 0.12286975860595703, 0.1258751983642578, 0.12238240051269532, 0.12162143707275391, 0.1215283203125, 0.12173107147216797, 0.12092723083496094, 0.12131942749023437, 0.12141260528564453, 0.12081356811523437, 0.12177101135253907, 0.12151705932617188, 0.12153241729736328, 0.12177305603027344, 0.12143001556396485, 0.1215836181640625, 0.1209692153930664, 0.12140850830078125, 0.12112588500976562, 0.1214576644897461, 0.12091085052490234, 0.12239871978759766, 0.1221212158203125, 0.12117196655273438, 0.25012428283691407, 0.12173414611816406, 0.12145049285888672, 0.12212838745117187, 0.12329779052734376, 0.12234649658203126, 0.12200857543945312, 0.12356403350830078, 0.12401152038574219, 0.12281446075439453, 0.12228300476074219, 0.12225945281982421, 0.12321791839599609, 0.1226219482421875, 0.1216880645751953, 0.12208537292480469, 0.12178636932373046, 0.122355712890625, 0.12368793487548828, 0.12342374420166016, 0.1231800308227539, 0.1235077133178711, 0.1234524154663086, 0.12143923187255859, 0.1212968978881836, 0.12111052703857422, 0.12108185577392579, 0.12117913818359374, 0.12229325103759765, 0.12225638580322265, 0.12117196655273438, 0.12148838043212891, 0.12117196655273438, 0.1209886703491211, 0.12110131072998047, 0.121565185546875, 0.12196659088134766, 0.12180480194091797, 0.1214382095336914, 0.12103884887695313, 0.1212221450805664, 0.12177510070800782, 0.1223034896850586, 0.12251136016845703, 0.12103372955322265, 0.12178125, 0.12100198364257812, 0.12146482849121094, 0.12118016052246093, 0.12082892608642579, 0.121312255859375, 0.1234698257446289, 0.12242534637451172, 0.12148735809326172, 0.12146790313720703, 0.12168396759033204, 0.12169216156005859, 0.12237516784667969, 0.12246527862548828, 0.12407603454589844, 0.1232701416015625, 0.1230223388671875, 0.1217976303100586, 0.24860671997070313, 0.12128256225585937, 0.121275390625, 0.12294041442871094, 0.12173926544189453, 0.12173004913330078, 0.12162873840332031, 0.12132447814941406, 0.12121600341796875, 0.12143103790283204, 0.12095078277587891, 0.12180377960205079, 0.12157952117919922, 0.12169216156005859, 0.12112179565429687, 0.12152320098876954, 0.12086579132080078, 0.12098252868652344, 0.12098047637939453, 0.12137574768066406, 0.12174646759033203, 0.12155900573730469, 0.12151193237304687, 0.12159999847412109, 0.12110540771484375, 0.121670654296875, 0.12152217864990235, 0.12107469177246094, 0.12170137786865234, 0.12137165069580078, 0.12135935974121094, 0.12147097778320312, 0.12331520080566406, 0.1227540512084961, 0.1215498275756836, 0.12133171081542969, 0.12187238311767579, 0.12289638519287109, 0.12396749114990234, 0.12359884643554687, 0.12377497863769531, 0.1236858901977539, 0.12344831848144532, 0.12326502227783204, 0.12415385437011718, 0.12243865966796875, 0.12206182098388672, 0.12256665802001954, 0.12256153869628907, 0.12152934265136718, 0.12154163360595703, 0.12200857543945312, 0.12149555206298829, 0.12161023712158203, 0.12224614715576172, 0.12173312377929688, 0.1210224609375, 0.12114022064208985, 0.12110438537597656, 0.1216542739868164, 0.12151398468017578, 0.1216204833984375, 0.12237004852294922, 0.24945152282714844, 0.12142694091796875, 0.12127232360839844, 0.12121907043457031, 0.12172697448730468, 0.12396646118164062, 0.1225902099609375, 0.12338483428955078, 0.12398796844482422, 0.12242227172851562, 0.12293631744384766, 0.12390502166748046, 0.12467814636230469, 0.12454605102539062, 0.12382822418212891, 0.12355379486083984, 0.12169728088378906, 0.12186624145507813, 0.12168396759033204, 0.12192768096923828, 0.12244377899169921, 0.1223526382446289, 0.12162764739990234, 0.1217228775024414, 0.12147097778320312, 0.12159078216552735, 0.1216215057373047, 0.12143309020996093, 0.12141465759277344, 0.12173312377929688, 0.12229631805419922, 0.12157337951660156, 0.12169830322265625, 0.12177817535400391, 0.12134502410888671, 0.12178329467773437, 0.1214607391357422, 0.12167884826660157, 0.12179558563232422, 0.12148326110839844, 0.12133785247802735, 0.12141158294677734, 0.12147814178466797, 0.12156723022460937, 0.121670654296875, 0.12136140441894532, 0.12141875457763672, 0.12145868682861329, 0.12202496337890625, 0.12198502349853516, 0.12148429107666016, 0.1211678695678711, 0.12209049224853516, 0.12175667572021484, 0.12315750122070312, 0.1227315216064453, 0.1232210235595703, 0.12416713714599609, 0.12378214263916015, 0.12348108673095703, 0.12337356567382812, 0.12387942504882812, 0.12446208190917969, 0.2528962554931641, 0.12143718719482421, 0.12210176086425781, 0.12319334411621094, 0.12263116455078125, 0.12150784301757812, 0.12382720184326172, 0.12240589141845704, 0.12118323516845703, 0.12321485137939453, 0.1212907485961914, 0.12293119812011719, 0.12185600280761719, 0.12230451202392578, 0.12115968322753906, 0.12163276672363281, 0.12134092712402343, 0.12267520141601562, 0.1209169921875, 0.12166963195800781, 0.1208616943359375, 0.12096511840820312, 0.12128562927246093, 0.12440268707275391, 0.12370124816894532, 0.12368694305419922, 0.12331721496582031, 0.12332236480712891, 0.12322611236572266, 0.12365824127197265, 0.12440985870361328, 0.1228779525756836, 0.121491455078125, 0.12277964782714844, 0.12328857421875, 0.12425523376464843, 0.12316365051269532, 0.12288307189941407, 0.12309913635253907, 0.1242460174560547, 0.1239900131225586, 0.12403404998779297, 0.12373197174072266, 0.12393062591552734, 0.1235763168334961, 0.12192972564697266, 0.12147814178466797, 0.12157234954833984, 0.12149964904785156, 0.12162457275390624, 0.12195123291015625, 0.12152934265136718, 0.12136447906494141, 0.12115865325927734, 0.1212200927734375, 0.1212938232421875, 0.12141465759277344, 0.12101734161376954, 0.12137983703613281, 0.12099174499511718, 0.12123955535888672, 0.12125389099121094, 0.12133273315429688, 0.24995942687988282, 0.12144742584228516, 0.12333875274658203, 0.12174336242675782, 0.12292915344238281, 0.12289024353027343, 0.12305101013183593, 0.12317286682128906, 0.12351487731933594, 0.12141567993164062, 0.12154163360595703, 0.12127436828613282, 0.12144435119628906, 0.12115968322753906, 0.12119142150878906, 0.121849853515625, 0.12192972564697266, 0.12124877166748046, 0.12119551849365234, 0.12158566284179688, 0.12136243438720704, 0.1219583969116211, 0.12119245147705078, 0.12171263885498047, 0.12150169372558593, 0.12132761383056641, 0.12123442840576172, 0.12193587493896485, 0.12132659149169922, 0.12116377258300781, 0.12158566284179688, 0.12126924896240235, 0.12131635284423828, 0.12112076568603515, 0.12137574768066406, 0.12258201599121094, 0.12156825256347656, 0.12157337951660156, 0.12132966613769532, 0.12138905334472656, 0.12101427459716797, 0.12355891418457031, 0.12150784301757812, 0.12143103790283204, 0.12133683013916016, 0.12091596984863281, 0.12126207733154297, 0.12289024353027343, 0.12268339538574219, 0.12567449951171875, 0.1217976303100586, 0.12148326110839844, 0.12115455627441406, 0.12108697509765624, 0.12136038208007813, 0.12146892547607421, 0.1212200927734375, 0.12286054229736328, 0.12166451263427734, 0.12133785247802735, 0.1213829116821289, 0.12138700866699219, 0.12124569702148437, 0.24875520324707032, 0.12118118286132812, 0.12122726440429688, 0.1210931167602539, 0.12280934143066406, 0.1244927978515625, 0.12353024291992187, 0.12354764556884766, 0.12378112030029297, 0.12381798553466797, 0.12268851470947266, 0.12156416320800781, 0.12156313323974609, 0.12137062072753907, 0.12162252807617188, 0.12152524566650391, 0.12139520263671875, 0.12147917175292969, 0.12140338897705077, 0.12144435119628906, 0.12111154937744141, 0.12134502410888671, 0.12145254516601563, 0.12136140441894532, 0.12134809875488281, 0.12144332885742187, 0.12182937622070313, 0.12134092712402343, 0.12142694091796875, 0.12099378967285156, 0.12107981109619141, 0.12137677001953125, 0.12088524627685547, 0.12261273956298828, 0.12443750762939453, 0.12207820892333984, 0.12129280090332031, 0.12143718719482421, 0.12140646362304687, 0.12147711944580078, 0.12159385681152343, 0.12174336242675782, 0.1218243179321289, 0.12172179412841796, 0.12106547546386719, 0.1214750747680664, 0.12177203369140625, 0.12269875335693359, 0.12165017700195313, 0.12121907043457031, 0.12128665924072266, 0.12140748596191406, 0.12142899322509766, 0.1210439682006836, 0.12137471771240234, 0.12203622436523437, 0.12110848236083985, 0.12105216217041016, 0.12070809936523437, 0.12304691314697265, 0.12252262115478516, 0.12272537231445313, 0.12301721954345703, 0.25320652770996094, 0.12138803100585938, 0.12191948699951172, 0.12489830780029297, 0.12382514953613281, 0.12366745758056641, 0.12364390563964844, 0.12391324615478516, 0.1236274871826172, 0.12293836975097656, 0.12138086700439453, 0.12145868682861329, 0.12145561981201172, 0.12148531341552735, 0.1216358413696289, 0.12158668518066407, 0.12107981109619141, 0.12146482849121094, 0.12212019348144532, 0.12342272186279298, 0.12273356628417968, 0.12340838623046875, 0.1230417938232422, 0.12280012512207031, 0.121997314453125, 0.1230387191772461, 0.1221560287475586, 0.12209356689453126, 0.12225433349609376, 0.12141567993164062, 0.12371968078613281, 0.12368895721435547, 0.12325888061523438, 0.12346470642089843, 0.1220495376586914, 0.12130815887451171, 0.12168089294433594, 0.12150169372558593, 0.12148121643066406, 0.12139315032958985, 0.12125389099121094, 0.12131123352050781, 0.1211156463623047, 0.12303667449951172, 0.12199116516113281, 0.12166553497314453, 0.1215989761352539, 0.12130406188964844, 0.12145254516601563, 0.12136243438720704, 0.1214331512451172, 0.12362643432617187, 0.12173107147216797, 0.12140748596191406, 0.12129177856445313, 0.12127334594726563, 0.12132249450683594, 0.12149964904785156, 0.12110438537597656, 0.12128460693359375, 0.12160307312011719, 0.12139417266845703, 0.121133056640625]",tokens/s,8.083924720390927,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-70m,EleutherAI/pythia-70m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1298.415616,872.93952,0.0,226.492416,184.397824,s,11,0.17165715312957763,0.015605195739052512,0.0007607833862353127,0.01534540843963623,0.01575004768371582,0.016863200187683107,0.017753722190856934,"[0.01797635269165039, 0.015421407699584961, 0.015347392082214355, 0.015315903663635253, 0.015256128311157226, 0.01575004768371582, 0.01534540843963623, 0.015287008285522461, 0.015340383529663087, 0.01527171230316162, 0.01534540843963623]",tokens/s,16404.792626814135,kWh,1.8500959462776245e-07,1.0137606156642736e-07,3.4862617005003736e-07,6.350118262442272e-07,tokens/kWh,403142098.1780924,MB,1298.743296,872.93952,0.0,226.492416,197.933568,s,11,10.171151123046876,0.9246501020951705,0.010660233315434522,0.920117919921875,0.9293056640625,0.9430220336914062,0.9539951293945312,"[0.9567384033203125, 0.9293056640625, 0.9245167846679687, 0.9185679931640625, 0.920117919921875, 0.9228417358398437, 0.919580810546875, 0.9193172607421874, 0.9187877807617187, 0.923688232421875, 0.9176885375976562]",tokens/s,68.13388097535262,kWh,1.1024352834572037e-05,6.040874968975529e-06,1.993414258140665e-05,3.6999370384954216e-05,tokens/kWh,1702731.6774454878,,s,692,10.307773435592651,0.014895626352012501,0.0018980452913926306,0.014577664375305176,0.01503354845046997,0.015412480163574216,0.030279741020202637,"[0.016365568161010743, 0.016268287658691406, 0.01589350414276123, 0.01510707187652588, 0.015166463851928711, 0.015711232185363768, 0.015400959968566894, 0.015467519760131837, 0.015654911994934084, 0.015433728218078613, 0.015542304039001465, 0.015136799812316894, 0.015172543525695801, 0.015097855567932129, 0.015466496467590332, 0.016034816741943358, 0.015383551597595215, 0.015619071960449218, 0.015451135635375977, 0.015178751945495606, 0.015625215530395507, 0.015426560401916504, 0.015222847938537598, 0.015156160354614258, 0.015565823554992676, 0.016327680587768553, 0.015833087921142578, 0.01530675220489502, 0.015086591720581055, 0.01507737636566162, 0.01501088047027588, 0.01481721591949463, 0.015222784042358398, 0.015755264282226563, 0.016021503448486327, 0.015339520454406739, 0.015148032188415527, 0.01509171199798584, 0.015104000091552734, 0.015050751686096191, 0.015105024337768554, 0.014737407684326171, 0.014621696472167968, 0.014722047805786133, 0.014584896087646484, 0.014627776145935058, 0.014577664375305176, 0.014598143577575684, 0.014589952468872071, 0.014524415969848633, 0.014585856437683106, 0.01456332778930664, 0.014573568344116212, 0.014537728309631348, 0.014552063941955566, 0.014576640129089356, 0.014576640129089356, 0.014548992156982422, 0.01457049560546875, 0.014616576194763184, 0.014621696472167968, 0.014593024253845215, 0.030418943405151368, 0.014628864288330079, 0.014632960319519044, 0.0145797119140625, 0.01460531234741211, 0.014616576194763184, 0.01458073616027832, 0.014573568344116212, 0.014584832191467285, 0.014578687667846679, 0.014615551948547363, 0.014621696472167968, 0.01458790397644043, 0.014673919677734374, 0.014622719764709472, 0.01457151985168457, 0.014611455917358398, 0.0145797119140625, 0.014619647979736328, 0.014697471618652343, 0.014582783699035644, 0.014603263854980468, 0.01460223960876465, 0.01459404754638672, 0.014568448066711426, 0.014610431671142577, 0.014583807945251465, 0.014577664375305176, 0.014595071792602539, 0.014558208465576173, 0.01457254409790039, 0.014645248413085938, 0.014598143577575684, 0.015670271873474122, 0.015376383781433106, 0.015114239692687988, 0.015088640213012695, 0.015019007682800293, 0.015113216400146484, 0.015021056175231933, 0.014995455741882324, 0.014962688446044922, 0.014998527526855468, 0.014962688446044922, 0.014985216140747071, 0.014946304321289062, 0.01500876808166504, 0.014965760231018066, 0.015024191856384277, 0.014966719627380371, 0.014658559799194336, 0.014590975761413574, 0.014565376281738282, 0.01461350440979004, 0.014582783699035644, 0.015023103713989258, 0.01509887981414795, 0.014726143836975097, 0.014541824340820313, 0.0145797119140625, 0.014606335639953612, 0.014665727615356445, 0.01459609603881836, 0.030462976455688476, 0.014574591636657714, 0.014746623992919922, 0.015026176452636719, 0.015056960105895996, 0.015804351806640624, 0.015242239952087403, 0.015034367561340332, 0.015006719589233398, 0.014931967735290527, 0.01477734375, 0.0145797119140625, 0.014584832191467285, 0.014592000007629394, 0.014552063941955566, 0.014543871879577636, 0.014574591636657714, 0.014581760406494141, 0.014575615882873535, 0.014657535552978516, 0.014608384132385254, 0.014558208465576173, 0.014607359886169433, 0.014606335639953612, 0.01459609603881836, 0.014619647979736328, 0.014576640129089356, 0.014553088188171387, 0.014573568344116212, 0.014575615882873535, 0.014550016403198243, 0.01458892822265625, 0.014589952468872071, 0.014590975761413574, 0.014647295951843262, 0.01455513572692871, 0.014576640129089356, 0.014583807945251465, 0.014652416229248047, 0.01460223960876465, 0.014617600440979005, 0.014598143577575684, 0.0145797119140625, 0.01457254409790039, 0.014576640129089356, 0.014589952468872071, 0.01458790397644043, 0.014652416229248047, 0.014550016403198243, 0.01457049560546875, 0.01458892822265625, 0.014541824340820313, 0.0145797119140625, 0.0145633602142334, 0.014960607528686524, 0.014947327613830566, 0.014850111961364746, 0.014465984344482421, 0.014386176109313965, 0.014425087928771972, 0.014609408378601075, 0.014697471618652343, 0.014664704322814942, 0.030324735641479493, 0.014525440216064453, 0.014568448066711426, 0.014598143577575684, 0.01457049560546875, 0.014592000007629394, 0.014541824340820313, 0.014660639762878418, 0.014574560165405273, 0.014515199661254884, 0.014586879730224609, 0.014577664375305176, 0.01461350440979004, 0.014574591636657714, 0.01455513572692871, 0.014520319938659668, 0.014518272399902344, 0.01457151985168457, 0.014554112434387208, 0.01456332778930664, 0.014540800094604492, 0.01457049560546875, 0.01456332778930664, 0.014504960060119629, 0.014553088188171387, 0.014619647979736328, 0.014583807945251465, 0.014557184219360352, 0.014566399574279786, 0.014529536247253418, 0.014600192070007324, 0.014612480163574219, 0.01456332778930664, 0.014575615882873535, 0.014627840042114258, 0.01467084789276123, 0.014575615882873535, 0.014560256004333496, 0.014663680076599121, 0.014564352035522461, 0.014524415969848633, 0.01454694366455078, 0.01458073616027832, 0.014548992156982422, 0.01452444839477539, 0.014602208137512207, 0.01455513572692871, 0.01456332778930664, 0.014532608032226562, 0.01461350440979004, 0.014622719764709472, 0.014517248153686524, 0.01459404754638672, 0.014558208465576173, 0.014556159973144531, 0.014548992156982422, 0.01457049560546875, 0.014508031845092773, 0.014590975761413574, 0.014540800094604492, 0.014600192070007324, 0.01469644832611084, 0.014692352294921876, 0.030276607513427735, 0.01461350440979004, 0.014553088188171387, 0.014508031845092773, 0.014564352035522461, 0.014553088188171387, 0.014565376281738282, 0.014566399574279786, 0.014537728309631348, 0.014530559539794922, 0.01459609603881836, 0.014569472312927247, 0.014567423820495605, 0.014508031845092773, 0.01455513572692871, 0.014628864288330079, 0.014535679817199706, 0.01458790397644043, 0.014557184219360352, 0.014535712242126466, 0.014557151794433594, 0.014535679817199706, 0.014534655570983887, 0.014531583786010742, 0.014545920372009278, 0.014566399574279786, 0.014538751602172852, 0.014553088188171387, 0.01456332778930664, 0.014638079643249511, 0.014538751602172852, 0.014615551948547363, 0.014623744010925293, 0.014533663749694824, 0.014525407791137696, 0.014531583786010742, 0.0145797119140625, 0.01457049560546875, 0.014547967910766601, 0.014557184219360352, 0.014577664375305176, 0.014550016403198243, 0.014560256004333496, 0.014547967910766601, 0.01447935962677002, 0.014482432365417481, 0.014364671707153321, 0.014386176109313965, 0.014722047805786133, 0.015221759796142579, 0.01508351993560791, 0.015017984390258789, 0.014990336418151855, 0.014946304321289062, 0.014996479988098145, 0.014521344184875488, 0.014540800094604492, 0.014592000007629394, 0.014558208465576173, 0.014535679817199706, 0.01457049560546875, 0.014556159973144531, 0.014526464462280274, 0.031153152465820313, 0.014898176193237305, 0.01458790397644043, 0.014568448066711426, 0.014693375587463378, 0.014625791549682618, 0.015431679725646973, 0.014708736419677734, 0.014601216316223145, 0.01455513572692871, 0.014576640129089356, 0.014567423820495605, 0.014589952468872071, 0.014566399574279786, 0.014551039695739745, 0.01480191993713379, 0.014784511566162109, 0.015605759620666505, 0.015138815879821778, 0.014937088012695313, 0.014920703887939453, 0.014586879730224609, 0.014550047874450684, 0.014574624061584473, 0.01459712028503418, 0.014562239646911621, 0.014526464462280274, 0.014525440216064453, 0.014536704063415527, 0.014520319938659668, 0.014515199661254884, 0.014625791549682618, 0.014533632278442383, 0.014556159973144531, 0.014573568344116212, 0.014589952468872071, 0.01458073616027832, 0.014565376281738282, 0.014610431671142577, 0.01459609603881836, 0.01466982364654541, 0.014590975761413574, 0.014558208465576173, 0.014566399574279786, 0.014538751602172852, 0.014564352035522461, 0.014567423820495605, 0.014530559539794922, 0.014538751602172852, 0.014535679817199706, 0.014551039695739745, 0.01457151985168457, 0.014675968170166016, 0.014567423820495605, 0.014585856437683106, 0.014559231758117675, 0.014527487754821777, 0.014577664375305176, 0.014561280250549317, 0.014562303543090821, 0.014578687667846679, 0.014515199661254884, 0.01454086399078369, 0.03033900833129883, 0.014519295692443847, 0.014643199920654297, 0.014578687667846679, 0.014610431671142577, 0.014585856437683106, 0.014574591636657714, 0.014586879730224609, 0.01457254409790039, 0.014628864288330079, 0.01458790397644043, 0.01529856014251709, 0.014918656349182128, 0.014584832191467285, 0.014532608032226562, 0.014585920333862305, 0.014574527740478516, 0.014573568344116212, 0.014543871879577636, 0.014592063903808595, 0.01458886432647705, 0.014574591636657714, 0.01458892822265625, 0.014633983612060546, 0.014540800094604492, 0.014567423820495605, 0.014564352035522461, 0.014526464462280274, 0.014562303543090821, 0.01458073616027832, 0.014523391723632812, 0.014614527702331542, 0.014553088188171387, 0.014541824340820313, 0.014567423820495605, 0.014635007858276367, 0.014566399574279786, 0.01459404754638672, 0.014535679817199706, 0.014558208465576173, 0.014565376281738282, 0.01458073616027832, 0.014585856437683106, 0.014607359886169433, 0.014540800094604492, 0.014544896125793457, 0.014617600440979005, 0.014566399574279786, 0.01457254409790039, 0.014559231758117675, 0.014561280250549317, 0.01458073616027832, 0.014527551651000977, 0.014563263893127442, 0.014543871879577636, 0.014548992156982422, 0.014582783699035644, 0.014598143577575684, 0.014575615882873535, 0.014552063941955566, 0.014589952468872071, 0.01457254409790039, 0.014573568344116212, 0.030249984741210937, 0.014523391723632812, 0.014586943626403809, 0.014542783737182617, 0.014595104217529296, 0.014566368103027343, 0.014517248153686524, 0.014551039695739745, 0.014527487754821777, 0.014636032104492188, 0.014616576194763184, 0.014551072120666505, 0.014565343856811524, 0.014598143577575684, 0.0146626558303833, 0.014781439781188965, 0.015035391807556153, 0.014568448066711426, 0.01457254409790039, 0.014618623733520507, 0.014560256004333496, 0.014574591636657714, 0.014547967910766601, 0.014540800094604492, 0.014562303543090821, 0.014603263854980468, 0.01456332778930664, 0.014577664375305176, 0.014547967910766601, 0.01459404754638672, 0.01458790397644043, 0.014542847633361817, 0.014595071792602539, 0.01458790397644043, 0.014665792465209961, 0.014555071830749512, 0.014537728309631348, 0.014530559539794922, 0.014581760406494141, 0.014584832191467285, 0.014564352035522461, 0.014573568344116212, 0.014548992156982422, 0.014700544357299805, 0.014585856437683106, 0.014574591636657714, 0.014560256004333496, 0.014617600440979005, 0.014556159973144531, 0.014578687667846679, 0.01455513572692871, 0.01466982364654541, 0.014557184219360352, 0.014561280250549317, 0.014525440216064453, 0.014565376281738282, 0.014586879730224609, 0.0145664644241333, 0.014582719802856445, 0.014539775848388671, 0.014560256004333496, 0.01460428810119629, 0.014592000007629394, 0.030311424255371092, 0.014531583786010742, 0.014569472312927247, 0.014636032104492188, 0.014564352035522461, 0.014538751602172852, 0.01458892822265625, 0.014531583786010742, 0.014553088188171387, 0.014525440216064453, 0.014530624389648437, 0.014523327827453613, 0.014575615882873535, 0.014558208465576173, 0.014516223907470703, 0.014637056350708008, 0.014518272399902344, 0.014577664375305176, 0.01495961570739746, 0.014617600440979005, 0.014619711875915528, 0.014569408416748047, 0.014639103889465332, 0.014576640129089356, 0.014560256004333496, 0.014568448066711426, 0.0145797119140625, 0.014550016403198243, 0.014577664375305176, 0.014582783699035644, 0.014611488342285156, 0.014558176040649413, 0.014578687667846679, 0.014569472312927247, 0.014663680076599121, 0.014584832191467285, 0.014565376281738282, 0.01456332778930664, 0.014550016403198243, 0.014538751602172852, 0.014530559539794922, 0.014534655570983887, 0.014559231758117675, 0.01455513572692871, 0.014628864288330079, 0.014585856437683106, 0.014578687667846679, 0.014625791549682618, 0.014540800094604492, 0.014582783699035644, 0.014582783699035644, 0.014595071792602539, 0.014568448066711426, 0.014524415969848633, 0.014545920372009278, 0.014603263854980468, 0.01457049560546875, 0.014561280250549317, 0.014623744010925293, 0.014557184219360352, 0.014583807945251465, 0.014567487716674805, 0.014582719802856445, 0.03019980812072754, 0.014551039695739745, 0.01457151985168457, 0.014541824340820313, 0.014585856437683106, 0.01539891242980957, 0.015851519584655763, 0.014816255569458007, 0.014586879730224609, 0.014638079643249511, 0.014639103889465332, 0.014531583786010742, 0.014663680076599121, 0.014520319938659668, 0.014543871879577636, 0.014617600440979005, 0.014495743751525878, 0.01458073616027832, 0.014540800094604492, 0.014554112434387208, 0.014567423820495605, 0.01455513572692871, 0.014504960060119629, 0.01479475212097168, 0.015308799743652344, 0.014611455917358398, 0.014626815795898437, 0.014567423820495605, 0.014535679817199706, 0.01460223960876465, 0.01458892822265625, 0.014566399574279786, 0.014566399574279786, 0.014557184219360352, 0.014724096298217774, 0.014551039695739745, 0.014535712242126466, 0.014597087860107423, 0.014573599815368652, 0.014573535919189452, 0.014564352035522461, 0.01457049560546875, 0.014740480422973632, 0.014905344009399414, 0.014684160232543946, 0.014547967910766601, 0.014768128395080566, 0.015746047973632812, 0.014673919677734374, 0.014562303543090821, 0.014558208465576173, 0.014558208465576173, 0.01455513572692871, 0.014536704063415527, 0.01458790397644043, 0.014529536247253418, 0.014589952468872071, 0.014554112434387208, 0.014553088188171387, 0.014586879730224609, 0.014547967910766601, 0.014573599815368652, 0.014557151794433594, 0.03037593650817871, 0.014526464462280274, 0.014798848152160645, 0.014523391723632812, 0.01459404754638672, 0.014567423820495605, 0.014531583786010742, 0.014575615882873535, 0.014536704063415527, 0.014520319938659668, 0.014532608032226562, 0.014419967651367188, 0.014387200355529785, 0.01439027214050293, 0.014443519592285157, 0.014552063941955566, 0.014498815536499024, 0.014529536247253418, 0.014651391983032227, 0.014534655570983887, 0.014548992156982422, 0.014628864288330079, 0.014568448066711426, 0.01458790397644043, 0.01457151985168457, 0.014544896125793457, 0.014608384132385254, 0.014728192329406739, 0.014638079643249511, 0.014592000007629394, 0.014573568344116212, 0.014636032104492188, 0.014647295951843262, 0.014457856178283691, 0.014402560234069824, 0.014632960319519044, 0.014524415969848633, 0.01457049560546875, 0.01459712028503418, 0.014574591636657714, 0.014561280250549317, 0.01458790397644043, 0.014598143577575684, 0.014618623733520507, 0.014533632278442383, 0.014523391723632812, 0.014573568344116212, 0.01456332778930664, 0.01457151985168457, 0.01458073616027832, 0.014542847633361817, 0.014547967910766601, 0.014568448066711426, 0.014557184219360352, 0.014553088188171387, 0.014541824340820313, 0.014518272399902344, 0.014573568344116212, 0.014523455619812012, 0.014740415573120117, 0.014707776069641113, 0.014453696250915528, 0.014403583526611329]",tokens/s,67.13379997376835,,,,, +4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,databricks/dbrx-base,databricks/dbrx-base,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -5978,7 +4857,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/gemma-2b/resolve/main/config.json +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -5995,10 +4874,10 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-6694813f-54a5b0753305d8757cf57460;bee32b92-e86e-4d7e-a4fa-b8dbc2356f6a) +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66947b17-58f1373e6b3ad3d40c17eb3c;270d6a5d-cafe-425e-8dbb-fc9be7000662) 403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/google/gemma-2b/resolve/main/config.json. +Cannot access content at: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json. If you are trying to create or update content,make sure you have a token with the `write` role. The above exception was the direct cause of the following exception: @@ -6037,11 +4916,14 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/gemma-2b is not the path to a directory containing a file named config.json. +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like databricks/dbrx-base is not the path to a directory containing a file named config.json. Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciLM-7B,Deci/DeciLM-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-2.7B,,cuda,0,42,,,,,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,MB,2236.862464,2932.342784,0.0,2285.89568,2082.706944,s,10,2.5091812438964842,0.25091812438964844,0.0016359490817563227,0.25024176025390626,0.25317278594970705,0.2535381980895996,0.25383052780151366,"[0.25309158325195313, 0.2539036102294922, 0.24987110900878906, 0.24888946533203124, 0.2497696075439453, 0.24914796447753906, 0.2504080047607422, 0.25179104614257813, 0.25223333740234377, 0.2500755157470703]",tokens/s,1020.253122897013,kWh,2.948670335578402e-06,1.6157431971317612e-06,1.3066561943753649e-05,1.763097547646381e-05,tokens/kWh,14519899.953450851,MB,2238.38208,2959.60576,0.0,2313.158656,2180.685312,s,10,143.8805810546875,14.38805810546875,0.011353783216855234,14.382828125,14.40145888671875,14.403668896484376,14.405436904296876,"[14.4009677734375, 14.40587890625, 14.39833203125, 14.3805361328125, 14.374423828125, 14.3830166015625, 14.400140625, 14.373748046875, 14.3808974609375, 14.3826396484375]",tokens/s,4.378631191102458,kWh,0.000169606630340582,9.295822156634463e-05,0.0007504743544440634,0.0010130392063509902,tokens/kWh,62189.10344736671,,s,629,145.90565167236326,0.2319644700673502,0.029875164751919897,0.22824755859375,0.22927770080566406,0.22946876831054688,0.47820606079101563,"[0.22992076110839843, 0.22815129089355468, 0.22794752502441407, 0.22817485046386718, 0.2277969970703125, 0.22800997924804686, 0.22908108520507814, 0.22838169860839844, 0.2285506591796875, 0.2286049346923828, 0.22830694580078126, 0.22801516723632811, 0.22815020751953125, 0.22767308044433593, 0.22776422119140624, 0.2276741180419922, 0.22829362487792967, 0.22767205810546876, 0.22779493713378907, 0.2277058563232422, 0.22765670776367186, 0.22813594055175782, 0.22820147705078125, 0.2283335723876953, 0.2275809326171875, 0.22812364196777343, 0.2283008575439453, 0.22861715698242188, 0.2281564178466797, 0.22812979125976562, 0.2289090576171875, 0.2288476104736328, 0.22834585571289062, 0.22857522583007814, 0.2290155487060547, 0.22790553283691406, 0.22831922912597657, 0.22821784973144532, 0.22858444213867188, 0.2286612548828125, 0.22839808654785157, 0.22902169799804686, 0.22916812133789063, 0.22946917724609375, 0.22901350402832032, 0.22913536071777343, 0.22909747314453124, 0.229138427734375, 0.22936679077148436, 0.22892851257324218, 0.22936268615722658, 0.22932582092285156, 0.22920909118652344, 0.22904730224609374, 0.2291425323486328, 0.22898892211914063, 0.22877183532714843, 0.2286202850341797, 0.229064697265625, 0.22876876831054688, 0.2292131805419922, 0.22902476501464844, 0.48329931640625, 0.2282854461669922, 0.228822021484375, 0.2279741516113281, 0.22834687805175782, 0.22893157958984375, 0.22888038635253907, 0.22889677429199218, 0.22806629943847656, 0.22842678833007812, 0.22791778564453125, 0.22817791748046876, 0.22819737243652344, 0.228274169921875, 0.22817791748046876, 0.2278656005859375, 0.22779391479492186, 0.22778982543945311, 0.22769561767578125, 0.22855783081054687, 0.2280273895263672, 0.22766490173339843, 0.2277734375, 0.2279331817626953, 0.22785125732421874, 0.2278594512939453, 0.227852294921875, 0.2281492462158203, 0.2276505584716797, 0.22739762878417968, 0.22808883666992188, 0.22794650268554686, 0.22817485046386718, 0.228094970703125, 0.22861415100097657, 0.22928793334960937, 0.22927769470214843, 0.22896333312988282, 0.22915072631835937, 0.22908006286621094, 0.22935040283203126, 0.22938829040527345, 0.22915583801269532, 0.22902578735351561, 0.22928282165527344, 0.22933914184570312, 0.23262924194335938, 0.22968319702148438, 0.22875648498535156, 0.22789529418945312, 0.2278666229248047, 0.2295767059326172, 0.22941900634765625, 0.22929306030273439, 0.22928282165527344, 0.22947532653808594, 0.2292490234375, 0.22923365783691407, 0.22946815490722655, 0.22925106811523438, 0.22942207336425782, 0.22925315856933592, 0.2293155517578125, 0.4786954345703125, 0.22789324951171874, 0.22778778076171874, 0.22853427124023437, 0.2276505584716797, 0.22818611145019532, 0.22808677673339844, 0.22816160583496095, 0.22942201232910156, 0.22774887084960938, 0.22915277099609374, 0.2292162628173828, 0.22927772521972656, 0.22797821044921876, 0.2286940155029297, 0.22868377685546876, 0.22756658935546875, 0.22776832580566406, 0.22760652160644532, 0.22787379455566406, 0.2284400634765625, 0.22826905822753907, 0.22876876831054688, 0.22959616088867188, 0.22788198852539063, 0.22754815673828124, 0.2290493469238281, 0.22905958557128905, 0.22827314758300782, 0.22785842895507813, 0.22869094848632812, 0.2282854461669922, 0.22885580444335937, 0.22893157958984375, 0.2289971160888672, 0.22875340270996095, 0.22852301025390626, 0.22836224365234375, 0.22938829040527345, 0.2279147491455078, 0.22865306091308593, 0.22844825744628905, 0.22864588928222657, 0.22837759399414062, 0.2290636749267578, 0.2289213409423828, 0.22904115295410157, 0.23109939575195312, 0.22880665588378907, 0.22881996154785156, 0.2284707794189453, 0.229232666015625, 0.22840829467773438, 0.2283520050048828, 0.23005081176757813, 0.22963821411132812, 0.22803654479980467, 0.22828851318359375, 0.22792909240722656, 0.22795878601074218, 0.22777548217773438, 0.22785331726074218, 0.22797004699707032, 0.47824075317382814, 0.22801408386230468, 0.22845132446289063, 0.22803660583496094, 0.22865408325195313, 0.22791679382324218, 0.22993101501464844, 0.22821376037597657, 0.22777548217773438, 0.2276874237060547, 0.22872781372070314, 0.22810418701171875, 0.22863462829589845, 0.2276290588378906, 0.22807244873046875, 0.2276546630859375, 0.22767514038085937, 0.22787481689453126, 0.22811648559570313, 0.22791270446777342, 0.22781336975097657, 0.22764236450195313, 0.2276822967529297, 0.22771916198730469, 0.22807347106933593, 0.22767718505859375, 0.22773248291015624, 0.2274396209716797, 0.2276177978515625, 0.2276126708984375, 0.22771405029296876, 0.2276884460449219, 0.22757273864746094, 0.22881689453125, 0.22877593994140624, 0.22816461181640624, 0.22797311401367187, 0.22859878540039064, 0.22825677490234375, 0.22843699645996093, 0.22875750732421876, 0.22935040283203126, 0.22820352172851563, 0.22832333374023436, 0.23120999145507812, 0.22912101745605468, 0.22907904052734376, 0.22970060729980468, 0.22873907470703125, 0.22823014831542968, 0.22959414672851564, 0.22853219604492186, 0.22784101867675782, 0.22805708312988282, 0.22899507141113282, 0.2288885803222656, 0.227852294921875, 0.2276669464111328, 0.2279219207763672, 0.22771916198730469, 0.22784921264648436, 0.2281492462158203, 0.22833561706542968, 0.47811685180664065, 0.22757478332519532, 0.2276433868408203, 0.227662841796875, 0.22771510314941407, 0.22770684814453124, 0.22767001342773438, 0.2279884796142578, 0.22770176696777344, 0.2278707275390625, 0.22784512329101564, 0.22757171630859374, 0.22767922973632812, 0.22853836059570312, 0.22817181396484376, 0.22842568969726562, 0.22801408386230468, 0.2303057861328125, 0.22843084716796874, 0.22846669006347656, 0.22829670715332032, 0.227631103515625, 0.22766796875, 0.22799462890625, 0.22806732177734376, 0.22791270446777342, 0.22781747436523436, 0.22777548217773438, 0.22781234741210937, 0.22849331665039063, 0.22844009399414061, 0.22815536499023437, 0.22805509948730468, 0.22854751586914063, 0.22936679077148436, 0.2276741180419922, 0.22772940063476563, 0.22759014892578125, 0.22804173278808593, 0.22774169921875, 0.22859373474121095, 0.22844819641113281, 0.22795266723632812, 0.22765052795410157, 0.22817893981933593, 0.22788096618652343, 0.2275768280029297, 0.227915771484375, 0.22789631652832032, 0.22774783325195314, 0.22783692932128907, 0.22787890625, 0.22841958618164063, 0.22780006408691406, 0.22799154663085938, 0.2284862060546875, 0.22839187622070312, 0.23194111633300782, 0.22911180114746094, 0.22951731872558595, 0.22850355529785157, 0.22849740600585938, 0.22812570190429687, 0.47752294921875, 0.2276556854248047, 0.22764544677734375, 0.22774169921875, 0.22828953552246095, 0.22794444274902342, 0.22778880310058594, 0.2285332489013672, 0.22908927917480468, 0.2287073211669922, 0.2291087341308594, 0.22870118713378906, 0.22815948486328125, 0.22893466186523437, 0.2281328582763672, 0.22798233032226561, 0.22857215881347656, 0.22788812255859375, 0.2276177978515625, 0.22820658874511718, 0.22790963745117188, 0.2278912353515625, 0.22779286193847656, 0.22789631652832032, 0.2286622772216797, 0.2280079345703125, 0.22793728637695312, 0.22807142639160155, 0.22804888916015625, 0.2280335388183594, 0.22812159729003906, 0.2278830108642578, 0.2276884460449219, 0.22792807006835938, 0.22778675842285157, 0.22810009765625, 0.22793215942382813, 0.22936473083496095, 0.23167283630371094, 0.22877081298828125, 0.22863258361816408, 0.22877593994140624, 0.22783282470703126, 0.2277181396484375, 0.22791270446777342, 0.22783183288574219, 0.22780720520019532, 0.22802841186523437, 0.2279536590576172, 0.2279619140625, 0.22795872497558595, 0.22792909240722656, 0.22810009765625, 0.22938214111328126, 0.22828031921386718, 0.228242431640625, 0.2287636413574219, 0.22942311096191406, 0.22908114624023437, 0.22857618713378905, 0.22855372619628905, 0.22922035217285155, 0.2285117492675781, 0.4789893188476563, 0.22813900756835936, 0.22828134155273438, 0.22873292541503906, 0.2284707794189453, 0.22896640014648437, 0.22858956909179687, 0.2285096893310547, 0.22846669006347656, 0.22824858093261718, 0.2286878662109375, 0.2290083770751953, 0.22912716674804687, 0.22828851318359375, 0.22853836059570312, 0.228384765625, 0.22901145935058595, 0.2284523468017578, 0.22929306030273439, 0.22884352111816406, 0.2288916473388672, 0.22799874877929688, 0.22763005065917968, 0.2294476776123047, 0.22789324951171874, 0.22849740600585938, 0.2280437774658203, 0.22870835876464843, 0.228890625, 0.228600830078125, 0.22893466186523437, 0.22901248168945312, 0.22887936401367187, 0.22905445861816406, 0.2291025848388672, 0.22861824035644532, 0.2289040069580078, 0.22949267578125, 0.22833255004882813, 0.22794650268554686, 0.2277928924560547, 0.2285117492675781, 0.2278656005859375, 0.22826905822753907, 0.22805914306640626, 0.22932992553710937, 0.2291025848388672, 0.2288046112060547, 0.22843597412109376, 0.22823526000976563, 0.2282977294921875, 0.22911488342285155, 0.22893772888183594, 0.2283100128173828, 0.22832127380371095, 0.22796287536621093, 0.22796389770507813, 0.22786151123046874, 0.22802024841308594, 0.22792703247070312, 0.2290247344970703, 0.2290872344970703, 0.2293729248046875, 0.48112127685546874, 0.22774476623535156, 0.22767205810546876, 0.22760140991210936, 0.22770790100097657, 0.228706298828125, 0.22839602661132813, 0.22828953552246095, 0.22751437377929687, 0.22827008056640624, 0.22855577087402343, 0.22760858154296876, 0.22853733825683595, 0.2290882568359375, 0.22853427124023437, 0.22787174987792969, 0.22959922790527343, 0.22843597412109376, 0.22793830871582033, 0.22853427124023437, 0.22780621337890625, 0.22782566833496093, 0.2280755157470703, 0.22808781433105468, 0.22815948486328125, 0.22787686157226564, 0.22864691162109374, 0.2278481903076172, 0.22766387939453125, 0.22787174987792969, 0.22767514038085937, 0.22795161437988282, 0.22794650268554686, 0.22880563354492187, 0.22775808715820312, 0.22767514038085937, 0.22767718505859375, 0.2277734375, 0.22772122192382813, 0.22761984252929687, 0.2289653778076172, 0.22932582092285156, 0.2285506591796875, 0.22796083068847656, 0.2276986846923828, 0.22787583923339844, 0.2282608642578125, 0.2280263671875, 0.22794137573242187, 0.2278461456298828, 0.22779391479492186, 0.22773248291015624, 0.2276259765625, 0.22793215942382813, 0.22887014770507813, 0.2283756103515625, 0.22759724426269531, 0.22863462829589845, 0.22802841186523437, 0.228279296875, 0.22952755737304686, 0.22824755859375, 0.2283223114013672, 0.4810905456542969, 0.22825372314453124, 0.22767202758789062, 0.22804582214355468, 0.22862745666503906, 0.227810302734375, 0.22774989318847655, 0.22795980834960938, 0.22772940063476563, 0.22866943359375, 0.22906982421875, 0.2284390411376953, 0.22901657104492187, 0.22875852966308594, 0.22855270385742188, 0.22873805236816405, 0.22831513977050782, 0.22964530944824219, 0.2282782745361328, 0.228890625, 0.22893772888183594, 0.22941389465332032, 0.22863871765136717, 0.22856192016601562, 0.2286868438720703, 0.22785536193847655, 0.22773554992675782, 0.22780723571777345, 0.22774887084960938, 0.22783795166015625, 0.2286028747558594, 0.2292316131591797, 0.22855474853515625, 0.2284277801513672, 0.22815129089355468, 0.22762086486816407, 0.22760345458984374, 0.2294599609375, 0.228251708984375, 0.22796998596191406, 0.22916300964355468, 0.22799667358398437, 0.22786355590820312, 0.2276986846923828, 0.22783282470703126, 0.22780621337890625, 0.22774681091308593, 0.22811955261230468, 0.22787890625, 0.22774374389648439, 0.2275000305175781, 0.22767001342773438, 0.2276884460449219, 0.22773554992675782, 0.2278778839111328, 0.22794650268554686, 0.22774476623535156, 0.22773452758789062, 0.22781234741210937, 0.22782975769042968, 0.22782054138183594, 0.22786151123046874, 0.22886604309082031, 0.4816783447265625, 0.22901145935058595, 0.22866943359375, 0.2290145263671875, 0.22938316345214843, 0.22859571838378906, 0.22785023498535156, 0.22841139221191406, 0.22864895629882812, 0.2287615966796875, 0.22899302673339844, 0.2279720916748047, 0.2287073211669922, 0.22850355529785157, 0.22853631591796875, 0.22866021728515626, 0.22911077880859376, 0.22943026733398436, 0.22803558349609376, 0.22808781433105468, 0.2292725830078125, 0.22914457702636717, 0.22839295959472655, 0.22797314453125, 0.22791267395019532, 0.22795161437988282, 0.22988902282714843, 0.2280447998046875, 0.22778163146972658, 0.2276444091796875, 0.2277928924560547, 0.2285015106201172, 0.22870835876464843, 0.22830181884765624, 0.22769766235351563, 0.22775193786621092, 0.22775091552734375, 0.22768333435058594, 0.22769664001464843, 0.22772633361816405, 0.22788607788085938, 0.22782054138183594, 0.22759837341308595, 0.22872572326660157, 0.2291568603515625, 0.22867762756347657, 0.228094970703125, 0.2280990753173828, 0.22783795166015625, 0.2277724151611328, 0.22763827514648438, 0.2278164520263672, 0.22774681091308593, 0.2276433868408203, 0.2277181396484375, 0.22805708312988282, 0.2277232666015625, 0.228068359375, 0.2278154296875, 0.2276864013671875, 0.22811546325683593, 0.22927462768554688, 0.2289459228515625]",tokens/s,4.311005041891343,,,main,False,False +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-2.7b,facebook/opt-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2119.368704,2816.999424,0.0,2170.55232,1927.744512,s,10,2.4524682617187503,0.245246826171875,0.001090999616645648,0.2451712341308594,0.24625067138671874,0.24669122314453126,0.24704366455078125,"[0.24615277099609376, 0.24713177490234375, 0.24369766235351562, 0.24442691040039063, 0.244733154296875, 0.243721435546875, 0.24478985595703126, 0.2455526123046875, 0.24614064025878907, 0.24612144470214845]",tokens/s,1043.8463322684916,kWh,2.8755634550064334e-06,1.5756288392757208e-06,1.2476319504855795e-05,1.6927511799137947e-05,tokens/kWh,15123309.499807118,MB,2119.368704,2816.999424,0.0,2170.55232,2031.983104,s,10,142.79050195312502,14.279050195312502,0.0031195370707275648,14.27847802734375,14.28149794921875,14.284002392578124,14.286005947265625,"[14.2787724609375, 14.2797041015625, 14.28094140625, 14.27818359375, 14.2772841796875, 14.2808662109375, 14.2747421875, 14.275935546875, 14.2775654296875, 14.2865068359375]",tokens/s,4.412058164812777,kWh,0.00016860610004691852,9.240989681349414e-05,0.0007205406280193562,0.000981556624879769,tokens/kWh,64183.76525930624,,s,629,144.7668543243408,0.23015398143774374,0.029166744118704197,0.22656614685058593,0.22702059936523436,0.22731673583984374,0.47147623168945313,"[0.228210693359375, 0.2264954833984375, 0.2263234558105469, 0.2265917510986328, 0.22652210998535155, 0.2266122283935547, 0.22653952026367188, 0.22631117248535157, 0.22642892456054686, 0.22647091674804687, 0.22641664123535157, 0.22648934936523438, 0.2270392303466797, 0.22645555114746094, 0.22661325073242186, 0.22698086547851562, 0.22665011596679688, 0.22659788513183593, 0.2262640686035156, 0.22631219482421874, 0.22640025329589844, 0.22692658996582032, 0.22699212646484376, 0.22696038818359374, 0.22650674438476562, 0.22637158203125, 0.2266552276611328, 0.22633882141113282, 0.22646173095703126, 0.2265814666748047, 0.22644224548339845, 0.22677912902832031, 0.22628044128417968, 0.22633573913574218, 0.2265681915283203, 0.226693115234375, 0.22634597778320312, 0.2265016326904297, 0.2263531494140625, 0.22655078125, 0.22668800354003907, 0.2267904052734375, 0.22690406799316407, 0.2266306610107422, 0.2264575958251953, 0.22657638549804687, 0.22662553405761718, 0.22665113830566405, 0.22651187133789064, 0.22652723693847657, 0.22627635192871093, 0.22631219482421874, 0.22654464721679687, 0.22648934936523438, 0.2266378173828125, 0.22687333679199218, 0.22802943420410157, 0.2267176971435547, 0.2265917510986328, 0.22732595825195312, 0.2264842224121094, 0.22659481811523438, 0.47421746826171873, 0.22658047485351562, 0.22655282592773437, 0.22653030395507812, 0.22670950317382813, 0.22652517700195313, 0.22650469970703124, 0.22647705078125, 0.22634803771972656, 0.2266787872314453, 0.22657125854492188, 0.22652621459960937, 0.22686515808105467, 0.2263900146484375, 0.22639718627929686, 0.22662553405761718, 0.22654975891113283, 0.22652928161621094, 0.2263838653564453, 0.22636647033691407, 0.2263582763671875, 0.22654975891113283, 0.22638899230957032, 0.2263961639404297, 0.22621388244628907, 0.22636749267578124, 0.22646170043945313, 0.22642381286621094, 0.22654156494140626, 0.2262988739013672, 0.22632652282714844, 0.2261411895751953, 0.2261012420654297, 0.22648838806152344, 0.22639097595214844, 0.2262917175292969, 0.22649856567382812, 0.2264145965576172, 0.22670130920410156, 0.2264453125, 0.227240966796875, 0.22686003112792968, 0.22684364318847655, 0.22670335388183593, 0.2264524841308594, 0.2268170166015625, 0.22824140930175782, 0.2270392303466797, 0.22767205810546876, 0.22691123962402343, 0.22711602783203125, 0.22689286804199219, 0.22666029357910156, 0.2267361297607422, 0.2266439666748047, 0.22683135986328126, 0.22709965515136718, 0.22691226196289063, 0.22731365966796874, 0.22672998046875, 0.22711911010742186, 0.22663475036621095, 0.22664601135253906, 0.47127346801757813, 0.2265681915283203, 0.226840576171875, 0.22668389892578125, 0.22649650573730468, 0.22704742431640626, 0.22672998046875, 0.22683135986328126, 0.22644326782226562, 0.2265743408203125, 0.226555908203125, 0.22665933227539062, 0.22649754333496094, 0.22686720275878905, 0.22685696411132814, 0.2270627899169922, 0.22701158142089845, 0.22654360961914063, 0.227631103515625, 0.22625177001953126, 0.2269306945800781, 0.226946044921875, 0.2268231658935547, 0.2272542724609375, 0.2273054656982422, 0.22650982666015626, 0.22637158203125, 0.22674432373046874, 0.22774681091308593, 0.22656512451171876, 0.22653132629394532, 0.22656101989746094, 0.22630706787109375, 0.22627430725097655, 0.22650367736816407, 0.2263654327392578, 0.2271293487548828, 0.2264596405029297, 0.2263173065185547, 0.2265753631591797, 0.22677912902832031, 0.22655282592773437, 0.22645350646972656, 0.2264954833984375, 0.22634597778320312, 0.22660403442382812, 0.226482177734375, 0.22736895751953126, 0.22658149719238282, 0.22649037170410155, 0.22647296142578124, 0.2265016326904297, 0.22649650573730468, 0.22651187133789064, 0.22654464721679687, 0.22644224548339845, 0.22651084899902343, 0.22658662414550781, 0.22652210998535155, 0.22644940185546875, 0.2268712921142578, 0.226334716796875, 0.22724812316894533, 0.4715550842285156, 0.22658047485351562, 0.22659788513183593, 0.22659075927734376, 0.2265425567626953, 0.22664601135253906, 0.22673306274414062, 0.22659481811523438, 0.2266234893798828, 0.22643096923828124, 0.2263951416015625, 0.22653439331054687, 0.22656716918945313, 0.22648626708984376, 0.2264842224121094, 0.2265323486328125, 0.22739251708984376, 0.22662757873535155, 0.22650778198242189, 0.22635621643066406, 0.22640025329589844, 0.22646783447265625, 0.2263951416015625, 0.2265374755859375, 0.22659071350097656, 0.22637158203125, 0.22640229797363282, 0.22639820861816407, 0.2262640686035156, 0.22646578979492188, 0.22665728759765624, 0.22639411926269531, 0.2265692138671875, 0.22644940185546875, 0.22637055969238282, 0.22653132629394532, 0.22651084899902343, 0.22662042236328125, 0.226440185546875, 0.22653952026367188, 0.2264248352050781, 0.22653132629394532, 0.22682112121582032, 0.22637464904785157, 0.22807859802246094, 0.22658047485351562, 0.22653543090820313, 0.22662144470214843, 0.2265364532470703, 0.22637158203125, 0.2266941375732422, 0.2265016326904297, 0.22764134216308593, 0.2268037109375, 0.22737408447265625, 0.2267689666748047, 0.22669818115234375, 0.22641868591308595, 0.2270064697265625, 0.226808837890625, 0.22760447692871094, 0.2266941375732422, 0.22663475036621095, 0.4716912536621094, 0.226555908203125, 0.22654669189453125, 0.22630400085449218, 0.22651904296875, 0.22646885681152343, 0.2263726043701172, 0.2264627227783203, 0.226376708984375, 0.22640956115722657, 0.22651280212402344, 0.2264944610595703, 0.22653030395507812, 0.22637055969238282, 0.22640538024902343, 0.22671359252929688, 0.22652825927734374, 0.22724607849121095, 0.2267904052734375, 0.22637464904785157, 0.2265006103515625, 0.2266173400878906, 0.2275594177246094, 0.22663168334960937, 0.22695526123046875, 0.22644326782226562, 0.2264453125, 0.22670541381835937, 0.22647193908691407, 0.2264842224121094, 0.22652928161621094, 0.22634495544433594, 0.22692658996582032, 0.2264575958251953, 0.22655078125, 0.22647705078125, 0.22659584045410155, 0.22641151428222656, 0.22638490295410157, 0.2264320068359375, 0.22686924743652342, 0.22668185424804688, 0.226555908203125, 0.22660096740722657, 0.2265364532470703, 0.22648013305664064, 0.22652006530761717, 0.22684774780273437, 0.22667674255371092, 0.2264524841308594, 0.2264145965576172, 0.22648320007324219, 0.2265518035888672, 0.22661631774902344, 0.22665216064453125, 0.22664909362792968, 0.22723379516601563, 0.22827008056640624, 0.22659890747070313, 0.22667776489257813, 0.22666752624511718, 0.22652517700195313, 0.22685696411132814, 0.47040716552734374, 0.2265364532470703, 0.22670335388183593, 0.22675152587890626, 0.22674327087402343, 0.22674124145507812, 0.22666854858398439, 0.2265016326904297, 0.22641664123535157, 0.226408447265625, 0.22644837951660157, 0.22657331848144532, 0.22669926452636718, 0.22673817443847658, 0.22666648864746095, 0.22652006530761717, 0.22712115478515624, 0.2267709503173828, 0.22682829284667969, 0.2264514617919922, 0.22717543029785156, 0.22672691345214843, 0.22699417114257814, 0.22659379577636718, 0.22670541381835937, 0.22654464721679687, 0.22634701538085938, 0.22648320007324219, 0.226376708984375, 0.22674330139160156, 0.2265518035888672, 0.22656716918945313, 0.22633882141113282, 0.22662144470214843, 0.22681292724609375, 0.22643609619140626, 0.22689791870117187, 0.22637055969238282, 0.22802841186523437, 0.22646885681152343, 0.22660301208496095, 0.22652006530761717, 0.22687744140625, 0.226482177734375, 0.22646476745605468, 0.22653132629394532, 0.2266787872314453, 0.22718771362304688, 0.22725325012207032, 0.22660914611816407, 0.22652517700195313, 0.2265364532470703, 0.2266623992919922, 0.2268590087890625, 0.2265999298095703, 0.2266439666748047, 0.22733311462402345, 0.2267484130859375, 0.22656101989746094, 0.22658047485351562, 0.22690713500976561, 0.22647296142578124, 0.2265333709716797, 0.4723138427734375, 0.22668698120117187, 0.22651699829101563, 0.22642994689941406, 0.22652006530761717, 0.22658355712890624, 0.22648832702636718, 0.22646067810058593, 0.22636134338378905, 0.2262917175292969, 0.22641766357421875, 0.22637362670898437, 0.226440185546875, 0.22636851501464844, 0.2264944610595703, 0.2264596405029297, 0.22644122314453125, 0.22647398376464845, 0.22640127563476561, 0.22637977600097656, 0.22642892456054686, 0.22646067810058593, 0.22642994689941406, 0.22729216003417968, 0.2265856018066406, 0.22656614685058593, 0.22651187133789064, 0.22686924743652342, 0.22699212646484376, 0.22667776489257813, 0.22668083190917968, 0.22647091674804687, 0.226440185546875, 0.2262794189453125, 0.22660198974609375, 0.22650778198242189, 0.227240966796875, 0.22670130920410156, 0.2265927734375, 0.22639820861816407, 0.22648524475097656, 0.22650265502929687, 0.22666444396972657, 0.2264637451171875, 0.22673306274414062, 0.2266306610107422, 0.2264524841308594, 0.22670541381835937, 0.22680677795410156, 0.22637773132324218, 0.22640333557128905, 0.22649754333496094, 0.22653030395507812, 0.22647602844238282, 0.2265180206298828, 0.2267105255126953, 0.2264811553955078, 0.2263408660888672, 0.22684159851074218, 0.226840576171875, 0.227162109375, 0.22650572204589844, 0.22680064392089844, 0.47229953002929687, 0.22655386352539061, 0.22669209289550782, 0.22669107055664062, 0.22653849792480468, 0.226914306640625, 0.22678323364257813, 0.22689485168457033, 0.2268078155517578, 0.22660812377929687, 0.22647296142578124, 0.22665318298339843, 0.22659584045410155, 0.2267166748046875, 0.22655897521972657, 0.22654566955566408, 0.2271068115234375, 0.22682009887695312, 0.22680575561523436, 0.22656204223632812, 0.2264217529296875, 0.22652108764648438, 0.22662553405761718, 0.22673408508300782, 0.22695730590820312, 0.22662757873535155, 0.2265364532470703, 0.22667570495605469, 0.2265743408203125, 0.22657125854492188, 0.22663679504394532, 0.2263592987060547, 0.22638490295410157, 0.22639411926269531, 0.2264514617919922, 0.22640640258789063, 0.22657125854492188, 0.22636134338378905, 0.22635008239746093, 0.22646681213378905, 0.2263756866455078, 0.22643507385253905, 0.226661376953125, 0.22654054260253906, 0.2264842224121094, 0.2266480712890625, 0.22652621459960937, 0.22654054260253906, 0.22649958801269532, 0.22644326782226562, 0.22654156494140626, 0.2265886688232422, 0.22666546630859374, 0.22688870239257813, 0.2266972198486328, 0.22649856567382812, 0.22649958801269532, 0.22640847778320314, 0.22657020568847655, 0.22655078125, 0.2271825866699219, 0.22659686279296876, 0.22644224548339845, 0.4732682189941406, 0.2267166748046875, 0.22669004821777344, 0.2266112060546875, 0.22709043884277344, 0.2265323486328125, 0.2266306610107422, 0.2265927734375, 0.22674636840820311, 0.22685285949707032, 0.22652723693847657, 0.2264954833984375, 0.22642381286621094, 0.22641253662109376, 0.22645452880859376, 0.2264248352050781, 0.22657125854492188, 0.22701670837402343, 0.22656716918945313, 0.2264268798828125, 0.22636441040039063, 0.22659379577636718, 0.22651596069335939, 0.22646476745605468, 0.22653543090820313, 0.22654873657226562, 0.22635110473632813, 0.2264453125, 0.22657740783691407, 0.22701568603515626, 0.22657331848144532, 0.226808837890625, 0.22729318237304688, 0.226840576171875, 0.22669004821777344, 0.22642994689941406, 0.22665216064453125, 0.226408447265625, 0.2264637451171875, 0.22659071350097656, 0.22760140991210936, 0.2266787872314453, 0.22653952026367188, 0.2264842224121094, 0.22630911254882813, 0.22652825927734374, 0.22639820861816407, 0.22657023620605468, 0.22674330139160156, 0.2271262664794922, 0.22665728759765624, 0.2265333709716797, 0.22666444396972657, 0.22674227905273436, 0.22675149536132813, 0.2265364532470703, 0.22639820861816407, 0.22652210998535155, 0.2266112060546875, 0.22665113830566405, 0.22656614685058593, 0.2264627227783203, 0.22642073059082032, 0.4729661560058594, 0.22653132629394532, 0.22665420532226563, 0.22658566284179688, 0.22666950988769533, 0.22666035461425782, 0.2266480712890625, 0.2267525177001953, 0.22648934936523438, 0.2266399688720703, 0.2264431610107422, 0.22651187133789064, 0.22709657287597657, 0.22754713439941407, 0.22637055969238282, 0.22647091674804687, 0.22653439331054687, 0.22654975891113283, 0.2265999298095703, 0.22654360961914063, 0.22677197265625, 0.22703718566894532, 0.2268784637451172, 0.22653543090820313, 0.22652210998535155, 0.22646681213378905, 0.2276433868408203, 0.2268784637451172, 0.2265886688232422, 0.22731878662109375, 0.2269306945800781, 0.22686822509765625, 0.22654464721679687, 0.22657945251464845, 0.2267484130859375, 0.22667263793945314, 0.22669209289550782, 0.22645350646972656, 0.22654566955566408, 0.22655282592773437, 0.22689996337890625, 0.2264698944091797, 0.22683544921875, 0.22653952026367188, 0.22666035461425782, 0.22665420532226563, 0.22662655639648438, 0.2269420166015625, 0.2271200714111328, 0.2266972198486328, 0.22657331848144532, 0.22654368591308593, 0.22663877868652343, 0.22703616333007812, 0.22663372802734374, 0.22663270568847657, 0.22767308044433593, 0.22783692932128907, 0.22670130920410156, 0.2265927734375, 0.2266378173828125, 0.22650469970703124, 0.22659584045410155]",tokens/s,4.344917232163973,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciLM-7B,,cuda,0,42,,,,,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,MB,1674.596352,5516.034048,0.0,4869.586944,4743.593472,s,10,6.137113647460938,0.6137113647460938,0.0032895717697753717,0.6129547424316406,0.6153997436523437,0.6190885131835938,0.6220395288085938,"[0.6227772827148438, 0.6144583129882812, 0.61261669921875, 0.61060546875, 0.612577392578125, 0.6105811157226563, 0.6121093139648438, 0.6145800170898438, 0.6132927856445313, 0.6135152587890625]",tokens/s,417.13420136176387,kWh,7.2172448039054885e-06,3.954746732982612e-06,3.355963469082604e-05,4.473162622771414e-05,tokens/kWh,5723020.189268045,MB,1674.596352,5516.034048,0.0,4869.586944,4769.651712,s,10,361.12618359375006,36.112618359375006,0.009999043540991457,36.112980468749996,36.125964453125,36.127720507812505,36.1291253515625,"[36.1294765625, 36.0964296875, 36.12557421875, 36.1174140625, 36.11404296875, 36.1114296875, 36.11191796875, 36.09769140625, 36.10714453125, 36.1150625]",tokens/s,1.7445425688343892,kWh,0.00042614284929302004,0.0002335616249413365,0.0019425026683799653,0.0026022071426143214,tokens/kWh,24210.217153084406,,s,629,366.0647033081055,0.5819788605852233,0.07282065333686359,0.5730969848632812,0.5741784912109374,0.5745491943359375,1.1854891552734375,"[0.5736980590820312, 0.573138916015625, 0.5735465087890625, 0.574129150390625, 0.5737092895507813, 0.57447216796875, 0.5745264892578125, 0.5731635131835937, 0.5737205810546875, 0.5735956420898437, 0.5749248046875, 0.5725880126953125, 0.5736376342773437, 0.57371337890625, 0.573749267578125, 0.5733990478515625, 0.5727344360351563, 0.57394482421875, 0.57497705078125, 0.5740851440429687, 0.5741229858398438, 0.5742008056640625, 0.5734738159179688, 0.574509033203125, 0.5738157958984375, 0.573897705078125, 0.5732402954101562, 0.5745704956054688, 0.5727620849609375, 0.5734061889648437, 0.5746319580078125, 0.5745643310546875, 0.5739735107421875, 0.5731901245117188, 0.5725511474609375, 0.5742970581054687, 0.5729157104492187, 0.572837890625, 0.57303857421875, 0.5725552368164063, 0.5740175170898437, 0.5737943115234375, 0.57314404296875, 0.5743441772460938, 0.5747333374023438, 0.5747230834960938, 0.5726239013671875, 0.5742520141601563, 0.5729638671875, 0.5725716552734375, 0.572348388671875, 0.572031005859375, 0.5730672607421875, 0.5724190673828125, 0.572590087890625, 0.5723648071289062, 0.5724487915039063, 0.572526611328125, 0.5727549438476562, 0.57301708984375, 0.5722869873046875, 0.5721016235351563, 1.18763623046875, 0.5728788452148438, 0.5735679931640625, 0.5728031005859375, 0.5727078247070313, 0.5732781982421875, 0.5730969848632812, 0.5728460693359375, 0.57259521484375, 0.5722409057617187, 0.57280615234375, 0.57242724609375, 0.57225830078125, 0.5726760864257813, 0.572142578125, 0.5723013305664062, 0.5727958984375, 0.5730846557617187, 0.572316650390625, 0.5732341918945313, 0.57354443359375, 0.5724467163085938, 0.5723648071289062, 0.5720924072265625, 0.5729249267578125, 0.5723299560546875, 0.5724815063476563, 0.572590087890625, 0.5723525390625, 0.5726453857421875, 0.572458984375, 0.5725296630859374, 0.5720729370117188, 0.572706787109375, 0.5740257568359375, 0.572758056640625, 0.5724251708984375, 0.5737236328125, 0.57303857421875, 0.5752218017578125, 0.5730856323242187, 0.57284814453125, 0.5734194946289063, 0.5729658813476562, 0.5726095581054688, 0.5726730346679687, 0.5732310791015625, 0.5731287231445312, 0.5729985961914063, 0.572822509765625, 0.5728573608398437, 0.5731840209960938, 0.5744937133789062, 0.5729187622070312, 0.5740841064453125, 0.5739561157226563, 0.5734850463867187, 0.5729812622070313, 0.5727211303710937, 0.5733560180664062, 0.5732577514648437, 0.5737369384765625, 0.5736038208007812, 1.18655078125, 0.5729157104492187, 0.5731143798828126, 0.5728522338867188, 0.5734451293945313, 0.5739530029296875, 0.572958740234375, 0.572759033203125, 0.5748234252929687, 0.57375537109375, 0.573359130859375, 0.5733130493164063, 0.5738352661132813, 0.57318603515625, 0.5733314819335937, 0.5734747924804687, 0.5750180053710937, 0.5730693359375, 0.5736345825195313, 0.573718505859375, 0.57335498046875, 0.5729044189453125, 0.5738772583007813, 0.5738352661132813, 0.5730682983398437, 0.5731051635742187, 0.5734297485351563, 0.5730928344726562, 0.5731317749023438, 0.5730283813476562, 0.573849609375, 0.57297509765625, 0.5731461181640625, 0.5727354736328125, 0.5730130004882813, 0.5731461181640625, 0.5728123168945313, 0.5729003295898437, 0.5728778076171875, 0.5738741455078125, 0.5740830688476563, 0.572737548828125, 0.5726536254882812, 0.5742734985351563, 0.5730897827148438, 0.5729822998046875, 0.5732136840820312, 0.5756242065429688, 0.5729976196289063, 0.5738700561523438, 0.573106201171875, 0.573149169921875, 0.5729013671875, 0.573991943359375, 0.573201416015625, 0.5733877563476563, 0.5732608032226563, 0.5743902587890625, 0.5742141723632812, 0.5728829345703125, 0.5743646850585937, 0.5734010620117187, 0.573259765625, 1.1840142822265625, 0.5737728271484375, 0.5731215209960937, 0.5732106323242188, 0.5732505493164063, 0.572969970703125, 0.573033447265625, 0.57314306640625, 0.5731942138671875, 0.5728460693359375, 0.5744957275390625, 0.5742643432617187, 0.5740144653320313, 0.5731768798828125, 0.5741864624023437, 0.5734174194335937, 0.573322265625, 0.5733375854492188, 0.5739192504882813, 0.5734788818359375, 0.5737677001953125, 0.5734850463867187, 0.5734430541992187, 0.5732044677734375, 0.5726986083984374, 0.572821533203125, 0.5730499267578125, 0.5735310668945313, 0.574656494140625, 0.5733201904296875, 0.5725225219726563, 0.5739570922851562, 0.5737728271484375, 0.57303857421875, 0.5733232421875, 0.5734522705078124, 0.5738311767578125, 0.575151123046875, 0.5733201904296875, 0.5735167846679687, 0.5731133422851562, 0.5729003295898437, 0.5728235473632812, 0.573318115234375, 0.5730816040039063, 0.5742418212890625, 0.573048828125, 0.5728880615234375, 0.572990478515625, 0.5729679565429687, 0.5725675659179688, 0.5726566162109376, 0.5728235473632812, 0.5745910034179688, 0.5722357788085938, 0.5722327270507812, 0.572821533203125, 0.5726668701171875, 0.5724385375976563, 0.5728890991210938, 0.5728051147460937, 0.5724405517578125, 0.5733775634765625, 1.1864791259765626, 0.5730631713867187, 0.5741793212890625, 0.574244873046875, 0.5729197998046875, 0.5730785522460937, 0.5742643432617187, 0.5736028442382812, 0.5729208374023438, 0.5731768188476563, 0.573612060546875, 0.5728307495117188, 0.5726996459960938, 0.57314306640625, 0.5741906127929688, 0.572669921875, 0.5738731689453125, 0.5743124389648437, 0.5728778076171875, 0.5729352416992187, 0.574119873046875, 0.5733079223632812, 0.5724866333007812, 0.572231689453125, 0.5732946166992188, 0.5724682006835937, 0.5730529174804687, 0.5733519287109375, 0.573106201171875, 0.5727999877929687, 0.57236376953125, 0.5724620971679687, 0.5725665893554688, 0.5737697143554688, 0.5733406372070312, 0.573254638671875, 0.5726945190429688, 0.5743114013671875, 0.5735679931640625, 0.5726617431640625, 0.5724610595703125, 0.57396533203125, 0.5732372436523437, 0.5741332397460938, 0.5733570556640625, 0.5733375854492188, 0.572717041015625, 0.572859375, 0.5731901245117188, 0.572558349609375, 0.5723750610351562, 0.5745213623046875, 0.573633544921875, 0.5729638671875, 0.573412353515625, 0.5735505981445312, 0.5726494750976563, 0.5753558959960937, 0.5728399658203125, 0.573432861328125, 0.5723391723632812, 0.5729290161132813, 0.572626953125, 1.1842232666015624, 0.5728092041015626, 0.572779541015625, 0.572632080078125, 0.5737963256835937, 0.5736775512695312, 0.5726033935546875, 0.572564453125, 0.5733416748046875, 0.5725654907226563, 0.5723832397460937, 0.5723812255859375, 0.5731624755859375, 0.5723832397460937, 0.5729197998046875, 0.572788818359375, 0.5723237915039062, 0.5723801879882813, 0.5726771850585938, 0.5727251586914063, 0.5726986083984374, 0.57333349609375, 0.5739939575195312, 0.5731481323242188, 0.5727344360351563, 0.5737195434570312, 0.5727918090820312, 0.5725234985351563, 0.5729740600585937, 0.5731522827148438, 0.5736734619140625, 0.5729310913085938, 0.5734471435546875, 0.573127685546875, 0.5729720458984375, 0.5730723876953125, 0.5730529174804687, 0.5730682983398437, 0.5760235595703125, 0.5742151489257813, 0.573750244140625, 0.5731143798828126, 0.573844482421875, 0.5748480224609375, 0.5746339721679687, 0.5739223022460938, 0.5732044677734375, 0.5739735107421875, 0.5730263061523437, 0.5728583984375, 0.5729924926757812, 0.5730785522460937, 0.5734502563476562, 0.5732157592773437, 0.573191162109375, 0.5728983154296875, 0.5738905639648437, 0.5733457641601563, 0.57269873046875, 0.572650390625, 0.5734747924804687, 0.5728338012695312, 0.5733191528320313, 1.1859814453125, 0.57253271484375, 0.5722654418945312, 0.5727242431640625, 0.5725839233398438, 0.5722265625, 0.572601318359375, 0.5729863891601562, 0.572706787109375, 0.5726239013671875, 0.5739888916015625, 0.5729249267578125, 0.573317138671875, 0.5733673095703125, 0.5743882446289063, 0.5732106323242188, 0.5734819946289063, 0.5727047729492187, 0.5730140380859375, 0.572675048828125, 0.5729136352539063, 0.5729924926757812, 0.5723709716796875, 0.5744793701171875, 0.57339599609375, 0.5728604125976563, 0.5722327270507812, 0.5737615356445313, 0.5753026733398438, 0.5738475341796875, 0.5734512939453125, 0.5752913818359375, 0.5733673095703125, 0.5729085693359375, 0.5732177734375, 0.573886474609375, 0.5727651977539062, 0.57282763671875, 0.57284814453125, 0.5731399536132813, 0.5727467651367187, 0.5733314819335937, 0.5736110229492187, 0.5734830322265625, 0.5729003295898437, 0.574867431640625, 0.5740697631835937, 0.572969970703125, 0.5728942260742188, 0.5735751342773437, 0.5731563720703124, 0.5731113891601562, 0.5729085083007812, 0.5745828247070313, 0.5727620849609375, 0.5729269409179687, 0.5724876708984376, 0.573665283203125, 0.5732260131835938, 0.5726268920898437, 0.57246923828125, 0.572621826171875, 0.5729013671875, 1.1888896484375, 0.57364990234375, 0.5738916015625, 0.5726515502929688, 0.5726239013671875, 0.5722838745117188, 0.5730723876953125, 0.573032470703125, 0.5727662353515625, 0.5732413330078125, 0.5728880615234375, 0.5727396240234375, 0.5731368408203125, 0.573233154296875, 0.5731963500976562, 0.5735249633789062, 0.5744219970703125, 0.5727999877929687, 0.5726064453125, 0.5729290771484375, 0.5737103271484375, 0.572811279296875, 0.5732679443359375, 0.5726730346679687, 0.5734287109375, 0.5722675170898438, 0.5725828857421875, 0.5725849609375, 0.5723627319335938, 0.5727416381835938, 0.5728348388671874, 0.5723678588867187, 0.5728604125976563, 0.573675537109375, 0.57333349609375, 0.5725634765625, 0.5726546020507812, 0.5731399536132813, 0.5728031005859375, 0.5724630737304688, 0.57310205078125, 0.5734573974609375, 0.5732689819335938, 0.5729290161132813, 0.5729782104492187, 0.5726064453125, 0.572527587890625, 0.5728818969726562, 0.5733007202148438, 0.5730426635742187, 0.5736365966796875, 0.5730549926757813, 0.573111328125, 0.5725552368164063, 0.5726505126953125, 0.5732802734375, 0.5726494750976563, 0.5724876708984376, 0.5733058471679687, 0.5727211303710937, 0.5725931396484375, 0.5726648559570312, 0.5728655395507812, 1.1863818359375, 0.5727938842773438, 0.5733508911132813, 0.5740676879882812, 0.574234619140625, 0.5727047729492187, 0.5733447875976563, 0.5732515869140625, 0.5743012084960938, 0.5728123168945313, 0.5730969848632812, 0.5729976196289063, 0.5739694213867188, 0.5728798828125, 0.5730140380859375, 0.5724334106445312, 0.5727744140625, 0.5740390625, 0.5736099853515625, 0.5726300048828125, 0.572969970703125, 0.5736683349609375, 0.572948486328125, 0.5725542602539062, 0.5725962524414062, 0.5727139892578125, 0.573559814453125, 0.572568603515625, 0.5725419311523438, 0.5730426635742187, 0.5727252197265625, 0.5726781616210938, 0.5734676513671875, 0.573179931640625, 0.5726351318359375, 0.573233154296875, 0.5737062377929687, 0.5729423217773437, 0.5729710083007813, 0.5735885009765626, 0.5732741088867187, 0.5730344848632812, 0.5727262573242188, 0.5732567138671875, 0.5732689819335938, 0.5727232055664062, 0.5727559814453125, 0.5730703125, 0.5724334716796875, 0.5731378784179687, 0.5730191650390625, 0.572896240234375, 0.5732177734375, 0.5728727416992188, 0.5729361572265625, 0.5730979614257813, 0.574118896484375, 0.573497314453125, 0.5732976684570312, 0.5737840576171875, 0.5730130004882813, 0.5730549926757813, 0.572958740234375, 1.187092529296875, 0.5724129028320313, 0.5726473999023437, 0.57280615234375, 0.572416015625, 0.5723361206054688, 0.572821533203125, 0.5732761840820313, 0.5727733764648437, 0.573095947265625, 0.5734052124023438, 0.573053955078125, 0.572674072265625, 0.5729341430664062, 0.5734830322265625, 0.573849609375, 0.5724999389648437, 0.5727334594726563, 0.5741107177734375, 0.5736663208007813, 0.57402978515625, 0.5733611450195313, 0.572958740234375, 0.5730099487304687, 0.5733345336914063, 0.5739038696289063, 0.575910888671875, 0.574392333984375, 0.5739898681640625, 0.5732730712890625, 0.5733109741210938, 0.5730928344726562, 0.5741782836914062, 0.5731993408203125, 0.57302734375, 0.5732771606445313, 0.572506103515625, 0.5729556274414063, 0.5733088989257813, 0.572968994140625, 0.5736283569335937, 0.5738291015625, 0.5733499145507812, 0.5729085693359375, 0.573539306640625, 0.5743226928710937, 0.5736959838867187, 0.5733365478515625, 0.57354443359375, 0.5733949584960938, 0.5731727294921874, 0.5731215209960937, 0.5734061889648437, 0.5725133056640626, 0.5726607055664062, 0.5729464111328125, 0.5725101928710937, 0.57212109375, 0.5734563598632813, 0.5726597290039063, 0.5727313842773437, 0.572416015625, 0.5735731201171875]",tokens/s,1.7182754696526694,,,main,False,False +4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-7b,google/recurrentgemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -6049,32 +4931,74 @@ Checkout your internet connection or see how to run the library in offline mode File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code - answer = input( -EOFError: EOF when reading a line + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/google/recurrentgemma-7b/resolve/main/config.json -During handling of the above exception, another exception occurred: +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948216-2de7a4964a6a23231ae7f83f;92c8aeb9-9cc7-41d1-b668-691f8b6b77cc) + +Repository Not Found for url: https://huggingface.co/google/recurrentgemma-7b/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. + +The above exception was the direct cause of the following exception: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights - self.create_no_weights_model() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model - meta_model = self.automodel_class.from_config(self.pretrained_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config - trust_remote_code = resolve_trust_remote_code( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code - raise ValueError( -ValueError: The repository for Deci/DeciLM-7B contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/Deci/DeciLM-7B. -Please pass the argument `trust_remote_code=True` to allow custom code to be run. + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + raise EnvironmentError( +OSError: google/recurrentgemma-7b is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,databricks/dbrx-base,databricks/dbrx-base,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-1.3B,,cuda,0,42,,,,,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,MB,1562.181632,1957.167104,0.0,1310.72,1163.955712,s,10,1.3245970916748049,0.13245970916748048,0.001266998397567483,0.13200260162353517,0.1341699493408203,0.13443305816650392,0.1346435452270508,"[0.1346961669921875, 0.1341114807128906, 0.1312022705078125, 0.13115029907226564, 0.13112367248535156, 0.1315875244140625, 0.13163551330566406, 0.13236968994140624, 0.13365353393554688, 0.13306694030761718]",tokens/s,1932.6631593031557,kWh,1.5487117942793545e-06,8.486256414471426e-07,6.508118482104666e-06,8.905455917831163e-06,tokens/kWh,28746422.683134936,MB,1562.181632,1959.264256,0.0,1312.817152,1232.77568,s,10,76.92137255859376,7.692137255859374,0.017487914910414803,7.693824951171875,7.702772509765625,7.711682641601563,7.718810747070313,"[7.69504345703125, 7.69082470703125, 7.6926064453125, 7.6866689453125, 7.7205927734375, 7.69639892578125, 7.6467568359375, 7.70079248046875, 7.69208056640625, 7.699607421875]",tokens/s,8.190181467707257,kWh,9.084797721340027e-05,4.979003748630931e-05,0.0003722497123017,0.0005128877270014096,tokens/kWh,122833.9004489902,,s,629,77.98684770965575,0.12398544945891218,0.01575529620495015,0.121744384765625,0.12330782623291016,0.12368689422607422,0.2534359008789062,"[0.12507750701904297, 0.12424604797363281, 0.1234441909790039, 0.12341862487792969, 0.12180786895751954, 0.1224120330810547, 0.12155903625488282, 0.12088832092285157, 0.12079001617431641, 0.12080332946777343, 0.1209518051147461, 0.12134912109375, 0.12099378967285156, 0.12220416259765625, 0.12147408294677735, 0.12154876708984375, 0.12117708587646485, 0.12111360168457032, 0.12086067199707032, 0.12105318450927735, 0.12099174499511718, 0.12216934204101562, 0.12297727966308594, 0.12166143798828125, 0.12153446197509765, 0.12155801391601563, 0.12161023712158203, 0.12131839752197265, 0.12115455627441406, 0.12147609710693359, 0.12320972442626953, 0.12328857421875, 0.12294041442871094, 0.1213460464477539, 0.12115360260009765, 0.12151289367675781, 0.12153343963623046, 0.12244172668457032, 0.12324454498291015, 0.12321791839599609, 0.1221396484375, 0.123504638671875, 0.12190930938720704, 0.12093536376953125, 0.12353228759765625, 0.1231247329711914, 0.12405248260498047, 0.12286566162109375, 0.12216831970214843, 0.1221580810546875, 0.12220928192138672, 0.12256153869628907, 0.12320460510253907, 0.12468940734863282, 0.12308889770507812, 0.1220997085571289, 0.12128972625732422, 0.12146380615234376, 0.12163587188720704, 0.12112380981445313, 0.12155289459228516, 0.12149759674072266, 0.2558975982666016, 0.12277452850341797, 0.12251545715332031, 0.12256665802001954, 0.12305101013183593, 0.12229837036132812, 0.1212968978881836, 0.1239582748413086, 0.12347596740722656, 0.12176076507568359, 0.12155289459228516, 0.12141977691650391, 0.1213685760498047, 0.1208463363647461, 0.12073062133789063, 0.1210040283203125, 0.12351385498046875, 0.12159487915039062, 0.12144640350341797, 0.12170649719238281, 0.12249292755126953, 0.12232396697998046, 0.12123442840576172, 0.12141567993164062, 0.12308889770507812, 0.12184268951416016, 0.1215098876953125, 0.12254208374023437, 0.12142387390136719, 0.12173619079589844, 0.12151910400390625, 0.12153446197509765, 0.12306739044189453, 0.12236492919921875, 0.12201881408691406, 0.12173824310302735, 0.12155699157714844, 0.12209356689453126, 0.12139315032958985, 0.12139520263671875, 0.12346572875976562, 0.12301107025146485, 0.12293836975097656, 0.12192870330810547, 0.12156313323974609, 0.12141056060791015, 0.12382415771484374, 0.12120060729980468, 0.12172902679443359, 0.12317593383789062, 0.12274995422363282, 0.12246323394775391, 0.12149657440185548, 0.12139110565185547, 0.12291788482666016, 0.12123340606689453, 0.12196150207519531, 0.12387631988525391, 0.12276838684082031, 0.12148223876953125, 0.12265267181396484, 0.1214044189453125, 0.12125389099121094, 0.25443635559082034, 0.12313497924804688, 0.12153446197509765, 0.12169830322265625, 0.12147097778320312, 0.12127334594726563, 0.12249088287353516, 0.1221396484375, 0.12196044921875, 0.12192460632324219, 0.12144742584228516, 0.1228226547241211, 0.12275917053222657, 0.12112697601318359, 0.12176787567138672, 0.1217228775024414, 0.12139424133300782, 0.12269356536865235, 0.1223720932006836, 0.12153343963623046, 0.1215478057861328, 0.12162351989746094, 0.12261682891845703, 0.12271308898925781, 0.1215098876953125, 0.12233932495117188, 0.12170342254638672, 0.121238525390625, 0.12113817596435547, 0.12111769866943359, 0.12136653137207032, 0.12165529632568359, 0.1218897933959961, 0.121744384765625, 0.12428594970703125, 0.12338790130615235, 0.12270489501953125, 0.1215129623413086, 0.12190310668945313, 0.12194918060302734, 0.12152114868164063, 0.12212838745117187, 0.12310630035400391, 0.12293427276611328, 0.12179046630859375, 0.12117298889160157, 0.12185906982421875, 0.12301107025146485, 0.1216522216796875, 0.120953857421875, 0.12247654724121093, 0.12268236541748047, 0.12308684539794922, 0.12277657318115234, 0.12169420623779297, 0.12158668518066407, 0.12113510131835938, 0.1211361312866211, 0.1227540512084961, 0.12328550720214844, 0.12320972442626953, 0.12324147033691406, 0.12298242950439453, 0.25302217102050784, 0.1215467529296875, 0.12238642883300781, 0.12331622314453125, 0.12284416198730469, 0.12259225463867188, 0.1225902099609375, 0.12293222045898437, 0.12212531280517579, 0.12088832092285157, 0.12144127655029296, 0.12321894073486328, 0.12279398345947265, 0.12161740875244141, 0.12199628448486328, 0.12130611419677734, 0.12155699157714844, 0.12218367767333985, 0.12152627563476562, 0.12282061004638672, 0.12332236480712891, 0.12172697448730468, 0.1214730224609375, 0.12131743621826171, 0.12206380462646485, 0.12272434997558594, 0.12205158233642578, 0.12277043151855468, 0.12318822479248047, 0.12324352264404297, 0.12150886535644531, 0.12119551849365234, 0.12129280090332031, 0.12111567687988281, 0.1214658203125, 0.12191129302978515, 0.12111974334716796, 0.1216358413696289, 0.12116377258300781, 0.12117708587646485, 0.12161539459228515, 0.1231072998046875, 0.12339097595214844, 0.12407295989990234, 0.12407295989990234, 0.12135116577148437, 0.12155903625488282, 0.12125183868408203, 0.12111154937744141, 0.1215272979736328, 0.12139315032958985, 0.12157440185546875, 0.12285030364990235, 0.12157644653320313, 0.1217976303100586, 0.12137881469726562, 0.12175360107421875, 0.12123750305175782, 0.12148838043212891, 0.12119859313964844, 0.12210585784912109, 0.12211199951171875, 0.12212940979003906, 0.2530303955078125, 0.12125593566894531, 0.12254003143310546, 0.1212252197265625, 0.12286156463623046, 0.12248985290527344, 0.12266598510742187, 0.12236185455322265, 0.12159385681152343, 0.1212590103149414, 0.12165631866455077, 0.12115660858154297, 0.12235878753662109, 0.12386713409423829, 0.1217802276611328, 0.12304691314697265, 0.12239974212646484, 0.12245503997802734, 0.12413849639892578, 0.12299366760253906, 0.12299263763427734, 0.12301107025146485, 0.12142489624023438, 0.12230963134765625, 0.12332236480712891, 0.12175052642822265, 0.12143718719482421, 0.12149247741699219, 0.1212938232421875, 0.12226150512695312, 0.12151193237304687, 0.12162457275390624, 0.12326092529296875, 0.12302438354492187, 0.12452352142333985, 0.12339405059814453, 0.12212735748291016, 0.12276131439208984, 0.12299766540527343, 0.1216911392211914, 0.12096409606933593, 0.12123033905029297, 0.12140953826904297, 0.12123238372802735, 0.12380467224121093, 0.12290969848632813, 0.12300806427001953, 0.12272940826416015, 0.12320665740966796, 0.12299878692626953, 0.12275917053222657, 0.12293119812011719, 0.12306432342529297, 0.12317798614501953, 0.12322406768798828, 0.12217958068847656, 0.1228267822265625, 0.12593353271484375, 0.1234872283935547, 0.12296601867675781, 0.12340940856933594, 0.12347187042236328, 0.12346470642089843, 0.25439436340332033, 0.12301414489746093, 0.1228062744140625, 0.1231431655883789, 0.12312268829345703, 0.12464742279052735, 0.12372991943359375, 0.1234708480834961, 0.12335411071777344, 0.12233523559570313, 0.12217958068847656, 0.12264959716796875, 0.12329881286621094, 0.12281549072265625, 0.12341248321533203, 0.123109375, 0.12312268829345703, 0.12331110382080078, 0.12178943634033203, 0.12153343963623046, 0.12128153228759765, 0.12127027130126954, 0.12139008331298828, 0.12159487915039062, 0.12141875457763672, 0.12109516906738281, 0.12095590209960938, 0.12107469177246094, 0.12224205017089844, 0.1224263687133789, 0.12177005004882813, 0.12150163269042968, 0.12146585845947265, 0.12140953826904297, 0.12113005065917969, 0.12179347229003906, 0.12241817474365234, 0.12146585845947265, 0.1236316146850586, 0.12164096069335938, 0.12152934265136718, 0.12139622497558594, 0.12146688079833984, 0.12121600341796875, 0.12141567993164062, 0.12133478546142579, 0.12168498992919922, 0.1214167709350586, 0.12150675201416015, 0.12333977508544922, 0.12334899139404297, 0.12139826965332032, 0.12266291046142579, 0.12162457275390624, 0.1213675537109375, 0.12148838043212891, 0.123219970703125, 0.12320358276367188, 0.12155494689941407, 0.12110848236083985, 0.12138294219970704, 0.12153238677978516, 0.12358963012695312, 0.25359359741210935, 0.12145458984375, 0.12112588500976562, 0.12119039916992187, 0.12124671936035156, 0.12149964904785156, 0.12119961547851563, 0.12119245147705078, 0.12146688079833984, 0.12120269012451172, 0.12097740936279297, 0.1208616943359375, 0.12124671936035156, 0.12146176147460938, 0.12102349090576171, 0.1214505615234375, 0.12145657348632813, 0.12126924896240235, 0.12115869140625, 0.12115657806396485, 0.12137574768066406, 0.12156928253173828, 0.12129894256591797, 0.1242234878540039, 0.12195740509033202, 0.12128765106201173, 0.12127436828613282, 0.12119142150878906, 0.12085968017578125, 0.12119548797607421, 0.12113203430175781, 0.12153139495849609, 0.12129587554931641, 0.12157234954833984, 0.12127641296386718, 0.12110438537597656, 0.12128870391845703, 0.12145970916748047, 0.12127846527099609, 0.12160921478271484, 0.12154879760742188, 0.1213306884765625, 0.12123238372802735, 0.12116070556640625, 0.12110643005371094, 0.12110031890869141, 0.12115042877197266, 0.12125593566894531, 0.12130406188964844, 0.12108185577392579, 0.12092108917236329, 0.12128562927246093, 0.12140748596191406, 0.12148838043212891, 0.12150784301757812, 0.12131737518310547, 0.12162969970703125, 0.12153958129882812, 0.122281982421875, 0.12196249389648438, 0.12154879760742188, 0.1211883544921875, 0.12114022064208985, 0.25422848510742185, 0.12144435119628906, 0.12121600341796875, 0.12331622314453125, 0.12173926544189453, 0.12114329528808594, 0.1231800308227539, 0.1233438720703125, 0.1232721939086914, 0.12304691314697265, 0.12367155456542969, 0.12309913635253907, 0.12304998779296875, 0.12310630035400391, 0.12295680236816406, 0.12294348907470704, 0.12386918640136718, 0.12152320098876954, 0.12160205078125, 0.121059326171875, 0.12094258880615234, 0.12096717071533203, 0.12145868682861329, 0.12323331451416016, 0.12289020538330078, 0.12314832305908203, 0.1236971206665039, 0.12315955352783203, 0.12311039733886718, 0.12137471771240234, 0.12235366058349609, 0.1222451171875, 0.1222973403930664, 0.12167884826660157, 0.12279296112060546, 0.12148735809326172, 0.12146995544433593, 0.12277760314941406, 0.12156723022460937, 0.1216358413696289, 0.12169728088378906, 0.12312166595458984, 0.12145664215087891, 0.12275507354736329, 0.1232353286743164, 0.12311347198486328, 0.123072509765625, 0.1227171859741211, 0.12111154937744141, 0.12276019287109376, 0.12255232238769531, 0.12235059356689452, 0.12264141082763672, 0.1211514892578125, 0.12123545837402344, 0.12166246032714843, 0.12119347381591797, 0.12130201721191407, 0.12149964904785156, 0.12166246032714843, 0.12141875457763672, 0.12106034851074218, 0.12132147216796875, 0.25745306396484374, 0.12312064361572266, 0.12307865905761718, 0.12312166595458984, 0.12121913909912109, 0.12116063690185547, 0.1212774429321289, 0.12236185455322265, 0.1215498275756836, 0.12132454681396485, 0.12093132781982421, 0.12260454559326171, 0.12201676940917969, 0.12116480255126953, 0.12119449615478516, 0.121206787109375, 0.12122112274169922, 0.12207103729248046, 0.12143001556396485, 0.12134400177001953, 0.12148531341552735, 0.12378009796142578, 0.12321279907226562, 0.12303257751464844, 0.12391117095947266, 0.12308889770507812, 0.12307762908935548, 0.12230758666992188, 0.12212636566162109, 0.12145769500732422, 0.12122207641601562, 0.12131123352050781, 0.12108799743652343, 0.1211156463623047, 0.12251033782958984, 0.12306432342529297, 0.12318310546875, 0.12159795379638672, 0.12140850830078125, 0.12139520263671875, 0.12131839752197265, 0.12117196655273438, 0.12120371246337891, 0.12156723022460937, 0.12148941040039063, 0.12145664215087891, 0.12146892547607421, 0.1215447006225586, 0.12250316619873047, 0.12295782470703125, 0.12217036437988281, 0.12270387268066406, 0.12305919647216797, 0.12331520080566406, 0.12305203247070312, 0.12250521850585938, 0.12303667449951172, 0.12276838684082031, 0.12293427276611328, 0.12293427276611328, 0.12159283447265624, 0.12137062072753907, 0.12141670227050781, 0.2548654022216797, 0.1212416000366211, 0.12151193237304687, 0.12308480072021484, 0.12140338897705077, 0.12150377655029297, 0.12124156951904297, 0.121275390625, 0.12150374603271484, 0.12148838043212891, 0.12146482849121094, 0.12227788543701172, 0.12289740753173828, 0.12292819213867187, 0.12136339569091797, 0.1211822052001953, 0.12195027160644531, 0.12174432373046876, 0.12153241729736328, 0.12099174499511718, 0.12128463745117188, 0.12138390350341798, 0.121385986328125, 0.12258918762207031, 0.1230161895751953, 0.12225638580322265, 0.12275917053222657, 0.12151602935791016, 0.12140850830078125, 0.12134809875488281, 0.12176076507568359, 0.1217791976928711, 0.12272946929931641, 0.12169420623779297, 0.12219187164306641, 0.12145561981201172, 0.12164096069335938, 0.12145254516601563, 0.12175360107421875, 0.12436787414550782, 0.1233602523803711, 0.12332339477539063, 0.1232701416015625, 0.12218675231933594, 0.1233039321899414, 0.12280217742919922, 0.12283596801757812, 0.1221048355102539, 0.12304793548583984, 0.1227509765625, 0.12293023681640625, 0.12202182769775391, 0.12274483489990234, 0.1233070068359375, 0.12290560150146485, 0.12302130889892578, 0.1229496307373047, 0.12324864196777344, 0.12319129943847656, 0.12199935913085938, 0.12175363159179688, 0.12325577545166015, 0.12313600158691407]",tokens/s,8.06546255519598,,,main,False,False +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-4B,Qwen/Qwen1.5-4B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,3203.223552,5128.060928,0.0,4481.613824,4276.256768,s,10,3.1983958740234373,0.31983958740234375,0.001538131138588488,0.31976911926269536,0.32137343139648433,0.3217927795410156,0.3221282580566406,"[0.31961990356445313, 0.3212218933105469, 0.3187176513671875, 0.3199183349609375, 0.3183829040527344, 0.3169226989746094, 0.31905938720703125, 0.32106072998046875, 0.32128024291992185, 0.32221212768554686]",tokens/s,800.4012326277909,kWh,3.750147018581629e-06,2.054515901244258e-06,1.6957018773937002e-05,2.276168169376289e-05,tokens/kWh,11246972.14574214,MB,3203.223552,5128.060928,0.0,4481.613824,4465.662976,s,10,186.97800781249998,18.69780078125,0.017296888320766722,18.693263671875002,18.720369140625,18.729755859375,18.737265234375002,"[18.718283203125, 18.689103515625, 18.695333984375, 18.678984375, 18.739142578125, 18.694673828125, 18.691853515625, 18.6855234375, 18.701947265625, 18.683162109375]",tokens/s,3.369380214125283,kWh,0.00022053018352016812,0.00012086672241809653,0.0009756264419588673,0.001317023347897132,tokens/kWh,47835.14286257035,,s,629,189.55983416748046,0.3013669859578386,0.038019298519587436,0.29649102783203124,0.2979925964355469,0.29949728393554687,0.6154752392578126,"[0.29722113037109377, 0.2962104187011719, 0.2994401550292969, 0.3005357666015625, 0.30041702270507814, 0.2999255065917969, 0.30030029296875, 0.3005870056152344, 0.30005453491210937, 0.3003166809082031, 0.2982318115234375, 0.29764404296875, 0.29678591918945313, 0.2977320861816406, 0.2972508239746094, 0.2988697509765625, 0.29594931030273436, 0.29598825073242185, 0.29595953369140626, 0.2961408081054687, 0.29663333129882813, 0.2959800415039063, 0.2984028015136719, 0.29736856079101565, 0.29788876342773435, 0.2962769775390625, 0.2963660888671875, 0.2973767700195312, 0.2967070617675781, 0.2959728698730469, 0.2965258178710938, 0.29611212158203126, 0.2976409606933594, 0.2969599914550781, 0.2967398376464844, 0.2962391052246094, 0.29641522216796873, 0.2959902648925781, 0.29629336547851565, 0.29671832275390625, 0.29604147338867187, 0.2959872131347656, 0.2960855102539062, 0.2966855773925781, 0.29605990600585935, 0.29604147338867187, 0.29675726318359374, 0.29607012939453126, 0.2964500427246094, 0.29650942993164064, 0.2962022399902344, 0.2960516967773438, 0.29594830322265625, 0.296783935546875, 0.296870849609375, 0.29710232543945314, 0.29665484619140625, 0.29788363647460936, 0.29600152587890627, 0.29640191650390624, 0.29616229248046877, 0.2960711669921875, 0.6185267333984374, 0.29601278686523436, 0.29589199829101565, 0.29706646728515623, 0.29594418334960937, 0.29600460815429686, 0.29592166137695314, 0.2975078430175781, 0.2961551208496094, 0.29602200317382815, 0.2963240966796875, 0.2960445556640625, 0.2958970947265625, 0.2962135009765625, 0.29608447265625, 0.29607730102539065, 0.29639883422851565, 0.29659750366210935, 0.29723443603515626, 0.29676031494140626, 0.2970972290039062, 0.296911865234375, 0.29686373901367186, 0.29711358642578123, 0.29724774169921875, 0.29758157348632813, 0.29762457275390625, 0.2963056640625, 0.29703271484375, 0.29604864501953126, 0.2962616271972656, 0.296153076171875, 0.2962769775390625, 0.2961919860839844, 0.2968739929199219, 0.29633843994140624, 0.2965504150390625, 0.29617355346679686, 0.29583154296875, 0.2962042846679688, 0.2970060729980469, 0.2965278625488281, 0.29644491577148435, 0.29606298828125, 0.29650225830078125, 0.2965186462402344, 0.3018721313476562, 0.29692620849609375, 0.2963681640625, 0.29674798583984374, 0.296806396484375, 0.29622067260742185, 0.2960076904296875, 0.2968924255371094, 0.2960343017578125, 0.2965831604003906, 0.2970480651855469, 0.29702047729492187, 0.296217529296875, 0.29626266479492186, 0.29842022705078125, 0.29761843872070315, 0.29686373901367186, 0.6160445556640625, 0.2960199890136719, 0.2965903015136719, 0.2964684753417969, 0.29644390869140624, 0.2965688171386719, 0.2976983032226562, 0.29753759765625, 0.29599737548828126, 0.29653094482421877, 0.2970838928222656, 0.2961479797363281, 0.29596878051757813, 0.29587353515625, 0.2960445556640625, 0.2966005859375, 0.2975467529296875, 0.2962995300292969, 0.2958847961425781, 0.2957864990234375, 0.2960732116699219, 0.295973876953125, 0.2962944030761719, 0.29851339721679687, 0.295984130859375, 0.29607730102539065, 0.2961203308105469, 0.2960425109863281, 0.29593295288085936, 0.29733270263671874, 0.29703067016601564, 0.29734808349609376, 0.29631283569335937, 0.296816650390625, 0.29681048583984376, 0.296489990234375, 0.29625653076171876, 0.29661590576171876, 0.29632000732421876, 0.2966937561035156, 0.2978652038574219, 0.2965299072265625, 0.2963240966796875, 0.29751806640625, 0.29830859375, 0.297481201171875, 0.29719039916992185, 0.29953536987304685, 0.29737368774414064, 0.29692108154296876, 0.296585205078125, 0.296052734375, 0.29637939453125, 0.29625753784179687, 0.29655654907226564, 0.29799423217773435, 0.2968268737792969, 0.29685043334960937, 0.29692108154296876, 0.29714944458007814, 0.29722930908203127, 0.2967623596191406, 0.297270263671875, 0.6168934326171875, 0.29688626098632814, 0.296279052734375, 0.29670297241210936, 0.2962923583984375, 0.29618795776367185, 0.2966793518066406, 0.2960650329589844, 0.29615924072265626, 0.29594418334960937, 0.2973972473144531, 0.29612338256835935, 0.2971064453125, 0.2982297668457031, 0.29685043334960937, 0.2960855102539062, 0.296089599609375, 0.29661489868164065, 0.2965350341796875, 0.29597695922851563, 0.2961705017089844, 0.29597695922851563, 0.29592276000976564, 0.29643975830078123, 0.29586328125, 0.29596466064453125, 0.2959923095703125, 0.2958981018066406, 0.29643777465820315, 0.2959923095703125, 0.29621759033203127, 0.2963650512695313, 0.29609677124023437, 0.29788980102539064, 0.2977914733886719, 0.29713613891601565, 0.2964951171875, 0.29727642822265626, 0.2966794128417969, 0.2964142150878906, 0.2965821533203125, 0.2960855102539062, 0.2957701416015625, 0.2966097717285156, 0.29938388061523435, 0.29615609741210935, 0.29603640747070314, 0.2962728271484375, 0.29596978759765624, 0.2960455627441406, 0.296300537109375, 0.29595040893554686, 0.29649197387695314, 0.29635379028320313, 0.296342529296875, 0.29667330932617186, 0.2967008972167969, 0.29659442138671877, 0.29601690673828124, 0.29651455688476563, 0.29645925903320314, 0.2973665466308594, 0.29616226196289064, 0.615267333984375, 0.29617767333984374, 0.29771673583984376, 0.29707980346679685, 0.298039306640625, 0.297238525390625, 0.2971115417480469, 0.29701837158203126, 0.29682891845703124, 0.2972641296386719, 0.2971668395996094, 0.29752627563476564, 0.2972252197265625, 0.29701632690429686, 0.29692620849609375, 0.29619302368164063, 0.2964234619140625, 0.2987468566894531, 0.296131591796875, 0.2958981018066406, 0.29623501586914064, 0.29586944580078123, 0.295846923828125, 0.29605377197265625, 0.29625753784179687, 0.29595443725585935, 0.29606195068359376, 0.29590631103515624, 0.29597491455078123, 0.29599948120117187, 0.296310791015625, 0.2964664306640625, 0.29622885131835935, 0.2963630065917969, 0.29594317626953126, 0.2961397705078125, 0.29812017822265624, 0.3001466979980469, 0.3003924560546875, 0.3000289306640625, 0.29983538818359373, 0.29985791015625, 0.29986712646484376, 0.29981594848632814, 0.30056344604492186, 0.29986407470703125, 0.2999111633300781, 0.29782833862304686, 0.2960773315429687, 0.2960137939453125, 0.29763687133789063, 0.2979921875, 0.2981877746582031, 0.2967510986328125, 0.29627288818359376, 0.29777716064453125, 0.2970634155273438, 0.30057470703125, 0.2982738037109375, 0.2991800231933594, 0.30042315673828124, 0.2963568725585938, 0.2961418151855469, 0.6139617309570312, 0.29619406127929687, 0.29618585205078124, 0.29586431884765624, 0.296079345703125, 0.29643060302734375, 0.2977740783691406, 0.2977832946777344, 0.2964633483886719, 0.29604147338867187, 0.2960609130859375, 0.29627084350585936, 0.29602822875976564, 0.2961315307617188, 0.29630160522460935, 0.29599432373046874, 0.2961469421386719, 0.296531982421875, 0.2960977783203125, 0.2960373840332031, 0.2965381164550781, 0.2960506896972656, 0.29609063720703127, 0.2962063293457031, 0.2960169677734375, 0.29643975830078123, 0.2966312866210937, 0.2963077087402344, 0.2960865173339844, 0.2961162109375, 0.2960281677246094, 0.2961766357421875, 0.296352783203125, 0.2976133117675781, 0.29756414794921876, 0.29727435302734373, 0.29644595336914065, 0.2974146423339844, 0.30141543579101565, 0.2976788330078125, 0.2980526123046875, 0.2980894775390625, 0.29788058471679685, 0.2963497009277344, 0.29696920776367186, 0.29795635986328123, 0.29711566162109376, 0.29751296997070314, 0.29756314086914065, 0.2974320678710938, 0.29744332885742186, 0.29654324340820315, 0.29747711181640624, 0.2984744873046875, 0.29649203491210935, 0.2962442321777344, 0.2966384582519531, 0.2963189697265625, 0.29589913940429685, 0.2962176208496094, 0.2958837585449219, 0.29590936279296876, 0.29634048461914064, 0.6155560913085938, 0.29629541015625, 0.2960916442871094, 0.2964561767578125, 0.29645208740234374, 0.2960373840332031, 0.2963875732421875, 0.2963620300292969, 0.2962861633300781, 0.29651251220703123, 0.29747915649414064, 0.2981519470214844, 0.29662823486328127, 0.2976133117675781, 0.29637530517578126, 0.29608038330078124, 0.29605682373046877, 0.2960496520996094, 0.29625140380859377, 0.29587966918945313, 0.2968821716308594, 0.29635174560546873, 0.29616537475585936, 0.3003904113769531, 0.2970214538574219, 0.2966312866210937, 0.29685556030273436, 0.29636813354492186, 0.29714739990234373, 0.29626266479492186, 0.29595135498046876, 0.2962196350097656, 0.29621759033203127, 0.29663333129882813, 0.2961408081054687, 0.2965729370117188, 0.2961131591796875, 0.2963865661621094, 0.296479736328125, 0.296900634765625, 0.2964776611328125, 0.296848388671875, 0.29701937866210937, 0.29931622314453127, 0.29786627197265625, 0.2962636413574219, 0.29623806762695315, 0.2966210632324219, 0.2961336364746094, 0.2963711853027344, 0.29625140380859377, 0.2967357482910156, 0.29616845703125, 0.2963599853515625, 0.29687493896484374, 0.296300537109375, 0.2967142333984375, 0.29815499877929685, 0.29702349853515625, 0.29747610473632813, 0.296627197265625, 0.29662515258789063, 0.2977822570800781, 0.6183147583007812, 0.29672344970703124, 0.296764404296875, 0.29664154052734376, 0.2967080993652344, 0.29716583251953127, 0.29694155883789064, 0.2967244873046875, 0.2972221374511719, 0.2974392395019531, 0.2972866516113281, 0.2969518127441406, 0.2982625427246094, 0.296279052734375, 0.29735015869140624, 0.2961131591796875, 0.2980966491699219, 0.29623806762695315, 0.29628826904296873, 0.2956605529785156, 0.29607012939453126, 0.2962001953125, 0.29612442016601564, 0.29620736694335936, 0.29724774169921875, 0.2960086975097656, 0.297548828125, 0.2967602844238281, 0.29649102783203124, 0.2963619384765625, 0.2962708740234375, 0.29639984130859376, 0.2968350830078125, 0.2963292236328125, 0.296099853515625, 0.29622784423828125, 0.29627093505859375, 0.296197021484375, 0.2974996337890625, 0.2962104187011719, 0.2960639953613281, 0.29599948120117187, 0.2959902648925781, 0.2965739440917969, 0.2961817626953125, 0.2968320007324219, 0.29708084106445315, 0.2968320007324219, 0.29710540771484373, 0.2960558166503906, 0.2963138427734375, 0.29637326049804685, 0.29592166137695314, 0.2962083740234375, 0.29609573364257813, 0.2962114562988281, 0.2961203308105469, 0.29699481201171873, 0.29659442138671877, 0.29610906982421875, 0.29717401123046877, 0.29671218872070315, 0.2965350341796875, 0.61785498046875, 0.29675213623046875, 0.29679409790039063, 0.29726925659179687, 0.29639578247070314, 0.29744537353515627, 0.2977556457519531, 0.29687704467773435, 0.2974320678710938, 0.297416748046875, 0.29766244506835937, 0.29807000732421873, 0.2972119140625, 0.2973388671875, 0.2967439270019531, 0.2972999572753906, 0.2976030578613281, 0.2986280822753906, 0.29623602294921875, 0.29600152587890627, 0.2964695739746094, 0.2963936767578125, 0.2961868896484375, 0.29702349853515625, 0.29616024780273437, 0.29621148681640624, 0.2964879150390625, 0.29709210205078124, 0.2963056640625, 0.2973767700195312, 0.2969722900390625, 0.29783346557617185, 0.2965718994140625, 0.2977576904296875, 0.2961418151855469, 0.2967091064453125, 0.2973644714355469, 0.29671218872070315, 0.29666201782226564, 0.296838134765625, 0.2965801086425781, 0.2962391052246094, 0.296089599609375, 0.2963804016113281, 0.29701119995117187, 0.2961469421386719, 0.29617767333984374, 0.296384521484375, 0.296369140625, 0.29728460693359376, 0.2963015747070312, 0.2967838745117187, 0.29621554565429686, 0.2963097534179687, 0.29686373901367186, 0.2963947448730469, 0.2962995300292969, 0.29706649780273436, 0.2967142333984375, 0.29672857666015623, 0.2966722412109375, 0.2982359008789062, 0.2979543151855469, 0.6189783325195313, 0.2962237548828125, 0.2969938049316406, 0.29632614135742186, 0.2961541748046875, 0.2965380554199219, 0.2963343505859375, 0.29643777465820315, 0.29634866333007814, 0.2962872314453125, 0.2963630065917969, 0.29629644775390623, 0.29665484619140625, 0.296310791015625, 0.29620120239257813, 0.29598513793945314, 0.29617767333984374, 0.2959667053222656, 0.2962749328613281, 0.2967930908203125, 0.29673779296875, 0.29692825317382815, 0.29633331298828125, 0.29688934326171873, 0.2962821044921875, 0.29612954711914063, 0.2987386779785156, 0.2962083740234375, 0.296374267578125, 0.2962135009765625, 0.29653402709960935, 0.2968299560546875, 0.2963097534179687, 0.2981970520019531, 0.2961192321777344, 0.2962135009765625, 0.2961069946289063, 0.295920654296875, 0.2961459655761719, 0.29606500244140627, 0.29621453857421876, 0.29600564575195315, 0.29583566284179685, 0.2993377380371094, 0.29691802978515625, 0.2961561584472656, 0.2958428039550781, 0.2965329895019531, 0.29672549438476564, 0.29595547485351564, 0.2960772705078125, 0.29593496704101563, 0.2966548767089844, 0.2969466552734375, 0.2978447265625, 0.296627197265625, 0.29650433349609373, 0.2975867004394531, 0.2982461853027344, 0.29639166259765626, 0.29643161010742186, 0.29704702758789064, 0.29672344970703124]",tokens/s,3.3182134958203435,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-4.5B,facebook/xglm-4.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,3047.755776,4521.984,0.0,3875.536896,3575.121408,s,10,3.925874938964844,0.3925874938964844,0.0032003814064900295,0.39131011962890627,0.3974839904785156,0.39779729309082035,0.39804793518066406,"[0.398110595703125, 0.3898521728515625, 0.39046603393554685, 0.39330859375, 0.38967181396484374, 0.38878271484375, 0.39181430053710936, 0.3956484069824219, 0.39741436767578125, 0.3908059387207031]",tokens/s,652.0839404718809,kWh,4.606836531152074e-06,2.5243247530642504e-06,1.9845015875998338e-05,2.697617716021466e-05,tokens/kWh,9489854.640247436,MB,3047.755776,4521.984,0.0,3875.536896,3800.975872,s,10,231.19119335937498,23.119119335937498,0.024652283207228468,23.1104677734375,23.1560455078125,23.16491630859375,23.17201294921875,"[23.104484375, 23.106837890625, 23.11409765625, 23.1257734375, 23.09865234375, 23.091490234375, 23.10330859375, 23.173787109375, 23.15407421875, 23.1186875]",tokens/s,2.7250172934602097,kWh,0.0002730506428477602,0.00014965489141425045,0.0011581440098478151,0.0015808495441098258,tokens/kWh,39851.989858702975,,s,629,234.351453125,0.3725778269077901,0.04661763996043978,0.3668070373535156,0.3683815368652344,0.36919970703125,0.7562686254882812,"[0.3660308532714844, 0.3664025573730469, 0.36736306762695314, 0.3682928771972656, 0.3671849060058594, 0.366424072265625, 0.36691455078125, 0.36642098999023437, 0.3666820983886719, 0.36670053100585936, 0.3671910400390625, 0.3671593017578125, 0.3675473937988281, 0.367383544921875, 0.36641281127929687, 0.3659335632324219, 0.366244873046875, 0.3652311096191406, 0.3665745849609375, 0.3662633056640625, 0.3673968505859375, 0.36597760009765623, 0.3667660827636719, 0.3654379577636719, 0.3664527282714844, 0.3673671569824219, 0.36636468505859376, 0.3656898498535156, 0.3663196105957031, 0.3655997314453125, 0.36726272583007813, 0.36568780517578126, 0.3668695068359375, 0.36599508666992187, 0.3665059204101562, 0.3655762023925781, 0.36666366577148435, 0.36643328857421875, 0.3669176330566406, 0.3657113647460937, 0.36776141357421877, 0.3660533752441406, 0.36670053100585936, 0.36581787109375, 0.36618853759765624, 0.3657318420410156, 0.36655206298828125, 0.3656663818359375, 0.36818527221679687, 0.36655206298828125, 0.3670487060546875, 0.366587890625, 0.3682109375, 0.3672012939453125, 0.3683788757324219, 0.3662612609863281, 0.36835430908203126, 0.3673917541503906, 0.3714969482421875, 0.36665652465820314, 0.3664425048828125, 0.36596124267578123, 0.7560806274414062, 0.36733746337890627, 0.36763238525390624, 0.3667384338378906, 0.3690987548828125, 0.3665008544921875, 0.3659049072265625, 0.3675392150878906, 0.36642611694335936, 0.36708966064453125, 0.36646810913085937, 0.3664025573730469, 0.3674142761230469, 0.36601959228515624, 0.36743270874023437, 0.36704461669921873, 0.36616806030273436, 0.36657357788085937, 0.3658526611328125, 0.3659263916015625, 0.3657093200683594, 0.3664773254394531, 0.3665899658203125, 0.3660308532714844, 0.36575845336914065, 0.3663247375488281, 0.3659059143066406, 0.36675994873046874, 0.3660185546875, 0.3673917541503906, 0.36654180908203127, 0.36684698486328127, 0.367072265625, 0.3671255187988281, 0.36628070068359375, 0.3660789794921875, 0.36613528442382814, 0.3671644287109375, 0.3661455383300781, 0.36799591064453124, 0.36629299926757813, 0.36816485595703125, 0.36593869018554687, 0.3678883972167969, 0.3660892028808594, 0.3684013977050781, 0.36708865356445314, 0.36752896118164063, 0.36656741333007814, 0.3682099304199219, 0.36648345947265626, 0.36751565551757814, 0.3659735107421875, 0.3680624694824219, 0.3659202575683594, 0.3667906494140625, 0.36607489013671873, 0.3667957763671875, 0.36641485595703127, 0.36750439453125, 0.36619058227539064, 0.36707431030273435, 0.36645068359375, 0.7576248168945312, 0.3653406677246094, 0.3671552124023437, 0.3671224365234375, 0.3667906494140625, 0.3663052673339844, 0.36621209716796876, 0.36776141357421877, 0.3668439025878906, 0.36665139770507815, 0.3658373107910156, 0.36659506225585936, 0.36775115966796873, 0.36711117553710937, 0.36632986450195315, 0.36725247192382815, 0.36715213012695314, 0.36897998046875, 0.3676968994140625, 0.3678535766601562, 0.366065673828125, 0.367072265625, 0.36664523315429687, 0.3668899841308594, 0.366271484375, 0.3664445495605469, 0.3664271240234375, 0.366392333984375, 0.36568576049804685, 0.36705279541015623, 0.36768154907226563, 0.36760678100585936, 0.36624383544921874, 0.3671849060058594, 0.36741018676757814, 0.36703640747070315, 0.36581375122070314, 0.36656536865234374, 0.3663052673339844, 0.36876492309570313, 0.366455810546875, 0.3671715698242187, 0.36698419189453124, 0.3677542419433594, 0.36644046020507814, 0.36671795654296874, 0.36616293334960937, 0.36698828125, 0.3662899169921875, 0.36686746215820315, 0.3674449768066406, 0.36675994873046874, 0.366519287109375, 0.3665111083984375, 0.36600628662109375, 0.36778289794921876, 0.3663800354003906, 0.36820684814453125, 0.3660175476074219, 0.36745419311523436, 0.3680143432617187, 0.3678023681640625, 0.3672965087890625, 0.76101123046875, 0.36763442993164064, 0.3688806457519531, 0.3682867126464844, 0.3672862854003906, 0.36792831420898436, 0.36681729125976564, 0.36853555297851565, 0.36648446655273437, 0.36719000244140626, 0.3671961669921875, 0.3679938659667969, 0.3675965576171875, 0.3683921813964844, 0.3668418579101563, 0.3667855224609375, 0.36585470581054685, 0.36641998291015626, 0.3668428649902344, 0.3661527099609375, 0.3681187744140625, 0.3663144836425781, 0.367393798828125, 0.36705484008789063, 0.36674969482421876, 0.36767642211914064, 0.3666595764160156, 0.36638516235351565, 0.3659837341308594, 0.3676375122070312, 0.36701901245117186, 0.36602264404296875, 0.36724429321289065, 0.36727194213867187, 0.3677163391113281, 0.36646194458007814, 0.3668899841308594, 0.36752896118164063, 0.3668070373535156, 0.36688385009765623, 0.3675699157714844, 0.36781158447265627, 0.3655679931640625, 0.3665203247070313, 0.3669176330566406, 0.3664250793457031, 0.36553421020507815, 0.3678494567871094, 0.367056884765625, 0.3667271728515625, 0.3659151306152344, 0.36611276245117186, 0.3676180419921875, 0.3684751281738281, 0.3661475830078125, 0.3675002746582031, 0.3667466125488281, 0.36979815673828126, 0.3675893859863281, 0.3668500366210937, 0.36594073486328127, 0.3664721984863281, 0.3660421142578125, 0.7563417358398438, 0.36537957763671874, 0.3666237487792969, 0.3666851806640625, 0.36812799072265623, 0.3660308532714844, 0.3663882141113281, 0.3670702209472656, 0.3671562194824219, 0.3671490478515625, 0.3683932189941406, 0.36664523315429687, 0.3658895263671875, 0.36612710571289064, 0.36652340698242186, 0.3672749938964844, 0.3655301208496094, 0.366635009765625, 0.3657994384765625, 0.36625100708007813, 0.36786483764648437, 0.3671715698242187, 0.36642816162109376, 0.3672166442871094, 0.3667108459472656, 0.36772549438476565, 0.36702822875976565, 0.367720458984375, 0.3670384521484375, 0.3671142272949219, 0.3670169677734375, 0.369112060546875, 0.36612506103515624, 0.3668643798828125, 0.3657052307128906, 0.3660328979492187, 0.3655086059570313, 0.3667589111328125, 0.3669944458007813, 0.36692889404296875, 0.3655577697753906, 0.3665080261230469, 0.36726373291015624, 0.36662066650390623, 0.3658455505371094, 0.36661654663085935, 0.365918212890625, 0.368047119140625, 0.3663114318847656, 0.36607794189453124, 0.36666778564453123, 0.36623870849609375, 0.36541131591796877, 0.36611993408203125, 0.36540826416015626, 0.36666470336914064, 0.3660861511230469, 0.3677306823730469, 0.3666360168457031, 0.36710296630859374, 0.366376953125, 0.3661721496582031, 0.36556698608398436, 0.75503515625, 0.36811160278320315, 0.3666186218261719, 0.3668746337890625, 0.36598681640625, 0.36689202880859373, 0.3665131530761719, 0.36666983032226563, 0.3660205993652344, 0.3664025573730469, 0.3666462707519531, 0.3671009216308594, 0.3655587768554687, 0.3668203430175781, 0.36630117797851564, 0.36666366577148435, 0.36585574340820315, 0.36627865600585935, 0.3661414489746094, 0.36637799072265625, 0.36607998657226565, 0.3658045349121094, 0.3679395751953125, 0.36621517944335935, 0.36576153564453123, 0.3663124389648437, 0.3655833740234375, 0.3661219787597656, 0.3678760986328125, 0.36634521484375, 0.36614862060546877, 0.3665377197265625, 0.3658229675292969, 0.36720025634765624, 0.3659571228027344, 0.36605746459960936, 0.36572467041015627, 0.36643429565429686, 0.3677470703125, 0.3671142272949219, 0.36663092041015627, 0.36711935424804687, 0.3663636474609375, 0.36681625366210935, 0.3660943298339844, 0.36676812744140624, 0.36628582763671874, 0.3674306640625, 0.3657963562011719, 0.36687359619140625, 0.36616293334960937, 0.3663595581054688, 0.3658577880859375, 0.367494140625, 0.3659980773925781, 0.3674224548339844, 0.3666606140136719, 0.3666483154296875, 0.36678964233398437, 0.367278076171875, 0.3672596435546875, 0.36691558837890625, 0.3659898986816406, 0.7581112060546875, 0.36696063232421877, 0.36686541748046875, 0.3666217041015625, 0.3667189636230469, 0.36658688354492186, 0.36612606811523435, 0.3663329162597656, 0.36610763549804687, 0.3663811340332031, 0.3662243347167969, 0.3669329833984375, 0.3673456726074219, 0.3678023681640625, 0.36764877319335937, 0.3677501525878906, 0.3669678039550781, 0.3668746337890625, 0.3683153991699219, 0.36921240234375, 0.368362548828125, 0.36775827026367186, 0.3663052673339844, 0.3672483825683594, 0.36686746215820315, 0.36620184326171873, 0.36589157104492187, 0.36683877563476563, 0.36737841796875, 0.36710400390625, 0.3661424560546875, 0.36658074951171876, 0.365517822265625, 0.36632781982421875, 0.36605645751953125, 0.366856201171875, 0.36679168701171877, 0.3667793884277344, 0.3662469177246094, 0.36760064697265626, 0.36884786987304685, 0.3667568664550781, 0.3658803100585937, 0.36786996459960936, 0.3664742431640625, 0.3666083984375, 0.36686541748046875, 0.367140869140625, 0.3666790466308594, 0.36664422607421876, 0.365802490234375, 0.36675277709960935, 0.365348876953125, 0.36615576171875, 0.3656755065917969, 0.36651724243164063, 0.3666483154296875, 0.3665623168945312, 0.3659253845214844, 0.36593869018554687, 0.3652372436523437, 0.36640359497070313, 0.3656540222167969, 0.7624765625, 0.36612710571289064, 0.3665633239746094, 0.36761907958984374, 0.36593048095703123, 0.36634112548828124, 0.3662571411132812, 0.3672842102050781, 0.3657646179199219, 0.368606201171875, 0.36768359375, 0.3676794738769531, 0.36858981323242185, 0.3683133544921875, 0.369396728515625, 0.36714599609375, 0.36760577392578125, 0.3668357238769531, 0.3677470703125, 0.3677235107421875, 0.36642098999023437, 0.36621209716796876, 0.3658362731933594, 0.36801739501953123, 0.3667783813476562, 0.3668715515136719, 0.3696394348144531, 0.369375244140625, 0.3691806640625, 0.3698810729980469, 0.37041253662109375, 0.36909466552734377, 0.3689021301269531, 0.3667169189453125, 0.36602264404296875, 0.3657953186035156, 0.3676252136230469, 0.36923904418945314, 0.3685191650390625, 0.3708651428222656, 0.3690188903808594, 0.370050048828125, 0.36955239868164064, 0.366551025390625, 0.3658076171875, 0.3684198303222656, 0.3685857238769531, 0.3687065734863281, 0.36557516479492186, 0.3663943786621094, 0.3689195556640625, 0.3698083801269531, 0.3692380065917969, 0.3681546325683594, 0.3669350280761719, 0.36759039306640623, 0.3672842102050781, 0.3702108154296875, 0.3688243103027344, 0.36716030883789064, 0.36670465087890625, 0.36789248657226564, 0.3689768981933594, 0.7654307861328125, 0.367162353515625, 0.369691650390625, 0.3691734924316406, 0.370017333984375, 0.368702392578125, 0.36607794189453124, 0.36709375, 0.3667589111328125, 0.36747161865234373, 0.3679764404296875, 0.3669626770019531, 0.3658486022949219, 0.36790267944335936, 0.3670026245117187, 0.36758526611328124, 0.3668479919433594, 0.36762625122070314, 0.36738970947265626, 0.36922470092773435, 0.36768768310546873, 0.36928103637695314, 0.3660902404785156, 0.36697601318359374, 0.36616705322265625, 0.3675197448730469, 0.36707635498046876, 0.3673385009765625, 0.3668746337890625, 0.36747161865234373, 0.36656536865234374, 0.36796722412109373, 0.36610662841796876, 0.3665213317871094, 0.365781005859375, 0.36651007080078124, 0.36767025756835936, 0.3668213806152344, 0.36538470458984373, 0.3673118591308594, 0.365907958984375, 0.3671910400390625, 0.3668971557617188, 0.3673313293457031, 0.3669053344726563, 0.3664783935546875, 0.36691961669921874, 0.36783718872070315, 0.36801126098632814, 0.36738970947265626, 0.36602264404296875, 0.36634521484375, 0.3659909057617188, 0.36675787353515626, 0.3704688720703125, 0.37160037231445314, 0.370060302734375, 0.3701022644042969, 0.36780850219726563, 0.36857342529296877, 0.3668899841308594, 0.36739788818359376, 0.3669186706542969, 0.7624959716796875, 0.366529541015625, 0.367541259765625, 0.3666298828125, 0.367783935546875, 0.36849972534179687, 0.36857550048828125, 0.36766720581054685, 0.3665428466796875, 0.367025146484375, 0.3665684509277344, 0.3679231872558594, 0.3658014831542969, 0.3674449768066406, 0.36611276245117186, 0.367678466796875, 0.3667189636230469, 0.3687383117675781, 0.36729037475585935, 0.3665848388671875, 0.36641177368164063, 0.36767333984375, 0.3674972229003906, 0.36638516235351565, 0.3664025573730469, 0.36736306762695314, 0.3676334228515625, 0.3689072570800781, 0.3667712097167969, 0.3672862854003906, 0.3658874816894531, 0.36724429321289065, 0.3662274475097656, 0.3670732727050781, 0.3663523864746094, 0.3670425720214844, 0.3662489624023437, 0.36671282958984375, 0.3670978698730469, 0.3670241394042969, 0.3659970703125, 0.3673231506347656, 0.3663739013671875, 0.3662264404296875, 0.36703436279296875, 0.36681729125976564, 0.3661414489746094, 0.3668623352050781, 0.366129150390625, 0.367130615234375, 0.36584756469726565, 0.3665489807128906, 0.3668070373535156, 0.3673395080566406, 0.3674347534179688, 0.3669698486328125, 0.36617010498046876, 0.3672535095214844, 0.36757708740234374, 0.3671152648925781, 0.3667189636230469, 0.3670374450683594, 0.3659479064941406]",tokens/s,2.684002986166677,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-3b-4e1t,stabilityai/stablelm-3b-4e1t,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2110.81216,2911.371264,0.0,2264.92416,2140.859392,s,10,2.5174565429687497,0.25174565429687495,0.002151641767107536,0.250954475402832,0.2536562973022461,0.2552590721130371,0.2565412919616699,"[0.25686184692382813, 0.2507518005371094, 0.24988601684570313, 0.2505283203125, 0.2511571502685547, 0.24977813720703124, 0.24948822021484374, 0.2533001251220703, 0.25277372741699217, 0.25293119812011716]",tokens/s,1016.8993809049352,kWh,2.9486055983114377e-06,1.615695148140686e-06,1.3450261437707742e-05,1.801456218415987e-05,tokens/kWh,14210725.599820558,MB,2113.232896,2911.371264,0.0,2264.92416,2246.908928,s,10,147.68545214843752,14.768545214843751,0.008287027024456562,14.7677890625,14.7791720703125,14.7827984375,14.785699531250001,"[14.7716796875, 14.761337890625, 14.760306640625, 14.757224609375, 14.7783662109375, 14.769251953125, 14.7864248046875, 14.7672763671875, 14.7652822265625, 14.7683017578125]",tokens/s,4.265823009884493,kWh,0.0001741533532096603,9.545023489099372e-05,0.0007804473459020919,0.0010500509340027457,tokens/kWh,59997.08962673545,,s,629,149.7085112609864,0.23801035176627394,0.029876551877239144,0.2342451171875,0.23526665954589845,0.2357182434082031,0.48483614379882817,"[0.23634022521972656, 0.23580979919433595, 0.23378636169433595, 0.2359173126220703, 0.23436288452148438, 0.2340474853515625, 0.23413555908203126, 0.23381607055664064, 0.23380070495605468, 0.23397683715820314, 0.23489945983886718, 0.23450828552246095, 0.23392665100097657, 0.2347868194580078, 0.23529164123535157, 0.2351278076171875, 0.23502951049804688, 0.23457279968261718, 0.23408128356933594, 0.2355589141845703, 0.2354534454345703, 0.23438336181640626, 0.23522406005859375, 0.23521279907226564, 0.23508070373535156, 0.23463629150390625, 0.23408230590820311, 0.2338928680419922, 0.23402598571777344, 0.23431475830078125, 0.2341826629638672, 0.2337505340576172, 0.23392562866210936, 0.23407513427734375, 0.23401370239257813, 0.23463833618164062, 0.2346096649169922, 0.234144775390625, 0.23394610595703125, 0.2363443145751953, 0.2340720672607422, 0.23385702514648438, 0.23410585021972657, 0.233997314453125, 0.23401370239257813, 0.23508172607421876, 0.23504486083984374, 0.23416934204101564, 0.23398399353027344, 0.2338693084716797, 0.23474688720703124, 0.23387954711914063, 0.23373619079589844, 0.23434751892089845, 0.23412428283691405, 0.23393894958496095, 0.2339563446044922, 0.23393997192382812, 0.23378125, 0.23382528686523438, 0.23372799682617187, 0.23389593505859374, 0.4848691101074219, 0.23401983642578125, 0.23492710876464845, 0.23426150512695312, 0.2343546905517578, 0.2339911651611328, 0.2339113006591797, 0.23409356689453126, 0.23416627502441406, 0.23411199951171874, 0.2339788818359375, 0.23402496337890624, 0.23383450317382812, 0.23386317443847657, 0.234029052734375, 0.2345779266357422, 0.23393177795410156, 0.23390617370605468, 0.234102783203125, 0.234682373046875, 0.2339594268798828, 0.23381196594238282, 0.2337935333251953, 0.23399935913085937, 0.23403213500976563, 0.23468646240234375, 0.23564390563964843, 0.2349363250732422, 0.23442739868164061, 0.2346414031982422, 0.23534591674804686, 0.23548109436035156, 0.23447039794921876, 0.23574732971191406, 0.23480320739746094, 0.2339983367919922, 0.23404850769042967, 0.23442739868164061, 0.23391641235351562, 0.2341724090576172, 0.23490765380859374, 0.2338805694580078, 0.23490252685546875, 0.23385600280761717, 0.23409561157226563, 0.2344857635498047, 0.2364610595703125, 0.23387852478027343, 0.23375360107421875, 0.23386521911621094, 0.2337822723388672, 0.2338170928955078, 0.23385804748535155, 0.23377407836914063, 0.23408230590820311, 0.2339430389404297, 0.234102783203125, 0.2338928680419922, 0.2352168884277344, 0.2338314208984375, 0.23406898498535156, 0.23446630859375, 0.23422157287597656, 0.4860119018554688, 0.2341160888671875, 0.2342451171875, 0.2343505859375, 0.2357442626953125, 0.23456153869628907, 0.23385906982421875, 0.2339041290283203, 0.2340095977783203, 0.23387545776367188, 0.23382733154296875, 0.2345359344482422, 0.23387750244140626, 0.23376690673828124, 0.23402598571777344, 0.23404544067382813, 0.2340095977783203, 0.23381503295898437, 0.23389695739746094, 0.23463833618164062, 0.23435673522949219, 0.23512678527832032, 0.2348257293701172, 0.2361292724609375, 0.23491583251953124, 0.23533772277832032, 0.23424716186523437, 0.23495065307617188, 0.233818115234375, 0.2338734130859375, 0.23402496337890624, 0.23422872924804689, 0.2353070068359375, 0.23398912048339843, 0.23424000549316407, 0.23436390686035155, 0.23477760314941407, 0.23421133422851562, 0.23425331115722656, 0.23424409484863282, 0.23404544067382813, 0.2338621368408203, 0.23387135314941407, 0.2337925109863281, 0.23464857482910156, 0.23441407775878906, 0.2338365478515625, 0.2360289306640625, 0.23435264587402344, 0.23396249389648438, 0.23382424926757814, 0.23385600280761717, 0.23380787658691407, 0.2338191375732422, 0.23494041442871094, 0.23401164245605469, 0.2339215393066406, 0.2339051513671875, 0.23380685424804687, 0.23376588439941406, 0.23408639526367186, 0.23465472412109376, 0.23369830322265625, 0.48475137329101564, 0.23387852478027343, 0.23382937622070313, 0.23382220458984376, 0.23377714538574218, 0.23383244323730468, 0.23383244323730468, 0.23393792724609375, 0.23368499755859376, 0.233818115234375, 0.23384474182128906, 0.23382118225097656, 0.2341908416748047, 0.23382220458984376, 0.2341754913330078, 0.2348564453125, 0.23380685424804687, 0.23420314025878905, 0.23381094360351562, 0.23416831970214844, 0.23417855834960938, 0.2338488311767578, 0.2338140106201172, 0.23392256164550781, 0.23402803039550782, 0.2338140106201172, 0.234967041015625, 0.23461068725585937, 0.2341754913330078, 0.23411097717285156, 0.23385906982421875, 0.23410995483398436, 0.23426661682128908, 0.23414886474609375, 0.23437004089355468, 0.2345041961669922, 0.23398809814453125, 0.23385292053222656, 0.23385906982421875, 0.23410995483398436, 0.2341386260986328, 0.23388978576660155, 0.2344837188720703, 0.23398809814453125, 0.23559475708007813, 0.2338191375732422, 0.2342256622314453, 0.23473458862304689, 0.23459942626953126, 0.23494554138183593, 0.23424000549316407, 0.23441714477539063, 0.23474380493164063, 0.23442842102050782, 0.23444992065429687, 0.2339368896484375, 0.23582514953613282, 0.2339532775878906, 0.23572274780273436, 0.2348922882080078, 0.23533465576171875, 0.23438438415527343, 0.23461785888671874, 0.4860794982910156, 0.23520664978027345, 0.23465676879882813, 0.23474688720703124, 0.23444070434570313, 0.23441510009765626, 0.23433421325683593, 0.23486770629882814, 0.23470387268066406, 0.23463424682617187, 0.23388978576660155, 0.23490663146972657, 0.23415705871582032, 0.23375666809082032, 0.23418675231933594, 0.23416114807128907, 0.23495986938476562, 0.23515545654296874, 0.23488922119140626, 0.2340095977783203, 0.23481138610839844, 0.23467724609375, 0.23522201538085938, 0.23416831970214844, 0.23409767150878907, 0.23391949462890624, 0.2341826629638672, 0.2353428497314453, 0.23429426574707032, 0.23422361755371093, 0.23447756958007812, 0.23421542358398437, 0.2339983367919922, 0.23531520080566407, 0.2346967010498047, 0.2343055419921875, 0.23412838745117187, 0.23422976684570312, 0.23411712646484376, 0.2343055419921875, 0.2340843505859375, 0.234566650390625, 0.23416934204101564, 0.2340843505859375, 0.23419596862792968, 0.23391232299804687, 0.23488613891601562, 0.23576576232910157, 0.23572377014160156, 0.23397683715820314, 0.23519743347167968, 0.23507557678222657, 0.2344837188720703, 0.23419187927246093, 0.23482879638671875, 0.234134521484375, 0.23423487854003905, 0.23815577697753906, 0.2349475860595703, 0.234608642578125, 0.23501414489746095, 0.2343126983642578, 0.23413145446777345, 0.484052978515625, 0.23418675231933594, 0.23383552551269532, 0.233818115234375, 0.2337884216308594, 0.23386009216308593, 0.23376998901367188, 0.23425535583496093, 0.23407923889160157, 0.23388365173339845, 0.23385702514648438, 0.23382528686523438, 0.2338170928955078, 0.23406182861328126, 0.2349547576904297, 0.2348021697998047, 0.2346516418457031, 0.23388160705566408, 0.23406387329101563, 0.23462911987304688, 0.23546675109863283, 0.2349168701171875, 0.23516160583496093, 0.23408741760253907, 0.23404135131835938, 0.23388876342773438, 0.2348124084472656, 0.23441407775878906, 0.23469465637207032, 0.23460762023925782, 0.23387443542480468, 0.23417446899414063, 0.23448883056640624, 0.23504998779296876, 0.23461068725585937, 0.2344058837890625, 0.2338805694580078, 0.23380274963378905, 0.23606375122070314, 0.23502951049804688, 0.2342696990966797, 0.2343864288330078, 0.23570431518554688, 0.23431884765625, 0.23458610534667967, 0.23478271484375, 0.23399320983886718, 0.23410176086425782, 0.23421235656738282, 0.2348636169433594, 0.23454310607910156, 0.23408026123046874, 0.2343055419921875, 0.23477145385742187, 0.23488204956054687, 0.23403724670410156, 0.23455743408203125, 0.2344806365966797, 0.23533567810058595, 0.23407411193847658, 0.23458099365234375, 0.2344069061279297, 0.2347008056640625, 0.4853893127441406, 0.23457997131347658, 0.23390719604492188, 0.23476838684082033, 0.23429324340820312, 0.23598899841308593, 0.2341908416748047, 0.23444070434570313, 0.23391641235351562, 0.23489126586914064, 0.23460453796386718, 0.2361405487060547, 0.23541043090820313, 0.2344110107421875, 0.23417958068847655, 0.23468031311035156, 0.23411302185058594, 0.23393075561523438, 0.23403724670410156, 0.23467213439941406, 0.23507046508789062, 0.2341273651123047, 0.23511961364746095, 0.23591935729980468, 0.23496397399902344, 0.23582514953613282, 0.23585279846191406, 0.234498046875, 0.23445606994628906, 0.2352015380859375, 0.23556710815429688, 0.23550361633300781, 0.23390719604492188, 0.2345175018310547, 0.23411814880371093, 0.23459738159179688, 0.2349291534423828, 0.23403826904296876, 0.2339665985107422, 0.2354534454345703, 0.23551487731933593, 0.2355968017578125, 0.2346639404296875, 0.23512371826171874, 0.23418060302734375, 0.23528550720214844, 0.2347694091796875, 0.2348185577392578, 0.23459327697753907, 0.2342686767578125, 0.2342451171875, 0.23486463928222656, 0.23477247619628908, 0.23453797912597657, 0.23439974975585937, 0.2347448272705078, 0.2346782684326172, 0.23409767150878907, 0.2341160888671875, 0.2345482177734375, 0.2349998016357422, 0.23420620727539063, 0.23429632568359374, 0.487478271484375, 0.23422157287597656, 0.2341580810546875, 0.2345779266357422, 0.23406285095214843, 0.23428608703613282, 0.23372492980957033, 0.23382118225097656, 0.23385498046875, 0.23446015930175781, 0.23385804748535155, 0.2345359344482422, 0.2342328338623047, 0.23421644592285157, 0.23417446899414063, 0.23571148681640625, 0.23593370056152344, 0.23512165832519533, 0.23528550720214844, 0.23476223754882813, 0.23465983581542968, 0.2345216064453125, 0.2348072967529297, 0.23432908630371094, 0.23471615600585938, 0.23378125, 0.2351810607910156, 0.2338682861328125, 0.23424716186523437, 0.23442431640625, 0.23430758666992188, 0.23453388977050782, 0.2349547576904297, 0.2341376037597656, 0.2346414031982422, 0.2344806365966797, 0.23443865966796876, 0.23413555908203126, 0.23448268127441407, 0.23451443481445314, 0.23403929138183593, 0.23566233825683594, 0.23403622436523439, 0.23466085815429688, 0.23410687255859375, 0.23414579772949218, 0.2337955780029297, 0.23434034729003905, 0.23408741760253907, 0.23395840454101563, 0.23467520141601564, 0.23385292053222656, 0.234287109375, 0.23367372131347655, 0.23419801330566406, 0.23389695739746094, 0.23498240661621095, 0.23478067016601561, 0.23465061950683594, 0.2337198028564453, 0.2345113525390625, 0.23452978515625, 0.23437619018554687, 0.48710348510742185, 0.23419290161132814, 0.23404953002929688, 0.23400653076171876, 0.23467213439941406, 0.23747993469238282, 0.23400857543945314, 0.2344908752441406, 0.23426559448242187, 0.23419903564453126, 0.23388978576660155, 0.23458099365234375, 0.23397273254394532, 0.23450009155273438, 0.23396044921875, 0.23411712646484376, 0.23380787658691407, 0.23464755249023436, 0.23406387329101563, 0.23385292053222656, 0.23458201599121092, 0.23409971618652345, 0.2341406707763672, 0.23461273193359375, 0.23395840454101563, 0.23406080627441406, 0.2345912322998047, 0.2337884216308594, 0.23409356689453126, 0.23391743469238283, 0.23382424926757814, 0.23414988708496093, 0.2346895294189453, 0.2340044860839844, 0.23400344848632812, 0.23432704162597656, 0.23545549011230468, 0.234819580078125, 0.23408332824707032, 0.23495884704589845, 0.234134521484375, 0.23427583312988282, 0.23382528686523438, 0.23380992126464845, 0.23423078918457033, 0.23484005737304686, 0.23429119873046875, 0.23448678588867186, 0.23548927307128906, 0.23426559448242187, 0.23432908630371094, 0.23404953002929688, 0.23414579772949218, 0.23459942626953126, 0.23440896606445313, 0.23396351623535155, 0.23510426330566406, 0.23443251037597657, 0.23493734741210937, 0.23475814819335938, 0.23529983520507813, 0.23406387329101563, 0.23430758666992188, 0.48767181396484377, 0.23440896606445313, 0.23380992126464845, 0.23463116455078126, 0.23454617309570314, 0.23481651306152343, 0.23389797973632812, 0.23491993713378906, 0.2345707550048828, 0.23445504760742186, 0.23386317443847657, 0.234925048828125, 0.23413349914550782, 0.23387443542480468, 0.23547187805175782, 0.2346229705810547, 0.23446015930175781, 0.2339246063232422, 0.23416831970214844, 0.23383244323730468, 0.23388365173339845, 0.23380685424804687, 0.23409152221679688, 0.23424000549316407, 0.23371160888671874, 0.23394508361816407, 0.23730380249023436, 0.23463526916503907, 0.2349864959716797, 0.2340843505859375, 0.23448678588867186, 0.234819580078125, 0.23532952880859376, 0.23434547424316407, 0.23549746704101562, 0.2339911651611328, 0.2340966339111328, 0.2338170928955078, 0.23386624145507812, 0.2344622039794922, 0.2341201934814453, 0.234745849609375, 0.2340843505859375, 0.23513189697265624, 0.23424307250976562, 0.23459225463867187, 0.23526194763183594, 0.23420109558105467, 0.23379148864746094, 0.23442124938964845, 0.2343987274169922, 0.2351595458984375, 0.23452774047851563, 0.23387852478027343, 0.233818115234375, 0.23384780883789064, 0.23484825134277343, 0.234134521484375, 0.2350243835449219, 0.2341396484375, 0.23421029663085938, 0.23383450317382812, 0.23446015930175781]",tokens/s,4.2014979288884025,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-30b,facebook/opt-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,5984.595968,19933.954048,0.0,19287.506944,18376.399872,s,10,24.56320629882812,2.456320629882813,0.001691664801696018,2.4561865234375,2.4583423828125,2.4586625244140623,2.4589186376953127,"[2.456571533203125, 2.458982666015625, 2.4545791015625, 2.455032470703125, 2.454942626953125, 2.453741943359375, 2.455801513671875, 2.458271240234375, 2.45821728515625, 2.45706591796875]",tokens/s,104.22092168489151,kWh,2.8975297907988232e-05,1.5879395596475657e-05,0.00013865674981416998,0.00018351144331863386,tokens/kWh,1395008.3731590684,MB,5988.143104,19933.954048,0.0,19287.506944,18871.04,s,10,1458.421484375,145.84214843750001,0.012211079453744932,145.84282812499998,145.852815625,145.8578921875,145.8619534375,"[145.82440625, 145.837078125, 145.840359375, 145.8516875, 145.845296875, 145.8391875, 145.86296875, 145.8513125, 145.82034375, 145.84884375]",tokens/s,0.43197388872119064,kWh,0.001721854172928466,0.000943728472916573,0.008154870135002046,0.010820452780847084,tokens/kWh,5822.307187691273,,s,629,1478.2121892089838,2.350098869966589,0.29170661243792756,2.3148583984375,2.3159804199218748,2.3165888183593752,4.76929474609375,"[2.31657470703125, 2.316729248046875, 2.31575048828125, 2.31400439453125, 2.31361328125, 2.314355712890625, 2.31430859375, 2.313990234375, 2.314439697265625, 2.31400439453125, 2.314337158203125, 2.31450830078125, 2.3143525390625, 2.313754638671875, 2.3145595703125, 2.314746826171875, 2.313860107421875, 2.314616943359375, 2.31397998046875, 2.314455078125, 2.314322021484375, 2.315072509765625, 2.314198974609375, 2.314560546875, 2.31431689453125, 2.314648681640625, 2.314249267578125, 2.3142431640625, 2.31486767578125, 2.314310546875, 2.31423681640625, 2.314349609375, 2.31522509765625, 2.314227783203125, 2.314047607421875, 2.314390380859375, 2.31465380859375, 2.31459130859375, 2.3147294921875, 2.31495263671875, 2.31514306640625, 2.314708984375, 2.314705810546875, 2.314702880859375, 2.31510009765625, 2.314967041015625, 2.314390625, 2.3144326171875, 2.31436279296875, 2.3152353515625, 2.31499169921875, 2.31524560546875, 2.314324951171875, 2.3151728515625, 2.31494970703125, 2.314418212890625, 2.315260009765625, 2.3155927734375, 2.314987548828125, 2.3148759765625, 2.314437744140625, 2.314975341796875, 4.77530908203125, 2.315552734375, 2.313754638671875, 2.31431787109375, 2.314470458984375, 2.31491064453125, 2.313483154296875, 2.3140751953125, 2.314690673828125, 2.313935791015625, 2.31429541015625, 2.313943115234375, 2.3145830078125, 2.314388427734375, 2.3144130859375, 2.314663818359375, 2.314819580078125, 2.31438134765625, 2.31452978515625, 2.313989013671875, 2.314265625, 2.31451025390625, 2.31416015625, 2.313996337890625, 2.314390625, 2.314997802734375, 2.31469970703125, 2.31465380859375, 2.314850341796875, 2.315021240234375, 2.31556396484375, 2.314933349609375, 2.315074462890625, 2.314526611328125, 2.31516162109375, 2.314416015625, 2.31450634765625, 2.3146474609375, 2.31455322265625, 2.314646484375, 2.315080810546875, 2.314736572265625, 2.315146240234375, 2.316416015625, 2.316883056640625, 2.317212646484375, 2.317498291015625, 2.316708984375, 2.314590087890625, 2.31486669921875, 2.314609619140625, 2.314794921875, 2.3152783203125, 2.314463134765625, 2.31488720703125, 2.3152783203125, 2.3158486328125, 2.315106201171875, 2.31514208984375, 2.315134033203125, 2.314939453125, 2.31448974609375, 2.31490966796875, 4.76900048828125, 2.314322998046875, 2.31459423828125, 2.314704833984375, 2.3145400390625, 2.314397705078125, 2.315212890625, 2.315070556640625, 2.3151708984375, 2.314818603515625, 2.31474072265625, 2.314556396484375, 2.314756103515625, 2.314300537109375, 2.314501220703125, 2.314758056640625, 2.31469580078125, 2.314715087890625, 2.314291259765625, 2.313954345703125, 2.3144990234375, 2.3141162109375, 2.314789794921875, 2.3138662109375, 2.314201171875, 2.31396044921875, 2.314891357421875, 2.313994140625, 2.3142041015625, 2.31410595703125, 2.31444384765625, 2.314310546875, 2.3143935546875, 2.3148564453125, 2.314733642578125, 2.314330078125, 2.31438134765625, 2.3142685546875, 2.3148154296875, 2.315052978515625, 2.31476318359375, 2.31545751953125, 2.315313232421875, 2.315279296875, 2.315707275390625, 2.314758056640625, 2.3152158203125, 2.31581689453125, 2.315241455078125, 2.3146220703125, 2.315763671875, 2.3165615234375, 2.31669873046875, 2.3161025390625, 2.31678759765625, 2.31653173828125, 2.316707763671875, 2.3152138671875, 2.31585693359375, 2.314685546875, 2.315296875, 2.3153837890625, 2.315890625, 4.7694091796875, 2.314258544921875, 2.3142666015625, 2.31421435546875, 2.314051513671875, 2.314406982421875, 2.314616943359375, 2.314188720703125, 2.31503662109375, 2.31619287109375, 2.31446533203125, 2.313934814453125, 2.315040771484375, 2.314817626953125, 2.315828125, 2.3156357421875, 2.316775390625, 2.314610595703125, 2.31668017578125, 2.31729052734375, 2.31545556640625, 2.315461669921875, 2.315554931640625, 2.31465576171875, 2.314517578125, 2.3154697265625, 2.31606689453125, 2.314260498046875, 2.314863525390625, 2.314272705078125, 2.314649658203125, 2.3157421875, 2.315529296875, 2.3159091796875, 2.314768310546875, 2.3160771484375, 2.315504638671875, 2.314666015625, 2.314771484375, 2.315051025390625, 2.3154248046875, 2.314206298828125, 2.314478515625, 2.31497021484375, 2.315460693359375, 2.314807373046875, 2.31501708984375, 2.315440185546875, 2.315284423828125, 2.31450634765625, 2.314502197265625, 2.314387451171875, 2.314957763671875, 2.3149384765625, 2.314912841796875, 2.314670166015625, 2.3156572265625, 2.316516357421875, 2.3157412109375, 2.315861083984375, 2.315828125, 2.315040771484375, 2.3151728515625, 4.7702314453125, 2.31434033203125, 2.314682373046875, 2.313740234375, 2.314062744140625, 2.31486767578125, 2.314884033203125, 2.314498046875, 2.314965087890625, 2.314472412109375, 2.314133544921875, 2.31417041015625, 2.313879638671875, 2.313923583984375, 2.314146728515625, 2.314799072265625, 2.3140986328125, 2.314390625, 2.315798583984375, 2.31642822265625, 2.315537353515625, 2.316564453125, 2.314660888671875, 2.313965576171875, 2.314789794921875, 2.31402294921875, 2.314662841796875, 2.314347412109375, 2.315102294921875, 2.3144150390625, 2.315137939453125, 2.31604833984375, 2.315811767578125, 2.3149404296875, 2.31493115234375, 2.315124755859375, 2.3152158203125, 2.314859619140625, 2.315197509765625, 2.314984375, 2.315462646484375, 2.31446533203125, 2.3143095703125, 2.31438037109375, 2.31520556640625, 2.31512158203125, 2.314987548828125, 2.314483642578125, 2.31514208984375, 2.314712158203125, 2.31526513671875, 2.314966064453125, 2.314924072265625, 2.314987548828125, 2.31532958984375, 2.31476318359375, 2.3151298828125, 2.315618408203125, 2.316012451171875, 2.317046875, 2.316642333984375, 2.317076416015625, 2.317365234375, 4.7678056640625, 2.314080322265625, 2.31505908203125, 2.315978759765625, 2.315252685546875, 2.31602392578125, 2.3155966796875, 2.31449609375, 2.31440087890625, 2.31406396484375, 2.31448583984375, 2.314968017578125, 2.314263671875, 2.31400146484375, 2.314314697265625, 2.314521484375, 2.3153408203125, 2.31357861328125, 2.3147294921875, 2.31446728515625, 2.315052978515625, 2.314033203125, 2.314588134765625, 2.314469482421875, 2.31505517578125, 2.3144765625, 2.3147109375, 2.31465478515625, 2.315134033203125, 2.31459521484375, 2.31478466796875, 2.314600341796875, 2.314883056640625, 2.315136962890625, 2.315252685546875, 2.31488818359375, 2.315322265625, 2.31524755859375, 2.31511767578125, 2.3150263671875, 2.3153603515625, 2.315388916015625, 2.31535009765625, 2.31446826171875, 2.31495068359375, 2.31469775390625, 2.315263916015625, 2.314312744140625, 2.3146865234375, 2.314904541015625, 2.31448974609375, 2.314483642578125, 2.314174560546875, 2.314915771484375, 2.314462158203125, 2.3165869140625, 2.317093994140625, 2.31678759765625, 2.315781005859375, 2.315177978515625, 2.315336669921875, 2.31464453125, 2.31521484375, 4.770552734375, 2.314354736328125, 2.31482568359375, 2.313882568359375, 2.31376171875, 2.313788330078125, 2.315693115234375, 2.31585986328125, 2.31478271484375, 2.315926513671875, 2.3154453125, 2.315216796875, 2.314701904296875, 2.315554931640625, 2.31552197265625, 2.315801513671875, 2.316396484375, 2.314292236328125, 2.314648681640625, 2.31490771484375, 2.315061279296875, 2.3164384765625, 2.316370849609375, 2.316866455078125, 2.31659521484375, 2.31632080078125, 2.315591796875, 2.31587646484375, 2.3159716796875, 2.315903076171875, 2.315663330078125, 2.31596240234375, 2.316310546875, 2.314661865234375, 2.315462646484375, 2.31440380859375, 2.31526611328125, 2.315337646484375, 2.315576416015625, 2.31480419921875, 2.314577880859375, 2.316158935546875, 2.316590087890625, 2.31474072265625, 2.314672119140625, 2.315419677734375, 2.315107421875, 2.315031494140625, 2.314947509765625, 2.31512158203125, 2.31507861328125, 2.315275146484375, 2.31488916015625, 2.314337158203125, 2.315274169921875, 2.315357177734375, 2.314990478515625, 2.314895263671875, 2.315843505859375, 2.315281494140625, 2.315041748046875, 2.314649658203125, 2.3151708984375, 4.7742177734375, 2.314451904296875, 2.314017822265625, 2.316307373046875, 2.31636376953125, 2.315851806640625, 2.3162041015625, 2.315658203125, 2.315419677734375, 2.315569091796875, 2.31410693359375, 2.3144345703125, 2.3141181640625, 2.3143701171875, 2.314511474609375, 2.314544189453125, 2.31514208984375, 2.314577880859375, 2.314501220703125, 2.314337158203125, 2.315443115234375, 2.314441650390625, 2.314269775390625, 2.3141171875, 2.31440380859375, 2.315146240234375, 2.31492919921875, 2.314220458984375, 2.31446533203125, 2.3145595703125, 2.314896484375, 2.3150439453125, 2.314417236328125, 2.31532861328125, 2.315260009765625, 2.315807861328125, 2.31515234375, 2.315829345703125, 2.315790283203125, 2.3159296875, 2.31573193359375, 2.315969482421875, 2.316851318359375, 2.3155537109375, 2.314724365234375, 2.3145625, 2.315716552734375, 2.31531005859375, 2.315375732421875, 2.315345947265625, 2.31587744140625, 2.31564599609375, 2.315336669921875, 2.3145, 2.31510107421875, 2.31535400390625, 2.314984375, 2.31453076171875, 2.3153857421875, 2.314976318359375, 2.315102294921875, 2.31464453125, 2.31491064453125, 4.77313525390625, 2.31535205078125, 2.314526611328125, 2.3150869140625, 2.315890625, 2.314620849609375, 2.3140322265625, 2.313732177734375, 2.31478466796875, 2.31486669921875, 2.3156357421875, 2.31585986328125, 2.314743896484375, 2.314322021484375, 2.3139072265625, 2.31398291015625, 2.314142822265625, 2.31423388671875, 2.31518408203125, 2.31429833984375, 2.314175537109375, 2.3156572265625, 2.3145810546875, 2.313807861328125, 2.314330078125, 2.31499169921875, 2.314958740234375, 2.3144365234375, 2.3145185546875, 2.31440185546875, 2.315052978515625, 2.314460205078125, 2.3145419921875, 2.3140576171875, 2.314851318359375, 2.314546142578125, 2.314408935546875, 2.31389892578125, 2.31480419921875, 2.31436279296875, 2.3144580078125, 2.314177490234375, 2.314638427734375, 2.3145419921875, 2.31480322265625, 2.314745849609375, 2.314291259765625, 2.31537255859375, 2.31572265625, 2.31389599609375, 2.313974853515625, 2.314586181640625, 2.314895263671875, 2.314090576171875, 2.314375244140625, 2.314859619140625, 2.3148583984375, 2.3144326171875, 2.314412109375, 2.314270751953125, 2.31518115234375, 2.314324951171875, 2.314473388671875, 4.7714609375, 2.31414794921875, 2.313611328125, 2.314270751953125, 2.314892333984375, 2.31461572265625, 2.315198486328125, 2.3143720703125, 2.314142822265625, 2.31568701171875, 2.315873291015625, 2.31440478515625, 2.314210205078125, 2.31602587890625, 2.316198974609375, 2.31553857421875, 2.315966552734375, 2.31545947265625, 2.31545849609375, 2.31590185546875, 2.31619287109375, 2.31564599609375, 2.316030029296875, 2.315187255859375, 2.314642333984375, 2.313966552734375, 2.3152138671875, 2.31450830078125, 2.315548583984375, 2.314388427734375, 2.315707275390625, 2.3161650390625, 2.31663623046875, 2.316718994140625, 2.315875244140625, 2.315216796875, 2.31624609375, 2.315987060546875, 2.315421630859375, 2.315747314453125, 2.314558349609375, 2.313786376953125, 2.313956298828125, 2.3144541015625, 2.3148984375, 2.314367919921875, 2.31458203125, 2.315187255859375, 2.31473046875, 2.314349609375, 2.314651611328125, 2.31442626953125, 2.315454345703125, 2.31490771484375, 2.314850341796875, 2.315431884765625, 2.31543798828125, 2.314609619140625, 2.31511767578125, 2.314015625, 2.31457177734375, 2.314642333984375, 2.31451953125]",tokens/s,0.4255140125292758,,,,, +4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-2b,google/recurrentgemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -6086,7 +5010,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -6103,10 +5027,10 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66947b68-3a4fa94d278a651d52fcd067;77ecf3ab-74ef-418c-8af1-abfdac7d9dc5) +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-669481a9-5155662c5726c493241271e2;0705f56b-e52c-41fd-8d8e-723918dbbe14) 403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json. +Cannot access content at: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json. If you are trying to create or update content,make sure you have a token with the `write` role. The above exception was the direct cause of the following exception: @@ -6145,11 +5069,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like databricks/dbrx-base is not the path to a directory containing a file named config.json. +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/recurrentgemma-2b is not the path to a directory containing a file named config.json. Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-7.5B,facebook/xglm-7.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mixtral-8x7B-v0.1,mistralai/Mixtral-8x7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -6169,16 +5093,33 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation - cls._check_and_enable_flash_attn_2( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 - raise ValueError( -ValueError: XGLMForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpofhf0fwt/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,B,B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-125m,facebook/opt-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1231.42144,879.230976,0.0,232.783872,169.719808,s,10,0.35891270065307623,0.035891270065307616,0.001166922312453486,0.03606051254272461,0.03654228057861328,0.037586180877685546,0.03842130111694336,"[0.03863008117675781, 0.03461849594116211, 0.03453500747680664, 0.034383518218994144, 0.03608425521850586, 0.03613267135620117, 0.036015392303466794, 0.036310302734375, 0.036166206359863284, 0.03603676986694336]",tokens/s,7132.653693619183,kWh,4.2057203039815654e-07,2.3039066429929688e-07,8.883686426833978e-07,1.5393313373808513e-06,tokens/kWh,166305975.7073354,MB,1231.42144,879.230976,0.0,232.783872,199.793152,s,10,21.796639404296876,2.179663940429687,0.03379298018028798,2.1997751464843747,2.2025270751953125,2.2029048950195316,2.2032071508789066,"[2.15886328125, 2.11872216796875, 2.1151240234375, 2.1993291015625, 2.20328271484375, 2.20231494140625, 2.20022119140625, 2.201608642578125, 2.194730224609375, 2.202443115234375]",tokens/s,28.903538215886858,kWh,2.6054930089725813e-05,1.4278879354016576e-05,5.1935423616310185e-05,9.22692330600526e-05,tokens/kWh,682784.4765870875,,s,629,22.081034248352047,0.035104982906760014,0.004313579122612795,0.03483135986328125,0.03513838195800781,0.035482418823242184,0.06834089904785158,"[0.035579902648925785, 0.0354150390625, 0.035542015075683595, 0.0358737907409668, 0.03517337417602539, 0.035922943115234376, 0.03607551956176758, 0.03511808013916016, 0.03547443389892578, 0.035765247344970705, 0.035937278747558594, 0.03575091171264649, 0.03546214294433594, 0.04169113540649414, 0.03495731353759766, 0.03391795349121094, 0.033565696716308595, 0.03336908721923828, 0.03351347351074219, 0.03344179153442383, 0.03361177444458008, 0.03342745590209961, 0.03343564987182617, 0.03342745590209961, 0.03340185546875, 0.03341926574707031, 0.03338649749755859, 0.03336294555664063, 0.033552383422851564, 0.03352883148193359, 0.03450368118286133, 0.03436032104492188, 0.034111488342285154, 0.03450265502929688, 0.03355136108398438, 0.034164737701416016, 0.03474431991577148, 0.034351104736328124, 0.03521331024169922, 0.035111934661865234, 0.03381760025024414, 0.034427902221679685, 0.033756160736083986, 0.0334510383605957, 0.0331734733581543, 0.03338854217529297, 0.03346944046020508, 0.03350425720214844, 0.03346636962890625, 0.03356671905517578, 0.03343769454956055, 0.03313971328735352, 0.03326259231567383, 0.03314790344238281, 0.03320729446411133, 0.03347967910766601, 0.03352678298950195, 0.033538047790527346, 0.03310182571411133, 0.03322163009643555, 0.033478656768798826, 0.03340800094604492, 0.06847795104980468, 0.03334348678588867, 0.03356576156616211, 0.03346118545532226, 0.033667072296142575, 0.03376025772094727, 0.033555454254150394, 0.03353497695922852, 0.03349913787841797, 0.03347455978393555, 0.03362713623046875, 0.033650688171386715, 0.03344998550415039, 0.03351244735717773, 0.033532928466796875, 0.033718273162841796, 0.033614849090576174, 0.03364659118652344, 0.033478656768798826, 0.03355136108398438, 0.03344998550415039, 0.034282497406005856, 0.03367833709716797, 0.033516544342041016, 0.03338854217529297, 0.033584129333496096, 0.033539070129394534, 0.033326080322265625, 0.03335987091064453, 0.03366604614257813, 0.03334143829345703, 0.033258495330810545, 0.03334041595458984, 0.03343155288696289, 0.03324620819091797, 0.03349401473999023, 0.03338547134399414, 0.03338137435913086, 0.0335175666809082, 0.03442892837524414, 0.03411558532714844, 0.034249729156494144, 0.03337011337280273, 0.03331174468994141, 0.033413120269775394, 0.033301502227783206, 0.03349606323242187, 0.03334143829345703, 0.03332403182983398, 0.033527809143066405, 0.0335206413269043, 0.03582156753540039, 0.035253246307373046, 0.03405209732055664, 0.03366604614257813, 0.033827838897705076, 0.03394559860229492, 0.03346636962890625, 0.03348582458496094, 0.03372544097900391, 0.03336703872680664, 0.03363942337036133, 0.033410049438476565, 0.06798847961425782, 0.033957889556884766, 0.03349401473999023, 0.03372236633300781, 0.033659934997558594, 0.033262561798095704, 0.033339393615722655, 0.03347148895263672, 0.03481190490722656, 0.03399270248413086, 0.033448993682861326, 0.033379295349121096, 0.03344179153442383, 0.03343155288696289, 0.0330618896484375, 0.03346124649047852, 0.033410049438476565, 0.033430526733398434, 0.033495040893554685, 0.03334656143188477, 0.03343564987182617, 0.033446910858154294, 0.033513534545898435, 0.03330553436279297, 0.03338547134399414, 0.033484798431396484, 0.03334147262573242, 0.03339465713500977, 0.03335782241821289, 0.03341516876220703, 0.033355777740478515, 0.03362713623046875, 0.03338854217529297, 0.033360897064208986, 0.03363020706176758, 0.03340800094604492, 0.03336505508422852, 0.03361990356445312, 0.03336191940307617, 0.035092479705810545, 0.034958335876464845, 0.03446783828735352, 0.033719329833984374, 0.0333260498046875, 0.03360768127441406, 0.03371417617797851, 0.03365785598754883, 0.033653759002685545, 0.03359027099609375, 0.03361177444458008, 0.033465343475341795, 0.033562625885009766, 0.03357183837890625, 0.03344076919555664, 0.0335093765258789, 0.03359231948852539, 0.033463294982910154, 0.03351551818847656, 0.03339059066772461, 0.0335022087097168, 0.03354009628295898, 0.033432575225830076, 0.033476608276367184, 0.06785228729248047, 0.038763519287109374, 0.03499212646484375, 0.03476172637939453, 0.03466035079956055, 0.03442892837524414, 0.03445862579345703, 0.0349194221496582, 0.03481087875366211, 0.03482009506225586, 0.03474227142333984, 0.03470336151123047, 0.03492768096923828, 0.0348221435546875, 0.034755519866943356, 0.03479654312133789, 0.035053569793701174, 0.03477503967285156, 0.03513651275634765, 0.03483647918701172, 0.03467161560058594, 0.03479244613647461, 0.034738174438476564, 0.03485184097290039, 0.03481292724609375, 0.03513651275634765, 0.03499728012084961, 0.034848735809326174, 0.03482009506225586, 0.03604684829711914, 0.03580108642578125, 0.034900993347167966, 0.03499622344970703, 0.03482009506225586, 0.03486617660522461, 0.034716670989990234, 0.034871295928955076, 0.03480883026123047, 0.03496857452392578, 0.034961406707763674, 0.03484262466430664, 0.03478732681274414, 0.0348671989440918, 0.03487539291381836, 0.03496038436889649, 0.03478121566772461, 0.03482006454467773, 0.03547750473022461, 0.03485184097290039, 0.034953216552734374, 0.034854911804199216, 0.03493478393554687, 0.03474943923950195, 0.03476889419555664, 0.03471974563598633, 0.034825214385986326, 0.035095550537109374, 0.0350300178527832, 0.034802688598632815, 0.034781185150146485, 0.034677761077880856, 0.034490367889404294, 0.034372608184814454, 0.07120281219482422, 0.03474227142333984, 0.03492659378051758, 0.03486515045166016, 0.035027999877929684, 0.035214336395263675, 0.035108863830566404, 0.03492655944824219, 0.03491635131835937, 0.03499212646484375, 0.0349409294128418, 0.03500236892700195, 0.03487641525268555, 0.03486105728149414, 0.03492659378051758, 0.03494911956787109, 0.03502489471435547, 0.034909183502197266, 0.03505152130126953, 0.03499724960327148, 0.03479142379760742, 0.03497983932495117, 0.03498291015625, 0.03495116806030273, 0.03492454528808594, 0.03508633422851563, 0.034934814453125, 0.03494499206542969, 0.034936832427978515, 0.034841598510742186, 0.03491839981079101, 0.035023872375488284, 0.03488665771484375, 0.03486617660522461, 0.03508428955078125, 0.03497881698608398, 0.03496448135375976, 0.03487334442138672, 0.034991104125976565, 0.035092479705810545, 0.03487641525268555, 0.0350013427734375, 0.035125247955322264, 0.03501567840576172, 0.035350528717041016, 0.03521843338012695, 0.03506687927246094, 0.03503104019165039, 0.034985984802246094, 0.03507308959960938, 0.034981822967529295, 0.03523174285888672, 0.0352174072265625, 0.034923519134521484, 0.034361343383789066, 0.03486822509765625, 0.03495731353759766, 0.03501875305175781, 0.034956287384033204, 0.03489484786987305, 0.034835456848144535, 0.035156993865966796, 0.03473408126831055, 0.07153561401367188, 0.034855934143066404, 0.03496345520019531, 0.034987071990966796, 0.035133377075195316, 0.03502592086791992, 0.035043327331542966, 0.035209217071533204, 0.03504844665527344, 0.03502592086791992, 0.034936832427978515, 0.03493478393554687, 0.0358205451965332, 0.035659774780273434, 0.03496038436889649, 0.03518668746948242, 0.03511296081542969, 0.03490304183959961, 0.03482624053955078, 0.03487539291381836, 0.03492761611938477, 0.03479142379760742, 0.035125247955322264, 0.03506585693359375, 0.03505254364013672, 0.034825214385986326, 0.03476995086669922, 0.03494089508056641, 0.03478732681274414, 0.03488256072998047, 0.035244033813476565, 0.035007488250732424, 0.03475046539306641, 0.03497062301635742, 0.0347770881652832, 0.03480166244506836, 0.03479964828491211, 0.03495734405517578, 0.03496441650390625, 0.03494911956787109, 0.034885631561279294, 0.034953216552734374, 0.034909183502197266, 0.03480575942993164, 0.03474943923950195, 0.034948097229003904, 0.03509862518310547, 0.03496857452392578, 0.03502284622192383, 0.0344719352722168, 0.03450271987915039, 0.03489888000488281, 0.034909183502197266, 0.03487846374511719, 0.03488460922241211, 0.03492147064208984, 0.03486515045166016, 0.03475251388549805, 0.03486310577392578, 0.03487027359008789, 0.03497369766235352, 0.03508230209350586, 0.034826175689697265, 0.07138098907470704, 0.035064830780029296, 0.035089408874511716, 0.03489894485473633, 0.03474537658691406, 0.034952159881591796, 0.034969600677490234, 0.03484985733032227, 0.0348732795715332, 0.03523481750488281, 0.034993152618408206, 0.03489593505859375, 0.03493983840942383, 0.03493580627441406, 0.034854911804199216, 0.03482316970825195, 0.03493273544311523, 0.034797569274902344, 0.03540787124633789, 0.035068992614746095, 0.03575494384765625, 0.03548672103881836, 0.03483955383300781, 0.03533107376098633, 0.03497062301635742, 0.034800640106201174, 0.034786304473876956, 0.03497574234008789, 0.0349306869506836, 0.03490508651733398, 0.034917377471923826, 0.03463065719604492, 0.034928638458251955, 0.03481292724609375, 0.03505254364013672, 0.03483955383300781, 0.03466854476928711, 0.03482112121582031, 0.03525734329223633, 0.03482726287841797, 0.034948097229003904, 0.034776065826416014, 0.03475558471679688, 0.034283519744873044, 0.03471974563598633, 0.034735103607177735, 0.03482931137084961, 0.03508224105834961, 0.034678783416748044, 0.03488870239257812, 0.034802688598632815, 0.03478015899658203, 0.03476070404052734, 0.03488051223754883, 0.034976768493652347, 0.0347586555480957, 0.03504435348510742, 0.034929695129394533, 0.03516617584228516, 0.034799617767333986, 0.034723838806152346, 0.03487334442138672, 0.03482931137084961, 0.07187558746337891, 0.03538739013671875, 0.03526348876953125, 0.03513241577148438, 0.034925567626953126, 0.03487744140625, 0.0354856948852539, 0.035422206878662106, 0.0351723518371582, 0.034976768493652347, 0.03488460922241211, 0.034890750885009765, 0.0349409294128418, 0.03503206253051758, 0.035076095581054685, 0.03489279937744141, 0.035119102478027346, 0.034729984283447264, 0.03479244613647461, 0.034864158630371095, 0.034802654266357425, 0.0348221435546875, 0.034678783416748044, 0.03501055908203125, 0.03484467315673828, 0.0348487663269043, 0.03479859161376953, 0.03482931137084961, 0.03487539291381836, 0.034783233642578126, 0.03495116806030273, 0.03474534225463867, 0.03493580627441406, 0.03485388946533203, 0.03487948989868164, 0.034926624298095704, 0.034881504058837894, 0.03505254364013672, 0.03485081481933594, 0.03487846374511719, 0.03444224166870117, 0.03474431991577148, 0.03492761611938477, 0.034948097229003904, 0.03510067367553711, 0.0347770881652832, 0.03488972854614258, 0.03482112121582031, 0.034977790832519534, 0.034405376434326174, 0.03482422256469726, 0.034968544006347656, 0.03485081481933594, 0.0349409294128418, 0.034840576171875, 0.034907135009765625, 0.035122177124023435, 0.03496755218505859, 0.03485388946533203, 0.035350528717041016, 0.03549593734741211, 0.03502182388305664, 0.03480473709106445, 0.07150796508789062, 0.0350013427734375, 0.03506995010375977, 0.034994174957275394, 0.03483647918701172, 0.03483135986328125, 0.034991104125976565, 0.03488153457641602, 0.03486310577392578, 0.034756607055664065, 0.034781185150146485, 0.03496038436889649, 0.034710529327392575, 0.03470848083496094, 0.034977790832519534, 0.03480780792236328, 0.03479040145874023, 0.034776065826416014, 0.03490304183959961, 0.03465219116210937, 0.0350074577331543, 0.03491123199462891, 0.03498905563354492, 0.03513139343261719, 0.03480883026123047, 0.03476582336425781, 0.03472281646728516, 0.034713600158691404, 0.034830337524414064, 0.03484364700317383, 0.03500646209716797, 0.034683902740478514, 0.03486310577392578, 0.03489894485473633, 0.034664447784423826, 0.03480575942993164, 0.034835456848144535, 0.03486822509765625, 0.0347770881652832, 0.03489382553100586, 0.03503615951538086, 0.03473715209960938, 0.03480473709106445, 0.034802688598632815, 0.034677761077880856, 0.03475251388549805, 0.03466652679443359, 0.03473097610473633, 0.0347883529663086, 0.035141632080078124, 0.03476070404052734, 0.03492966461181641, 0.03492147064208984, 0.034854911804199216, 0.034776065826416014, 0.03474431991577148, 0.0348037109375, 0.034800640106201174, 0.0348037109375, 0.03454054260253906, 0.03448934555053711, 0.03489791870117188, 0.03465830230712891, 0.07124582672119141, 0.03520102310180664, 0.03487744140625, 0.035156993865966796, 0.03470848083496094, 0.03489996719360351, 0.03482726287841797, 0.03494297790527344, 0.03487744140625, 0.034769920349121096, 0.034885631561279294, 0.03489996719360351, 0.03513756942749023, 0.03485385513305664, 0.03532185745239258, 0.03501875305175781, 0.0368721923828125, 0.03486310577392578, 0.03483443069458008, 0.03476582336425781, 0.03483647918701172, 0.0348221435546875, 0.03477196884155274, 0.034669567108154296, 0.03483647918701172, 0.034947071075439456, 0.0348671989440918, 0.03482316970825195, 0.03477814483642578, 0.03476988983154297, 0.03473612976074219, 0.03470745468139649, 0.03570380783081055, 0.03584921646118164, 0.03489484786987305, 0.03489689636230469, 0.03458969497680664, 0.034830337524414064, 0.03489689636230469, 0.03477811050415039, 0.034705406188964845, 0.03480985641479492, 0.03458662414550781, 0.03588614273071289, 0.03546003341674805, 0.035043327331542966, 0.034993152618408206, 0.03488051223754883, 0.03490611267089844, 0.035004417419433595, 0.03475763320922851, 0.034797569274902344, 0.03473715209960938, 0.03501772689819336, 0.034772991180419925, 0.034885631561279294, 0.03487539291381836, 0.03483443069458008, 0.03482316970825195, 0.0350013427734375, 0.03475763320922851, 0.03494604873657227, 0.0350300178527832]",tokens/s,28.485984529775525,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm-20b,internlm/internlm-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,4294.987776,14621.868032,0.0,13975.420928,13366.068224,s,10,16.495098876953126,1.6495098876953125,0.0005626635207808348,1.6493680419921875,1.6498059448242186,1.6504339782714843,1.650936405029297,"[1.65106201171875, 1.6493150634765625, 1.6490108642578125, 1.64951513671875, 1.6496663818359374, 1.6489195556640626, 1.649384521484375, 1.6492862548828124, 1.6495875244140625, 1.6493515625]",tokens/s,155.19761470340868,kWh,1.9482200029823513e-05,1.067632958434842e-05,9.151657321320173e-05,0.00012167510282737365,tokens/kWh,2103963.7037595077,MB,4294.987776,14621.868032,0.0,13975.420928,13814.414848,s,10,977.7317578124998,97.77317578125,0.006501026483324052,97.774078125,97.7795859375,97.78208203125,97.78407890625,"[97.7740859375, 97.76746875, 97.7754296875, 97.784578125, 97.7782421875, 97.7740703125, 97.77903125, 97.76209375, 97.764875, 97.7718828125]",tokens/s,0.6443485086436308,kWh,0.0011542207027475041,0.0006326151578875942,0.005356944729996799,0.007143780590631898,tokens/kWh,8818.859874086276,,s,629,991.0235808105483,1.5755541825286914,0.19600214423351972,1.55186181640625,1.5529105224609374,1.5533291259765625,3.2017358984375,"[1.5526031494140624, 1.5511746826171875, 1.5512442626953125, 1.5510794677734374, 1.55169482421875, 1.5518966064453126, 1.5526973876953125, 1.5532349853515626, 1.55080810546875, 1.55123095703125, 1.5509954833984374, 1.5513375244140626, 1.551034423828125, 1.552995361328125, 1.5513057861328126, 1.55249462890625, 1.5510445556640624, 1.551331298828125, 1.5506575927734374, 1.55245263671875, 1.5513251953125, 1.5512381591796875, 1.551388671875, 1.5524095458984375, 1.5524761962890625, 1.5533260498046875, 1.553095703125, 1.5521700439453125, 1.551240234375, 1.551688720703125, 1.5509698486328125, 1.55129443359375, 1.5527669677734375, 1.5515802001953125, 1.551595458984375, 1.5514736328125, 1.552204833984375, 1.5519498291015625, 1.55194677734375, 1.55318994140625, 1.55307421875, 1.5523338623046874, 1.5521546630859375, 1.55177978515625, 1.5524197998046876, 1.5533404541015625, 1.5529237060546874, 1.5524351806640626, 1.55150439453125, 1.55194775390625, 1.552548828125, 1.5523931884765625, 1.55225390625, 1.5514603271484375, 1.5512484130859374, 1.5517244873046876, 1.5518822021484375, 1.552468017578125, 1.55346630859375, 1.5518555908203124, 1.5518289794921876, 1.5518668212890625, 3.202376708984375, 1.55222216796875, 1.5525550537109376, 1.551751220703125, 1.5510302734375, 1.55141943359375, 1.5515596923828125, 1.5518863525390625, 1.5530260009765624, 1.5516702880859374, 1.5516968994140625, 1.55188330078125, 1.55222119140625, 1.5524822998046874, 1.5535472412109375, 1.552794677734375, 1.550878662109375, 1.551520751953125, 1.55161083984375, 1.5515064697265626, 1.5530260009765624, 1.5537049560546874, 1.5521280517578124, 1.5518392333984374, 1.5516507568359375, 1.5517174072265625, 1.5512647705078124, 1.5524556884765626, 1.5519549560546875, 1.552384033203125, 1.5521689453125, 1.5524669189453124, 1.5522928466796875, 1.5529041748046875, 1.552691162109375, 1.55226318359375, 1.552175048828125, 1.5517655029296875, 1.5517972412109375, 1.55106201171875, 1.5525765380859375, 1.551730712890625, 1.5510968017578124, 1.550551025390625, 1.5507015380859375, 1.5512001953125, 1.5515802001953125, 1.5522396240234375, 1.5507763671875, 1.5507752685546874, 1.551515625, 1.551489990234375, 1.5510538330078125, 1.552689208984375, 1.5505909423828126, 1.55152587890625, 1.551647705078125, 1.5511357421875, 1.5508541259765625, 1.5514869384765626, 1.5528365478515624, 1.5521771240234374, 1.5512657470703124, 3.201815673828125, 1.5507783203125, 1.5535196533203126, 1.55132421875, 1.551177734375, 1.55173681640625, 1.5521044921875, 1.5513375244140626, 1.5526204833984374, 1.5516661376953125, 1.5514337158203124, 1.551310791015625, 1.5512391357421875, 1.5521761474609375, 1.5526307373046875, 1.553349609375, 1.551321044921875, 1.5509493408203125, 1.5514971923828125, 1.5512432861328125, 1.551467529296875, 1.552627685546875, 1.552321533203125, 1.5515975341796875, 1.5512330322265624, 1.55135595703125, 1.5512811279296874, 1.55175732421875, 1.5532247314453125, 1.5510487060546876, 1.55163232421875, 1.551236083984375, 1.55205224609375, 1.551705078125, 1.5527781982421875, 1.55230517578125, 1.5521064453125, 1.5526748046875, 1.551935546875, 1.5518392333984374, 1.553038330078125, 1.552990234375, 1.5518115234375, 1.551340576171875, 1.5512269287109375, 1.5518863525390625, 1.551740966796875, 1.553649658203125, 1.551879150390625, 1.5528212890625, 1.552669677734375, 1.5528980712890625, 1.5524495849609374, 1.5538206787109374, 1.55340185546875, 1.5514490966796874, 1.55186181640625, 1.5515064697265626, 1.5515709228515624, 1.5511982421875, 1.5528519287109375, 1.5516334228515625, 1.5513446044921875, 3.2030166015625, 1.55180029296875, 1.552606201171875, 1.5531837158203126, 1.551551513671875, 1.55184130859375, 1.5515115966796875, 1.551283203125, 1.551794189453125, 1.5518525390625, 1.5510743408203125, 1.551730712890625, 1.551551513671875, 1.5510927734375, 1.550951416015625, 1.5540325927734375, 1.55168359375, 1.5516273193359376, 1.5512708740234376, 1.5510076904296874, 1.55110302734375, 1.552822265625, 1.5531990966796876, 1.551572021484375, 1.552153564453125, 1.5514736328125, 1.5518802490234376, 1.551657958984375, 1.5528406982421874, 1.5522344970703126, 1.5521812744140624, 1.5515064697265626, 1.55281103515625, 1.55241064453125, 1.552889892578125, 1.5524730224609375, 1.5517911376953124, 1.5517276611328126, 1.5515074462890626, 1.550802978515625, 1.552126953125, 1.55321240234375, 1.5522139892578124, 1.5518084716796876, 1.5521444091796874, 1.5523614501953125, 1.55158837890625, 1.5536046142578126, 1.5520296630859376, 1.5530731201171875, 1.5527608642578126, 1.552880615234375, 1.5533311767578124, 1.5541422119140624, 1.55335888671875, 1.551869873046875, 1.55161083984375, 1.5517900390625, 1.5514500732421874, 1.551742919921875, 1.553448974609375, 1.551916015625, 1.552142333984375, 3.20272802734375, 1.5516005859375, 1.55409814453125, 1.552426025390625, 1.5515802001953125, 1.5510958251953124, 1.5515125732421875, 1.55104052734375, 1.5517767333984376, 1.5526820068359375, 1.5530455322265626, 1.5519539794921875, 1.5517962646484376, 1.552195556640625, 1.5515853271484374, 1.5515821533203125, 1.5523768310546875, 1.5513426513671875, 1.551593505859375, 1.5516016845703124, 1.5524136962890625, 1.551958984375, 1.5531632080078126, 1.5515289306640625, 1.55102099609375, 1.5516641845703125, 1.5517286376953126, 1.5518515625, 1.5519652099609376, 1.5515596923828125, 1.55163134765625, 1.5519027099609375, 1.5522764892578125, 1.5519969482421876, 1.5524884033203126, 1.5527935791015626, 1.5509124755859376, 1.55156884765625, 1.551499267578125, 1.5518935546875, 1.551709228515625, 1.552568359375, 1.552501708984375, 1.5518760986328124, 1.5515699462890624, 1.551488037109375, 1.5521546630859375, 1.5521934814453124, 1.5524454345703125, 1.553112060546875, 1.5525970458984375, 1.551457275390625, 1.551424560546875, 1.5510076904296874, 1.5529554443359375, 1.5528099365234376, 1.552541748046875, 1.5528201904296874, 1.5534459228515625, 1.5517440185546876, 1.5520296630859376, 1.5527730712890624, 1.55129345703125, 3.201416259765625, 1.5519610595703126, 1.551810546875, 1.5517440185546876, 1.551605712890625, 1.5520235595703125, 1.5515657958984375, 1.552027587890625, 1.551488037109375, 1.5524935302734375, 1.5531314697265626, 1.5514276123046875, 1.5520655517578126, 1.5519825439453125, 1.551853515625, 1.5516712646484374, 1.5525252685546875, 1.551730712890625, 1.5519703369140625, 1.55103125, 1.55213720703125, 1.552764892578125, 1.553755126953125, 1.5528775634765626, 1.5516845703125, 1.5517542724609374, 1.5515330810546875, 1.5523287353515625, 1.552110595703125, 1.5518494873046875, 1.5517244873046876, 1.55184228515625, 1.551310791015625, 1.5519027099609375, 1.5507896728515624, 1.552606201171875, 1.5512637939453124, 1.5521474609375, 1.5516856689453125, 1.551458251953125, 1.5516610107421875, 1.552607177734375, 1.5517041015625, 1.5525919189453126, 1.55161083984375, 1.552396240234375, 1.550496826171875, 1.551563720703125, 1.5521248779296875, 1.5515289306640625, 1.5516282958984375, 1.5522191162109376, 1.5513795166015625, 1.551456298828125, 1.5522652587890624, 1.5525396728515626, 1.5528642578125, 1.5518760986328124, 1.5516190185546874, 1.5520552978515625, 1.5518668212890625, 1.5532369384765625, 1.552636962890625, 3.202765869140625, 1.5513466796875, 1.553580078125, 1.5520194091796875, 1.5519456787109376, 1.5510753173828125, 1.5518084716796876, 1.55133544921875, 1.5519498291015625, 1.5519241943359374, 1.5514061279296876, 1.551531005859375, 1.5519334716796875, 1.5514398193359376, 1.5528131103515626, 1.55154638671875, 1.55287451171875, 1.552290771484375, 1.5517265625, 1.550793701171875, 1.5515279541015625, 1.5525499267578124, 1.5527659912109375, 1.5533721923828125, 1.5519078369140624, 1.55173583984375, 1.5521668701171876, 1.5522508544921876, 1.5519713134765625, 1.5531519775390625, 1.5524608154296875, 1.551698974609375, 1.552278564453125, 1.55198974609375, 1.5515361328125, 1.55272705078125, 1.551920166015625, 1.552759765625, 1.5514500732421874, 1.5516590576171876, 1.551510498046875, 1.5519405517578124, 1.552752685546875, 1.55184130859375, 1.55072509765625, 1.5517808837890625, 1.5512965087890624, 1.552079833984375, 1.552720947265625, 1.5514542236328126, 1.553217529296875, 1.5522928466796875, 1.5522979736328124, 1.551899658203125, 1.551836181640625, 1.5530526123046875, 1.55264306640625, 1.552206787109375, 1.55278955078125, 1.5506513671875, 1.5514705810546876, 1.552828369140625, 1.5512606201171875, 3.20153076171875, 1.5501854248046876, 1.5515657958984375, 1.5514951171875, 1.552109619140625, 1.552099365234375, 1.552288818359375, 1.5523583984375, 1.5526461181640625, 1.5514920654296875, 1.5523031005859376, 1.5516446533203125, 1.55148291015625, 1.5517808837890625, 1.5515330810546875, 1.5520235595703125, 1.5527147216796875, 1.5511695556640626, 1.552215087890625, 1.5506851806640625, 1.5511387939453125, 1.5506053466796874, 1.55132421875, 1.5518238525390624, 1.551515625, 1.5510947265625, 1.5512073974609375, 1.5515657958984375, 1.5510599365234374, 1.5514132080078125, 1.551810546875, 1.55152490234375, 1.55114697265625, 1.5516077880859376, 1.5506268310546876, 1.5511910400390625, 1.5526318359375, 1.552217041015625, 1.551873046875, 1.5515443115234375, 1.551283203125, 1.551500244140625, 1.55306494140625, 1.5515596923828125, 1.5516978759765625, 1.5517235107421874, 1.551678466796875, 1.553006591796875, 1.5524617919921875, 1.5526624755859375, 1.5517911376953124, 1.5515576171875, 1.5515587158203126, 1.551556640625, 1.5509442138671874, 1.5528365478515624, 1.5521904296875, 1.55300244140625, 1.5519825439453125, 1.5525980224609375, 1.551983642578125, 1.5516201171875, 1.5528509521484375, 3.202553955078125, 1.551009765625, 1.5523553466796876, 1.5506207275390624, 1.5519232177734374, 1.551784912109375, 1.551542236328125, 1.551203369140625, 1.5513343505859376, 1.55032373046875, 1.5522550048828125, 1.5514869384765626, 1.551784912109375, 1.5508438720703126, 1.5520716552734375, 1.5515863037109374, 1.55217919921875, 1.552343017578125, 1.5512073974609375, 1.5511490478515626, 1.5520225830078125, 1.551941650390625, 1.5513641357421875, 1.5520562744140625, 1.5527935791015626, 1.553005615234375, 1.5519703369140625, 1.5519405517578124, 1.55236962890625, 1.5524075927734375, 1.552400390625, 1.5521392822265625, 1.5526983642578125, 1.5521812744140624, 1.5518033447265625, 1.5511234130859375, 1.5530147705078126, 1.552041015625, 1.5515872802734374, 1.5513333740234374, 1.5513599853515625, 1.5520286865234374, 1.5513743896484375, 1.55210546875, 1.5510108642578124, 1.551393798828125, 1.55116845703125, 1.551873046875, 1.5514449462890625, 1.5518966064453126, 1.55174609375, 1.5518658447265625, 1.5518095703125, 1.5519150390625, 1.5517449951171876, 1.5523460693359374, 1.552300048828125, 1.552015380859375, 1.551193115234375, 1.5512535400390626, 1.5524495849609374, 1.55131494140625, 1.553142822265625, 3.20293701171875, 1.5507025146484374, 1.5517491455078125, 1.5505745849609376, 1.551394775390625, 1.5516416015625, 1.5522529296875, 1.5509012451171875, 1.551172607421875, 1.5507313232421875, 1.551066162109375, 1.5524403076171875, 1.552574462890625, 1.5519908447265625, 1.5519549560546875, 1.5521126708984374, 1.5522078857421875, 1.553606689453125, 1.552162841796875, 1.5526041259765626, 1.552289794921875, 1.5522764892578125, 1.55186376953125, 1.5506749267578126, 1.551815673828125, 1.5521044921875, 1.550876708984375, 1.5515504150390624, 1.550856201171875, 1.5514798583984375, 1.552759765625, 1.551753173828125, 1.5519580078125, 1.5519119873046876, 1.551141845703125, 1.551688720703125, 1.5519180908203125, 1.5516416015625, 1.5518433837890624, 1.5516488037109375, 1.55226416015625, 1.5521085205078125, 1.5519918212890624, 1.5524515380859376, 1.55057666015625, 1.5518023681640625, 1.5514920654296875, 1.5522559814453125, 1.551362060546875, 1.5525518798828124, 1.5522672119140626, 1.551783935546875, 1.551810546875, 1.5519447021484376, 1.5518751220703124, 1.5525919189453126, 1.5539844970703125, 1.5537889404296874, 1.5529072265625, 1.55158935546875, 1.55196826171875, 1.5523502197265624, 1.552722900390625]",tokens/s,0.6346973091049438,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-7.5B,facebook/xglm-7.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2170.855424,7227.31008,0.0,6580.862976,6226.036224,s,10,5.757403198242186,0.5757403198242188,0.0009922788511109175,0.5756337280273438,0.5767303344726562,0.5773405700683594,0.5778287585449219,"[0.5763906860351562, 0.5754805908203126, 0.5742902221679688, 0.5758182373046875, 0.5751873168945313, 0.574752685546875, 0.575786865234375, 0.5751510620117187, 0.5779508056640625, 0.5765947265625]",tokens/s,444.6449053249566,kWh,6.784125003549789e-06,3.717420948032668e-06,3.101488592300367e-05,4.151643187458613e-05,tokens/kWh,6166233.1862557735,MB,2170.855424,7227.31008,0.0,6580.862976,6478.658048,s,10,336.90312500000005,33.6903125,0.0038578817961585758,33.690537109375,33.6951453125,33.6965375,33.69765125,"[33.6891484375, 33.6979296875, 33.68431640625, 33.69015234375, 33.69138671875, 33.68830859375, 33.690921875, 33.6910078125, 33.6948359375, 33.6851171875]",tokens/s,1.8699737498724598,kWh,0.00039786197528243067,0.0002180628312197768,0.001800652746076575,0.0024165775525787823,tokens/kWh,26069.926840448938,,s,629,341.54916522216826,0.5430034423245914,0.06841490320905963,0.5347440795898437,0.5353432861328125,0.5355950317382813,1.1101828955078124,"[0.5346764526367187, 0.534593505859375, 0.53607421875, 0.5346488037109375, 0.5349376220703125, 0.5348045043945312, 0.5348710327148437, 0.534361083984375, 0.5351505737304687, 0.5344501953125, 0.5342750854492188, 0.5343682861328125, 0.5348853759765625, 0.5342218017578125, 0.5351854248046874, 0.5346846923828125, 0.5351168212890625, 0.5340159912109375, 0.5345996704101562, 0.5340569458007812, 0.5348679809570313, 0.5342392578125, 0.5346948852539063, 0.5346427001953125, 0.5350113525390625, 0.5345361938476563, 0.534276123046875, 0.5349284057617187, 0.5341531982421875, 0.5347072143554688, 0.534413330078125, 0.5346447143554688, 0.5343323974609375, 0.534677490234375, 0.5346836547851562, 0.5348843383789063, 0.5341747436523437, 0.53469287109375, 0.5349488525390625, 0.5349376220703125, 0.5349048461914062, 0.5350922241210937, 0.5349293823242187, 0.5348905029296875, 0.5348187866210937, 0.5352499389648437, 0.5351372680664063, 0.5351874389648438, 0.5344020385742188, 0.5347307739257813, 0.534319091796875, 0.5348607788085937, 0.53452490234375, 0.5352724609375, 0.5355673828125, 0.53477685546875, 0.5353441162109375, 0.5347553100585938, 0.535225341796875, 0.5340364990234375, 0.5348362426757812, 0.53452392578125, 1.1103118896484374, 0.5353318481445313, 0.5341173706054687, 0.5345740966796875, 0.5343201293945312, 0.5346703491210938, 0.5341255493164062, 0.5354373168945312, 0.534645751953125, 0.5345771484375, 0.5340641479492187, 0.535025634765625, 0.5342791748046875, 0.5352877807617188, 0.5341102294921874, 0.5349335327148438, 0.53408154296875, 0.5348935546875, 0.5341614379882812, 0.5348187866210937, 0.5348075561523438, 0.5348945922851562, 0.5341737060546875, 0.5358602294921875, 0.5343109130859375, 0.53522021484375, 0.5344286499023437, 0.5350133666992187, 0.5340877075195313, 0.5351638793945312, 0.5342811889648438, 0.535573486328125, 0.5346611328125, 0.5351854248046874, 0.5346078491210937, 0.53532568359375, 0.5343160400390625, 0.53486181640625, 0.5339535522460938, 0.5352847290039062, 0.5343467407226562, 0.5350491943359375, 0.5341419677734375, 0.5348751220703125, 0.534150146484375, 0.5347573852539063, 0.5344307250976562, 0.5354004516601563, 0.5344286499023437, 0.5352489013671875, 0.5350963134765625, 0.5354454956054687, 0.537660400390625, 0.5361489868164062, 0.53553662109375, 0.5356922607421875, 0.5343662109375, 0.5351168212890625, 0.535394287109375, 0.5363414916992187, 0.5349365844726562, 0.5353850708007812, 0.5346826171875, 1.110350830078125, 0.5346856689453126, 0.5343385620117187, 0.5345433349609375, 0.5344020385742188, 0.5345515747070313, 0.5340989379882812, 0.5348003540039062, 0.5341388549804688, 0.53479833984375, 0.5344071655273438, 0.5343672485351563, 0.5352960205078126, 0.5340405883789062, 0.5349048461914062, 0.5344491577148438, 0.535067626953125, 0.5343518676757812, 0.5349970092773437, 0.534128662109375, 0.5347153930664063, 0.53432421875, 0.5345413208007812, 0.5351311645507812, 0.5347737426757813, 0.534719482421875, 0.5343641357421876, 0.5350553588867187, 0.5344020385742188, 0.5347225341796875, 0.5345587158203124, 0.5351331787109375, 0.5342013549804687, 0.5347911376953125, 0.5345372314453125, 0.5347225341796875, 0.5342412719726563, 0.5348792114257812, 0.5342689208984375, 0.5345525512695313, 0.5345115966796875, 0.5345474853515625, 0.53495703125, 0.53488232421875, 0.535014404296875, 0.5344368896484375, 0.53495703125, 0.534287353515625, 0.5348126831054687, 0.5351044921875, 0.535436279296875, 0.53448193359375, 0.5350891723632812, 0.5339913940429688, 0.5349908447265626, 0.5347307739257813, 0.5351055297851562, 0.5346611328125, 0.5345126342773437, 0.5350236206054687, 0.5345863647460938, 0.5352509155273437, 0.5350174560546875, 1.1105382080078126, 0.5355950317382813, 0.5344696044921875, 0.5347164306640625, 0.5345341186523438, 0.5346948852539063, 0.5343866577148437, 0.535103515625, 0.5347359008789062, 0.5351536865234375, 0.5343518676757812, 0.5350891723632812, 0.5348259887695312, 0.5349007568359375, 0.5342996215820313, 0.5354127197265625, 0.5349365844726562, 0.5348239135742188, 0.5341798095703125, 0.534992919921875, 0.534329345703125, 0.5348515625, 0.5342095336914062, 0.53524072265625, 0.5343549194335937, 0.534803466796875, 0.534345703125, 0.534719482421875, 0.5346047973632813, 0.5349662475585938, 0.5341337890625, 0.5350051879882812, 0.5342566528320313, 0.5347942504882812, 0.5347379150390625, 0.5350942993164063, 0.5344153442382813, 0.5352182006835937, 0.534846435546875, 0.5348956298828125, 0.5342689208984375, 0.5350553588867187, 0.5349601440429688, 0.53513525390625, 0.534561767578125, 0.535309326171875, 0.5342945556640625, 0.5351065673828125, 0.5344860229492188, 0.53475634765625, 0.534240234375, 0.5348341674804687, 0.5342648315429688, 0.534993896484375, 0.5347952880859375, 0.5356380004882813, 0.534824951171875, 0.5348976440429688, 0.5344174194335938, 0.5349017333984375, 0.5350840454101562, 0.5351629028320313, 0.5344470825195312, 1.1098358154296875, 0.5345259399414063, 0.5348362426757812, 0.534181884765625, 0.5347102661132812, 0.534091796875, 0.5347164306640625, 0.534054931640625, 0.5361285400390625, 0.5355950317382813, 0.5359862060546875, 0.5356984252929687, 0.5359247436523438, 0.5353123779296876, 0.5349468383789062, 0.53486181640625, 0.5354373168945312, 0.5347164306640625, 0.5351342163085937, 0.5345413208007812, 0.5349837036132813, 0.53418701171875, 0.5347440795898437, 0.5342218017578125, 0.5345996704101562, 0.5342843017578125, 0.5351854248046874, 0.5345218505859375, 0.5348915405273438, 0.5342116088867187, 0.5350205688476563, 0.534297607421875, 0.534667236328125, 0.5343784790039062, 0.5350491943359375, 0.5344635009765625, 0.535109619140625, 0.5345679321289063, 0.5353430786132812, 0.5343150024414063, 0.5344952392578125, 0.5345228881835937, 0.5347676391601562, 0.53477783203125, 0.534740966796875, 0.5348997192382813, 0.5346795654296875, 0.53429248046875, 0.534645751953125, 0.5347973022460938, 0.5346099243164063, 0.5341378784179688, 0.5352919311523437, 0.5342832641601563, 0.5348894653320313, 0.53421875, 0.5347788696289062, 0.534635498046875, 0.5353768920898437, 0.5347850341796875, 0.5351485595703125, 0.5345423583984374, 0.5350031127929687, 1.1105545654296876, 0.5355919189453126, 0.5343006591796875, 0.5348720703125, 0.53427197265625, 0.5345126342773437, 0.5340037231445313, 0.535520263671875, 0.534739990234375, 0.535130126953125, 0.5343836059570313, 0.5350440673828125, 0.5346948852539063, 0.5351239624023437, 0.5344174194335938, 0.5351260375976562, 0.5345014038085938, 0.5347993774414063, 0.534582275390625, 0.5357168579101562, 0.5343109130859375, 0.5353820190429688, 0.5346990356445313, 0.5351629028320313, 0.5347451171875, 0.5354332275390625, 0.5348679809570313, 0.5348095703125, 0.5343733520507813, 0.5351966552734375, 0.5344102172851563, 0.5353021240234375, 0.5340569458007812, 0.534813720703125, 0.5341829223632812, 0.5347389526367188, 0.5341173706054687, 0.5348935546875, 0.5345310668945312, 0.535056396484375, 0.5342576904296875, 0.5349898071289062, 0.5346007080078125, 0.5354352416992187, 0.53414501953125, 0.5347205200195313, 0.5340692749023438, 0.5347993774414063, 0.5341737060546875, 0.53488330078125, 0.5342361450195312, 0.5347962646484375, 0.53441845703125, 0.53486181640625, 0.5344409790039063, 0.5348505859375, 0.5344778442382813, 0.5346652221679687, 0.5343754272460938, 0.5350758666992188, 0.5344163818359375, 0.5350686645507813, 0.5343856811523438, 1.1107747802734376, 0.5348556518554688, 0.5345413208007812, 0.5346017456054688, 0.5344235229492188, 0.5347625122070313, 0.534202392578125, 0.5346734008789062, 0.534513671875, 0.5345167236328126, 0.5345884399414063, 0.5348331298828125, 0.534603759765625, 0.5347123413085938, 0.535151611328125, 0.5338849487304688, 0.5345567016601562, 0.53408154296875, 0.5351454467773438, 0.5341777954101562, 0.5348731079101563, 0.534076416015625, 0.5348925170898438, 0.5345361938476563, 0.534635498046875, 0.534403076171875, 0.5345423583984374, 0.5348433837890625, 0.5344429931640625, 0.5346826171875, 0.5351076049804687, 0.5349652709960937, 0.5341634521484375, 0.5351157836914062, 0.534329345703125, 0.5346119384765625, 0.5346826171875, 0.5350000610351563, 0.5348444213867187, 0.5346211547851563, 0.5343887329101562, 0.5350768432617188, 0.53532568359375, 0.5349631958007812, 0.5353236694335938, 0.534540283203125, 0.5354454956054687, 0.5352796020507813, 0.5357506713867187, 0.5357987670898438, 0.5363568725585938, 0.5354977416992187, 0.5355079956054688, 0.5346631469726563, 0.5348648681640625, 0.53481982421875, 0.5350850830078125, 0.5346867065429688, 0.534488037109375, 0.5345198364257813, 0.5341511840820312, 0.5348761596679688, 0.5343672485351563, 1.1098511962890625, 0.5344020385742188, 0.5343488159179688, 0.5351004028320312, 0.5345003662109375, 0.5340426025390625, 0.5349335327148438, 0.534129638671875, 0.5345115966796875, 0.534624267578125, 0.5344778442382813, 0.5346898193359375, 0.5347532958984375, 0.5341439819335938, 0.5348208618164062, 0.5342740478515625, 0.534593505859375, 0.5343160400390625, 0.5345218505859375, 0.5341788330078125, 0.5349027709960937, 0.5340282592773438, 0.5352099609375, 0.5348515625, 0.5344050903320312, 0.534667236328125, 0.534846435546875, 0.5345792236328125, 0.5350031127929687, 0.5352366333007812, 0.5349683227539063, 0.5348577270507813, 0.5350656127929687, 0.5350123291015625, 0.5349437255859375, 0.5353164672851562, 0.535109619140625, 0.5345955810546875, 0.5346232299804687, 0.5350543212890625, 0.5351209106445313, 0.5352017822265625, 0.5351526489257813, 0.534813720703125, 0.5347174682617187, 0.53507275390625, 0.5347962646484375, 0.535278564453125, 0.5350348510742188, 0.5344235229492188, 0.5348864135742187, 0.5350287475585938, 0.5347123413085938, 0.5351557006835937, 0.5351854248046874, 0.534824951171875, 0.5352898559570313, 0.5345700073242188, 0.5350369262695313, 0.5348126831054687, 0.5350420532226563, 0.5343068237304688, 0.5352109985351563, 1.1140484619140625, 0.5357752075195312, 0.5347020874023437, 0.5347215576171875, 0.5340579833984375, 0.5347225341796875, 0.5339064331054687, 0.5348648681640625, 0.5343109130859375, 0.5346764526367187, 0.5340579833984375, 0.534751220703125, 0.5342074584960937, 0.53477685546875, 0.5345331420898437, 0.5362677612304687, 0.5344603881835938, 0.535562255859375, 0.534560791015625, 0.5345679321289063, 0.53437646484375, 0.5348444213867187, 0.5341480712890625, 0.5348433837890625, 0.5341439819335938, 0.5348792114257812, 0.5344849853515625, 0.5353707275390625, 0.534392822265625, 0.5349959716796875, 0.534276123046875, 0.5353820190429688, 0.5345740966796875, 0.5356973876953125, 0.534592529296875, 0.5353021240234375, 0.5345812377929687, 0.5350471801757812, 0.5342730102539063, 0.5356431274414063, 0.5344461059570312, 0.5352222900390625, 0.534319091796875, 0.5352243041992187, 0.5342218017578125, 0.5354874877929687, 0.5344635009765625, 0.5353492431640625, 0.5346590576171875, 0.5352969970703125, 0.5345413208007812, 0.5364439086914062, 0.5349744873046876, 0.5354383544921875, 0.5349171142578125, 0.5353850708007812, 0.5352386474609375, 0.5347727661132813, 0.5347440795898437, 0.5347891235351563, 0.53429248046875, 0.5350348510742188, 0.5342208251953126, 1.1111966552734376, 0.5346058349609375, 0.5340743408203125, 0.5344491577148438, 0.5340753784179687, 0.5344573364257813, 0.5351997680664062, 0.5346652221679687, 0.5347676391601562, 0.5348843383789063, 0.5340805053710938, 0.5348229370117188, 0.5342904052734375, 0.5346806030273438, 0.5341122436523438, 0.5346744384765625, 0.5341951904296875, 0.53463037109375, 0.5346017456054688, 0.5344931640625, 0.5348495483398438, 0.5341675415039062, 0.534192138671875, 0.5346129760742188, 0.5353421020507813, 0.5345730590820312, 0.5347010498046875, 0.5343364868164062, 0.53553564453125, 0.5343969116210937, 0.534887451171875, 0.5349539794921875, 0.5349130249023437, 0.5349970092773437, 0.5343682861328125, 0.534813720703125, 0.5341798095703125, 0.5349908447265626, 0.5340886840820313, 0.5348864135742187, 0.53427197265625, 0.5349468383789062, 0.5341091918945312, 0.5351629028320313, 0.5349376220703125, 0.5348556518554688, 0.53496728515625, 0.5342669067382813, 0.5347440795898437, 0.53432421875, 0.53492529296875, 0.5341470947265625, 0.5350174560546875, 0.5343016967773437, 0.5352642822265625, 0.5343908081054688, 0.535689208984375, 0.535041015625, 0.5345894165039062, 0.5347891235351563, 0.5347962646484375, 0.5358428344726562, 0.5355755615234375]",tokens/s,1.8416089513521527,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-3B-v1,togethercomputer/RedPajama-INCITE-Base-3B-v1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2276.958208,3364.356096,0.0,2717.908992,2483.645952,s,10,2.418925704956055,0.24189257049560547,0.0014063564969548042,0.2416701126098633,0.24295570678710937,0.24411388549804686,0.24504042846679686,"[0.24527206420898437, 0.24195974731445313, 0.2402183074951172, 0.2404288330078125, 0.24130831909179687, 0.2407073974609375, 0.24138047790527345, 0.24269833374023436, 0.24266143798828124, 0.24229078674316407]",tokens/s,1058.3210533316103,kWh,2.845328939812524e-06,1.5591126709426003e-06,1.357947514928401e-05,1.7983916760039136e-05,tokens/kWh,14234941.332070695,MB,2281.037824,3364.356096,0.0,2717.908992,2632.492032,s,10,138.94498046874997,13.894498046874997,0.004182595458186898,13.892857421875,13.8990578125,13.90156796875,13.903576093749999,"[13.894330078125, 13.904078125, 13.891740234375, 13.8913271484375, 13.8928662109375, 13.8928486328125, 13.890017578125, 13.8911748046875, 13.8985, 13.89809765625]",tokens/s,4.534168833408796,kWh,0.00016402044498967748,8.989529760271189e-05,0.0007398838220653231,0.0009937995646577126,tokens/kWh,63393.06459819053,,s,629,140.89449887084956,0.22399761346716945,0.028708018380316665,0.22048768615722655,0.22092697143554688,0.2211510284423828,0.4614811267089844,"[0.22103858947753907, 0.22030642700195313, 0.2203074493408203, 0.2203627471923828, 0.22044467163085937, 0.2201466827392578, 0.22047232055664062, 0.2204610595703125, 0.22034637451171876, 0.22052249145507813, 0.22052249145507813, 0.2210744323730469, 0.22037094116210937, 0.22095564270019533, 0.2205102081298828, 0.220400634765625, 0.2204180450439453, 0.22016717529296875, 0.22055328369140625, 0.22030943298339845, 0.22044979858398436, 0.2203740234375, 0.22033509826660155, 0.22029107666015624, 0.22042008972167967, 0.220221435546875, 0.22049996948242187, 0.22039552307128907, 0.2202757110595703, 0.2207139892578125, 0.22043545532226563, 0.2203248596191406, 0.22038528442382813, 0.22035661315917968, 0.22044058227539062, 0.2203135986328125, 0.2203863067626953, 0.22037504577636718, 0.22030848693847657, 0.22094744873046876, 0.22068121337890625, 0.22063002014160157, 0.2204917755126953, 0.22049693298339842, 0.22050607299804686, 0.22025112915039063, 0.2205347900390625, 0.22040882873535156, 0.2204559326171875, 0.22036376953125, 0.22044160461425782, 0.22035763549804688, 0.22027468872070313, 0.2205716552734375, 0.22072114562988282, 0.22048255920410156, 0.22129356384277343, 0.22104063415527345, 0.22131712341308593, 0.22103141784667968, 0.22057676696777342, 0.22042828369140624, 0.4625459289550781, 0.22034739685058594, 0.22049996948242187, 0.22023680114746094, 0.22024295043945313, 0.2206351318359375, 0.22068838500976562, 0.220474365234375, 0.22047129821777345, 0.22064947509765626, 0.22041087341308593, 0.22091673278808593, 0.22036787414550782, 0.22061465454101561, 0.22062591552734376, 0.22061363220214844, 0.2205153350830078, 0.2204753875732422, 0.22044979858398436, 0.22052864074707032, 0.22069862365722656, 0.22137957763671876, 0.22033920288085937, 0.22062387084960938, 0.220695556640625, 0.22112973022460938, 0.22057472229003905, 0.2208757781982422, 0.22068634033203124, 0.22061567687988282, 0.220548095703125, 0.22069247436523437, 0.2205368347167969, 0.22067916870117188, 0.22079180908203125, 0.22078463745117188, 0.22062591552734376, 0.2209423370361328, 0.2213263397216797, 0.22097305297851563, 0.22086349487304688, 0.22097613525390625, 0.22042726135253907, 0.2206965789794922, 0.22049996948242187, 0.22054502868652343, 0.22163456726074218, 0.22095359802246095, 0.22068019104003905, 0.2211655731201172, 0.2206842803955078, 0.22073651123046875, 0.22048973083496093, 0.22058706665039063, 0.22057977294921874, 0.22068844604492188, 0.22081939697265626, 0.2213744659423828, 0.2205665283203125, 0.22082252502441407, 0.2207262725830078, 0.22075187683105468, 0.22038937377929688, 0.4611839904785156, 0.22023577880859374, 0.22089727783203125, 0.22050405883789062, 0.22021734619140626, 0.22054400634765625, 0.22038528442382813, 0.2205655059814453, 0.2203248596191406, 0.22023884582519532, 0.22023583984375, 0.22047123718261719, 0.22023577880859374, 0.22024191284179687, 0.2201917419433594, 0.22043443298339843, 0.22027162170410156, 0.2202449951171875, 0.22028492736816407, 0.22072422790527343, 0.220980224609375, 0.2206771240234375, 0.22129458618164063, 0.22060134887695312, 0.2206730194091797, 0.2208123779296875, 0.22065858459472656, 0.22089830017089843, 0.22067507934570313, 0.2204436492919922, 0.22042930603027344, 0.22058087158203124, 0.22041497802734375, 0.22024908447265626, 0.22027162170410156, 0.22030540466308593, 0.22031564331054687, 0.220368896484375, 0.22108876037597655, 0.22054092407226564, 0.22035353088378906, 0.22040576171875, 0.22026138305664061, 0.22044467163085937, 0.2204559326171875, 0.22032179260253906, 0.22044773864746095, 0.22073036193847656, 0.22113075256347656, 0.22058393859863282, 0.22032691955566405, 0.22068531799316407, 0.22055833435058594, 0.22046412658691406, 0.22032383728027344, 0.22034637451171876, 0.22055322265625, 0.22052455139160157, 0.22036480712890624, 0.2204047393798828, 0.22033612060546875, 0.2206771240234375, 0.2206044158935547, 0.4615966796875, 0.22076824951171875, 0.220295166015625, 0.22087271118164062, 0.2203504638671875, 0.22047232055664062, 0.220189697265625, 0.22043238830566406, 0.22019378662109376, 0.22050816345214844, 0.220579833984375, 0.22056346130371093, 0.22019276428222656, 0.2204375, 0.22046617126464843, 0.2205716552734375, 0.22037196350097657, 0.22026649475097657, 0.22035661315917968, 0.22112562561035157, 0.22030950927734375, 0.22041293334960937, 0.2203873291015625, 0.22026853942871094, 0.22054502868652343, 0.22050201416015625, 0.22024806213378906, 0.2203146209716797, 0.22042930603027344, 0.22102117919921874, 0.22032896423339843, 0.22048768615722655, 0.22014976501464845, 0.22047232055664062, 0.22042112731933594, 0.2204569549560547, 0.2205122528076172, 0.22034226989746095, 0.22057778930664063, 0.22053375244140624, 0.220442626953125, 0.22042214965820311, 0.22033203125, 0.22048664855957031, 0.22074981689453124, 0.2204917755126953, 0.22120652770996094, 0.2206904296875, 0.22041497802734375, 0.22121676635742188, 0.2204784698486328, 0.2206033935546875, 0.22039450073242187, 0.22054400634765625, 0.22060850524902345, 0.22071705627441407, 0.22043443298339843, 0.22050816345214844, 0.2202931213378906, 0.2204794921875, 0.22053887939453126, 0.2205982666015625, 0.22036787414550782, 0.46206668090820313, 0.22080613708496094, 0.2205716552734375, 0.22023782348632812, 0.22025421142578125, 0.22019590759277344, 0.22057875061035156, 0.22045901489257813, 0.22017330932617188, 0.22030950927734375, 0.2208921661376953, 0.22050201416015625, 0.22088294982910156, 0.2204538879394531, 0.2203197479248047, 0.22046310424804688, 0.22013133239746094, 0.22019071960449219, 0.2202828826904297, 0.22072320556640626, 0.22030438232421876, 0.2206730194091797, 0.2204559326171875, 0.22029209899902344, 0.22052659606933595, 0.22039657592773437, 0.22047030639648438, 0.22110202026367187, 0.22078463745117188, 0.22039654541015624, 0.22048768615722655, 0.22048153686523436, 0.22034637451171876, 0.22068325805664063, 0.22042623901367187, 0.22046208190917968, 0.2204989471435547, 0.22047129821777345, 0.22049690246582032, 0.22055526733398437, 0.22030848693847657, 0.22025625610351562, 0.2204047393798828, 0.2205102081298828, 0.22039756774902344, 0.22056448364257814, 0.22109797668457032, 0.2207406005859375, 0.22061260986328124, 0.220548095703125, 0.2202931213378906, 0.22047334289550782, 0.22042828369140624, 0.22047334289550782, 0.22030032348632814, 0.22054191589355468, 0.22119935607910157, 0.22169293212890626, 0.2205419464111328, 0.220557373046875, 0.2205152587890625, 0.2205655059814453, 0.22039756774902344, 0.46115838623046873, 0.22026853942871094, 0.22028492736816407, 0.22010981750488282, 0.22020608520507812, 0.22032077026367186, 0.22018765258789064, 0.2204375, 0.2203811798095703, 0.22077133178710937, 0.22063206481933595, 0.22066073608398437, 0.22049075317382813, 0.22043034362792968, 0.22024191284179687, 0.22040882873535156, 0.22035865783691405, 0.2205982666015625, 0.22046514892578126, 0.220400634765625, 0.22039039611816405, 0.2204047393798828, 0.22018048095703124, 0.22042726135253907, 0.22025625610351562, 0.2204016571044922, 0.2204917755126953, 0.22091775512695314, 0.22068736267089845, 0.2210478057861328, 0.22050714111328126, 0.22068022155761718, 0.220601318359375, 0.2203811798095703, 0.22034022521972657, 0.22041497802734375, 0.22021632385253906, 0.22114303588867187, 0.22130073547363283, 0.22058905029296874, 0.22039961242675782, 0.22047027587890625, 0.22025830078125, 0.22062284851074218, 0.2205102081298828, 0.22040780639648438, 0.22047232055664062, 0.22069349670410157, 0.22081024169921876, 0.22071807861328124, 0.22037811279296876, 0.22054502868652343, 0.2205306854248047, 0.22061567687988282, 0.22122189331054687, 0.22058087158203124, 0.22052557373046874, 0.2210048065185547, 0.22053785705566406, 0.22060646057128908, 0.22035865783691405, 0.22059622192382813, 0.220516357421875, 0.46187826538085935, 0.22027877807617188, 0.2201661376953125, 0.22008934020996093, 0.22014874267578124, 0.22040780639648438, 0.220221435546875, 0.22034739685058594, 0.22072422790527343, 0.22045184326171874, 0.2204436798095703, 0.22067196655273438, 0.2206525421142578, 0.22057676696777342, 0.22060032653808595, 0.22078976440429687, 0.22035661315917968, 0.2203740234375, 0.22085427856445314, 0.2204600372314453, 0.220337158203125, 0.22026240539550782, 0.22036480712890624, 0.22081741333007812, 0.22036172485351563, 0.2203177032470703, 0.22025421142578125, 0.22035763549804688, 0.22030335998535155, 0.2207139892578125, 0.22059213256835938, 0.22072525024414064, 0.2207406005859375, 0.22064537048339844, 0.22042008972167967, 0.22125669860839844, 0.22061567687988282, 0.220474365234375, 0.22071807861328124, 0.2205347900390625, 0.2203627471923828, 0.2203146209716797, 0.2203248596191406, 0.22029823303222656, 0.22036376953125, 0.22047232055664062, 0.2202255401611328, 0.22048664855957031, 0.22040576171875, 0.22032179260253906, 0.22034025573730467, 0.2205460205078125, 0.22030950927734375, 0.22042317199707032, 0.22106214904785157, 0.22057267761230467, 0.220516357421875, 0.22052761840820312, 0.2204600372314453, 0.22071705627441407, 0.22034124755859374, 0.2203822021484375, 0.22037196350097657, 0.4634490966796875, 0.22028901672363282, 0.22034124755859374, 0.22013848876953124, 0.22024806213378906, 0.22021836853027343, 0.22028901672363282, 0.22026860046386718, 0.22030227661132812, 0.22021530151367188, 0.22014463806152343, 0.22054911804199218, 0.22034431457519532, 0.2202439727783203, 0.22034226989746095, 0.22027775573730468, 0.22059519958496093, 0.22043852233886718, 0.22060032653808595, 0.2206351318359375, 0.2210744323730469, 0.22051123046875, 0.22054092407226564, 0.2203863067626953, 0.22021427917480468, 0.22092697143554688, 0.22021324157714844, 0.22043136596679688, 0.2202408905029297, 0.22046208190917968, 0.2203074493408203, 0.2203504638671875, 0.2204190673828125, 0.2203514862060547, 0.2202593231201172, 0.2208204803466797, 0.2203146209716797, 0.22043034362792968, 0.22032896423339843, 0.22037196350097657, 0.22022860717773438, 0.22044058227539062, 0.22041293334960937, 0.2202449951171875, 0.22045082092285156, 0.22114303588867187, 0.22066893005371094, 0.2209300537109375, 0.22127410888671875, 0.22070477294921875, 0.2205368347167969, 0.22061158752441407, 0.2204927978515625, 0.22057676696777342, 0.2206525421142578, 0.22057066345214843, 0.22053884887695313, 0.22044467163085937, 0.22082867431640624, 0.22062899780273437, 0.22075289916992188, 0.2207139892578125, 0.2211584014892578, 0.4632709045410156, 0.22081024169921876, 0.22034022521972657, 0.22049996948242187, 0.2202265625, 0.22050099182128907, 0.2203822021484375, 0.2204600372314453, 0.22082150268554687, 0.2206904296875, 0.22041087341308593, 0.22061567687988282, 0.22044979858398436, 0.22075698852539063, 0.22043341064453126, 0.22061465454101561, 0.2210682830810547, 0.22072218322753906, 0.2204805145263672, 0.2206699523925781, 0.22046514892578126, 0.22043238830566406, 0.2206177215576172, 0.22051840209960938, 0.22042726135253907, 0.22032383728027344, 0.22085324096679687, 0.22037709045410156, 0.22035661315917968, 0.22064743041992188, 0.22058802795410157, 0.22054296875, 0.22046310424804688, 0.22043238830566406, 0.2203453369140625, 0.22068736267089845, 0.2204180450439453, 0.22066175842285157, 0.22066073608398437, 0.22049484252929688, 0.22063923645019531, 0.22058700561523437, 0.22040985107421876, 0.22107341003417968, 0.22086553955078125, 0.22104371643066406, 0.22082867431640624, 0.22134066772460936, 0.2208573455810547, 0.22092697143554688, 0.22046310424804688, 0.2206208038330078, 0.22063002014160157, 0.22059111022949218, 0.22057061767578126, 0.22050918579101564, 0.22044671630859375, 0.220727294921875, 0.22051840209960938, 0.22058802795410157, 0.22056243896484376, 0.22115635681152343, 0.22068940734863282, 0.46320025634765627, 0.22056346130371093, 0.22062899780273437, 0.22051840209960938, 0.22040882873535156, 0.22072012329101562, 0.22032691955566405, 0.2210713653564453, 0.22036070251464843, 0.220400634765625, 0.22021324157714844, 0.22049075317382813, 0.22033509826660155, 0.22090547180175782, 0.22041293334960937, 0.22086656188964843, 0.22052761840820312, 0.2203197479248047, 0.22071296691894532, 0.22047232055664062, 0.22075698852539063, 0.22052659606933595, 0.22043238830566406, 0.22035968017578125, 0.22096896362304688, 0.22059928894042968, 0.2214615020751953, 0.2207467498779297, 0.22179942321777343, 0.22081228637695313, 0.22052146911621093, 0.22039961242675782, 0.22029209899902344, 0.2204805145263672, 0.22017433166503905, 0.2204436492919922, 0.2202204132080078, 0.22042930603027344, 0.2203811798095703, 0.22039654541015624, 0.2202408905029297, 0.22037196350097657, 0.22073855590820313, 0.22145228576660156, 0.22041395568847658, 0.22063308715820312, 0.220368896484375, 0.22088499450683594, 0.22040882873535156, 0.22045901489257813, 0.22026649475097657, 0.22042726135253907, 0.22040985107421876, 0.22130482482910158, 0.22058700561523437, 0.22063002014160157, 0.22062693786621093, 0.22053887939453126, 0.22047640991210937, 0.22061158752441407, 0.2204375, 0.22050611877441406, 0.22054911804199218]",tokens/s,4.464333278026493,,,,, +4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,M,M,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -6190,7 +5131,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/B/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/M/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -6217,9 +5158,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949404-66840ecf6171208760579ba3;b3c6d036-1a12-4792-95fa-669049080a88) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948fa1-62746c825836de1161edb143;2d4885ee-5948-43c7-8ad8-d27f3d3ef705) -Repository Not Found for url: https://huggingface.co/B/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/M/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -6244,11 +5185,14 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: B is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: M is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-14B,Qwen/Qwen1.5-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-3b,stabilityai/stablelm-base-alpha-3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1400.946688,4467.458048,0.0,3821.010944,3588.539904,s,10,2.8509368591308593,0.285093685913086,0.0018864014341163783,0.28445895385742187,0.2852971740722656,0.28801900939941405,0.29019647766113277,"[0.2907408447265625, 0.28459954833984374, 0.28446585083007814, 0.2842637329101563, 0.28442007446289064, 0.2843152465820312, 0.2845796203613281, 0.2844075622558594, 0.28469232177734377, 0.2844520568847656]",tokens/s,897.9504375205436,kWh,3.3620131512482964e-06,1.8420311789971794e-06,1.613754377422258e-05,2.134158810446806e-05,tokens/kWh,11995358.487234792,MB,1400.946688,4467.458048,0.0,3821.010944,3698.94656,s,10,165.60105078125,16.560105078124998,0.002304538991507171,16.5600693359375,16.5629611328125,16.56372666015625,16.56433908203125,"[16.5644921875, 16.559681640625, 16.560998046875, 16.557119140625, 16.55881640625, 16.558265625, 16.56045703125, 16.562791015625, 16.556978515625, 16.561451171875]",tokens/s,3.804323686521747,kWh,0.00019549797135922647,0.00010714875620388434,0.0009433736405007801,0.0012460203680638908,tokens/kWh,50560.97124470891,,s,629,167.89605535888654,0.2669253662303445,0.03378333259823164,0.26283621215820313,0.2630875061035156,0.263170263671875,0.5471718627929687,"[0.26277273559570313, 0.26256280517578123, 0.2627635192871094, 0.2625884094238281, 0.262614013671875, 0.26269287109375, 0.26282803344726563, 0.26283111572265627, 0.2626437072753906, 0.26271026611328124, 0.2626826171875, 0.2628269958496094, 0.2629119873046875, 0.2628935546875, 0.26298162841796874, 0.26274612426757815, 0.2627860412597656, 0.26264779663085935, 0.26285055541992186, 0.26276556396484374, 0.26288433837890623, 0.2632120361328125, 0.2632437744140625, 0.262935546875, 0.26322021484375, 0.2628751220703125, 0.26288433837890623, 0.2628751220703125, 0.2629795837402344, 0.26279833984375, 0.263130126953125, 0.2629437561035156, 0.263046142578125, 0.26281777954101565, 0.26273895263671876, 0.26270721435546873, 0.26306353759765627, 0.2627993469238281, 0.263014404296875, 0.26284442138671876, 0.26303692626953123, 0.26287103271484374, 0.26279220581054685, 0.26292633056640624, 0.2630000610351563, 0.2632509460449219, 0.2630911865234375, 0.26301644897460935, 0.2629447631835938, 0.2627860412597656, 0.26292837524414064, 0.26297344970703124, 0.2631321716308594, 0.26289767456054686, 0.26301132202148436, 0.2628464660644531, 0.26280755615234375, 0.2627205200195312, 0.2628055114746094, 0.26311065673828127, 0.26308914184570314, 0.26280755615234375, 0.5474641723632813, 0.2627502136230469, 0.262677490234375, 0.26272564697265627, 0.26257305908203127, 0.2627666015625, 0.26281777954101565, 0.26266726684570313, 0.2627686462402344, 0.26266009521484374, 0.2626662292480469, 0.26324069213867185, 0.2628741149902344, 0.26273382568359377, 0.26285772705078125, 0.2628853759765625, 0.26265701293945315, 0.2628894653320312, 0.2630328369140625, 0.26302566528320315, 0.26280856323242185, 0.2628055114746094, 0.2626734008789062, 0.2630440979003906, 0.2628382568359375, 0.26280038452148435, 0.2630901794433594, 0.26281573486328125, 0.2629386291503906, 0.2631526489257813, 0.2629437561035156, 0.2629140625, 0.26282803344726563, 0.2627686462402344, 0.26325503540039064, 0.26316903686523435, 0.26300314331054686, 0.26308096313476564, 0.263041015625, 0.26282290649414064, 0.26275430297851565, 0.26275942993164064, 0.2629099426269531, 0.26284542846679687, 0.26273995971679687, 0.2628136901855469, 0.2626826171875, 0.26290689086914065, 0.26275225830078125, 0.2628515930175781, 0.26283416748046873, 0.2628751220703125, 0.2627901306152344, 0.26285772705078125, 0.26277273559570313, 0.26280142211914065, 0.26279833984375, 0.2628833312988281, 0.26294168090820313, 0.2629375915527344, 0.26277273559570313, 0.26275839233398435, 0.2627430419921875, 0.547251220703125, 0.2627635192871094, 0.26263143920898435, 0.2626652221679687, 0.2625669250488281, 0.2627276916503906, 0.2626590576171875, 0.26271026611328124, 0.2630768737792969, 0.26291915893554685, 0.26271435546875, 0.2629437561035156, 0.2627635192871094, 0.2625976257324219, 0.262697998046875, 0.2629939270019531, 0.2626723937988281, 0.2627799072265625, 0.26286285400390624, 0.26268978881835936, 0.2628239440917969, 0.2629273681640625, 0.2628853759765625, 0.2630993957519531, 0.2629744567871094, 0.26282290649414064, 0.26280856323242185, 0.2628874206542969, 0.26281573486328125, 0.2628106384277344, 0.26278707885742186, 0.2631178283691406, 0.2629519348144531, 0.26300827026367185, 0.2628822937011719, 0.262793212890625, 0.2627358703613281, 0.262898681640625, 0.2627635192871094, 0.2630543212890625, 0.26283621215820313, 0.2628751220703125, 0.2629508972167969, 0.2629242858886719, 0.26298675537109373, 0.26301336669921876, 0.2632284240722656, 0.26328472900390626, 0.2629119873046875, 0.2631649169921875, 0.26297854614257815, 0.26286181640625, 0.26307379150390625, 0.26298880004882813, 0.26273995971679687, 0.26296728515625, 0.26279730224609377, 0.2629386291503906, 0.26305535888671877, 0.262835205078125, 0.2627409973144531, 0.26296728515625, 0.26286181640625, 0.5470679321289063, 0.26265496826171875, 0.2626447448730469, 0.26254437255859375, 0.2625976257324219, 0.26270513916015625, 0.2626662292480469, 0.2626078796386719, 0.2626385803222656, 0.2627911682128906, 0.26279525756835936, 0.26274713134765626, 0.26267544555664063, 0.2626795654296875, 0.26265396118164064, 0.2627348327636719, 0.2626273193359375, 0.26269287109375, 0.26267648315429687, 0.26258740234375, 0.26294168090820313, 0.2628188171386719, 0.2626805725097656, 0.26300927734375, 0.26291915893554685, 0.2627901306152344, 0.2627624816894531, 0.2626580505371094, 0.26270925903320314, 0.26276556396484374, 0.2627819519042969, 0.26282803344726563, 0.26264779663085935, 0.26278707885742186, 0.26265087890625, 0.26304510498046874, 0.26298162841796874, 0.26296728515625, 0.2629273681640625, 0.26303079223632814, 0.26278091430664063, 0.262898681640625, 0.2630758361816406, 0.2631127014160156, 0.2629908447265625, 0.2628485107421875, 0.2629222412109375, 0.2627747802734375, 0.26271026611328124, 0.2629294128417969, 0.26290277099609377, 0.2629468078613281, 0.2629150695800781, 0.2629375915527344, 0.262803466796875, 0.2627768249511719, 0.26270721435546873, 0.26287307739257815, 0.2632929382324219, 0.2630379638671875, 0.2627747802734375, 0.26309222412109373, 0.26279730224609377, 0.5472327880859374, 0.2629273681640625, 0.2627839965820313, 0.26275225830078125, 0.26269183349609376, 0.26259249877929686, 0.26274508666992186, 0.26279425048828126, 0.2629375915527344, 0.2630973510742188, 0.26277069091796873, 0.2626744384765625, 0.26267544555664063, 0.2627768249511719, 0.2626908264160156, 0.2628167724609375, 0.2626355285644531, 0.2627747802734375, 0.2627993469238281, 0.26275942993164064, 0.2628392944335938, 0.26277069091796873, 0.2627286987304687, 0.26279730224609377, 0.2626713562011719, 0.26264984130859376, 0.2627358703613281, 0.26286590576171875, 0.26278091430664063, 0.2628464660644531, 0.2626447448730469, 0.2627850341796875, 0.2631075744628906, 0.26286285400390624, 0.26297549438476564, 0.26297650146484375, 0.26297344970703124, 0.26278912353515627, 0.2626252746582031, 0.2630748291015625, 0.26306149291992187, 0.26298880004882813, 0.2631884765625, 0.26296218872070315, 0.2627358703613281, 0.26285055541992186, 0.26278912353515627, 0.26330316162109374, 0.26291302490234375, 0.26285055541992186, 0.2627799072265625, 0.2628055114746094, 0.2628536376953125, 0.2628884582519531, 0.26296319580078126, 0.26335232543945314, 0.262930419921875, 0.26275326538085936, 0.2627911682128906, 0.262835205078125, 0.26279833984375, 0.2627778625488281, 0.2626990051269531, 0.547040283203125, 0.2626211853027344, 0.2626027526855469, 0.26274713134765626, 0.26255462646484373, 0.26267034912109377, 0.2627778625488281, 0.2628802490234375, 0.26282907104492187, 0.2628853759765625, 0.26311578369140626, 0.2628106384277344, 0.262761474609375, 0.26274200439453127, 0.262645751953125, 0.2627491760253906, 0.2628413391113281, 0.2627215270996094, 0.262719482421875, 0.26273690795898436, 0.2629324951171875, 0.26294168090820313, 0.26289767456054686, 0.2629847106933594, 0.26286590576171875, 0.262866943359375, 0.2628167724609375, 0.2628802490234375, 0.262972412109375, 0.2628741149902344, 0.26290072631835937, 0.2630010986328125, 0.26286489868164065, 0.2628536376953125, 0.26311883544921877, 0.26306561279296875, 0.26278912353515627, 0.2628884582519531, 0.2627799072265625, 0.2629795837402344, 0.26278912353515627, 0.2628812866210937, 0.26278912353515627, 0.2628106384277344, 0.26293145751953123, 0.26276760864257814, 0.2627758178710938, 0.2628536376953125, 0.26280755615234375, 0.26282086181640624, 0.26271026611328124, 0.26280242919921876, 0.26279730224609377, 0.2627082214355469, 0.26268365478515626, 0.2629601135253906, 0.26269287109375, 0.2627307434082031, 0.26279525756835936, 0.26303079223632814, 0.26300314331054686, 0.262866943359375, 0.2628792419433594, 0.5475604248046875, 0.2626938781738281, 0.262719482421875, 0.26291915893554685, 0.26270309448242185, 0.262719482421875, 0.26266827392578124, 0.2629447631835938, 0.26271743774414064, 0.2627205200195312, 0.262645751953125, 0.26268161010742186, 0.26261196899414063, 0.2626805725097656, 0.26280960083007815, 0.26294784545898436, 0.2627061767578125, 0.26282803344726563, 0.26302462768554685, 0.2627491760253906, 0.2626959228515625, 0.2627440490722656, 0.26291915893554685, 0.26292120361328125, 0.26270721435546873, 0.26285260009765626, 0.26279525756835936, 0.26292327880859373, 0.2627440490722656, 0.26276043701171875, 0.26281268310546874, 0.2629427185058594, 0.26270925903320314, 0.2629847106933594, 0.26284442138671876, 0.2630963134765625, 0.26291815185546874, 0.2629662780761719, 0.26276556396484374, 0.2630348815917969, 0.2629161071777344, 0.26322738647460936, 0.26300827026367185, 0.26284033203125, 0.26286798095703123, 0.2630676574707031, 0.2629591064453125, 0.26298062133789063, 0.2627184753417969, 0.2629345397949219, 0.2627491760253906, 0.26317108154296875, 0.2627276916503906, 0.26300619506835937, 0.26283621215820313, 0.26308709716796874, 0.26335028076171874, 0.26290585327148436, 0.262793212890625, 0.2628751220703125, 0.2630625305175781, 0.262866943359375, 0.26292120361328125, 0.5473106079101563, 0.262751220703125, 0.26283111572265627, 0.2626652221679687, 0.2627184753417969, 0.26272357177734373, 0.26292327880859373, 0.26301031494140625, 0.26290585327148436, 0.26286181640625, 0.26279220581054685, 0.2627553405761719, 0.2628884582519531, 0.26308914184570314, 0.26276556396484374, 0.2630502319335937, 0.26282803344726563, 0.26288641357421877, 0.2627993469238281, 0.26274200439453127, 0.26290277099609377, 0.2628853759765625, 0.2627716979980469, 0.2627716979980469, 0.2627010498046875, 0.26282803344726563, 0.2629017639160156, 0.26265087890625, 0.262935546875, 0.2629508972167969, 0.2630492248535156, 0.26289971923828126, 0.2630379638671875, 0.2628894653320312, 0.2629601135253906, 0.2628935546875, 0.2628833312988281, 0.26278707885742186, 0.26283724975585937, 0.2631280517578125, 0.2629242858886719, 0.26284237670898436, 0.2629294128417969, 0.262930419921875, 0.2628167724609375, 0.2629847106933594, 0.26290585327148436, 0.26296832275390625, 0.2628269958496094, 0.2630911865234375, 0.2628587646484375, 0.26311578369140626, 0.2628044738769531, 0.2630000610351563, 0.26291915893554685, 0.26306866455078126, 0.26301644897460935, 0.2631628723144531, 0.2630225830078125, 0.26312396240234376, 0.26298367309570314, 0.26306561279296875, 0.2629017639160156, 0.547757080078125, 0.2626713562011719, 0.26260171508789065, 0.262729736328125, 0.26323355102539064, 0.2629171142578125, 0.2627225646972656, 0.2627696533203125, 0.262856689453125, 0.2626641845703125, 0.26276760864257814, 0.2626375732421875, 0.2626744384765625, 0.2626744384765625, 0.26258636474609376, 0.262724609375, 0.2627061767578125, 0.26262835693359377, 0.26265087890625, 0.26280856323242185, 0.2628044738769531, 0.26286181640625, 0.2627768249511719, 0.26277069091796873, 0.2627133483886719, 0.26289971923828126, 0.26298880004882813, 0.2631403503417969, 0.2628608093261719, 0.26283416748046873, 0.26289254760742187, 0.26295297241210935, 0.2626713562011719, 0.2626641845703125, 0.2626150512695313, 0.26276455688476563, 0.26270413208007815, 0.2628331604003906, 0.262793212890625, 0.26271539306640623, 0.2627286987304687, 0.2627010498046875, 0.26297854614257815, 0.26323251342773435, 0.26312295532226565, 0.2629427185058594, 0.2632806396484375, 0.2629427185058594, 0.26271435546875, 0.26275326538085936, 0.2626631774902344, 0.262866943359375, 0.2626744384765625, 0.26271539306640623, 0.26262631225585936, 0.26273895263671876, 0.26274713134765626, 0.2630215759277344, 0.26290380859375, 0.2628802490234375, 0.26276760864257814, 0.26292837524414064, 0.26273995971679687, 0.5472122802734375, 0.262940673828125, 0.2628536376953125, 0.2628188171386719, 0.26270513916015625, 0.26295501708984376, 0.2627082214355469, 0.26284954833984375, 0.26267852783203127, 0.2627666015625, 0.26269491577148435, 0.2628239440917969, 0.26267034912109377, 0.26264883422851565, 0.2627061767578125, 0.2629591064453125, 0.2631485290527344, 0.26324786376953124, 0.26280755615234375, 0.26280960083007815, 0.26319256591796875, 0.26267852783203127, 0.2628167724609375, 0.2628433837890625, 0.26269287109375, 0.26274713134765626, 0.2629744567871094, 0.26298367309570314, 0.26273178100585937, 0.26305227661132813, 0.26277886962890623, 0.26314138793945313, 0.26285260009765626, 0.26283621215820313, 0.2628055114746094, 0.26295297241210935, 0.2627491760253906, 0.2626693115234375, 0.26276043701171875, 0.26314752197265623, 0.26287820434570314, 0.26291302490234375, 0.26278912353515627, 0.2630154113769531, 0.2626723937988281, 0.2631383056640625, 0.2627901306152344, 0.26301644897460935, 0.2626805725097656, 0.2629847106933594, 0.262761474609375, 0.26287103271484374, 0.26281268310546874, 0.26283724975585937, 0.2633441162109375, 0.2631127014160156, 0.2628884582519531, 0.26285260009765626, 0.26326937866210937, 0.26319155883789064, 0.2628894653320312, 0.26291815185546874, 0.2629099426269531]",tokens/s,3.7463655632377972,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-13b,huggyllama/llama-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,3015.59808,9299.296256,0.0,8652.849152,8210.185216,s,10,11.00354541015625,1.100354541015625,0.0021995629105345756,1.10037060546875,1.1026337646484374,1.103404345703125,1.104020810546875,"[1.1041749267578125, 1.1024625244140625, 1.0971700439453125, 1.0986126708984374, 1.0993076171875, 1.097432861328125, 1.099380126953125, 1.101361083984375, 1.1021866455078124, 1.1014569091796875]",tokens/s,232.65228656548507,kWh,1.2965490321318309e-05,7.10465502763327e-06,5.986921456200278e-05,7.993935991095436e-05,tokens/kWh,3202427.443566751,MB,3016.822784,9299.296256,0.0,8652.849152,8503.104,s,10,641.11232421875,64.11123242187502,0.005190298699693196,64.11128124999999,64.116784765625,64.1185056640625,64.11988238281249,"[64.1162265625, 64.11091796875, 64.10715234375, 64.11164453125, 64.1140703125, 64.10447265625, 64.1202265625, 64.106796875, 64.1044140625, 64.11640234375]",tokens/s,0.9826671180712498,kWh,0.0007569437074826825,0.00041487128047605436,0.0034860815944185997,0.004657896582377336,tokens/kWh,13525.418369818235,,s,629,649.9943001708987,1.0333772657724936,0.13070199113792613,1.0176091918945311,1.0182221801757814,1.0184349731445312,2.1165633984375,"[1.0176849975585938, 1.0179225463867188, 1.0177464599609376, 1.0181263427734375, 1.01766552734375, 1.0177433471679687, 1.0174985961914063, 1.0180587768554688, 1.0172999877929687, 1.0173552856445311, 1.017459716796875, 1.0184939575195313, 1.017143310546875, 1.0182799072265625, 1.0176931762695312, 1.0179122924804687, 1.0178191528320313, 1.0179092407226562, 1.0176112670898438, 1.0177853393554688, 1.0181171264648436, 1.0180086059570312, 1.0171443481445313, 1.0179840087890626, 1.0173839111328125, 1.0177720336914062, 1.0175538940429687, 1.0174218139648437, 1.0173317260742187, 1.0178887939453125, 1.0179092407226562, 1.0181570434570313, 1.0174976196289063, 1.0177576904296874, 1.017449462890625, 1.017692138671875, 1.0180843505859376, 1.0179747924804687, 1.0176112670898438, 1.0182471923828125, 1.0175887451171874, 1.017427978515625, 1.0171924438476563, 1.0172886962890626, 1.0171688842773436, 1.0173245239257813, 1.0170091552734375, 1.0176368408203125, 1.0171146240234374, 1.0184765625, 1.0177085571289062, 1.017554931640625, 1.0172211303710939, 1.0182522583007811, 1.017290771484375, 1.0179625244140624, 1.0176573486328124, 1.0178734130859375, 1.0176276245117188, 1.0185001220703125, 1.0183004150390624, 1.0180914916992188, 2.120390625, 1.0169886474609375, 1.0174678955078125, 1.0169763793945312, 1.017365478515625, 1.0172262573242188, 1.0176307373046876, 1.017291748046875, 1.0174207763671874, 1.017438232421875, 1.0176419677734374, 1.01682275390625, 1.0177566528320312, 1.0169026489257813, 1.0171187133789064, 1.0169517822265626, 1.0179747924804687, 1.0175006713867187, 1.0174310302734375, 1.0172119140625, 1.018013671875, 1.0172262573242188, 1.0173501586914062, 1.0170921020507813, 1.0172692260742187, 1.0172661743164062, 1.01758154296875, 1.0180413208007812, 1.017764892578125, 1.0175068359375, 1.0178314208984376, 1.0169129028320312, 1.0174238891601564, 1.01768701171875, 1.0177402954101562, 1.0183987426757812, 1.01777099609375, 1.0177843017578125, 1.0177607421875, 1.0173163452148437, 1.0173081665039063, 1.017702392578125, 1.0177484741210938, 1.0175764770507814, 1.01732763671875, 1.018228759765625, 1.018945556640625, 1.0175508422851562, 1.0177587280273437, 1.0177536010742188, 1.0183505859375, 1.0178427124023437, 1.01798095703125, 1.0178457641601562, 1.0182246704101563, 1.0184437866210938, 1.0184017944335937, 1.0174044189453124, 1.01778125, 1.0175907592773437, 1.0179645385742186, 1.0172713012695314, 1.0177116088867189, 2.116588623046875, 1.0172682495117187, 1.017439208984375, 1.0171781005859375, 1.0176378784179687, 1.0172579956054688, 1.0172876586914064, 1.0171351318359374, 1.017439208984375, 1.0174095458984376, 1.0178488159179688, 1.017796630859375, 1.0178846435546876, 1.0169200439453125, 1.0174443359375, 1.0173378295898436, 1.0173532104492187, 1.0172938232421875, 1.0175784912109376, 1.0172467041015625, 1.0177372436523437, 1.01789697265625, 1.0177136840820313, 1.0170101928710937, 1.01732763671875, 1.0172815551757812, 1.0176215209960937, 1.0174166870117187, 1.0176153564453125, 1.017275390625, 1.0179368896484375, 1.0172160034179687, 1.0177505493164063, 1.0171678466796874, 1.01737060546875, 1.01718017578125, 1.0172098388671875, 1.0171494140625, 1.0173306884765625, 1.0171054077148438, 1.0177413330078124, 1.017786376953125, 1.0182041625976563, 1.0170777587890625, 1.0175405883789062, 1.0175836181640625, 1.0175068359375, 1.017169921875, 1.0173778076171875, 1.0175529174804687, 1.0178037719726563, 1.0177454223632814, 1.0187315063476563, 1.01823486328125, 1.0180054931640625, 1.0178140258789063, 1.0181683349609374, 1.017670654296875, 1.0181611328125, 1.0182564086914063, 1.0183587646484376, 1.0175396118164062, 1.0181222534179688, 2.11649853515625, 1.0170214233398438, 1.0172620849609375, 1.0174719848632812, 1.0172548828125, 1.0174484252929688, 1.017628662109375, 1.0173849487304687, 1.0173992919921875, 1.0177689819335938, 1.0176215209960937, 1.01728564453125, 1.0174402465820314, 1.0171627807617187, 1.0172057495117188, 1.0171904296875, 1.0177679443359375, 1.0173214721679686, 1.0170664672851562, 1.0171207885742188, 1.0171893920898438, 1.0169364624023438, 1.0172098388671875, 1.0170009765625, 1.0171842651367187, 1.01760205078125, 1.0179368896484375, 1.0174985961914063, 1.0172743530273438, 1.0170787963867187, 1.0172272338867188, 1.0170316772460937, 1.0173040771484374, 1.0175529174804687, 1.0179287109375, 1.0178242797851562, 1.0183321533203125, 1.01816015625, 1.0178682861328125, 1.0174054565429687, 1.0174771118164063, 1.0178682861328125, 1.0177188110351563, 1.017955322265625, 1.0186710815429687, 1.0180361938476563, 1.018166259765625, 1.017849853515625, 1.0181478271484374, 1.0177095947265624, 1.017891845703125, 1.0177259521484374, 1.0180966186523437, 1.0177996826171876, 1.0185390014648437, 1.0180700073242188, 1.0183905029296876, 1.0182389526367188, 1.0185400390625, 1.0179686279296876, 1.0179194946289063, 1.0175518798828125, 1.0181058349609375, 2.11787255859375, 1.017354248046875, 1.0174566650390624, 1.017512939453125, 1.0176153564453125, 1.0173112182617188, 1.0177638549804688, 1.0170715942382813, 1.017206787109375, 1.0171371459960938, 1.0176399536132812, 1.0181683349609374, 1.0179246215820312, 1.017238525390625, 1.0177177734375, 1.01699072265625, 1.01747509765625, 1.0175672607421875, 1.0181283569335937, 1.01778125, 1.01810791015625, 1.018156005859375, 1.018429443359375, 1.0175344848632812, 1.0176460571289063, 1.0172333984375, 1.0177321166992188, 1.01758154296875, 1.0172559204101563, 1.0175887451171874, 1.0181652221679687, 1.0181017456054688, 1.0174576416015626, 1.0177464599609376, 1.017849853515625, 1.0172507934570312, 1.0176378784179687, 1.0174627685546875, 1.0175211791992187, 1.017702392578125, 1.0177321166992188, 1.01766552734375, 1.0176245727539062, 1.017238525390625, 1.0175139770507813, 1.0173101806640625, 1.0175518798828125, 1.01707568359375, 1.0175723266601562, 1.0176614379882813, 1.018265625, 1.0177587280273437, 1.0177955932617186, 1.017280517578125, 1.0177669067382813, 1.01758056640625, 1.0177003784179688, 1.0202439575195312, 1.0180403442382813, 1.0180946044921875, 1.0176676025390625, 1.0172211303710939, 1.0179778442382812, 2.115203125, 1.0167890014648437, 1.0172354736328124, 1.0170439453125, 1.0171873168945313, 1.0175703125, 1.0176470947265626, 1.0175744018554687, 1.0177515258789063, 1.0173716430664062, 1.0174197998046874, 1.0172938232421875, 1.0174003295898437, 1.0167725830078125, 1.0175344848632812, 1.0169354248046876, 1.017470947265625, 1.017322509765625, 1.017417724609375, 1.0173368530273437, 1.0175313720703125, 1.0170009765625, 1.0170460205078125, 1.0174044189453124, 1.017523193359375, 1.0177791748046876, 1.0174197998046874, 1.0170818481445312, 1.0176419677734374, 1.0173101806640625, 1.0176409301757812, 1.0174095458984376, 1.0175293579101563, 1.0173173828125, 1.0182144165039062, 1.0182215576171876, 1.0176747436523437, 1.01743310546875, 1.0186895141601562, 1.0174781494140626, 1.0176266479492186, 1.0174013671875, 1.0175191040039062, 1.0173880615234374, 1.017828369140625, 1.0177105712890624, 1.0176378784179687, 1.0176849975585938, 1.017650146484375, 1.0173193969726562, 1.0175958862304688, 1.017544677734375, 1.01745458984375, 1.0172119140625, 1.017970703125, 1.0179348754882813, 1.017543701171875, 1.0179287109375, 1.0183065795898438, 1.017802734375, 1.0182492065429687, 1.0176123046875, 1.0174044189453124, 2.1172890625, 1.0174003295898437, 1.0177330932617188, 1.0177269897460937, 1.0172897338867188, 1.0172108764648438, 1.0175191040039062, 1.0172661743164062, 1.0171361083984376, 1.0175949096679688, 1.0182318115234374, 1.0174924926757813, 1.0179317626953126, 1.0172047119140626, 1.017650146484375, 1.017218017578125, 1.0178754272460937, 1.017364501953125, 1.017511962890625, 1.0177156982421875, 1.0180003662109376, 1.0175949096679688, 1.01768603515625, 1.0176327514648438, 1.0180106201171875, 1.0180044555664063, 1.0175570068359374, 1.0175354614257812, 1.0178191528320313, 1.0182748413085938, 1.0180044555664063, 1.0177034301757812, 1.0174884033203124, 1.0172713012695314, 1.0173092041015626, 1.01715966796875, 1.0175641479492188, 1.0176747436523437, 1.0178734130859375, 1.0186076049804687, 1.0178191528320313, 1.017248779296875, 1.0178734130859375, 1.0178088989257812, 1.0177566528320312, 1.0173737182617189, 1.0184867553710937, 1.0182072143554688, 1.018197998046875, 1.0183782348632813, 1.0181672973632812, 1.0175877075195312, 1.0179911499023437, 1.0176522216796875, 1.0181212158203126, 1.017575439453125, 1.0183485717773437, 1.01770751953125, 1.0183301391601562, 1.0184693603515624, 1.0186875, 1.0184386596679686, 1.0182625122070312, 2.120072265625, 1.017439208984375, 1.0174781494140626, 1.0172333984375, 1.0177269897460937, 1.0175928344726564, 1.0170654907226562, 1.0174505004882812, 1.0172559204101563, 1.0168995971679688, 1.0167019653320313, 1.0168186645507813, 1.0172682495117187, 1.0168565673828125, 1.0178058471679687, 1.0173900756835939, 1.0174361572265624, 1.0177945556640624, 1.0173880615234374, 1.0177044677734375, 1.0172129516601562, 1.0170511474609376, 1.0175641479492188, 1.0171637573242187, 1.0182041625976563, 1.0174515380859375, 1.0173992919921875, 1.017302001953125, 1.01718017578125, 1.0170521850585938, 1.017697265625, 1.0175518798828125, 1.0177699584960938, 1.0171688842773436, 1.0180577392578125, 1.0177750854492187, 1.0180413208007812, 1.0171555786132813, 1.0174617309570313, 1.0173552856445311, 1.0172088623046875, 1.0174453735351563, 1.0177587280273437, 1.0179358520507813, 1.017807861328125, 1.0180464477539062, 1.01760205078125, 1.01793994140625, 1.01802392578125, 1.0177402954101562, 1.01783349609375, 1.01783447265625, 1.0175006713867187, 1.017565185546875, 1.0181806030273437, 1.01722314453125, 1.0179891357421875, 1.0179143676757811, 1.0177699584960938, 1.018265625, 1.018239990234375, 1.0177269897460937, 1.01764404296875, 2.12052685546875, 1.0178191528320313, 1.0170664672851562, 1.0168914184570312, 1.016933349609375, 1.0168248291015625, 1.0170194091796876, 1.0169968872070312, 1.0170706176757813, 1.01739111328125, 1.0174085083007813, 1.0172446899414063, 1.01743408203125, 1.0172498168945312, 1.0173173828125, 1.0169630737304687, 1.0172764282226563, 1.017670654296875, 1.0172395629882813, 1.0175570068359374, 1.01774951171875, 1.0171514892578124, 1.0176829223632813, 1.0178232421875, 1.0177474365234376, 1.0177638549804688, 1.0182195434570311, 1.0177802124023438, 1.01798193359375, 1.0181058349609375, 1.0178447265625, 1.0170623779296875, 1.017565185546875, 1.01713818359375, 1.017654296875, 1.0177515258789063, 1.0174115600585938, 1.0176266479492186, 1.01768603515625, 1.0180618286132812, 1.0176409301757812, 1.01743408203125, 1.0178948974609374, 1.0173562622070313, 1.0175979614257813, 1.0175078125, 1.0172713012695314, 1.0172344360351562, 1.0179164428710938, 1.0178744506835937, 1.0179573974609375, 1.01726513671875, 1.017871337890625, 1.0172272338867188, 1.017660400390625, 1.01722314453125, 1.0177474365234376, 1.0172640991210937, 1.0182471923828125, 1.0183259887695313, 1.0176481323242188, 1.0172948608398438, 1.0174535522460937, 2.119248779296875, 1.0171259155273438, 1.0173378295898436, 1.0171361083984376, 1.0176768188476562, 1.0173480834960937, 1.0173060913085938, 1.0175313720703125, 1.0172876586914064, 1.0169313354492187, 1.0169517822265626, 1.0170767211914062, 1.016911865234375, 1.0168883056640625, 1.0176091918945311, 1.0169405517578125, 1.0172006225585937, 1.0173839111328125, 1.0174832763671875, 1.0169149169921874, 1.0174115600585938, 1.017101318359375, 1.0171627807617187, 1.0175191040039062, 1.0177177734375, 1.0175150146484375, 1.0177362060546875, 1.0174299926757813, 1.0178037719726563, 1.0174238891601564, 1.0178887939453125, 1.0173532104492187, 1.0172507934570312, 1.01740234375, 1.0190120849609374, 1.0181201782226563, 1.018503173828125, 1.0183167724609374, 1.0181693725585939, 1.0181580810546875, 1.0182164306640624, 1.0177146606445313, 1.0178099365234374, 1.0184202270507812, 1.0194851684570312, 1.019615234375, 1.0187745361328124, 1.018102783203125, 1.0178682861328125, 1.01852978515625, 1.018186767578125, 1.017744384765625, 1.0179573974609375, 1.0179799194335937, 1.0177484741210938, 1.01732861328125, 1.0178109741210937, 1.0174668579101562, 1.017786376953125, 1.017491455078125, 1.0179041137695313, 1.0180321044921874, 1.0186588134765624]",tokens/s,0.9677007934294523,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-7b-hf,meta-llama/Llama-2-7b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2001.69472,5480.382464,0.0,4833.93536,4503.41376,s,10,5.738609375,0.5738609375000001,0.0014211968686511217,0.5739980163574219,0.575327734375,0.5758431579589843,0.5762554968261718,"[0.5748433227539063, 0.5763585815429687, 0.5723970336914063, 0.5719782104492187, 0.5729453125, 0.57201806640625, 0.5736748046875, 0.5743212280273438, 0.5752131958007812, 0.574859619140625]",tokens/s,446.1011079012499,kWh,6.756110654936897e-06,3.7020347229372414e-06,3.163201604633459e-05,4.209016142420872e-05,tokens/kWh,6082181.472764753,MB,2003.341312,5480.382464,0.0,4833.93536,4688.700416,s,10,334.8389140625,33.48389140625,0.006002777931550277,33.4837109375,33.491801171875004,33.4921896484375,33.4925004296875,"[33.49171484375, 33.492578125, 33.48669921875, 33.4832421875, 33.47827734375, 33.4841796875, 33.4782109375, 33.47846875, 33.4750390625, 33.49050390625]",tokens/s,1.8815017417073754,kWh,0.000395271455562777,0.00021664300892132815,0.0018250813026564506,0.0024369957671405555,tokens/kWh,25851.501610903877,,s,629,339.4681906738281,0.539695056715148,0.0682067154879699,0.5314457397460938,0.5320167358398438,0.5323411499023437,1.1045171826171876,"[0.5315440673828125, 0.5327882080078125, 0.5320939331054687, 0.531873779296875, 0.5308590087890624, 0.5313822631835937, 0.530882568359375, 0.5313515625, 0.530988037109375, 0.531061767578125, 0.530872314453125, 0.5314385986328125, 0.5312184448242188, 0.531462158203125, 0.531262451171875, 0.5317355346679687, 0.5311897583007813, 0.5321195678710937, 0.5312982788085937, 0.5320591430664062, 0.5310802001953125, 0.531641357421875, 0.5311631469726562, 0.5312388916015625, 0.5309296875, 0.5314119873046875, 0.5308661499023437, 0.53139453125, 0.5312368774414062, 0.5312471313476562, 0.5308395385742187, 0.5312962646484375, 0.5309542236328125, 0.531441650390625, 0.531462158203125, 0.532063232421875, 0.5323673706054688, 0.5327810668945312, 0.5322188720703125, 0.5317089233398438, 0.5315245971679687, 0.531757080078125, 0.5315543212890625, 0.5318953247070313, 0.5315266723632812, 0.5318656005859375, 0.5314826049804687, 0.53178369140625, 0.5316423950195313, 0.5318696899414063, 0.5316649169921875, 0.53180517578125, 0.531388427734375, 0.5319229736328125, 0.5317713623046875, 0.5329234008789062, 0.5328568115234374, 0.5318778686523438, 0.531589111328125, 0.5319567260742187, 0.5317099609375, 0.5322915649414063, 1.1084400634765625, 0.53127783203125, 0.5318246459960938, 0.53123583984375, 0.5316290283203124, 0.531357666015625, 0.5316055297851563, 0.5315020751953125, 0.531830810546875, 0.5315850219726562, 0.532305908203125, 0.5320980224609375, 0.5330299072265625, 0.5324052734375, 0.5326130981445313, 0.53216357421875, 0.5326397705078125, 0.5320242919921875, 0.5325066528320312, 0.532401123046875, 0.5316433715820312, 0.5314949340820313, 0.5316167602539063, 0.5315225830078125, 0.5317222290039062, 0.5312593994140625, 0.5317662963867188, 0.5315317993164063, 0.5316321411132813, 0.5320345458984375, 0.5328107299804687, 0.5314774780273438, 0.531272705078125, 0.530861083984375, 0.53119384765625, 0.5307944946289063, 0.5313526000976563, 0.530988037109375, 0.5313013916015625, 0.530966552734375, 0.5314918212890625, 0.5308528442382813, 0.5315717163085938, 0.53110888671875, 0.5315563354492188, 0.530924560546875, 0.533138427734375, 0.531162109375, 0.5319669799804687, 0.5311057739257813, 0.5323171997070313, 0.53113037109375, 0.5316034545898437, 0.5314006958007812, 0.5314744262695312, 0.5310115966796874, 0.5314641723632813, 0.53139453125, 0.5315348510742187, 0.5311682739257813, 0.53148876953125, 0.5309757690429687, 0.5314242553710937, 1.1040880126953125, 0.5311743774414063, 0.5314990234375, 0.531357666015625, 0.53203662109375, 0.5313760986328125, 0.531758056640625, 0.5313689575195313, 0.53195263671875, 0.5313187866210938, 0.5315809326171875, 0.5311826171875, 0.5317130126953125, 0.5317140502929687, 0.5317130126953125, 0.5313382568359375, 0.5315819702148438, 0.53187890625, 0.5318358764648438, 0.531926025390625, 0.5318963012695312, 0.5314027709960938, 0.53145703125, 0.531620849609375, 0.5316331787109375, 0.5310167236328125, 0.5312348022460938, 0.5310382080078125, 0.5314088745117187, 0.5308682250976563, 0.5315399780273438, 0.5312174072265625, 0.5312706298828125, 0.5310443725585937, 0.5318563842773437, 0.531294189453125, 0.5317816162109374, 0.5314345092773437, 0.5318461303710937, 0.5316024169921875, 0.5316915283203125, 0.5309102172851563, 0.531857421875, 0.5316290283203124, 0.5315747680664062, 0.5310914306640625, 0.5317744750976563, 0.5314283447265625, 0.53144677734375, 0.5316792602539062, 0.5314396362304687, 0.531156982421875, 0.5315000610351562, 0.5313597412109375, 0.531751953125, 0.5312440185546875, 0.5317304077148437, 0.5317755126953125, 0.5315819702148438, 0.531620849609375, 0.5316690063476562, 0.5314795532226563, 0.531746826171875, 1.10517041015625, 0.5310320434570313, 0.5314959106445313, 0.531240966796875, 0.5316321411132813, 0.5310750732421875, 0.5315758056640625, 0.5309490966796875, 0.5315245971679687, 0.531431396484375, 0.5313065185546875, 0.5310504760742187, 0.53180517578125, 0.5314457397460938, 0.5317089233398438, 0.53155224609375, 0.5318389892578125, 0.53121435546875, 0.5315266723632812, 0.5316557006835938, 0.5317037963867187, 0.5315112915039063, 0.5319659423828125, 0.5315870971679687, 0.5313024291992188, 0.5310637817382813, 0.53197412109375, 0.5312553100585937, 0.5316925659179688, 0.5314713745117188, 0.53150927734375, 0.5313689575195313, 0.531694580078125, 0.5312471313476562, 0.5318174438476563, 0.5313341674804688, 0.5315020751953125, 0.5311109008789062, 0.5313853149414063, 0.5311262817382812, 0.53142529296875, 0.531198974609375, 0.53186767578125, 0.5312348022460938, 0.5325199584960938, 0.5314805908203125, 0.5316055297851563, 0.531357666015625, 0.5316454467773437, 0.5315297241210938, 0.5319075927734375, 0.5314221801757812, 0.5315809326171875, 0.531282958984375, 0.531325927734375, 0.5312184448242188, 0.5315061645507813, 0.5310894165039063, 0.5316116333007812, 0.5311078491210938, 0.5315430297851562, 0.5313955688476563, 0.5316587524414063, 1.10468408203125, 0.5308170166015626, 0.5314140014648437, 0.5310218505859375, 0.53187890625, 0.5309481201171875, 0.5317294311523437, 0.5310084838867187, 0.5319915771484375, 0.530977783203125, 0.5312849731445313, 0.5309696044921876, 0.531294189453125, 0.5310863647460937, 0.5315205078125, 0.5311488037109375, 0.531873779296875, 0.5310392456054688, 0.5315072021484375, 0.531240966796875, 0.53151025390625, 0.531162109375, 0.531541015625, 0.5314877319335938, 0.5313935546875, 0.5315809326171875, 0.5316167602539063, 0.531219482421875, 0.53136279296875, 0.5309470825195313, 0.5313136596679687, 0.5309798583984375, 0.5316341552734375, 0.5309798583984375, 0.5316966552734375, 0.5313157348632812, 0.531535888671875, 0.5310628051757813, 0.5316270141601562, 0.5313607788085938, 0.5316013793945312, 0.5313177490234375, 0.5321758422851562, 0.53148876953125, 0.5317089233398438, 0.53140478515625, 0.5316423950195313, 0.5311181030273437, 0.5316239624023438, 0.5310228271484375, 0.5313597412109375, 0.5311314086914063, 0.5313966064453125, 0.5312317504882812, 0.531378173828125, 0.5308600463867188, 0.5313966064453125, 0.5326162109375, 0.5314959106445313, 0.5313351440429688, 0.5318082275390625, 0.5313423461914063, 0.5320233154296875, 1.1039805908203124, 0.530788330078125, 0.5315082397460937, 0.5307863159179688, 0.53119384765625, 0.5309398803710937, 0.5312583618164063, 0.5307330322265625, 0.5312890625, 0.5308733520507812, 0.5311170654296875, 0.5309942016601562, 0.5312973022460937, 0.5311661987304688, 0.5314498291015625, 0.5309091796875, 0.532263916015625, 0.531462158203125, 0.5319485473632812, 0.531884033203125, 0.531937255859375, 0.5315133666992188, 0.532031494140625, 0.5308630981445313, 0.5312614135742187, 0.5308876953125, 0.5313873901367188, 0.5314078979492187, 0.5316280517578125, 0.531314697265625, 0.53157373046875, 0.5310853271484375, 0.5314744262695312, 0.5311897583007813, 0.5319854125976563, 0.53146728515625, 0.5319290771484375, 0.5310658569335938, 0.533580810546875, 0.5315614624023437, 0.5317345581054688, 0.5312808837890625, 0.531472412109375, 0.531282958984375, 0.5319321899414062, 0.5314600830078124, 0.53201611328125, 0.5309706420898438, 0.5315635375976563, 0.53127783203125, 0.5316904907226563, 0.5316259765625, 0.5321615600585937, 0.5318072509765625, 0.5314979858398438, 0.5314017333984375, 0.5320017700195312, 0.5319782104492188, 0.5316690063476562, 0.5314088745117187, 0.5318072509765625, 0.5312388916015625, 0.531979248046875, 1.1056363525390625, 0.5310975952148438, 0.5316484985351563, 0.5309685668945312, 0.5316218872070313, 0.5310679321289062, 0.53184716796875, 0.5311968994140625, 0.5316198120117187, 0.5313331298828124, 0.53146728515625, 0.5315911865234375, 0.5316013793945312, 0.5314119873046875, 0.5317488403320313, 0.5311682739257813, 0.5313904418945312, 0.5310167236328125, 0.5313966064453125, 0.5309951782226563, 0.5314457397460938, 0.5311436767578125, 0.5312788696289062, 0.5310361328125, 0.5313966064453125, 0.5309634399414063, 0.531441650390625, 0.5314631958007813, 0.5321011352539062, 0.5310320434570313, 0.53186865234375, 0.5309337768554687, 0.5312890625, 0.5309788208007813, 0.53139453125, 0.53129931640625, 0.5314539794921875, 0.5309747314453125, 0.5315932006835937, 0.5313382568359375, 0.5317478637695312, 0.5309747314453125, 0.53136279296875, 0.5310310668945313, 0.5313843383789062, 0.5313546142578125, 0.531884033203125, 0.5320816650390625, 0.5317007446289063, 0.5317181396484375, 0.5314928588867187, 0.531162109375, 0.53182568359375, 0.5310238647460938, 0.5315983276367188, 0.5310853271484375, 0.5314877319335938, 0.5318953247070313, 0.5316690063476562, 0.5312655639648437, 0.531473388671875, 0.5310628051757813, 0.5314242553710937, 1.1063428955078125, 0.5311477661132813, 0.5320335083007812, 0.5312921752929688, 0.5317335205078125, 0.530977783203125, 0.5313136596679687, 0.5312286987304687, 0.5314478149414062, 0.5310218505859375, 0.5314529418945313, 0.5309644775390625, 0.5314129638671875, 0.5308477172851562, 0.5313074951171874, 0.5311713256835937, 0.5313065185546875, 0.5310802001953125, 0.531578857421875, 0.5314457397460938, 0.5317069091796875, 0.53136279296875, 0.531314697265625, 0.531267578125, 0.5314457397460938, 0.5310955810546875, 0.5312737426757812, 0.53108837890625, 0.5317027587890625, 0.5308856201171875, 0.5313976440429687, 0.5313341674804688, 0.5313167114257813, 0.5309122314453125, 0.5314457397460938, 0.5309849853515625, 0.5314765014648437, 0.5310156860351563, 0.5319966430664063, 0.5313443603515625, 0.5320386352539063, 0.531367919921875, 0.5315552978515625, 0.530850830078125, 0.5315706787109375, 0.5309685668945312, 0.5314590454101562, 0.5309583129882812, 0.5313720092773437, 0.5309685668945312, 0.5319751586914062, 0.531578857421875, 0.5315164184570312, 0.5312655639648437, 0.5314447631835938, 0.5310504760742187, 0.5314877319335938, 0.5322485961914063, 0.5322516479492188, 0.531857421875, 0.5321328735351563, 0.5316331787109375, 0.531778564453125, 1.1072911376953125, 0.5309224853515625, 0.5317345581054688, 0.5315655517578125, 0.531462158203125, 0.53136279296875, 0.5313065185546875, 0.530951171875, 0.5313351440429688, 0.5309603881835937, 0.53127783203125, 0.5310310668945313, 0.5318154296875, 0.531683349609375, 0.5316904907226563, 0.5310494995117188, 0.5312767944335938, 0.5310556030273438, 0.5316259765625, 0.53110986328125, 0.5314088745117187, 0.5309767456054687, 0.5314846801757812, 0.5312081909179688, 0.5313607788085938, 0.5309849853515625, 0.53131982421875, 0.5310699462890625, 0.5314191284179688, 0.5309747314453125, 0.5317734375, 0.531103759765625, 0.5316280517578125, 0.5309747314453125, 0.531689453125, 0.531009521484375, 0.5314703369140625, 0.53123583984375, 0.53159423828125, 0.5309818725585937, 0.5314191284179688, 0.5310842895507812, 0.5318082275390625, 0.531125244140625, 0.5315932006835937, 0.531051513671875, 0.5314324340820312, 0.5311846313476563, 0.5314447631835938, 0.5312880859375, 0.5315921630859375, 0.5316597900390625, 0.5315440673828125, 0.53146826171875, 0.53159423828125, 0.5313331298828124, 0.5315133666992188, 0.5311201171875, 0.5314662475585937, 0.5311539306640625, 0.5316423950195313, 0.531114990234375, 0.5314866943359375, 1.1065169677734374, 0.5308661499023437, 0.5313402709960937, 0.5308170166015626, 0.5315850219726562, 0.5312532348632812, 0.5315512084960937, 0.53100341796875, 0.5315338134765625, 0.531156982421875, 0.5314345092773437, 0.5309490966796875, 0.5311846313476563, 0.5308651733398437, 0.5314539794921875, 0.5309276123046875, 0.531431396484375, 0.5310126342773438, 0.5312388916015625, 0.5309061279296875, 0.531294189453125, 0.5308026733398438, 0.531325927734375, 0.5314857177734374, 0.5316792602539062, 0.5311539306640625, 0.5321492309570313, 0.5309573364257812, 0.5314765014648437, 0.5313320922851562, 0.5315184936523437, 0.5314457397460938, 0.5313597412109375, 0.530850830078125, 0.5313320922851562, 0.531251220703125, 0.5314334716796875, 0.5309030151367188, 0.531431396484375, 0.531162109375, 0.5314017333984375, 0.53098291015625, 0.5322833862304688, 0.532005859375, 0.5324338989257813, 0.53241650390625, 0.5326049194335938, 0.5322711181640625, 0.5329356689453125, 0.5318450927734375, 0.5316024169921875, 0.5314273071289063, 0.5318809814453125, 0.53153076171875, 0.5320017700195312, 0.5319137573242188, 0.5322250366210938, 0.5320192260742187, 0.5323571166992187, 0.5319556884765625, 0.53264794921875, 0.5321123657226563, 0.5325609130859374]",tokens/s,1.8528982016001712,,,,, +4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,-,-,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -6256,34 +5200,40 @@ If this is a private repository, make sure to pass a token having permission to File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 106, in _inner_fn + validate_repo_id(arg_value) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 160, in validate_repo_id + raise HFValidationError( +huggingface_hub.errors.HFValidationError: Repo id must use alphanumeric chars or '-', '_', '.', '--' and '..' are forbidden, '-' and '.' cannot start or end the name, max length is 96: '-'. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 466, in cached_file + raise EnvironmentError( +OSError: Incorrect path_or_model_id: '-'. Please provide either the path to a local folder or the repo_id of a model on the Hub. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-410m,EleutherAI/pythia-410m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1390.702592,1340.604416,0.0,694.157312,598.499328,s,10,0.6226632919311523,0.062266329193115234,0.002317832326909016,0.06196879959106445,0.06357897109985351,0.06612861976623535,0.06816833869934083,"[0.06867826843261719, 0.06029948806762695, 0.06301238250732422, 0.06221964645385742, 0.06201440048217773, 0.06192319869995117, 0.06178224182128906, 0.06027980804443359, 0.06031568145751953, 0.06213817596435547]",tokens/s,4111.3713192571795,kWh,7.181983443623039e-07,3.9353970671072603e-07,2.1138383914060147e-06,3.2255764424790445e-06,tokens/kWh,79365658.99621,MB,1391.030272,1340.604416,0.0,694.157312,659.032576,s,10,37.91430688476563,3.791430688476563,0.033463632163375424,3.808232421875,3.8238944580078122,3.8254893432617187,3.8267652514648436,"[3.8235400390625, 3.807294921875, 3.809169921875, 3.815871337890625, 3.827084228515625, 3.813744140625, 3.745643798828125, 3.73081494140625, 3.753345703125, 3.7877978515625]",tokens/s,16.616418754924958,kWh,4.459946840148583e-05,2.4442959093412353e-05,0.00012145201046119378,0.00019049443795609197,tokens/kWh,330718.3174267859,,s,629,38.408798217773445,0.06106327220631707,0.007411049818688859,0.06058700942993164,0.06105620422363281,0.061356236267089845,0.1198044711303711,"[0.05935715103149414, 0.059200511932373044, 0.06025625610351563, 0.06658048248291015, 0.06115430450439453, 0.06075187301635742, 0.06081740951538086, 0.06116556930541992, 0.06187519836425781, 0.060846080780029295, 0.0618015022277832, 0.061259742736816405, 0.06081024169921875, 0.06082559967041016, 0.06123110580444336, 0.06096486282348633, 0.06082559967041016, 0.06090752029418945, 0.06103142547607422, 0.05951590347290039, 0.05919027328491211, 0.060930049896240235, 0.06138163375854492, 0.06130278396606445, 0.0615464973449707, 0.061396991729736325, 0.06103859329223633, 0.060919807434082034, 0.06081228637695312, 0.06087680053710937, 0.06095257568359375, 0.06107648086547852, 0.06047641754150391, 0.05975551986694336, 0.060652542114257815, 0.060800033569335936, 0.06089315032958984, 0.060319744110107425, 0.06068940734863281, 0.06150451278686524, 0.06105190277099609, 0.061037567138671874, 0.059990016937255856, 0.060765182495117184, 0.06077849578857422, 0.06057881546020508, 0.060082176208496096, 0.0589219856262207, 0.059184127807617185, 0.05976166534423828, 0.060783649444580076, 0.06094025421142578, 0.06090854263305664, 0.060641281127929686, 0.05964799880981445, 0.05914112091064453, 0.05936537551879883, 0.06067507171630859, 0.06081740951538086, 0.060158977508544924, 0.06099660873413086, 0.05982624053955078, 0.11980588531494141, 0.06112768173217773, 0.06088294219970703, 0.060576766967773435, 0.06073548889160156, 0.06021529769897461, 0.06116966247558594, 0.06180044937133789, 0.06070483016967773, 0.05943494415283203, 0.059440128326416014, 0.060862464904785155, 0.060211200714111325, 0.05941452789306641, 0.06035456085205078, 0.060521472930908204, 0.06083174514770508, 0.06059929656982422, 0.060902400970458986, 0.06084096145629883, 0.06026649475097656, 0.05905920028686523, 0.059622398376464845, 0.06106521606445312, 0.06076313781738281, 0.05981081771850586, 0.05929369735717773, 0.059216896057128904, 0.061050880432128904, 0.06076620864868164, 0.059224063873291016, 0.06019583892822265, 0.06055321502685547, 0.060796928405761716, 0.061064193725585934, 0.06083071899414062, 0.060793857574462894, 0.05939507293701172, 0.058877952575683595, 0.05913702392578125, 0.05904793548583984, 0.05907865524291992, 0.06065049743652344, 0.06088294219970703, 0.06102732849121094, 0.06089215850830078, 0.06101504135131836, 0.060728321075439455, 0.06069760131835938, 0.060909599304199216, 0.06107542419433594, 0.060761089324951174, 0.06076416015625, 0.060911617279052734, 0.06071091079711914, 0.06042009735107422, 0.06087372970581055, 0.06067302322387695, 0.06060851287841797, 0.060984321594238285, 0.06090956878662109, 0.06082867050170898, 0.060943359375, 0.12434432220458984, 0.059063297271728515, 0.05924863815307617, 0.059273216247558595, 0.059202560424804686, 0.0593807373046875, 0.05934284973144531, 0.06072115325927734, 0.060693504333496094, 0.06077439880371094, 0.0608798713684082, 0.05987430572509766, 0.05933158493041992, 0.05966438293457031, 0.05923430252075195, 0.06037811279296875, 0.060916736602783204, 0.06084505462646484, 0.060793857574462894, 0.06016204833984375, 0.06031257629394531, 0.060813312530517576, 0.06093008041381836, 0.06087472152709961, 0.06037811279296875, 0.06069964981079102, 0.06112972640991211, 0.06072524642944336, 0.060851200103759766, 0.06091468811035156, 0.0610334701538086, 0.0608901138305664, 0.06094847869873047, 0.06083071899414062, 0.060846080780029295, 0.06088806533813477, 0.06078566360473633, 0.06029625701904297, 0.06034220886230469, 0.06101094436645508, 0.06097919845581055, 0.061350910186767575, 0.05945548629760742, 0.05929779052734375, 0.059101184844970706, 0.059858943939208986, 0.05947903823852539, 0.05919948959350586, 0.059469825744628904, 0.06209024047851563, 0.06109183883666992, 0.06083071899414062, 0.06089318466186523, 0.06092083358764649, 0.06089113616943359, 0.06088601684570313, 0.06026956939697266, 0.06099763107299805, 0.06088499069213867, 0.06075494384765625, 0.06154547119140625, 0.0613570556640625, 0.06097919845581055, 0.12348928070068359, 0.060916736602783204, 0.060777473449707034, 0.0607303695678711, 0.06054297637939453, 0.06096694564819336, 0.06082352066040039, 0.060835838317871094, 0.06073855972290039, 0.060864513397216796, 0.05947903823852539, 0.059015167236328124, 0.059270145416259766, 0.05909404754638672, 0.05935817718505859, 0.05992550277709961, 0.06107955169677735, 0.061110271453857425, 0.06092083358764649, 0.06084505462646484, 0.06058803176879883, 0.06083891296386719, 0.06079487991333008, 0.060827648162841794, 0.060832767486572265, 0.06084403228759765, 0.06105702209472656, 0.06056345748901367, 0.06058598327636719, 0.06076006317138672, 0.06095462417602539, 0.0609617919921875, 0.06127206420898437, 0.05955788803100586, 0.06099967956542969, 0.06095667266845703, 0.06068633651733398, 0.060887039184570314, 0.06139187240600586, 0.061454334259033204, 0.06054912185668945, 0.06096281433105469, 0.06029414367675781, 0.06135500717163086, 0.062328830718994144, 0.06116147232055664, 0.0603770866394043, 0.05916262435913086, 0.059469825744628904, 0.0593438720703125, 0.05933055877685547, 0.05895884704589844, 0.05933670425415039, 0.06046003341674805, 0.06081024169921875, 0.06076620864868164, 0.061451263427734375, 0.06086348724365234, 0.06087168121337891, 0.06075699234008789, 0.060631038665771485, 0.0605296630859375, 0.06076006317138672, 0.12325580596923828, 0.060826625823974606, 0.06067612838745117, 0.06101910400390625, 0.06079283142089844, 0.06072115325927734, 0.06085529708862305, 0.06092902374267578, 0.0608983039855957, 0.060955646514892575, 0.06091059112548828, 0.060889087677001956, 0.06080716705322266, 0.059873279571533204, 0.05963673782348633, 0.06089932632446289, 0.061224960327148435, 0.06137139129638672, 0.06110105514526367, 0.06112870407104492, 0.06075699234008789, 0.0609249267578125, 0.0607457275390625, 0.06121267318725586, 0.060843006134033206, 0.06098124694824219, 0.061001728057861325, 0.06096588897705078, 0.06096895980834961, 0.06099558258056641, 0.06101708984375, 0.06083174514770508, 0.06094643020629883, 0.06118297576904297, 0.06099148941040039, 0.06102937698364258, 0.06078771209716797, 0.06082457733154297, 0.059865089416503904, 0.060216320037841796, 0.059087871551513675, 0.05941452789306641, 0.06077439880371094, 0.06028083038330078, 0.06068121719360352, 0.06069760131835938, 0.06096691131591797, 0.06012416076660156, 0.06075494384765625, 0.06013849639892578, 0.06086963272094727, 0.060609535217285154, 0.06098739242553711, 0.06088294219970703, 0.06077337646484375, 0.06087782287597656, 0.060805118560791016, 0.06075801467895508, 0.060829696655273435, 0.060837886810302735, 0.060200958251953124, 0.060911617279052734, 0.06101094436645508, 0.1231247329711914, 0.060744705200195315, 0.06079897689819336, 0.0600002555847168, 0.059115520477294924, 0.0603351058959961, 0.06076620864868164, 0.060727294921875, 0.060744705200195315, 0.060527614593505856, 0.06128844833374023, 0.06094438552856445, 0.060677120208740234, 0.06176768112182617, 0.062110721588134764, 0.0609249267578125, 0.060832767486572265, 0.060432384490966794, 0.06098636627197265, 0.06112972640991211, 0.060895233154296874, 0.062491649627685546, 0.060980224609375, 0.06099558258056641, 0.06110310363769531, 0.06090956878662109, 0.060767230987548826, 0.06076211166381836, 0.06077542495727539, 0.06094847869873047, 0.06072115325927734, 0.06075392150878906, 0.060911617279052734, 0.06179123306274414, 0.06146355056762695, 0.06151174545288086, 0.05984864044189453, 0.0592097282409668, 0.059241470336914064, 0.0594442253112793, 0.05915238571166992, 0.05912063980102539, 0.059140094757080076, 0.05916159820556641, 0.05927219009399414, 0.059033599853515625, 0.059902976989746094, 0.06051942443847656, 0.060739585876464844, 0.06076313781738281, 0.060609535217285154, 0.059551742553710936, 0.05947699356079102, 0.06035257720947266, 0.060338111877441404, 0.06081126403808594, 0.06072524642944336, 0.060757022857666015, 0.06074979019165039, 0.060472320556640625, 0.06065459060668945, 0.06086656188964844, 0.06003609466552735, 0.12312576293945313, 0.06074060821533203, 0.06058700942993164, 0.060955646514892575, 0.060897281646728516, 0.060668926239013675, 0.05904793548583984, 0.059138046264648435, 0.0591984977722168, 0.059074527740478514, 0.05915545654296875, 0.05922918319702149, 0.05921279907226563, 0.05931417465209961, 0.05925068664550781, 0.05924665451049805, 0.05927315139770508, 0.062034942626953124, 0.06089625549316406, 0.05932646560668945, 0.05910630416870117, 0.05935615921020508, 0.059224063873291016, 0.0590909423828125, 0.05909299087524414, 0.05916159820556641, 0.05918105697631836, 0.05901004791259765, 0.05914828872680664, 0.05935718536376953, 0.059216896057128904, 0.05914214324951172, 0.05914214324951172, 0.05903564834594727, 0.05917388916015625, 0.059701248168945314, 0.05926399993896484, 0.05921177673339844, 0.059167774200439456, 0.05920764923095703, 0.05906227111816406, 0.05908992004394531, 0.059063297271728515, 0.05934694290161133, 0.05926707077026367, 0.05919027328491211, 0.05903462219238281, 0.0592988166809082, 0.05978316879272461, 0.06010367965698242, 0.05926502227783203, 0.059202560424804686, 0.05930092620849609, 0.05915334320068359, 0.059085823059082034, 0.059358207702636716, 0.05939199829101562, 0.05905929565429688, 0.05903247833251953, 0.05921382522583008, 0.059084800720214846, 0.05944319915771484, 0.059240447998046876, 0.11974553680419922, 0.059086910247802736, 0.05899875259399414, 0.05906224060058594, 0.059066368103027345, 0.059218944549560545, 0.05904281616210937, 0.05910220718383789, 0.05922304153442383, 0.059017215728759766, 0.05900185775756836, 0.05915750503540039, 0.059101184844970706, 0.05916262435913086, 0.05922099304199219, 0.059033599853515625, 0.05897625732421875, 0.05926604843139648, 0.059210750579833986, 0.059121662139892575, 0.05920358276367187, 0.05924556732177735, 0.059066368103027345, 0.05899776077270508, 0.05931008148193359, 0.06076620864868164, 0.059312126159667966, 0.059284481048583984, 0.059046913146972656, 0.05910425567626953, 0.059017215728759766, 0.05894041442871094, 0.05906227111816406, 0.05915955352783203, 0.059063297271728515, 0.05913600158691406, 0.05902233505249024, 0.059099136352539064, 0.059030529022216796, 0.05913497543334961, 0.0589035530090332, 0.05907353591918945, 0.059066368103027345, 0.058962944030761716, 0.059486209869384764, 0.059453441619873044, 0.058998783111572264, 0.058987518310546876, 0.05903564834594727, 0.05900185775756836, 0.05933977508544922, 0.05908070373535156, 0.059009025573730466, 0.06041702270507812, 0.05994598388671875, 0.058993663787841794, 0.05916262435913086, 0.059085823059082034, 0.05953638458251953, 0.05912473678588867, 0.05950054550170898, 0.060255264282226564, 0.05989884948730469, 0.11980083465576172, 0.059218944549560545, 0.05915238571166992, 0.059079681396484375, 0.05905715179443359, 0.059115520477294924, 0.05936025619506836, 0.0590643196105957, 0.05912575912475586, 0.05918207931518555, 0.06097919845581055, 0.059486209869384764, 0.05931622314453125, 0.059044864654541014, 0.05903363037109375, 0.059218910217285155, 0.059025409698486325, 0.05917491149902344, 0.05916364669799805, 0.05909401702880859, 0.0590489616394043, 0.05904076766967774, 0.059096065521240235, 0.059121662139892575, 0.05902438354492188, 0.05902131271362305, 0.05898854446411133, 0.05910015869140625, 0.059300865173339844, 0.05925785446166992, 0.06097612762451172, 0.060662784576416016, 0.060878849029541014, 0.06074060821533203, 0.06073446273803711, 0.06080412673950195, 0.06049481582641601, 0.06058700942993164, 0.060581886291503906, 0.0608092155456543, 0.059243518829345705, 0.059063297271728515, 0.05907251358032226, 0.05892403030395508, 0.05899776077270508, 0.05919744110107422, 0.05904793548583984, 0.059481086730957033, 0.05923942565917969, 0.05914419174194336, 0.05912985610961914, 0.059145217895507814, 0.05928550338745117, 0.059261951446533206, 0.05939199829101562, 0.05910323333740235, 0.05878988647460937, 0.059832321166992185, 0.061055999755859375, 0.060690433502197265, 0.06087174224853516, 0.06086547088623047, 0.060862464904785155, 0.12235059356689452, 0.05892607879638672, 0.05911859130859375, 0.05902950286865234, 0.05892403030395508, 0.058929153442382816, 0.05973811340332031, 0.059853824615478515, 0.058992641448974606, 0.059038719177246096, 0.05915545654296875, 0.05913190460205078, 0.058912769317626956, 0.05937152099609375, 0.060902400970458986, 0.06070272064208984, 0.06099353790283203, 0.060695552825927736, 0.059014144897460936, 0.05908172988891602, 0.05928140640258789, 0.059154430389404294, 0.06019583892822265, 0.06073241424560547, 0.0606668815612793, 0.060614654541015625, 0.06086252975463867, 0.06079072189331055, 0.06075801467895508, 0.06062899017333984, 0.06069247817993164, 0.060826625823974606, 0.061156352996826174, 0.06073241424560547, 0.06075392150878906, 0.060655616760253904, 0.06082252883911133, 0.06071705627441406, 0.060818431854248046, 0.060819454193115234, 0.06071091079711914, 0.06072012710571289, 0.0607723503112793, 0.061059070587158204, 0.06127308654785156, 0.060447742462158206, 0.05913907241821289, 0.05907251358032226, 0.06083174514770508, 0.06084505462646484, 0.06077644729614258, 0.060709888458251954, 0.0603054084777832, 0.059133953094482425, 0.05898342514038086, 0.06038323211669922, 0.06078668975830078, 0.059170848846435545, 0.060978145599365235, 0.06088601684570313, 0.06031568145751953, 0.05907247924804687, 0.05908889770507812]",tokens/s,16.3764561555309,,,,, +4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,/,/,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -6295,30 +5245,28 @@ ChildProcessError: Traceback (most recent call last): report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 373, in cached_file + raise EnvironmentError( +OSError: / does not appear to have a file named config.json. Checkout 'https://huggingface.co///tree/None' for available files. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,v,v,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-13b,facebook/opt-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2935.840768,9548.857344,0.0,8902.41024,8265.321472,s,10,10.732376098632812,1.0732376098632814,0.0018882051518454717,1.0727980346679686,1.0744577026367188,1.076272918701172,1.0777250915527343,"[1.078088134765625, 1.0709527587890626, 1.071809814453125, 1.072758056640625, 1.0723739013671876, 1.0717447509765625, 1.0728380126953125, 1.07379296875, 1.0740543212890625, 1.07396337890625]",tokens/s,238.53058972897117,kWh,1.2652489013142056e-05,6.933077765861525e-06,5.8725796980607646e-05,7.831136375961123e-05,tokens/kWh,3269001.939307702,MB,2940.198912,9548.857344,0.0,8902.41024,8556.582912,s,10,636.0469335937499,63.60469335937499,0.008753951962243356,63.60478125,63.61318203125,63.615917187499996,63.6181053125,"[63.59721875, 63.61257421875, 63.61096484375, 63.6103046875, 63.61865234375, 63.5982421875, 63.6112421875, 63.58923828125, 63.5992578125, 63.59923828125]",tokens/s,0.9904929443499021,kWh,0.0007508853809701072,0.00041155162046943583,0.003498196520777186,0.00466063352221673,tokens/kWh,13517.475617785843,,s,629,644.6920160522462,1.0249475612913292,0.12743236447478887,1.0094981079101562,1.01038447265625,1.0106333129882812,2.0813571875,"[1.0103838500976563, 1.011209228515625, 1.0106275634765625, 1.010282470703125, 1.0090455322265626, 1.00902294921875, 1.0092001342773438, 1.0092001342773438, 1.0087454833984375, 1.0091202392578125, 1.0090209350585937, 1.0097459106445312, 1.009122314453125, 1.0094325561523438, 1.0090762329101564, 1.008990234375, 1.009164306640625, 1.0090936279296876, 1.0088233032226563, 1.009649658203125, 1.0089727783203124, 1.0095328979492189, 1.009112060546875, 1.0095298461914062, 1.0089553833007812, 1.0094817504882811, 1.0095001831054689, 1.0089779052734376, 1.0089512939453125, 1.0092308349609376, 1.0093475952148439, 1.0095062866210938, 1.0100172729492187, 1.0097244262695313, 1.0091735229492187, 1.0095360107421876, 1.0095134887695312, 1.0093209838867188, 1.009239013671875, 1.00967529296875, 1.0096640014648437, 1.00973974609375, 1.0092687377929688, 1.009269775390625, 1.0091714477539062, 1.0091786499023438, 1.0094950561523437, 1.0094622802734374, 1.0091345825195313, 1.009670166015625, 1.0100039672851562, 1.0096732177734375, 1.0092994384765626, 1.0093557739257812, 1.0091253662109374, 1.00938134765625, 1.0091427612304686, 1.0090465087890625, 1.0089072875976564, 1.0098462524414062, 1.010165771484375, 1.0093465576171874, 2.08412060546875, 1.0087465209960937, 1.0093834228515626, 1.0092031860351562, 1.0096558227539063, 1.0095739135742188, 1.0104360961914063, 1.0100264892578126, 1.0097346801757812, 1.0098964233398438, 1.0101534423828125, 1.00982373046875, 1.009934326171875, 1.0099998779296875, 1.0098063354492188, 1.0099056396484376, 1.0100838623046875, 1.0100254516601563, 1.00965478515625, 1.0096107788085937, 1.0098421630859375, 1.0097664184570312, 1.0100264892578126, 1.0098104248046875, 1.0099118041992188, 1.0101432495117189, 1.010134033203125, 1.0106337280273439, 1.0090772705078126, 1.0097838134765624, 1.0102476806640626, 1.0099251098632813, 1.0096466064453125, 1.00933837890625, 1.0092185668945313, 1.0092902221679687, 1.0095257568359375, 1.00948583984375, 1.0100172729492187, 1.010408447265625, 1.0100695190429687, 1.0098995361328125, 1.0105394897460938, 1.00971826171875, 1.0095902709960938, 1.0096414794921875, 1.009565673828125, 1.00931787109375, 1.0096066284179688, 1.0097407836914063, 1.009343505859375, 1.0096947021484375, 1.0099138793945313, 1.009455078125, 1.0092472534179688, 1.0096680908203124, 1.0096250610351563, 1.0100101318359376, 1.0093414306640625, 1.0092892456054687, 1.009311767578125, 1.009322998046875, 1.0097203369140626, 2.081078369140625, 1.009328125, 1.0090977172851563, 1.0092052612304687, 1.0094520263671876, 1.0091028442382812, 1.0091796264648438, 1.0086420288085938, 1.0094274291992187, 1.0089891967773437, 1.0090137329101563, 1.0094161987304688, 1.0096568603515625, 1.0095421142578125, 1.009850341796875, 1.0090895385742187, 1.0094059448242187, 1.009059814453125, 1.0094509887695313, 1.0088161010742187, 1.008974853515625, 1.0091888427734375, 1.0095595703125, 1.009016845703125, 1.0097346801757812, 1.0089810180664063, 1.00931787109375, 1.0090147705078125, 1.0099138793945313, 1.0100213623046874, 1.0104381713867188, 1.010629638671875, 1.010713623046875, 1.0101360473632812, 1.0105651245117186, 1.0090690307617187, 1.0092144775390626, 1.009344482421875, 1.01054052734375, 1.0098954467773438, 1.0101473388671875, 1.010071533203125, 1.0109757690429688, 1.0099885864257812, 1.010386962890625, 1.0099199829101562, 1.0098933715820313, 1.0100418701171876, 1.0103040161132812, 1.0101207275390625, 1.0105702514648438, 1.0102599487304686, 1.00997119140625, 1.0098646850585937, 1.0102732543945312, 1.0096066284179688, 1.00906494140625, 1.0095984497070312, 1.0102210693359375, 1.0098585815429688, 1.0101514282226562, 1.010039794921875, 1.0104360961914063, 2.082943115234375, 1.009787841796875, 1.0099476318359375, 1.0097244262695313, 1.0104217529296875, 1.0104340209960938, 1.0096947021484375, 1.0098309326171875, 1.009544189453125, 1.0100009155273437, 1.01024560546875, 1.0097223510742188, 1.0100695190429687, 1.0102835083007813, 1.009902587890625, 1.0104699096679688, 1.0107535400390626, 1.0102671508789063, 1.010640869140625, 1.0102630615234376, 1.0101463012695313, 1.0099834594726562, 1.0103336791992188, 1.0099384155273436, 1.0103685302734375, 1.0097254638671875, 1.0096906127929688, 1.0098125, 1.0103756713867187, 1.0102271728515626, 1.010640869140625, 1.0090096435546876, 1.0095994873046874, 1.0097633056640625, 1.0101729125976562, 1.0090198974609375, 1.0095718383789063, 1.0087034912109376, 1.009523681640625, 1.00916943359375, 1.0090352783203125, 1.0087833862304687, 1.0096363525390626, 1.0092359619140625, 1.0092656860351563, 1.0091233520507812, 1.00946533203125, 1.008932861328125, 1.009027099609375, 1.0091468505859376, 1.0092257080078124, 1.0089072875976564, 1.008837646484375, 1.0091827392578125, 1.0094110717773437, 1.0090751953125, 1.0094848022460938, 1.0091868286132812, 1.009480712890625, 1.0097039184570313, 1.0093670654296876, 1.0094059448242187, 1.0094376831054688, 2.081429443359375, 1.009227783203125, 1.0094479370117186, 1.010234375, 1.0106552124023438, 1.010882568359375, 1.0105589599609375, 1.0087034912109376, 1.0110679321289062, 1.0107822265625, 1.0108876953125, 1.0104412231445312, 1.0089584350585938, 1.0093711547851563, 1.0090792846679688, 1.0109276123046875, 1.0108334350585937, 1.0103521118164063, 1.0105712890625, 1.0102968139648438, 1.0089482421875, 1.0090025024414062, 1.0100203247070312, 1.0104258422851562, 1.009818603515625, 1.0096087036132813, 1.0098165893554687, 1.0094642944335936, 1.0101575927734374, 1.0103203735351562, 1.0114457397460936, 1.0106500854492189, 1.010361328125, 1.010103271484375, 1.0099415283203126, 1.0093311767578126, 1.0099465942382813, 1.0090475463867188, 1.0093302001953126, 1.0094981079101562, 1.0090823974609375, 1.0102753295898437, 1.0096322631835937, 1.0092564697265625, 1.0091519775390625, 1.0096640014648437, 1.009281005859375, 1.0090864868164062, 1.0091448364257813, 1.0099537963867187, 1.0093250732421875, 1.0095186157226563, 1.0094940185546875, 1.00933837890625, 1.0094080200195312, 1.0091744995117187, 1.0092451782226564, 1.0095390625, 1.0101217041015624, 1.01006640625, 1.0101780395507813, 1.009744873046875, 1.0093660278320313, 2.08117138671875, 1.0091130981445313, 1.009100830078125, 1.0086492309570312, 1.0088734741210938, 1.0091294555664063, 1.0090188598632812, 1.0089410400390626, 1.009344482421875, 1.0095523681640626, 1.0093916015625, 1.0090680541992187, 1.00940185546875, 1.009154052734375, 1.0091970825195313, 1.0093629150390624, 1.0088673095703125, 1.0088601684570313, 1.009817626953125, 1.009006591796875, 1.0100746459960936, 1.009349609375, 1.0093670654296876, 1.0091519775390625, 1.0093035278320313, 1.0091581420898437, 1.0092021484375, 1.0091058959960937, 1.01058251953125, 1.0097705078125, 1.0106183471679688, 1.0098779907226563, 1.0096998291015624, 1.0104105224609374, 1.0094213256835938, 1.009344482421875, 1.0096097412109375, 1.0097407836914063, 1.0099261474609376, 1.009217529296875, 1.0095718383789063, 1.0091837158203125, 1.0093905639648437, 1.0092267456054687, 1.0091878662109375, 1.0096301879882812, 1.0098125, 1.0094929809570312, 1.009860595703125, 1.0093219604492187, 1.0101544799804687, 1.009301513671875, 1.0094714965820313, 1.009460205078125, 1.0093588256835937, 1.0097899780273438, 1.0095984497070312, 1.0096742553710938, 1.010693115234375, 1.0096957397460937, 1.010155517578125, 1.010134033203125, 1.00997119140625, 2.082757568359375, 1.0091796264648438, 1.0095452270507812, 1.0092155151367188, 1.0096373901367188, 1.00949609375, 1.0099005737304687, 1.0090813598632813, 1.009080322265625, 1.008932861328125, 1.0091448364257813, 1.008964599609375, 1.00949609375, 1.0093455200195312, 1.0097909545898438, 1.0094417724609375, 1.00999267578125, 1.0092533569335937, 1.009428466796875, 1.0093148193359376, 1.0098770141601563, 1.0099015502929687, 1.0105159912109376, 1.0107003173828124, 1.0108948364257813, 1.009523681640625, 1.010176025390625, 1.009207275390625, 1.0096517333984374, 1.0096107788085937, 1.010208740234375, 1.0101217041015624, 1.0100725708007812, 1.0099415283203126, 1.01014013671875, 1.009311767578125, 1.0097100830078125, 1.0091714477539062, 1.0097858276367186, 1.0092830810546876, 1.0094745483398437, 1.009259521484375, 1.0102118530273438, 1.0100234375, 1.0097469482421875, 1.010239501953125, 1.0100633544921875, 1.0095165405273439, 1.0095984497070312, 1.0094940185546875, 1.0099507446289062, 1.0094642944335936, 1.0101094360351563, 1.0097879028320313, 1.0109890747070311, 1.0111426391601563, 1.0094315795898436, 1.0090772705078126, 1.009227783203125, 1.0092001342773438, 1.009723388671875, 1.00982373046875, 1.0097694702148436, 2.08317333984375, 1.0093322143554688, 1.00935986328125, 1.0087188720703124, 1.0093055419921875, 1.008848876953125, 1.0092216186523437, 1.0090895385742187, 1.0095001831054689, 1.0094622802734374, 1.0091847534179688, 1.0095789794921874, 1.0093875122070313, 1.0095748901367188, 1.0098646850585937, 1.0092850952148438, 1.0101329956054688, 1.0093475952148439, 1.0094888916015625, 1.00940185546875, 1.0091079711914062, 1.0090505981445312, 1.0093823852539063, 1.0089502563476562, 1.009269775390625, 1.0090301513671875, 1.00952783203125, 1.0098544921875, 1.0100684814453125, 1.0095472412109374, 1.0094541015625, 1.0092247314453124, 1.0096537475585938, 1.0091100463867186, 1.0094458618164062, 1.0091038818359375, 1.0096301879882812, 1.0089943237304688, 1.0096271362304687, 1.009623046875, 1.0094694213867188, 1.009554443359375, 1.0093568115234375, 1.0092083129882812, 1.0091427612304686, 1.0093660278320313, 1.010423828125, 1.0095114135742187, 1.0090711059570312, 1.0094817504882811, 1.009312744140625, 1.0092687377929688, 1.009132568359375, 1.0089052124023437, 1.0089922485351563, 1.0089625854492188, 1.0091192016601562, 1.00922265625, 1.0094295043945312, 1.0091376342773437, 1.0093772583007812, 1.0091202392578125, 1.0095810546875, 2.08344580078125, 1.0095042724609375, 1.0109685668945312, 1.0099476928710938, 1.01062548828125, 1.0095011596679688, 1.0104494018554688, 1.008996337890625, 1.0095462646484374, 1.008911376953125, 1.00917041015625, 1.0089707641601562, 1.00910693359375, 1.0093240356445312, 1.0093403930664062, 1.0089093017578126, 1.009713134765625, 1.0089676513671875, 1.0090844116210937, 1.0088786010742188, 1.00897998046875, 1.0090782470703126, 1.0091878662109375, 1.0094356689453126, 1.009923095703125, 1.0092708129882813, 1.0097356567382811, 1.008616455078125, 1.0090946655273438, 1.0091868286132812, 1.0094305419921874, 1.0093619384765624, 1.0100254516601563, 1.0098093872070313, 1.0101801147460938, 1.0097049560546876, 1.010398193359375, 1.0095513305664063, 1.0100848388671875, 1.0106326904296874, 1.011041259765625, 1.010619384765625, 1.0100930786132813, 1.0094878540039063, 1.0097684326171874, 1.0093609008789062, 1.0095360107421876, 1.009154052734375, 1.0090618896484376, 1.009249267578125, 1.009196044921875, 1.0090895385742187, 1.0093352661132813, 1.0091714477539062, 1.0094796752929687, 1.0091049194335937, 1.0094694213867188, 1.0094202880859375, 1.009227783203125, 1.0093311767578126, 1.0093629150390624, 1.0093004760742188, 1.0094376831054688, 2.083451904296875, 1.0096097412109375, 1.0098380737304689, 1.009165283203125, 1.0100848388671875, 1.0104432373046874, 1.0090741577148437, 1.0095851440429688, 1.0092666625976563, 1.0088263549804688, 1.0094428100585937, 1.0090045166015624, 1.0094745483398437, 1.0092830810546876, 1.0091581420898437, 1.0089246826171876, 1.0092728271484375, 1.009238037109375, 1.0095165405273439, 1.0092728271484375, 1.009455078125, 1.00973876953125, 1.009924072265625, 1.0094458618164062, 1.0094541015625, 1.0086737670898438, 1.009306640625, 1.009659912109375, 1.0100695190429687, 1.0101934204101561, 1.0098739013671876, 1.0097745971679688, 1.0097152099609374, 1.0097776489257813, 1.0097192993164064, 1.0093025512695313, 1.0096865234375, 1.009438720703125, 1.0101616821289063, 1.0098831176757812, 1.0098104248046875, 1.0097673950195312, 1.01049853515625, 1.0099834594726562, 1.0104944458007812, 1.0097633056640625, 1.0092708129882813, 1.009201171875, 1.0093056030273437, 1.0092236938476562, 1.0090127563476563, 1.0091929321289062, 1.00919091796875, 1.0090670166015625, 1.0091888427734375, 1.008996337890625, 1.0091161499023438, 1.0092789916992186, 1.0097572021484376, 1.0099056396484376, 1.0091837158203125, 1.0094663696289063, 1.0093506469726563]",tokens/s,0.9756596705690017,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.4b,EleutherAI/pythia-1.4b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,,MB,1591.713792,2250.768384,0.0,1604.32128,1463.693312,s,10,1.2648313903808592,0.12648313903808595,0.0013989604614154947,0.1262478713989258,0.1271006202697754,0.1287280216217041,0.13002994270324708,"[0.1303554229736328, 0.12560326385498047, 0.12551904296875, 0.12673897552490235, 0.12573398590087892, 0.12508892822265624, 0.12599820709228515, 0.1264975357055664, 0.1265692138671875, 0.12672681427001953]",tokens/s,2023.9851884361806,kWh,1.4855278241965507e-06,8.139949754399822e-07,6.45409544104969e-06,8.753618240686224e-06,tokens/kWh,29245049.64245863,MB,1591.713792,2250.768384,0.0,1604.32128,1560.975872,s,10,72.9124365234375,7.291243652343749,0.003929707108860259,7.2908349609375005,7.297245703125,7.2972966796875,7.2973374609375,"[7.297234375, 7.2856533203125, 7.29734765625, 7.29276513671875, 7.29289794921875, 7.29063818359375, 7.29089404296875, 7.29077587890625, 7.28937060546875, 7.284859375]",tokens/s,8.640501264794358,kWh,8.609067341933647e-05,4.718392125277432e-05,0.00037183251274354733,0.0005051071074156582,tokens/kWh,124726.02162011672,,s,629,73.93082885742194,0.11753708880353239,0.015022143769719637,0.11565261077880859,0.11614679260253907,0.11651727142333984,0.24159293273925783,"[0.11554611206054688, 0.11542835235595703, 0.11560959625244141, 0.11652607727050782, 0.11558604431152343, 0.1156341781616211, 0.11573760223388672, 0.1157570571899414, 0.11565670776367187, 0.11562393951416015, 0.11558502197265624, 0.11574476623535156, 0.1157580795288086, 0.11542835235595703, 0.11543961334228516, 0.11608268737792969, 0.1160478744506836, 0.11690393829345704, 0.11582669067382813, 0.11567513275146485, 0.1154303970336914, 0.11542835235595703, 0.1157232666015625, 0.1157694091796875, 0.11561158752441406, 0.11565261077880859, 0.11558297729492187, 0.11557170867919922, 0.11555225372314454, 0.11560857391357422, 0.11558604431152343, 0.11568946838378906, 0.11568537902832031, 0.11553177642822265, 0.1154703369140625, 0.11592601776123047, 0.11566284942626953, 0.11548159790039063, 0.11579289245605469, 0.11569561767578125, 0.11579801940917969, 0.11614924621582032, 0.11590553283691406, 0.1172838363647461, 0.11599565124511718, 0.11589427185058594, 0.11579392242431641, 0.11582054138183594, 0.11560550689697266, 0.11576937866210937, 0.11679228973388672, 0.11623014068603515, 0.115884033203125, 0.11555532836914062, 0.11562290954589843, 0.11581132507324218, 0.11705241394042969, 0.11600486755371094, 0.11588607788085938, 0.115736572265625, 0.11612569427490234, 0.11604176330566406, 0.24190666198730468, 0.11594547271728516, 0.11553177642822265, 0.1155819549560547, 0.1155051498413086, 0.11557990264892579, 0.11673600006103516, 0.11557376098632813, 0.11559117126464843, 0.1155072021484375, 0.11576525115966797, 0.11566079711914062, 0.11590656280517578, 0.115525634765625, 0.11559219360351562, 0.1160847396850586, 0.11556658935546875, 0.1156147232055664, 0.11551641845703126, 0.11533209228515626, 0.11555328369140624, 0.11560147094726562, 0.11554502105712891, 0.11557376098632813, 0.1158809585571289, 0.11545088195800782, 0.11558604431152343, 0.11544985961914063, 0.11559321594238281, 0.11556761932373047, 0.11569868469238281, 0.11571097564697265, 0.11561676788330078, 0.11552051544189453, 0.11553997039794922, 0.11532393646240234, 0.11541606140136719, 0.11545494079589844, 0.11565055847167968, 0.11606527709960937, 0.11634278106689454, 0.1155440673828125, 0.11550105285644531, 0.11538432312011719, 0.11557785797119141, 0.11540582275390625, 0.11706163024902344, 0.11553382110595703, 0.11559321594238281, 0.11543244934082031, 0.11545804595947265, 0.11543142700195312, 0.11540480041503906, 0.11530547332763671, 0.11539667510986328, 0.11571295928955078, 0.11585740661621094, 0.11560447692871094, 0.11563622283935547, 0.11560550689697266, 0.11555430603027343, 0.11554303741455078, 0.1156147232055664, 0.24147865295410156, 0.11553382110595703, 0.11642678070068359, 0.11596393585205078, 0.11609900665283203, 0.11560550689697266, 0.11545906829833984, 0.11533824157714843, 0.11538944244384766, 0.11619737243652344, 0.11612876892089843, 0.11601612854003907, 0.1155758056640625, 0.11589433288574219, 0.1156719970703125, 0.11552870178222656, 0.11574681854248046, 0.11581337738037109, 0.11625574493408203, 0.11572531127929687, 0.11590656280517578, 0.11556454467773437, 0.11557075500488281, 0.1164062042236328, 0.11572736358642578, 0.11559935760498047, 0.1159710693359375, 0.11614105224609375, 0.11683942413330078, 0.11663980865478515, 0.11592697906494141, 0.11562598419189453, 0.11584307098388671, 0.11552973175048828, 0.11597516632080078, 0.11550310516357422, 0.11585126495361328, 0.11633869171142579, 0.11576121520996094, 0.11590239715576171, 0.11548057556152344, 0.11562700653076172, 0.11580518341064452, 0.11599974060058593, 0.11608370971679688, 0.11642265319824219, 0.11600179290771484, 0.11641446685791015, 0.11563212585449219, 0.11547647857666016, 0.11545088195800782, 0.11568032073974609, 0.11588703918457031, 0.11573350524902344, 0.1157201919555664, 0.11566182708740234, 0.11576627349853516, 0.11582566070556641, 0.11572736358642578, 0.11544780731201172, 0.11562393951416015, 0.11546828460693359, 0.11547853088378907, 0.2430136260986328, 0.1159004135131836, 0.11564236450195313, 0.11563827514648438, 0.11565567779541015, 0.11559526062011719, 0.11573350524902344, 0.11556658935546875, 0.1157396469116211, 0.1160284194946289, 0.11578982543945313, 0.11594035339355468, 0.11562290954589843, 0.11544985961914063, 0.11558502197265624, 0.11559117126464843, 0.11605811309814452, 0.11588301086425781, 0.1157949447631836, 0.11583795166015624, 0.11589734649658204, 0.11614617919921875, 0.11590348815917968, 0.1155440673828125, 0.1166714859008789, 0.11601510620117188, 0.11548365020751954, 0.11576012420654297, 0.11538944244384766, 0.11538944244384766, 0.11550617980957031, 0.1161164779663086, 0.11625676727294922, 0.11571814727783203, 0.11565875244140625, 0.1156485137939453, 0.11559117126464843, 0.11533106994628907, 0.11534438323974609, 0.115957763671875, 0.11574066925048829, 0.11546316528320312, 0.11652095794677735, 0.11555532836914062, 0.11549081420898437, 0.11547443389892578, 0.11542630767822265, 0.11534438323974609, 0.11527986907958984, 0.11548365020751954, 0.11580825805664062, 0.1169459228515625, 0.11576729583740235, 0.11597516632080078, 0.11551849365234375, 0.11617174530029296, 0.1161553955078125, 0.11608678436279297, 0.11566079711914062, 0.11565261077880859, 0.11548365020751954, 0.1155758056640625, 0.11557376098632813, 0.2416373748779297, 0.11573760223388672, 0.11561881256103515, 0.11579596710205078, 0.11593830108642578, 0.115810302734375, 0.11552870178222656, 0.11581542205810547, 0.11552665710449218, 0.11582771301269532, 0.1157396469116211, 0.11553791809082031, 0.1157027816772461, 0.11587789154052734, 0.11567513275146485, 0.11574169921875, 0.11559833526611328, 0.11615334320068359, 0.11550822448730469, 0.11546316528320312, 0.11542733001708984, 0.11593523406982421, 0.11576217651367188, 0.11546521759033203, 0.11530751800537109, 0.11534848022460938, 0.11562496185302734, 0.11573248291015625, 0.11568946838378906, 0.11568025970458984, 0.1157570571899414, 0.11558809661865234, 0.11546009826660156, 0.11551436614990235, 0.11556864166259766, 0.11568851470947265, 0.11561977386474609, 0.11564441680908204, 0.11560243225097656, 0.11574374389648437, 0.11693260955810547, 0.11600179290771484, 0.11581951904296875, 0.11551337432861328, 0.11621782684326172, 0.11561574554443359, 0.11616153717041015, 0.11619328308105469, 0.11597926330566406, 0.11552153778076171, 0.11582157135009766, 0.11549798583984375, 0.11565773010253906, 0.11573868560791016, 0.11633657836914063, 0.11591986846923828, 0.11580723571777343, 0.11681075286865235, 0.11580210876464844, 0.11566284942626953, 0.11573554992675782, 0.11571405029296875, 0.11579392242431641, 0.24123802185058593, 0.11577037048339844, 0.11569152069091797, 0.11550924682617188, 0.11548262023925782, 0.11541299438476563, 0.11537100982666015, 0.11548979187011718, 0.11538540649414063, 0.11682399749755859, 0.11572531127929687, 0.11558911895751953, 0.11550003051757812, 0.11544576263427735, 0.11544678497314453, 0.11560755157470703, 0.11546828460693359, 0.11556249237060547, 0.1156485137939453, 0.11555023956298828, 0.11552047729492188, 0.11564236450195313, 0.11559014129638671, 0.11573452758789063, 0.11543859100341797, 0.11551641845703126, 0.11565465545654297, 0.11574988555908203, 0.11569971466064453, 0.11559935760498047, 0.11563724517822266, 0.11556044769287109, 0.11579084777832031, 0.11558399963378906, 0.11560345458984375, 0.11583385467529297, 0.11566182708740234, 0.11573350524902344, 0.11707392120361328, 0.11604377746582031, 0.11578166198730469, 0.11570275115966797, 0.11584614562988281, 0.11643289947509766, 0.11766886138916016, 0.11568742370605468, 0.11568131256103516, 0.1155184326171875, 0.11561779022216796, 0.11559219360351562, 0.1157734375, 0.1157580795288086, 0.11578675079345703, 0.11578163146972656, 0.11558399963378906, 0.1155758056640625, 0.11558399963378906, 0.11569766235351563, 0.11568230438232421, 0.11554412841796875, 0.11554502105712891, 0.11572531127929687, 0.11579392242431641, 0.24222003173828124, 0.11544473266601563, 0.11548876953125, 0.11571814727783203, 0.11562905883789062, 0.1165486068725586, 0.11599871826171874, 0.11563724517822266, 0.11574374389648437, 0.11579801940917969, 0.11553382110595703, 0.11554611206054688, 0.11684249877929688, 0.11557273864746094, 0.11547853088378907, 0.1154877471923828, 0.11573350524902344, 0.11547853088378907, 0.11548876953125, 0.11556556701660156, 0.1155973129272461, 0.11554815673828125, 0.1156280288696289, 0.1164400634765625, 0.115525634765625, 0.11554815673828125, 0.11559321594238281, 0.11538022613525391, 0.11541510772705078, 0.11557574462890625, 0.11551538848876954, 0.11658854675292969, 0.11569561767578125, 0.11581132507324218, 0.11544371032714844, 0.1155594253540039, 0.11566284942626953, 0.11575603485107422, 0.1155072021484375, 0.11597618865966797, 0.11624857330322266, 0.11573554992675782, 0.11539968109130859, 0.11556352233886719, 0.11553997039794922, 0.1154119644165039, 0.11562086486816406, 0.11566899108886719, 0.11578470611572265, 0.11621580505371094, 0.11563520050048828, 0.11619840240478516, 0.11569459533691406, 0.11568230438232421, 0.11591270446777344, 0.11579801940917969, 0.11572531127929687, 0.11583692932128906, 0.11580006408691407, 0.11551436614990235, 0.11591372680664062, 0.11565055847167968, 0.11566796875, 0.2425927734375, 0.11592601776123047, 0.11652812957763672, 0.1160263671875, 0.1156280288696289, 0.1154703369140625, 0.11540684509277344, 0.11567411041259766, 0.11576422119140625, 0.11549388885498046, 0.11578163146972656, 0.11591372680664062, 0.11623423767089844, 0.11559321594238281, 0.11569459533691406, 0.11551744079589844, 0.11644620513916015, 0.1155645751953125, 0.11573654174804687, 0.11594445037841797, 0.11607039642333984, 0.1157232666015625, 0.11550310516357422, 0.11549900817871094, 0.11566694641113281, 0.11567616271972657, 0.11566902160644531, 0.1161082534790039, 0.11594137573242187, 0.11565158081054687, 0.11552153778076171, 0.11549702453613281, 0.11560646057128907, 0.11540275573730469, 0.11600281524658203, 0.11596390533447265, 0.11555123138427735, 0.11542118072509766, 0.11550617980957031, 0.11543654632568359, 0.11562700653076172, 0.11552051544189453, 0.11569356536865234, 0.11555020904541016, 0.11564236450195313, 0.11563622283935547, 0.11566694641113281, 0.11554611206054688, 0.11565567779541015, 0.11542425537109376, 0.11545600128173829, 0.11553587341308594, 0.11576729583740235, 0.11622911834716797, 0.11651174163818359, 0.11568844604492187, 0.11576831817626954, 0.11554713439941407, 0.11568025970458984, 0.11566694641113281, 0.11580620574951171, 0.11560345458984375, 0.11570893096923827, 0.24270541381835936, 0.11573554992675782, 0.1154734115600586, 0.115525634765625, 0.11553279876708984, 0.11555430603027343, 0.11576525115966797, 0.11567922973632813, 0.11552665710449218, 0.11537715148925781, 0.1155041275024414, 0.11540991973876953, 0.11538329315185547, 0.11551641845703126, 0.11542937469482421, 0.11544576263427735, 0.11548365020751954, 0.11621273803710938, 0.11560447692871094, 0.11579801940917969, 0.11566796875, 0.11572531127929687, 0.11551750183105469, 0.1155849609375, 0.11561062622070313, 0.11598028564453125, 0.11561676788330078, 0.11556147003173828, 0.11561676788330078, 0.11551436614990235, 0.11571302032470702, 0.11565875244140625, 0.11572223663330078, 0.11552973175048828, 0.11562290954589843, 0.11551747131347656, 0.11566793823242187, 0.11573760223388672, 0.11573760223388672, 0.11582463836669922, 0.1156147232055664, 0.11548880004882812, 0.1162034912109375, 0.11573350524902344, 0.11611344146728515, 0.11572425842285156, 0.11567616271972657, 0.11576217651367188, 0.11560352325439453, 0.11609388732910156, 0.11659980773925781, 0.11586048126220704, 0.11570381164550782, 0.11573248291015625, 0.11557170867919922, 0.11563827514648438, 0.11605709075927734, 0.1166714859008789, 0.1158123550415039, 0.11569971466064453, 0.11564543914794922, 0.11563629150390625, 0.11554707336425782, 0.24293376159667968, 0.1157570571899414, 0.11543551635742187, 0.11561164855957032, 0.11565161895751953, 0.11541910552978515, 0.11535257720947266, 0.11540790557861329, 0.1153371810913086, 0.11557478332519532, 0.11545394897460938, 0.11548365020751954, 0.11608576202392579, 0.11585740661621094, 0.1155758056640625, 0.11546419525146484, 0.11544882965087891, 0.11567922973632813, 0.11579596710205078, 0.11548467254638672, 0.11567820739746094, 0.11553075408935547, 0.11560447692871094, 0.11557683563232422, 0.11538841247558594, 0.11541709136962891, 0.11647283172607421, 0.11568946838378906, 0.11550924682617188, 0.11575603485107422, 0.11594035339355468, 0.11566387176513672, 0.11554713439941407, 0.11556761932373047, 0.11553997039794922, 0.11574578857421874, 0.1154959716796875, 0.11552867126464844, 0.11542527770996094, 0.11553689575195313, 0.11548262023925782, 0.11609190368652343, 0.11563314819335938, 0.11550105285644531, 0.11568844604492187, 0.1156341781616211, 0.11574681854248046, 0.11630079650878906, 0.11589119720458985, 0.1157027816772461, 0.11557170867919922, 0.11571609497070312, 0.11571916961669922, 0.11559321594238281, 0.1154549789428711, 0.1155389404296875, 0.11564543914794922, 0.11553587341308594, 0.11558604431152343, 0.11541913604736329, 0.11550822448730469, 0.11574272155761718, 0.11551026916503906]",tokens/s,8.507952767756032,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-1_6b,stabilityai/stablelm-2-1_6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1459.101696,2483.552256,0.0,1837.105152,1664.652288,s,10,1.3924120025634767,0.13924120025634767,0.0012999906015036696,0.139004638671875,0.1399875732421875,0.14133694152832033,0.14241643615722657,"[0.14268630981445313, 0.13829638671875, 0.13825672912597656, 0.13859184265136718, 0.13820169067382812, 0.13813597106933595, 0.13968771362304688, 0.13956375122070314, 0.1395741729736328, 0.13941743469238282]",tokens/s,1838.5362919071044,kWh,1.625099111365401e-06,8.904696633330225e-07,6.785176661013463e-06,9.300745435711887e-06,tokens/kWh,27524675.497196376,MB,1459.101696,2483.552256,0.0,1837.105152,1763.594752,s,10,82.5780146484375,8.25780146484375,0.007490083700840557,8.258056640625,8.26394970703125,8.268834228515626,8.272741845703125,"[8.261927734375, 8.246669921875, 8.2540546875, 8.2559892578125, 8.2628642578125, 8.261189453125, 8.27371875, 8.2601240234375, 8.2488525390625, 8.2526240234375]",tokens/s,7.629149267902877,kWh,9.755284506867285e-05,5.34662001699176e-05,0.00039530770056858775,0.0005463267458071782,tokens/kWh,115315.60642691902,,s,629,83.69452130126959,0.13305965230726477,0.01654754583003512,0.13084364318847655,0.13196041564941405,0.1323978759765625,0.2692352648925781,"[0.13379481506347657, 0.13254144287109376, 0.13190042114257813, 0.1307463684082031, 0.13086207580566406, 0.13051699829101562, 0.13088563537597656, 0.13059686279296875, 0.1305753631591797, 0.1306071014404297, 0.13055078125, 0.13059071350097656, 0.13054771423339845, 0.13065216064453125, 0.13135154724121093, 0.13138841247558594, 0.13123583984375, 0.13066546630859374, 0.13075045776367186, 0.13078834533691405, 0.130555908203125, 0.13037977600097655, 0.13052517700195312, 0.1304883270263672, 0.1306112060546875, 0.13059686279296875, 0.13050572204589844, 0.13065011596679688, 0.13144883728027343, 0.13071359252929687, 0.13058047485351562, 0.13251072692871094, 0.1310064697265625, 0.13063475036621094, 0.1306859588623047, 0.1307494354248047, 0.13061734008789064, 0.130661376953125, 0.13066035461425782, 0.13148672485351562, 0.13165568542480469, 0.13089280700683595, 0.13063372802734374, 0.13172633361816405, 0.13140377807617187, 0.13122969055175782, 0.13104946899414063, 0.13110272216796875, 0.13083135986328126, 0.13193215942382813, 0.13141708374023436, 0.13122560119628907, 0.1308784637451172, 0.13365965270996094, 0.13181951904296876, 0.13121638488769533, 0.13081907653808594, 0.13171200561523438, 0.1312593994140625, 0.13223219299316405, 0.13111807250976562, 0.13094400024414063, 0.2691379699707031, 0.13103199768066406, 0.1306234893798828, 0.13054873657226562, 0.13060812377929687, 0.1306552276611328, 0.13165773010253906, 0.13123992919921876, 0.13063168334960937, 0.13058560180664064, 0.13068389892578125, 0.13071565246582031, 0.1307463684082031, 0.13084466552734375, 0.1307125701904297, 0.13099623107910155, 0.13122764587402344, 0.1306798095703125, 0.1305128936767578, 0.1305200653076172, 0.13082931518554688, 0.13104742431640626, 0.13062757873535155, 0.13068800354003907, 0.13034291076660157, 0.1306429443359375, 0.1306183624267578, 0.13080677795410156, 0.13188607788085938, 0.13072589111328126, 0.13059686279296875, 0.13140786743164062, 0.13105459594726562, 0.13074227905273436, 0.13063987731933593, 0.13232537841796874, 0.1305538635253906, 0.13083340454101564, 0.1308590087890625, 0.13096754455566406, 0.13071974182128906, 0.1309388732910156, 0.13309132385253905, 0.13125836181640624, 0.13162495422363282, 0.1309450225830078, 0.13123890686035156, 0.13122969055175782, 0.13076173400878907, 0.13033779907226561, 0.13071974182128906, 0.1306808319091797, 0.13068389892578125, 0.13058355712890626, 0.1307535400390625, 0.13082521057128907, 0.13138330078125, 0.13090815734863281, 0.1307678680419922, 0.13069209289550782, 0.13084774780273437, 0.13068287658691408, 0.13077197265625, 0.26904986572265627, 0.13090304565429686, 0.13155123901367188, 0.1310064697265625, 0.13056512451171876, 0.1314580535888672, 0.13161677551269532, 0.13072178649902344, 0.13050572204589844, 0.1319393310546875, 0.1306808319091797, 0.13063168334960937, 0.13043609619140625, 0.13061427307128906, 0.13054566955566407, 0.13078732299804688, 0.130440185546875, 0.1307043914794922, 0.13066957092285156, 0.13071052551269532, 0.1307473907470703, 0.1307606964111328, 0.130587646484375, 0.132389892578125, 0.13151539611816407, 0.13108224487304687, 0.1304524841308594, 0.13092556762695312, 0.1307709503173828, 0.13067878723144533, 0.13066444396972657, 0.13064601135253906, 0.13057638549804687, 0.13061222839355469, 0.13061734008789064, 0.13069517517089843, 0.1307484130859375, 0.13075045776367186, 0.13066752624511718, 0.13076991271972657, 0.13184307861328126, 0.13099417114257814, 0.13157273864746094, 0.1309870147705078, 0.13192396545410157, 0.13073715209960937, 0.1307791290283203, 0.13263565063476562, 0.1323888702392578, 0.13131365966796876, 0.13071359252929687, 0.13122764587402344, 0.13066854858398438, 0.13092250061035157, 0.13190963745117187, 0.1317898254394531, 0.13199052429199218, 0.1315246124267578, 0.13117645263671876, 0.13117439270019532, 0.13063679504394532, 0.1306071014404297, 0.13064601135253906, 0.27082650756835935, 0.1319393310546875, 0.13072076416015624, 0.13070233154296876, 0.13060914611816407, 0.1306982421875, 0.1306941375732422, 0.1307361297607422, 0.13072384643554688, 0.13180825805664062, 0.13077708435058594, 0.13068902587890624, 0.1307166748046875, 0.1306112060546875, 0.13075456237792968, 0.13076480102539062, 0.1316259765625, 0.13118873596191405, 0.13114265441894532, 0.13099110412597656, 0.13076377868652345, 0.13220045471191405, 0.1319833526611328, 0.131051513671875, 0.1304217529296875, 0.1321359405517578, 0.13102284240722656, 0.13118975830078125, 0.13145599365234376, 0.13123890686035156, 0.13081805419921874, 0.13088050842285157, 0.13064396667480468, 0.13075967407226563, 0.1305620422363281, 0.13079756164550782, 0.1306480712890625, 0.13070130920410156, 0.13066546630859374, 0.13078323364257813, 0.13063168334960937, 0.13063372802734374, 0.1307361297607422, 0.13077810668945314, 0.1324031982421875, 0.1307852783203125, 0.13074227905273436, 0.13091635131835938, 0.1307842559814453, 0.13073408508300782, 0.13077606201171876, 0.13099725341796875, 0.1314017333984375, 0.13113139343261718, 0.13084774780273437, 0.1308579864501953, 0.1312112579345703, 0.1308897247314453, 0.13232537841796874, 0.13256089782714844, 0.1308651580810547, 0.13114060974121095, 0.13100236511230468, 0.2692731018066406, 0.13084364318847655, 0.1314017333984375, 0.13194137573242187, 0.1307535400390625, 0.13124607849121095, 0.1310320587158203, 0.13100338745117188, 0.13084979248046874, 0.130735107421875, 0.13073408508300782, 0.13077810668945314, 0.13074021911621095, 0.13047500610351562, 0.13073100280761718, 0.1308590087890625, 0.1306746826171875, 0.1320499267578125, 0.13072793579101563, 0.13061222839355469, 0.13069004821777344, 0.13063475036621094, 0.13072486877441405, 0.1314580535888672, 0.13120716857910156, 0.13121434020996095, 0.13137100219726563, 0.1323335723876953, 0.13257215881347656, 0.13070130920410156, 0.13072280883789061, 0.13117543029785156, 0.1306480712890625, 0.1327298583984375, 0.13261415100097657, 0.13112832641601563, 0.1316864013671875, 0.1313607635498047, 0.13099008178710939, 0.13083135986328126, 0.1309696044921875, 0.13129830932617187, 0.13074227905273436, 0.13066444396972657, 0.13106892395019532, 0.13083340454101564, 0.13119078063964842, 0.13266432189941407, 0.13248716735839844, 0.13077503967285156, 0.1307914276123047, 0.13080677795410156, 0.13104946899414063, 0.13092556762695312, 0.13065216064453125, 0.1306480712890625, 0.13058969116210936, 0.13318450927734374, 0.1311262664794922, 0.13230592346191405, 0.13067059326171876, 0.13073408508300782, 0.13068185424804687, 0.27066061401367186, 0.1313095703125, 0.13158502197265626, 0.13086822509765625, 0.13064703369140626, 0.1305917510986328, 0.13066957092285156, 0.13082009887695312, 0.13070950317382812, 0.13068800354003907, 0.1308579864501953, 0.13097062683105468, 0.13119488525390624, 0.13108735656738282, 0.1311057891845703, 0.13334323120117186, 0.13187992858886718, 0.13169049072265626, 0.13072793579101563, 0.13088359069824218, 0.13073919677734375, 0.13076582336425782, 0.1306378173828125, 0.13069926452636718, 0.13055999755859374, 0.13076991271972657, 0.1307361297607422, 0.1307115478515625, 0.13066444396972657, 0.1318144073486328, 0.13064601135253906, 0.1307914276123047, 0.13064396667480468, 0.13078221130371093, 0.13085696411132813, 0.13073408508300782, 0.13069004821777344, 0.13040435791015625, 0.13216152954101562, 0.13084774780273437, 0.13076275634765624, 0.1308784637451172, 0.13086822509765625, 0.1307484130859375, 0.13084364318847655, 0.13232025146484375, 0.13216461181640626, 0.1316546630859375, 0.13190963745117187, 0.13114572143554687, 0.13153176879882814, 0.131056640625, 0.13069107055664062, 0.13102284240722656, 0.13223219299316405, 0.13078630065917968, 0.13118258666992189, 0.1313228759765625, 0.13151641845703124, 0.13187481689453126, 0.13146418762207032, 0.13131263732910156, 0.13112115478515626, 0.2720235595703125, 0.13148159790039063, 0.1317724151611328, 0.13106072998046875, 0.13132492065429688, 0.13174169921875, 0.13085285949707032, 0.13085183715820312, 0.1307484130859375, 0.13077503967285156, 0.13059071350097656, 0.13101158142089844, 0.13111500549316407, 0.13174578857421876, 0.1308159942626953, 0.13084466552734375, 0.13157171630859374, 0.13134848022460938, 0.13074432373046874, 0.13075045776367186, 0.13068800354003907, 0.13058969116210936, 0.13147442626953126, 0.13185433959960938, 0.130872314453125, 0.13104537963867188, 0.13076991271972657, 0.13386341857910156, 0.132885498046875, 0.13136895751953126, 0.1308590087890625, 0.13111091613769532, 0.13062757873535155, 0.1306480712890625, 0.13030911254882813, 0.13067263793945313, 0.13060096740722657, 0.13076582336425782, 0.13124710083007812, 0.13097164916992188, 0.13212261962890626, 0.13122047424316408, 0.1317918701171875, 0.13056410217285155, 0.13102079772949218, 0.13193011474609376, 0.13195468139648436, 0.13295513916015625, 0.13061427307128906, 0.13063270568847657, 0.13238067626953126, 0.13169151306152344, 0.13129830932617187, 0.13212364196777343, 0.13201408386230468, 0.1310709686279297, 0.13222093200683593, 0.1328711700439453, 0.13222195434570314, 0.13068287658691408, 0.1308057556152344, 0.13097779846191407, 0.13187481689453126, 0.271072265625, 0.13202432250976562, 0.13072998046875, 0.13133721923828126, 0.1315010528564453, 0.13107609558105468, 0.13116006469726563, 0.1324267578125, 0.1318338623046875, 0.13117543029785156, 0.13102694702148437, 0.13115699768066405, 0.1313720245361328, 0.13114572143554687, 0.13089791870117187, 0.13081497192382813, 0.1320273895263672, 0.13255679321289063, 0.13251686096191406, 0.13236122131347655, 0.13119488525390624, 0.13082009887695312, 0.130629638671875, 0.1312522277832031, 0.13159219360351562, 0.131557373046875, 0.13065113830566405, 0.13070233154296876, 0.13060403442382812, 0.13083750915527342, 0.13064396667480468, 0.13056614685058593, 0.13110272216796875, 0.13064909362792967, 0.13075967407226563, 0.13072486877441405, 0.13138330078125, 0.13096754455566406, 0.13072076416015624, 0.13083241271972657, 0.13185635375976562, 0.13205708312988282, 0.1308344268798828, 0.1318041534423828, 0.1312798767089844, 0.13098086547851562, 0.13061529541015626, 0.1309071350097656, 0.13069107055664062, 0.13145703125, 0.13063372802734374, 0.13061016845703124, 0.13082623291015624, 0.13071871948242186, 0.13061529541015626, 0.1307125701904297, 0.13055897521972656, 0.13065728759765624, 0.13056410217285155, 0.13088255310058594, 0.13070335388183593, 0.130735107421875, 0.1306234893798828, 0.27049368286132813, 0.1308221435546875, 0.13063679504394532, 0.13080166625976564, 0.1306071014404297, 0.13121945190429687, 0.1331988525390625, 0.1310433349609375, 0.13162701416015626, 0.1306234893798828, 0.13115391540527344, 0.13173452758789062, 0.13072793579101563, 0.1314897918701172, 0.13150413513183593, 0.1313218536376953, 0.1311191101074219, 0.13160960388183593, 0.13073817443847657, 0.1321881561279297, 0.13074227905273436, 0.1307494354248047, 0.13070233154296876, 0.13128807067871093, 0.1311068115234375, 0.1307729949951172, 0.1307146301269531, 0.1308078155517578, 0.13059788513183593, 0.13057638549804687, 0.13050982666015626, 0.13075762939453126, 0.13053439331054686, 0.13056614685058593, 0.13058355712890626, 0.13062144470214843, 0.1315635223388672, 0.13227008056640624, 0.13068698120117186, 0.13062451171875, 0.130693115234375, 0.1305917510986328, 0.13058457946777344, 0.13053439331054686, 0.13104229736328124, 0.13112832641601563, 0.13049139404296875, 0.13087026977539062, 0.13059686279296875, 0.13072793579101563, 0.13054771423339845, 0.13068185424804687, 0.1312030792236328, 0.13103411865234374, 0.13126451110839843, 0.13072998046875, 0.13075456237792968, 0.13058969116210936, 0.13065933227539062, 0.13062144470214843, 0.1305753631591797, 0.13052517700195312, 0.13057331848144532, 0.2703288269042969, 0.13065420532226563, 0.13157785034179686, 0.13085285949707032, 0.130619384765625, 0.13085594177246093, 0.130735107421875, 0.13151129150390625, 0.13070335388183593, 0.13061734008789064, 0.1304698944091797, 0.1307709503173828, 0.1307484130859375, 0.13094297790527343, 0.1308395538330078, 0.130735107421875, 0.13068185424804687, 0.13075660705566405, 0.13218304443359374, 0.1309634552001953, 0.13148159790039063, 0.13058253479003906, 0.1310627899169922, 0.1309020233154297, 0.13047193908691407, 0.13053030395507811, 0.13151846313476562, 0.1308170166015625, 0.13100338745117188, 0.1308968963623047, 0.13076889038085937, 0.1309644775390625, 0.13093785095214844, 0.1307740173339844, 0.13066648864746094, 0.13088665771484376, 0.1311293487548828, 0.13094706726074218, 0.13092250061035157, 0.13099314880371093, 0.13093785095214844, 0.13083135986328126, 0.1308078155517578, 0.13092250061035157, 0.13095321655273437, 0.13083544921875, 0.13072691345214843, 0.13097471618652343, 0.1313228759765625, 0.13215846252441407, 0.13237759399414062, 0.1312788543701172, 0.13164134216308593, 0.1313638458251953, 0.1314334716796875, 0.13113446044921875, 0.1308159942626953, 0.13188607788085938, 0.1307361297607422, 0.1308733367919922, 0.13075558471679688, 0.13074534606933594, 0.1307606964111328]",tokens/s,7.515426221697727,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-rw-1b,tiiuae/falcon-rw-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1513.762816,1825.046528,0.0,1178.599424,1091.247104,s,10,1.2350289306640625,0.12350289306640624,0.0006278590763107522,0.12335015869140625,0.12446991119384765,0.12452100448608398,0.12456187911987306,"[0.12457209777832032, 0.12258493041992187, 0.123223388671875, 0.12296672058105469, 0.12311740875244141, 0.12295513916015625, 0.1234769287109375, 0.12388646697998047, 0.12445855712890624, 0.12378729248046876]",tokens/s,2072.8259366551956,kWh,1.4517080513280905e-06,7.954704248798562e-07,6.551292503901485e-06,8.798470980109433e-06,tokens/kWh,29095964.580520324,MB,1513.762816,1825.046528,0.0,1178.599424,1159.734784,s,10,69.32218505859375,6.932218505859375,0.003149777960520474,6.933029541015625,6.935241162109374,6.935911108398438,6.936447065429688,"[6.93331884765625, 6.93092578125, 6.9333740234375, 6.9281669921875, 6.932740234375, 6.934138671875, 6.93509228515625, 6.93250244140625, 6.9253447265625, 6.9365810546875]",tokens/s,9.087999743047627,kWh,8.183205577456532e-05,4.4849814286347e-05,0.00036005222300090266,0.000486734093061815,tokens/kWh,129434.12203508627,,s,629,70.322675743103,0.11180075634833549,0.014707892425374562,0.10997555541992188,0.11031490783691406,0.11055718231201171,0.23335628784179688,"[0.10998989105224609, 0.11027967834472656, 0.11003801727294922, 0.11055718231201171, 0.11002572631835937, 0.10997555541992188, 0.10988441467285157, 0.11009740447998047, 0.10994892883300782, 0.1100421142578125, 0.10996940612792969, 0.11002470397949218, 0.11002470397949218, 0.11015475463867187, 0.10990592193603516, 0.10996428680419922, 0.10994073486328125, 0.10987417602539062, 0.10995712280273437, 0.10995814514160156, 0.1099161605834961, 0.10992947387695312, 0.11009024047851562, 0.1098045425415039, 0.1099530258178711, 0.10990898895263672, 0.10999091339111328, 0.1099161605834961, 0.10990386962890625, 0.10983321380615234, 0.10983936309814453, 0.10992025756835938, 0.10994380950927735, 0.11009740447998047, 0.11012198638916015, 0.11004415893554688, 0.11021311950683593, 0.11015270233154296, 0.10997555541992188, 0.10997042846679687, 0.1100769271850586, 0.10993254089355468, 0.11002880096435547, 0.10997248077392578, 0.1100738525390625, 0.10994585418701172, 0.10987519836425781, 0.11011788940429687, 0.11002674865722656, 0.11031449890136719, 0.11004313659667969, 0.10998271942138672, 0.1100400619506836, 0.11014860534667968, 0.11063295745849609, 0.10996736145019531, 0.10992845153808593, 0.10991410827636719, 0.11014860534667968, 0.1098608627319336, 0.11007590484619141, 0.10992332458496094, 0.23466700744628907, 0.10985779571533204, 0.10981171417236328, 0.1099315185546875, 0.10995507049560548, 0.10985472106933594, 0.10984754943847656, 0.10977689361572265, 0.10997862243652344, 0.1100738525390625, 0.11007488250732422, 0.10998169708251954, 0.11045171356201172, 0.11078348541259765, 0.11011686706542968, 0.10994380950927735, 0.10991513824462891, 0.10980556488037109, 0.10991718292236329, 0.10992332458496094, 0.10974310302734375, 0.10984857940673828, 0.10985164642333985, 0.10992947387695312, 0.11002572631835937, 0.11035648345947266, 0.11005951690673828, 0.10994073486328125, 0.10990694427490234, 0.1097676773071289, 0.10987827301025391, 0.10998374176025391, 0.10983628845214843, 0.10985164642333985, 0.10997555541992188, 0.11007590484619141, 0.10993049621582031, 0.10982195281982422, 0.10988543701171875, 0.11021414184570312, 0.11008614349365234, 0.11017420959472657, 0.10999193572998046, 0.10999603271484375, 0.1100400619506836, 0.10992127990722657, 0.11122073364257813, 0.10994790649414063, 0.1098946533203125, 0.10998067474365235, 0.11016397094726563, 0.11005030059814454, 0.10995097351074219, 0.10986803436279297, 0.10994483184814453, 0.11000115203857422, 0.10993663787841797, 0.1098629150390625, 0.10973286437988282, 0.11027046203613282, 0.10998169708251954, 0.11012403106689453, 0.11069951629638672, 0.2334771270751953, 0.109949951171875, 0.10998374176025391, 0.109949951171875, 0.11041484832763672, 0.11017215728759766, 0.11003084564208984, 0.1100421142578125, 0.11011174774169921, 0.11004927825927735, 0.10999603271484375, 0.11010457611083985, 0.10996121978759765, 0.1101322250366211, 0.10993869018554688, 0.11010150146484375, 0.11002470397949218, 0.1104005126953125, 0.11045171356201172, 0.11004927825927735, 0.11002982330322265, 0.11002470397949218, 0.10999193572998046, 0.10997042846679687, 0.10986803436279297, 0.1099315185546875, 0.10996018981933593, 0.11003699493408203, 0.10990592193603516, 0.11009228515625, 0.10992537689208984, 0.11011686706542968, 0.11002572631835937, 0.10996121978759765, 0.1100738525390625, 0.11009945678710938, 0.1099683837890625, 0.10994278717041016, 0.11000012969970703, 0.10996940612792969, 0.11009638214111328, 0.11007590484619141, 0.10986803436279297, 0.11006259155273437, 0.10995507049560548, 0.10999501037597656, 0.10975743865966797, 0.11042304229736329, 0.11009535980224609, 0.1101465606689453, 0.11001651000976563, 0.11085004425048828, 0.11017932891845703, 0.11005542755126953, 0.11006463623046875, 0.10995097351074219, 0.10983526611328125, 0.11001036834716797, 0.10994278717041016, 0.11001856231689452, 0.11001139068603516, 0.11006976318359375, 0.1099315185546875, 0.23315866088867188, 0.10991718292236329, 0.10996428680419922, 0.10990898895263672, 0.10994687652587891, 0.10980659484863281, 0.11001344299316407, 0.10984243011474609, 0.1099192352294922, 0.10988441467285157, 0.10989568328857421, 0.10988543701171875, 0.11012300872802734, 0.10975027465820313, 0.10980352020263671, 0.10992742156982421, 0.10989055633544922, 0.10984754943847656, 0.10997657775878907, 0.10991001892089844, 0.10981273651123047, 0.109844482421875, 0.10982809448242188, 0.1099530258178711, 0.11010150146484375, 0.110129150390625, 0.10988031768798828, 0.10981785583496094, 0.10985779571533204, 0.10993561553955078, 0.10999910736083984, 0.10990694427490234, 0.10990796661376953, 0.10995097351074219, 0.11003801727294922, 0.10986803436279297, 0.10986393737792968, 0.10978406524658203, 0.10994175720214844, 0.10994585418701172, 0.11002674865722656, 0.1098967056274414, 0.10996121978759765, 0.10992947387695312, 0.11166207885742188, 0.11004415893554688, 0.11000012969970703, 0.10999807739257812, 0.10993459320068359, 0.11005235290527343, 0.10998169708251954, 0.11006668853759766, 0.11001651000976563, 0.11010150146484375, 0.11001548767089844, 0.10998579406738282, 0.10998271942138672, 0.1099653091430664, 0.10990386962890625, 0.11008306884765626, 0.10987110137939453, 0.10999807739257812, 0.10995916748046874, 0.23322726440429686, 0.10992332458496094, 0.11020185852050782, 0.11035545349121094, 0.10995814514160156, 0.10994175720214844, 0.10995507049560548, 0.10988441467285157, 0.10981273651123047, 0.10998374176025391, 0.10985574340820313, 0.10997452545166016, 0.10989772796630859, 0.10986803436279297, 0.11038003540039062, 0.11002880096435547, 0.11003494262695312, 0.11040563201904297, 0.1099653091430664, 0.11018342590332031, 0.11008819580078125, 0.11007488250732422, 0.10995916748046874, 0.10976461029052734, 0.11010047912597656, 0.1102008285522461, 0.11007488250732422, 0.10994483184814453, 0.11033497619628906, 0.11017727661132813, 0.1098629150390625, 0.10993561553955078, 0.11003699493408203, 0.11001241302490235, 0.11000627136230469, 0.10999295806884765, 0.11002162933349609, 0.11002265930175781, 0.10992230224609376, 0.10989158630371093, 0.1097359390258789, 0.10989977264404296, 0.11002674865722656, 0.10999910736083984, 0.10985779571533204, 0.1099683837890625, 0.10974720001220703, 0.109876220703125, 0.10991001892089844, 0.10994790649414063, 0.10997452545166016, 0.11035135650634766, 0.11020697784423829, 0.11008409881591796, 0.110060546875, 0.10996326446533203, 0.11019058990478516, 0.11144703674316406, 0.10995097351074219, 0.10988646697998047, 0.11015679931640625, 0.11033395385742187, 0.11005542755126953, 0.23340646362304687, 0.11011686706542968, 0.11028275299072265, 0.11017420959472657, 0.11006259155273437, 0.1100738525390625, 0.11010867309570313, 0.11038105773925781, 0.10999091339111328, 0.10990284729003906, 0.109949951171875, 0.11034009552001953, 0.10992845153808593, 0.10986495971679687, 0.1099192352294922, 0.1098946533203125, 0.10980556488037109, 0.1097553939819336, 0.11004518127441407, 0.11012300872802734, 0.10977996826171875, 0.10986393737792968, 0.10984038543701172, 0.10991718292236329, 0.1098936309814453, 0.10987519836425781, 0.10983116912841796, 0.1099130859375, 0.11000934600830078, 0.1101690902709961, 0.11019468688964844, 0.10981478118896484, 0.1098608627319336, 0.10990796661376953, 0.11005542755126953, 0.10980352020263671, 0.10990284729003906, 0.10992845153808593, 0.11151667022705078, 0.10988748931884766, 0.11004108428955078, 0.11066572570800781, 0.11073741149902344, 0.11011788940429687, 0.1100206069946289, 0.10988748931884766, 0.11012198638916015, 0.11024691009521484, 0.1098967056274414, 0.1100052490234375, 0.11016089630126953, 0.11015782165527344, 0.11018956756591797, 0.11015065765380859, 0.110060546875, 0.11035648345947266, 0.1099335708618164, 0.1101629409790039, 0.10992639923095703, 0.11004108428955078, 0.10989158630371093, 0.11015372467041015, 0.11010047912597656, 0.23385498046875, 0.10988851165771485, 0.11034111785888671, 0.10995097351074219, 0.10985574340820313, 0.11010662078857422, 0.11007078552246094, 0.10991820526123047, 0.10985984039306641, 0.10997248077392578, 0.10986393737792968, 0.11004723358154297, 0.11019468688964844, 0.1100052490234375, 0.11016397094726563, 0.1102387237548828, 0.11004518127441407, 0.11020902252197265, 0.1100943374633789, 0.10998989105224609, 0.11055513763427735, 0.11010253143310547, 0.10998169708251954, 0.11044454193115234, 0.11019570922851563, 0.1099653091430664, 0.10991513824462891, 0.11001753234863282, 0.10987007904052734, 0.1103984603881836, 0.10986188507080077, 0.10991104125976563, 0.11026534271240235, 0.11026534271240235, 0.11053056335449218, 0.11001753234863282, 0.11013529968261719, 0.11008716583251953, 0.11022541046142578, 0.10997657775878907, 0.10988236999511719, 0.11003494262695312, 0.11012198638916015, 0.11003187561035156, 0.1098260498046875, 0.11009945678710938, 0.10990898895263672, 0.11006771087646484, 0.1099161605834961, 0.10987827301025391, 0.1099130859375, 0.11001036834716797, 0.11009843444824219, 0.1100021743774414, 0.11010355377197266, 0.11002572631835937, 0.11081318664550781, 0.11031654357910156, 0.10989875030517578, 0.11011993408203125, 0.10990898895263672, 0.11030118560791016, 0.10994483184814453, 0.23407717895507812, 0.11024076843261718, 0.10993766021728515, 0.11036876678466796, 0.11012403106689453, 0.10995200347900391, 0.11002674865722656, 0.1097349090576172, 0.10983219146728515, 0.10998681640625, 0.10994380950927735, 0.10989158630371093, 0.1099192352294922, 0.10996736145019531, 0.10994892883300782, 0.10987725067138672, 0.1102376937866211, 0.10967346954345703, 0.11009945678710938, 0.11035238647460938, 0.10991820526123047, 0.10983628845214843, 0.10993561553955078, 0.10991513824462891, 0.10991718292236329, 0.11002982330322265, 0.10980352020263671, 0.10987315368652344, 0.10994380950927735, 0.10986803436279297, 0.10989158630371093, 0.10974515533447265, 0.10991513824462891, 0.10988851165771485, 0.11000627136230469, 0.10975743865966797, 0.10976255798339844, 0.10985472106933594, 0.10994483184814453, 0.10986905670166015, 0.11017011260986329, 0.11067801666259766, 0.11012812805175781, 0.1102387237548828, 0.11023974609375, 0.11021209716796875, 0.11020697784423829, 0.11080191802978516, 0.11018956756591797, 0.11028173065185547, 0.11045887756347657, 0.11006873321533203, 0.11001548767089844, 0.11007180786132813, 0.10984960174560547, 0.1098045425415039, 0.10983936309814453, 0.10996018981933593, 0.1098270721435547, 0.1103984603881836, 0.11062681579589843, 0.11046092987060546, 0.1100206069946289, 0.23471104431152343, 0.10992947387695312, 0.10997350311279297, 0.10981990051269531, 0.11024486541748046, 0.11018342590332031, 0.10990796661376953, 0.10981171417236328, 0.11014348602294922, 0.11026739501953126, 0.10997760009765625, 0.10999705505371093, 0.1097492446899414, 0.10981785583496094, 0.10969292449951172, 0.10985574340820313, 0.10983116912841796, 0.11017215728759766, 0.10983116912841796, 0.11038310241699219, 0.11015577697753906, 0.10982911682128907, 0.10989977264404296, 0.10992845153808593, 0.10990694427490234, 0.10996940612792969, 0.109949951171875, 0.10994892883300782, 0.10998681640625, 0.10987007904052734, 0.11038105773925781, 0.11008409881591796, 0.11003289794921875, 0.10989568328857421, 0.1100021743774414, 0.10995814514160156, 0.1100400619506836, 0.11009945678710938, 0.10990284729003906, 0.10982297515869141, 0.10980863952636719, 0.10979840087890624, 0.10979328155517579, 0.10987725067138672, 0.10977484893798828, 0.10974412536621093, 0.10975641632080078, 0.10971238708496094, 0.10985062408447266, 0.10984243011474609, 0.10988339233398438, 0.10988031768798828, 0.10987519836425781, 0.10985062408447266, 0.10984550476074219, 0.10994175720214844, 0.10979737854003906, 0.10983219146728515, 0.10980659484863281, 0.10979942321777343, 0.10972467041015625, 0.10989977264404296, 0.10978406524658203, 0.23415501403808595, 0.11078553771972656, 0.11036672210693359, 0.11091149139404297, 0.11072921752929688, 0.11045990753173827, 0.11007794952392579, 0.10978508758544922, 0.10992537689208984, 0.1098792953491211, 0.10985574340820313, 0.10979122924804688, 0.10985164642333985, 0.1100738525390625, 0.1099653091430664, 0.10994483184814453, 0.11005235290527343, 0.10987315368652344, 0.11015270233154296, 0.10990080261230468, 0.10979532623291016, 0.10991001892089844, 0.10990489959716797, 0.11083776092529297, 0.11055718231201171, 0.10991104125976563, 0.1105827865600586, 0.11010765075683594, 0.11010969543457032, 0.10981683349609375, 0.11006771087646484, 0.11014144134521485, 0.11008102416992188, 0.10999501037597656, 0.10991104125976563, 0.10976051330566407, 0.10998579406738282, 0.11004518127441407, 0.10994278717041016, 0.10981478118896484, 0.11005644989013671, 0.10996736145019531, 0.10994278717041016, 0.10976051330566407, 0.10995404815673829, 0.10989260864257812, 0.11064320373535157, 0.1107957763671875, 0.11001856231689452, 0.11012710571289062, 0.11023359680175782, 0.11013632202148438, 0.10996428680419922, 0.1100021743774414, 0.11024384307861328, 0.10992435455322265, 0.10974002838134765, 0.11081215667724609, 0.11024076843261718, 0.11022643280029297, 0.1098967056274414, 0.11006361389160156, 0.10993561553955078]",tokens/s,8.944483317128187,,,,, +4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-2b,google/gemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -6330,21 +5278,11 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/v/resolve/main/config.json +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/gemma-2b/resolve/main/config.json The above exception was the direct cause of the following exception: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn @@ -6355,13 +5293,28 @@ Traceback (most recent call last): response = _request_wrapper( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669494bc-4de33cdc25217cc662222955;4e389c31-d2f2-4d24-ad1d-227234d0b6cf) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status + raise HfHubHTTPError(message, response=response) from e +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-669480ef-69208ced482777fa740d5535;1009ffa5-3e2a-4d1a-b243-a0fc9b7c959d) -Repository Not Found for url: https://huggingface.co/v/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. +403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. +Cannot access content at: https://huggingface.co/google/gemma-2b/resolve/main/config.json. +If you are trying to create or update content,make sure you have a token with the `write` role. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error + raise LocalEntryNotFoundError( +huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. The above exception was the direct cause of the following exception: @@ -6382,13 +5335,13 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file raise EnvironmentError( -OSError: v is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/gemma-2b is not the path to a directory containing a file named config.json. +Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.3b,EleutherAI/pythia-1.3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-7b,tiiuae/falcon-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -6406,24 +5359,30 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3724, in from_pretrained + hf_quantizer.preprocess_model( + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 182, in preprocess_model + return self._process_model_before_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 85, in _process_model_before_weight_loading + model, has_been_replaced = replace_with_awq_linear( + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear + _, has_been_replaced = replace_with_awq_linear( + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear + _, has_been_replaced = replace_with_awq_linear( + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear + _, has_been_replaced = replace_with_awq_linear( + [Previous line repeated 1 more time] + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 166, in replace_with_awq_linear + model._modules[name] = target_cls( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemm.py"", line 101, in __init__ + assert self.in_features % self.group_size == 0 +AssertionError -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-40b,tiiuae/falcon-40b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-12b,EleutherAI/pythia-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,,MB,1585.569792,9676.783616,0.0,9030.336512,8583.573504,s,10,9.573078491210937,0.9573078491210938,0.0009060771854647526,0.9570158996582031,0.9584730651855469,0.958728140258789,0.9589322003173828,"[0.9589832153320312, 0.956114501953125, 0.95637109375, 0.9565009765625, 0.9567921142578125, 0.9570035400390625, 0.9570282592773437, 0.95793017578125, 0.957938232421875, 0.9584163818359375]",tokens/s,267.41658938139295,kWh,1.1295311258296775e-05,6.189367993647465e-06,5.412797259527177e-05,7.161265184721602e-05,tokens/kWh,3574787.323141869,MB,1585.569792,9676.783616,0.0,9030.336512,8872.967168,s,10,567.96033984375,56.796033984375,0.005905783414625482,56.796150390625,56.802221875,56.803097265625,56.803797578125,"[56.78812109375, 56.796453125, 56.795734375, 56.80109765625, 56.800734375, 56.79584765625, 56.80202734375, 56.80397265625, 56.7909765625, 56.785375]",tokens/s,1.1092323808618707,kWh,0.0006704276505549146,0.00036745356669733154,0.0031837375343617275,0.004221618751613973,tokens/kWh,14923.185561442368,,s,629,575.6730700073241,0.9152195071658572,0.113749717069217,0.901496826171875,0.9019905639648437,0.9021755371093749,1.8586116552734375,"[0.9012899780273438, 0.9015009155273438, 0.9013851928710938, 0.9014036254882812, 0.9017272338867187, 0.9014722290039062, 0.9017364501953125, 0.9016832275390625, 0.901676025390625, 0.9014937744140625, 0.9013677978515625, 0.90115380859375, 0.9009315795898437, 0.9009326171875, 0.9006499633789062, 0.9008291625976562, 0.9008558349609375, 0.9008486328125, 0.9011026000976563, 0.9014824829101562, 0.901602294921875, 0.901296142578125, 0.9016278686523438, 0.9010196533203125, 0.901043212890625, 0.9009264526367188, 0.9010216674804687, 0.9008496704101563, 0.901128173828125, 0.9008875732421875, 0.901443603515625, 0.9013667602539063, 0.9012459716796875, 0.90106982421875, 0.9016514282226562, 0.9009028930664063, 0.9010933837890625, 0.9009028930664063, 0.9010616455078125, 0.9009520874023438, 0.901349365234375, 0.9014415283203125, 0.901707763671875, 0.9015367431640625, 0.9014681396484375, 0.9018613891601562, 0.901622802734375, 0.9018931274414063, 0.901707763671875, 0.9014057006835937, 0.901602294921875, 0.90210302734375, 0.9018941650390625, 0.9015654296875, 0.9017302856445313, 0.9016248168945312, 0.9020457153320313, 0.9013043212890625, 0.9014906616210937, 0.9013822021484375, 0.9013165283203125, 0.901349365234375, 1.86075439453125, 0.901201904296875, 0.9012777099609375, 0.9009407958984375, 0.9011107788085938, 0.9012059936523438, 0.901411865234375, 0.9011742553710937, 0.9014906616210937, 0.9008762817382813, 0.9011650390625, 0.9011548461914063, 0.9017159423828125, 0.9009899291992187, 0.9010339965820312, 0.9014087524414063, 0.901095458984375, 0.9012418212890625, 0.9011476440429688, 0.90099609375, 0.901496826171875, 0.9016145629882812, 0.9013197021484375, 0.9020405883789062, 0.9015439453125, 0.9012941284179687, 0.9013165893554688, 0.9014087524414063, 0.9009602661132813, 0.9014149169921875, 0.901086181640625, 0.901359619140625, 0.9010995483398437, 0.9015562133789062, 0.9015613403320313, 0.9021737060546875, 0.9016637573242188, 0.9020088500976563, 0.9014948120117188, 0.90166064453125, 0.901233642578125, 0.901607421875, 0.90140673828125, 0.9016708984375, 0.9019443359375, 0.9020333862304688, 0.90393701171875, 0.9017435913085937, 0.90208154296875, 0.9017467041015625, 0.901749755859375, 0.9017620239257812, 0.9014108276367188, 0.901612548828125, 0.9014630126953125, 0.901897216796875, 0.9016043701171875, 0.9021522216796874, 0.9015429077148438, 0.9017200927734375, 0.9018798217773437, 0.901327880859375, 0.9020098266601563, 1.8579189453125, 0.9009674072265625, 0.9019514770507813, 0.9013217163085937, 0.9013043212890625, 0.9010616455078125, 0.901369873046875, 0.9010882568359375, 0.9010647583007813, 0.9008700561523437, 0.901254150390625, 0.9011005249023437, 0.9012029418945312, 0.901781494140625, 0.9017036743164063, 0.9013206787109375, 0.901180419921875, 0.9015664672851562, 0.9012275390625, 0.901060546875, 0.9013350219726562, 0.9012828369140625, 0.9011179809570312, 0.902530029296875, 0.901454833984375, 0.9017108764648437, 0.9014998779296876, 0.9013156127929688, 0.9013903198242188, 0.901664794921875, 0.9012408447265625, 0.9015879516601563, 0.9012008666992187, 0.9010565185546875, 0.9010083618164062, 0.9016893310546875, 0.9017681884765625, 0.9018941650390625, 0.9012459716796875, 0.9014087524414063, 0.9018050537109376, 0.9015992431640625, 0.9015572509765625, 0.9015726318359375, 0.9014558715820312, 0.9014138793945312, 0.901760009765625, 0.9032969970703125, 0.9014159545898438, 0.9015982055664062, 0.90126953125, 0.9023529052734375, 0.901634033203125, 0.9018787841796875, 0.9014353637695313, 0.9016453247070313, 0.9016279296875, 0.901738525390625, 0.9017559204101563, 0.902043701171875, 0.9015582275390625, 0.9019248657226563, 0.9020723266601562, 1.8581309814453124, 0.9010073852539062, 0.9013156127929688, 0.9008977661132812, 0.9008128051757812, 0.9016401977539062, 0.9013319702148438, 0.9011097412109375, 0.9010739135742187, 0.9013370971679687, 0.9015664672851562, 0.9017160034179688, 0.9023712768554687, 0.9015736083984375, 0.9013422241210938, 0.901080078125, 0.9018327026367188, 0.90148046875, 0.9011190185546875, 0.901212158203125, 0.9018624267578125, 0.9014783935546875, 0.9012479858398438, 0.9013688354492188, 0.90138623046875, 0.9015767211914063, 0.90112109375, 0.901693359375, 0.901707763671875, 0.9020232543945312, 0.901571533203125, 0.9019771118164063, 0.901349365234375, 0.9013718872070312, 0.9014671630859376, 0.9014220581054687, 0.9012838134765625, 0.9017538452148437, 0.9016350708007812, 0.9019105224609375, 0.9021767578125, 0.901813232421875, 0.9018296508789062, 0.9015695190429688, 0.903024658203125, 0.902118408203125, 0.9014558715820312, 0.9017098388671875, 0.901375, 0.901796875, 0.90182861328125, 0.9018388671875, 0.901644287109375, 0.9020845947265625, 0.9015941162109375, 0.9019043579101562, 0.9019207763671875, 0.901602294921875, 0.9014589233398438, 0.9020272827148438, 0.9018408813476563, 0.9020088500976563, 0.9018572998046875, 1.8591446533203124, 0.9011109008789062, 0.9014906005859376, 0.9012500610351563, 0.9013309326171876, 0.9015132446289063, 0.9010267944335938, 0.90169140625, 0.9015234375, 0.9012705078125, 0.90149169921875, 0.90165869140625, 0.90100830078125, 0.9009920043945312, 0.9015848999023437, 0.9015347290039063, 0.9014989013671875, 0.9024532470703125, 0.9021880493164063, 0.9016944580078124, 0.9015951538085938, 0.9013145751953126, 0.90147021484375, 0.9014896850585937, 0.9010872192382813, 0.9012111206054687, 0.9012377319335938, 0.9011046142578125, 0.90134423828125, 0.9021696166992188, 0.9015510864257813, 0.9017293090820313, 0.9014609985351563, 0.9018982543945312, 0.9016985473632813, 0.9015664672851562, 0.9012459716796875, 0.9016145629882812, 0.9012357177734375, 0.9017845458984375, 0.9017640991210938, 0.9023355102539062, 0.9016002807617187, 0.9013688354492188, 0.9013800659179687, 0.9019535522460937, 0.9013340454101563, 0.9017763671875, 0.9015776977539063, 0.90165966796875, 0.9015429077148438, 0.9014620361328125, 0.9018777465820312, 0.9020886840820312, 0.9014589233398438, 0.9016187133789062, 0.901876708984375, 0.903267333984375, 0.9016299438476563, 0.9016832275390625, 0.901592041015625, 0.9018306274414063, 0.9016535034179688, 1.8594969482421875, 0.90172314453125, 0.901623779296875, 0.9014261474609375, 0.9010974731445313, 0.9016514282226562, 0.9012612915039062, 0.9012162475585938, 0.9010811157226563, 0.900874267578125, 0.9016196899414063, 0.9018163452148438, 0.9015050048828125, 0.9010811157226563, 0.9016350708007812, 0.9010995483398437, 0.9011435546875, 0.9012008666992187, 0.9010196533203125, 0.90096337890625, 0.9009110717773438, 0.9015501098632812, 0.9013790893554687, 0.901444580078125, 0.9009868774414063, 0.9019638061523437, 0.9014251708984375, 0.9013463134765625, 0.9010083618164062, 0.9014886474609375, 0.9014528198242188, 0.9012612915039062, 0.902129638671875, 0.9023948974609375, 0.9013688354492188, 0.9017241821289063, 0.90169140625, 0.9015562133789062, 0.9032264404296875, 0.90172509765625, 0.9013514404296875, 0.9015767211914063, 0.9013986206054687, 0.9023374633789063, 0.9012766723632812, 0.90123876953125, 0.9009448852539063, 0.9015643920898437, 0.9012295532226563, 0.9011148681640625, 0.9011896362304688, 0.9011199951171875, 0.9018316650390625, 0.9017835693359375, 0.9014640502929687, 0.9016084594726562, 0.90189208984375, 0.901802978515625, 0.9020620727539063, 0.9019801635742187, 0.9017937622070312, 0.9018091430664062, 0.90191357421875, 1.858798583984375, 0.9011435546875, 0.9014241333007813, 0.90132275390625, 0.9010053100585937, 0.9013289184570312, 0.9013585815429688, 0.9011660766601562, 0.9014292602539062, 0.901317626953125, 0.901381103515625, 0.901228515625, 0.9015480346679687, 0.9016514282226562, 0.9015521240234375, 0.90144873046875, 0.9019647827148437, 0.9018716430664062, 0.9012531127929687, 0.9012572021484375, 0.901212158203125, 0.9014169311523438, 0.901138427734375, 0.9026416625976562, 0.9016320190429687, 0.9017907104492188, 0.9014876098632812, 0.9016504516601562, 0.901855224609375, 0.9019913940429688, 0.9016053466796875, 0.9015654296875, 0.9016565551757812, 0.9016135864257813, 0.901591064453125, 0.9022617797851562, 0.901928955078125, 0.9018091430664062, 0.901897216796875, 0.9014537963867187, 0.9010780029296875, 0.9012725830078125, 0.9011988525390625, 0.9014630126953125, 0.90176416015625, 0.9015735473632812, 0.9017302856445313, 0.9021542358398438, 0.9014528198242188, 0.9019176635742188, 0.9015859375, 0.9015582275390625, 0.901423095703125, 0.9016873168945313, 0.9015879516601563, 0.9017313232421875, 0.9018091430664062, 0.902240234375, 0.9021122436523438, 0.9021419677734375, 0.9018674926757813, 0.9018511352539063, 0.9022258911132812, 1.8597550048828124, 0.9009326171875, 0.90142822265625, 0.901043212890625, 0.9013135375976562, 0.9019094848632813, 0.9014773559570313, 0.9016790771484375, 0.9016719360351563, 0.9012367553710937, 0.9012531127929687, 0.9010974731445313, 0.901064697265625, 0.90119677734375, 0.9015040283203125, 0.901970947265625, 0.90260888671875, 0.9018121948242187, 0.9016063842773437, 0.9018624267578125, 0.9015449829101563, 0.901992431640625, 0.9017988891601563, 0.901696533203125, 0.9012930297851562, 0.9012428588867187, 0.90197607421875, 0.9014159545898438, 0.90151220703125, 0.9018674926757813, 0.9016678466796875, 0.9016135864257813, 0.9015623779296875, 0.9015643920898437, 0.9014937744140625, 0.902150146484375, 0.9015090942382813, 0.9018839111328125, 0.9017354125976562, 0.9015787353515625, 0.9013851928710938, 0.9017507934570312, 0.9015869140625, 0.9017579345703125, 0.901917724609375, 0.9019903564453124, 0.90163916015625, 0.9023303833007813, 0.901960693359375, 0.9023068237304688, 0.9017538452148437, 0.9017886962890626, 0.901560302734375, 0.9016637573242188, 0.9014384765625, 0.9020631103515625, 0.9018910522460938, 0.9014251708984375, 0.9013934326171875, 0.9016893310546875, 0.9019873657226563, 0.9017251586914062, 0.901432373046875, 1.8595020751953124, 0.9010237426757812, 0.9012930297851562, 0.9010022583007813, 0.9012469482421875, 0.9015675048828125, 0.9011814575195313, 0.9016350708007812, 0.9019985961914062, 0.9014097900390625, 0.9013739624023438, 0.9014691772460938, 0.901528564453125, 0.9014323120117187, 0.90157568359375, 0.9015634155273438, 0.9018613891601562, 0.9021675415039062, 0.9016709594726563, 0.9019002685546875, 0.9019852905273438, 0.9018562622070313, 0.900979736328125, 0.90132373046875, 0.901507080078125, 0.9013309936523437, 0.9011680908203125, 0.9011712036132813, 0.9011783447265626, 0.9020948486328125, 0.9016350708007812, 0.9018470458984374, 0.9016832275390625, 0.901180419921875, 0.9011251220703125, 0.901518310546875, 0.9013657836914063, 0.9012398071289063, 0.90106982421875, 0.9011405029296875, 0.901254150390625, 0.9014476928710937, 0.9010718994140625, 0.9012920532226563, 0.90113330078125, 0.9011609497070312, 0.901159912109375, 0.9013043212890625, 0.9009213256835937, 0.9009336547851563, 0.90114453125, 0.9015357666015625, 0.9015296020507813, 0.9014456176757812, 0.9014261474609375, 0.9017907104492188, 0.9016565551757812, 0.9016832275390625, 0.90138623046875, 0.9014343872070313, 0.9012725830078125, 0.9016371459960938, 0.902470703125, 1.8604583740234375, 0.9015695190429688, 0.9012644653320312, 0.9009939575195313, 0.9012254638671875, 0.9013217163085937, 0.9012008666992187, 0.9012828369140625, 0.9010513916015624, 0.9015951538085938, 0.9012674560546875, 0.9009285278320313, 0.9009203491210938, 0.9009633178710937, 0.9009141845703125, 0.9008394165039062, 0.9009039306640625, 0.901094482421875, 0.9009048461914062, 0.9008230590820312, 0.9013002319335938, 0.9019085083007813, 0.9010206909179688, 0.9013463134765625, 0.9014251708984375, 0.9011159057617187, 0.9022166748046875, 0.9010892944335938, 0.900806640625, 0.9012715454101563, 0.9008599243164063, 0.9013524780273438, 0.9015029907226563, 0.9012828369140625, 0.9010565185546875, 0.9016555786132813, 0.9012265014648437, 0.90136474609375, 0.9013237915039063, 0.9012940673828125, 0.90121728515625, 0.9013165893554688, 0.901396484375, 0.9020753784179687, 0.9011875610351563, 0.9012091064453125, 0.9015101318359375, 0.9015930786132812, 0.90141796875, 0.9013585815429688, 0.9015480346679687, 0.9018736572265625, 0.9019412231445313, 0.9015439453125, 0.9019586791992188, 0.9018480834960938, 0.9013289184570312, 0.9018142700195313, 0.9015265502929688, 0.901791748046875, 0.9013944091796875, 0.9017569580078125, 0.9013258056640625]",tokens/s,1.0926340535470893,,,,, +4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-180B,tiiuae/falcon-180B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -6431,67 +5390,145 @@ NameError: name 'exlv2_ext' is not defined File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code - answer = input( -EOFError: EOF when reading a line + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json -During handling of the above exception, another exception occurred: +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status + raise HfHubHTTPError(message, response=response) from e +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66949905-6ad6100d31e8154424405ed6;ff96113b-425d-487e-9c7c-98986d9bb0e1) + +403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. +Cannot access content at: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json. +If you are trying to create or update content,make sure you have a token with the `write` role. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error + raise LocalEntryNotFoundError( +huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. + +The above exception was the direct cause of the following exception: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights - self.create_no_weights_model() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model - meta_model = self.automodel_class.from_config(self.pretrained_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config - trust_remote_code = resolve_trust_remote_code( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code - raise ValueError( -ValueError: The repository for tiiuae/falcon-40b contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/tiiuae/falcon-40b. -Please pass the argument `trust_remote_code=True` to allow custom code to be run. - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neox-20b,EleutherAI/gpt-neox-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file + raise EnvironmentError( +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like tiiuae/falcon-180B is not the path to a directory containing a file named config.json. +Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,TencentARC/Mistral_Pro_8B_v0.1,TencentARC/Mistral_Pro_8B_v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2593.296384,7298.613248,0.0,6652.166144,6323.352576,s,10,7.731728576660157,0.7731728576660156,0.0036666872570226623,0.7712686767578125,0.7772910278320313,0.7798124450683593,0.7818295788574219,"[0.7823338623046875, 0.776730712890625, 0.7708938598632813, 0.7714732666015625, 0.7710640869140625, 0.770478515625, 0.770045166015625, 0.773399658203125, 0.7746173706054688, 0.7706920776367188]",tokens/s,331.10319052428935,kWh,9.090474362556752e-06,4.981150633102515e-06,4.3684586229685554e-05,5.775621122534482e-05,tokens/kWh,4432423.709394238,MB,2593.296384,7298.613248,0.0,6652.166144,6382.565888,s,10,458.08653125,45.808653125,0.015714942284677954,45.80371484375,45.83385546875,45.83744140625,45.84031015625,"[45.8103125, 45.8045234375, 45.84102734375, 45.79598828125, 45.78718359375, 45.80095703125, 45.79937890625, 45.80290625, 45.8111953125, 45.83305859375]",tokens/s,1.3752860148079282,kWh,0.0005408116745630392,0.00029641227384910964,0.0025237221621385317,0.0033609461105506802,tokens/kWh,18744.721851454397,,s,629,464.3046874389652,0.7381632550698964,0.09178720852369766,0.7269785766601562,0.7282177978515625,0.72855,1.49778814453125,"[0.728890380859375, 0.7286569213867188, 0.728468505859375, 0.727841796875, 0.7261204223632812, 0.7262678833007813, 0.7260436401367187, 0.7263180541992188, 0.7261552734375, 0.7261777954101563, 0.727593994140625, 0.7266488037109375, 0.726371337890625, 0.7267962646484375, 0.7268167724609375, 0.72713623046875, 0.7261091918945313, 0.7263775024414062, 0.726086669921875, 0.7265126953125, 0.7268792114257813, 0.7265433349609375, 0.7264358520507812, 0.7269488525390625, 0.7277793579101562, 0.7264532470703124, 0.7258746948242187, 0.7262843017578124, 0.726619140625, 0.726530029296875, 0.726930419921875, 0.7266365356445312, 0.7263467407226563, 0.7267451171875, 0.7262003173828125, 0.7265435180664063, 0.7259226684570312, 0.7268444213867188, 0.727319580078125, 0.72618798828125, 0.725907470703125, 0.7261306762695312, 0.7267153930664062, 0.7260835571289063, 0.7304304809570312, 0.7278233642578125, 0.7278356323242188, 0.7286978759765625, 0.7283251342773438, 0.7282206420898437, 0.7269744873046875, 0.7285032958984375, 0.728458251953125, 0.7281141967773438, 0.7277547607421875, 0.727568359375, 0.7287777099609375, 0.727846923828125, 0.7280547485351563, 0.72765234375, 0.7284254760742187, 0.7282565307617187, 1.504901123046875, 0.7284664306640625, 0.7290664672851562, 0.7276646118164063, 0.7266221923828124, 0.7263283081054688, 0.7270154418945313, 0.7276861572265625, 0.7269110717773437, 0.7259544677734375, 0.7266682739257813, 0.7265515747070312, 0.7271710815429687, 0.7266058349609374, 0.7279667358398437, 0.7284111328125, 0.7286005859375, 0.726703125, 0.7264102172851562, 0.7261973876953125, 0.7271340942382812, 0.72724072265625, 0.7264429931640625, 0.726245361328125, 0.7261767578125, 0.7261071166992188, 0.72650244140625, 0.726097900390625, 0.7263776245117187, 0.726574951171875, 0.728237060546875, 0.7274116821289063, 0.7262125854492187, 0.7267153930664062, 0.7282913208007813, 0.726614013671875, 0.7263006591796874, 0.7260282592773437, 0.726560791015625, 0.7266262817382813, 0.7263662109375, 0.7263231811523437, 0.7260938110351562, 0.727815185546875, 0.7281008911132812, 0.727647216796875, 0.7297269897460937, 0.726920166015625, 0.72753564453125, 0.7265023803710937, 0.726255615234375, 0.7262545776367187, 0.7261071166992188, 0.72612353515625, 0.726687744140625, 0.726403076171875, 0.7265781860351562, 0.7276553955078126, 0.728158203125, 0.7277864990234375, 0.7276748657226563, 0.7281663818359375, 0.7285872802734376, 1.497443359375, 0.726253662109375, 0.7272754516601563, 0.7280455932617188, 0.7274752197265625, 0.7277711181640625, 0.728121337890625, 0.7287439575195312, 0.7278479614257812, 0.7272069091796876, 0.728195068359375, 0.7279093627929687, 0.7278653564453125, 0.7270317993164063, 0.7276226806640625, 0.7280025634765624, 0.7273707275390625, 0.7268731079101562, 0.7277240600585938, 0.7278991088867187, 0.728922119140625, 0.7292661743164063, 0.7271915283203125, 0.72674609375, 0.72665087890625, 0.7293204345703125, 0.7278919677734375, 0.7269775390625, 0.7271495971679688, 0.7265064697265625, 0.7276011352539062, 0.7278345947265625, 0.7281715087890624, 0.7285504150390625, 0.72888525390625, 0.7278458862304688, 0.7282175903320313, 0.7279083251953125, 0.7274700927734375, 0.72768408203125, 0.7280230102539063, 0.727125, 0.7273963623046875, 0.7267492065429687, 0.7279011840820313, 0.7279144897460937, 0.7274905395507812, 0.7290408935546875, 0.7272591552734375, 0.7271188354492187, 0.7262003173828125, 0.7260712890625, 0.7269284057617188, 0.7274291381835938, 0.7278981323242187, 0.7281622924804687, 0.727773193359375, 0.72789501953125, 0.7277240600585938, 0.727568359375, 0.727462890625, 0.72740966796875, 0.7279739379882812, 1.49783544921875, 0.7277803344726562, 0.7284193115234375, 0.7274598388671875, 0.727204833984375, 0.7272642822265625, 0.7271331787109375, 0.7269990234375, 0.72734619140625, 0.726697998046875, 0.7275581665039063, 0.7281787109375, 0.7283179321289063, 0.7270953369140625, 0.7263682250976562, 0.7266856689453125, 0.7272109985351562, 0.7262371826171875, 0.7263467407226563, 0.726561767578125, 0.7266099243164063, 0.7263775024414062, 0.7269427490234375, 0.7270051879882813, 0.7267901611328125, 0.7268003540039063, 0.7271588134765625, 0.7267839965820313, 0.7270287475585937, 0.7264204711914063, 0.7269273681640624, 0.7266437377929688, 0.7264727172851563, 0.7263098754882813, 0.7269898071289063, 0.72724072265625, 0.7265023803710937, 0.726582275390625, 0.727125, 0.7272601318359375, 0.7271116943359375, 0.7265310668945313, 0.7264296875, 0.7270942993164062, 0.72810498046875, 0.7268444213867188, 0.7269007568359375, 0.72627197265625, 0.7266754760742188, 0.7263273315429688, 0.726993896484375, 0.72631298828125, 0.727208984375, 0.7275560913085938, 0.7275110473632812, 0.7266375732421875, 0.7264818725585938, 0.7270154418945313, 0.726582275390625, 0.7271209106445312, 0.7262269287109375, 0.7262637939453125, 0.7265955810546875, 1.49766650390625, 0.7265485229492188, 0.7276533203125, 0.7271311645507812, 0.726666259765625, 0.7262494506835937, 0.7270901489257813, 0.7279677734375, 0.7269109497070313, 0.7260007934570313, 0.726369140625, 0.7265126342773438, 0.7262740478515625, 0.7264921875, 0.7263375244140625, 0.7265730590820313, 0.727419921875, 0.7267584228515624, 0.726582275390625, 0.7271137084960938, 0.7265505981445313, 0.726699951171875, 0.72631298828125, 0.7264921875, 0.7262166748046875, 0.7264942016601562, 0.727056396484375, 0.7262740478515625, 0.726329345703125, 0.72700927734375, 0.7266652221679688, 0.7271157836914063, 0.7266324462890625, 0.7262699584960938, 0.7262648315429687, 0.7263733520507812, 0.7264257202148438, 0.7263466796875, 0.7261910400390625, 0.726476806640625, 0.7270922241210938, 0.7264163818359375, 0.726287353515625, 0.726835205078125, 0.7277772827148438, 0.7272254638671874, 0.7271760864257812, 0.7273492431640625, 0.7281674194335938, 0.7272499389648438, 0.7273533325195313, 0.7268812866210937, 0.7270850830078125, 0.7263784790039063, 0.7263406372070312, 0.7266806030273437, 0.7265914916992188, 0.7289251708984374, 0.7269837036132812, 0.7268054809570312, 0.7262802124023438, 0.7263119506835938, 0.727593994140625, 1.498050537109375, 0.7272069091796876, 0.7269785766601562, 0.7263672485351562, 0.7267686157226563, 0.7265392456054688, 0.7266918334960938, 0.7279226684570312, 0.7270952758789062, 0.7273717651367188, 0.7269324951171875, 0.7273584594726562, 0.7267799072265625, 0.7266355590820313, 0.7265770874023437, 0.7268864135742188, 0.7267072143554687, 0.7268515625, 0.72646875, 0.7266506958007812, 0.7269765014648437, 0.7271884765625, 0.7277824096679687, 0.7268259887695312, 0.7264942016601562, 0.7269846801757812, 0.7266631469726562, 0.7266221923828124, 0.7265433959960937, 0.7265709228515626, 0.7269048461914063, 0.726640625, 0.7268331298828125, 0.7268157348632812, 0.7275376586914063, 0.7284869384765625, 0.72732568359375, 0.72707275390625, 0.7283681030273438, 0.7273052368164062, 0.727035888671875, 0.726771728515625, 0.7267860717773438, 0.7267205200195312, 0.7269447631835938, 0.7271106567382812, 0.7269212036132813, 0.7263958740234375, 0.7277291259765625, 0.7267225341796875, 0.7280814208984375, 0.726513671875, 0.72703076171875, 0.7273072509765625, 0.7264839477539062, 0.72660888671875, 0.7266047973632812, 0.7268126831054688, 0.7263416137695312, 0.7265904541015625, 0.727103515625, 0.72654541015625, 0.7273564453125, 1.4995804443359375, 0.7264389038085938, 0.72692529296875, 0.726814697265625, 0.7266785278320312, 0.7263928833007812, 0.7267000122070313, 0.726929443359375, 0.7269508666992187, 0.7267072143554687, 0.7272652587890625, 0.727456787109375, 0.7268905029296875, 0.7272182006835938, 0.7271659545898438, 0.7272396850585937, 0.727488525390625, 0.727024658203125, 0.7267123413085937, 0.7267573852539062, 0.72673486328125, 0.7267174682617188, 0.7264542846679688, 0.7265056762695312, 0.7268145141601563, 0.7267010498046875, 0.7269017333984376, 0.7276697387695312, 0.7267901611328125, 0.7262535400390625, 0.7270850830078125, 0.7274118041992188, 0.7274280395507813, 0.7267235717773437, 0.727041015625, 0.7266365356445312, 0.7266611328125, 0.7265853271484375, 0.7269519653320312, 0.7284623413085938, 0.7270697021484375, 0.7270390014648438, 0.7264204711914063, 0.7266826171875, 0.7274915771484375, 0.726845458984375, 0.72681982421875, 0.72749365234375, 0.72808447265625, 0.727667724609375, 0.726656005859375, 0.7265833129882813, 0.726640625, 0.7277496337890625, 0.7269703979492188, 0.7271680297851563, 0.7267593994140625, 0.7272683715820313, 0.727320556640625, 0.7269324951171875, 0.7269560546875, 0.7263651733398437, 0.7267870483398438, 1.500390380859375, 0.7265679321289062, 0.7275233154296875, 0.7270062255859375, 0.7268106079101563, 0.7261430053710938, 0.7260712890625, 0.7270625, 0.7281285400390625, 0.728479736328125, 0.7286661376953125, 0.7285464477539062, 0.7271463623046875, 0.7275120849609376, 0.7265228881835938, 0.7265628051757812, 0.7272130737304687, 0.7273912353515625, 0.7264358520507812, 0.7261306762695312, 0.7267123413085937, 0.7264491577148438, 0.72669287109375, 0.726719482421875, 0.7263631591796875, 0.7265198364257812, 0.7262894287109375, 0.7263252563476562, 0.7271505737304688, 0.7277117309570312, 0.7283435668945313, 0.7273421020507812, 0.7282186279296875, 0.7270390014648438, 0.7294136352539062, 0.7282667236328125, 0.7285493774414062, 0.7274598388671875, 0.7267921752929688, 0.7266416625976563, 0.72656591796875, 0.72635595703125, 0.7266129760742187, 0.7267891235351562, 0.7269498901367187, 0.7263416137695312, 0.72686181640625, 0.7261245727539063, 0.7262761840820312, 0.7264869995117188, 0.7264901123046875, 0.7260047607421874, 0.726487060546875, 0.7265208129882812, 0.7264603881835937, 0.7263908081054687, 0.7275448608398437, 0.727146484375, 0.72680859375, 0.7264603881835937, 0.7277178955078125, 0.72709326171875, 0.728501220703125, 1.5012095947265625, 0.72654541015625, 0.7268945922851563, 0.7272919311523437, 0.7272028198242187, 0.7270809326171875, 0.7276093139648437, 0.7282923583984375, 0.7271884765625, 0.7268485717773437, 0.726763427734375, 0.7262822265625, 0.7274660034179687, 0.7266007080078125, 0.72632421875, 0.7261010131835938, 0.726930419921875, 0.7262833251953125, 0.727236572265625, 0.7263109130859375, 0.727277587890625, 0.729017333984375, 0.7280557861328125, 0.7287122192382812, 0.726213623046875, 0.72635595703125, 0.7278028564453125, 0.7271577758789063, 0.7265413208007813, 0.7267686157226563, 0.7265740966796875, 0.7276277465820312, 0.727436279296875, 0.7270174560546875, 0.7273318481445312, 0.72755712890625, 0.72652392578125, 0.7278878784179688, 0.7272489013671875, 0.7272007446289063, 0.727320556640625, 0.7268229370117187, 0.7260794677734375, 0.7274660034179687, 0.726408203125, 0.726381591796875, 0.7260671997070313, 0.7263037719726563, 0.7268433837890625, 0.726957275390625, 0.7271473388671875, 0.7270225830078125, 0.7275509643554687, 0.7284777221679688, 0.7270584106445312, 0.7272191772460938, 0.727357421875, 0.7268218994140625, 0.7266734008789062, 0.726677490234375, 0.7279493408203125, 0.7279093627929687, 0.7280087280273437, 1.50259716796875, 0.7271526489257812, 0.727667724609375, 0.7279851684570312, 0.7274424438476562, 0.7262618408203125, 0.7266088256835938, 0.7269324951171875, 0.7273543701171875, 0.7273164672851562, 0.7271823120117188, 0.7268035278320313, 0.7278939208984375, 0.7264112548828126, 0.7268864135742188, 0.726513671875, 0.7265802001953126, 0.72677685546875, 0.7268116455078125, 0.7273564453125, 0.72827392578125, 0.72766259765625, 0.7272315063476562, 0.7262218017578125, 0.726414306640625, 0.7278561401367187, 0.728342529296875, 0.7276656494140625, 0.7273707275390625, 0.7264389038085938, 0.7276830444335938, 0.7273564453125, 0.7274208984375, 0.7277598876953125, 0.72755712890625, 0.7271044921875, 0.7269417114257812, 0.7284859008789063, 0.728322021484375, 0.727647216796875, 0.7293214721679687, 0.7274178466796875, 0.7273226318359375, 0.7271823120117188, 0.72783154296875, 0.7280087280273437, 0.7273554077148437, 0.7271423950195313, 0.7276287841796875, 0.7275499267578125, 0.7273082885742187, 0.7275765991210937, 0.7275704345703125, 0.7288955078125, 0.7285176391601562, 0.7280199584960938, 0.727841796875, 0.72796875, 0.7280548095703125, 0.7271168212890625, 0.7272642822265625, 0.7274669799804687, 0.7284869384765625]",tokens/s,1.3547138700439787,,,,, +4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,m,m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/m/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948c2a-59aef85712156b732b4173de;1d74bf77-9e91-488e-9a34-a6e2b55a3aa0) + +Repository Not Found for url: https://huggingface.co/m/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + raise EnvironmentError( +OSError: m is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-13b,facebook/opt-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-72B,Qwen/Qwen1.5-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -6511,23 +5548,29 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2-large,openai-community/gpt2-large,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1273.511936,2645.03296,0.0,1998.585856,1692.285952,s,10,0.19512889289855956,0.019512889289855957,0.0006973531616019884,0.019118751525878906,0.02076168899536133,0.020845900917053222,0.020913270454406736,"[0.02074297523498535, 0.019069087982177733, 0.01902137565612793, 0.019066047668457032, 0.01907967948913574, 0.0189399356842041, 0.01915782356262207, 0.019729055404663087, 0.019392799377441407, 0.020930112838745116]",tokens/s,13119.533258105714,kWh,2.258438427837786e-07,1.2375136383443654e-07,6.813650022829518e-07,1.030960208901167e-06,tokens/kWh,248312202.3427593,MB,1273.806848,2645.03296,0.0,1998.585856,1740.085248,s,10,11.767407348632812,1.1767407348632815,0.01424671134639797,1.1756907958984375,1.1905447143554688,1.2001551696777344,1.2078435339355469,"[1.209765625, 1.1791375732421876, 1.183642578125, 1.159637939453125, 1.166791015625, 1.1595640869140624, 1.17467822265625, 1.169077880859375, 1.1884090576171875, 1.176703369140625]",tokens/s,53.537706423768526,kWh,1.3865471741266508e-05,7.59789077589712e-06,2.9375964599116e-05,5.083932711627962e-05,tokens/kWh,1239198.1478414636,,s,629,11.921181676864638,0.018952594080865855,0.002352548224385844,0.0184770565032959,0.01912931900024414,0.01946992607116699,0.03775201217651367,"[0.020113407135009767, 0.019819520950317384, 0.020000768661499024, 0.02002943992614746, 0.020170751571655272, 0.019966976165771484, 0.01986867141723633, 0.019780607223510743, 0.019711999893188475, 0.01991372871398926, 0.02002943992614746, 0.019809280395507813, 0.01985024070739746, 0.01979801559448242, 0.01944063949584961, 0.0192225284576416, 0.01923276710510254, 0.019565568923950196, 0.01946316719055176, 0.01927168083190918, 0.019129344940185547, 0.01903308868408203, 0.018916351318359375, 0.019993600845336915, 0.020050943374633787, 0.019573759078979493, 0.01898700714111328, 0.019013631820678712, 0.019124223709106446, 0.0190515193939209, 0.018741247177124023, 0.018388992309570314, 0.018288639068603514, 0.018325504302978517, 0.01842585563659668, 0.018329599380493163, 0.01836031913757324, 0.019708927154541016, 0.019175424575805664, 0.018696191787719727, 0.01881804847717285, 0.019137535095214844, 0.018902015686035157, 0.018919456481933595, 0.018997215270996095, 0.018655231475830078, 0.018349056243896485, 0.018293760299682618, 0.018259967803955078, 0.018803712844848632, 0.018983936309814452, 0.018994176864624023, 0.018919424057006837, 0.01900032043457031, 0.018935808181762694, 0.018883583068847656, 0.018942975997924806, 0.018905088424682616, 0.018944000244140623, 0.018937856674194335, 0.018896896362304686, 0.019002368927001953, 0.038024192810058595, 0.018856960296630858, 0.018953216552734374, 0.01899212837219238, 0.018933759689331055, 0.018946048736572265, 0.018918399810791017, 0.018514944076538087, 0.018379776000976563, 0.01847603225708008, 0.018405376434326173, 0.01839411163330078, 0.01844428825378418, 0.018465791702270508, 0.018507776260375978, 0.01843404769897461, 0.01840025520324707, 0.018305023193359374, 0.018584575653076172, 0.018944000244140623, 0.01904128074645996, 0.018902015686035157, 0.018913280487060546, 0.018897920608520507, 0.01900441551208496, 0.018922496795654296, 0.018920448303222655, 0.018958335876464845, 0.01924198341369629, 0.018942975997924806, 0.018929664611816405, 0.01883750343322754, 0.018920448303222655, 0.018919424057006837, 0.01887539291381836, 0.018379776000976563, 0.018397184371948243, 0.019178495407104493, 0.018910207748413087, 0.018939903259277344, 0.01884569549560547, 0.018928640365600585, 0.018945024490356444, 0.018886655807495118, 0.01885798454284668, 0.019137535095214844, 0.019356672286987304, 0.018903039932250978, 0.01864806365966797, 0.01850060844421387, 0.018481151580810547, 0.018380800247192384, 0.018301952362060548, 0.018478080749511717, 0.018493440628051756, 0.01842483139038086, 0.0183767032623291, 0.018386943817138672, 0.018413568496704103, 0.018397184371948243, 0.018351104736328124, 0.01844633674621582, 0.01836851119995117, 0.03775590515136719, 0.018353151321411132, 0.01845043182373047, 0.018341888427734376, 0.018726911544799805, 0.018123775482177733, 0.018150400161743165, 0.018366464614868162, 0.01886310386657715, 0.01907711982727051, 0.018974720001220705, 0.01900444793701172, 0.01890505599975586, 0.018916351318359375, 0.018966527938842775, 0.019076095581054688, 0.018861055374145508, 0.01881497573852539, 0.019140607833862306, 0.019045408248901368, 0.018921440124511718, 0.018963455200195312, 0.018877439498901367, 0.01926144027709961, 0.019165184020996092, 0.018880512237548826, 0.018881536483764647, 0.018955263137817382, 0.018960384368896483, 0.018936832427978514, 0.018729984283447267, 0.018342912673950194, 0.01841459274291992, 0.018329599380493163, 0.01839206314086914, 0.018340864181518556, 0.01840025520324707, 0.018534400939941405, 0.018990079879760743, 0.01900339126586914, 0.018896896362304686, 0.018963455200195312, 0.018910207748413087, 0.01887846374511719, 0.018913280487060546, 0.01883340835571289, 0.018333696365356447, 0.018703359603881836, 0.018351104736328124, 0.01845452880859375, 0.0182794246673584, 0.018318336486816408, 0.01838591957092285, 0.018298879623413086, 0.018270240783691407, 0.019394527435302733, 0.01943961524963379, 0.020576255798339844, 0.019310592651367187, 0.018993152618408202, 0.01903206443786621, 0.018950143814086915, 0.019017728805541992, 0.0377446403503418, 0.018357248306274415, 0.01839820861816406, 0.018373632431030275, 0.018353151321411132, 0.0184453125, 0.018336767196655272, 0.01846784019470215, 0.018374656677246092, 0.018431039810180665, 0.018341823577880858, 0.018308095932006836, 0.018556928634643553, 0.01840127944946289, 0.018554880142211915, 0.0184770565032959, 0.01844428825378418, 0.018405376434326173, 0.018333696365356447, 0.01840947151184082, 0.01842278480529785, 0.01840127944946289, 0.018413568496704103, 0.018343967437744142, 0.018638816833496094, 0.018471935272216796, 0.01844223976135254, 0.018472959518432617, 0.018349056243896485, 0.018336767196655272, 0.01837772750854492, 0.018337791442871093, 0.01840742492675781, 0.01838083267211914, 0.018362335205078125, 0.018448383331298827, 0.01839820861816406, 0.01841459274291992, 0.018397184371948243, 0.018324480056762696, 0.018363391876220703, 0.018415615081787108, 0.018408447265625, 0.018379776000976563, 0.018749439239501953, 0.01843404769897461, 0.018365440368652345, 0.018324480056762696, 0.018372608184814454, 0.018328575134277342, 0.01844223976135254, 0.018338815689086914, 0.018361343383789062, 0.01836031913757324, 0.01841152000427246, 0.018314239501953124, 0.018345983505249023, 0.01840332794189453, 0.018328575134277342, 0.018373632431030275, 0.01841663932800293, 0.018287616729736327, 0.018552831649780274, 0.037754878997802735, 0.018325504302978517, 0.01840025520324707, 0.018291711807250977, 0.018345983505249023, 0.018326528549194337, 0.01842995262145996, 0.018415615081787108, 0.01841971206665039, 0.01842278480529785, 0.018359296798706053, 0.01837772750854492, 0.018334720611572267, 0.018315263748168945, 0.01840947151184082, 0.018386943817138672, 0.0183767032623291, 0.018520063400268554, 0.018358272552490236, 0.018396160125732423, 0.018333696365356447, 0.01839206314086914, 0.018307071685791015, 0.018312192916870116, 0.018371583938598633, 0.018345983505249023, 0.01841663932800293, 0.018457599639892578, 0.01835212707519531, 0.018354175567626953, 0.01828659248352051, 0.018344959259033202, 0.018364416122436524, 0.018355199813842774, 0.018298879623413086, 0.01835212707519531, 0.018412544250488282, 0.018366464614868162, 0.018382848739624022, 0.018255872726440428, 0.018357248306274415, 0.01836953544616699, 0.01902284812927246, 0.020344831466674804, 0.01921331214904785, 0.018961408615112304, 0.018908159255981445, 0.018890752792358398, 0.018924543380737305, 0.019082239151000976, 0.01884364891052246, 0.018367488861083983, 0.019126272201538085, 0.018917375564575196, 0.018936832427978514, 0.01902284812927246, 0.0184268798828125, 0.018364416122436524, 0.018391040802001952, 0.01841049575805664, 0.018320383071899413, 0.018339839935302735, 0.018349056243896485, 0.0375838737487793, 0.018310144424438478, 0.01836031913757324, 0.018404352188110353, 0.018507776260375978, 0.018515968322753908, 0.018348031997680665, 0.018380800247192384, 0.01826201629638672, 0.018463775634765624, 0.018397151947021486, 0.018396160125732423, 0.018347007751464844, 0.018324480056762696, 0.01841459274291992, 0.018471935272216796, 0.018512895584106445, 0.01836031913757324, 0.018316287994384766, 0.018356224060058594, 0.018326528549194337, 0.01836953544616699, 0.018387968063354493, 0.018312192916870116, 0.018323455810546875, 0.018404352188110353, 0.01864806365966797, 0.018514944076538087, 0.018299903869628906, 0.018319360733032225, 0.018310144424438478, 0.018258943557739257, 0.018485248565673826, 0.018364416122436524, 0.018373632431030275, 0.018423807144165038, 0.018341888427734376, 0.018431999206542968, 0.018876415252685547, 0.018487295150756835, 0.01843302345275879, 0.018374656677246092, 0.0185743350982666, 0.01837772750854492, 0.018381824493408205, 0.018363391876220703, 0.01838387107849121, 0.01839923286437988, 0.018378751754760742, 0.01836031913757324, 0.01839411163330078, 0.018412544250488282, 0.018408447265625, 0.018473983764648438, 0.018364416122436524, 0.01840947151184082, 0.018310144424438478, 0.01839206314086914, 0.01851087951660156, 0.018360288619995117, 0.01839206314086914, 0.01836031913757324, 0.01843097686767578, 0.037787647247314454, 0.018329599380493163, 0.01837772750854492, 0.018396160125732423, 0.018449407577514648, 0.01841152000427246, 0.018397184371948243, 0.018374656677246092, 0.018320383071899413, 0.018408447265625, 0.018351104736328124, 0.01837772750854492, 0.018423807144165038, 0.018333696365356447, 0.01864908790588379, 0.018455551147460936, 0.018397184371948243, 0.018354175567626953, 0.018366464614868162, 0.018356224060058594, 0.018347007751464844, 0.01841152000427246, 0.019151872634887695, 0.019474431991577147, 0.019180543899536134, 0.018968576431274413, 0.01903923225402832, 0.018941951751708985, 0.018888704299926756, 0.0189040641784668, 0.018905088424682616, 0.018907136917114258, 0.019160064697265625, 0.01887027168273926, 0.018877439498901367, 0.01868185615539551, 0.018921472549438476, 0.01904025650024414, 0.018936832427978514, 0.018332672119140626, 0.018308095932006836, 0.01839411163330078, 0.018347007751464844, 0.018311168670654295, 0.0183767032623291, 0.01841459274291992, 0.018522111892700196, 0.018931711196899414, 0.019349504470825195, 0.01902284812927246, 0.018991104125976564, 0.018930688858032226, 0.018989055633544923, 0.019001344680786132, 0.018495487213134765, 0.018301952362060548, 0.01869004821777344, 0.01825484848022461, 0.01839206314086914, 0.01840230369567871, 0.01839820861816406, 0.018663423538208008, 0.019091455459594727, 0.038542335510253906, 0.018413568496704103, 0.018481151580810547, 0.018983936309814452, 0.01899519920349121, 0.018893823623657227, 0.018886655807495118, 0.01880575942993164, 0.018921472549438476, 0.018318336486816408, 0.018509855270385744, 0.018419679641723634, 0.018356224060058594, 0.01843404769897461, 0.018962432861328125, 0.01904435157775879, 0.01921843147277832, 0.018980863571166993, 0.01903923225402832, 0.018388992309570314, 0.01842790412902832, 0.01837772750854492, 0.018372608184814454, 0.018331647872924805, 0.01839411163330078, 0.018319360733032225, 0.018305023193359374, 0.018293760299682618, 0.018367488861083983, 0.01842483139038086, 0.018390016555786134, 0.018357280731201173, 0.018384864807128906, 0.01839411163330078, 0.018364416122436524, 0.018327552795410155, 0.01839308738708496, 0.018328575134277342, 0.01826918411254883, 0.0184268798828125, 0.018395135879516602, 0.018295808792114256, 0.018373632431030275, 0.018151424407958985, 0.018207744598388673, 0.01836031913757324, 0.018295808792114256, 0.018780160903930664, 0.018881536483764647, 0.018906112670898437, 0.018965503692626954, 0.018974752426147462, 0.018904031753540038, 0.018936832427978514, 0.018956287384033203, 0.018965503692626954, 0.01840332794189453, 0.018310144424438478, 0.018336767196655272, 0.018404352188110353, 0.018361343383789062, 0.01839923286437988, 0.018463743209838866, 0.038046718597412106, 0.01843507194519043, 0.018305023193359374, 0.018233343124389647, 0.018344959259033202, 0.018366464614868162, 0.018495487213134765, 0.018343967437744142, 0.018420703887939455, 0.01840230369567871, 0.018654207229614257, 0.020091903686523437, 0.019406848907470704, 0.01906073570251465, 0.0190515193939209, 0.018997247695922852, 0.018948095321655273, 0.019203071594238282, 0.01926655960083008, 0.01898700714111328, 0.018949119567871094, 0.01903104019165039, 0.01902079963684082, 0.018894847869873048, 0.018984960556030273, 0.018909183502197266, 0.018982912063598634, 0.019183616638183593, 0.019070976257324217, 0.01901875114440918, 0.018957311630249024, 0.018975744247436522, 0.018861055374145508, 0.018933759689331055, 0.01906073570251465, 0.018932735443115235, 0.018926591873168946, 0.018968576431274413, 0.01884671974182129, 0.018888704299926756, 0.018856960296630858, 0.018906112670898437, 0.018761728286743166, 0.019104768753051758, 0.019098623275756836, 0.01904844856262207, 0.018964479446411133, 0.018893823623657227, 0.018338815689086914, 0.018323455810546875, 0.01824563217163086, 0.018487295150756835, 0.018811904907226562, 0.01941200065612793, 0.01912931251525879, 0.01884364891052246, 0.01884569549560547, 0.018997247695922852, 0.018654207229614257, 0.018766847610473633, 0.01901875114440918, 0.018925567626953126, 0.018929664611816405, 0.04048076629638672, 0.019142656326293944, 0.018959360122680666, 0.018917375564575196, 0.019141632080078123, 0.018944000244140623, 0.01884876823425293, 0.018808832168579103, 0.018886655807495118, 0.018934783935546876, 0.01899929618835449, 0.018940927505493164, 0.018977792739868164, 0.018918399810791017, 0.01899929618835449, 0.018940927505493164, 0.018861055374145508, 0.018836511611938476, 0.018780128479003906, 0.018320383071899413, 0.01839308738708496, 0.01840127944946289, 0.01827737617492676, 0.018310144424438478, 0.01827840042114258, 0.018487295150756835, 0.018775039672851563, 0.018501632690429686, 0.01841663932800293, 0.018305023193359374, 0.019021823883056642, 0.018941951751708985, 0.018931711196899414, 0.01887027168273926, 0.018334720611572267, 0.018359296798706053, 0.018281471252441405, 0.018289663314819335, 0.018388992309570314, 0.018295808792114256, 0.01823539161682129, 0.01827020835876465, 0.018332672119140626, 0.01830297660827637, 0.01837264060974121, 0.018341888427734376, 0.018376672744750976, 0.01881292724609375, 0.0188221435546875, 0.01887948799133301, 0.018420736312866212, 0.018380800247192384, 0.018301952362060548, 0.018333696365356447, 0.018735103607177735, 0.019014656066894533, 0.01880985641479492, 0.018928640365600585, 0.018937856674194335, 0.018965503692626954, 0.018817024230957033, 0.01887027168273926, 0.018896896362304686]",tokens/s,52.763225748056264,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-72B,Qwen/Qwen1.5-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-70b-hf,meta-llama/Llama-2-70b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -6566,10 +5609,41 @@ ChildProcessError: Traceback (most recent call last): self._buffers[key] = fn(buf) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 112.00 MiB. GPU + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-13b-hf,meta-llama/Llama-2-13b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,3001.430016,9299.296256,0.0,8652.849152,8210.185216,s,10,11.016480834960937,1.1016480834960938,0.0021733642538701277,1.1017757568359374,1.103871484375,1.1043791625976562,1.1047853051757812,"[1.1037586669921875, 1.1048868408203125, 1.09813720703125, 1.0993441162109374, 1.10018701171875, 1.0994322509765626, 1.101841796875, 1.101709716796875, 1.1036807861328124, 1.10350244140625]",tokens/s,232.3791089324831,kWh,1.2973552644252778e-05,7.108400666602392e-06,6.117329893860212e-05,8.12552522494573e-05,tokens/kWh,3150565.568537876,MB,3002.59328,9299.296256,0.0,8652.849152,8503.104,s,10,641.81039453125,64.18103945312501,0.013566927048965604,64.180421875,64.20006953125001,64.202245703125,64.20398664062499,"[64.180421875, 64.1733046875, 64.15237109375, 64.17387890625, 64.17909765625, 64.204421875, 64.1840859375, 64.180421875, 64.1828046875, 64.1995859375]",tokens/s,0.9815983121621521,kWh,0.0007575022853910923,0.00041517883106595037,0.0035625019055547965,0.004735183022011839,tokens/kWh,13304.659969242997,,s,629,650.7052465209968,1.0345075461383086,0.13087387967036276,1.0186967163085938,1.0195488891601563,1.0197336059570312,2.11880048828125,"[1.0175508422851562, 1.0181458129882812, 1.0181683349609374, 1.0183413696289063, 1.0181898193359376, 1.0181119995117187, 1.0183444213867188, 1.018092529296875, 1.0177116088867189, 1.0180689697265626, 1.0175825805664063, 1.0178242797851562, 1.0176737060546874, 1.0177935180664062, 1.0175949096679688, 1.017802734375, 1.018124267578125, 1.01833935546875, 1.0179113159179687, 1.0183004150390624, 1.0186444702148438, 1.0186260375976564, 1.0186373291015625, 1.0180352172851563, 1.0180280151367187, 1.0180382690429688, 1.019072509765625, 1.0186967163085938, 1.0191267700195312, 1.0186731567382812, 1.0187960205078126, 1.0190377197265625, 1.0188656616210938, 1.01879296875, 1.0181878051757813, 1.0191165161132814, 1.0185533447265624, 1.0191687622070313, 1.0184427490234376, 1.0186332397460938, 1.0186659545898438, 1.01909912109375, 1.0189649658203126, 1.0186096801757814, 1.0187254028320312, 1.0194135131835937, 1.01941455078125, 1.0202962036132812, 1.019704345703125, 1.0197586059570312, 1.0201170043945313, 1.0203515014648437, 1.0195978393554688, 1.020099609375, 1.0194329833984375, 1.020137451171875, 1.0197483520507813, 1.0200903930664063, 1.01933056640625, 1.01880419921875, 1.019261962890625, 1.0196900024414062, 2.1243330078125, 1.0192138061523437, 1.0183055419921876, 1.0189486083984376, 1.0191370239257813, 1.0183291015625, 1.01895166015625, 1.0190971069335937, 1.019052001953125, 1.0191104125976562, 1.018608642578125, 1.0190632934570312, 1.0185861206054687, 1.0184775390625, 1.0194800415039063, 1.0183649291992187, 1.0192107543945312, 1.0193479614257812, 1.01952001953125, 1.0189434814453124, 1.01899365234375, 1.019052001953125, 1.0188851318359375, 1.0190868530273438, 1.0185226440429687, 1.0191022338867188, 1.0190540771484375, 1.0195435791015626, 1.0188001098632813, 1.0175877075195312, 1.01774951171875, 1.017987060546875, 1.0180618286132812, 1.018218505859375, 1.0183157958984375, 1.0183516235351562, 1.018313720703125, 1.0178468017578124, 1.0180331420898439, 1.018102783203125, 1.018229736328125, 1.0181058349609375, 1.0183147583007812, 1.018461181640625, 1.0184550170898437, 1.017839599609375, 1.0192803955078125, 1.0181570434570313, 1.01834033203125, 1.018218505859375, 1.0189649658203126, 1.0185697021484375, 1.01888818359375, 1.0182881469726563, 1.0184069213867188, 1.0182307739257812, 1.0182891235351563, 1.0182410278320313, 1.0186854248046875, 1.0180198364257813, 1.0185799560546875, 1.0184140625, 1.0185236206054689, 2.1177333984375, 1.01767578125, 1.0179533081054688, 1.01821337890625, 1.0182543334960938, 1.0181304321289062, 1.0179686279296876, 1.0175242309570312, 1.0182492065429687, 1.0181949462890625, 1.0180792236328124, 1.017970703125, 1.0186107177734376, 1.0181621704101562, 1.0177321166992188, 1.017511962890625, 1.0179542846679688, 1.0180269775390625, 1.0183741455078126, 1.0180157470703124, 1.0179850463867188, 1.0181283569335937, 1.0180433959960937, 1.0179522705078126, 1.0176942138671874, 1.0177587280273437, 1.0178385620117187, 1.0181632080078125, 1.018629150390625, 1.0183321533203125, 1.0186834106445313, 1.01846630859375, 1.018461181640625, 1.018250244140625, 1.01829638671875, 1.01803515625, 1.01867724609375, 1.0185482177734375, 1.0195558471679687, 1.0182451171875, 1.0182113037109375, 1.0181283569335937, 1.0183987426757812, 1.0187427978515624, 1.0183946533203125, 1.0181652221679687, 1.018517578125, 1.0183423461914063, 1.0193663940429687, 1.0184171752929687, 1.0185789184570313, 1.0189977416992186, 1.0188840942382813, 1.0188493041992188, 1.01865673828125, 1.0181990356445312, 1.018498046875, 1.0186240234375, 1.0186342163085937, 1.0180474853515624, 1.0181181640625, 1.0185072631835939, 1.0182072143554688, 2.11782666015625, 1.0176593627929686, 1.0179297485351562, 1.0178068237304687, 1.0177402954101562, 1.0177413330078124, 1.0181898193359376, 1.0177003784179688, 1.0179614868164062, 1.0176676025390625, 1.0177188110351563, 1.0182338256835937, 1.0195701904296874, 1.01842431640625, 1.0179614868164062, 1.0182686767578124, 1.0188646240234376, 1.0179307250976561, 1.0180372314453126, 1.0181652221679687, 1.01809765625, 1.0183987426757812, 1.0185236206054689, 1.0191226806640625, 1.0184785766601563, 1.0190673828125, 1.0196029663085937, 1.0190448608398437, 1.0190960693359374, 1.0191595458984375, 1.0192824096679687, 1.0184365844726562, 1.0186434326171876, 1.0191533813476563, 1.0193930053710938, 1.0196664428710938, 1.019341796875, 1.01850830078125, 1.0184909057617189, 1.018365966796875, 1.0184058837890626, 1.019093994140625, 1.0190244140625, 1.0187202758789062, 1.0190602416992187, 1.0189383544921875, 1.0194821166992187, 1.0181652221679687, 1.0186793212890626, 1.0183731079101563, 1.0187816772460938, 1.01879296875, 1.0193489990234375, 1.018956787109375, 1.019167724609375, 1.0183106689453125, 1.0189916381835937, 1.0191524047851563, 1.0189639892578124, 1.0186598510742189, 1.0192609252929687, 1.0185523071289062, 1.0191390991210938, 2.1198623046875, 1.0184703979492187, 1.018693603515625, 1.0184253540039063, 1.018598388671875, 1.017944091796875, 1.0177741088867187, 1.0175641479492188, 1.0179666748046876, 1.017946044921875, 1.0179491577148438, 1.0177464599609376, 1.0178068237304687, 1.0175989990234375, 1.0180106201171875, 1.0180372314453126, 1.0184130859375, 1.0181887817382813, 1.0183567504882813, 1.0175958862304688, 1.0183536376953124, 1.0183270263671875, 1.0187335815429688, 1.0194104614257813, 1.01911962890625, 1.0193428344726563, 1.0188841552734376, 1.0194349975585937, 1.0187448120117188, 1.018265625, 1.018481689453125, 1.0187151489257813, 1.0190418090820312, 1.0186414184570312, 1.0186311645507813, 1.019009033203125, 1.0189557495117187, 1.01874072265625, 1.0184427490234376, 1.01905615234375, 1.0199142456054688, 1.0191533813476563, 1.0189649658203126, 1.019109375, 1.0186588134765624, 1.0195548095703124, 1.0190469360351562, 1.0197084350585937, 1.0191718139648438, 1.019072509765625, 1.0192210083007813, 1.0191072998046875, 1.0190694580078126, 1.0184151000976562, 1.0187469482421876, 1.0190745239257812, 1.0195794067382813, 1.0200555419921875, 1.0184437866210938, 1.0190847778320313, 1.01943505859375, 1.0188318481445313, 1.0186168212890625, 2.11917919921875, 1.0183997192382812, 1.02013232421875, 1.0196019287109375, 1.018566650390625, 1.018514404296875, 1.0180843505859376, 1.0178980102539064, 1.018302490234375, 1.0179512329101563, 1.0179932250976562, 1.017970703125, 1.0190079956054687, 1.0196439208984376, 1.0198763427734374, 1.0188820190429688, 1.0180269775390625, 1.0179645385742186, 1.0182420654296875, 1.0186547241210937, 1.019009033203125, 1.0187325439453125, 1.0195947265625, 1.01844482421875, 1.0194401245117188, 1.0188646240234376, 1.0188635864257813, 1.0188073120117187, 1.0185891723632812, 1.0188493041992188, 1.0184304809570313, 1.0185359497070312, 1.0193643798828125, 1.0190960693359374, 1.0195015869140625, 1.0195343627929687, 1.0197268676757814, 1.0195292358398438, 1.0212003784179688, 1.0190858154296876, 1.0195117797851563, 1.0193694458007811, 1.0198139038085938, 1.0197166137695313, 1.0198231201171875, 1.0193295288085937, 1.0196602783203126, 1.01909912109375, 1.0193510131835937, 1.0191390991210938, 1.019315185546875, 1.01920361328125, 1.0198876342773437, 1.019504638671875, 1.0197114868164063, 1.0195404663085939, 1.0196654052734375, 1.019725830078125, 1.0191769409179687, 1.019283447265625, 1.0189865112304688, 1.0192742309570313, 1.0197012329101562, 2.120995849609375, 1.0189475708007814, 1.0187919311523437, 1.0181539916992188, 1.0187530517578125, 1.019020263671875, 1.0189700927734375, 1.0192455444335937, 1.0192025756835938, 1.018956787109375, 1.0191503295898436, 1.0182103271484375, 1.0184130859375, 1.01810791015625, 1.0181693725585939, 1.018672119140625, 1.0189906005859375, 1.0192138061523437, 1.0188738403320312, 1.0185830688476563, 1.0189445190429687, 1.0188543701171875, 1.0183229370117188, 1.0181427001953125, 1.0185963745117188, 1.0190100708007812, 1.0193192749023436, 1.0195661010742187, 1.0191524047851563, 1.0190028686523438, 1.0189066162109375, 1.018893310546875, 1.0182830200195312, 1.01808740234375, 1.01798095703125, 1.018049560546875, 1.0186854248046875, 1.0191216430664063, 1.0186157836914063, 1.019087890625, 1.019009033203125, 1.018883056640625, 1.0186516723632812, 1.018503173828125, 1.018767333984375, 1.0181427001953125, 1.0188851318359375, 1.0190079956054687, 1.0191380615234376, 1.0195916748046876, 1.018988525390625, 1.0186444702148438, 1.0186322021484375, 1.0188236694335937, 1.0185963745117188, 1.0187489013671875, 1.0191278076171875, 1.0186588134765624, 1.0191104125976562, 1.0196490478515625, 1.019409423828125, 1.0184796142578125, 1.0184622192382813, 2.120321044921875, 1.018513427734375, 1.0190059814453125, 1.0185799560546875, 1.0189691162109376, 1.0192957153320312, 1.0182420654296875, 1.0181099243164062, 1.018471435546875, 1.0179880981445313, 1.01793994140625, 1.0180792236328124, 1.0191585083007813, 1.0183577880859376, 1.0186967163085938, 1.019025390625, 1.018302490234375, 1.0182195434570311, 1.0180986938476562, 1.0181119995117187, 1.018119140625, 1.0185779418945313, 1.0192568359375, 1.01869775390625, 1.0190448608398437, 1.0191011962890626, 1.0185687255859375, 1.0183587646484376, 1.0186629028320313, 1.018440673828125, 1.0184990844726562, 1.0189854736328126, 1.0192864990234376, 1.0188861694335938, 1.0186168212890625, 1.0193828125, 1.019452392578125, 1.018482666015625, 1.0182092895507813, 1.0185973510742188, 1.0184847412109375, 1.0187908935546874, 1.0185379638671874, 1.0185676879882812, 1.0197432250976564, 1.0195404663085939, 1.0186229858398437, 1.0183670043945312, 1.01861376953125, 1.0180689697265626, 1.019240478515625, 1.0194298706054687, 1.0187018432617188, 1.0183311157226562, 1.0196664428710938, 1.01880322265625, 1.019241455078125, 1.01879296875, 1.0191953735351562, 1.0192783203125, 1.0192066650390625, 1.0193878784179689, 1.0188646240234376, 2.12357421875, 1.019025390625, 1.0193284912109375, 1.0185912475585936, 1.0186680297851562, 1.0185154418945312, 1.0190069580078125, 1.0191072998046875, 1.0187960205078126, 1.0190796508789062, 1.0191022338867188, 1.01871923828125, 1.0191728515625, 1.0182952880859375, 1.0185615234375, 1.0188533935546875, 1.01926806640625, 1.0197380981445312, 1.0183946533203125, 1.019536376953125, 1.0187807006835938, 1.0187202758789062, 1.0181488647460937, 1.01829736328125, 1.0191585083007813, 1.0188114013671874, 1.0189260864257812, 1.0182645874023437, 1.0184970092773438, 1.01850830078125, 1.0195537719726562, 1.0186332397460938, 1.018650634765625, 1.018513427734375, 1.0189107055664062, 1.0193633422851562, 1.0195169067382812, 1.0182993774414062, 1.0184263916015626, 1.019188232421875, 1.0184898681640624, 1.0184581298828126, 1.018377197265625, 1.0180526123046876, 1.018682373046875, 1.019114501953125, 1.01926708984375, 1.018660888671875, 1.0182830200195312, 1.0192527465820314, 1.0191104125976562, 1.0186793212890626, 1.0189076538085937, 1.0181212158203126, 1.0184489135742187, 1.0176378784179687, 1.0188114013671874, 1.01772900390625, 1.0189046020507813, 1.0190069580078125, 1.0186148071289063, 1.0183670043945312, 1.019093017578125, 2.122827880859375, 1.0188871459960938, 1.0193141479492187, 1.0191267700195312, 1.0201989135742187, 1.018756103515625, 1.0183936157226563, 1.0180618286132812, 1.0186639404296876, 1.018534912109375, 1.0186199340820312, 1.0191769409179687, 1.0182215576171876, 1.0179891357421875, 1.0194401245117188, 1.019241455078125, 1.019087890625, 1.0191400756835938, 1.0193930053710938, 1.0193981323242187, 1.0194821166992187, 1.0188114013671874, 1.0183598022460938, 1.0190151977539061, 1.0194656982421875, 1.0182840576171874, 1.0186342163085937, 1.0182359008789061, 1.0182963256835937, 1.018186767578125, 1.0188738403320312, 1.0185728149414062, 1.0182052001953126, 1.018392578125, 1.019826171875, 1.018545166015625, 1.0191267700195312, 1.0181467895507812, 1.0188943481445312, 1.0193899536132813, 1.0195814208984375, 1.0194718627929686, 1.0192506713867187, 1.0194667358398437, 1.0197903442382812, 1.0192322387695312, 1.0195476684570313, 1.0191769409179687, 1.0188554077148437, 1.0196582641601561, 1.0197176513671875, 1.019526123046875, 1.0196561889648437, 1.0197647094726563, 1.0200924072265625, 1.0190786743164062, 1.019673583984375, 1.0185328369140625, 1.0187786254882814, 1.0190172119140626, 1.019193359375, 1.0191861572265626, 1.0196377563476562]",tokens/s,0.966643504663527,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-7b,stabilityai/stablelm-base-alpha-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1435.398144,8196.194304,0.0,7549.7472,6940.714496,s,10,6.101695007324219,0.6101695007324219,0.0005946945898735176,0.610120330810547,0.6105357299804687,0.6111274536132812,0.6116008325195312,"[0.6117191772460937, 0.6094563598632813, 0.6096676025390625, 0.609661865234375, 0.6102354736328125, 0.6099964599609375, 0.6100880737304688, 0.610152587890625, 0.6103131713867187, 0.6104042358398437]",tokens/s,419.55554922477825,kWh,7.199752165211573e-06,3.945167113402825e-06,3.557207094129864e-05,4.671699021991304e-05,tokens/kWh,5479805.07294925,MB,1435.398144,8196.194304,0.0,7549.7472,7094.0672,s,10,359.3025859375,35.93025859375,0.004744165567684035,35.92844140625,35.93707578125,35.938278125,35.93924,"[35.92640625, 35.93118359375, 35.93375390625, 35.9282890625, 35.93948046875, 35.93680859375, 35.92859375, 35.92646484375, 35.927859375, 35.92374609375]",tokens/s,1.753396787713594,kWh,0.00042417653058966,0.00023248355862878645,0.0021270168535728984,0.002783676942791345,tokens/kWh,22631.93656977539,,s,629,364.2223344116213,0.5790498162346918,0.0724714604302608,0.570292236328125,0.5706096801757813,0.570741552734375,1.1803278564453126,"[0.570017822265625, 0.5699727172851563, 0.5701652221679687, 0.5702686767578125, 0.5701201782226563, 0.5703833618164063, 0.5702440795898438, 0.5700086059570313, 0.5700679931640625, 0.5700485229492187, 0.5702072143554687, 0.5704335327148438, 0.5702359008789063, 0.5702522583007813, 0.5702430419921874, 0.5702123413085938, 0.5699952392578125, 0.5701222534179687, 0.570018798828125, 0.5700730590820312, 0.5700311279296875, 0.5700730590820312, 0.5705441284179688, 0.5700914916992188, 0.5701908569335937, 0.570039306640625, 0.5701427001953125, 0.5701519165039063, 0.570018798828125, 0.5704693603515625, 0.5701949462890625, 0.5705523071289063, 0.5700341796875, 0.570376220703125, 0.5702338256835937, 0.5700792236328125, 0.5701652221679687, 0.5701939086914063, 0.5703106689453125, 0.5701212158203125, 0.570377197265625, 0.5703854370117187, 0.5702174682617187, 0.57017138671875, 0.5701898193359375, 0.570281982421875, 0.5704048461914063, 0.5703516235351562, 0.5703372802734376, 0.5703587646484375, 0.570261474609375, 0.5706219482421875, 0.570228759765625, 0.5703167724609375, 0.5704724731445312, 0.570250244140625, 0.570260498046875, 0.5705205688476562, 0.5706659545898437, 0.5705738525390625, 0.5702584228515625, 0.5703618774414062, 1.180654541015625, 0.5706793212890625, 0.5700546264648437, 0.5700679931640625, 0.5699635009765625, 0.5702379760742188, 0.5699317626953125, 0.570335205078125, 0.5702041625976563, 0.5703126831054688, 0.5702020874023438, 0.57031884765625, 0.5707837524414062, 0.5704570922851563, 0.5700587768554688, 0.5700219116210937, 0.5701283569335938, 0.5701038208007813, 0.570292236328125, 0.5705799560546875, 0.5701365966796875, 0.5702850341796875, 0.5703014526367187, 0.5703843994140625, 0.5703741455078125, 0.570166259765625, 0.57010791015625, 0.5701795654296875, 0.5702543334960938, 0.5704069213867188, 0.5702564086914063, 0.5703895263671875, 0.5704017944335937, 0.5704888305664062, 0.5703884887695313, 0.5702901611328125, 0.5705441284179688, 0.5706096801757813, 0.5703915405273438, 0.5703915405273438, 0.5706311645507812, 0.5706148071289062, 0.5704232788085938, 0.5703792724609374, 0.5704356079101562, 0.5703280639648437, 0.5702430419921874, 0.5703812866210938, 0.5702645874023438, 0.5704130859375, 0.5704847412109375, 0.5704356079101562, 0.57042431640625, 0.5707622680664063, 0.5705584716796875, 0.5703618774414062, 0.5702379760742188, 0.5702461547851563, 0.5704683227539062, 0.5704161376953125, 0.5703577880859375, 0.5702789306640625, 0.570260498046875, 1.1801353759765625, 0.5700740966796874, 0.569970703125, 0.5700802612304687, 0.5700914916992188, 0.570197021484375, 0.5702625122070313, 0.57080322265625, 0.570260498046875, 0.5700802612304687, 0.5700341796875, 0.5702266845703124, 0.5705256958007813, 0.5703792724609374, 0.5704345703125, 0.570514404296875, 0.5704652709960938, 0.5702963256835938, 0.5707018432617188, 0.5703864135742187, 0.57019189453125, 0.5703259887695312, 0.5704099731445312, 0.5703536376953126, 0.5701396484375, 0.5705430908203125, 0.5701375732421875, 0.5701621704101563, 0.5701939086914063, 0.5704110107421875, 0.5704468383789062, 0.5702154541015625, 0.5702461547851563, 0.5703546752929688, 0.5702359008789063, 0.57044580078125, 0.5702901611328125, 0.5705093383789063, 0.5704324951171875, 0.5704232788085938, 0.5704314575195313, 0.570387451171875, 0.5705912475585937, 0.5705697021484375, 0.5704417114257813, 0.5703413696289062, 0.5704591064453125, 0.57055126953125, 0.5703720703125, 0.5705902099609375, 0.5705113525390625, 0.5704478759765625, 0.5705379638671875, 0.5709127807617187, 0.570514404296875, 0.5705072631835938, 0.5707048950195313, 0.5702860717773437, 0.5703311157226563, 0.5702573852539062, 0.5707479248046875, 0.570392578125, 0.5701949462890625, 1.1800667724609375, 0.5705154418945313, 0.5700843505859375, 0.5702154541015625, 0.5700464477539062, 0.5703096313476562, 0.570397705078125, 0.570355712890625, 0.5701539916992188, 0.5700249633789063, 0.5699932250976563, 0.5700464477539062, 0.5700894775390625, 0.57014990234375, 0.5704530029296875, 0.5702830200195312, 0.5701437377929688, 0.5704365844726562, 0.5703106689453125, 0.5702205200195313, 0.5703505859375, 0.5701375732421875, 0.5701458129882813, 0.5701437377929688, 0.570576904296875, 0.5702389526367188, 0.5702512817382812, 0.5702799072265625, 0.5704345703125, 0.570302490234375, 0.5701304321289062, 0.5706710815429688, 0.570281982421875, 0.5702225952148438, 0.5702225952148438, 0.5704365844726562, 0.570186767578125, 0.570102783203125, 0.5702564086914063, 0.5701857299804688, 0.57017138671875, 0.5702359008789063, 0.570239990234375, 0.5702092895507812, 0.5701734619140625, 0.5702164306640625, 0.5704601440429687, 0.570261474609375, 0.5702410278320312, 0.5704693603515625, 0.5702573852539062, 0.5701826782226562, 0.5703209228515626, 0.5703567504882813, 0.5702246704101562, 0.57021337890625, 0.5702625122070313, 0.5704263916015625, 0.5704110107421875, 0.5707018432617188, 0.5706383056640625, 0.5707294921875, 0.5706885375976563, 1.1809197998046874, 0.5703690185546875, 0.5707325439453125, 0.5704867553710937, 0.570355712890625, 0.57044482421875, 0.5706455078125, 0.5701949462890625, 0.5700352172851563, 0.5702830200195312, 0.5702727661132813, 0.5703720703125, 0.5707427978515625, 0.5703864135742187, 0.5704652709960938, 0.5703075561523437, 0.5703997192382813, 0.57046630859375, 0.5704171752929688, 0.570387451171875, 0.5707837524414062, 0.5702307739257813, 0.5702277221679688, 0.5705277709960938, 0.5703301391601563, 0.5702706909179688, 0.5701836547851562, 0.5702860717773437, 0.5702338256835937, 0.5703905029296875, 0.5705430908203125, 0.5707396850585937, 0.5704151000976563, 0.570481689453125, 0.5704909057617188, 0.5703987426757813, 0.5704140625, 0.5709854736328125, 0.5703946533203125, 0.5703843994140625, 0.5704007568359375, 0.5707048950195313, 0.5705410766601563, 0.570271728515625, 0.5703301391601563, 0.5703751831054688, 0.5703905029296875, 0.5704356079101562, 0.570440673828125, 0.5706219482421875, 0.570377197265625, 0.5703679809570312, 0.5704591064453125, 0.5703720703125, 0.570461181640625, 0.5709004516601562, 0.5705205688476562, 0.5705410766601563, 0.5705912475585937, 0.570640380859375, 0.5711124267578125, 0.5708656616210938, 0.5706577758789062, 1.1808399658203126, 0.5708021850585937, 0.5704427490234375, 0.5701908569335937, 0.5700781860351563, 0.5701417236328125, 0.5700914916992188, 0.5700802612304687, 0.5703956298828124, 0.5703792724609374, 0.570260498046875, 0.5703670043945313, 0.570735595703125, 0.5702215576171875, 0.570071044921875, 0.5703117065429687, 0.5704857788085937, 0.5703362426757812, 0.5710018310546875, 0.570376220703125, 0.570514404296875, 0.5702471923828125, 0.5702748413085937, 0.5703157958984375, 0.5701990356445312, 0.5703075561523437, 0.5709547729492187, 0.5701570434570312, 0.5700372314453125, 0.5704427490234375, 0.5703782348632812, 0.5703587646484375, 0.5703833618164063, 0.5702738037109375, 0.57059228515625, 0.5702174682617187, 0.570513427734375, 0.570365966796875, 0.570503173828125, 0.5704345703125, 0.570229736328125, 0.5707151489257812, 0.5703434448242187, 0.5710581665039063, 0.5702789306640625, 0.5702758178710937, 0.57023486328125, 0.5705379638671875, 0.5704007568359375, 0.570302490234375, 0.5705543823242187, 0.5705687255859375, 0.570534912109375, 0.5706015014648438, 0.5708339233398437, 0.5707653198242187, 0.5704918823242188, 0.570392578125, 0.5703731079101563, 0.5703987426757813, 0.5705912475585937, 0.5709179077148437, 0.5703670043945313, 1.1807825927734374, 0.5701509399414062, 0.5701007080078125, 0.5700905151367187, 0.5701478271484375, 0.5702461547851563, 0.5700157470703126, 0.57044580078125, 0.570102783203125, 0.5701734619140625, 0.57012939453125, 0.5702072143554687, 0.5703987426757813, 0.5702000732421875, 0.5708021850585937, 0.57046630859375, 0.570323974609375, 0.5701529541015625, 0.5706157836914062, 0.5701539916992188, 0.5702246704101562, 0.570071044921875, 0.57004541015625, 0.570197998046875, 0.5702573852539062, 0.5706096801757813, 0.570081298828125, 0.5700628662109375, 0.57021337890625, 0.5700740966796874, 0.5700669555664063, 0.5701386108398437, 0.5707857666015625, 0.5702532958984375, 0.5702543334960938, 0.5701437377929688, 0.5706444702148438, 0.570166259765625, 0.570166259765625, 0.5702123413085938, 0.570260498046875, 0.5701417236328125, 0.5706701049804688, 0.5704171752929688, 0.5703782348632812, 0.5703321533203125, 0.5704345703125, 0.5704058837890625, 0.5704703979492187, 0.5707151489257812, 0.5706455078125, 0.5702062377929688, 0.5701334838867187, 0.5703731079101563, 0.5704519653320312, 0.5702543334960938, 0.5702492065429687, 0.5701478271484375, 0.5702041625976563, 0.5701406860351562, 0.5706015014648438, 0.5703741455078125, 0.5703331909179687, 1.1804027099609375, 0.5701099243164063, 0.570060791015625, 0.5707489013671875, 0.570060791015625, 0.5700116577148437, 0.57004541015625, 0.570176513671875, 0.5700474853515625, 0.5701836547851562, 0.57000244140625, 0.570007568359375, 0.57016015625, 0.5703587646484375, 0.5702225952148438, 0.5700638427734375, 0.5701898193359375, 0.5701396484375, 0.5701703491210938, 0.5700423583984375, 0.5705799560546875, 0.5704273681640625, 0.570176513671875, 0.5700433959960938, 0.5704765625, 0.5706629028320312, 0.570208251953125, 0.5702266845703124, 0.5704099731445312, 0.5703434448242187, 0.5707540283203125, 0.5704099731445312, 0.5702256469726562, 0.570092529296875, 0.570076171875, 0.5700700073242188, 0.570123291015625, 0.5702697143554688, 0.5704888305664062, 0.5702543334960938, 0.5701212158203125, 0.5701160888671875, 0.57030859375, 0.5702307739257813, 0.57025537109375, 0.5702860717773437, 0.5701652221679687, 0.5702532958984375, 0.5705809936523437, 0.5704335327148438, 0.5703147583007813, 0.5702205200195313, 0.5703004150390625, 0.5702901611328125, 0.5703424072265625, 0.570323974609375, 0.57051953125, 0.570292236328125, 0.5702225952148438, 0.5703424072265625, 0.5705471801757812, 0.5703259887695312, 0.5703372802734376, 1.180564453125, 0.570250244140625, 0.5700833129882813, 0.570123291015625, 0.5700126953125, 0.5700361938476562, 0.570144775390625, 0.5701990356445312, 0.57012939453125, 0.570377197265625, 0.5702850341796875, 0.5701099243164063, 0.5703854370117187, 0.5702758178710937, 0.57021337890625, 0.5702860717773437, 0.5702338256835937, 0.57029833984375, 0.5704212646484375, 0.5705707397460937, 0.570218505859375, 0.57014990234375, 0.5701017456054688, 0.5704498901367188, 0.5705891723632812, 0.5702011108398437, 0.5701519165039063, 0.5703117065429687, 0.5702676391601562, 0.57019189453125, 0.570197998046875, 0.5702072143554687, 0.57019189453125, 0.5701068725585937, 0.5702052001953125, 0.5701652221679687, 0.5702225952148438, 0.5702748413085937, 0.5703250122070312, 0.5701754760742187, 0.5702564086914063, 0.57019189453125, 0.5701898193359375, 0.5701693725585938, 0.5705338745117188, 0.5704939575195312, 0.5702215576171875, 0.5701632080078125, 0.5703229370117188, 0.5706946411132813, 0.5702041625976563, 0.5702686767578125, 0.5705799560546875, 0.570397705078125, 0.5707550659179688, 0.5704202270507812, 0.5704949951171875, 0.5702778930664063, 0.5703250122070312, 0.5701703491210938, 0.5702062377929688, 0.5706311645507812, 0.57051953125, 1.1806351318359376, 0.5705595092773438, 0.5698693237304687, 0.5699307250976563, 0.570076171875, 0.5700352172851563, 0.5700628662109375, 0.5699164428710938, 0.5702594604492187, 0.57012939453125, 0.5700106201171875, 0.5700147094726562, 0.570076171875, 0.570018798828125, 0.5700126953125, 0.570271728515625, 0.5703526611328125, 0.5701048583984375, 0.5700587768554688, 0.5703884887695313, 0.570144775390625, 0.569975830078125, 0.5700567016601562, 0.5700003662109375, 0.5700485229492187, 0.5704652709960938, 0.570113037109375, 0.570461181640625, 0.5703075561523437, 0.5700106201171875, 0.5700986938476562, 0.570166259765625, 0.5703301391601563, 0.5704437866210937, 0.5701642456054687, 0.5700781860351563, 0.5700567016601562, 0.5701621704101563, 0.570197998046875, 0.570197021484375, 0.5700966186523437, 0.5701263427734375, 0.570017822265625, 0.5705093383789063, 0.57034033203125, 0.5703987426757813, 0.5703218994140625, 0.5703485717773438, 0.5702573852539062, 0.57031884765625, 0.5704970092773437, 0.570545166015625, 0.5701683349609376, 0.5701437377929688, 0.57034033203125, 0.5705051879882812, 0.5702041625976563, 0.5704263916015625, 0.5704058837890625, 0.5704570922851563, 0.5706854248046875, 0.5703546752929688, 0.5704683227539062]",tokens/s,1.7269671312609398,,,,, +4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-72B,Qwen/Qwen-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained + model_class = get_class_from_dynamic_module( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module + final_module = get_cached_module_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file + modules_needed = check_imports(resolved_module_file) + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports + raise ImportError( +ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,M,M,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,0,0,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -6581,7 +5655,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/M/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/0/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -6608,9 +5682,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948fed-0850d74b4401a0ae539cacb0;9ba5308e-6267-424e-8240-0ef43ceea49e) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669494c4-56dde3854d36ea97282aa5c4;24779085-20a3-4e9d-9a98-3929db5b97e3) -Repository Not Found for url: https://huggingface.co/M/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/0/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -6635,11 +5709,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: M is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: 0 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-7b,google/gemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-7b,google/gemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -6668,7 +5742,7 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-669481a0-1d7bbc244040e98c2208e2f4;457b3e47-21c5-496b-8048-d6b55a7ec029) +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66948147-454b740b381979b0360e98be;996817f2-d6f1-477f-813a-0f54ae537c23) 403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. Cannot access content at: https://huggingface.co/google/gemma-7b/resolve/main/config.json. @@ -6713,8 +5787,8 @@ Traceback (most recent call last): OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/gemma-7b is not the path to a directory containing a file named config.json. Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-2.7b,EleutherAI/pythia-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,x,x,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -6722,34 +5796,73 @@ Checkout your internet connection or see how to run the library in offline mode File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/x/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669492a4-40dc4ff350bca5051c2bcf8d;ca2fda43-1e17-410e-9f7b-07544792c4ae) + +Repository Not Found for url: https://huggingface.co/x/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + raise EnvironmentError( +OSError: x is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-7B,Qwen/Qwen1.5-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm2-20b,internlm/internlm2-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,4144.504832,15760.621568,0.0,15114.174464,14045.205504,s,10,15.963228881835938,1.5963228881835938,0.0014829914244840832,1.5958744506835938,1.5984191040039064,1.5985000183105469,1.5985647497558595,"[1.595896728515625, 1.598401123046875, 1.5945810546875, 1.5952257080078125, 1.5950601806640625, 1.5945120849609375, 1.5958521728515624, 1.5975928955078125, 1.5975260009765626, 1.5985809326171876]",tokens/s,160.36855820021125,kWh,1.8825581471125285e-05,1.0316417645935872e-05,8.981001629239093e-05,0.00011895201540945208,tokens/kWh,2152128.310889114,MB,4144.504832,15760.621568,0.0,15114.174464,14169.857024,s,10,928.8058671874999,92.88058671875,0.004527086516632578,92.879125,92.88628203124999,92.886953515625,92.887490703125,"[92.8758671875, 92.88065625, 92.887625, 92.8848203125, 92.8846328125, 92.875515625, 92.87759375, 92.8768203125, 92.876203125, 92.8861328125]",tokens/s,0.6782902889144009,kWh,0.0010964920105205644,0.0006009745227833628,0.005288325397323612,0.006985791930627541,tokens/kWh,9018.304671198623,,s,629,941.6992608642577,1.4971371396888042,0.1896008283998211,1.4742733154296874,1.4748571533203125,1.4750364013671875,3.06951080078125,"[1.473944580078125, 1.47329638671875, 1.4738431396484375, 1.47358203125, 1.47386572265625, 1.4748426513671875, 1.47376123046875, 1.4739620361328125, 1.47388720703125, 1.47437158203125, 1.474060302734375, 1.4738883056640626, 1.4746326904296876, 1.473596435546875, 1.4739219970703126, 1.474044921875, 1.474198486328125, 1.4741043701171874, 1.4745589599609374, 1.4744586181640624, 1.4741165771484375, 1.4748856201171876, 1.474040771484375, 1.473933349609375, 1.474250732421875, 1.4747626953125, 1.4741483154296875, 1.4741063232421876, 1.47391796875, 1.47371826171875, 1.4743121337890626, 1.4736240234375, 1.474345947265625, 1.4741422119140626, 1.47420263671875, 1.473943603515625, 1.474134033203125, 1.474208740234375, 1.473671142578125, 1.474809814453125, 1.473850341796875, 1.47422314453125, 1.4740899658203126, 1.4746153564453126, 1.474150390625, 1.474164794921875, 1.474740234375, 1.4742220458984374, 1.474397216796875, 1.47470947265625, 1.4741094970703126, 1.474333740234375, 1.4749337158203124, 1.4750013427734374, 1.4743634033203126, 1.47471875, 1.4743265380859376, 1.4740859375, 1.4744422607421874, 1.4750106201171875, 1.4745364990234375, 1.4744473876953126, 3.072501708984375, 1.4742149658203125, 1.47382275390625, 1.4743377685546875, 1.4739732666015626, 1.4742138671875, 1.473607666015625, 1.473517578125, 1.4735635986328126, 1.4740213623046876, 1.47407568359375, 1.474303955078125, 1.474218017578125, 1.4742906494140624, 1.4739681396484374, 1.4741094970703126, 1.47432958984375, 1.47487744140625, 1.474449462890625, 1.474229248046875, 1.474135009765625, 1.474888671875, 1.4737879638671876, 1.4744893798828125, 1.4746142578125, 1.474745361328125, 1.4743009033203125, 1.4740203857421874, 1.4740869140625, 1.4739189453125, 1.474797607421875, 1.4739200439453124, 1.474556884765625, 1.4741739501953126, 1.4747054443359375, 1.4741309814453125, 1.4740633544921875, 1.4746910400390625, 1.4741361083984375, 1.4743233642578124, 1.474419677734375, 1.4740213623046876, 1.47390673828125, 1.4743306884765626, 1.4746715087890625, 1.474198486328125, 1.474620361328125, 1.47437255859375, 1.4746910400390625, 1.474514892578125, 1.4745426025390624, 1.47401220703125, 1.4740531005859374, 1.47437158203125, 1.475441650390625, 1.4746439208984374, 1.474841552734375, 1.47451904296875, 1.474598876953125, 1.474634765625, 1.4747381591796875, 1.4739384765625, 1.473933349609375, 3.0693232421875, 1.473892333984375, 1.474171875, 1.4738431396484375, 1.474007080078125, 1.4742384033203124, 1.47473095703125, 1.4749234619140625, 1.473754150390625, 1.4738544921875, 1.474039794921875, 1.47367529296875, 1.47413916015625, 1.47485693359375, 1.4745743408203125, 1.474783203125, 1.475303466796875, 1.474924560546875, 1.4741279296875, 1.4751273193359375, 1.4750792236328125, 1.474249755859375, 1.4747965087890624, 1.474628662109375, 1.4746798095703124, 1.47464599609375, 1.475072021484375, 1.4749490966796874, 1.474650146484375, 1.474839599609375, 1.4745999755859376, 1.47433984375, 1.474587646484375, 1.4739671630859374, 1.47449853515625, 1.47369580078125, 1.4738216552734376, 1.4743746337890624, 1.474156494140625, 1.47430712890625, 1.4742518310546875, 1.474651123046875, 1.4738739013671875, 1.474051025390625, 1.4744114990234376, 1.474198486328125, 1.474423828125, 1.4742803955078125, 1.4740162353515625, 1.473574951171875, 1.4743848876953125, 1.4738145751953124, 1.47405419921875, 1.4739793701171875, 1.475199951171875, 1.4745067138671875, 1.4744473876953126, 1.4743388671875, 1.474714599609375, 1.4745006103515625, 1.4744422607421874, 1.4752808837890625, 1.474572265625, 3.06950341796875, 1.4739578857421876, 1.4735145263671876, 1.4739886474609376, 1.4746470947265624, 1.4735728759765625, 1.4737674560546874, 1.4742681884765625, 1.4737213134765625, 1.47318994140625, 1.47401318359375, 1.47386474609375, 1.47394970703125, 1.4739599609375, 1.4740623779296875, 1.474145263671875, 1.4742425537109376, 1.4741483154296875, 1.4742333984375, 1.4738831787109374, 1.474155517578125, 1.4743111572265626, 1.474144287109375, 1.4746112060546874, 1.4750372314453124, 1.4743541259765625, 1.4747115478515624, 1.4738729248046876, 1.474272216796875, 1.47419140625, 1.4745753173828124, 1.4750064697265626, 1.47466650390625, 1.4748436279296875, 1.474193359375, 1.4741329345703125, 1.4744525146484375, 1.4744913330078124, 1.4748323974609374, 1.4744207763671875, 1.4753935546875, 1.4751805419921875, 1.474482177734375, 1.4740582275390626, 1.4748548583984376, 1.474802734375, 1.4744371337890625, 1.4744453125, 1.4744443359375, 1.4745057373046875, 1.4743941650390624, 1.4749481201171875, 1.47416162109375, 1.47437255859375, 1.4748753662109375, 1.474218994140625, 1.47468798828125, 1.4740306396484375, 1.4754232177734374, 1.474871337890625, 1.4750535888671874, 1.474193359375, 1.47433984375, 3.0700166015625, 1.474471923828125, 1.4742957763671876, 1.474418701171875, 1.4738094482421875, 1.473839111328125, 1.4741832275390625, 1.47508935546875, 1.474249755859375, 1.474166748046875, 1.4742117919921875, 1.47376953125, 1.474102294921875, 1.4737879638671876, 1.4748671875, 1.4747493896484376, 1.474883544921875, 1.4746419677734375, 1.4745159912109376, 1.4746552734375, 1.474293701171875, 1.4748323974609374, 1.4744105224609374, 1.474787353515625, 1.47443408203125, 1.4740316162109375, 1.4738883056640626, 1.47376953125, 1.47512939453125, 1.47419140625, 1.4745528564453125, 1.4741678466796875, 1.47439208984375, 1.4739793701171875, 1.4745281982421874, 1.47403466796875, 1.4748272705078125, 1.474185302734375, 1.4739229736328125, 1.4739056396484376, 1.473829833984375, 1.474093017578125, 1.4740869140625, 1.474112548828125, 1.4749757080078125, 1.4745753173828124, 1.4741094970703126, 1.4738267822265625, 1.4748529052734376, 1.4741513671875, 1.473798095703125, 1.47447607421875, 1.474387939453125, 1.4741156005859375, 1.4746163330078126, 1.474620361328125, 1.4744791259765626, 1.4744678955078125, 1.4747166748046876, 1.4750802001953125, 1.4745999755859376, 1.4739814453125, 1.4747626953125, 3.069513671875, 1.47412890625, 1.4743746337890624, 1.4740838623046875, 1.4746378173828125, 1.4743603515625, 1.4743265380859376, 1.4740521240234374, 1.474298828125, 1.474333740234375, 1.47361279296875, 1.4742005615234375, 1.4735267333984374, 1.473796142578125, 1.4742364501953125, 1.47390869140625, 1.473765380859375, 1.4739835205078125, 1.4745712890625, 1.4740101318359375, 1.4739835205078125, 1.4743961181640626, 1.474408447265625, 1.4742752685546876, 1.4744114990234376, 1.4744586181640624, 1.4740623779296875, 1.4737520751953126, 1.47413916015625, 1.4744801025390626, 1.4740203857421874, 1.474050048828125, 1.47420361328125, 1.4737581787109375, 1.4745753173828124, 1.474017333984375, 1.474734130859375, 1.47439208984375, 1.4745015869140625, 1.4748160400390624, 1.474017333984375, 1.473838134765625, 1.4741207275390624, 1.473882080078125, 1.4738841552734374, 1.47435107421875, 1.4739732666015626, 1.4739046630859376, 1.4738043212890626, 1.4740582275390626, 1.4742333984375, 1.4741370849609374, 1.4745313720703126, 1.47392822265625, 1.4746859130859375, 1.4744012451171875, 1.4736475830078124, 1.4745435791015624, 1.4739937744140625, 1.4749501953125, 1.4744842529296875, 1.474662353515625, 1.474905029296875, 3.070246826171875, 1.4750576171875, 1.4738739013671875, 1.4734581298828124, 1.4737919921875, 1.474293701171875, 1.4743428955078124, 1.47382275390625, 1.47458154296875, 1.47357080078125, 1.474060302734375, 1.4740726318359374, 1.4753177490234375, 1.473629150390625, 1.4743223876953124, 1.4743489990234375, 1.473955810546875, 1.4739876708984374, 1.4747186279296876, 1.4738134765625, 1.4743214111328125, 1.4742047119140624, 1.4742978515625, 1.4737418212890625, 1.4734571533203125, 1.473523681640625, 1.473606689453125, 1.473850341796875, 1.4743746337890624, 1.4742579345703124, 1.4741832275390625, 1.474040771484375, 1.4740684814453124, 1.4739732666015626, 1.4740592041015625, 1.474809814453125, 1.4747279052734374, 1.4743153076171875, 1.4744268798828124, 1.474154541015625, 1.4741319580078125, 1.473996826171875, 1.4746644287109374, 1.4744012451171875, 1.4747647705078124, 1.474788330078125, 1.4744166259765625, 1.474029541015625, 1.4741083984375, 1.4744698486328125, 1.47449853515625, 1.473933349609375, 1.475099609375, 1.4742476806640625, 1.474344970703125, 1.47441455078125, 1.47498388671875, 1.4740675048828125, 1.4742537841796874, 1.4744873046875, 1.474292724609375, 1.47422509765625, 1.4751826171875, 3.072003173828125, 1.47430908203125, 1.4742056884765624, 1.474298828125, 1.4740029296875, 1.47441357421875, 1.4743634033203126, 1.473666015625, 1.4739056396484376, 1.4738585205078125, 1.4737633056640624, 1.47390771484375, 1.474503662109375, 1.4742467041015626, 1.47406640625, 1.4739844970703124, 1.474124755859375, 1.4739844970703124, 1.47361279296875, 1.474107421875, 1.473881103515625, 1.47378076171875, 1.474008056640625, 1.4745169677734375, 1.474460693359375, 1.474466796875, 1.4740469970703125, 1.4737305908203124, 1.47407666015625, 1.4743223876953124, 1.4743223876953124, 1.4740029296875, 1.4749521484375, 1.474461669921875, 1.4740694580078124, 1.4741329345703125, 1.47427734375, 1.474609130859375, 1.4740633544921875, 1.474460693359375, 1.474523193359375, 1.4746634521484374, 1.4743521728515625, 1.4738759765625, 1.4742733154296874, 1.4747269287109375, 1.474681884765625, 1.474302001953125, 1.4744627685546876, 1.4744678955078125, 1.4744381103515625, 1.474345947265625, 1.4741944580078126, 1.4742548828125, 1.4745078125, 1.4744801025390626, 1.47441455078125, 1.47418115234375, 1.4743223876953124, 1.4743634033203126, 1.4744627685546876, 1.4740469970703125, 1.4741370849609374, 3.0712216796875, 1.4734315185546876, 1.4745855712890625, 1.47361279296875, 1.473840087890625, 1.4741380615234374, 1.4739364013671874, 1.4736414794921875, 1.473987548828125, 1.4741053466796874, 1.4739149169921875, 1.47364453125, 1.4739620361328125, 1.47382373046875, 1.473976318359375, 1.474334716796875, 1.4739261474609375, 1.473628173828125, 1.4737264404296875, 1.4739302978515625, 1.4734212646484375, 1.4736036376953126, 1.4741319580078125, 1.47426513671875, 1.474302978515625, 1.4739517822265624, 1.4746705322265625, 1.47380126953125, 1.4740101318359375, 1.4745528564453125, 1.4744248046875, 1.47426513671875, 1.4744791259765626, 1.4744033203125, 1.4740244140625, 1.474103271484375, 1.4746705322265625, 1.4742518310546875, 1.474093017578125, 1.474193359375, 1.4737838134765624, 1.473976318359375, 1.474071533203125, 1.47503515625, 1.4746429443359375, 1.4743326416015625, 1.4748948974609375, 1.473871826171875, 1.4741412353515626, 1.474756591796875, 1.474630615234375, 1.474577392578125, 1.474472900390625, 1.474883544921875, 1.4748580322265625, 1.47447705078125, 1.4747811279296874, 1.47460400390625, 1.4745589599609374, 1.4746265869140625, 1.4749808349609375, 1.4749000244140624, 1.474957275390625, 3.07293701171875, 1.4741534423828124, 1.473850341796875, 1.474186279296875, 1.4741903076171874, 1.47452001953125, 1.4740736083984376, 1.474038818359375, 1.474935791015625, 1.4743348388671875, 1.473924072265625, 1.4737950439453125, 1.474008056640625, 1.4743111572265626, 1.474093017578125, 1.4743223876953124, 1.4741851806640625, 1.4741422119140626, 1.4739793701171875, 1.474102294921875, 1.4738380126953126, 1.4738585205078125, 1.4744945068359374, 1.4743634033203126, 1.474292724609375, 1.4741781005859376, 1.4750125732421875, 1.4740316162109375, 1.4740899658203126, 1.473870849609375, 1.47460302734375, 1.4747423095703125, 1.4751129150390625, 1.4748599853515625, 1.474618408203125, 1.475168212890625, 1.4755379638671875, 1.4745087890625, 1.474472900390625, 1.474514892578125, 1.474840576171875, 1.47443603515625, 1.4743101806640626, 1.4746552734375, 1.4748037109375, 1.4745220947265625, 1.4747740478515625, 1.4746317138671876, 1.4742313232421875, 1.4737684326171876, 1.4743951416015626, 1.474081787109375, 1.4740859375, 1.47426611328125, 1.474807861328125, 1.47405615234375, 1.4741063232421876, 1.474302978515625, 1.4747801513671874, 1.4749112548828125, 1.4753310546875, 1.4741790771484375, 1.4742220458984374]",tokens/s,0.6679414821062154,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1392.545792,6237.454336,0.0,5591.007232,5346.100736,s,10,5.702087280273438,0.5702087280273438,0.0032758876463017,0.5691306762695312,0.5706701721191406,0.5753404876708984,0.5790767401123047,"[0.5800108032226563, 0.5690457763671875, 0.56963232421875, 0.5686717529296875, 0.5691049194335938, 0.5689085083007812, 0.5691564331054687, 0.5690445556640625, 0.5692649536132812, 0.5692472534179688]",tokens/s,448.9584031546493,kWh,6.730608862859232e-06,3.6874586645353704e-06,3.2089053449001976e-05,4.2507120976396576e-05,tokens/kWh,6022520.32411586,MB,1392.545792,6237.454336,0.0,5591.007232,5555.34336,s,10,329.95942187500003,32.995942187500006,0.00677698481578348,32.996611328125,33.003900390625,33.0066337890625,33.008820507812494,"[32.98758984375, 32.99876953125, 32.99800390625, 33.00329296875, 32.98576171875, 32.99270703125, 32.99606640625, 32.99070703125, 32.99715625, 33.0093671875]",tokens/s,1.9093256874436688,kWh,0.0003894760356291577,0.00021346548665747832,0.001836931469543996,0.002439872991830632,tokens/kWh,25821.016180326347,,s,629,334.5575883178707,0.5318880577390637,0.0676032283856282,0.5236981811523438,0.5243047729492187,0.52448828125,1.092699482421875,"[0.5232855224609375, 0.5235804443359375, 0.5231001586914062, 0.5230325927734375, 0.52342578125, 0.5232117919921875, 0.5233387451171875, 0.52324658203125, 0.523146240234375, 0.5234544677734375, 0.5234892578125, 0.523303955078125, 0.5232906494140624, 0.52303564453125, 0.5235220336914063, 0.5233828125, 0.5234381103515625, 0.5232639770507812, 0.523114501953125, 0.5234656982421875, 0.5235753173828125, 0.5235343627929687, 0.5234656982421875, 0.52356298828125, 0.5236715698242187, 0.523630615234375, 0.523747314453125, 0.5236019287109375, 0.5239511108398438, 0.5234032592773438, 0.5237637329101562, 0.5235281982421875, 0.5234298706054688, 0.5238978271484375, 0.523704345703125, 0.5234800415039063, 0.523568115234375, 0.5234032592773438, 0.5236162719726563, 0.523826171875, 0.5237114868164062, 0.5236602783203125, 0.5236776733398437, 0.5234022827148438, 0.5235650024414062, 0.5239142456054687, 0.5236613159179687, 0.5238640747070312, 0.5236664428710938, 0.5236551513671875, 0.5237268676757812, 0.523779052734375, 0.5245716552734375, 0.5238753051757813, 0.5239859008789063, 0.5239797973632813, 0.52379443359375, 0.5241487426757813, 0.5243228149414062, 0.5239275512695313, 0.5239859008789063, 0.5239849243164062, 1.092547607421875, 0.5234862060546875, 0.5234585571289062, 0.523430908203125, 0.523419677734375, 0.5231114501953125, 0.52326806640625, 0.5233162231445313, 0.5237933959960938, 0.5237329711914063, 0.5236541137695313, 0.5234268188476563, 0.5234974975585938, 0.5239500732421875, 0.5236981811523438, 0.5235404663085937, 0.5233397827148437, 0.5233663940429687, 0.5233930053710938, 0.523251708984375, 0.5238825073242187, 0.5233387451171875, 0.52321484375, 0.5236510620117187, 0.5232701416015625, 0.523261962890625, 0.5234851684570313, 0.52385791015625, 0.5233141479492187, 0.5233141479492187, 0.5237933959960938, 0.5236162719726563, 0.5235394287109375, 0.5236039428710938, 0.5236265258789062, 0.523404296875, 0.524432373046875, 0.5245040893554688, 0.5246044311523438, 0.52440576171875, 0.5234370727539063, 0.523509765625, 0.5242644653320313, 0.5239736328125, 0.5239613647460938, 0.5238251342773438, 0.5239859008789063, 0.5239480590820312, 0.5240678100585937, 0.5244600219726563, 0.5235599365234375, 0.5235322875976562, 0.5239992065429687, 0.5245665283203125, 0.5246177368164062, 0.5242409057617188, 0.5239818115234375, 0.5243668212890625, 0.5246289672851563, 0.5246351318359375, 0.524642333984375, 0.5243975830078125, 0.5244672241210937, 1.093401611328125, 0.5240750122070312, 0.5239552001953125, 0.52360498046875, 0.523466796875, 0.5243002319335938, 0.5241241455078125, 0.5247160034179688, 0.5239346923828125, 0.5236541137695313, 0.5237217407226562, 0.5237616577148437, 0.5244815063476562, 0.524211181640625, 0.5238456420898437, 0.5239695434570313, 0.5239244995117187, 0.5236213989257813, 0.5235159301757812, 0.5238743286132812, 0.5235824584960938, 0.5235179443359375, 0.52333056640625, 0.5233848266601563, 0.5233059692382812, 0.5234913330078125, 0.5241917724609375, 0.5241712646484376, 0.523509765625, 0.523978759765625, 0.524326904296875, 0.5240657958984375, 0.5243740234375, 0.5234913330078125, 0.523325439453125, 0.5236459350585938, 0.5237012329101562, 0.5237268676757812, 0.5233213500976562, 0.5239797973632813, 0.52371044921875, 0.524242919921875, 0.523598876953125, 0.5236613159179687, 0.5237073974609375, 0.523826171875, 0.5238538208007812, 0.5235712280273438, 0.523441162109375, 0.5235732421875, 0.523472900390625, 0.5238896484375, 0.5235292358398438, 0.5239623413085938, 0.5240350952148437, 0.5237391357421874, 0.5234851684570313, 0.5235486450195312, 0.5237903442382813, 0.5235435791015625, 0.5234749145507812, 0.5236244506835938, 0.5238026123046875, 1.0924083251953125, 0.5236694946289062, 0.52347802734375, 0.5234851684570313, 0.5235445556640625, 0.5234339599609374, 0.5239521484375, 0.52405859375, 0.5237380981445312, 0.5242726440429688, 0.5238128662109375, 0.5241282348632812, 0.5237278442382812, 0.524042236328125, 0.523821044921875, 0.523958251953125, 0.5236961059570312, 0.5237063598632813, 0.5236746215820313, 0.5236930541992187, 0.5239552001953125, 0.5237145385742188, 0.5233878784179687, 0.5233551635742187, 0.5233059692382812, 0.5233325805664063, 0.523447265625, 0.5242828979492188, 0.523799560546875, 0.5240350952148437, 0.5233172607421875, 0.523683837890625, 0.5236930541992187, 0.52356298828125, 0.5234247436523437, 0.5236224365234375, 0.5233048706054687, 0.5234401245117187, 0.5237933959960938, 0.5242378540039062, 0.5238743286132812, 0.5239449462890625, 0.5243023071289062, 0.5239142456054687, 0.5239797973632813, 0.5242982177734375, 0.5239521484375, 0.5240166625976562, 0.5240678100585937, 0.5244170532226563, 0.5238589477539063, 0.5242276000976562, 0.5240964965820313, 0.523994140625, 0.5239715576171875, 0.5243576049804688, 0.5245450439453125, 0.5247354736328125, 0.5245726928710938, 0.5245236206054688, 0.5238475952148437, 0.523821044921875, 0.5236725463867188, 1.0934261474609375, 0.52333056640625, 0.5229783325195313, 0.5233264770507813, 0.523093994140625, 0.5231533813476562, 0.5235353393554687, 0.5235691528320312, 0.5232783203125, 0.5233970947265625, 0.52322509765625, 0.5232906494140624, 0.5234452514648438, 0.5239552001953125, 0.5232609252929687, 0.5235496826171875, 0.5232435302734375, 0.5234022216796875, 0.5231646728515625, 0.52375244140625, 0.5232578735351563, 0.5234319458007812, 0.52356298828125, 0.5234237670898437, 0.523451416015625, 0.5234012451171876, 0.5241415405273437, 0.5235762939453125, 0.523673583984375, 0.5237974853515625, 0.52398388671875, 0.52423681640625, 0.5239766845703125, 0.5234073486328125, 0.5233756103515625, 0.5234616088867188, 0.5233121337890625, 0.5233397827148437, 0.5239388427734375, 0.5235742797851562, 0.5236398315429688, 0.52368896484375, 0.5234555053710938, 0.5237698364257812, 0.5233592529296875, 0.523894775390625, 0.5234401245117187, 0.5235117797851563, 0.523404296875, 0.5233878784179687, 0.5234124755859375, 0.5239408569335937, 0.52353125, 0.5234237670898437, 0.5235128784179688, 0.523874267578125, 0.5239234619140625, 0.5243146362304687, 0.5239275512695313, 0.5238773803710938, 0.5242818603515625, 0.523810791015625, 0.523821044921875, 1.0930257568359374, 0.5232107543945312, 0.52316162109375, 0.5232630004882812, 0.5232639770507812, 0.5235537719726563, 0.5244201049804688, 0.5233796997070312, 0.5232916259765625, 0.523272216796875, 0.52347802734375, 0.5233551635742187, 0.5237022705078125, 0.523598876953125, 0.5238466796875, 0.524136474609375, 0.5237606201171875, 0.5238057250976562, 0.523778076171875, 0.5240791015625, 0.5236336669921875, 0.5233408203125, 0.5235425415039062, 0.5236541137695313, 0.523335693359375, 0.5239746704101562, 0.5234063110351562, 0.5233428344726563, 0.523420654296875, 0.5235691528320312, 0.523378662109375, 0.5238292236328125, 0.523472900390625, 0.5234135131835937, 0.5238937377929688, 0.52394189453125, 0.523778076171875, 0.52375244140625, 0.5239193725585938, 0.5237340087890625, 0.5233941040039063, 0.5235650024414062, 0.5234503784179687, 0.5236265258789062, 0.5240217895507813, 0.52352001953125, 0.5239121704101563, 0.5239193725585938, 0.5238906860351562, 0.5238906860351562, 0.524147705078125, 0.5241671752929687, 0.5243658447265624, 0.5237421875, 0.5238804321289062, 0.5237001953125, 0.523598876953125, 0.5240176391601562, 0.5237852172851563, 0.52413232421875, 0.5235875854492188, 0.52364697265625, 0.52398388671875, 1.0928189697265625, 0.5236561889648438, 0.5236930541992187, 0.5234370727539063, 0.5235292358398438, 0.523916259765625, 0.5238763427734375, 0.5241989135742188, 0.52381591796875, 0.5243770751953125, 0.5241866455078125, 0.5241456909179687, 0.5243525390625, 0.5239951171875, 0.5239971923828125, 0.524368896484375, 0.5239060668945312, 0.524020751953125, 0.5241405639648438, 0.5238804321289062, 0.52356201171875, 0.5234821166992187, 0.5237688598632813, 0.5234370727539063, 0.5234564819335937, 0.523536376953125, 0.5236070556640625, 0.5234503784179687, 0.5238599853515625, 0.5234083862304687, 0.5233295288085937, 0.523884521484375, 0.5232977905273437, 0.5238272094726563, 0.5236193237304687, 0.5233909912109375, 0.5233141479492187, 0.5239879760742188, 0.5235762939453125, 0.5241558837890625, 0.5236766967773437, 0.5239725952148437, 0.5236613159179687, 0.52408935546875, 0.5242327270507813, 0.5238917236328124, 0.5234862060546875, 0.5241200561523438, 0.5234708251953125, 0.523630615234375, 0.5242705688476562, 0.5235712280273438, 0.5233428344726563, 0.52341455078125, 0.5233182983398438, 0.52377294921875, 0.5237073974609375, 0.5236223754882813, 0.5232424926757813, 0.5235609741210937, 0.523462646484375, 0.523536376953125, 0.5239029541015625, 1.092758544921875, 0.5232230224609375, 0.5236244506835938, 0.5231585083007813, 0.5233715209960937, 0.5235814208984375, 0.5233612670898438, 0.523536376953125, 0.523325439453125, 0.5234390869140625, 0.52335205078125, 0.52364697265625, 0.5233899536132812, 0.5232977905273437, 0.5235599365234375, 0.5235517578125, 0.5233920288085937, 0.52366845703125, 0.5234319458007812, 0.523514892578125, 0.5232752685546875, 0.5237012329101562, 0.5237196655273437, 0.5233766479492188, 0.5236971435546875, 0.52352099609375, 0.5235537719726563, 0.523345947265625, 0.5235455932617188, 0.52406884765625, 0.5242286376953125, 0.524389404296875, 0.5235241088867187, 0.5232578735351563, 0.5233694458007813, 0.523747314453125, 0.5242389526367187, 0.523600830078125, 0.5237022705078125, 0.5236387939453125, 0.5238128662109375, 0.5234390869140625, 0.5237319946289063, 0.5238507690429688, 0.5233745727539062, 0.5234442138671875, 0.5238927612304688, 0.523767822265625, 0.523869140625, 0.523968505859375, 0.5244630737304687, 0.5236377563476563, 0.52392138671875, 0.5233858642578125, 0.5234381103515625, 0.5237340087890625, 0.5240494384765625, 0.52394189453125, 0.5239357299804688, 0.5239705810546875, 0.5242203979492187, 0.5239931030273437, 0.5242460327148437, 1.093507080078125, 0.523989013671875, 0.5240360717773438, 0.5239337158203125, 0.5234032592773438, 0.5238927612304688, 0.5234606323242188, 0.5235845336914062, 0.5233848266601563, 0.5233233642578125, 0.5231104125976562, 0.5241026611328125, 0.5236070556640625, 0.523736083984375, 0.523272216796875, 0.5247611083984375, 0.5243330688476563, 0.5240186767578126, 0.524157958984375, 0.5240443115234374, 0.523978759765625, 0.5238374633789062, 0.5240657958984375, 0.5238599853515625, 0.5237462768554687, 0.5236694946289062, 0.523599853515625, 0.52335205078125, 0.5244129028320312, 0.5246812133789063, 0.524706787109375, 0.524564453125, 0.5243494262695313, 0.524263427734375, 0.5238323364257812, 0.523388916015625, 0.5234790649414063, 0.5235701904296876, 0.5234329833984375, 0.52348828125, 0.5235302124023438, 0.5233008422851563, 0.5235025634765625, 0.52366748046875, 0.523378662109375, 0.5235241088867187, 0.523799560546875, 0.5239378051757813, 0.5237391357421874, 0.5240770263671874, 0.5232752685546875, 0.5233377075195312, 0.5234656982421875, 0.5238057250976562, 0.5232496337890625, 0.5235005493164062, 0.52366845703125, 0.52352099609375, 0.5235978393554688, 0.5234442138671875, 0.5232630004882812, 0.523420654296875, 0.5245173950195312, 1.092947998046875, 0.52453271484375, 0.5243463745117187, 0.5242276000976562, 0.5244682006835938, 0.524368896484375, 0.5243944702148438, 0.5240617065429688, 0.5243750610351563, 0.5239592895507813, 0.5239234619140625, 0.52438525390625, 0.5242869873046875, 0.5240463256835938, 0.5240596313476562, 0.524732421875, 0.5245419311523437, 0.5243187255859375, 0.5240545043945313, 0.524000244140625, 0.5237412109375, 0.5240115356445313, 0.5239132080078125, 0.5242838745117188, 0.5240617065429688, 0.524099609375, 0.5238660888671876, 0.5240678100585937, 0.5237862548828125, 0.5238876342773438, 0.5237872924804687, 0.5241005859375, 0.5238323364257812, 0.523931640625, 0.5241927490234375, 0.5244938354492188, 0.5244067993164062, 0.5234135131835937, 0.523315185546875, 0.52359375, 0.5232455444335937, 0.5234421997070312, 0.5235281982421875, 0.5233162231445313, 0.523388916015625, 0.523452392578125, 0.5235916748046875, 0.5241804809570313, 0.5237412109375, 0.52387939453125, 0.5238538208007812, 0.5236848754882812, 0.523737060546875, 0.5239080810546874, 0.5241026611328125, 0.5244927978515626, 0.5238046875, 0.5238814697265625, 0.5236787109375, 0.5235701904296876, 0.5235640258789063, 0.524210205078125, 0.5235947265625]",tokens/s,1.8800948535125506,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-6.7b,facebook/opt-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2022.883328,5539.10272,0.0,4892.655616,4542.741504,s,10,5.694402282714844,0.5694402282714843,0.0022278964552512335,0.5688670349121093,0.5707117797851562,0.5731342102050782,0.5750721545410157,"[0.575556640625, 0.5690338134765625, 0.5678692626953125, 0.5687002563476562, 0.5676268920898437, 0.5674249267578125, 0.5684844970703125, 0.5696422119140625, 0.5701734619140625, 0.5698903198242188]",tokens/s,449.56430418883286,kWh,6.703966662839608e-06,3.6734817678128214e-06,3.077389807590622e-05,4.115134650655865e-05,tokens/kWh,6220938.601831633,MB,2022.883328,5539.10272,0.0,4892.655616,4726.280192,s,10,334.554328125,33.4554328125,0.012952548332308819,33.45466796875,33.46486484375,33.476350390625,33.485538828125,"[33.4878359375, 33.44866796875, 33.443125, 33.44916015625, 33.43737890625, 33.4588671875, 33.4546875, 33.4623125, 33.4546484375, 33.45764453125]",tokens/s,1.8831022259697452,kWh,0.00039510093122168826,0.00021654957452975094,0.0018051211817500937,0.0024167716875015325,tokens/kWh,26067.832690116305,,s,629,339.1397302856444,0.5391728621393395,0.06755475317116652,0.53097265625,0.5316083862304688,0.5317822387695312,1.09872478515625,"[0.5310126342773438, 0.53113037109375, 0.5317058715820312, 0.530935791015625, 0.5307023315429688, 0.531651611328125, 0.5313556518554687, 0.53151025390625, 0.5312081909179688, 0.5308344116210938, 0.5306572875976563, 0.531704833984375, 0.5313720092773437, 0.5314744262695312, 0.5315502319335937, 0.5319423828125, 0.5314641723632813, 0.53194140625, 0.5313074951171874, 0.53119384765625, 0.5315758056640625, 0.5314529418945313, 0.5310607299804687, 0.5313535766601563, 0.5317161254882813, 0.531689453125, 0.53146826171875, 0.531725341796875, 0.5313976440429687, 0.53174169921875, 0.5316290283203124, 0.5319515991210938, 0.5317816162109374, 0.5313218383789062, 0.5316331787109375, 0.5317826538085938, 0.5314375610351563, 0.5311324462890625, 0.5311549682617187, 0.5317427368164063, 0.5311119384765625, 0.5312276611328125, 0.5314365234375, 0.5316792602539062, 0.5316904907226563, 0.5320693969726562, 0.531862548828125, 0.5321605224609375, 0.5318092651367188, 0.5320345458984375, 0.5320376586914063, 0.531989501953125, 0.5317529296875, 0.5317816162109374, 0.532279296875, 0.531968994140625, 0.531651611328125, 0.5318492431640625, 0.5322158203125, 0.5313269653320313, 0.5311262817382812, 0.5317109985351562, 1.100517333984375, 0.531336181640625, 0.5311201171875, 0.5306900634765624, 0.5306705932617187, 0.5307289428710937, 0.5306470336914062, 0.5307658081054687, 0.530572265625, 0.5306316528320313, 0.5310679321289062, 0.5309183959960937, 0.5307955322265625, 0.5309910888671875, 0.5315430297851562, 0.531473388671875, 0.5305477294921875, 0.5311221923828126, 0.5307709350585937, 0.530966552734375, 0.5305128784179688, 0.5308323974609375, 0.5309839477539062, 0.5310494995117188, 0.5307473754882812, 0.5309757690429687, 0.5309235229492187, 0.5309337768554687, 0.53066650390625, 0.5311743774414063, 0.53091943359375, 0.5312245483398438, 0.5310628051757813, 0.5319270629882813, 0.5310371704101563, 0.5307791137695312, 0.5309276123046875, 0.530777099609375, 0.5308047485351562, 0.5308313598632812, 0.530946044921875, 0.5307647705078125, 0.5308211059570312, 0.5306654663085938, 0.530524169921875, 0.5307432861328125, 0.5308251953125, 0.53072998046875, 0.530977783203125, 0.5311867065429687, 0.5309869995117188, 0.5312542724609375, 0.5314273071289063, 0.5308969116210938, 0.5310075073242188, 0.5313853149414063, 0.5306746826171875, 0.53089892578125, 0.5307893676757812, 0.5309020385742188, 0.5307484130859375, 0.5309389038085938, 0.5306982421875, 1.0987735595703125, 0.5308344116210938, 0.530502685546875, 0.5315389404296875, 0.5309573364257812, 0.5307207641601562, 0.530703369140625, 0.531072021484375, 0.5305855712890625, 0.5308221435546875, 0.530577392578125, 0.530745361328125, 0.5306163330078125, 0.5306101684570312, 0.5306142578125, 0.5307074584960938, 0.5306920776367188, 0.530682861328125, 0.5304330444335937, 0.5306326904296875, 0.5307760620117188, 0.5308211059570312, 0.5306358032226562, 0.53072998046875, 0.5306920776367188, 0.5310648193359375, 0.5310341186523437, 0.5307627563476562, 0.530850830078125, 0.5307586669921875, 0.5305743408203125, 0.530819091796875, 0.5308047485351562, 0.5305784301757812, 0.5307218017578125, 0.5306890258789062, 0.5307053833007812, 0.5306900634765624, 0.5304514770507812, 0.5309265747070312, 0.5308579711914062, 0.5307044067382812, 0.5306583251953125, 0.530681884765625, 0.5314078979492187, 0.5308272705078125, 0.53083544921875, 0.5314437255859376, 0.5309910888671875, 0.5313760986328125, 0.5309757690429687, 0.5308323974609375, 0.5307709350585937, 0.5311876831054687, 0.5309788208007813, 0.5310750732421875, 0.5309757690429687, 0.5311590576171875, 0.530819091796875, 0.5316198120117187, 0.5310689086914062, 0.5308856201171875, 0.530956298828125, 1.099652099609375, 0.5306685180664062, 0.5309573364257812, 0.5311047973632812, 0.5308251953125, 0.530680908203125, 0.5306971435546874, 0.5309389038085938, 0.5305805053710938, 0.5308150024414062, 0.530714599609375, 0.5305753784179688, 0.530609130859375, 0.5306388549804687, 0.5310023803710937, 0.5311734008789063, 0.5306429443359375, 0.5309942016601562, 0.5309910888671875, 0.5308006591796876, 0.5307330322265625, 0.5312122802734375, 0.5308692626953125, 0.53094091796875, 0.5309368286132813, 0.5310699462890625, 0.531135498046875, 0.5310894165039063, 0.5310156860351563, 0.5310453491210938, 0.5309798583984375, 0.5312214965820312, 0.5310709838867187, 0.5311631469726562, 0.5312348022460938, 0.5308098754882813, 0.5313177490234375, 0.5314129638671875, 0.5311539306640625, 0.5311221923828126, 0.5308692626953125, 0.5309265747070312, 0.5310023803710937, 0.5306695556640625, 0.5307924194335938, 0.5308477172851562, 0.5312583618164063, 0.5308375244140625, 0.5306859741210938, 0.5308375244140625, 0.5310238647460938, 0.5310392456054688, 0.5313167114257813, 0.5309163818359375, 0.530735107421875, 0.5309808349609375, 0.5313843383789062, 0.53096240234375, 0.530924560546875, 0.5308661499023437, 0.5307893676757812, 0.5308641357421875, 0.5307678833007813, 1.098599365234375, 0.5306071166992188, 0.5305692138671875, 0.5305211181640626, 0.53089794921875, 0.5305497436523438, 0.5308221435546875, 0.5307658081054687, 0.5307996215820312, 0.530661376953125, 0.5306900634765624, 0.5311692504882812, 0.530609130859375, 0.5308006591796876, 0.5306644287109376, 0.5308375244140625, 0.5307730102539062, 0.5307525024414063, 0.5305477294921875, 0.5310003051757812, 0.53079345703125, 0.5306757202148438, 0.5304637451171875, 0.5307637939453125, 0.5306132202148437, 0.530956298828125, 0.530988037109375, 0.5308764038085938, 0.5306808471679687, 0.5308743896484375, 0.5307279663085938, 0.5307576293945313, 0.5310965576171875, 0.5306583251953125, 0.53056103515625, 0.5305681762695312, 0.530555908203125, 0.5308845825195313, 0.5308344116210938, 0.5308221435546875, 0.530787353515625, 0.5306757202148438, 0.5306941528320313, 0.5308262329101563, 0.5310812377929688, 0.530934814453125, 0.5305538330078124, 0.5308098754882813, 0.5308231811523437, 0.5310986328125, 0.5306429443359375, 0.530845703125, 0.5307422485351563, 0.5307197265625, 0.530492431640625, 0.5308323974609375, 0.5305548706054688, 0.53087744140625, 0.5306767578125, 0.5308753662109374, 0.5305855712890625, 0.5308129272460937, 0.5303736572265625, 1.098567626953125, 0.5309030151367188, 0.5317017822265625, 0.5314866943359375, 0.531140625, 0.5313515625, 0.5313720092773437, 0.530951171875, 0.5308917846679687, 0.530724853515625, 0.5307863159179688, 0.5310587158203125, 0.530777099609375, 0.530819091796875, 0.53087744140625, 0.5309696044921876, 0.5308897094726562, 0.5310904541015625, 0.531515380859375, 0.5310259399414062, 0.5307739868164062, 0.5312061157226563, 0.5318901977539062, 0.5310761108398437, 0.5309962158203125, 0.5314529418945313, 0.5309951782226563, 0.5310013427734375, 0.5313760986328125, 0.5313331298828124, 0.5312849731445313, 0.5316055297851563, 0.5308313598632812, 0.5314816284179688, 0.531324951171875, 0.5315655517578125, 0.5319567260742187, 0.5317283935546875, 0.5308856201171875, 0.5309910888671875, 0.5312266235351563, 0.53136279296875, 0.5310289916992188, 0.5309757690429687, 0.530524169921875, 0.5308047485351562, 0.5308436279296875, 0.5307371215820312, 0.5306552124023437, 0.5307576293945313, 0.530914306640625, 0.530629638671875, 0.530746337890625, 0.5308231811523437, 0.5308712768554688, 0.5312450561523437, 0.5309327392578125, 0.53103515625, 0.5309214477539063, 0.5310279541015624, 0.5311580200195313, 0.5310894165039063, 0.5313126220703125, 1.0993970947265626, 0.5308150024414062, 0.53054052734375, 0.53062451171875, 0.5311447143554687, 0.5309869995117188, 0.5307893676757812, 0.5311334228515625, 0.5309542236328125, 0.5308313598632812, 0.5310842895507812, 0.5308108520507813, 0.5306603393554687, 0.531177490234375, 0.5307023315429688, 0.5314396362304687, 0.5306491088867188, 0.5312952270507812, 0.5308108520507813, 0.530840576171875, 0.5308078002929687, 0.5307863159179688, 0.5308047485351562, 0.5311262817382812, 0.53103515625, 0.5310740356445313, 0.5309634399414063, 0.531051513671875, 0.5307965698242187, 0.5314877319335938, 0.530746337890625, 0.5310259399414062, 0.5311201171875, 0.5307340698242188, 0.5309931640625, 0.5309593505859375, 0.5321942749023437, 0.5316433715820312, 0.5312388916015625, 0.530872314453125, 0.5307698974609375, 0.5307975463867187, 0.53082421875, 0.5306982421875, 0.5306019897460937, 0.5307197265625, 0.5305917358398438, 0.5307258911132813, 0.53085693359375, 0.531398681640625, 0.53166796875, 0.5317969970703125, 0.531862548828125, 0.5320745239257813, 0.5316608276367187, 0.5313966064453125, 0.5307791137695312, 0.53075048828125, 0.5309102172851563, 0.5311057739257813, 0.5310842895507812, 0.5312010498046875, 0.5308037109375, 1.1007191162109375, 0.53106689453125, 0.5309931640625, 0.5313853149414063, 0.5308897094726562, 0.5309972534179688, 0.5310842895507812, 0.531324951171875, 0.5306767578125, 0.5316229248046875, 0.5309573364257812, 0.530756591796875, 0.5307310180664062, 0.53082421875, 0.5305927734375, 0.5316853637695312, 0.5315819702148438, 0.5312542724609375, 0.5311344604492187, 0.531040283203125, 0.5308897094726562, 0.5313392944335937, 0.5316823120117188, 0.53125634765625, 0.5309573364257812, 0.5317652587890624, 0.531435546875, 0.531162109375, 0.5312890625, 0.5313095703125, 0.5313320922851562, 0.5313013916015625, 0.5311661987304688, 0.531324951171875, 0.5308743896484375, 0.53102490234375, 0.5308999633789062, 0.53098291015625, 0.5310023803710937, 0.5311641845703124, 0.5315082397460937, 0.5309317016601562, 0.5308917846679687, 0.5309010009765625, 0.5306695556640625, 0.531409912109375, 0.5308856201171875, 0.531504150390625, 0.5308948364257813, 0.5309337768554687, 0.5309696044921876, 0.5308682250976563, 0.5308712768554688, 0.5310637817382813, 0.5310596923828125, 0.530924560546875, 0.5309398803710937, 0.5311754150390625, 0.5311918334960938, 0.5315389404296875, 0.5313822631835937, 0.5316004028320312, 0.5323612060546875, 1.101580322265625, 0.5309798583984375, 0.5314283447265625, 0.53097265625, 0.5306849365234375, 0.53102490234375, 0.5308344116210938, 0.5312901000976562, 0.5309429931640625, 0.5312133178710937, 0.53045556640625, 0.5307914428710937, 0.53096142578125, 0.5311590576171875, 0.531051513671875, 0.5311539306640625, 0.5308795166015625, 0.5314437255859376, 0.5311702880859375, 0.5311856689453125, 0.5311795043945312, 0.5310105590820312, 0.5306644287109376, 0.530904052734375, 0.5307525024414063, 0.530788330078125, 0.5305599975585937, 0.5308651733398437, 0.5308682250976563, 0.5307955322265625, 0.5306275634765625, 0.5308323974609375, 0.53082421875, 0.5314150390625, 0.5311631469726562, 0.53131982421875, 0.5312214965820312, 0.5309327392578125, 0.5311282958984375, 0.5312542724609375, 0.530845703125, 0.5310156860351563, 0.53068798828125, 0.5308897094726562, 0.5308231811523437, 0.5310628051757813, 0.531072021484375, 0.5317027587890625, 0.5310494995117188, 0.5310187377929687, 0.5309296875, 0.531330078125, 0.5311447143554687, 0.53096044921875, 0.5310719604492188, 0.531030029296875, 0.5310156860351563, 0.53125634765625, 0.5312440185546875, 0.5312337646484375, 0.5311641845703124, 0.5312235717773437, 0.530788330078125, 1.10097412109375, 0.5311385498046876, 0.5308712768554688, 0.5309481201171875, 0.5307709350585937, 0.5306480712890626, 0.5311713256835937, 0.5311160278320313, 0.5307095336914063, 0.5308487548828125, 0.53075048828125, 0.5309020385742188, 0.5306849365234375, 0.5309808349609375, 0.53065625, 0.5309685668945312, 0.5306695556640625, 0.5307422485351563, 0.5307944946289063, 0.53087744140625, 0.53075048828125, 0.5307781372070313, 0.5308733520507812, 0.5309255981445312, 0.5307822265625, 0.531041259765625, 0.5312808837890625, 0.5311181030273437, 0.531198974609375, 0.5309603881835937, 0.5314375610351563, 0.5310955810546875, 0.5312604370117188, 0.5309583129882812, 0.5311651611328125, 0.530998291015625, 0.53083544921875, 0.5311876831054687, 0.531009521484375, 0.531167236328125, 0.5306757202148438, 0.531293212890625, 0.5311754150390625, 0.53102490234375, 0.5311047973632812, 0.5315072021484375, 0.531167236328125, 0.5316218872070313, 0.5310310668945313, 0.531662841796875, 0.5310525512695312, 0.5312481079101562, 0.5310341186523437, 0.5309962158203125, 0.5309798583984375, 0.5312184448242188, 0.5310965576171875, 0.5310013427734375, 0.5311498413085938, 0.53165771484375, 0.5311181030273437, 0.531272705078125, 0.5313116455078125]",tokens/s,1.8546927529553001,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-14B,Qwen/Qwen2-beta-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,3905.671168,12732.33408,0.0,12085.886976,11337.501696,s,10,10.970613281250001,1.097061328125,0.0017840508518984434,1.097439453125,1.0989015869140624,1.0993332397460938,1.0996785620117187,"[1.0981041259765625, 1.099764892578125, 1.0942474365234376, 1.09466943359375, 1.09612890625, 1.0954654541015625, 1.0967747802734376, 1.0988056640625, 1.098486328125, 1.098166259765625]",tokens/s,233.35067369253872,kWh,1.2926500191291174e-05,7.083296092205274e-06,6.255157781898113e-05,8.256137410247758e-05,tokens/kWh,3100723.5863376665,MB,3909.746688,12732.33408,0.0,12085.886976,11686.806016,s,10,636.987296875,63.6987296875,0.008792231338471245,63.69969140625,63.70640390625,63.70996171875,63.71280796875,"[63.682359375, 63.687671875, 63.70561328125, 63.70497265625, 63.69943359375, 63.69994921875, 63.70396484375, 63.71351953125, 63.6979921875, 63.6918203125]",tokens/s,0.9890307123716925,kWh,0.0007521740069488685,0.00041225789324771534,0.003629864737222821,0.0047942966374194046,tokens/kWh,13140.613684244328,,s,629,645.8482131958002,1.0267857125529425,0.13035148276579694,1.0110596313476563,1.01170830078125,1.0120460571289063,2.107026708984375,"[1.0111242065429686, 1.0104995727539063, 1.0103193359375, 1.0103952026367187, 1.0104954223632812, 1.0104678955078126, 1.0100704956054687, 1.0106204223632813, 1.0101810913085938, 1.0110658569335937, 1.0104442749023437, 1.0103756713867187, 1.0101524658203125, 1.0103828735351563, 1.0101749877929687, 1.0103490600585938, 1.0100950927734376, 1.0109429931640626, 1.0103602905273437, 1.0109215698242187, 1.0110667724609375, 1.0112665405273438, 1.0110863647460937, 1.01104638671875, 1.0108724365234374, 1.0105343017578126, 1.0103214111328125, 1.010872314453125, 1.0106912841796876, 1.0113380737304687, 1.01102490234375, 1.011188720703125, 1.0115625, 1.0118072509765625, 1.011420166015625, 1.0109522094726562, 1.010282470703125, 1.0109522094726562, 1.0106019897460938, 1.0113290405273438, 1.0105897216796875, 1.0110146484375, 1.0105538330078125, 1.0109419555664063, 1.0105497436523438, 1.0111878051757812, 1.0105476684570311, 1.0111273193359376, 1.0112327880859375, 1.0111181640625, 1.0113422241210936, 1.0108223266601561, 1.0107902221679688, 1.0107567749023438, 1.0107431030273437, 1.0107125854492187, 1.0108497924804687, 1.0110812377929688, 1.0113054809570312, 1.011472412109375, 1.010951171875, 1.011072998046875, 2.110793701171875, 1.0105712890625, 1.0109173583984374, 1.0111078491210939, 1.0105538940429688, 1.0114539184570313, 1.0104873046875, 1.0103736572265625, 1.01060302734375, 1.0104473876953124, 1.0103705444335938, 1.0103173217773438, 1.0103797607421876, 1.0106593017578125, 1.0105569458007813, 1.0109276123046875, 1.0109112548828125, 1.0105016479492188, 1.0110904541015624, 1.0104453125, 1.0106286010742187, 1.0105743408203125, 1.0106060791015625, 1.0110525512695312, 1.0107782592773438, 1.0118408813476563, 1.0113218383789062, 1.0111395874023437, 1.0107064208984375, 1.010524169921875, 1.0105466918945312, 1.0102415161132812, 1.010682861328125, 1.0110791625976563, 1.0108632202148438, 1.01125830078125, 1.0108221435546876, 1.0107473754882812, 1.0111160278320312, 1.0105282592773437, 1.0108026733398439, 1.0104678344726563, 1.0108098754882813, 1.0106849365234376, 1.0112696533203125, 1.0114283447265624, 1.01136181640625, 1.01125634765625, 1.0113484497070313, 1.0112225341796874, 1.0113013916015625, 1.0110914306640626, 1.0109788208007813, 1.011293212890625, 1.0114918212890625, 1.0115665893554688, 1.0111375122070312, 1.0111918334960937, 1.0110986328125, 1.0106838989257811, 1.011178466796875, 1.01096142578125, 1.0111539306640625, 2.106599365234375, 1.0114857177734375, 1.0112235717773437, 1.011198974609375, 1.01125732421875, 1.010946044921875, 1.0106123657226562, 1.010948974609375, 1.0108016357421874, 1.0105702514648438, 1.011140625, 1.0107391967773438, 1.0105272216796874, 1.010386962890625, 1.0104515991210938, 1.010242431640625, 1.0104063720703125, 1.010171875, 1.0105518188476563, 1.0103695068359375, 1.01096142578125, 1.0108364868164061, 1.0114160766601563, 1.0112081909179687, 1.0110771484375, 1.01035107421875, 1.0108743896484376, 1.01146728515625, 1.0117959594726562, 1.0120355834960937, 1.012463623046875, 1.0119403686523438, 1.01194140625, 1.0119802856445312, 1.011323974609375, 1.0110104370117188, 1.0110330810546875, 1.0113382568359375, 1.0116249389648437, 1.0108795166015625, 1.01194140625, 1.0112030639648437, 1.0113484497070313, 1.011093505859375, 1.0115000610351563, 1.0112604370117189, 1.0109788208007813, 1.0104954833984374, 1.011493896484375, 1.01127783203125, 1.0117058715820313, 1.0108528442382811, 1.0114898071289062, 1.0111221923828124, 1.0114129638671876, 1.011178466796875, 1.0114631958007811, 1.0113863525390625, 1.0115481567382814, 1.01125732421875, 1.0124105834960937, 1.0113810424804688, 1.0117324829101562, 2.10709814453125, 1.0106634521484374, 1.0110371704101562, 1.0109081420898438, 1.0120171508789062, 1.0121226196289062, 1.011262451171875, 1.0106112060546875, 1.0108251953125, 1.0108651733398437, 1.0108108520507812, 1.0108057861328126, 1.0110238647460938, 1.0108446655273438, 1.01113037109375, 1.0110238647460938, 1.0114150390625, 1.01075146484375, 1.0109603881835938, 1.0105835571289064, 1.010745361328125, 1.0105211181640625, 1.0108262329101563, 1.01054052734375, 1.0108231811523438, 1.0112245483398437, 1.0115286865234374, 1.0111610717773438, 1.0113402709960937, 1.0108292846679687, 1.0113024291992188, 1.0110156860351562, 1.011251220703125, 1.0109337768554687, 1.0112122802734376, 1.0112041015625, 1.0106275634765625, 1.0104483642578126, 1.0109224853515626, 1.0123694458007813, 1.0121512451171875, 1.0115277099609374, 1.011831787109375, 1.0113003540039063, 1.0119905395507813, 1.0121932983398438, 1.01144677734375, 1.0107801513671875, 1.011119140625, 1.0112194213867187, 1.0110924682617188, 1.0110105590820313, 1.0112767944335936, 1.0110873413085937, 1.0113557739257812, 1.0116627807617187, 1.0114488525390626, 1.01161474609375, 1.0121482543945313, 1.0110945434570313, 1.0111918334960937, 1.0114703369140625, 1.011420166015625, 2.107243408203125, 1.011304443359375, 1.0116792602539062, 1.0110904541015624, 1.0111897583007812, 1.0108170166015624, 1.0107166748046874, 1.010555908203125, 1.0108446655273438, 1.0105784301757812, 1.0112839965820313, 1.0110791625976563, 1.011198974609375, 1.0106951904296875, 1.0111498413085938, 1.0108477172851562, 1.0110279541015625, 1.0106736450195313, 1.01078125, 1.0110596313476563, 1.0108917846679688, 1.0110576782226564, 1.0108016357421874, 1.01058251953125, 1.0113638305664063, 1.01103515625, 1.0112214965820312, 1.0109030151367187, 1.0114221801757812, 1.01172021484375, 1.011646484375, 1.0109634399414062, 1.0110392456054687, 1.01072998046875, 1.0113239135742187, 1.0107545776367188, 1.0113812255859376, 1.0107801513671875, 1.0113116455078126, 1.011267578125, 1.0112327880859375, 1.0109522094726562, 1.0110904541015624, 1.0106736450195313, 1.0117355346679688, 1.0115389404296875, 1.0110474243164063, 1.0108436279296875, 1.01097265625, 1.0110955810546876, 1.011800048828125, 1.0115277099609374, 1.0110167236328125, 1.0107422485351563, 1.0111610717773438, 1.0109552612304689, 1.01119384765625, 1.0112645263671876, 1.0109450073242188, 1.0111027221679687, 1.0116802368164062, 1.0114508666992188, 1.0115563354492187, 2.106843017578125, 1.01136181640625, 1.0113515625, 1.0108784790039063, 1.0107105102539062, 1.0108948364257813, 1.0118154296875, 1.0109542236328124, 1.0106787719726562, 1.0108887329101564, 1.0112225341796874, 1.0112604370117189, 1.0115020751953125, 1.010966552734375, 1.0110965576171875, 1.0111488037109375, 1.0121779174804688, 1.01123583984375, 1.0113885498046875, 1.011718017578125, 1.0113597412109374, 1.0111610717773438, 1.0113341674804688, 1.0110709838867187, 1.01110986328125, 1.0114406127929687, 1.0113106079101561, 1.0103971557617188, 1.0105989379882812, 1.0106224365234375, 1.010735107421875, 1.0104473876953124, 1.010703369140625, 1.0104063720703125, 1.01077099609375, 1.0111979370117188, 1.01096240234375, 1.0108262329101563, 1.011472412109375, 1.011409912109375, 1.0115133666992187, 1.0109255981445313, 1.0116690063476563, 1.0109921264648438, 1.0113484497070313, 1.011146728515625, 1.0115604248046874, 1.0110126342773438, 1.0111477661132813, 1.0111273193359376, 1.01097265625, 1.0108907470703126, 1.0107822265625, 1.0106972045898437, 1.0111293334960938, 1.011146728515625, 1.0112236938476562, 1.0110370483398436, 1.0111190795898437, 1.0111826171875, 1.01117236328125, 1.0109869995117187, 1.0112276611328126, 2.108168212890625, 1.0113248901367187, 1.0116497192382812, 1.0111066284179688, 1.0111590576171876, 1.010862060546875, 1.0108671875, 1.0107658081054687, 1.0111181030273437, 1.010798583984375, 1.0113054809570312, 1.0110842895507812, 1.01054052734375, 1.0102753295898437, 1.0105231323242188, 1.0106941528320312, 1.0107473754882812, 1.0110699462890624, 1.01083544921875, 1.0106234741210938, 1.0105692138671876, 1.0113546142578125, 1.0107955322265625, 1.01106689453125, 1.011330078125, 1.0107811889648437, 1.010820068359375, 1.0105374755859375, 1.0116658935546874, 1.011794921875, 1.0121381225585937, 1.0115756225585937, 1.0113126220703126, 1.0110075073242188, 1.0110658569335937, 1.01071875, 1.0106624145507812, 1.0105538330078125, 1.0108600463867188, 1.0104791259765624, 1.0111047973632812, 1.010713623046875, 1.0108712768554688, 1.0103910522460937, 1.0111826171875, 1.0108528442382811, 1.0117273559570312, 1.0112481079101563, 1.0113095703125, 1.0112542724609375, 1.0117642211914062, 1.0118338623046874, 1.0117969970703125, 1.0115205078125, 1.0120662841796875, 1.0122158203125, 1.011726318359375, 1.0116546630859375, 1.011726318359375, 1.0113873901367187, 1.0115338134765626, 1.0122117309570313, 1.0120550537109374, 2.11171728515625, 1.0110648193359375, 1.0112655639648438, 1.011040283203125, 1.0112337646484375, 1.011103759765625, 1.0117447509765625, 1.011694580078125, 1.0115451049804687, 1.0108006591796874, 1.0108999633789062, 1.0106654663085937, 1.0113208618164062, 1.0110341186523437, 1.0105753784179687, 1.0110699462890624, 1.0127493286132812, 1.0114774780273437, 1.0117990112304687, 1.0114754638671875, 1.01243701171875, 1.0126602172851562, 1.0127821044921874, 1.012316162109375, 1.0116639404296874, 1.0120989990234375, 1.0121307983398438, 1.0107197265625, 1.0107975463867187, 1.0107320556640624, 1.0111702880859375, 1.0104524536132813, 1.0106388549804688, 1.01058251953125, 1.0108671875, 1.0108385009765626, 1.0115369262695313, 1.0105947875976562, 1.010924560546875, 1.0109214477539064, 1.0113648681640626, 1.0106675415039061, 1.0112532348632812, 1.0106183471679688, 1.0113659057617188, 1.0111826171875, 1.0120530395507812, 1.0109584350585938, 1.0110103759765625, 1.0113085327148437, 1.0110975952148438, 1.0110146484375, 1.01137109375, 1.0108394775390626, 1.0119804077148438, 1.01148046875, 1.0113474731445313, 1.0114826049804688, 1.0118276977539062, 1.0114006958007813, 1.011209228515625, 1.0110105590820313, 1.0114006958007813, 2.110498779296875, 1.0119219360351563, 1.01136181640625, 1.0108313598632812, 1.0110064697265626, 1.0115112915039062, 1.0112849731445313, 1.011282958984375, 1.0111334228515625, 1.01097265625, 1.011146728515625, 1.0113351440429688, 1.0111365356445312, 1.010808837890625, 1.010713623046875, 1.0107698974609376, 1.0108856201171874, 1.0107218017578126, 1.01076171875, 1.0107422485351563, 1.0111477661132813, 1.011072998046875, 1.01098291015625, 1.0104760131835937, 1.0106972045898437, 1.01064501953125, 1.0107012939453126, 1.010724853515625, 1.0107740478515626, 1.0106009521484376, 1.010820068359375, 1.0108784790039063, 1.0107863159179689, 1.0108590698242188, 1.01104736328125, 1.0110914306640626, 1.0109132690429687, 1.0108549194335938, 1.0113065795898437, 1.0108507690429687, 1.0111047973632812, 1.0121011352539062, 1.0114979858398438, 1.0112440185546876, 1.0114396362304687, 1.0111139526367188, 1.0110658569335937, 1.01098291015625, 1.011177490234375, 1.0114918212890625, 1.0113802490234376, 1.0121666259765625, 1.0110453491210938, 1.0111324462890625, 1.0114744262695312, 1.0106736450195313, 1.0109685668945312, 1.0110310668945313, 1.0110238647460938, 1.0108549194335938, 1.0109911499023438, 1.0115542602539063, 1.010951171875, 2.10921875, 1.0104708862304688, 1.0106941528320312, 1.0109368286132812, 1.0107924194335938, 1.0110361328125, 1.0113505249023438, 1.0111631469726563, 1.010882568359375, 1.011051513671875, 1.0112184448242187, 1.0114017333984375, 1.0117243041992188, 1.0111027221679687, 1.0108477172851562, 1.0110914306640626, 1.0114437255859374, 1.01085595703125, 1.0109983520507813, 1.0107094116210937, 1.0110496215820313, 1.010912109375, 1.0108661499023437, 1.010777099609375, 1.0107576904296875, 1.0106285400390624, 1.0111324462890625, 1.011009521484375, 1.01085693359375, 1.0107545776367188, 1.0111273193359376, 1.010572265625, 1.0108016357421874, 1.0107443237304687, 1.0111344604492187, 1.010861083984375, 1.0115419921875, 1.0107218017578126, 1.0108344116210937, 1.0103900146484375, 1.0109389038085939, 1.0106685180664063, 1.0109644775390625, 1.0104258422851562, 1.0109030151367187, 1.0110167236328125, 1.0119915771484376, 1.011103759765625, 1.0113802490234376, 1.0111365356445312, 1.0113638305664063, 1.0108446655273438, 1.0109859619140624, 1.01060400390625, 1.0110167236328125, 1.0108129272460937, 1.0115399780273437, 1.0108231811523438, 1.0112481079101563, 1.0108765869140626, 1.0110595703125, 1.0108630981445312, 1.0109900512695313]",tokens/s,0.9739130451218064,,,,, +4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-110B,Qwen/Qwen1.5-110B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -6769,22 +5882,30 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 32.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,-,-,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-564M,facebook/xglm-564M,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1510.83008,1619.525632,0.0,973.078528,855.737856,s,10,0.7501975097656249,0.07501975097656251,0.003494001966293861,0.0744185905456543,0.07687975234985352,0.0807021327972412,0.08376003715515137,"[0.08452451324462891, 0.0724151382446289, 0.07226691436767578, 0.07602333068847657, 0.07370025634765626, 0.072499267578125, 0.07526127624511719, 0.07513692474365234, 0.07233955383300782, 0.07603033447265625]",tokens/s,3412.4346811012333,kWh,8.781473283414488e-07,4.811843592162606e-07,2.329853715734e-06,3.6891854032917087e-06,tokens/kWh,69392012.60299407,MB,1510.83008,1619.525632,0.0,973.078528,915.411456,s,10,44.923669921875,4.492366992187501,0.05186865648995985,4.49665234375,4.532765380859375,4.566419799804687,4.593343334960937,"[4.4801484375, 4.46079150390625, 4.396806640625, 4.52528662109375, 4.43945751953125, 4.50497265625, 4.49965625, 4.4936484375, 4.52282763671875, 4.60007421875]",tokens/s,14.023787484317472,kWh,5.2254403288717625e-05,2.8638463246623156e-05,0.00013152905892685864,0.00021242192546219938,tokens/kWh,296579.5544076776,,s,629,45.51549240112303,0.07236167313374095,0.008872551278845286,0.07199948883056641,0.07308881988525391,0.07345274963378906,0.1417435186767578,"[0.07422156524658204, 0.07438028717041016, 0.07465984344482422, 0.07427993774414063, 0.070793212890625, 0.07357952117919922, 0.07368294525146485, 0.07249817657470703, 0.07192473602294921, 0.0720373764038086, 0.07181107330322266, 0.07195545959472656, 0.07189401245117187, 0.07177318572998047, 0.07202201843261719, 0.07179264068603515, 0.07144448089599609, 0.07195033264160157, 0.07206502532958985, 0.0718704605102539, 0.07257292938232422, 0.07203839874267579, 0.07174246215820312, 0.07193804931640625, 0.0720373764038086, 0.07203123474121094, 0.07179058837890626, 0.07161753845214844, 0.07207730865478515, 0.06936883544921875, 0.06907904052734375, 0.06904524993896484, 0.06900326538085938, 0.0691599349975586, 0.0692305908203125, 0.0704000015258789, 0.07194111633300782, 0.07188582611083984, 0.07171788787841797, 0.07179673767089843, 0.0721244125366211, 0.07180902099609375, 0.07232717132568359, 0.06903193664550782, 0.06900838470458984, 0.0690483169555664, 0.07060889434814453, 0.07242137908935548, 0.06946304321289062, 0.06903091430664063, 0.06926335906982421, 0.06909337615966797, 0.06909645080566407, 0.06918144226074219, 0.06912204742431641, 0.0692152328491211, 0.06930022430419921, 0.06917120361328125, 0.06931763458251954, 0.06909951782226563, 0.06903091430664063, 0.06910975646972656, 0.14174925231933594, 0.07115980529785157, 0.07259852600097656, 0.07286988830566406, 0.07273677062988282, 0.07269068908691406, 0.06918656158447266, 0.07026585388183594, 0.07330303955078125, 0.06960230255126953, 0.06916505432128907, 0.0694824981689453, 0.07036313629150391, 0.0726292495727539, 0.07242649841308593, 0.07292723083496094, 0.07256371307373047, 0.0725749740600586, 0.07288422393798828, 0.0727930908203125, 0.06923571014404296, 0.07285657501220703, 0.07292825317382813, 0.07260671997070313, 0.06921318054199219, 0.06922649383544922, 0.06944051361083985, 0.06901862335205078, 0.06910873413085937, 0.0694814682006836, 0.06917938995361328, 0.0691435546875, 0.06913843536376953, 0.06960230255126953, 0.07092428588867188, 0.07321907043457031, 0.07265586853027343, 0.07284429168701172, 0.07265996551513672, 0.07249919891357422, 0.0727388153076172, 0.06851993560791016, 0.06896537780761719, 0.06924390411376953, 0.06928793334960938, 0.06909951782226563, 0.06925926208496094, 0.06904115295410156, 0.06911590576171875, 0.07245005035400391, 0.07256063842773437, 0.07257087707519531, 0.0727162857055664, 0.0725555191040039, 0.07245414733886718, 0.06913638305664062, 0.06932685089111328, 0.06927565002441406, 0.06910566711425781, 0.06935040283203125, 0.06927974700927735, 0.06926643371582031, 0.06896947479248047, 0.1415485382080078, 0.06951423645019532, 0.06943334197998047, 0.06925619506835938, 0.06917324829101562, 0.06899097442626953, 0.06922752380371094, 0.06912000274658203, 0.06899199676513672, 0.06969446563720703, 0.07301529693603516, 0.06934323120117188, 0.06960537719726563, 0.07306034851074218, 0.07241011047363281, 0.07290675354003906, 0.07274700927734375, 0.0726476821899414, 0.07265996551513672, 0.0726824951171875, 0.07269068908691406, 0.06931763458251954, 0.06954188537597657, 0.06927257537841797, 0.06938623809814454, 0.06953062438964844, 0.06952960205078125, 0.06926233673095702, 0.06965862274169922, 0.06954803466796874, 0.06898995208740234, 0.06898892974853515, 0.0695767059326172, 0.06904729461669921, 0.06909030151367188, 0.0691230697631836, 0.06926131439208984, 0.06881587219238282, 0.06911795043945312, 0.0690145263671875, 0.069106689453125, 0.06901760101318359, 0.06876467132568359, 0.06921625518798828, 0.06918246459960938, 0.06903091430664063, 0.0689797134399414, 0.06893158721923828, 0.0690544662475586, 0.06931865692138672, 0.06913433837890624, 0.0691619873046875, 0.06918758392333985, 0.06922956848144532, 0.06901248168945312, 0.06939955139160156, 0.0690708465576172, 0.06908415985107422, 0.06909747314453125, 0.06877798461914063, 0.0688721923828125, 0.06958284759521484, 0.07407615661621093, 0.14876364135742187, 0.0725524444580078, 0.06927769470214844, 0.07208243560791015, 0.07297433471679687, 0.0731176986694336, 0.07251251220703125, 0.0712273941040039, 0.07263846588134766, 0.07023104095458985, 0.07284735870361328, 0.07289651489257812, 0.07278694152832031, 0.07275827026367188, 0.0733675537109375, 0.07290982055664062, 0.07269888305664063, 0.06938419342041016, 0.07068057250976563, 0.07282994842529297, 0.07284838104248047, 0.07352217864990235, 0.07396147155761719, 0.07278694152832031, 0.0727224349975586, 0.07267123413085938, 0.07291801452636719, 0.07321497344970704, 0.07286579132080079, 0.0730408935546875, 0.06961766052246093, 0.07272755432128906, 0.07313715362548828, 0.07269990539550782, 0.07287091064453124, 0.07342694091796875, 0.07279821014404297, 0.07299993896484375, 0.07290777587890625, 0.07300505828857422, 0.07294976043701172, 0.07384166717529297, 0.07301222229003906, 0.07304806518554688, 0.07300096130371093, 0.06921318054199219, 0.06943846130371094, 0.07083724975585938, 0.07355596923828125, 0.07319039916992187, 0.06939443206787109, 0.06938111877441407, 0.06927155303955078, 0.0692520980834961, 0.06911283111572265, 0.06944153594970703, 0.06942515563964843, 0.06953266906738281, 0.06910975646972656, 0.06917017364501953, 0.06945382690429687, 0.0691568603515625, 0.0722903060913086, 0.1428500518798828, 0.07174861145019532, 0.07272755432128906, 0.07288422393798828, 0.07220531463623046, 0.07277977752685547, 0.07296819305419922, 0.07285759735107422, 0.0730439682006836, 0.06917120361328125, 0.06948044586181641, 0.06915174102783203, 0.06912921905517579, 0.06931148529052734, 0.06940672302246094, 0.06928179168701172, 0.07211110687255859, 0.07298047637939453, 0.07278079986572265, 0.07271218872070312, 0.07268966674804687, 0.06976306915283204, 0.0731504669189453, 0.07382220458984375, 0.07313919830322266, 0.07456563568115235, 0.0726456298828125, 0.07287091064453124, 0.07290777587890625, 0.072595458984375, 0.06927974700927735, 0.06974668884277344, 0.06926131439208984, 0.06974668884277344, 0.0696094741821289, 0.0693565444946289, 0.06932173156738282, 0.06926541137695312, 0.06931763458251954, 0.06929203033447266, 0.06896025848388672, 0.0688875503540039, 0.0692838363647461, 0.06925107574462891, 0.06969344329833985, 0.06929510498046874, 0.06936064147949218, 0.06916607666015626, 0.06940364837646484, 0.06927667236328125, 0.0688721923828125, 0.06915071868896484, 0.06949273681640625, 0.06910361480712891, 0.06893260955810547, 0.06888857269287109, 0.06916710662841796, 0.06919065856933594, 0.06913433837890624, 0.06897663879394532, 0.06965760040283203, 0.06907596588134765, 0.06904524993896484, 0.14172877502441406, 0.06887628936767579, 0.06923980712890625, 0.06865408325195313, 0.06912102508544922, 0.06938317108154297, 0.06938521575927735, 0.06910771179199218, 0.06913843536376953, 0.06909951782226563, 0.07147007751464844, 0.07286374664306641, 0.07196057891845703, 0.07204454040527344, 0.07199948883056641, 0.07233126068115234, 0.07187763214111328, 0.07217971038818359, 0.07222169494628906, 0.07219097900390625, 0.07204966735839843, 0.07197491455078125, 0.07207833862304687, 0.07198822021484375, 0.0723394546508789, 0.07189299011230468, 0.0720547866821289, 0.07195750427246093, 0.0719288330078125, 0.07224626922607422, 0.0721981430053711, 0.0721295394897461, 0.07224729919433594, 0.07194624328613282, 0.07236812591552734, 0.07330508422851563, 0.07221247863769531, 0.07189094543457031, 0.07187763214111328, 0.0722503662109375, 0.07257292938232422, 0.07226982116699218, 0.07204761505126953, 0.07212134552001953, 0.07196876525878906, 0.07214694213867187, 0.07219404602050782, 0.07190940856933593, 0.07228310394287109, 0.0723609619140625, 0.07222476959228516, 0.07254732513427735, 0.07211724853515625, 0.07198617553710937, 0.07232102203369141, 0.0694302749633789, 0.06944563293457032, 0.06930226898193359, 0.06912000274658203, 0.07197286224365235, 0.07240499114990234, 0.07262515258789062, 0.07231488037109375, 0.1474877471923828, 0.07206195068359375, 0.07203635406494141, 0.0718704605102539, 0.07204147338867188, 0.07205785369873047, 0.07204249572753907, 0.07156735992431641, 0.0718551025390625, 0.07209369659423828, 0.07219404602050782, 0.07199334716796875, 0.07205683135986328, 0.0719974365234375, 0.07223910522460937, 0.07229440307617188, 0.0720373764038086, 0.07192985534667969, 0.07207218933105469, 0.07226060485839844, 0.07216844940185548, 0.07213158416748047, 0.07198822021484375, 0.07197695922851563, 0.07198515319824218, 0.07197901153564454, 0.07212748718261719, 0.07194111633300782, 0.07195136260986328, 0.07207936096191406, 0.07236505889892578, 0.07226982116699218, 0.06943231964111328, 0.06955929565429687, 0.069607421875, 0.06953164672851563, 0.07322624206542969, 0.07243981170654297, 0.07254937744140624, 0.07196979522705078, 0.07131033325195313, 0.07205785369873047, 0.07247872161865235, 0.07209471893310547, 0.07210291290283204, 0.06919782257080079, 0.06972108459472656, 0.06934835052490235, 0.06924082946777343, 0.06914765167236328, 0.06955519866943359, 0.06937907409667969, 0.06931148529052734, 0.06938829040527343, 0.06970674896240234, 0.06969548797607422, 0.06920089721679687, 0.07203942108154297, 0.07206809234619141, 0.07200972747802735, 0.07209779357910157, 0.07210291290283204, 0.07222681427001953, 0.14453248596191406, 0.06921011352539062, 0.0692326431274414, 0.06925312042236328, 0.06934220886230469, 0.07179571533203125, 0.07198617553710937, 0.07202098846435546, 0.07208243560791015, 0.07199436950683594, 0.07232921600341796, 0.07199027252197265, 0.07135231781005859, 0.07213772583007813, 0.07198207855224609, 0.07201996612548828, 0.07227597045898437, 0.0715315170288086, 0.07204863739013671, 0.0719319076538086, 0.07195442962646484, 0.0720148468017578, 0.07350169372558593, 0.07210291290283204, 0.07235584259033204, 0.07218790435791016, 0.07257804870605469, 0.07216844940185548, 0.07202713775634766, 0.07208550262451172, 0.07201689910888671, 0.0721786880493164, 0.07204557037353515, 0.07207218933105469, 0.0721070098876953, 0.0719482879638672, 0.07234662628173828, 0.07192985534667969, 0.07208345794677734, 0.07192371368408203, 0.07228108978271484, 0.07198925018310547, 0.07188787078857421, 0.07216639709472657, 0.07209062194824219, 0.07224217224121093, 0.07236914825439453, 0.07234559631347656, 0.07200768280029297, 0.07227903747558594, 0.07189913940429687, 0.06916403198242188, 0.06938009643554688, 0.0693903350830078, 0.06937190246582031, 0.06929714965820312, 0.06908108520507812, 0.06912102508544922, 0.06940876770019531, 0.06922752380371094, 0.06929100799560547, 0.06920191955566406, 0.06866534423828125, 0.14497279357910156, 0.07190630340576172, 0.07215411376953125, 0.07193702697753906, 0.07205785369873047, 0.07186431884765625, 0.07196672058105469, 0.07226060485839844, 0.07261901092529296, 0.07256473541259766, 0.0723609619140625, 0.07218585968017578, 0.07166259002685547, 0.07175373077392579, 0.0723773422241211, 0.0719626235961914, 0.07179878234863281, 0.072015869140625, 0.0722001953125, 0.07199641418457031, 0.07210495758056641, 0.07236300659179687, 0.07228006744384766, 0.07196672058105469, 0.07183257293701172, 0.07211519622802734, 0.07188480377197265, 0.07188070678710938, 0.07184076690673828, 0.07201689910888671, 0.07219404602050782, 0.07205068969726562, 0.07195442962646484, 0.07184076690673828, 0.07215513610839844, 0.07230873870849609, 0.07222067260742188, 0.07214284515380859, 0.07292928314208984, 0.07242649841308593, 0.07191654205322266, 0.07287398529052734, 0.07126732635498047, 0.07227391815185547, 0.07001599884033204, 0.07193292999267578, 0.07222681427001953, 0.07207218933105469, 0.07356108856201173, 0.07293440246582031, 0.07190835571289063, 0.07186943817138672, 0.06945689392089843, 0.06953164672851563, 0.06899814605712891, 0.06878720092773437, 0.06898278045654296, 0.06849638366699219, 0.06950809478759766, 0.07029452514648438, 0.07316889953613281, 0.07317708587646485, 0.07281254577636719, 0.14895103454589845, 0.07272550201416016, 0.07273779296875, 0.07310028839111328, 0.07281459045410156, 0.07278899383544922, 0.0730245132446289, 0.07308595275878907, 0.07223705291748046, 0.072880126953125, 0.07315660858154296, 0.07311974334716796, 0.07316172790527344, 0.07296717071533203, 0.07294464111328125, 0.07245823669433593, 0.07288217926025391, 0.07276441955566407, 0.07286784362792968, 0.07301734161376953, 0.07289548492431641, 0.07284735870361328, 0.07271321868896484, 0.07318630218505859, 0.07307878112792969, 0.07253504180908203, 0.07293644714355468, 0.07297843170166016, 0.07267430114746094, 0.07276748657226563, 0.07329894256591797, 0.07337881469726562, 0.0731668472290039, 0.07399219512939453, 0.07357746887207031, 0.07269580841064453, 0.0729169921875, 0.07252992248535156, 0.07297126770019531, 0.07306240081787109, 0.07285964965820313, 0.07280947113037109, 0.07383859252929688, 0.07331942749023437, 0.07286271667480469, 0.07300812530517578, 0.07352012634277344, 0.07395225524902344, 0.073385986328125, 0.07318630218505859, 0.07355289459228516, 0.07336959838867188, 0.07346995544433593, 0.0732938232421875, 0.07325389099121093, 0.07335321807861328, 0.07319347381591797, 0.0742266845703125, 0.0733337631225586, 0.0729722900390625, 0.0729200668334961, 0.07297740936279297, 0.0695920639038086]",tokens/s,13.819470400466983,,,,, +4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,t,t,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -6792,13 +5913,42 @@ NameError: name 'exlv2_ext' is not defined File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/t/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 106, in _inner_fn - validate_repo_id(arg_value) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 160, in validate_repo_id - raise HFValidationError( -huggingface_hub.errors.HFValidationError: Repo id must use alphanumeric chars or '-', '_', '.', '--' and '..' are forbidden, '-' and '.' cannot start or end the name, max length is 96: '-'. + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669490a4-289526393e0256c03402fba1;52d95121-eb62-4f8b-acd8-276858c6fc61) + +Repository Not Found for url: https://huggingface.co/t/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. The above exception was the direct cause of the following exception: @@ -6819,47 +5969,15 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 466, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: Incorrect path_or_model_id: '-'. Please provide either the path to a local folder or the repo_id of a model on the Hub. - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-125m,facebook/opt-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined +OSError: t is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-6.7b,EleutherAI/pythia-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neox-20b,,cuda,0,42,,,,,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,MB,1888.280576,15194.390528,0.0,14547.943424,13898.252288,s,10,16.972713500976564,1.6972713500976564,0.0011802396473078822,1.6969771728515626,1.6988580200195311,1.699245782470703,1.6995559924316406,"[1.6969825439453126, 1.6969718017578126, 1.6960919189453125, 1.6958106689453125, 1.6964619140625, 1.69635986328125, 1.6974122314453124, 1.6982171630859375, 1.699633544921875, 1.6987718505859375]",tokens/s,150.83033127570937,kWh,2.0026979611979592e-05,1.097496669508473e-05,9.603446571639917e-05,0.0001270364120234635,tokens/kWh,2015170.2643547354,MB,1888.280576,15194.390528,0.0,14547.943424,14315.97312,s,10,986.8612499999999,98.68612499999999,0.014850841233799409,98.68501953125,98.70599609374999,98.707103515625,98.707989453125,"[98.6797109375, 98.687671875, 98.6747890625, 98.6555546875, 98.6919140625, 98.6783203125, 98.6969609375, 98.7082109375, 98.70575, 98.6823671875]",tokens/s,0.6383876152802637,kWh,0.0011649224273860455,0.0006384806384544572,0.00558826860950019,0.007391671675340693,tokens/kWh,8523.105836826315,,s,629,1000.5712542724599,1.5907333136287136,0.2015788363996436,1.5663739013671876,1.5674868164062499,1.5676927978515625,3.262457841796875,"[1.5671644287109374, 1.5661424560546875, 1.56664013671875, 1.5672913818359375, 1.566525390625, 1.5666636962890625, 1.56687158203125, 1.566798828125, 1.565517822265625, 1.56556494140625, 1.56592333984375, 1.56533251953125, 1.5655465087890625, 1.5658004150390625, 1.565998046875, 1.5670538330078125, 1.5664508056640625, 1.56584033203125, 1.5667855224609375, 1.5674542236328124, 1.567055908203125, 1.5672022705078126, 1.5673907470703126, 1.56657666015625, 1.5663001708984374, 1.566665771484375, 1.5659376220703125, 1.5659520263671876, 1.5661055908203125, 1.566899169921875, 1.5660892333984375, 1.566604248046875, 1.5656611328125, 1.5667138671875, 1.565654052734375, 1.566857177734375, 1.5661802978515624, 1.5664854736328124, 1.5667210693359375, 1.5670538330078125, 1.56666162109375, 1.566857177734375, 1.5659581298828125, 1.565955078125, 1.5662294921875, 1.5661065673828125, 1.566191650390625, 1.5659642333984376, 1.5664527587890624, 1.5659898681640625, 1.5656510009765625, 1.5664803466796875, 1.566614501953125, 1.566317626953125, 1.5665059814453124, 1.565919189453125, 1.5657093505859374, 1.5657308349609376, 1.5665244140625, 1.565981689453125, 1.5660799560546874, 1.56632373046875, 3.263318115234375, 1.5650416259765625, 1.5667425537109374, 1.5671868896484376, 1.5674766845703125, 1.566899169921875, 1.5670477294921874, 1.567247314453125, 1.5669462890625, 1.566482421875, 1.56721044921875, 1.567352783203125, 1.56718603515625, 1.5668541259765625, 1.565632568359375, 1.5655035400390624, 1.565454345703125, 1.566171142578125, 1.5655423583984376, 1.5656632080078126, 1.565739013671875, 1.5655546875, 1.56594384765625, 1.565739990234375, 1.5656090087890624, 1.5654093017578126, 1.5656141357421876, 1.5657379150390625, 1.565550537109375, 1.5656468505859376, 1.566182373046875, 1.56573388671875, 1.5660994873046874, 1.566614501953125, 1.5671705322265626, 1.5668858642578125, 1.5673907470703126, 1.5655372314453124, 1.5656827392578125, 1.567224853515625, 1.5674173583984374, 1.567141845703125, 1.567562744140625, 1.56704150390625, 1.566593994140625, 1.5660902099609375, 1.56824267578125, 1.56689404296875, 1.5673763427734375, 1.5663564453125, 1.566992431640625, 1.567836181640625, 1.5679334716796876, 1.5667803955078126, 1.5659478759765626, 1.566908447265625, 1.566277587890625, 1.5658690185546875, 1.5664803466796875, 1.5664271240234375, 1.5662049560546876, 1.5662171630859374, 1.5660595703125, 3.26247021484375, 1.5656990966796875, 1.5657799072265626, 1.566017578125, 1.5667598876953126, 1.565744140625, 1.566393310546875, 1.56580859375, 1.56586083984375, 1.5654072265625, 1.56617529296875, 1.5659202880859375, 1.5659725341796875, 1.5665029296875, 1.5664486083984375, 1.5655260009765626, 1.5660780029296875, 1.5663062744140626, 1.5667117919921876, 1.566983154296875, 1.5657728271484375, 1.565895751953125, 1.566373779296875, 1.5677890625, 1.566457763671875, 1.5663277587890625, 1.566962646484375, 1.566697509765625, 1.5665489501953125, 1.566899169921875, 1.56623046875, 1.566688232421875, 1.5666124267578125, 1.5657093505859374, 1.566341064453125, 1.5660462646484374, 1.5663482666015625, 1.566123046875, 1.5662838134765624, 1.5664619140625, 1.56621826171875, 1.566017578125, 1.5659622802734374, 1.565760498046875, 1.5661669921875, 1.566396484375, 1.5663912353515625, 1.5682620849609374, 1.5664476318359375, 1.5661475830078124, 1.56608203125, 1.56626123046875, 1.5659765625, 1.5659632568359374, 1.565811767578125, 1.56657763671875, 1.5658956298828124, 1.5657799072265626, 1.5660042724609375, 1.566275634765625, 1.5663533935546874, 1.56682958984375, 1.566255126953125, 3.26236865234375, 1.5657420654296874, 1.5653990478515625, 1.5662427978515625, 1.565697021484375, 1.5651962890625, 1.56592333984375, 1.5652525634765626, 1.5654676513671875, 1.5651666259765624, 1.56598583984375, 1.5653150634765625, 1.5663011474609374, 1.5655894775390624, 1.5655516357421875, 1.565338623046875, 1.5655577392578126, 1.5656806640625, 1.56554345703125, 1.56598779296875, 1.5655843505859375, 1.5654718017578124, 1.5656263427734376, 1.5660400390625, 1.5658824462890626, 1.5657850341796875, 1.5657625732421876, 1.5657196044921875, 1.56554443359375, 1.566350341796875, 1.5656375732421874, 1.5655997314453125, 1.566192626953125, 1.565496337890625, 1.5660390625, 1.566271484375, 1.5658936767578124, 1.565685791015625, 1.5660216064453125, 1.5656141357421876, 1.565828125, 1.566434326171875, 1.5664906005859376, 1.5654307861328125, 1.56860107421875, 1.56617529296875, 1.566096435546875, 1.5658311767578126, 1.5665806884765625, 1.5662591552734375, 1.5666104736328126, 1.56617724609375, 1.566076904296875, 1.5665244140625, 1.566587890625, 1.56634521484375, 1.5658741455078125, 1.5661434326171875, 1.566371826171875, 1.5663533935546874, 1.566328857421875, 1.5666011962890625, 1.5661240234375, 3.263153076171875, 1.56556494140625, 1.565706298828125, 1.5666165771484375, 1.566034912109375, 1.566002197265625, 1.5660831298828124, 1.565319091796875, 1.5665797119140625, 1.5655751953125, 1.5664332275390624, 1.5658896484375, 1.5659744873046875, 1.5658916015625, 1.566130126953125, 1.5668695068359375, 1.5666226806640624, 1.5660933837890625, 1.566509033203125, 1.5661363525390626, 1.5657738037109374, 1.5658199462890625, 1.5663206787109376, 1.5657840576171875, 1.566213134765625, 1.5667742919921874, 1.5661240234375, 1.5659315185546876, 1.565498291015625, 1.5660472412109374, 1.5656407470703124, 1.56573486328125, 1.566254150390625, 1.56568359375, 1.5663575439453126, 1.566123046875, 1.5667579345703124, 1.5663963623046875, 1.5667947998046876, 1.5661865234375, 1.5662919921875, 1.5661158447265624, 1.5670897216796875, 1.56710302734375, 1.567573974609375, 1.5670128173828124, 1.5670006103515626, 1.5675535888671874, 1.568489501953125, 1.5677030029296875, 1.5673804931640625, 1.5675074462890626, 1.5675924072265626, 1.56819970703125, 1.56786181640625, 1.5679241943359374, 1.5680113525390624, 1.5678955078125, 1.56760888671875, 1.5664681396484375, 1.5662049560546876, 1.5662213134765626, 1.5661905517578125, 3.262426025390625, 1.5655628662109375, 1.56493212890625, 1.5661669921875, 1.5657431640625, 1.5655537109375, 1.5660482177734374, 1.5657359619140625, 1.5666063232421874, 1.5661004638671876, 1.5656785888671876, 1.5670230712890625, 1.5668284912109376, 1.5666944580078126, 1.566755859375, 1.566581787109375, 1.5667763671875, 1.5658946533203124, 1.5655372314453124, 1.5659530029296875, 1.565708251953125, 1.5669320068359376, 1.56744091796875, 1.566341064453125, 1.5660360107421876, 1.5659837646484376, 1.5658629150390626, 1.5660892333984375, 1.565887451171875, 1.56593359375, 1.5656898193359374, 1.5661455078125, 1.566086181640625, 1.5658076171875, 1.5659263916015624, 1.5658218994140625, 1.56609033203125, 1.56613525390625, 1.5673641357421875, 1.5665848388671875, 1.5666175537109375, 1.5664681396484375, 1.5664619140625, 1.566224365234375, 1.5664588623046876, 1.5661363525390626, 1.5667579345703124, 1.5667978515625, 1.5667178955078125, 1.5658916015625, 1.5658680419921875, 1.5657728271484375, 1.5670528564453126, 1.567161376953125, 1.5674490966796875, 1.567394775390625, 1.567477783203125, 1.56653369140625, 1.5658792724609376, 1.56665966796875, 1.5675699462890624, 1.56628076171875, 1.5665899658203124, 3.26359765625, 1.5656744384765624, 1.565328369140625, 1.566392333984375, 1.565917236328125, 1.566066650390625, 1.567247314453125, 1.56674560546875, 1.567057861328125, 1.566623779296875, 1.5667916259765624, 1.5669647216796876, 1.56680810546875, 1.5664117431640625, 1.566813232421875, 1.5673231201171876, 1.566376953125, 1.5661844482421876, 1.567056884765625, 1.567025146484375, 1.566773193359375, 1.5668214111328125, 1.5673548583984376, 1.568668701171875, 1.567552490234375, 1.566614501953125, 1.566899169921875, 1.567447021484375, 1.5675135498046875, 1.5669381103515625, 1.5667794189453126, 1.567139892578125, 1.5667916259765624, 1.566656494140625, 1.566287841796875, 1.5665806884765625, 1.5664046630859374, 1.5664854736328124, 1.56649169921875, 1.56577587890625, 1.5662652587890624, 1.5666688232421875, 1.5665521240234375, 1.56607080078125, 1.5668214111328125, 1.5663809814453125, 1.5665684814453125, 1.5666226806640624, 1.566630859375, 1.5663360595703124, 1.566734375, 1.5659100341796874, 1.566339111328125, 1.5664271240234375, 1.5667056884765624, 1.5661854248046876, 1.5660308837890624, 1.56668310546875, 1.5665264892578126, 1.5664742431640626, 1.5667752685546874, 1.5658568115234375, 1.566477294921875, 3.26474853515625, 1.5660062255859375, 1.5659560546875, 1.5659263916015624, 1.5657471923828126, 1.5661905517578125, 1.5662623291015625, 1.5657779541015624, 1.5659345703125, 1.5662991943359375, 1.5659427490234374, 1.565487060546875, 1.566613525390625, 1.56559765625, 1.56596533203125, 1.566318603515625, 1.566983154296875, 1.5657728271484375, 1.5661322021484374, 1.566572509765625, 1.5666114501953126, 1.5659100341796874, 1.56704150390625, 1.56611376953125, 1.5677716064453124, 1.5673876953125, 1.5676068115234374, 1.5671654052734374, 1.5670262451171875, 1.5657738037109374, 1.5667547607421874, 1.5669217529296875, 1.5676558837890624, 1.56761083984375, 1.567972412109375, 1.567614990234375, 1.5675115966796875, 1.5676702880859374, 1.56752587890625, 1.567363037109375, 1.567826904296875, 1.567635498046875, 1.5676488037109375, 1.5662724609375, 1.5680296630859376, 1.567309814453125, 1.567677490234375, 1.567458251953125, 1.5668489990234375, 1.565865966796875, 1.566993408203125, 1.5673487548828124, 1.567581298828125, 1.566005126953125, 1.5679825439453126, 1.567009765625, 1.566161865234375, 1.5676138916015625, 1.56758935546875, 1.5667568359375, 1.5663258056640625, 1.566224365234375, 1.5670302734375, 3.26736279296875, 1.5667579345703124, 1.5664261474609376, 1.5665531005859374, 1.5668193359375, 1.566329833984375, 1.5663739013671876, 1.566214111328125, 1.5671173095703126, 1.565612060546875, 1.5653099365234375, 1.565854736328125, 1.5658486328125, 1.5660902099609375, 1.566256103515625, 1.5667547607421874, 1.5674736328125, 1.56900244140625, 1.5678065185546874, 1.567677490234375, 1.5673057861328126, 1.5676702880859374, 1.5678648681640626, 1.566625732421875, 1.566234619140625, 1.5665244140625, 1.565811767578125, 1.566467041015625, 1.5663380126953126, 1.5663995361328125, 1.56670458984375, 1.566562255859375, 1.56580859375, 1.5658076171875, 1.567499267578125, 1.566665771484375, 1.5675023193359374, 1.5676190185546874, 1.5666585693359374, 1.5654676513671875, 1.5674849853515624, 1.5671900634765625, 1.567220703125, 1.5676558837890624, 1.5666514892578125, 1.5663369140625, 1.5666441650390626, 1.566841796875, 1.566866455078125, 1.56685107421875, 1.567130615234375, 1.5664896240234376, 1.5665152587890625, 1.5667691650390625, 1.56735693359375, 1.5668797607421876, 1.5669544677734375, 1.565843505859375, 1.5657564697265625, 1.5662509765625, 1.5679661865234376, 1.567494140625, 1.5670753173828125, 3.26488671875, 1.56588232421875, 1.5666165771484375, 1.56659912109375, 1.5660400390625, 1.565919189453125, 1.5653775634765625, 1.5651685791015626, 1.5665255126953126, 1.5655526123046875, 1.56554443359375, 1.565875244140625, 1.565812744140625, 1.56569091796875, 1.56594384765625, 1.566340087890625, 1.565750244140625, 1.5661793212890625, 1.5670374755859375, 1.5664691162109374, 1.5666708984375, 1.5669124755859376, 1.5670743408203125, 1.565885498046875, 1.567392822265625, 1.56645068359375, 1.567561767578125, 1.5667598876953126, 1.566843994140625, 1.566246826171875, 1.56635546875, 1.5664219970703126, 1.565961181640625, 1.5663524169921874, 1.5675914306640626, 1.56609326171875, 1.5661405029296875, 1.5667711181640624, 1.566587890625, 1.5662694091796876, 1.566982177734375, 1.566482421875, 1.566496826171875, 1.5665531005859374, 1.5663370361328126, 1.5661158447265624, 1.566561279296875, 1.566202880859375, 1.566286865234375, 1.5659674072265626, 1.5661629638671875, 1.5660155029296876, 1.566634033203125, 1.5668284912109376, 1.5664476318359375, 1.5665438232421875, 1.5667864990234375, 1.5668736572265625, 1.56661865234375, 1.5671204833984376, 1.566720947265625, 1.5667332763671875, 1.566159912109375]",tokens/s,0.6286408862079101,,,main,False,False +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-6B,,cuda,0,42,,,,,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,MB,1575.784448,5448.925184,0.0,4802.47808,4489.252352,s,10,5.114569244384766,0.5114569244384766,0.0014045752365005437,0.51150537109375,0.5130841125488281,0.5135362274169921,0.5138979193115234,"[0.512983642578125, 0.5139883422851562, 0.5091934204101562, 0.5101927795410156, 0.5104193725585937, 0.5101881103515625, 0.5112746887207031, 0.5121220092773437, 0.5117360534667968, 0.5124708251953125]",tokens/s,500.5309103617276,kWh,6.020330099595917e-06,3.2988774182740595e-06,2.7782869448500503e-05,3.710207696637048e-05,tokens/kWh,6899883.266158921,MB,1575.784448,5448.925184,0.0,4802.47808,4557.794816,s,10,301.333625,30.133362499999997,0.011965382718741807,30.1356015625,30.146014453125,30.1513353515625,30.1555920703125,"[30.12017578125, 30.120552734375, 30.1369375, 30.140724609375, 30.15665625, 30.137947265625, 30.123359375, 30.14483203125, 30.118173828125, 30.134265625]",tokens/s,2.0907059409649356,kWh,0.00035569889715148347,0.00019495335105611957,0.001580753417379499,0.002131405665587102,tokens/kWh,29557.958401431977,,s,629,305.4536612854004,0.48561790347440437,0.060780789003776696,0.4781598815917969,0.47936102294921873,0.4797579284667969,0.9888164648437501,"[0.47731610107421873, 0.4777103271484375, 0.4780533752441406, 0.4779223022460938, 0.47746868896484373, 0.47739285278320315, 0.4777676696777344, 0.47874050903320314, 0.47792022705078124, 0.4776212463378906, 0.47766937255859376, 0.4774625244140625, 0.4779018249511719, 0.47790591430664064, 0.47894528198242187, 0.47799398803710935, 0.47878759765625, 0.47878964233398436, 0.47852645874023436, 0.47817422485351563, 0.4778905334472656, 0.47780557250976563, 0.47809637451171877, 0.47767245483398435, 0.477765625, 0.4778649597167969, 0.4779622497558594, 0.47779531860351565, 0.47874456787109376, 0.47817214965820315, 0.4782950439453125, 0.47745944213867186, 0.47759051513671874, 0.4785008544921875, 0.47783013916015626, 0.4780267639160156, 0.4782438354492187, 0.4785858459472656, 0.4793190307617187, 0.47905487060546875, 0.47873635864257813, 0.47829400634765623, 0.4777697143554688, 0.4778240661621094, 0.47742047119140624, 0.4780851135253906, 0.4782008361816406, 0.47801651000976564, 0.47831243896484377, 0.47876199340820313, 0.4778547058105469, 0.47859405517578124, 0.4782591857910156, 0.47776461791992186, 0.47824075317382814, 0.4776304626464844, 0.4778383483886719, 0.4776642456054688, 0.47760385131835936, 0.478160888671875, 0.47876300048828124, 0.4783943786621094, 0.9927915649414063, 0.47756494140625, 0.4774000549316406, 0.47765298461914063, 0.47747378540039065, 0.4782704772949219, 0.477907958984375, 0.4783944091796875, 0.477813720703125, 0.47758950805664063, 0.47759051513671874, 0.4776069030761719, 0.47729867553710936, 0.4773724060058594, 0.47751473999023436, 0.47745742797851565, 0.4780113525390625, 0.4786903076171875, 0.47860427856445314, 0.4783482971191406, 0.47794790649414065, 0.47776461791992186, 0.4778291320800781, 0.4779427795410156, 0.4779376525878906, 0.47769189453125, 0.47908352661132814, 0.47773797607421875, 0.47901287841796875, 0.4777134094238281, 0.4779151306152344, 0.47777587890625, 0.47748709106445314, 0.47771136474609377, 0.4781527099609375, 0.47798886108398436, 0.47750042724609376, 0.47809127807617186, 0.47905892944335937, 0.4782591857910156, 0.4781598815917969, 0.4782981262207031, 0.4776468505859375, 0.47786392211914064, 0.4776560668945313, 0.478023681640625, 0.48116427612304685, 0.4793456726074219, 0.4777492370605469, 0.47873126220703127, 0.47907122802734375, 0.4783626098632813, 0.4779949951171875, 0.47790286254882813, 0.4776908874511719, 0.478065673828125, 0.4777738342285156, 0.477770751953125, 0.47832369995117185, 0.47939175415039065, 0.47875686645507814, 0.47773284912109376, 0.478023681640625, 0.988906494140625, 0.47783013916015626, 0.4776437683105469, 0.4778649597167969, 0.4783902587890625, 0.47753521728515624, 0.4795494384765625, 0.47817214965820315, 0.4789770202636719, 0.4776386413574219, 0.47787213134765627, 0.47758950805664063, 0.47774514770507814, 0.47762841796875, 0.47790386962890624, 0.479541259765625, 0.4791797790527344, 0.47914700317382813, 0.4779294738769531, 0.4777625732421875, 0.47816497802734376, 0.4782356567382812, 0.47807180786132814, 0.4797726745605469, 0.4777687072753906, 0.4803246154785156, 0.4800747375488281, 0.4793231506347656, 0.4796539001464844, 0.48039935302734377, 0.4796252136230469, 0.4790927429199219, 0.477655029296875, 0.4791510925292969, 0.4787394409179688, 0.47877017211914064, 0.47938558959960936, 0.47959552001953126, 0.47838516235351564, 0.47773593139648435, 0.478129150390625, 0.4781404113769531, 0.4776857604980469, 0.4779018249511719, 0.47747378540039065, 0.4776847229003906, 0.4781803588867187, 0.4799620971679687, 0.4786053161621094, 0.47794790649414065, 0.4777123718261719, 0.4776683654785156, 0.4774696960449219, 0.47712460327148437, 0.4774481811523438, 0.47752908325195315, 0.47732632446289064, 0.4782438354492187, 0.47871487426757814, 0.47837286376953125, 0.4777123718261719, 0.47754238891601564, 0.4779929504394531, 0.9885849609375, 0.47834625244140627, 0.47808615112304687, 0.47836468505859375, 0.47836468505859375, 0.4776908874511719, 0.47762738037109376, 0.4779254455566406, 0.477751220703125, 0.4784117736816406, 0.47790286254882813, 0.4781741943359375, 0.4787138671875, 0.47869439697265626, 0.47841998291015625, 0.4790876159667969, 0.47936920166015623, 0.4789770202636719, 0.4778157958984375, 0.47849676513671874, 0.4780349426269531, 0.4785776672363281, 0.4781475830078125, 0.4785581970214844, 0.4792135620117188, 0.47874969482421875, 0.4787026062011719, 0.47837899780273435, 0.47872308349609377, 0.47839334106445314, 0.4786411437988281, 0.4790169677734375, 0.47768063354492185, 0.4778465270996094, 0.4781793212890625, 0.47906610107421876, 0.47883367919921876, 0.4782213134765625, 0.4785172424316406, 0.47826739501953125, 0.478087158203125, 0.4777277526855469, 0.4778680419921875, 0.47746456909179685, 0.4802908020019531, 0.47867086791992186, 0.47896060180664063, 0.4792279052734375, 0.4781783142089844, 0.47810867309570315, 0.4786063232421875, 0.4785162353515625, 0.4785848388671875, 0.4778659973144531, 0.4776212463378906, 0.4777840576171875, 0.4788787231445312, 0.47973171997070313, 0.47971328735351565, 0.4792842102050781, 0.477655029296875, 0.47770315551757814, 0.4779049377441406, 0.9883463134765625, 0.4791357421875, 0.4782458801269531, 0.4794173583984375, 0.478166015625, 0.47800833129882814, 0.4775157775878906, 0.4780421142578125, 0.47852032470703126, 0.4791224365234375, 0.47801651000976564, 0.47799398803710935, 0.4782530517578125, 0.47967129516601564, 0.47834417724609374, 0.4779847717285156, 0.4790302734375, 0.47956378173828124, 0.4773304443359375, 0.4774420471191406, 0.4774143981933594, 0.4773447570800781, 0.47814349365234377, 0.47828582763671873, 0.479710205078125, 0.4788910217285156, 0.479056884765625, 0.47832369995117185, 0.4782438354492187, 0.4783964233398437, 0.479025146484375, 0.4786606140136719, 0.4782909545898438, 0.47821823120117185, 0.4802129821777344, 0.47790286254882813, 0.47835751342773436, 0.4782561340332031, 0.478635009765625, 0.47870156860351565, 0.4777001037597656, 0.4775802917480469, 0.47765914916992186, 0.479578125, 0.4784527282714844, 0.47922894287109374, 0.47923199462890625, 0.4788213806152344, 0.47869439697265626, 0.4787804260253906, 0.47939993286132815, 0.47935186767578125, 0.4787639770507813, 0.4786268310546875, 0.4793589782714844, 0.48041677856445314, 0.48034817504882815, 0.482777099609375, 0.4785745849609375, 0.478571533203125, 0.47958123779296874, 0.47865029907226564, 0.4787384338378906, 0.990581787109375, 0.4781793212890625, 0.4788521423339844, 0.47797039794921875, 0.47851007080078123, 0.47790286254882813, 0.4778321838378906, 0.47813427734375, 0.4789043273925781, 0.47835134887695313, 0.47826226806640626, 0.47895858764648436, 0.4790947875976562, 0.4783759460449219, 0.47830938720703126, 0.4781803588867187, 0.477991943359375, 0.47756903076171875, 0.47764480590820313, 0.47726080322265624, 0.47773797607421875, 0.47950848388671874, 0.47766015625, 0.47899853515625, 0.47830322265625, 0.4781537170410156, 0.47825204467773436, 0.4785592346191406, 0.479025146484375, 0.47944705200195314, 0.47835134887695313, 0.478445556640625, 0.47876199340820313, 0.47891659545898435, 0.4791101379394531, 0.47820391845703125, 0.4782581787109375, 0.47862374877929686, 0.4814622802734375, 0.47808819580078127, 0.47835751342773436, 0.47878964233398436, 0.4785551452636719, 0.4777082824707031, 0.4787271728515625, 0.4784322509765625, 0.47835546875, 0.4775679931640625, 0.4779346008300781, 0.47834521484375, 0.478160888671875, 0.47767962646484374, 0.47781170654296873, 0.4783585205078125, 0.4791285705566406, 0.4783697814941406, 0.47800216674804685, 0.47763250732421875, 0.4782294921875, 0.47773696899414064, 0.47801651000976564, 0.4774718017578125, 0.47802670288085936, 0.9896888427734375, 0.47829608154296877, 0.47802975463867187, 0.47756497192382813, 0.47750039672851563, 0.47811380004882814, 0.4781025390625, 0.4778936767578125, 0.47798370361328124, 0.47788851928710935, 0.4786268310546875, 0.4782899169921875, 0.4779632568359375, 0.47777484130859377, 0.47753521728515624, 0.4779007873535156, 0.47758544921875, 0.47753726196289065, 0.47787213134765627, 0.47847628784179685, 0.4782909545898438, 0.4778014831542969, 0.47860223388671874, 0.47986483764648435, 0.47783935546875, 0.47765298461914063, 0.4779980773925781, 0.47794073486328126, 0.4787517395019531, 0.4781506652832031, 0.4780155029296875, 0.47900875854492186, 0.47818548583984377, 0.47805029296875, 0.4782233581542969, 0.47802471923828127, 0.4779346008300781, 0.47827557373046875, 0.478497802734375, 0.47849063110351564, 0.47899237060546873, 0.4786196594238281, 0.47815167236328127, 0.4799846801757813, 0.47795709228515626, 0.47788851928710935, 0.4778270568847656, 0.4778547058105469, 0.478060546875, 0.47782608032226564, 0.4778434143066406, 0.477601806640625, 0.4788572082519531, 0.47828274536132814, 0.47832986450195314, 0.4779417724609375, 0.477633544921875, 0.477907958984375, 0.478065673828125, 0.4780482482910156, 0.47808819580078127, 0.47858380126953126, 0.47811892700195313, 0.9911572265625, 0.4780707702636719, 0.47788134765625, 0.4775536499023437, 0.4774696960449219, 0.47756185913085936, 0.47758642578125, 0.4777615356445313, 0.47794790649414065, 0.4787118225097656, 0.47779736328125, 0.47749325561523437, 0.4775475158691406, 0.4777697143554688, 0.4781363220214844, 0.4779141235351563, 0.4792012939453125, 0.4778874816894531, 0.47856845092773437, 0.47768267822265625, 0.4781311950683594, 0.4785070190429688, 0.47809127807617186, 0.4776365966796875, 0.4780707702636719, 0.47816497802734376, 0.47828582763671873, 0.47777279663085936, 0.4780728454589844, 0.47835751342773436, 0.47851211547851563, 0.47822235107421873, 0.4775055236816406, 0.4781465454101563, 0.47790386962890624, 0.4779018249511719, 0.478359619140625, 0.4794295654296875, 0.4784394226074219, 0.4795248718261719, 0.4780544128417969, 0.477949951171875, 0.48094821166992185, 0.4794306640625, 0.4784814147949219, 0.4792197265625, 0.4782981262207031, 0.47831655883789065, 0.47831243896484377, 0.4784998474121094, 0.47935488891601563, 0.47914599609375, 0.48005630493164064, 0.48013311767578126, 0.47997030639648436, 0.48005426025390624, 0.4799140625, 0.4794142150878906, 0.4800153503417969, 0.4793067626953125, 0.47961505126953125, 0.47790789794921873, 0.4778670043945312, 0.9900185546875, 0.4775372924804687, 0.47779840087890624, 0.477633544921875, 0.4782950439453125, 0.47761920166015626, 0.47800421142578126, 0.478803955078125, 0.4791029663085937, 0.4782643127441406, 0.47842098999023436, 0.4776908874511719, 0.4780185546875, 0.47770932006835937, 0.4777851257324219, 0.477681640625, 0.477812744140625, 0.47979006958007814, 0.47791717529296873, 0.4780451965332031, 0.4788193359375, 0.477955078125, 0.47790591430664064, 0.47803903198242187, 0.47824697875976563, 0.4786861572265625, 0.47816192626953125, 0.477655029296875, 0.47835134887695313, 0.478919677734375, 0.47831039428710936, 0.4777205810546875, 0.4773253173828125, 0.47773284912109376, 0.4778260498046875, 0.4776069030761719, 0.47773492431640624, 0.4777461853027344, 0.478587890625, 0.47767041015625, 0.4789801330566406, 0.47915618896484374, 0.4780257263183594, 0.47762841796875, 0.4778168334960938, 0.4776714172363281, 0.47783526611328125, 0.47757107543945315, 0.4779704284667969, 0.4786677856445313, 0.47908148193359373, 0.4783206481933594, 0.4781240234375, 0.47756494140625, 0.4773294067382812, 0.47757208251953126, 0.477348876953125, 0.47757720947265625, 0.47773492431640624, 0.47816192626953125, 0.47770932006835937, 0.4789381103515625, 0.47819366455078127, 0.9904609375, 0.47848550415039065, 0.478013427734375, 0.4775751647949219, 0.4774912109375, 0.4782847900390625, 0.4794931335449219, 0.4796549072265625, 0.47851318359375, 0.4785254211425781, 0.47859506225585935, 0.4788695068359375, 0.47816293334960935, 0.47827969360351563, 0.4785244140625, 0.4797358093261719, 0.4782438354492187, 0.4776570739746094, 0.4789125061035156, 0.47882650756835937, 0.4777082824707031, 0.47753216552734373, 0.47809637451171877, 0.47831655883789065, 0.4776488952636719, 0.4774471740722656, 0.4796170349121094, 0.47986483764648435, 0.4793456726074219, 0.479599609375, 0.4791654357910156, 0.4776488952636719, 0.4775475158691406, 0.47792538452148436, 0.4778240051269531, 0.4774819946289062, 0.4782612915039062, 0.4777738037109375, 0.4777543640136719, 0.47963134765625, 0.47828070068359374, 0.4778486022949219, 0.4777625427246094, 0.477601806640625, 0.4777185363769531, 0.47762432861328125, 0.47770932006835937, 0.4777062377929687, 0.47948800659179686, 0.4784066467285156, 0.47847015380859376, 0.4775106506347656, 0.4777420654296875, 0.47842098999023436, 0.47805233764648436, 0.47766015625, 0.47758746337890623, 0.47821926879882815, 0.4781087036132812, 0.4776806640625, 0.47913876342773437, 0.47851828002929686, 0.4783575744628906]",tokens/s,2.059232151132392,,,main,False,False +4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-72B,Qwen/Qwen2-beta-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -6879,22 +5997,31 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-14B,Qwen/Qwen-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-7B,Qwen/Qwen1.5-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2628.173824,8389.132288,0.0,7742.685184,7007.145472,s,10,5.8011931152343745,0.5801193115234377,0.0010375594919882804,0.5799924316406251,0.5812619140624999,0.5815937561035156,0.5818592297363281,"[0.5800941772460938, 0.5819255981445313, 0.5788403930664062, 0.5789609375, 0.5798906860351563, 0.5787822265625, 0.57971533203125, 0.5806090698242188, 0.5811865234375, 0.5811881713867187]",tokens/s,441.28853309110576,kWh,6.83268827420694e-06,3.744032605603327e-06,3.3321369249667614e-05,4.3898090129477875e-05,tokens/kWh,5831688.787483131,MB,2628.173824,8389.132288,0.0,7742.685184,7283.985408,s,10,337.06498046875,33.706498046875,0.006009418787724905,33.706857421875,33.7119703125,33.715088671875,33.717583359375006,"[33.70903515625, 33.70971875, 33.7039609375, 33.70134375, 33.71127734375, 33.70996875, 33.71820703125, 33.69992578125, 33.69686328125, 33.7046796875]",tokens/s,1.869075805869452,kWh,0.0003979287963388143,0.0002180992035304977,0.0019156344121359354,0.0025316624120052473,tokens/kWh,24884.8344476149,,s,629,341.74955133056636,0.5433220211932693,0.06898772267341372,0.5349846801757813,0.5355790161132813,0.5358112670898437,1.1147944775390626,"[0.5351260375976562, 0.535109619140625, 0.534408203125, 0.5347737426757813, 0.5349273681640625, 0.5355181884765625, 0.5343795166015625, 0.5353154296875, 0.5344747314453125, 0.5348731079101563, 0.5341849365234375, 0.5352171630859375, 0.5348259887695312, 0.5350338745117188, 0.5346682739257812, 0.5355919189453126, 0.5350399780273437, 0.535109619140625, 0.53498779296875, 0.5350379638671875, 0.5342330932617188, 0.534898681640625, 0.5348997192382813, 0.535445556640625, 0.5350767822265625, 0.5357158203125, 0.5351649169921875, 0.53486181640625, 0.5343006591796875, 0.5351065673828125, 0.5353646240234375, 0.5352591552734375, 0.53469091796875, 0.5347808227539063, 0.5347430419921875, 0.5353215942382813, 0.5346262817382812, 0.5358970947265626, 0.5353533325195312, 0.535372802734375, 0.5349212646484375, 0.5354249877929688, 0.5347993774414063, 0.5352724609375, 0.5352263793945312, 0.5359462280273437, 0.5349867553710937, 0.5358069458007813, 0.5356390380859375, 0.5357721557617188, 0.5345842895507813, 0.5350502319335938, 0.5345679321289063, 0.5353901977539063, 0.534408203125, 0.5348423461914062, 0.5349427490234375, 0.5352744750976562, 0.5348515625, 0.5350000610351563, 0.5347225341796875, 0.5350891723632812, 1.117781005859375, 0.5343908081054688, 0.5352744750976562, 0.5350615234375, 0.5358694458007812, 0.5350860595703125, 0.5349007568359375, 0.5344706420898437, 0.5346253051757812, 0.534213623046875, 0.5346007080078125, 0.534765625, 0.5350972900390625, 0.5347195434570312, 0.5356298217773438, 0.5349805908203125, 0.5357711181640625, 0.5348290405273437, 0.5349857177734375, 0.5353421020507813, 0.5351044921875, 0.5350942993164063, 0.5355233154296875, 0.5351280517578125, 0.536111083984375, 0.53477783203125, 0.5354240112304688, 0.5351700439453125, 0.5359093627929687, 0.5350686645507813, 0.5352868041992187, 0.5346743774414062, 0.534993896484375, 0.534455322265625, 0.5347471313476563, 0.5344000244140625, 0.5349601440429688, 0.5342822265625, 0.5353840942382813, 0.5345341186523438, 0.5348598022460938, 0.5351505737304687, 0.5354915771484375, 0.5350184936523438, 0.535066650390625, 0.5345361328125, 0.53806591796875, 0.5347102661132812, 0.535362548828125, 0.5352243041992187, 0.5350154418945312, 0.5345475463867188, 0.5348187255859375, 0.5344368896484375, 0.5351710815429688, 0.5345422973632813, 0.5351874389648438, 0.5350225830078125, 0.5353594970703125, 0.5346467895507813, 0.53593701171875, 0.5349805908203125, 0.535109619140625, 1.11461376953125, 0.5346682739257812, 0.5355612182617188, 0.535363525390625, 0.5350051879882812, 0.5345147094726562, 0.5349580688476563, 0.5345648803710937, 0.5349765014648438, 0.5342883911132813, 0.534782958984375, 0.5348720703125, 0.5348485107421875, 0.5344696044921875, 0.5351680297851562, 0.535014404296875, 0.5347891235351563, 0.5343958740234375, 0.534729736328125, 0.5343323974609375, 0.5347850341796875, 0.534245361328125, 0.5351393432617187, 0.5362525024414062, 0.53484130859375, 0.5343948974609375, 0.53480859375, 0.5345147094726562, 0.535352294921875, 0.5345781860351563, 0.5349120483398437, 0.5347604370117187, 0.5352069091796875, 0.5347593994140625, 0.5351116943359375, 0.5349611206054687, 0.5350625, 0.5345709838867188, 0.535088134765625, 0.5350850830078125, 0.535235595703125, 0.53505126953125, 0.5352868041992187, 0.5351475219726562, 0.5351701049804688, 0.535184326171875, 0.5351956176757813, 0.536447998046875, 0.5354301147460937, 0.53513427734375, 0.5351146850585937, 0.5348946533203125, 0.5352826538085937, 0.5349775390625, 0.5352734985351563, 0.5348341674804687, 0.5351444702148438, 0.5347440185546875, 0.53526220703125, 0.5349683227539063, 0.5353143920898438, 0.5344860229492188, 0.534940673828125, 1.1146219482421875, 0.5341777954101562, 0.5348720703125, 0.5346262817382812, 0.5350717163085937, 0.5346693725585937, 0.5351198120117188, 0.5349754638671875, 0.53484033203125, 0.5343754272460938, 0.5346856689453126, 0.534470703125, 0.5363936767578125, 0.5344901123046875, 0.5354598388671875, 0.5345167236328126, 0.535103515625, 0.5345525512695313, 0.5347041015625, 0.5342689208984375, 0.53492431640625, 0.5343795166015625, 0.5349335327148438, 0.5343723754882812, 0.53469287109375, 0.5351454467773438, 0.5353369750976562, 0.5347051391601563, 0.5347532958984375, 0.5346580200195312, 0.5352058715820313, 0.5351024780273438, 0.5352191772460938, 0.53522021484375, 0.5348075561523438, 0.534297607421875, 0.534724609375, 0.5345833129882812, 0.5349539794921875, 0.5344808959960937, 0.53492529296875, 0.5351454467773438, 0.5350830078125, 0.5344010009765625, 0.5376593627929688, 0.5356707763671875, 0.5352120361328125, 0.5348014526367187, 0.5355078735351563, 0.5344962768554687, 0.5350451049804688, 0.5349385986328125, 0.5351188354492188, 0.5344829711914062, 0.5351536865234375, 0.5346395874023437, 0.5351792602539063, 0.534635498046875, 0.5352366333007812, 0.534640625, 0.5355222778320312, 0.53492431640625, 0.5352960205078126, 1.1157667236328126, 0.5344829711914062, 0.5347286987304688, 0.53443994140625, 0.5350502319335938, 0.5349959716796875, 0.5357506713867187, 0.5345075073242187, 0.5348935546875, 0.5344307250976562, 0.5347952880859375, 0.5344050903320312, 0.5348792114257812, 0.5342566528320313, 0.5350963745117188, 0.5344285888671875, 0.534782958984375, 0.5359862060546875, 0.5356195678710938, 0.53477783203125, 0.5348853759765625, 0.534413330078125, 0.5349529418945312, 0.5347205200195313, 0.5349427490234375, 0.5349754638671875, 0.5349099731445313, 0.5344389038085937, 0.5352949829101562, 0.5348628540039062, 0.5350799560546875, 0.5344368896484375, 0.5352714233398438, 0.5348720703125, 0.5350604858398438, 0.534603759765625, 0.5353707275390625, 0.5352437744140625, 0.535731201171875, 0.5351393432617187, 0.535103515625, 0.5343733520507813, 0.534950927734375, 0.53507275390625, 0.535462890625, 0.5348690185546875, 0.5352427368164062, 0.5344849853515625, 0.5353912353515625, 0.5345740966796875, 0.5349765014648438, 0.5348229370117188, 0.5356441650390625, 0.5349171142578125, 0.5356072998046875, 0.5357066040039062, 0.5356267700195313, 0.5386843872070313, 0.535677978515625, 0.53519970703125, 0.5360302124023437, 0.5351813354492188, 0.5363681030273437, 1.114861572265625, 0.534814697265625, 0.5358141479492188, 0.5348894653320313, 0.535541748046875, 0.5344706420898437, 0.5349130249023437, 0.5350021362304688, 0.5350850830078125, 0.534813720703125, 0.5355775756835938, 0.5344389038085937, 0.53571484375, 0.5351659545898437, 0.5355847778320313, 0.53517822265625, 0.5354332275390625, 0.53538818359375, 0.5351044921875, 0.5344112548828125, 0.5350000610351563, 0.5343201293945312, 0.5348331298828125, 0.5342853393554687, 0.5347276611328124, 0.5348331298828125, 0.534877197265625, 0.534382568359375, 0.5348782348632812, 0.5349212036132812, 0.5350440673828125, 0.5346990356445313, 0.5352007446289062, 0.5345945434570313, 0.5349151000976563, 0.5347184448242187, 0.5349703979492187, 0.5343866577148437, 0.5375672607421875, 0.5345842895507813, 0.535604248046875, 0.5345730590820312, 0.5350553588867187, 0.5347706909179688, 0.5352007446289062, 0.5347727661132813, 0.535562255859375, 0.5352611694335937, 0.5354332275390625, 0.5348392944335938, 0.5353809814453125, 0.5349007568359375, 0.5352796020507813, 0.5347973022460938, 0.535889892578125, 0.535098388671875, 0.5354475708007812, 0.5351219482421875, 0.5354977416992187, 0.5351229248046875, 0.5353697509765625, 0.5347573852539063, 0.5351884765625, 1.11545751953125, 0.534709228515625, 0.5355346069335938, 0.5345218505859375, 0.53505126953125, 0.5347532958984375, 0.5353421020507813, 0.5347676391601562, 0.535130126953125, 0.53502978515625, 0.5353748779296875, 0.5347379150390625, 0.53549462890625, 0.5350656127929687, 0.53538818359375, 0.5347123413085938, 0.53515673828125, 0.5347584228515625, 0.5352509155273437, 0.5351055297851562, 0.5358919677734375, 0.5351751708984375, 0.535287841796875, 0.5365626831054687, 0.5354188842773437, 0.5353696899414062, 0.5352734985351563, 0.5352540283203125, 0.5353543701171875, 0.5349550170898437, 0.5355130615234375, 0.5348792114257812, 0.535568359375, 0.5348311767578126, 0.5353768310546875, 0.5346519165039062, 0.53517822265625, 0.5345648803710937, 0.5352017822265625, 0.535309326171875, 0.5357240600585937, 0.5350317993164062, 0.5355181884765625, 0.5348699951171875, 0.5352345581054687, 0.5348505859375, 0.5359411010742188, 0.5351085815429687, 0.5355888671875, 0.5350133666992187, 0.5354229736328125, 0.5347727661132813, 0.5353400268554688, 0.5348945922851562, 0.5355601806640625, 0.5356461791992188, 0.5350768432617188, 0.5353328857421875, 0.5356503295898437, 0.5349284057617187, 0.53524169921875, 0.53501953125, 0.5352315063476563, 1.1161282958984375, 0.5346826171875, 0.53496630859375, 0.5344050903320312, 0.5346508178710937, 0.5344050903320312, 0.5348168334960938, 0.5343477172851563, 0.5350819702148437, 0.5347593994140625, 0.5352212524414063, 0.534572021484375, 0.5355878295898437, 0.53490380859375, 0.5348966674804687, 0.5346734008789062, 0.5364859008789062, 0.53452392578125, 0.5349498901367188, 0.5348843383789063, 0.5350963134765625, 0.5344942016601563, 0.5349078979492188, 0.5345894165039062, 0.5349498901367188, 0.5344747314453125, 0.53500927734375, 0.5347010498046875, 0.535119873046875, 0.5345147094726562, 0.53530419921875, 0.5354342651367188, 0.535141357421875, 0.5348782348632812, 0.5348505859375, 0.5344890747070312, 0.5351444702148438, 0.53507275390625, 0.535056396484375, 0.5347092895507812, 0.5349498291015625, 0.534508544921875, 0.5350236206054687, 0.5345904541015625, 0.535593994140625, 0.5347225341796875, 0.5352581176757812, 0.5349776000976563, 0.5351546020507812, 0.5346416625976562, 0.5357752075195312, 0.5347604370117187, 0.5349846801757813, 0.5344286499023437, 0.5350154418945312, 0.5346324462890625, 0.5349918823242188, 0.5349908447265626, 0.5351976928710938, 0.5346375732421875, 0.5349151000976563, 0.5348065185546875, 0.5351188354492188, 1.1169342041015624, 0.534445068359375, 0.5351669921875, 0.5345443725585938, 0.53528369140625, 0.534782958984375, 0.5349293823242187, 0.5344174194335938, 0.5348372192382812, 0.5343057861328125, 0.53471435546875, 0.534593505859375, 0.5350717163085937, 0.5345064697265625, 0.5349273681640625, 0.5345054931640625, 0.5349867553710937, 0.535751708984375, 0.5350215454101562, 0.5345771484375, 0.535593994140625, 0.534761474609375, 0.5349488525390625, 0.5347625122070313, 0.5349222412109375, 0.5344276733398438, 0.53481982421875, 0.5344440307617188, 0.5348536376953125, 0.5344583740234375, 0.5348925170898438, 0.5345833129882812, 0.5350532836914063, 0.5344010009765625, 0.5347758178710937, 0.5343866577148437, 0.5347593994140625, 0.534382568359375, 0.5348362426757812, 0.53475634765625, 0.5349376831054687, 0.5345422973632813, 0.5351393432617187, 0.53452490234375, 0.5351270141601563, 0.5344603881835938, 0.5351065673828125, 0.5345259399414063, 0.5350799560546875, 0.5351802978515625, 0.5355919189453126, 0.5348382568359376, 0.5353246459960938, 0.5350021362304688, 0.535816162109375, 0.5346324462890625, 0.5352212524414063, 0.5346836547851562, 0.5353799438476563, 0.5346682739257812, 0.5351454467773438, 0.5346416625976562, 0.53532568359375, 1.116949462890625, 0.5343743896484375, 0.5350113525390625, 0.5348218994140626, 0.5349816284179687, 0.5344235229492188, 0.5348731079101563, 0.534445068359375, 0.534877197265625, 0.53441943359375, 0.5347359008789062, 0.5345535888671875, 0.5347891235351563, 0.5345515747070313, 0.5351004028320312, 0.53458740234375, 0.5349119873046875, 0.5347153930664063, 0.5349099731445313, 0.5344542846679687, 0.5348812866210938, 0.5343672485351563, 0.5352898559570313, 0.5349918823242188, 0.5351209106445313, 0.5350277099609375, 0.5352345581054687, 0.5350748291015625, 0.5352857666015625, 0.5347102661132812, 0.5349519653320313, 0.5349539794921875, 0.5350645751953125, 0.534740966796875, 0.5353809814453125, 0.5346959228515625, 0.5358069458007813, 0.53460888671875, 0.5353052368164063, 0.5350338745117188, 0.5352212524414063, 0.53507275390625, 0.5351802978515625, 0.5347666015625, 0.5349642333984375, 0.53477783203125, 0.535235595703125, 0.5350543212890625, 0.5352120361328125, 0.5350082397460938, 0.5354352416992187, 0.5352120361328125, 0.5354669799804688, 0.535140380859375, 0.535362548828125, 0.534782958984375, 0.5354803466796875, 0.5349232788085938, 0.5352908935546875, 0.535625732421875, 0.5352755126953125, 0.53500732421875, 0.5353860473632812]",tokens/s,1.8405291171591998,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-32B,Qwen/Qwen1.5-32B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,4421.566464,24111.480832,0.0,23465.033728,21691.057664,s,10,26.201972412109374,2.6201972412109376,0.0014392080916773324,2.620363525390625,2.621498388671875,2.622221728515625,2.622800400390625,"[2.62030126953125, 2.620416259765625, 2.620310791015625, 2.621337646484375, 2.620593017578125, 2.619945556640625, 2.622945068359375, 2.618053466796875, 2.6175732421875, 2.62049609375]",tokens/s,97.70256833095829,kWh,3.092599951558643e-05,1.6948578058490964e-05,0.00015162839908040572,0.00019950297665448312,tokens/kWh,1283188.874135765,MB,4421.566464,24111.480832,0.0,23465.033728,21890.213376,s,10,1554.3346406249998,155.43346406249998,0.013784362336340894,155.428859375,155.4548328125,155.45787734375,155.46031296875,"[155.44153125, 155.42890625, 155.45415625, 155.426875, 155.41909375, 155.416984375, 155.4288125, 155.42403125, 155.460921875, 155.433328125]",tokens/s,0.4053181236099044,kWh,0.0018348197203377882,0.0010056435987538315,0.008919082301926796,0.011759545621018413,tokens/kWh,5357.349852650515,,s,629,1575.449455322266,2.504689118159405,0.3111804707409938,2.46706884765625,2.4683868164062504,2.4691709960937502,5.086480859375,"[2.467560546875, 2.468384765625, 2.46702587890625, 2.467464111328125, 2.46763427734375, 2.468833251953125, 2.467610595703125, 2.46744580078125, 2.467310546875, 2.4678994140625, 2.46620263671875, 2.466724853515625, 2.46737109375, 2.46790234375, 2.466193359375, 2.46736279296875, 2.4661279296875, 2.467852294921875, 2.469380126953125, 2.468475830078125, 2.467101806640625, 2.46930322265625, 2.4674384765625, 2.46818505859375, 2.46793115234375, 2.468096923828125, 2.466873291015625, 2.466653076171875, 2.466144287109375, 2.467576904296875, 2.466427978515625, 2.46687744140625, 2.467862548828125, 2.468832275390625, 2.46677001953125, 2.46746533203125, 2.4666767578125, 2.467177490234375, 2.4664228515625, 2.466610107421875, 2.466058349609375, 2.46723388671875, 2.470784912109375, 2.466979736328125, 2.466400146484375, 2.4673740234375, 2.467078125, 2.466891845703125, 2.46717041015625, 2.467664794921875, 2.4676455078125, 2.467311767578125, 2.4667421875, 2.46812060546875, 2.467968017578125, 2.467040283203125, 2.466512939453125, 2.4665068359375, 2.467083251953125, 2.466418701171875, 2.465967041015625, 2.466157470703125, 5.087494140625, 2.466189208984375, 2.466884521484375, 2.46639501953125, 2.46648828125, 2.466607177734375, 2.467287109375, 2.46839599609375, 2.46702587890625, 2.467313720703125, 2.467323974609375, 2.467330078125, 2.466697265625, 2.46641455078125, 2.4657080078125, 2.46809912109375, 2.46658984375, 2.467029052734375, 2.46753076171875, 2.468769775390625, 2.467987548828125, 2.468222900390625, 2.4690595703125, 2.469578857421875, 2.46847900390625, 2.4680283203125, 2.46656298828125, 2.46801513671875, 2.46639013671875, 2.4670986328125, 2.46615234375, 2.46773974609375, 2.4667216796875, 2.46727685546875, 2.4663193359375, 2.46763525390625, 2.46688671875, 2.467874755859375, 2.46723779296875, 2.46824853515625, 2.466218017578125, 2.466986083984375, 2.46668505859375, 2.4669931640625, 2.4665302734375, 2.465965087890625, 2.468173828125, 2.467091552734375, 2.4666787109375, 2.466904052734375, 2.466720703125, 2.466922607421875, 2.46651806640625, 2.466711669921875, 2.46662158203125, 2.4666767578125, 2.466606201171875, 2.466504638671875, 2.46702294921875, 2.467114990234375, 2.46698291015625, 2.466469970703125, 2.46719384765625, 5.0873857421875, 2.46711181640625, 2.4676669921875, 2.4682373046875, 2.46677294921875, 2.465900634765625, 2.466285400390625, 2.46675244140625, 2.4686142578125, 2.467852294921875, 2.468147216796875, 2.469138427734375, 2.468021240234375, 2.46839501953125, 2.467322998046875, 2.46803857421875, 2.4694794921875, 2.467284912109375, 2.467267578125, 2.46729736328125, 2.471918701171875, 2.4674765625, 2.467620849609375, 2.468518798828125, 2.46965966796875, 2.468581298828125, 2.467287109375, 2.4676025390625, 2.46909130859375, 2.4678798828125, 2.466585693359375, 2.46625390625, 2.468111328125, 2.466431884765625, 2.4665302734375, 2.46625390625, 2.46766796875, 2.46662646484375, 2.46632763671875, 2.466314208984375, 2.468085693359375, 2.467567626953125, 2.47077490234375, 2.466901123046875, 2.46776416015625, 2.466997314453125, 2.468117431640625, 2.471785400390625, 2.468166748046875, 2.46658154296875, 2.467800048828125, 2.4673310546875, 2.46755029296875, 2.466908203125, 2.4666357421875, 2.4657724609375, 2.4668466796875, 2.46647509765625, 2.46641455078125, 2.4653935546875, 2.46607861328125, 2.465657958984375, 2.46717041015625, 5.08862353515625, 2.46618017578125, 2.46677001953125, 2.465965087890625, 2.4666962890625, 2.46651806640625, 2.466512939453125, 2.4657919921875, 2.46704833984375, 2.466091064453125, 2.4665322265625, 2.466198486328125, 2.466378662109375, 2.4663388671875, 2.466697265625, 2.4661689453125, 2.467324951171875, 2.46691748046875, 2.46706884765625, 2.46692041015625, 2.466785400390625, 2.467284912109375, 2.467230712890625, 2.4668681640625, 2.4700732421875, 2.46681396484375, 2.466840576171875, 2.46628857421875, 2.4691845703125, 2.469140380859375, 2.468798583984375, 2.46765869140625, 2.4666748046875, 2.46800390625, 2.466842529296875, 2.46696044921875, 2.46841552734375, 2.46970166015625, 2.468170654296875, 2.467095458984375, 2.46616259765625, 2.468423583984375, 2.46754296875, 2.467493896484375, 2.469568603515625, 2.467686279296875, 2.467119140625, 2.46765576171875, 2.4675615234375, 2.46753076171875, 2.46786962890625, 2.467504150390625, 2.466217041015625, 2.46670751953125, 2.466275390625, 2.46649951171875, 2.465642578125, 2.4665927734375, 2.466114501953125, 2.46563134765625, 2.466107421875, 2.466840576171875, 2.46594775390625, 5.0872607421875, 2.466586669921875, 2.467085205078125, 2.466087890625, 2.46624658203125, 2.468030517578125, 2.466228271484375, 2.46631201171875, 2.465871826171875, 2.466620361328125, 2.466470947265625, 2.4659375, 2.465469482421875, 2.467073974609375, 2.467386474609375, 2.466375732421875, 2.46649658203125, 2.469547119140625, 2.46750634765625, 2.466642822265625, 2.46601123046875, 2.466673583984375, 2.466423828125, 2.466227294921875, 2.466232421875, 2.467124267578125, 2.466873291015625, 2.46641162109375, 2.466154541015625, 2.46636962890625, 2.466863037109375, 2.46698291015625, 2.467325927734375, 2.46662744140625, 2.4677744140625, 2.466999267578125, 2.467263427734375, 2.466723876953125, 2.46856201171875, 2.46679150390625, 2.466046875, 2.46635107421875, 2.46673828125, 2.467541015625, 2.4671416015625, 2.467443603515625, 2.466511962890625, 2.467031982421875, 2.46706787109375, 2.4669921875, 2.468369384765625, 2.467056640625, 2.46666455078125, 2.467033203125, 2.468075439453125, 2.468128662109375, 2.466417724609375, 2.471729248046875, 2.467071044921875, 2.466891845703125, 2.46647509765625, 2.466440185546875, 2.46868798828125, 5.08691357421875, 2.466028564453125, 2.4677333984375, 2.467010498046875, 2.467205078125, 2.4664013671875, 2.4672451171875, 2.4667392578125, 2.46585546875, 2.466406494140625, 2.46685693359375, 2.4661708984375, 2.4663828125, 2.46592822265625, 2.466884521484375, 2.466239501953125, 2.46583203125, 2.465574951171875, 2.46738330078125, 2.467092529296875, 2.4664677734375, 2.467158935546875, 2.467737548828125, 2.4660244140625, 2.4675830078125, 2.46628662109375, 2.467053466796875, 2.4666142578125, 2.46684375, 2.466788330078125, 2.467851318359375, 2.46658056640625, 2.468338623046875, 2.467275634765625, 2.46681201171875, 2.466661376953125, 2.466303955078125, 2.46763720703125, 2.473092041015625, 2.46727685546875, 2.467389404296875, 2.467167236328125, 2.467786865234375, 2.4663837890625, 2.4663388671875, 2.465721435546875, 2.467124267578125, 2.4679638671875, 2.46670751953125, 2.46626416015625, 2.467136474609375, 2.466255859375, 2.4674990234375, 2.466595947265625, 2.466490478515625, 2.4665712890625, 2.46690087890625, 2.466754638671875, 2.4670341796875, 2.467210205078125, 2.467547119140625, 2.467244140625, 2.466747314453125, 5.09081201171875, 2.467222412109375, 2.46835205078125, 2.467926025390625, 2.4673740234375, 2.467116943359375, 2.46747021484375, 2.467093505859375, 2.466975830078125, 2.46742626953125, 2.4675400390625, 2.467567626953125, 2.4670546875, 2.467200927734375, 2.467986328125, 2.46847900390625, 2.468297607421875, 2.466345947265625, 2.467420166015625, 2.468263916015625, 2.46740283203125, 2.466755615234375, 2.467157958984375, 2.471689208984375, 2.467622802734375, 2.4668671875, 2.467239013671875, 2.46835205078125, 2.467516357421875, 2.46651904296875, 2.466069580078125, 2.46681591796875, 2.466124755859375, 2.465919921875, 2.465881103515625, 2.46696240234375, 2.46622607421875, 2.46639208984375, 2.465967041015625, 2.46714990234375, 2.466946044921875, 2.466486328125, 2.465672119140625, 2.466734130859375, 2.466515869140625, 2.46664404296875, 2.4666142578125, 2.4672265625, 2.466231201171875, 2.46652001953125, 2.4661728515625, 2.46692041015625, 2.466157470703125, 2.46626611328125, 2.46582470703125, 2.466809814453125, 2.467745849609375, 2.4677080078125, 2.466193359375, 2.4672470703125, 2.467043212890625, 2.47162060546875, 2.4657490234375, 5.08459130859375, 2.46683544921875, 2.46649755859375, 2.467766357421875, 2.467400634765625, 2.467850341796875, 2.467080078125, 2.46782470703125, 2.466931640625, 2.46681298828125, 2.466908203125, 2.467493896484375, 2.466670654296875, 2.46761767578125, 2.467306396484375, 2.46744873046875, 2.46968310546875, 2.467335205078125, 2.466291748046875, 2.46672900390625, 2.4669912109375, 2.468328369140625, 2.466957275390625, 2.46684375, 2.467378173828125, 2.4669912109375, 2.467179443359375, 2.46784521484375, 2.468820068359375, 2.466711669921875, 2.465966064453125, 2.465700927734375, 2.4670791015625, 2.46738427734375, 2.467485595703125, 2.4666328125, 2.4676455078125, 2.466926513671875, 2.46613720703125, 2.46624755859375, 2.4671220703125, 2.46669921875, 2.465594482421875, 2.46590771484375, 2.466947021484375, 2.466668701171875, 2.466886474609375, 2.46719189453125, 2.46757080078125, 2.466482177734375, 2.46595068359375, 2.46605712890625, 2.467263427734375, 2.466189208984375, 2.467197998046875, 2.46523095703125, 2.466417724609375, 2.466122802734375, 2.467242919921875, 2.466663330078125, 2.46723388671875, 2.466820068359375, 2.472427490234375, 5.0853681640625, 2.46607568359375, 2.46763818359375, 2.466788330078125, 2.467725341796875, 2.466460693359375, 2.467099609375, 2.46757177734375, 2.46760546875, 2.466769775390625, 2.46808056640625, 2.46717236328125, 2.468547607421875, 2.46778369140625, 2.4672236328125, 2.466810791015625, 2.467812255859375, 2.468862060546875, 2.467946533203125, 2.467600341796875, 2.46891015625, 2.46693994140625, 2.46805810546875, 2.46829052734375, 2.469150634765625, 2.468052978515625, 2.4687646484375, 2.467143798828125, 2.467037109375, 2.466817138671875, 2.468148193359375, 2.467322998046875, 2.467407958984375, 2.468336669921875, 2.468115478515625, 2.4671845703125, 2.4663388671875, 2.4676884765625, 2.467588134765625, 2.466388916015625, 2.466503662109375, 2.466964599609375, 2.4676494140625, 2.466975830078125, 2.466547607421875, 2.46734033203125, 2.467566650390625, 2.467642333984375, 2.466969482421875, 2.468360107421875, 2.467146728515625, 2.466821044921875, 2.466783203125, 2.46778466796875, 2.46734130859375, 2.467453857421875, 2.467220458984375, 2.468514892578125, 2.467493896484375, 2.4675439453125, 2.467715087890625, 2.47457275390625, 2.468958251953125, 5.0886162109375, 2.467864501953125, 2.469477294921875, 2.468490234375, 2.4670166015625, 2.467751953125, 2.46676171875, 2.466572265625, 2.467084228515625, 2.467091552734375, 2.4673525390625, 2.4678388671875, 2.46633154296875, 2.467618896484375, 2.46672900390625, 2.466831298828125, 2.4672685546875, 2.467834716796875, 2.46698193359375, 2.467683349609375, 2.46766796875, 2.46748974609375, 2.46799560546875, 2.4667822265625, 2.4664052734375, 2.467306396484375, 2.469897216796875, 2.46721630859375, 2.46658251953125, 2.46739453125, 2.467197998046875, 2.468125732421875, 2.466786376953125, 2.467189697265625, 2.467324951171875, 2.467589111328125, 2.46772314453125, 2.468556884765625, 2.466018310546875, 2.466438232421875, 2.467070068359375, 2.466093017578125, 2.466754638671875, 2.46706884765625, 2.46609521484375, 2.467577880859375, 2.46765771484375, 2.468675537109375, 2.46646875, 2.466482177734375, 2.466712646484375, 2.465977294921875, 2.46544384765625, 2.466545654296875, 2.466736083984375, 2.467407958984375, 2.466906005859375, 2.466165771484375, 2.46822900390625, 2.4675185546875, 2.466716552734375, 2.4658984375, 2.466937744140625]",tokens/s,0.3992511456810495,,,,, +4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-40b,tiiuae/falcon-40b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -6902,32 +6029,69 @@ NameError: name 'exlv2_ext' is not defined File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code - answer = input( -EOFError: EOF when reading a line - -During handling of the above exception, another exception occurred: - -Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights - self.create_no_weights_model() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model - meta_model = self.automodel_class.from_config(self.pretrained_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config - trust_remote_code = resolve_trust_remote_code( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code - raise ValueError( -ValueError: The repository for Qwen/Qwen-14B contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/Qwen/Qwen-14B. -Please pass the argument `trust_remote_code=True` to allow custom code to be run. + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/root/.cache/huggingface/modules/transformers_modules/tiiuae/falcon-40b/4a70170c215b36a3cce4b4253f6d0612bb7d4146/modeling_falcon.py"", line 900, in forward + transformer_outputs = self.transformer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/root/.cache/huggingface/modules/transformers_modules/tiiuae/falcon-40b/4a70170c215b36a3cce4b4253f6d0612bb7d4146/modeling_falcon.py"", line 797, in forward + outputs = block( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/root/.cache/huggingface/modules/transformers_modules/tiiuae/falcon-40b/4a70170c215b36a3cce4b4253f6d0612bb7d4146/modeling_falcon.py"", line 477, in forward + mlp_output = self.mlp(mlp_layernorm_out) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/root/.cache/huggingface/modules/transformers_modules/tiiuae/falcon-40b/4a70170c215b36a3cce4b4253f6d0612bb7d4146/modeling_falcon.py"", line 409, in forward + x = self.act(self.dense_h_to_4h(x)) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemm.py"", line 242, in forward + out = WQLinearMMFunction.apply( + File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 598, in apply + return super().apply(*args, **kwargs) # type: ignore[misc] + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemm.py"", line 50, in forward + out = dequantize_gemm(qweight, qzeros, scales, w_bit, group_size) + File ""/usr/local/lib/python3.10/dist-packages/awq/utils/packing_utils.py"", line 85, in dequantize_gemm + iweight, izeros = unpack_awq(qweight, qzeros, bits) + File ""/usr/local/lib/python3.10/dist-packages/awq/utils/packing_utils.py"", line 12, in unpack_awq + iweights = torch.bitwise_right_shift(qweight[:, :, None], shifts[None, None, :]).to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 2.00 GiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-12b,stabilityai/stablelm-2-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-160m,EleutherAI/pythia-160m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1303.977984,1030.22592,0.0,383.778816,312.280064,s,10,0.30782016181945804,0.030782016181945804,0.001617235684294077,0.030563695907592774,0.031164259910583494,0.03323989057540893,0.03490039510726929,"[0.03531552124023438, 0.03054502487182617, 0.030670495986938478, 0.029116479873657227, 0.030544319152832032, 0.02917731285095215, 0.030620607376098632, 0.030559423446655274, 0.030567968368530273, 0.030703008651733397]",tokens/s,8316.544260351227,kWh,3.557098667864181e-07,1.9491237936146868e-07,8.339715507108577e-07,1.3845937968587447e-06,tokens/kWh,184891771.5656334,MB,1303.977984,1030.22592,0.0,383.778816,347.090432,s,10,18.765849975585937,1.8765849975585938,0.01629298714952931,1.8788928833007814,1.8852921142578125,1.8978253173828123,1.9078518798828124,"[1.9103585205078124, 1.8825069580078124, 1.879499267578125, 1.8580986328125, 1.8786011962890625, 1.8434554443359374, 1.8807445068359374, 1.8754886474609376, 1.8791845703125, 1.8779122314453125]",tokens/s,33.5716208335684,kWh,2.201072483317281e-05,1.2059537590589184e-05,4.825437327548859e-05,8.232463569925058e-05,tokens/kWh,765263.0280703872,,s,629,19.00581683158875,0.030215925010474952,0.003670631507539437,0.02977996826171875,0.03002470397949219,0.03029995498657227,0.05998026794433601,"[0.03094118309020996, 0.03138150405883789, 0.03138355255126953, 0.031524864196777344, 0.030980096817016602, 0.03207884979248047, 0.032363521575927735, 0.03149004745483398, 0.03120844841003418, 0.031268863677978515, 0.03084492874145508, 0.032194561004638675, 0.031160320281982422, 0.03057868766784668, 0.030236671447753907, 0.03517747116088867, 0.030717952728271485, 0.030108671188354492, 0.03002470397949219, 0.029833215713500977, 0.029899776458740233, 0.02977177619934082, 0.02977791976928711, 0.02977382469177246, 0.030176256179809572, 0.0299683837890625, 0.029740032196044923, 0.02977894401550293, 0.029844480514526366, 0.029732864379882814, 0.02974412727355957, 0.029797376632690428, 0.029791231155395507, 0.029726720809936522, 0.029648895263671874, 0.029749248504638674, 0.02977791976928711, 0.029949951171875, 0.02977996826171875, 0.02976255989074707, 0.02981990432739258, 0.029797376632690428, 0.0297728328704834, 0.02997039985656738, 0.029839359283447265, 0.029833215713500977, 0.029870080947875976, 0.02978508758544922, 0.02968780708312988, 0.029784063339233398, 0.02979327964782715, 0.029755392074584962, 0.02972774314880371, 0.029976640701293945, 0.02982700729370117, 0.029852672576904295, 0.029896703720092774, 0.029731840133666993, 0.029747200012207032, 0.02983628845214844, 0.029772800445556642, 0.029739007949829102, 0.06072115325927734, 0.029829120635986327, 0.02977689552307129, 0.029834239959716798, 0.030591999053955078, 0.03021414375305176, 0.029755392074584962, 0.02983628845214844, 0.02980352020263672, 0.029842432022094727, 0.029707263946533204, 0.029665279388427734, 0.029698047637939453, 0.02979430389404297, 0.029593599319458007, 0.02993152046203613, 0.0301527042388916, 0.029792255401611328, 0.029764608383178712, 0.029861888885498046, 0.03102822494506836, 0.030027776718139648, 0.02980147171020508, 0.030087167739868165, 0.02975129508972168, 0.030086143493652344, 0.029826047897338868, 0.02974617576599121, 0.030042112350463866, 0.029730815887451172, 0.029899776458740233, 0.029838336944580077, 0.02994790458679199, 0.02980659294128418, 0.02976972770690918, 0.029682687759399414, 0.02978816032409668, 0.029817855834960938, 0.029734912872314452, 0.029831167221069335, 0.02974208068847656, 0.02978508758544922, 0.029848575592041016, 0.029800447463989257, 0.029785120010375976, 0.029689823150634766, 0.03014553642272949, 0.029886463165283202, 0.03018035125732422, 0.029938688278198244, 0.02973695945739746, 0.030068735122680663, 0.02973695945739746, 0.029897727966308595, 0.0297891845703125, 0.0298024959564209, 0.02995814323425293, 0.02976051139831543, 0.02976870346069336, 0.02997555160522461, 0.029975584030151367, 0.029692895889282228, 0.029708288192749024, 0.061895679473876954, 0.030073856353759764, 0.02974412727355957, 0.029680639266967773, 0.029848575592041016, 0.029882368087768556, 0.029543424606323244, 0.02978713607788086, 0.029755392074584962, 0.029875200271606447, 0.029856767654418945, 0.029831167221069335, 0.029770751953125, 0.02977791976928711, 0.02973695945739746, 0.029897727966308595, 0.030079999923706056, 0.029894655227661132, 0.029703168869018554, 0.0297574405670166, 0.029837312698364257, 0.029813760757446288, 0.029814783096313476, 0.029743167877197267, 0.029764543533325194, 0.029707263946533204, 0.02977791976928711, 0.029730815887451172, 0.030044160842895507, 0.029833215713500977, 0.02974617576599121, 0.029815807342529296, 0.029740032196044923, 0.029815807342529296, 0.029816831588745117, 0.029799423217773437, 0.029713407516479492, 0.0297891845703125, 0.02983628845214844, 0.029896703720092774, 0.029834239959716798, 0.0297574405670166, 0.029868032455444334, 0.029748224258422853, 0.029849599838256836, 0.02977382469177246, 0.02986604881286621, 0.029807552337646485, 0.030026752471923827, 0.02976255989074707, 0.02976972770690918, 0.029892608642578124, 0.029701120376586915, 0.02976870346069336, 0.02976255989074707, 0.029797376632690428, 0.02977177619934082, 0.029867008209228517, 0.029808639526367187, 0.02974515151977539, 0.029740032196044923, 0.029821952819824218, 0.030018560409545897, 0.05799935913085937, 0.028490751266479493, 0.028519424438476562, 0.028368896484375, 0.028404735565185548, 0.02834022331237793, 0.028285951614379884, 0.02834739112854004, 0.028308479309082032, 0.028387327194213868, 0.028321792602539062, 0.028298240661621094, 0.028923904418945313, 0.031113216400146484, 0.030136320114135744, 0.02981990432739258, 0.029868032455444334, 0.029728832244873046, 0.02970515251159668, 0.029386751174926756, 0.0297523193359375, 0.029822975158691405, 0.02971238327026367, 0.02978508758544922, 0.02980352020263672, 0.02977484893798828, 0.029677600860595704, 0.029713375091552734, 0.029651968002319336, 0.02973798370361328, 0.029881343841552735, 0.029772800445556642, 0.02979532814025879, 0.029672447204589843, 0.029861888885498046, 0.029646848678588866, 0.029551616668701174, 0.029764608383178712, 0.02973695945739746, 0.029662208557128908, 0.02970419120788574, 0.029772800445556642, 0.02975436782836914, 0.02972876739501953, 0.02979430389404297, 0.029699071884155274, 0.02981888008117676, 0.029753376007080078, 0.02983011245727539, 0.029718528747558592, 0.029489152908325194, 0.029640703201293944, 0.029736991882324218, 0.02938057518005371, 0.029748224258422853, 0.029775871276855468, 0.02980659294128418, 0.029814783096313476, 0.029716512680053712, 0.029680608749389648, 0.02979635238647461, 0.029783039093017577, 0.02978816032409668, 0.06087680053710937, 0.029916160583496092, 0.030342144012451173, 0.029867008209228517, 0.029744159698486327, 0.029726688385009765, 0.02975846481323242, 0.029857791900634766, 0.0297891845703125, 0.029784063339233398, 0.02979020881652832, 0.029849599838256836, 0.029449216842651366, 0.02939084815979004, 0.029541376113891602, 0.029874176025390626, 0.029816831588745117, 0.029724672317504884, 0.029915136337280275, 0.029921279907226563, 0.029829120635986327, 0.029734912872314452, 0.02981888008117676, 0.02980147171020508, 0.029860864639282225, 0.029874176025390626, 0.029817855834960938, 0.029855743408203125, 0.029718528747558592, 0.029854719161987304, 0.029833215713500977, 0.02995199966430664, 0.02972979164123535, 0.02980147171020508, 0.029864959716796875, 0.030071807861328126, 0.029874208450317383, 0.02984239959716797, 0.02975027275085449, 0.02978508758544922, 0.029832191467285156, 0.029860864639282225, 0.02976255989074707, 0.029702144622802733, 0.029920255661010742, 0.02975948715209961, 0.02994790458679199, 0.02977382469177246, 0.02973388862609863, 0.029643775939941407, 0.029703168869018554, 0.029852672576904295, 0.029839359283447265, 0.02983628845214844, 0.029784063339233398, 0.029769792556762695, 0.029781951904296874, 0.02998784065246582, 0.02981068801879883, 0.02998784065246582, 0.0297574405670166, 0.029809696197509766, 0.029711328506469726, 0.05807513427734375, 0.02834329605102539, 0.028271615982055662, 0.02834329605102539, 0.028402687072753906, 0.028421119689941408, 0.028279808044433592, 0.028318719863891603, 0.028318719863891603, 0.02834022331237793, 0.02835148811340332, 0.02838118362426758, 0.02836172866821289, 0.028310527801513673, 0.02832793617248535, 0.02815795135498047, 0.028197887420654297, 0.02831667137145996, 0.028222463607788087, 0.028233728408813476, 0.028296192169189452, 0.028251136779785156, 0.028318719863891603, 0.02973798370361328, 0.030136320114135744, 0.029817855834960938, 0.029731840133666993, 0.02978099250793457, 0.02972979164123535, 0.029930496215820314, 0.029886463165283202, 0.029709312438964845, 0.029739007949829102, 0.029848575592041016, 0.02972774314880371, 0.02976870346069336, 0.029648895263671874, 0.029732864379882814, 0.029813760757446288, 0.029820928573608397, 0.029755392074584962, 0.029713407516479492, 0.029643775939941407, 0.02977996826171875, 0.029856767654418945, 0.029802528381347657, 0.029723615646362306, 0.029940736770629882, 0.029823007583618163, 0.029761503219604492, 0.02976972770690918, 0.029691904067993165, 0.02968783950805664, 0.02980246353149414, 0.029711360931396483, 0.029895679473876953, 0.029684736251831056, 0.029894655227661132, 0.029791231155395507, 0.029692928314208986, 0.029740032196044923, 0.029820928573608397, 0.030217216491699218, 0.06100377655029297, 0.029852672576904295, 0.02978508758544922, 0.029661184310913087, 0.029660160064697266, 0.02972368049621582, 0.029649887084960937, 0.02981171226501465, 0.02997555160522461, 0.02975846481323242, 0.02975846481323242, 0.029682687759399414, 0.029800447463989257, 0.02975129508972168, 0.030038015365600586, 0.02983526420593262, 0.02981888008117676, 0.029861888885498046, 0.029864959716796875, 0.029840383529663086, 0.030003200531005858, 0.0307906551361084, 0.03020697593688965, 0.029899776458740233, 0.02975846481323242, 0.02978508758544922, 0.029917184829711913, 0.02975129508972168, 0.029702144622802733, 0.02978713607788086, 0.02976972770690918, 0.02976665687561035, 0.029708288192749024, 0.029823999404907226, 0.029826047897338868, 0.02983628845214844, 0.03013222312927246, 0.03099545669555664, 0.030038015365600586, 0.029878271102905272, 0.029697023391723632, 0.02977791976928711, 0.029929471969604493, 0.029862911224365234, 0.029932544708251952, 0.029714431762695313, 0.02996940803527832, 0.02980659294128418, 0.02976051139831543, 0.02951372718811035, 0.029684736251831056, 0.029820928573608397, 0.02977996826171875, 0.029778976440429688, 0.029754335403442383, 0.029816831588745117, 0.02976563262939453, 0.029755456924438477, 0.02987615966796875, 0.029709312438964845, 0.029723743438720703, 0.029749151229858398, 0.02977382469177246, 0.06091059112548828, 0.03012403106689453, 0.0297574405670166, 0.029799423217773437, 0.02974515151977539, 0.02982809638977051, 0.029861888885498046, 0.029743104934692382, 0.02978201675415039, 0.029713407516479492, 0.029759519577026366, 0.029883359909057616, 0.02977484893798828, 0.02979532814025879, 0.029874176025390626, 0.029875200271606447, 0.029850624084472657, 0.02984351921081543, 0.02972358322143555, 0.029660160064697266, 0.02992742347717285, 0.02974515151977539, 0.02968780708312988, 0.029831167221069335, 0.029741056442260744, 0.029732864379882814, 0.029642751693725586, 0.029642751693725586, 0.029895679473876953, 0.029628416061401368, 0.029723648071289063, 0.029618175506591796, 0.029715456008911133, 0.029864959716796875, 0.029732864379882814, 0.02978201675415039, 0.029748224258422853, 0.029813760757446288, 0.02982707214355469, 0.0297574405670166, 0.029854719161987304, 0.02972876739501953, 0.029657087326049804, 0.029668352127075196, 0.029611007690429687, 0.029412351608276367, 0.02972876739501953, 0.029885440826416015, 0.029694976806640624, 0.02976870346069336, 0.029775871276855468, 0.02993152046203613, 0.02977894401550293, 0.029700096130371095, 0.02977382469177246, 0.029710336685180663, 0.029688831329345702, 0.029684736251831056, 0.029700096130371095, 0.02970419120788574, 0.029667327880859375, 0.029730815887451172, 0.029863935470581054, 0.060827648162841794, 0.02976563262939453, 0.029716480255126954, 0.029770751953125, 0.02973388862609863, 0.02977689552307129, 0.02975846481323242, 0.029849599838256836, 0.0298024959564209, 0.029850624084472657, 0.029688831329345702, 0.029731840133666993, 0.029740032196044923, 0.029731840133666993, 0.029859840393066408, 0.02975027275085449, 0.029707263946533204, 0.029718528747558592, 0.02973388862609863, 0.029772800445556642, 0.029853696823120116, 0.02976563262939453, 0.029611007690429687, 0.02977996826171875, 0.02979430389404297, 0.029807615280151366, 0.029343807220458984, 0.029495231628417967, 0.029894655227661132, 0.03171123123168945, 0.030046207427978516, 0.03002470397949219, 0.029706239700317383, 0.02974412727355957, 0.029679616928100585, 0.029911039352416992, 0.02976051139831543, 0.029823999404907226, 0.029944831848144532, 0.02991926383972168, 0.029790176391601562, 0.02977382469177246, 0.029692928314208986, 0.029726720809936522, 0.029773855209350587, 0.029737951278686524, 0.02981990432739258, 0.029906944274902345, 0.029869056701660155, 0.029907968521118163, 0.029767679214477538, 0.02978201675415039, 0.02968780708312988, 0.02976563262939453, 0.029872127532958984, 0.02996428871154785, 0.02977689552307129, 0.02996326446533203, 0.029944831848144532, 0.029889568328857422, 0.029706207275390625, 0.029854719161987304, 0.029902847290039062, 0.06100787353515625, 0.029770816802978516, 0.029812671661376952, 0.02975027275085449, 0.029656063079833983, 0.029666303634643554, 0.02972979164123535, 0.0297256965637207, 0.029929471969604493, 0.029775871276855468, 0.029690879821777344, 0.029693952560424806, 0.02958028793334961, 0.029640703201293944, 0.02977996826171875, 0.029739007949829102, 0.03000115203857422, 0.029897727966308595, 0.029840383529663086, 0.029814783096313476, 0.0297523193359375, 0.029708288192749024, 0.02975027275085449, 0.02981068801879883, 0.029732864379882814, 0.029838336944580077, 0.029718528747558592, 0.02970419120788574, 0.0297205753326416, 0.029740032196044923, 0.02974617576599121, 0.02969599914550781, 0.029757503509521485, 0.0298853759765625, 0.02979840087890625, 0.029700096130371095, 0.029752351760864257, 0.02980656051635742, 0.02973695945739746, 0.029663232803344725, 0.02972159957885742, 0.030027776718139648, 0.029971519470214845, 0.029904832839965822, 0.029829120635986327, 0.02974412727355957, 0.030027776718139648, 0.029853696823120116, 0.029837312698364257, 0.029840383529663086, 0.029850624084472657, 0.02986911964416504, 0.030047168731689455, 0.030050304412841795, 0.029815807342529296, 0.029775871276855468, 0.02998784065246582, 0.029890560150146486, 0.02975334358215332, 0.029883392333984377, 0.02983526420593262, 0.029847551345825195, 0.02976972770690918]",tokens/s,33.09513111557333,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.3b,EleutherAI/pythia-1.3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,,MB,1688.977408,2250.768384,0.0,1604.32128,1463.693312,s,10,1.2614907455444335,0.12614907455444335,0.001156305474696835,0.12596041870117186,0.12672372131347656,0.12802366485595704,0.12906361968994143,"[0.1293236083984375, 0.12533795166015624, 0.12527750396728515, 0.1264024658203125, 0.12550204467773438, 0.12507218933105468, 0.1257669143676758, 0.12615392303466796, 0.12621929931640624, 0.12643484497070312]",tokens/s,2029.3450499275416,kWh,1.4795928945144019e-06,8.107423014348568e-07,6.482848936275459e-06,8.773184132224718e-06,tokens/kWh,29179827.545131337,MB,1688.977408,2250.768384,0.0,1604.32128,1560.975872,s,10,72.8006865234375,7.280068652343751,0.00707557452467299,7.2794865722656255,7.288760400390625,7.290637524414063,7.292139223632812,"[7.2925146484375, 7.2867998046875, 7.28834326171875, 7.272900390625, 7.28120458984375, 7.28177783203125, 7.2702080078125, 7.2777685546875, 7.277201171875, 7.27196826171875]",tokens/s,8.653764546535935,kWh,8.591771873335045e-05,4.70891264273655e-05,0.0003703246191761246,0.0005033314643368406,tokens/kWh,125166.02768516574,,s,629,73.8150656280517,0.1173530455135958,0.015000349665490152,0.11545600128173829,0.11595755310058595,0.11627356262207031,0.24130564147949218,"[0.1175910415649414, 0.11764224243164062, 0.11673804473876953, 0.11585126495361328, 0.115281982421875, 0.11545388793945313, 0.11590860748291015, 0.11528498840332031, 0.11539968109130859, 0.11538841247558594, 0.11548159790039063, 0.11523072052001954, 0.11521842956542969, 0.11532492828369141, 0.11577958679199218, 0.11560755157470703, 0.1152696304321289, 0.11566079711914062, 0.1159925765991211, 0.11540889739990234, 0.11546623992919922, 0.11522150421142578, 0.11538944244384766, 0.1153617935180664, 0.11544371032714844, 0.1166714859008789, 0.11574886322021484, 0.1154672622680664, 0.11605299377441407, 0.11584102630615234, 0.1156485137939453, 0.11544882965087891, 0.11554099273681641, 0.115557373046875, 0.11551026916503906, 0.1155788803100586, 0.115725341796875, 0.11555939483642579, 0.11551129913330078, 0.11544371032714844, 0.11543244934082031, 0.11539968109130859, 0.11540684509277344, 0.11523072052001954, 0.11638988494873047, 0.11598438262939453, 0.11537510681152344, 0.11538534545898438, 0.11558604431152343, 0.11559219360351562, 0.11591474914550781, 0.11588198089599609, 0.1159362564086914, 0.11570175933837891, 0.11595673370361329, 0.11578368377685547, 0.11646463775634766, 0.11617485046386719, 0.11598336029052735, 0.11553279876708984, 0.11578470611572265, 0.11579801940917969, 0.24151040649414063, 0.11573862457275391, 0.11605094146728516, 0.11689881896972656, 0.1161523208618164, 0.1156648941040039, 0.11554099273681641, 0.11535564422607422, 0.11528498840332031, 0.11527065277099609, 0.11566387176513672, 0.11533516693115234, 0.11576012420654297, 0.11564749145507812, 0.1155051498413086, 0.11542221069335938, 0.11543961334228516, 0.11525529479980469, 0.11523993682861328, 0.11541913604736329, 0.1155225601196289, 0.1157734375, 0.11563929748535157, 0.11553587341308594, 0.11531571197509766, 0.115378173828125, 0.11524201965332032, 0.11551340484619141, 0.11532073974609375, 0.11577961730957032, 0.11592704010009766, 0.11556451416015626, 0.1154549789428711, 0.11527680206298828, 0.11526656341552734, 0.11538739013671875, 0.11530854034423828, 0.11538432312011719, 0.11546214294433593, 0.11541401672363281, 0.11528192138671875, 0.11616563415527344, 0.11571199798583984, 0.11578880310058594, 0.11551747131347656, 0.11540067291259766, 0.11685273742675781, 0.11557068634033203, 0.11726950073242187, 0.1159393310546875, 0.11543148803710937, 0.11552044677734374, 0.1161891860961914, 0.11548876953125, 0.11572940826416016, 0.1157396469116211, 0.11657421112060547, 0.11594854736328125, 0.11598851013183593, 0.11593417358398438, 0.11551846313476563, 0.11548365020751954, 0.11548569488525391, 0.2411530303955078, 0.11556454467773437, 0.11577139282226563, 0.11626496124267578, 0.11560652923583985, 0.11565161895751953, 0.11566384124755859, 0.11581747436523437, 0.1154672622680664, 0.11527474975585937, 0.11536998748779297, 0.11562598419189453, 0.11528089904785156, 0.11566902160644531, 0.11589116668701172, 0.11617894744873047, 0.1157201919555664, 0.11589734649658204, 0.11571302032470702, 0.11588607788085938, 0.11542323303222657, 0.11556966400146484, 0.1156833267211914, 0.11643392181396485, 0.11568434906005859, 0.11659468841552735, 0.11596083068847657, 0.11616665649414062, 0.11567922973632813, 0.11553794860839844, 0.11543036651611328, 0.11538636779785157, 0.11580620574951171, 0.11554918670654298, 0.11579296112060547, 0.1156412811279297, 0.11582361602783203, 0.11581132507324218, 0.11555328369140624, 0.11571507263183593, 0.11545600128173829, 0.11533926391601562, 0.1156147232055664, 0.1153966064453125, 0.1154119644165039, 0.11549286651611328, 0.11582566070556641, 0.11649638366699219, 0.1159516830444336, 0.11595462036132813, 0.11600281524658203, 0.11591474914550781, 0.11610931396484375, 0.11565261077880859, 0.1153290252685547, 0.11547238159179687, 0.1153290252685547, 0.115346435546875, 0.11534438323974609, 0.11529523468017579, 0.115378173828125, 0.11543551635742187, 0.11540377807617187, 0.24315084838867188, 0.11575193786621094, 0.11506790161132813, 0.11524915313720703, 0.1155962905883789, 0.11531366729736328, 0.11553177642822265, 0.11558297729492187, 0.11519385528564453, 0.11537305450439453, 0.11545811462402343, 0.11599967956542968, 0.11572838592529297, 0.1153966064453125, 0.11536077117919921, 0.11558092498779297, 0.1153617935180664, 0.1152911376953125, 0.11529011535644532, 0.11535564422607422, 0.11525939178466797, 0.1152143325805664, 0.11515494537353516, 0.11549696350097656, 0.11525017547607422, 0.11560550689697266, 0.11576217651367188, 0.11544268798828125, 0.11537203216552734, 0.11532288360595704, 0.11530239868164062, 0.11551334381103516, 0.115162109375, 0.11524813079833984, 0.1151436767578125, 0.11530035400390624, 0.11520614624023437, 0.11535871887207032, 0.11520716857910156, 0.11560345458984375, 0.11539968109130859, 0.11531676483154298, 0.11529417419433594, 0.1153966064453125, 0.11623017883300782, 0.11542422485351563, 0.11526451110839844, 0.11549388885498046, 0.11539762878417968, 0.11577855682373046, 0.1153955841064453, 0.11553279876708984, 0.11524403381347656, 0.11579084777832031, 0.11539968109130859, 0.11569152069091797, 0.11539353942871093, 0.11553997039794922, 0.11545600128173829, 0.11532492828369141, 0.1152696304321289, 0.11538841247558594, 0.1153433609008789, 0.241364990234375, 0.11547853088378907, 0.11533721923828125, 0.11539049530029297, 0.11531874847412109, 0.11551129913330078, 0.1152542724609375, 0.11560758209228515, 0.11542422485351563, 0.1155389404296875, 0.11542118072509766, 0.11545804595947265, 0.1156178207397461, 0.115463134765625, 0.11520716857910156, 0.11564339447021485, 0.11541913604736329, 0.11587276458740234, 0.1153955841064453, 0.11544882965087891, 0.11543654632568359, 0.11536793518066406, 0.11598540496826172, 0.11562393951416015, 0.11578470611572265, 0.11597004699707031, 0.11561062622070313, 0.11569459533691406, 0.11571302032470702, 0.11590144348144531, 0.11557068634033203, 0.11549900817871094, 0.11544678497314453, 0.11544268798828125, 0.11540889739990234, 0.11547443389892578, 0.11561574554443359, 0.11543449401855468, 0.11550624084472656, 0.11566381072998047, 0.11555225372314454, 0.11549286651611328, 0.11550822448730469, 0.11547955322265625, 0.1153064956665039, 0.11546623992919922, 0.11551744079589844, 0.11544371032714844, 0.11622195434570312, 0.11589017486572266, 0.11552665710449218, 0.1153986587524414, 0.11532390594482422, 0.11578470611572265, 0.11576934051513672, 0.11560550689697266, 0.11554713439941407, 0.11664281463623047, 0.11574784088134765, 0.11553997039794922, 0.11533824157714843, 0.11548569488525391, 0.11580518341064452, 0.2409891815185547, 0.11542425537109376, 0.11530342102050781, 0.11544166564941406, 0.115346435546875, 0.11540684509277344, 0.11648614501953125, 0.1165475845336914, 0.11569561767578125, 0.11536281585693359, 0.11529318237304688, 0.11541401672363281, 0.11542221069335938, 0.11558809661865234, 0.11539456176757812, 0.11545702362060548, 0.11533209228515626, 0.11550822448730469, 0.11541913604736329, 0.11535667419433594, 0.11532185363769532, 0.11544985961914063, 0.11528300476074219, 0.11542829132080078, 0.11535564422607422, 0.11552665710449218, 0.11533004760742188, 0.11546419525146484, 0.11538022613525391, 0.11521539306640625, 0.1153545913696289, 0.11576934051513672, 0.11584614562988281, 0.11546214294433593, 0.11551232147216797, 0.11547647857666016, 0.11558092498779297, 0.1154796142578125, 0.11671033477783203, 0.11560243225097656, 0.11540480041503906, 0.11559120178222657, 0.11558499145507813, 0.11560243225097656, 0.11611443328857422, 0.11554815673828125, 0.11593113708496093, 0.11560857391357422, 0.11550003051757812, 0.1153433609008789, 0.11553488159179688, 0.11636220550537109, 0.11614924621582032, 0.11589631652832032, 0.11544371032714844, 0.11543961334228516, 0.11590144348144531, 0.11554303741455078, 0.11543961334228516, 0.11548467254638672, 0.1157918701171875, 0.11545804595947265, 0.11548159790039063, 0.24169778442382814, 0.11536077117919921, 0.11515801239013672, 0.1152573471069336, 0.11527884674072265, 0.11527986907958984, 0.115346435546875, 0.11558502197265624, 0.1152471694946289, 0.11550918579101563, 0.11519078063964844, 0.11538329315185547, 0.11518669128417969, 0.11536281585693359, 0.11518163299560547, 0.11539347076416015, 0.11518678283691407, 0.11522755432128906, 0.11527577972412109, 0.11537920379638672, 0.11528710174560547, 0.11573241424560547, 0.11531775665283203, 0.11599462127685548, 0.11536895751953125, 0.11559219360351562, 0.1152174072265625, 0.11544473266601563, 0.11515187072753906, 0.11589734649658204, 0.11575091552734375, 0.11540377807617187, 0.11524508666992188, 0.11525116729736327, 0.1152573471069336, 0.11555532836914062, 0.1153259506225586, 0.1153617935180664, 0.1152542724609375, 0.11547135925292969, 0.11532083129882813, 0.11537305450439453, 0.11539968109130859, 0.11537612915039062, 0.11517235565185546, 0.11529216003417969, 0.11535257720947266, 0.11539046478271485, 0.11532390594482422, 0.11542940521240234, 0.11545801544189453, 0.115557373046875, 0.11530239868164062, 0.11545193481445312, 0.11529827117919922, 0.11565363311767578, 0.11541299438476563, 0.11608678436279297, 0.11551641845703126, 0.11544064331054688, 0.11531980895996094, 0.11546214294433593, 0.11526348876953126, 0.2421370849609375, 0.11553485107421875, 0.11565363311767578, 0.11698073577880859, 0.11526451110839844, 0.11523788452148437, 0.11507615661621094, 0.11531769561767578, 0.11525939178466797, 0.11527884674072265, 0.11663155364990234, 0.11554815673828125, 0.11534745788574219, 0.11536281585693359, 0.11533106994628907, 0.11543449401855468, 0.11581439971923828, 0.11606221008300781, 0.11575091552734375, 0.11566182708740234, 0.1154867172241211, 0.1154119644165039, 0.11538432312011719, 0.11553075408935547, 0.11544985961914063, 0.1154119644165039, 0.11534540557861328, 0.11543142700195312, 0.11537612915039062, 0.11558502197265624, 0.11556352233886719, 0.1155072021484375, 0.11545394897460938, 0.11533824157714843, 0.11553485107421875, 0.11541094207763672, 0.1153597412109375, 0.11537407684326172, 0.11529216003417969, 0.11547955322265625, 0.11540787506103516, 0.11534950256347656, 0.11540275573730469, 0.11537305450439453, 0.11569664001464844, 0.11560038757324219, 0.11557785797119141, 0.11525635528564453, 0.115210205078125, 0.11607859039306641, 0.11538022613525391, 0.11546419525146484, 0.11593727874755859, 0.11551436614990235, 0.11531263732910156, 0.11544576263427735, 0.11548569488525391, 0.11550924682617188, 0.11583999633789062, 0.11551641845703126, 0.11535871887207032, 0.11538739013671875, 0.11543142700195312, 0.24210124206542968, 0.11537920379638672, 0.11549593353271484, 0.11537612915039062, 0.11512525177001953, 0.11541709136962891, 0.1153280029296875, 0.11576729583740235, 0.115378173828125, 0.11518669128417969, 0.11519593811035156, 0.115463134765625, 0.11528498840332031, 0.11549491119384765, 0.11540172576904296, 0.11594445037841797, 0.11559526062011719, 0.116279296875, 0.11579698944091797, 0.11580210876464844, 0.11537203216552734, 0.11540991973876953, 0.11529318237304688, 0.11539456176757812, 0.1153597412109375, 0.11614412689208985, 0.11539968109130859, 0.11535155487060547, 0.11532492828369141, 0.11529523468017579, 0.11584108734130859, 0.1154241943359375, 0.11634585571289062, 0.11548159790039063, 0.11571302032470702, 0.1153219223022461, 0.1154579849243164, 0.11549388885498046, 0.1154303970336914, 0.11558297729492187, 0.11536383819580077, 0.11582975769042969, 0.11551436614990235, 0.11530035400390624, 0.11534233856201172, 0.11510886383056641, 0.11527168273925781, 0.11539968109130859, 0.11526860809326171, 0.1152573471069336, 0.11550822448730469, 0.11615952301025391, 0.1159669418334961, 0.11542835235595703, 0.11572223663330078, 0.11554918670654298, 0.11545906829833984, 0.11568742370605468, 0.1153812484741211, 0.11539762878417968, 0.11535155487060547, 0.1154303970336914, 0.11551129913330078, 0.24231832885742188, 0.11538432312011719, 0.1153259506225586, 0.11540480041503906, 0.11546419525146484, 0.11534745788574219, 0.11531878662109375, 0.11547138977050782, 0.115283935546875, 0.11556147003173828, 0.11574169921875, 0.11635916900634766, 0.11543142700195312, 0.11534540557861328, 0.11524813079833984, 0.1152911376953125, 0.11551436614990235, 0.11536589050292968, 0.11532083129882813, 0.11543247985839844, 0.11533615875244141, 0.11537407684326172, 0.11525631713867188, 0.11534438323974609, 0.11512217712402344, 0.11535769653320313, 0.11603763580322266, 0.11543449401855468, 0.1153986587524414, 0.11541506958007812, 0.11541094207763672, 0.11551331329345703, 0.11517440032958984, 0.11537715148925781, 0.11538534545898438, 0.11531263732910156, 0.11526758575439452, 0.11542835235595703, 0.11535052490234375, 0.11555430603027343, 0.11530035400390624, 0.11539046478271485, 0.11545398712158203, 0.1154815673828125, 0.11535667419433594, 0.11539250946044922, 0.1153812484741211, 0.1153986587524414, 0.1155051498413086, 0.11556665802001953, 0.11569554901123047, 0.11560447692871094, 0.11522866821289063, 0.11546419525146484, 0.11527577972412109, 0.11578880310058594, 0.11543142700195312, 0.1154119644165039, 0.115346435546875, 0.11526553344726563, 0.11522560119628907, 0.11540480041503906, 0.11531673431396484]",tokens/s,8.5212956819612,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-1.8B,Qwen/Qwen1.5-1.8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1868.201984,3349.676032,0.0,2703.228928,2578.238464,s,10,1.410495346069336,0.1410495346069336,0.0017689689177857657,0.14056432342529296,0.14309543151855467,0.14402269134521484,0.14476449920654297,"[0.144949951171875, 0.1412518768310547, 0.1397279357910156, 0.13956182861328126, 0.13982972717285155, 0.13892410278320313, 0.13987677001953125, 0.14288937377929686, 0.1413212127685547, 0.14216256713867187]",tokens/s,1814.9652227737006,kWh,1.6439394082552122e-06,9.00797525271931e-07,6.874183740083411e-06,9.418920673610555e-06,tokens/kWh,27179334.96533712,MB,1868.201984,3349.676032,0.0,2703.228928,2667.098624,s,10,83.44500195312501,8.3445001953125,0.03302115511867202,8.3336259765625,8.37593193359375,8.403280419921876,8.425159208984375,"[8.33203515625, 8.335076171875, 8.333888671875, 8.3144501953125, 8.32368359375, 8.3150146484375, 8.3698544921875, 8.43062890625, 8.3570068359375, 8.33336328125]",tokens/s,7.549882979856609,kWh,9.832901556366757e-05,5.38916025818177e-05,0.0003962753054459165,0.0005484959235914018,tokens/kWh,114859.55918777513,,s,629,84.57831109619147,0.13446472352335676,0.016756456539684012,0.13199974060058595,0.1339588592529297,0.13428590698242188,0.27203026611328124,"[0.131915771484375, 0.13208883666992188, 0.13340570068359375, 0.13261517333984374, 0.1320437774658203, 0.13189222717285157, 0.13191372680664062, 0.13180621337890625, 0.13191270446777345, 0.1318174743652344, 0.13188607788085938, 0.13165977478027344, 0.13220761108398438, 0.13279539489746095, 0.132642822265625, 0.1319086151123047, 0.13183590698242187, 0.13183692932128907, 0.13191372680664062, 0.1319710693359375, 0.13185536193847655, 0.13166387939453125, 0.13191888427734375, 0.13172015380859375, 0.1317058563232422, 0.13175704956054687, 0.1318830108642578, 0.13170687866210937, 0.1325506591796875, 0.13195468139648436, 0.13218412780761718, 0.13190444946289062, 0.1321625671386719, 0.13238067626953126, 0.13378150939941405, 0.13233255004882813, 0.13199667358398437, 0.13365965270996094, 0.13226495361328125, 0.13205401611328124, 0.13234483337402345, 0.13211033630371094, 0.13187481689453126, 0.13180210876464843, 0.13335859680175782, 0.13234176635742187, 0.13278311157226563, 0.13272679138183593, 0.1324042205810547, 0.13250457763671875, 0.13250662231445312, 0.13336883544921874, 0.13242880249023437, 0.13245030212402345, 0.13245234680175783, 0.13265408325195313, 0.1332162628173828, 0.13244825744628907, 0.1322782745361328, 0.13222093200683593, 0.13194239807128907, 0.1318461456298828, 0.2743060607910156, 0.13452493286132813, 0.13292338562011718, 0.13269094848632812, 0.13221580505371094, 0.13191372680664062, 0.13204888916015625, 0.1319393310546875, 0.13207244873046875, 0.13193624877929688, 0.1332346954345703, 0.13184307861328126, 0.13165977478027344, 0.13174169921875, 0.1319331817626953, 0.13257011413574218, 0.13245234680175783, 0.13182669067382813, 0.13220249938964843, 0.1319772186279297, 0.13190451049804688, 0.13176934814453126, 0.13176832580566405, 0.13202943420410157, 0.131842041015625, 0.13187992858886718, 0.13245132446289062, 0.1319014434814453, 0.13174374389648438, 0.13188096618652342, 0.1329971160888672, 0.1325875244140625, 0.1321922607421875, 0.13208473205566407, 0.1319751739501953, 0.13210829162597656, 0.132173828125, 0.1320202178955078, 0.13244108581542968, 0.1323520050048828, 0.13193624877929688, 0.1318707275390625, 0.13215335083007812, 0.1319833526611328, 0.13199871826171874, 0.13258546447753905, 0.1363056640625, 0.13410917663574218, 0.132347900390625, 0.13224557495117187, 0.13346809387207031, 0.1320499267578125, 0.1319823303222656, 0.13196595764160157, 0.13193113708496093, 0.13199974060058595, 0.13258444213867188, 0.13302787780761718, 0.13199562072753906, 0.13191885375976561, 0.13196493530273437, 0.1318461456298828, 0.13196800231933595, 0.27239935302734375, 0.1318348846435547, 0.13182975769042968, 0.13207449340820313, 0.13185638427734375, 0.1317724151611328, 0.13244415283203126, 0.13195263671875, 0.1320099792480469, 0.13171302795410156, 0.13188505554199217, 0.13182054138183594, 0.13208575439453124, 0.1338101806640625, 0.13198439025878905, 0.13201919555664063, 0.13190348815917968, 0.13199871826171874, 0.13165977478027344, 0.13169357299804688, 0.13205708312988282, 0.13223014831542967, 0.13255679321289063, 0.13336166381835937, 0.1323274230957031, 0.1321175079345703, 0.13262745666503906, 0.13243597412109376, 0.13281074523925782, 0.13219737243652344, 0.13270425415039064, 0.1319403839111328, 0.13225782775878905, 0.13328172302246094, 0.13259266662597657, 0.13259056091308594, 0.13216152954101562, 0.1320622100830078, 0.13242469787597655, 0.1341696014404297, 0.13195263671875, 0.13167718505859374, 0.13170278930664062, 0.13178675842285156, 0.13180108642578126, 0.13196902465820312, 0.13176319885253907, 0.1331517791748047, 0.1319188232421875, 0.13173248291015624, 0.13183795166015624, 0.13228440856933593, 0.1320273895263672, 0.13176934814453126, 0.13183897399902345, 0.13179600524902343, 0.13171708679199218, 0.13180108642578126, 0.13352243041992187, 0.1350635528564453, 0.13252915954589845, 0.13388493347167968, 0.1324451904296875, 0.2718658447265625, 0.1323663330078125, 0.1318041534423828, 0.1317375946044922, 0.13224755859375, 0.13172837829589842, 0.13183692932128907, 0.13180825805664062, 0.13196493530273437, 0.13201612854003905, 0.13178060913085937, 0.13186866760253907, 0.13176422119140624, 0.13189222717285157, 0.13185331726074218, 0.13174476623535156, 0.13189631652832032, 0.1319833526611328, 0.13183180236816405, 0.13173965454101563, 0.13178880310058594, 0.13191474914550783, 0.13178163146972657, 0.13190553283691406, 0.132674560546875, 0.13195161437988281, 0.13180313110351563, 0.13180108642578126, 0.13176524353027344, 0.13174578857421876, 0.1317232666015625, 0.13185740661621093, 0.1315359344482422, 0.13187271118164062, 0.13189427185058594, 0.13176217651367186, 0.13183999633789062, 0.131842041015625, 0.13198028564453124, 0.1318461456298828, 0.13185740661621093, 0.13189222717285157, 0.1318656005859375, 0.13177548217773438, 0.13433549499511718, 0.1318778839111328, 0.13178163146972657, 0.1320099792480469, 0.13189529418945312, 0.13173043823242186, 0.13199974060058595, 0.1317908477783203, 0.13167718505859374, 0.1318707580566406, 0.1319085693359375, 0.1320079345703125, 0.1317375946044922, 0.1329776611328125, 0.13234278869628907, 0.13224960327148438, 0.13266841125488282, 0.13238578796386719, 0.13234994506835937, 0.2727505798339844, 0.13219532775878906, 0.1322977294921875, 0.1321318359375, 0.13251072692871094, 0.13448908996582032, 0.13275852966308593, 0.1344153594970703, 0.13294796752929688, 0.1335828552246094, 0.13194137573242187, 0.1318604736328125, 0.13178469848632812, 0.13185023498535156, 0.13183282470703125, 0.13243084716796874, 0.13204582214355468, 0.13287628173828125, 0.13193522644042968, 0.13247999572753907, 0.13198028564453124, 0.13178880310058594, 0.1318225860595703, 0.13189529418945312, 0.1317969970703125, 0.1317898254394531, 0.13174783325195313, 0.13180825805664062, 0.1317611541748047, 0.13181951904296876, 0.13173043823242186, 0.1318901824951172, 0.1316822967529297, 0.1317908477783203, 0.13169664001464843, 0.1318656005859375, 0.1333289031982422, 0.1319536590576172, 0.13187890625, 0.13186457824707032, 0.13181951904296876, 0.1317969970703125, 0.1317580871582031, 0.13171200561523438, 0.13176934814453126, 0.13164851379394532, 0.13176524353027344, 0.13194239807128907, 0.13188812255859375, 0.13191270446777345, 0.1322117156982422, 0.13192909240722656, 0.13183999633789062, 0.1317693786621094, 0.13185020446777343, 0.13187583923339843, 0.1317611541748047, 0.13403237915039062, 0.13205503845214844, 0.13186151123046874, 0.13183795166015624, 0.13185536193847655, 0.13172531127929688, 0.2711296081542969, 0.13194137573242187, 0.131852294921875, 0.13176217651367186, 0.13171609497070313, 0.13177548217773438, 0.13163827514648438, 0.1318164520263672, 0.1318707275390625, 0.13187277221679689, 0.13203762817382814, 0.13187174987792968, 0.13186968994140624, 0.13186866760253907, 0.13186972045898437, 0.13196592712402344, 0.1320099792480469, 0.1333217315673828, 0.13214207458496094, 0.13328793334960937, 0.13255679321289063, 0.13287628173828125, 0.1319505920410156, 0.13182566833496093, 0.13165158081054687, 0.13177650451660156, 0.13287423706054688, 0.13261311340332033, 0.13195878601074218, 0.1316505584716797, 0.1316495361328125, 0.13174989318847657, 0.13171302795410156, 0.13187686157226564, 0.13190553283691406, 0.13175296020507812, 0.13174989318847657, 0.13191474914550783, 0.13393820190429687, 0.13187989807128905, 0.13174681091308593, 0.1316864013671875, 0.13167205810546875, 0.13172019958496095, 0.13174783325195313, 0.1315952606201172, 0.13168435668945314, 0.13165362548828125, 0.13327769470214842, 0.13195161437988281, 0.1319024963378906, 0.1318594207763672, 0.13180313110351563, 0.13170381164550782, 0.13171507263183593, 0.13190451049804688, 0.13232640075683594, 0.13192294311523436, 0.13172940063476563, 0.1317406768798828, 0.13174578857421876, 0.13170381164550782, 0.13169561767578125, 0.2720942077636719, 0.1323653106689453, 0.1319772186279297, 0.13174887084960937, 0.1318461456298828, 0.13169049072265626, 0.13180825805664062, 0.13170994567871094, 0.13199974060058595, 0.13190348815917968, 0.13172940063476563, 0.13172735595703125, 0.13171612548828124, 0.13159523010253907, 0.13188914489746092, 0.13179904174804688, 0.13198130798339844, 0.13195578002929687, 0.13164845275878906, 0.13183590698242187, 0.13194752502441406, 0.13176524353027344, 0.13180621337890625, 0.13325619506835937, 0.1319086456298828, 0.13182666015625, 0.13163929748535155, 0.13185125732421876, 0.1320396728515625, 0.13438668823242186, 0.13385317993164061, 0.13466111755371094, 0.13423411560058593, 0.133897216796875, 0.1338357696533203, 0.1337620849609375, 0.13375177001953126, 0.1338419189453125, 0.1338470458984375, 0.13377127075195314, 0.13373440551757812, 0.1337507781982422, 0.13362892150878905, 0.13362687683105468, 0.133718017578125, 0.1337139129638672, 0.13433139038085937, 0.1335930938720703, 0.13229158020019532, 0.13321932983398438, 0.1331998748779297, 0.1333289031982422, 0.13277183532714842, 0.13196185302734376, 0.13300531005859376, 0.13356031799316406, 0.13304013061523437, 0.13298892211914062, 0.1336432647705078, 0.13445120239257813, 0.13455258178710938, 0.1344040985107422, 0.13423922729492188, 0.27732583618164064, 0.1339084777832031, 0.13382144165039062, 0.1346867218017578, 0.13416653442382812, 0.13392076110839843, 0.13295001220703126, 0.13354495239257813, 0.13410508728027343, 0.1338173370361328, 0.13408869934082032, 0.1340200958251953, 0.1339043884277344, 0.13345074462890624, 0.1340712890625, 0.133653564453125, 0.1348218231201172, 0.13366886901855468, 0.13357466125488282, 0.1335029754638672, 0.1333729248046875, 0.13342617797851564, 0.1340518341064453, 0.1341563262939453, 0.13418496704101562, 0.13429244995117187, 0.13391769409179688, 0.13419314575195312, 0.13331149291992186, 0.13398121643066407, 0.1340333709716797, 0.13403135681152345, 0.13413682556152343, 0.13416447448730467, 0.1341071319580078, 0.13356748962402343, 0.13255885314941407, 0.1329449005126953, 0.13408767700195312, 0.13382655334472657, 0.13446556091308592, 0.134451171875, 0.1342740478515625, 0.13432524108886718, 0.13397196960449217, 0.133928955078125, 0.13388800048828126, 0.13408154296875, 0.1339463653564453, 0.13414707946777343, 0.1341204528808594, 0.1346938934326172, 0.13456895446777345, 0.13381427001953125, 0.13382553100585937, 0.13402316284179688, 0.13395558166503907, 0.13448602294921874, 0.13234994506835937, 0.13215437316894532, 0.13213081359863282, 0.13221376037597657, 0.13244825744628907, 0.27383807373046876, 0.13208677673339844, 0.1318748779296875, 0.13186143493652344, 0.1319342041015625, 0.1316986846923828, 0.13210009765625, 0.13194956970214844, 0.1318338623046875, 0.13179904174804688, 0.13189427185058594, 0.1324390411376953, 0.1331261444091797, 0.13414399719238282, 0.13440205383300782, 0.13397196960449217, 0.13388394165039064, 0.13371900939941406, 0.13379379272460937, 0.1336944580078125, 0.13435395812988282, 0.133012451171875, 0.1330391082763672, 0.13337496948242186, 0.13211033630371094, 0.1332316131591797, 0.1331374053955078, 0.1329827880859375, 0.13283839416503906, 0.13333401489257812, 0.1330401611328125, 0.1329510040283203, 0.13266636657714845, 0.132642822265625, 0.1325813751220703, 0.1328547821044922, 0.13313536071777343, 0.13244313049316406, 0.13259365844726562, 0.13253018188476562, 0.1329459228515625, 0.13234585571289062, 0.13299200439453124, 0.13250764465332032, 0.13244210815429688, 0.13175296020507812, 0.1317580871582031, 0.1318338623046875, 0.1318666229248047, 0.1317580871582031, 0.13186358642578125, 0.13192803955078125, 0.13181849670410156, 0.13414501953125, 0.13427609252929687, 0.13285580444335937, 0.13174476623535156, 0.1318656005859375, 0.13187277221679689, 0.13214002990722656, 0.13324185180664064, 0.13186151123046874, 0.13166592407226563, 0.27445761108398437, 0.13168025207519532, 0.1318492126464844, 0.13196595764160157, 0.13203353881835939, 0.13289573669433594, 0.13374771118164064, 0.13365350341796875, 0.13377433776855469, 0.13357772827148437, 0.13372621154785155, 0.1335900115966797, 0.1336494140625, 0.13360946655273437, 0.1339095001220703, 0.13365863037109374, 0.13385317993164061, 0.1333053436279297, 0.13203660583496094, 0.13213388061523437, 0.13183897399902345, 0.132063232421875, 0.13191372680664062, 0.13187992858886718, 0.13165875244140626, 0.1317560272216797, 0.13234994506835937, 0.13201510620117188, 0.13194342041015625, 0.13241856384277345, 0.13182566833496093, 0.1321871337890625, 0.13201715087890625, 0.13212979125976562, 0.13185331726074218, 0.13186764526367187, 0.1317969970703125, 0.13172940063476563, 0.13185433959960938, 0.1317959747314453, 0.13192909240722656, 0.1318144073486328, 0.1319772186279297, 0.13174783325195313, 0.13176422119140624, 0.13171916198730468, 0.13182464599609375, 0.1319086151123047, 0.13198745727539063, 0.13206431579589845, 0.13207244873046875, 0.1318757781982422, 0.13179391479492186, 0.13187379455566406, 0.13178060913085937, 0.1318113250732422, 0.13175196838378905, 0.13170889282226564, 0.13177754211425782, 0.13175091552734375, 0.1317611541748047, 0.13186968994140624, 0.1329213409423828]",tokens/s,7.43689477654188,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-6B-nl,Salesforce/codegen-6B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1400.639488,6094.848,0.0,5448.400896,5215.942144,s,10,5.915999877929687,0.5915999877929687,0.0028828720813889874,0.5905971069335938,0.5921576904296875,0.5961826965332031,0.5994027014160156,"[0.6002077026367187, 0.5907606201171876, 0.5909608764648437, 0.5905933227539063, 0.5902119140625, 0.5906008911132813, 0.5904852294921875, 0.5912632446289062, 0.5904329223632813, 0.590483154296875]",tokens/s,432.7248229923689,kWh,6.983380516370138e-06,3.826209227811299e-06,3.1648620090131334e-05,4.2458209834312766e-05,tokens/kWh,6029458.166017933,MB,1400.967168,6094.848,0.0,5448.400896,5405.644288,s,10,341.33091015625,34.133091015625,0.0089451948085196,34.130179687500004,34.14430546875,34.149687890625,34.153993828125,"[34.13034765625, 34.1351484375, 34.13001171875, 34.128140625, 34.12757421875, 34.12398828125, 34.13193359375, 34.1255859375, 34.143109375, 34.1550703125]",tokens/s,1.8457162280193342,kWh,0.00040300285582741096,0.00022088092240917615,0.0018324814267682385,0.002456365205004826,tokens/kWh,25647.65201511484,,s,629,346.1052627563478,0.5502468406301234,0.07016038395822202,0.5417257080078125,0.5423982788085937,0.54271630859375,1.1323166894531251,"[0.5417594604492187, 0.5414471435546875, 0.5411215209960938, 0.5414297485351562, 0.5414563598632812, 0.541576171875, 0.5412239379882813, 0.5414502563476562, 0.5416427612304687, 0.54096484375, 0.54148095703125, 0.5411840209960938, 0.5414339599609375, 0.5409760131835938, 0.5409024047851563, 0.5412208862304687, 0.5413017578125, 0.5412515869140625, 0.5410549926757813, 0.5412177734375, 0.5411133422851563, 0.54131201171875, 0.5422049560546875, 0.5416530151367187, 0.54127001953125, 0.5410795288085938, 0.5415239868164062, 0.5422069702148438, 0.5421731567382813, 0.5426155395507812, 0.542755859375, 0.541576171875, 0.5415362548828125, 0.5411993408203125, 0.5416642456054688, 0.541591552734375, 0.541427734375, 0.5414830322265625, 0.5413529663085938, 0.5414666137695312, 0.5418700561523437, 0.5421414184570312, 0.5417953491210937, 0.5417728271484376, 0.5417267456054687, 0.5425919799804687, 0.5420779418945313, 0.5423953857421875, 0.542466064453125, 0.5427732543945313, 0.5427783813476562, 0.5423319091796875, 0.5419212646484375, 0.5422335815429687, 0.5419622192382813, 0.542166015625, 0.542202880859375, 0.5419612426757813, 0.541928466796875, 0.5428971557617187, 0.5427886352539063, 0.542540771484375, 1.132921875, 0.5414379272460937, 0.541675537109375, 0.5412976684570312, 0.5413980102539062, 0.541432861328125, 0.5411819458007813, 0.5411235961914063, 0.5415782470703125, 0.5412136840820313, 0.5412894897460937, 0.5412925415039063, 0.5418301391601562, 0.541549560546875, 0.5421035766601563, 0.5417698974609375, 0.5415985717773437, 0.5415782470703125, 0.5415618286132813, 0.5418792724609375, 0.5416151123046875, 0.5421527099609375, 0.5418721313476562, 0.5414307861328125, 0.5414574584960937, 0.5414255981445313, 0.5418076171875, 0.5416806640625, 0.5416058959960938, 0.5413232421875, 0.5415167846679687, 0.5413140869140625, 0.5417481689453125, 0.5427220458984375, 0.5421270751953124, 0.541823974609375, 0.54205029296875, 0.5420144653320312, 0.5415424194335937, 0.541971435546875, 0.5416202392578126, 0.541264892578125, 0.5415219116210938, 0.541216796875, 0.5416058959960938, 0.541259765625, 0.5414993896484375, 0.5412925415039063, 0.5416744995117188, 0.5412996826171875, 0.5416222534179688, 0.5422120971679687, 0.5429841918945313, 0.542635009765625, 0.5428388061523437, 0.542835693359375, 0.5432268676757812, 0.5427363891601562, 0.5429586181640625, 0.5425602416992188, 0.5428838500976563, 0.5426534423828125, 0.5426380615234375, 1.1323843994140625, 0.5415637817382812, 0.5415362548828125, 0.541212646484375, 0.5413027954101562, 0.54141748046875, 0.54186083984375, 0.542003173828125, 0.5418147583007813, 0.5417257080078125, 0.5426544799804688, 0.5414871215820313, 0.5419520263671875, 0.5414297485351562, 0.5414932250976563, 0.5413765258789063, 0.5414635620117187, 0.5415690307617187, 0.5419008178710938, 0.5413099365234375, 0.5413130493164062, 0.5413457641601562, 0.5415126953125, 0.541191162109375, 0.541591552734375, 0.5423012084960938, 0.5414676513671876, 0.5414563598632812, 0.5417738037109375, 0.541896728515625, 0.5416048583984375, 0.5420687255859375, 0.5419673461914063, 0.5420953369140625, 0.541780029296875, 0.541761474609375, 0.5418792724609375, 0.5419478759765625, 0.54186083984375, 0.5423062744140625, 0.54225, 0.5419407348632812, 0.542171142578125, 0.5424015502929688, 0.5422223510742188, 0.5414348754882813, 0.5414635620117187, 0.54171337890625, 0.5415720825195313, 0.5418065795898438, 0.5415321655273437, 0.54148095703125, 0.5417645874023438, 0.54140625, 0.5415218505859375, 0.5416734619140625, 0.5417164916992188, 0.5417820434570313, 0.5417778930664062, 0.54166015625, 0.5416734619140625, 0.5428797607421875, 0.542571533203125, 1.1325224609375, 0.5419622192382813, 0.541770751953125, 0.5419089965820313, 0.5416908569335938, 0.5413734130859374, 0.5414747924804687, 0.5413980102539062, 0.5412987060546876, 0.5413621826171875, 0.5414256591796875, 0.5414717407226562, 0.5418414306640625, 0.5414390258789062, 0.5416283569335938, 0.5422162475585938, 0.5423297729492188, 0.5422459106445312, 0.5416038208007813, 0.5418384399414062, 0.5420675659179688, 0.5416325073242187, 0.5418936157226563, 0.54164892578125, 0.5416837158203125, 0.5414542846679687, 0.5416089477539062, 0.541623291015625, 0.541696044921875, 0.5414962768554688, 0.5420676879882812, 0.5414850463867188, 0.5416734619140625, 0.5414481811523437, 0.5424260864257813, 0.5415341796875, 0.5418352661132813, 0.5416427612304687, 0.5419017944335938, 0.5418506469726563, 0.5419898681640625, 0.541454345703125, 0.5417994384765625, 0.5414666137695312, 0.541697021484375, 0.5416581420898438, 0.5419612426757813, 0.5414061889648437, 0.5416857299804687, 0.5413396606445312, 0.5420892333984375, 0.5414430541992188, 0.5420545654296876, 0.5417859497070312, 0.5416704711914062, 0.5413395385742188, 0.5417564086914063, 0.5420462036132813, 0.5418311767578124, 0.5419110107421875, 0.5419161376953125, 0.5414850463867188, 0.541528076171875, 1.131968505859375, 0.5414400024414062, 0.5414932250976563, 0.5411287231445312, 0.541296630859375, 0.5412792358398437, 0.5417031860351562, 0.5415956420898438, 0.5414348754882813, 0.5413161010742188, 0.5413847045898438, 0.541760498046875, 0.5419417724609376, 0.5416417236328125, 0.5418035278320312, 0.54144921875, 0.54145947265625, 0.5413785400390625, 0.541380615234375, 0.5414000854492188, 0.5414727783203125, 0.5413887939453125, 0.5414727783203125, 0.5413324584960938, 0.5414451293945313, 0.54200830078125, 0.541663330078125, 0.5414224853515625, 0.5416151123046875, 0.5414993896484375, 0.54185986328125, 0.5417636108398437, 0.5419540405273438, 0.5416038208007813, 0.5418005981445313, 0.541447021484375, 0.541686767578125, 0.5417062377929688, 0.5416693725585937, 0.5417902221679688, 0.5416990966796875, 0.5416304931640625, 0.5417277221679687, 0.5417277221679687, 0.5418322143554688, 0.5419100341796875, 0.5417410888671875, 0.5418536987304687, 0.5424578247070313, 0.5422274780273437, 0.5421045532226563, 0.5419489135742187, 0.5420206298828125, 0.5418895263671875, 0.541897705078125, 0.5418690795898438, 0.5419857788085938, 0.5421117553710938, 0.54192333984375, 0.5418588256835938, 0.5421434936523437, 0.5418905639648437, 0.5424384155273437, 1.1324405517578124, 0.5413406982421874, 0.5414522705078125, 0.5422376708984376, 0.5428193359375, 0.541686767578125, 0.5414686889648438, 0.5414215698242187, 0.541285400390625, 0.5416571044921875, 0.5415997314453125, 0.5419386596679687, 0.5416673583984375, 0.541638671875, 0.5414850463867188, 0.5416683349609375, 0.5423175659179688, 0.5418322143554688, 0.5414451904296875, 0.5412515258789062, 0.5415239868164062, 0.542023681640625, 0.541918212890625, 0.5417359619140625, 0.541549560546875, 0.5413662719726563, 0.5415792846679688, 0.5414010620117188, 0.5414441528320313, 0.5412525634765625, 0.54166015625, 0.5412556762695313, 0.541591552734375, 0.5411932373046875, 0.541432861328125, 0.5416161499023437, 0.5414912109375, 0.5413294067382812, 0.541365234375, 0.5413304443359375, 0.5423472900390625, 0.541759521484375, 0.5416038208007813, 0.5411983642578125, 0.5415557250976563, 0.5414194946289063, 0.5415966796875, 0.54135498046875, 0.5417625732421875, 0.5416345825195312, 0.5418465576171875, 0.541486083984375, 0.5419673461914063, 0.541765625, 0.542076904296875, 0.5416171264648437, 0.5418035278320312, 0.5415731201171875, 0.541892578125, 0.54164892578125, 0.5422459106445312, 0.5417850952148437, 0.5420390625, 1.132142578125, 0.5416161499023437, 0.541454345703125, 0.5413867797851563, 0.5415997314453125, 0.541613037109375, 0.5415372924804688, 0.5415844116210937, 0.5418772583007813, 0.5416714477539063, 0.5416253662109375, 0.5415557250976563, 0.5419458618164062, 0.5417195434570312, 0.5419008178710938, 0.541591552734375, 0.5416642456054688, 0.5415946044921875, 0.5415925903320312, 0.5416468505859375, 0.541644775390625, 0.5415782470703125, 0.5415966796875, 0.541538330078125, 0.541675537109375, 0.5414788818359375, 0.5420431518554687, 0.5420267333984375, 0.5419776000976563, 0.5416171264648437, 0.541822998046875, 0.54211376953125, 0.5417615356445312, 0.5421096801757812, 0.5417891845703126, 0.5419161376953125, 0.541697021484375, 0.5416591186523437, 0.5419724731445312, 0.5416560668945313, 0.54164892578125, 0.5418291015625, 0.5418055419921874, 0.541601806640625, 0.5418721313476562, 0.54198681640625, 0.5417297973632812, 0.5416796264648438, 0.5417349243164062, 0.5415823364257812, 0.5425029296875, 0.542382080078125, 0.5421414184570312, 0.5416663208007813, 0.5417011108398437, 0.54160302734375, 0.5418053588867188, 0.5416949462890625, 0.5418045654296875, 0.5421281127929688, 0.5423175659179688, 0.5419632568359375, 0.542244873046875, 1.1331278076171876, 0.5414716186523437, 0.54160791015625, 0.54152294921875, 0.5418578491210938, 0.5414696655273438, 0.5420236206054687, 0.5413458862304688, 0.5417337646484375, 0.5414185180664063, 0.5415403442382812, 0.5418291015625, 0.5415823974609375, 0.5414583740234375, 0.541802490234375, 0.541475830078125, 0.5415629272460938, 0.5419693603515625, 0.5415751953125, 0.5413673095703125, 0.5415239868164062, 0.5413990478515625, 0.5414297485351562, 0.5419171752929688, 0.542044189453125, 0.5415536499023438, 0.5416273803710937, 0.5416406860351562, 0.5414400024414062, 0.541470703125, 0.5419960327148438, 0.5414901733398437, 0.5415792846679688, 0.5415465087890625, 0.5416714477539063, 0.5413161010742188, 0.5425889282226563, 0.5413949584960938, 0.5415833740234375, 0.541106201171875, 0.5417615356445312, 0.5417666625976563, 0.541760498046875, 0.5414307861328125, 0.5415894775390625, 0.5413898315429687, 0.5415833740234375, 0.5412874145507812, 0.5417349243164062, 0.5415741577148437, 0.5416611938476562, 0.5413416748046875, 0.5422161865234375, 0.5416673583984375, 0.5423308715820313, 0.5420431518554687, 0.5420534057617188, 0.5417984008789063, 0.5419888916015625, 0.5413898315429687, 0.5425121459960938, 0.541970458984375, 0.5419970092773437, 1.13246826171875, 0.5414359130859375, 0.5415659790039062, 0.54150244140625, 0.5414912719726562, 0.5414020385742188, 0.541581298828125, 0.5415567626953125, 0.5416243286132812, 0.5418076171875, 0.5416089477539062, 0.5414696655273438, 0.5415587768554687, 0.541931640625, 0.542152587890625, 0.541929443359375, 0.541939697265625, 0.54158642578125, 0.5415321655273437, 0.5415823364257812, 0.5417267456054687, 0.5416222534179688, 0.54167041015625, 0.54148095703125, 0.5416376342773438, 0.5415116577148438, 0.5416591186523437, 0.5424230346679687, 0.5425469360351562, 0.5417778930664062, 0.5417523193359375, 0.5418987426757812, 0.5419951171875, 0.5423696899414062, 0.5424568481445312, 0.5426206665039063, 0.542086181640625, 0.541823974609375, 0.54186083984375, 0.5420349731445312, 0.5424475708007812, 0.5419776000976563, 0.5422203369140625, 0.5420625, 0.542244873046875, 0.5426073608398437, 0.5429688110351563, 0.5421936645507812, 0.542075927734375, 0.5420676879882812, 0.5423175659179688, 0.5427466430664063, 0.5428531494140625, 0.542118896484375, 0.5421475830078125, 0.542002197265625, 0.5421066284179688, 0.5419857788085938, 0.5419765625, 0.5419990844726562, 0.5420123901367188, 0.5418936157226563, 0.5418700561523437, 1.1330999755859374, 0.5421752319335937, 0.5420472412109375, 0.5415352172851563, 0.541517822265625, 0.5416509399414062, 0.54187109375, 0.5422120971679687, 0.5417625732421875, 0.5419806518554687, 0.5415413818359375, 0.54137548828125, 0.5424609375, 0.5421240234375, 0.54167041015625, 0.5416581420898438, 0.5418803100585937, 0.5415997314453125, 0.5424701538085938, 0.5428551635742187, 0.5424916381835938, 0.542624755859375, 0.542044189453125, 0.54175537109375, 0.541865966796875, 0.54215576171875, 0.5419192504882813, 0.5422418212890625, 0.54240869140625, 0.5427630004882813, 0.543088623046875, 0.5421854858398437, 0.5420318603515625, 0.5419612426757813, 0.5423749389648438, 0.541897705078125, 0.5418147583007813, 0.5428131713867187, 0.542508056640625, 0.5420390625, 0.5422202758789062, 0.542045166015625, 0.542202880859375, 0.5423974609375, 0.5422069702148438, 0.541749267578125, 0.5420185546875, 0.5419468994140625, 0.5423267822265625, 0.5417062377929688, 0.5420277709960938, 0.5420349731445312, 0.5422673950195313, 0.5421270751953124, 0.5421915893554687, 0.5427077026367187, 0.5426472778320313, 0.542382080078125, 0.54236572265625, 0.542023681640625, 0.5423565063476562, 0.542160888671875, 0.5429483642578125]",tokens/s,1.8173661821571478,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2,openai-community/gpt2,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1260.384256,1005.060096,0.0,358.612992,318.913024,s,20,0.1778504323959351,0.008892521619796753,0.00029352442906368934,0.008754608154296874,0.00910248613357544,0.009169697380065919,0.009785504264831543,"[0.009939455986022949, 0.008732735633850098, 0.008714752197265625, 0.009129183769226074, 0.008936767578125, 0.00906287956237793, 0.008935744285583497, 0.008770496368408202, 0.008699071884155274, 0.00863708782196045, 0.009064096450805664, 0.009099519729614258, 0.009006879806518554, 0.008716704368591309, 0.008663392066955567, 0.009004608154296875, 0.008722240447998048, 0.008636159896850586, 0.008738719940185546, 0.008639936447143554]",tokens/s,28788.234760102965,kWh,1.0174500456220489e-07,5.575151129166093e-08,2.1683886616880275e-07,3.743353820226686e-07,tokens/kWh,683878714.9019684,MB,1260.384256,1005.060096,0.0,358.612992,328.809472,s,20,10.067610046386722,0.5033805023193361,0.00995087263393504,0.5025519256591797,0.5155266967773438,0.5156778381347656,0.5160263879394532,"[0.499431884765625, 0.5143662109375, 0.516113525390625, 0.5138157348632812, 0.515512451171875, 0.5115390319824219, 0.49984701538085935, 0.4923589782714844, 0.49069613647460936, 0.5090225524902344, 0.5124207153320313, 0.5156549072265625, 0.4935624084472656, 0.49096063232421877, 0.5048639221191407, 0.5133187255859375, 0.49067050170898435, 0.5002399291992188, 0.491751953125, 0.4914628295898438]",tokens/s,125.15383434544286,kWh,5.837131539873614e-06,3.1984816083411113e-06,9.866002533436888e-06,1.8901615681651614e-05,tokens/kWh,3333048.4050184162,,s,1259,10.226770932674393,0.008122931638343454,0.0011308170692653316,0.007988224029541016,0.008203213119506836,0.00825251808166504,0.016815533714294433,"[0.008956928253173829, 0.009018367767333984, 0.008947711944580078, 0.009010175704956054, 0.009335807800292969, 0.008112128257751466, 0.007797760009765625, 0.007737343788146973, 0.007766016006469726, 0.007806975841522217, 0.007930880069732665, 0.007813119888305664, 0.0077608962059021, 0.007756800174713135, 0.007740416049957275, 0.007768064022064209, 0.00773529577255249, 0.007709760189056397, 0.007721920013427735, 0.007746560096740723, 0.00775270414352417, 0.00799232006072998, 0.00784281587600708, 0.008203264236450195, 0.008260607719421387, 0.008042495727539062, 0.008059904098510743, 0.007980031967163086, 0.007763967990875244, 0.007751679897308349, 0.007723008155822754, 0.007699456214904785, 0.007764992237091065, 0.007706624031066894, 0.007740416049957275, 0.00783462381362915, 0.007773183822631836, 0.007748608112335205, 0.0077199358940124516, 0.007729152202606201, 0.007729152202606201, 0.007724031925201416, 0.007738368034362793, 0.007704576015472412, 0.0077199358940124516, 0.007832575798034667, 0.007963647842407226, 0.007987199783325195, 0.007905280113220215, 0.0077916159629821775, 0.007706624031066894, 0.007709695816040039, 0.007702527999877929, 0.007707647800445557, 0.007707647800445557, 0.007699456214904785, 0.007712768077850342, 0.007755775928497314, 0.007730175971984863, 0.007721983909606934, 0.007711743831634522, 0.007840799808502196, 0.01680175971984863, 0.007746560096740723, 0.0077547521591186525, 0.00769536018371582, 0.00773632001876831, 0.008111104011535645, 0.008331263542175293, 0.008501248359680176, 0.008590335845947266, 0.008962047576904298, 0.008557600021362305, 0.007902175903320312, 0.007857151985168457, 0.008179712295532226, 0.008134655952453614, 0.008121343612670898, 0.008165375709533691, 0.008182784080505372, 0.00821452808380127, 0.00810086441040039, 0.00818073558807373, 0.008142848014831543, 0.008248319625854492, 0.0081725435256958, 0.008225791931152344, 0.008181759834289551, 0.008154111862182617, 0.008155136108398438, 0.008208383560180664, 0.008145952224731445, 0.008171487808227539, 0.008196096420288086, 0.008184831619262695, 0.008133631706237793, 0.008138751983642578, 0.008140800476074218, 0.008171520233154296, 0.008120320320129394, 0.008166399955749512, 0.008168448448181152, 0.008184831619262695, 0.008118271827697754, 0.00819711971282959, 0.008182784080505372, 0.008133631706237793, 0.008169471740722656, 0.008173567771911621, 0.008208383560180664, 0.008178688049316407, 0.008148991584777832, 0.008138751983642578, 0.008224767684936523, 0.00830668830871582, 0.008169471740722656, 0.008211456298828124, 0.008210432052612305, 0.008233983993530274, 0.008142848014831543, 0.008143872261047362, 0.008169471740722656, 0.008142848014831543, 0.008184831619262695, 0.008094719886779785, 0.016881664276123046, 0.007815167903900147, 0.008175616264343261, 0.008177696228027343, 0.0081561279296875, 0.008162303924560547, 0.008211456298828124, 0.008211456298828124, 0.0081725435256958, 0.008175616264343261, 0.008283136367797851, 0.008204287528991699, 0.008184831619262695, 0.008186880111694337, 0.008223744392395019, 0.008196096420288086, 0.008203264236450195, 0.008229887962341309, 0.008166399955749512, 0.008252415657043457, 0.008163328170776368, 0.008248319625854492, 0.008264703750610352, 0.00818892765045166, 0.00819814395904541, 0.008241151809692383, 0.008165439605712891, 0.0082042236328125, 0.008162303924560547, 0.008232959747314453, 0.008151040077209473, 0.008152128219604492, 0.008161215782165528, 0.008182784080505372, 0.008133631706237793, 0.008158207893371582, 0.008237055778503418, 0.008202239990234375, 0.008193023681640625, 0.008161279678344726, 0.008217599868774414, 0.008156160354614257, 0.00819711971282959, 0.008166399955749512, 0.008308735847473145, 0.008174592018127442, 0.00821350383758545, 0.00821555233001709, 0.008237055778503418, 0.008190976142883302, 0.00820633602142334, 0.008167424201965333, 0.008225791931152344, 0.008162303924560547, 0.008162303924560547, 0.008168448448181152, 0.00820633602142334, 0.00830463981628418, 0.008229887962341309, 0.008415231704711914, 0.0081725435256958, 0.008143872261047362, 0.008152064323425292, 0.01761075210571289, 0.008202239990234375, 0.008141823768615723, 0.008071167945861817, 0.007961599826812745, 0.008018943786621094, 0.008046591758728027, 0.008005632400512695, 0.00840294361114502, 0.008124416351318359, 0.00820531177520752, 0.008201215744018555, 0.00818073558807373, 0.008185855865478516, 0.00819200038909912, 0.008175616264343261, 0.008318976402282715, 0.008154111862182617, 0.00820531177520752, 0.008134655952453614, 0.008143872261047362, 0.008136704444885253, 0.008194047927856446, 0.008137727737426758, 0.008143872261047362, 0.008171520233154296, 0.008257599830627441, 0.008203200340270996, 0.008194047927856446, 0.00821555233001709, 0.008195072174072266, 0.008143872261047362, 0.007998464107513427, 0.008034303665161132, 0.007986176013946533, 0.007982079982757568, 0.008018943786621094, 0.008036352157592774, 0.008148991584777832, 0.008135680198669434, 0.008142848014831543, 0.008236031532287597, 0.008143872261047362, 0.008142848014831543, 0.008132608413696289, 0.00819200038909912, 0.008179712295532226, 0.008140800476074218, 0.008145983695983888, 0.008236991882324218, 0.0081725435256958, 0.008146944046020508, 0.00818892765045166, 0.008175616264343261, 0.008162303924560547, 0.0081725435256958, 0.00821555233001709, 0.008113151550292968, 0.008209407806396484, 0.008227840423583984, 0.008196096420288086, 0.008126463890075684, 0.008157183647155761, 0.017464319229125978, 0.008184831619262695, 0.00818073558807373, 0.008165375709533691, 0.00821555233001709, 0.008167424201965333, 0.008129535675048828, 0.008302592277526855, 0.008182784080505372, 0.00830361557006836, 0.008194047927856446, 0.008250368118286134, 0.008151040077209473, 0.008257535934448243, 0.008231936454772949, 0.008444928169250488, 0.008429568290710449, 0.00829849624633789, 0.008167424201965333, 0.008171520233154296, 0.008143903732299805, 0.008130528450012208, 0.008302592277526855, 0.008113151550292968, 0.008168448448181152, 0.008145919799804687, 0.008143872261047362, 0.008110079765319824, 0.008140800476074218, 0.008116224288940429, 0.008160256385803222, 0.008153087615966797, 0.00813158416748047, 0.008157183647155761, 0.008136704444885253, 0.008124416351318359, 0.008236031532287597, 0.008158207893371582, 0.008129535675048828, 0.008147968292236327, 0.008122367858886719, 0.008253439903259278, 0.008128512382507324, 0.00810905647277832, 0.008117247581481933, 0.008118271827697754, 0.008119296073913575, 0.008129535675048828, 0.008126463890075684, 0.008141823768615723, 0.008165375709533691, 0.00819200038909912, 0.008229887962341309, 0.008130559921264649, 0.008218624114990235, 0.008133631706237793, 0.008155136108398438, 0.00820531177520752, 0.00811520004272461, 0.008147968292236327, 0.008153087615966797, 0.008163328170776368, 0.008157247543334962, 0.01752979278564453, 0.008169471740722656, 0.008134655952453614, 0.008151040077209473, 0.008130559921264649, 0.008232959747314453, 0.00812339210510254, 0.008141823768615723, 0.008133631706237793, 0.008141823768615723, 0.008154175758361816, 0.00810591983795166, 0.008169471740722656, 0.008153087615966797, 0.008141823768615723, 0.008200223922729493, 0.008241120338439942, 0.008136704444885253, 0.008132608413696289, 0.008174592018127442, 0.008144895553588867, 0.008146944046020508, 0.008145919799804687, 0.008146976470947266, 0.008175583839416503, 0.007980031967163086, 0.007983104228973388, 0.00800051212310791, 0.007997439861297608, 0.00799948787689209, 0.008101887702941894, 0.00801689624786377, 0.008174592018127442, 0.0081397762298584, 0.008117247581481933, 0.008122367858886719, 0.008126463890075684, 0.008122367858886719, 0.008138751983642578, 0.008155136108398438, 0.008119296073913575, 0.008136704444885253, 0.00807423973083496, 0.007927807807922363, 0.007958528041839599, 0.007939072132110595, 0.008014847755432129, 0.007986176013946533, 0.007945216178894043, 0.007932928085327149, 0.007987199783325195, 0.008179712295532226, 0.008140800476074218, 0.008185855865478516, 0.008138751983642578, 0.008184831619262695, 0.008138751983642578, 0.008258560180664062, 0.008273920059204102, 0.008167424201965333, 0.008194047927856446, 0.008145919799804687, 0.008177663803100586, 0.01745510482788086, 0.008202239990234375, 0.008157183647155761, 0.00818380832672119, 0.00870195198059082, 0.008116224288940429, 0.00800153636932373, 0.008036352157592774, 0.007977983951568603, 0.00793497610092163, 0.007962624073028564, 0.007925759792327881, 0.00794316816329956, 0.007910399913787843, 0.007746560096740723, 0.007692287921905518, 0.007689216136932373, 0.0076871681213378906, 0.007707647800445557, 0.007682047843933106, 0.0076912641525268555, 0.007675903797149658, 0.0076984319686889645, 0.007768064022064209, 0.007718912124633789, 0.007701504230499268, 0.007781375885009765, 0.007845888137817383, 0.007806975841522217, 0.007817215919494629, 0.007786496162414551, 0.00787660789489746, 0.007799808025360107, 0.0077814397811889644, 0.007800767898559571, 0.007912447929382324, 0.007824384212493896, 0.007813119888305664, 0.007792640209197998, 0.007946239948272706, 0.007815167903900147, 0.007805952072143555, 0.00778547191619873, 0.007804927825927735, 0.007789567947387695, 0.007865344047546387, 0.007772160053253174, 0.007777279853820801, 0.007775231838226319, 0.007806975841522217, 0.007789567947387695, 0.007932928085327149, 0.007971839904785156, 0.009268223762512207, 0.00830463981628418, 0.008198207855224609, 0.008211392402648926, 0.008195072174072266, 0.008028160095214844, 0.008003583908081055, 0.008034303665161132, 0.008128512382507324, 0.008179712295532226, 0.016935935974121095, 0.00780185604095459, 0.007796735763549805, 0.007805952072143555, 0.007813119888305664, 0.007988224029541016, 0.008045568466186523, 0.007916543960571289, 0.007796735763549805, 0.007798783779144287, 0.007809023857116699, 0.007804927825927735, 0.007792640209197998, 0.007812096118927002, 0.00781824016571045, 0.00780083179473877, 0.007870463848114014, 0.007792640209197998, 0.007804927825927735, 0.007790656089782715, 0.007819200038909912, 0.007790592193603516, 0.007794688224792481, 0.007809023857116699, 0.007795711994171142, 0.007768064022064209, 0.007797760009765625, 0.007795711994171142, 0.007795711994171142, 0.007813119888305664, 0.007798783779144287, 0.007802879810333252, 0.007819263935089112, 0.007811071872711181, 0.007840767860412597, 0.007812096118927002, 0.007788544178009033, 0.007775231838226319, 0.0077916159629821775, 0.007782400131225586, 0.00781004810333252, 0.00780185604095459, 0.007778304100036621, 0.007794688224792481, 0.007767039775848389, 0.007796735763549805, 0.0077916159629821775, 0.007797760009765625, 0.007821311950683594, 0.0077844481468200685, 0.007780352115631104, 0.007840767860412597, 0.0077844481468200685, 0.007767136096954346, 0.0077935681343078616, 0.007836671829223632, 0.007762944221496582, 0.007809023857116699, 0.007853055953979492, 0.007787519931793213, 0.007774208068847656, 0.007829504013061523, 0.00781824016571045, 0.01681612777709961, 0.007815199851989746, 0.007830495834350587, 0.007776256084442139, 0.007788544178009033, 0.007783423900604248, 0.007771135807037354, 0.007827455997467042, 0.007795711994171142, 0.007773183822631836, 0.007782400131225586, 0.007808000087738037, 0.00780083179473877, 0.007798783779144287, 0.007873536109924317, 0.007805952072143555, 0.00780083179473877, 0.007847936153411865, 0.0077844481468200685, 0.007780352115631104, 0.0077916159629821775, 0.007790592193603516, 0.007822336196899414, 0.007794688224792481, 0.007888895988464355, 0.007833600044250488, 0.007797760009765625, 0.007749631881713868, 0.007869440078735352, 0.007769087791442871, 0.007812096118927002, 0.00780083179473877, 0.007803904056549072, 0.007812096118927002, 0.007794688224792481, 0.007811071872711181, 0.007814144134521485, 0.007817215919494629, 0.007795711994171142, 0.007819263935089112, 0.007755775928497314, 0.007792640209197998, 0.007717887878417969, 0.007688223838806152, 0.007795680046081543, 0.007675903797149658, 0.007663616180419922, 0.007669760227203369, 0.007685120105743408, 0.007670783996582031, 0.007699456214904785, 0.007779327869415284, 0.007753791809082031, 0.00776800012588501, 0.007794688224792481, 0.007774208068847656, 0.0077916479110717776, 0.0077833919525146485, 0.007789567947387695, 0.0077506561279296875, 0.007809023857116699, 0.007776256084442139, 0.007787519931793213, 0.016747520446777343, 0.007830527782440186, 0.00781004810333252, 0.007762944221496582, 0.007786496162414551, 0.00778547191619873, 0.007792640209197998, 0.007819263935089112, 0.007789567947387695, 0.007815167903900147, 0.0077844481468200685, 0.007814144134521485, 0.007829504013061523, 0.007815167903900147, 0.008204287528991699, 0.008175616264343261, 0.008138751983642578, 0.008138751983642578, 0.008143872261047362, 0.008132608413696289, 0.008127488136291505, 0.008151040077209473, 0.008156160354614257, 0.008147968292236327, 0.00820736026763916, 0.008129535675048828, 0.008166399955749512, 0.008173600196838379, 0.00812335968017578, 0.008141823768615723, 0.008167424201965333, 0.008120320320129394, 0.008144895553588867, 0.008153087615966797, 0.008212479591369629, 0.008155136108398438, 0.008140800476074218, 0.008129535675048828, 0.008145919799804687, 0.00811520004272461, 0.008171520233154296, 0.008128512382507324, 0.008159232139587403, 0.008104960441589355, 0.008134655952453614, 0.008156160354614257, 0.008217599868774414, 0.008228863716125488, 0.008134655952453614, 0.008118271827697754, 0.008137727737426758, 0.008124447822570801, 0.008145888328552247, 0.00819711971282959, 0.008179743766784668, 0.008160223960876465, 0.008161279678344726, 0.008132608413696289, 0.00820531177520752, 0.008125439643859863, 0.008132608413696289, 0.008161312103271484, 0.008129504203796387, 0.017510400772094727, 0.00813161563873291, 0.008154080390930176, 0.008121343612670898, 0.008201215744018555, 0.008152095794677735, 0.008171487808227539, 0.008169471740722656, 0.008168448448181152, 0.008137727737426758, 0.008147968292236327, 0.008148991584777832, 0.008154111862182617, 0.008139840126037598, 0.008128447532653809, 0.00813158416748047, 0.008137727737426758, 0.008121343612670898, 0.008233983993530274, 0.008128512382507324, 0.008145919799804687, 0.008157183647155761, 0.00813158416748047, 0.008204287528991699, 0.008161279678344726, 0.007993343830108643, 0.00791756820678711, 0.007980031967163086, 0.007956480026245117, 0.007964672088623047, 0.007927807807922363, 0.008011775970458984, 0.008147968292236327, 0.008133631706237793, 0.00818380832672119, 0.008170495986938477, 0.008175616264343261, 0.008127488136291505, 0.008137727737426758, 0.008146944046020508, 0.008140800476074218, 0.008151040077209473, 0.008162303924560547, 0.008179712295532226, 0.008148991584777832, 0.008124416351318359, 0.008137727737426758, 0.008125439643859863, 0.008153087615966797, 0.008114175796508789, 0.008143872261047362, 0.008122367858886719, 0.008156160354614257, 0.008160256385803222, 0.008135680198669434, 0.008086527824401855, 0.008153087615966797, 0.008133631706237793, 0.0081725435256958, 0.0081725435256958, 0.00819200038909912, 0.008133631706237793, 0.008163328170776368, 0.017588224411010742, 0.008179712295532226, 0.008193023681640625, 0.00818380832672119, 0.008154111862182617, 0.008151040077209473, 0.008155136108398438, 0.008173567771911621, 0.008159232139587403, 0.008130559921264649, 0.008146944046020508, 0.008140800476074218, 0.008162336349487305, 0.008166367530822755, 0.008170495986938477, 0.008184831619262695, 0.008157183647155761, 0.008153087615966797, 0.00813158416748047, 0.008167424201965333, 0.008148991584777832, 0.008136704444885253, 0.008152064323425292, 0.008177663803100586, 0.008147968292236327, 0.008144895553588867, 0.008175616264343261, 0.008174592018127442, 0.008225791931152344, 0.008175616264343261, 0.008150015830993652, 0.008158207893371582, 0.008162303924560547, 0.008164352416992187, 0.008138751983642578, 0.008152064323425292, 0.008166399955749512, 0.008134655952453614, 0.008158207893371582, 0.008156160354614257, 0.008137727737426758, 0.00818073558807373, 0.008144895553588867, 0.008691712379455567, 0.008336383819580078, 0.008157183647155761, 0.008369152069091796, 0.00819814395904541, 0.008178688049316407, 0.008175616264343261, 0.008190976142883302, 0.008163328170776368, 0.008146944046020508, 0.00818182373046875, 0.008277952194213867, 0.008161279678344726, 0.00819814395904541, 0.008154111862182617, 0.008211456298828124, 0.008153087615966797, 0.008143872261047362, 0.00818380832672119, 0.008178688049316407, 0.017306623458862306, 0.007987199783325195, 0.00799948787689209, 0.007954432010650634, 0.007939072132110595, 0.008583168029785156, 0.008274944305419921, 0.008042495727539062, 0.008291328430175781, 0.008148991584777832, 0.007989247798919678, 0.007942143917083741, 0.007837696075439453, 0.007702527999877929, 0.007700479984283447, 0.007751679897308349, 0.007745535850524903, 0.007712768077850342, 0.007682047843933106, 0.007650303840637207, 0.007663616180419922, 0.007663616180419922, 0.007679999828338623, 0.00780083179473877, 0.007711743831634522, 0.007683072090148926, 0.007688191890716553, 0.007677951812744141, 0.007696415901184082, 0.007775199890136719, 0.007783423900604248, 0.007798783779144287, 0.007811071872711181, 0.007773183822631836, 0.007781375885009765, 0.0077844481468200685, 0.007805952072143555, 0.007782400131225586, 0.007778304100036621, 0.007778304100036621, 0.0078438401222229, 0.007774208068847656, 0.007861248016357422, 0.007822336196899414, 0.00785203218460083, 0.007787519931793213, 0.00779366397857666, 0.007774208068847656, 0.007798783779144287, 0.0077608962059021, 0.00780185604095459, 0.0077916159629821775, 0.00780083179473877, 0.007935999870300293, 0.007792640209197998, 0.007762944221496582, 0.007783423900604248, 0.007781375885009765, 0.007789567947387695, 0.007780352115631104, 0.00781004810333252, 0.0077844481468200685, 0.007790592193603516, 0.01681510353088379, 0.00780185604095459, 0.0077916159629821775, 0.007786496162414551, 0.00780185604095459, 0.007774208068847656, 0.007781375885009765, 0.007767039775848389, 0.007797760009765625, 0.008054783821105957, 0.007769120216369629, 0.007801824092864991, 0.007887872219085693, 0.007806975841522217, 0.00780185604095459, 0.007796735763549805, 0.007758848190307617, 0.007686143875122071, 0.007758848190307617, 0.007764992237091065, 0.007665664196014404, 0.007762944221496582, 0.007830527782440186, 0.0076984319686889645, 0.007705599784851074, 0.007775231838226319, 0.007783423900604248, 0.0077506561279296875, 0.007763967990875244, 0.007799808025360107, 0.007774208068847656, 0.0077844481468200685, 0.007889920234680176, 0.007813119888305664, 0.00785203218460083, 0.007798816204071045, 0.007802847862243652, 0.0077619199752807615, 0.0077608962059021, 0.007812096118927002, 0.007770112037658691, 0.007820288181304931, 0.007809023857116699, 0.007751679897308349, 0.007801919937133789, 0.007790527820587158, 0.00778547191619873, 0.007769087791442871, 0.007772160053253174, 0.007780352115631104, 0.007766016006469726, 0.007772160053253174, 0.007797760009765625, 0.007746560096740723, 0.007767039775848389, 0.007792640209197998, 0.007804927825927735, 0.00780188798904419, 0.007841760158538819, 0.007790592193603516, 0.007799808025360107, 0.00780185604095459, 0.007794688224792481, 0.016740352630615234, 0.007783423900604248, 0.00780185604095459, 0.007804927825927735, 0.007759871959686279, 0.007790592193603516, 0.007788544178009033, 0.007780352115631104, 0.007831615924835205, 0.007797696113586426, 0.007781407833099365, 0.007782368183135986, 0.007770112037658691, 0.007808000087738037, 0.007779327869415284, 0.007780352115631104, 0.007817279815673829, 0.007812032222747803, 0.008190976142883302, 0.008184831619262695, 0.008161279678344726, 0.008177727699279784, 0.008145855903625489, 0.0081397762298584, 0.008135680198669434, 0.008153087615966797, 0.008148991584777832, 0.008147968292236327, 0.0081397762298584, 0.008167424201965333, 0.008143903732299805, 0.008128479957580566, 0.008156160354614257, 0.008138751983642578, 0.008133631706237793, 0.008155136108398438, 0.008153087615966797, 0.008138751983642578, 0.008173567771911621, 0.008208383560180664, 0.008002559661865234, 0.00800972843170166, 0.007980031967163086, 0.008076288223266602, 0.00808448028564453, 0.007964672088623047, 0.008034303665161132, 0.007988224029541016, 0.007964672088623047, 0.007987199783325195, 0.00799948787689209, 0.007969791889190675, 0.007956480026245117, 0.007990272045135497, 0.00797388792037964, 0.00794316816329956, 0.008023039817810058, 0.008061951637268066, 0.008179743766784668, 0.008191967964172363, 0.0081725435256958, 0.008150015830993652, 0.008185855865478516, 0.017484800338745117, 0.008162303924560547, 0.008151040077209473, 0.008169471740722656, 0.008161279678344726, 0.008167424201965333, 0.008156160354614257, 0.008194047927856446, 0.008224767684936523, 0.008291328430175781, 0.008148991584777832, 0.008154111862182617, 0.008160256385803222, 0.00816438388824463, 0.008163295745849609, 0.008171520233154296, 0.008177663803100586, 0.0081725435256958, 0.008231936454772949, 0.008153087615966797, 0.008132608413696289, 0.008309760093688966, 0.008117247581481933, 0.007990272045135497, 0.007979008197784423, 0.007970816135406494, 0.007997439861297608, 0.00799232006072998, 0.00801587200164795, 0.007982079982757568, 0.008145983695983888, 0.008135616302490234, 0.008164352416992187, 0.008163328170776368, 0.008165375709533691, 0.008184831619262695, 0.008158207893371582, 0.008155136108398438, 0.008176639556884765, 0.008182784080505372, 0.008145919799804687, 0.008140800476074218, 0.008156160354614257, 0.008150015830993652, 0.008135680198669434, 0.0081397762298584, 0.008142848014831543, 0.008136704444885253, 0.0081080322265625, 0.008219648361206054, 0.008170495986938477, 0.008157183647155761, 0.008315903663635254, 0.00819711971282959, 0.008167424201965333, 0.008058879852294922, 0.007974912166595459, 0.008057855606079101, 0.00821350383758545, 0.008169471740722656, 0.008144895553588867, 0.008160256385803222, 0.008122367858886719, 0.01683046340942383, 0.00781004810333252, 0.007808000087738037, 0.00778547191619873, 0.007855103969573975, 0.007806975841522217, 0.007795711994171142, 0.007780352115631104, 0.007798783779144287, 0.007795711994171142, 0.0077916159629821775, 0.007814144134521485, 0.007811071872711181, 0.007796735763549805, 0.007827455997467042, 0.007817215919494629, 0.007875584125518798, 0.007839744091033935, 0.007795711994171142, 0.007805952072143555, 0.007778304100036621, 0.0077916159629821775, 0.007786496162414551, 0.007789567947387695, 0.007786496162414551, 0.0077916159629821775, 0.007804927825927735, 0.007798783779144287, 0.007790592193603516, 0.007811071872711181, 0.007797760009765625, 0.007786496162414551, 0.007812096118927002, 0.007651328086853027, 0.007665664196014404, 0.007666687965393066, 0.007665664196014404, 0.007659520149230957, 0.007679999828338623, 0.007675903797149658, 0.007781375885009765, 0.007795711994171142, 0.007799808025360107, 0.007756800174713135, 0.007774208068847656, 0.0077578239440917966, 0.007971839904785156, 0.007782400131225586, 0.007790592193603516, 0.007787519931793213, 0.007797760009765625, 0.007782400131225586, 0.00779366397857666, 0.007764992237091065, 0.007797760009765625, 0.007774208068847656, 0.007792640209197998, 0.007769087791442871, 0.007784512042999268, 0.007765952110290527, 0.007788544178009033, 0.007747583866119385, 0.007840767860412597, 0.016747520446777343, 0.007811071872711181, 0.007816192150115966, 0.007752768039703369, 0.007791552066802978, 0.007802879810333252, 0.007780352115631104, 0.0077916159629821775, 0.007798783779144287, 0.00780185604095459, 0.007831552028656007, 0.007783423900604248, 0.007788544178009033, 0.007796735763549805, 0.007817215919494629, 0.007794688224792481, 0.007841792106628418, 0.007812096118927002, 0.007792640209197998, 0.007789567947387695, 0.007776256084442139, 0.00780185604095459, 0.007771135807037354, 0.007783423900604248, 0.007767039775848389, 0.007773183822631836, 0.007803904056549072, 0.007847936153411865, 0.007794688224792481, 0.007759903907775879, 0.007892960071563721, 0.007931903839111328, 0.007790592193603516, 0.00786636781692505, 0.007941120147705078, 0.008167424201965333, 0.007970816135406494, 0.007970816135406494, 0.007945216178894043, 0.007967743873596191, 0.007945216178894043, 0.007947264194488525, 0.007963647842407226, 0.007942143917083741, 0.008156160354614257, 0.008130559921264649, 0.008107071876525878, 0.00812947177886963, 0.008143872261047362, 0.008111104011535645, 0.008150015830993652, 0.008143872261047362, 0.008136704444885253, 0.008132608413696289, 0.008125439643859863, 0.008134655952453614, 0.008170495986938477, 0.00810905647277832, 0.008399871826171875, 0.008129535675048828, 0.008162303924560547, 0.008132608413696289, 0.008134655952453614, 0.01683251190185547, 0.007788544178009033, 0.007817215919494629, 0.007799808025360107, 0.007805952072143555, 0.007803904056549072, 0.007779327869415284, 0.0077916159629821775, 0.007804927825927735, 0.007817215919494629, 0.007822336196899414, 0.007809023857116699, 0.007855103969573975, 0.007806975841522217, 0.007815167903900147, 0.00784281587600708, 0.007825407981872558, 0.007775231838226319, 0.007829504013061523, 0.007797760009765625, 0.007817215919494629, 0.0077916159629821775, 0.00780185604095459, 0.007789567947387695, 0.0077844481468200685, 0.007764992237091065, 0.007797760009765625, 0.007780352115631104, 0.007777279853820801, 0.007769087791442871, 0.007795711994171142, 0.007806975841522217, 0.007773183822631836, 0.007780416011810303, 0.007806911945343018, 0.007809023857116699, 0.007812096118927002, 0.007888895988464355, 0.007832575798034667, 0.007770112037658691, 0.00778547191619873, 0.007788544178009033, 0.007790592193603516, 0.007799808025360107, 0.007798783779144287, 0.007837696075439453, 0.007821311950683594, 0.00779366397857666, 0.00778547191619873, 0.0077844481468200685, 0.007777279853820801, 0.007804992198944091, 0.007788479804992676, 0.007777279853820801, 0.00781004810333252, 0.007784480094909668, 0.007799776077270508, 0.007783423900604248, 0.007840767860412597, 0.007831552028656007, 0.007805952072143555, 0.007767039775848389, 0.007812096118927002, 0.016696319580078126, 0.007795711994171142, 0.007797760009765625, 0.007806975841522217, 0.007748640060424804, 0.0077833919525146485, 0.007792640209197998, 0.007804927825927735, 0.007803904056549072, 0.007797760009765625, 0.0077742719650268554, 0.007868351936340333, 0.007813119888305664, 0.007794688224792481, 0.007806975841522217, 0.00780083179473877, 0.007832575798034667, 0.007783423900604248, 0.007816192150115966, 0.007777279853820801, 0.007782400131225586, 0.007778304100036621, 0.007790592193603516, 0.007867392063140868, 0.0077916159629821775, 0.007799808025360107, 0.007783423900604248, 0.007789567947387695, 0.007783423900604248, 0.007789567947387695, 0.00778547191619873, 0.007780352115631104, 0.007875584125518798, 0.007797760009765625, 0.00778547191619873, 0.007756800174713135, 0.007773183822631836, 0.007787519931793213, 0.007767039775848389, 0.007811071872711181, 0.00779366397857666, 0.007770112037658691, 0.007783423900604248, 0.00781004810333252, 0.007797760009765625, 0.007773183822631836, 0.007773183822631836, 0.007782400131225586, 0.007844863891601562, 0.007785535812377929, 0.007792575836181641, 0.007806975841522217, 0.00781824016571045, 0.007796735763549805, 0.00778547191619873, 0.007778304100036621, 0.007828479766845703, 0.007777279853820801, 0.007858176231384278, 0.007815167903900147, 0.0077608962059021, 0.00781004810333252, 0.007812096118927002]",tokens/s,123.10826245041925,,,,, +4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-14B,Qwen/Qwen-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -6945,24 +6109,18 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained + model_class = get_class_from_dynamic_module( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module + final_module = get_cached_module_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file + modules_needed = check_imports(resolved_module_file) + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports + raise ImportError( +ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-30b,huggyllama/llama-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-7B,Qwen/Qwen-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -6980,94 +6138,18 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained + model_class = get_class_from_dynamic_module( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module + final_module = get_cached_module_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file + modules_needed = check_imports(resolved_module_file) + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports + raise ImportError( +ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-8B,meta-llama/Meta-Llama-3-8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,x,x,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,v,v,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -7079,7 +6161,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/x/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/v/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -7106,9 +6188,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669492f3-6d830d51078b4a221e736b98;24108ea5-a9ba-4ee4-9e16-16d6447f0112) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949463-026faf42475103197641a8df;55e13455-78b3-4a93-b731-e264c355deb4) -Repository Not Found for url: https://huggingface.co/x/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/v/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -7133,11 +6215,12 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: x is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: v is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,i,i,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-125m,,cuda,0,42,,,,,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,MB,1310.69952,921.174016,0.0,274.726912,220.646912,s,10,0.36048070526123044,0.03604807052612304,0.0010977874344766398,0.03588955307006836,0.036477619552612306,0.03779876155853271,0.03885567516326904,"[0.03911990356445313, 0.03553478240966797, 0.03469347381591797, 0.035817951202392576, 0.036184032440185546, 0.035873409271240234, 0.03543529510498047, 0.03591993713378906, 0.03590569686889648, 0.03599622344970703]",tokens/s,7101.628360787961,kWh,4.1762897090252873e-07,2.2884077887720709e-07,9.141624902616015e-07,1.5606322400413373e-06,tokens/kWh,164036083.2179266,MB,1311.0272,921.174016,0.0,274.726912,250.723328,s,10,21.866080322265628,2.186608032226563,0.01854961703991556,2.191078857421875,2.2041080810546876,2.2073608032226564,2.2099629809570316,"[2.1803974609375, 2.17111474609375, 2.154228759765625, 2.200171142578125, 2.210613525390625, 2.181986572265625, 2.161680419921875, 2.20071923828125, 2.20338525390625, 2.201783203125]",tokens/s,28.81174818325753,kWh,2.578141039891902e-05,1.4128932798644376e-05,5.28597971955373e-05,9.27701403931007e-05,tokens/kWh,679097.8188999841,,s,629,22.151173107147223,0.03521649142630718,0.004356343174673542,0.03486105728149414,0.035241778564453125,0.03557929000854492,0.07092830078125002,"[0.03474124908447265, 0.03529420852661133, 0.03632339096069336, 0.03650860977172852, 0.036083713531494144, 0.037152767181396484, 0.03645132827758789, 0.036311038970947264, 0.03472588729858399, 0.0354252815246582, 0.03531980895996094, 0.03479657745361328, 0.03465929412841797, 0.03616358566284179, 0.035585025787353515, 0.03515903854370117, 0.03486105728149414, 0.034651134490966795, 0.034900993347167966, 0.03449958419799805, 0.03328102493286133, 0.03349708938598633, 0.033560577392578124, 0.03324620819091797, 0.033328128814697267, 0.033255424499511715, 0.033754112243652344, 0.033223743438720706, 0.03327481460571289, 0.033438720703125, 0.0335175666809082, 0.03376332855224609, 0.03339468765258789, 0.03345305633544922, 0.03355033493041992, 0.034203647613525394, 0.03342233657836914, 0.03335372924804687, 0.0336732177734375, 0.03367116928100586, 0.03360870361328125, 0.03362508773803711, 0.03436441421508789, 0.03604377746582031, 0.03504127883911133, 0.03473920059204102, 0.0348037109375, 0.03472895812988281, 0.03472895812988281, 0.03479865646362305, 0.03479955291748047, 0.03479449462890625, 0.03474739074707031, 0.03478220748901367, 0.0347064323425293, 0.034907135009765625, 0.03474431991577148, 0.03473715209960938, 0.03485388946533203, 0.034683902740478514, 0.035019775390625, 0.0350750732421875, 0.0711178207397461, 0.0347955207824707, 0.034948097229003904, 0.03439616012573242, 0.03447808074951172, 0.03496755218505859, 0.034920448303222655, 0.0348590087890625, 0.034699264526367186, 0.0346163215637207, 0.03491430282592774, 0.03490304183959961, 0.03508019256591797, 0.034423809051513675, 0.03472793579101562, 0.03449446487426758, 0.03476377487182617, 0.03476582336425781, 0.03468902587890625, 0.03387494277954101, 0.0342210578918457, 0.034008094787597656, 0.03374998474121094, 0.03369062423706055, 0.033459201812744144, 0.03354937744140625, 0.03469715118408203, 0.03489484786987305, 0.03487027359008789, 0.03510067367553711, 0.03503513717651367, 0.03503923034667969, 0.03469619369506836, 0.03455590438842773, 0.03517852783203125, 0.03441353607177734, 0.03464704132080078, 0.03492659378051758, 0.034506752014160154, 0.03476070404052734, 0.03487846374511719, 0.03493478393554687, 0.03499212646484375, 0.034945056915283206, 0.035192798614501954, 0.03450265502929688, 0.03448524856567383, 0.03455487823486328, 0.034563072204589845, 0.03503104019165039, 0.03474431991577148, 0.03377872085571289, 0.03339875030517578, 0.03340800094604492, 0.03347558212280274, 0.03381350326538086, 0.033650688171386715, 0.033535999298095705, 0.033334270477294925, 0.03363123321533203, 0.03390771102905273, 0.03361996841430664, 0.03386880111694336, 0.06886093139648437, 0.03341823959350586, 0.03395993423461914, 0.03393228912353516, 0.03374387359619141, 0.03333529663085937, 0.0334919662475586, 0.03423027038574219, 0.03382476806640625, 0.03374387359619141, 0.0336824951171875, 0.033724353790283206, 0.03363532638549805, 0.033941505432128906, 0.03381760025024414, 0.033503231048583985, 0.03344998550415039, 0.033301502227783206, 0.033445888519287106, 0.033957889556884766, 0.03387801742553711, 0.03366092681884766, 0.03360153579711914, 0.03381043243408203, 0.033825790405273434, 0.03360870361328125, 0.03370703887939453, 0.03348271942138672, 0.03366502380371094, 0.03378995132446289, 0.03319193649291992, 0.03369267272949219, 0.03357900619506836, 0.033358848571777344, 0.0341104621887207, 0.03495731353759766, 0.03543961715698242, 0.03482316970825195, 0.034435073852539064, 0.034557952880859374, 0.034900993347167966, 0.034678783416748044, 0.03517542266845703, 0.03521023941040039, 0.035046398162841795, 0.03481702423095703, 0.03453235244750977, 0.03470131301879883, 0.03486412811279297, 0.03474739074707031, 0.03477196884155274, 0.03457843017578125, 0.034781185150146485, 0.03486310577392578, 0.035125247955322264, 0.03486617660522461, 0.03496243286132812, 0.03503513717651367, 0.03523891067504883, 0.03469823837280273, 0.0339128303527832, 0.03414220809936523, 0.035117088317871095, 0.0711659164428711, 0.03465318298339844, 0.03465727996826172, 0.03458355331420898, 0.034283519744873044, 0.034304000854492187, 0.03577958297729492, 0.03595161437988281, 0.03544473648071289, 0.03500543975830078, 0.03521843338012695, 0.03495935821533203, 0.0349194221496582, 0.0354252815246582, 0.03515903854370117, 0.0349306869506836, 0.03492454528808594, 0.036211711883544925, 0.03564441680908203, 0.03498086547851562, 0.034841598510742186, 0.034941951751708986, 0.03537612915039062, 0.034994174957275394, 0.0350382080078125, 0.03486105728149414, 0.03484672164916992, 0.03494297790527344, 0.03524095916748047, 0.03526041412353516, 0.03520614242553711, 0.03488153457641602, 0.03502796936035156, 0.03500543975830078, 0.03404185485839844, 0.033903617858886716, 0.03378073501586914, 0.03472281646728516, 0.03411251068115234, 0.03379097747802735, 0.03348787307739258, 0.0343633918762207, 0.03492659378051758, 0.03500339126586914, 0.03493788909912109, 0.03485590362548828, 0.034895870208740236, 0.034948097229003904, 0.03518771362304687, 0.034479103088378905, 0.03459174346923828, 0.035253280639648436, 0.034963424682617185, 0.034976768493652347, 0.03491843032836914, 0.034911201477050784, 0.035046398162841795, 0.03507199859619141, 0.03536383819580078, 0.03499929428100586, 0.03523379135131836, 0.03531161499023437, 0.03527679824829102, 0.07160934448242187, 0.0352624626159668, 0.03535769653320313, 0.03481087875366211, 0.03554921722412109, 0.034968544006347656, 0.03489491271972656, 0.034890689849853516, 0.03483238220214844, 0.034993152618408206, 0.035932159423828124, 0.03508838272094727, 0.03496755218505859, 0.03476377487182617, 0.03488358306884766, 0.03527884674072266, 0.03521228790283203, 0.035040256500244144, 0.03476684951782227, 0.03499622344970703, 0.03482316970825195, 0.03518259048461914, 0.03503411102294922, 0.036178943634033206, 0.039564289093017575, 0.035097599029541016, 0.03457843017578125, 0.03505561447143555, 0.034756607055664065, 0.0350013427734375, 0.03477811050415039, 0.035004417419433595, 0.03501772689819336, 0.0348671989440918, 0.03473100662231445, 0.0349224967956543, 0.03482931137084961, 0.03578777694702148, 0.0350115852355957, 0.03483443069458008, 0.03486412811279297, 0.03486207962036133, 0.034938880920410156, 0.03505561447143555, 0.035004417419433595, 0.034887680053710936, 0.034531326293945314, 0.03493580627441406, 0.03510067367553711, 0.03492454528808594, 0.034887680053710936, 0.03578879928588867, 0.034974720001220705, 0.03519180679321289, 0.034850879669189455, 0.03495315170288086, 0.035060768127441404, 0.034809825897216796, 0.03377766418457031, 0.03550620651245117, 0.034968544006347656, 0.034915328979492184, 0.03489177703857422, 0.07134719848632813, 0.03493273544311523, 0.03501465606689453, 0.03539148712158203, 0.03512319946289062, 0.034813953399658204, 0.03508019256591797, 0.03486515045166016, 0.035079166412353514, 0.03493580627441406, 0.034939903259277344, 0.034925567626953126, 0.03743027114868164, 0.034576385498046876, 0.03397836685180664, 0.03377356719970703, 0.03403878402709961, 0.03371724700927734, 0.03380223846435547, 0.03486310577392578, 0.03486412811279297, 0.03496243286132812, 0.03475046539306641, 0.03492659378051758, 0.03499622344970703, 0.034783233642578126, 0.033949695587158206, 0.033876991271972655, 0.03427123260498047, 0.03477811050415039, 0.03472076797485352, 0.034127872467041014, 0.03329740905761719, 0.0333834228515625, 0.03379814529418945, 0.03392409515380859, 0.03363532638549805, 0.03386982345581055, 0.03498086547851562, 0.034928638458251955, 0.03496345520019531, 0.03495423889160156, 0.03523891067504883, 0.03508838272094727, 0.034769920349121096, 0.03489279937744141, 0.03482624053955078, 0.034955265045166016, 0.03508838272094727, 0.03486412811279297, 0.03486515045166016, 0.03471769714355469, 0.034560001373291016, 0.034579456329345705, 0.03481292724609375, 0.03479244613647461, 0.034802688598632815, 0.03475254440307617, 0.03517948913574219, 0.03433884811401367, 0.033702880859375, 0.03359539031982422, 0.034111488342285154, 0.07044096374511719, 0.03437670516967774, 0.03483238220214844, 0.0348671989440918, 0.03470438385009766, 0.035230720520019534, 0.034816001892089846, 0.03467366409301758, 0.0347770881652832, 0.03501055908203125, 0.03429580688476563, 0.03443609619140625, 0.03509964752197266, 0.03524505615234375, 0.0347248649597168, 0.034753536224365236, 0.03496345520019531, 0.03496448135375976, 0.034770942687988284, 0.034799617767333986, 0.03484467315673828, 0.03481190490722656, 0.034353153228759765, 0.034062335968017575, 0.03349094390869141, 0.033584129333496096, 0.033587200164794925, 0.034141185760498044, 0.0347740478515625, 0.0345906867980957, 0.0344268798828125, 0.03489484786987305, 0.03420979309082031, 0.03364352035522461, 0.03377356719970703, 0.033686527252197264, 0.033290241241455076, 0.0337520637512207, 0.03401932907104492, 0.03371417617797851, 0.03375513458251953, 0.033691646575927735, 0.03370809555053711, 0.03350316619873047, 0.03325439834594727, 0.03360255813598633, 0.033860607147216795, 0.03376230239868164, 0.033691646575927735, 0.033783809661865234, 0.033797119140625, 0.03425177764892578, 0.03381452941894531, 0.033791999816894534, 0.033675262451171875, 0.03391385650634766, 0.034165760040283204, 0.03502899169921875, 0.03486822509765625, 0.034702335357666016, 0.035046398162841795, 0.03521535873413086, 0.034825214385986326, 0.07150080108642579, 0.03484364700317383, 0.034351104736328124, 0.03453747177124023, 0.035064830780029296, 0.03482931137084961, 0.03483238220214844, 0.03492659378051758, 0.034974720001220705, 0.03501465606689453, 0.034869247436523435, 0.034830337524414064, 0.034277374267578126, 0.034797569274902344, 0.03501363372802734, 0.03530342483520508, 0.0351016960144043, 0.03491635131835937, 0.03483238220214844, 0.03484672164916992, 0.03495116806030273, 0.03500646209716797, 0.03499827194213867, 0.03480678558349609, 0.03486207962036133, 0.03505152130126953, 0.034784255981445314, 0.034783233642578126, 0.034835456848144535, 0.03493580627441406, 0.034770942687988284, 0.035037185668945314, 0.035019775390625, 0.0342476806640625, 0.03505049514770508, 0.034315265655517575, 0.03477913665771484, 0.034791454315185544, 0.0353023681640625, 0.03562700653076172, 0.03510374450683594, 0.03493580627441406, 0.035156993865966796, 0.03526144027709961, 0.03488256072998047, 0.034933761596679686, 0.03517337417602539, 0.0348590087890625, 0.0352911376953125, 0.035888126373291016, 0.03522048187255859, 0.03506073760986328, 0.03483955383300781, 0.03486105728149414, 0.03498400115966797, 0.03498387145996094, 0.03485494232177734, 0.03438998413085938, 0.03479244613647461, 0.03507712173461914, 0.03500339126586914, 0.03471257781982422, 0.03476684951782227, 0.07122022247314454, 0.03482316970825195, 0.03523276901245117, 0.034941951751708986, 0.03477196884155274, 0.034991104125976565, 0.03495731353759766, 0.034939903259277344, 0.03488153457641602, 0.034900993347167966, 0.0347955207824707, 0.0350300178527832, 0.03487948989868164, 0.03520614242553711, 0.035297279357910154, 0.03513651275634765, 0.03494297790527344, 0.0349378547668457, 0.034948097229003904, 0.03488051223754883, 0.03481497573852539, 0.03454873657226563, 0.03495935821533203, 0.035062782287597655, 0.035043327331542966, 0.0349306869506836, 0.03497881698608398, 0.034909183502197266, 0.03493791961669922, 0.03483539199829101, 0.034869247436523435, 0.035031105041503904, 0.03493983840942383, 0.03483340835571289, 0.03487744140625, 0.03489484786987305, 0.03516108703613281, 0.03484364700317383, 0.034969600677490234, 0.035146751403808595, 0.035194881439208986, 0.03479244613647461, 0.03557068634033203, 0.03522969436645508, 0.035337215423583986, 0.03480473709106445, 0.03436236953735351, 0.033745918273925785, 0.03496755218505859, 0.03541401672363281, 0.03512934494018555, 0.035163135528564454, 0.0348487663269043, 0.03500339126586914, 0.03484467315673828, 0.03498495864868164, 0.03576115036010742, 0.03517030334472656, 0.03490816116333008, 0.034825214385986326, 0.0347586555480957, 0.03516723251342774, 0.035053569793701174, 0.07151315307617187, 0.03519071960449219, 0.03483852767944336, 0.03482419204711914, 0.03502592086791992, 0.03529216003417969, 0.035125247955322264, 0.034872318267822264, 0.034939903259277344, 0.0347658576965332, 0.03481699371337891, 0.03497267150878906, 0.03488665771484375, 0.034958335876464845, 0.035007488250732424, 0.03504537582397461, 0.03489382553100586, 0.03520716857910156, 0.034988033294677735, 0.034874366760253905, 0.03459481430053711, 0.03430297470092773, 0.0346879997253418, 0.03478732681274414, 0.03508736038208008, 0.0354856948852539, 0.034981952667236325, 0.0348732795715332, 0.03489382553100586, 0.03475558471679688, 0.03478732681274414, 0.03488358306884766, 0.03473920059204102, 0.03476172637939453, 0.034685951232910156, 0.035111934661865234, 0.03508736038208008, 0.03526553726196289, 0.03492147064208984, 0.03475763320922851, 0.034767871856689454, 0.03482316970825195, 0.03498092651367188, 0.03539142227172851, 0.03607961654663086, 0.03499008178710938, 0.03491123199462891, 0.034990142822265625, 0.03488249588012695, 0.03484467315673828, 0.03486207962036133, 0.0349378547668457, 0.034953216552734374, 0.03488051223754883, 0.03490816116333008, 0.0349378547668457, 0.03494604873657227, 0.03508838272094727, 0.03482726287841797, 0.03486003112792969, 0.03481702423095703, 0.034729984283447264, 0.0349224967956543]",tokens/s,28.395787300179112,,,main,False,False +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,.,.,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -7145,46 +6228,6 @@ If this is a private repository, make sure to pass a token having permission to File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/i/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949046-5d40a048084f7d2976b0e9c1;0d95bdcf-a14b-4cc3-a305-520fea4c1f87) - -Repository Not Found for url: https://huggingface.co/i/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run @@ -7201,184 +6244,12 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 373, in cached_file raise EnvironmentError( -OSError: i is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-72B,Qwen/Qwen-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code - answer = input( -EOFError: EOF when reading a line - -During handling of the above exception, another exception occurred: - -Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights - self.create_no_weights_model() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model - meta_model = self.automodel_class.from_config(self.pretrained_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config - trust_remote_code = resolve_trust_remote_code( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code - raise ValueError( -ValueError: The repository for Qwen/Qwen-72B contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/Qwen/Qwen-72B. -Please pass the argument `trust_remote_code=True` to allow custom code to be run. - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.4b,EleutherAI/pythia-1.4b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-3B-v1,togethercomputer/RedPajama-INCITE-Base-3B-v1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-0.5B,Qwen/Qwen1.5-0.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-7B,Qwen/Qwen-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code - answer = input( -EOFError: EOF when reading a line - -During handling of the above exception, another exception occurred: - -Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights - self.create_no_weights_model() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model - meta_model = self.automodel_class.from_config(self.pretrained_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config - trust_remote_code = resolve_trust_remote_code( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code - raise ValueError( -ValueError: The repository for Qwen/Qwen-7B contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/Qwen/Qwen-7B. -Please pass the argument `trust_remote_code=True` to allow custom code to be run. +OSError: . does not appear to have a file named config.json. Checkout 'https://huggingface.co/./tree/None' for available files. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-14B,Qwen/Qwen2-beta-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/phi-1_5,microsoft/phi-1_5,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -7388,32 +6259,56 @@ Please pass the argument `trust_remote_code=True` to allow custom code to be run ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/phi/modeling_phi.py"", line 1268, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/phi/modeling_phi.py"", line 1064, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/phi/modeling_phi.py"", line 804, in forward + attn_outputs, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/phi/modeling_phi.py"", line 435, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-7b,google/recurrentgemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,s,s,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -7425,7 +6320,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/google/recurrentgemma-7b/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/s/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -7452,9 +6347,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948283-12c28ab815608cd24acc7138;4d13d5a7-f26c-441e-9747-c37b3aadc7d1) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948d09-6e8ec95503e713c10280dff3;b6161f37-5655-4d59-b412-f838e3c3f1d4) -Repository Not Found for url: https://huggingface.co/google/recurrentgemma-7b/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/s/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -7479,44 +6374,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: google/recurrentgemma-7b is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: s is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-rw-1b,tiiuae/falcon-rw-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code - answer = input( -EOFError: EOF when reading a line - -During handling of the above exception, another exception occurred: - -Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights - self.create_no_weights_model() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model - meta_model = self.automodel_class.from_config(self.pretrained_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config - trust_remote_code = resolve_trust_remote_code( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code - raise ValueError( -ValueError: The repository for tiiuae/falcon-rw-1b contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/tiiuae/falcon-rw-1b. -Please pass the argument `trust_remote_code=True` to allow custom code to be run. - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-70B,meta-llama/Meta-Llama-3-70B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -7526,39 +6388,56 @@ Please pass the argument `trust_remote_code=True` to allow custom code to be run ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 414, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-65b,huggyllama/llama-65b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-66b,facebook/opt-66b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -7597,10 +6476,10 @@ ChildProcessError: Traceback (most recent call last): self._buffers[key] = fn(buf) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 86.00 MiB. GPU +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 162.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,l,l,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,i,i,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -7612,7 +6491,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/l/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/i/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -7639,9 +6518,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669491e9-1b19c4010aafe9e57f7345d0;b70b3100-21e1-41b3-99df-a98dfad0a9c6) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949038-2a225c2360edfe3456f52d62;6532c1cd-5cdd-44e3-8da0-76861e388423) -Repository Not Found for url: https://huggingface.co/l/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/i/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -7666,40 +6545,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: l is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: i is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-4.5B,facebook/xglm-4.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation - cls._check_and_enable_flash_attn_2( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 - raise ValueError( -ValueError: XGLMForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpteh0fdvz/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-110B,Qwen/Qwen1.5-110B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-6.7b,EleutherAI/pythia-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -7709,109 +6559,58 @@ ValueError: XGLMForCausalLM does not support Flash Attention 2.0 yet. Please req ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 32.00 MiB. GPU - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,8,8,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/8/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694929d-6304a28710de5a83725b7e52;34eab1af-aab7-43af-9579-36df82c8b663) - -Repository Not Found for url: https://huggingface.co/8/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file - raise EnvironmentError( -OSError: 8 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward + outputs = self.gpt_neox( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward + outputs = layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward + attention_layer_outputs = self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 339, in forward + query, key, value, present = self._attn_projections_and_rope( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope + qkv = self.query_key_value(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/rho-math-1b-v0.1,microsoft/rho-math-1b-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-0.5B,Qwen/Qwen1.5-0.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -7821,32 +6620,56 @@ If this is a private repository, make sure to pass a token having permission to ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1221, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1023, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 763, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 349, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-7b-hf,meta-llama/Llama-2-7b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-16B-nl,Salesforce/codegen-16B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -7866,22 +6689,16 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation + cls._check_and_enable_flash_attn_2( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 + raise ValueError( +ValueError: CodeGenForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmple6q2po4/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-13b-hf,meta-llama/Llama-2-13b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-j-6b,EleutherAI/gpt-j-6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -7891,32 +6708,57 @@ NameError: name 'exlv2_ext' is not defined ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gptj/modeling_gptj.py"", line 1124, in forward + transformer_outputs = self.transformer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gptj/modeling_gptj.py"", line 950, in forward + outputs = block( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gptj/modeling_gptj.py"", line 578, in forward + attn_outputs = self.attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gptj/modeling_gptj.py"", line 317, in forward + query = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mistral-7B-v0.1,mistralai/Mistral-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2-large,openai-community/gpt2-large,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1237.069824,2645.03296,0.0,1998.585856,1692.285952,s,10,0.19134716606140137,0.019134716606140138,0.0005608761432091296,0.018977791786193847,0.0197670597076416,0.02017293758392334,0.02049763988494873,"[0.02057881546020508, 0.0190994873046875, 0.0187042236328125, 0.018728607177734374, 0.01878009605407715, 0.018654111862182618, 0.01891535949707031, 0.019040224075317382, 0.019169376373291015, 0.019676864624023436]",tokens/s,13378.823698797409,kWh,2.1992317273112132e-07,1.2050741516561284e-07,6.735971662309277e-07,1.014027754127662e-06,tokens/kWh,252458573.2076231,MB,1237.069824,2645.03296,0.0,1998.585856,1740.085248,s,10,11.554657470703125,1.1554657470703125,0.013645969689330972,1.1534767456054689,1.1682131958007813,1.1769882507324219,1.1840082946777344,"[1.1857633056640624, 1.14386572265625, 1.1522501220703125, 1.1418011474609375, 1.154703369140625, 1.1461051025390625, 1.1383001708984375, 1.1644542236328126, 1.16626318359375, 1.161151123046875]",tokens/s,54.52346827219822,kWh,1.387793931927391e-05,7.604759108500891e-06,2.8986009894769086e-05,5.0468708322543894e-05,tokens/kWh,1248298.244475944,,s,629,11.705972766876219,0.0186104495498827,0.0023066301847454542,0.018160640716552736,0.01886699562072754,0.01908162498474121,0.03717550079345703,"[0.019216384887695313, 0.018964479446411133, 0.018840576171875, 0.01904947280883789, 0.01902387237548828, 0.019145727157592773, 0.01901568031311035, 0.018939903259277344, 0.018876415252685547, 0.018917375564575196, 0.019091455459594727, 0.019136512756347656, 0.018971647262573242, 0.018998271942138673, 0.019066879272460938, 0.018921472549438476, 0.018934783935546876, 0.019094528198242186, 0.019323904037475585, 0.019158016204833983, 0.01887027168273926, 0.01883955192565918, 0.01860095977783203, 0.019615743637084963, 0.019579904556274414, 0.019698720932006836, 0.018974687576293944, 0.018787328720092773, 0.01881292724609375, 0.01901055908203125, 0.018912256240844725, 0.018939903259277344, 0.018815999984741212, 0.01886617660522461, 0.018852863311767578, 0.018775039672851563, 0.0186746883392334, 0.018123775482177733, 0.018050048828125, 0.018131967544555663, 0.018062335968017578, 0.018153472900390624, 0.018135040283203126, 0.01808076858520508, 0.018112512588500978, 0.018164735794067383, 0.018568191528320312, 0.01880166435241699, 0.018711551666259766, 0.018769920349121092, 0.01878937530517578, 0.018946048736572265, 0.018766847610473633, 0.01879347229003906, 0.0188221435546875, 0.01882111930847168, 0.01923788833618164, 0.01900748825073242, 0.018765823364257812, 0.018397184371948243, 0.01823232078552246, 0.018239488601684572, 0.03753472137451172, 0.018603008270263673, 0.018795520782470702, 0.018242559432983398, 0.01817087936401367, 0.018142208099365235, 0.01823232078552246, 0.018128896713256838, 0.018149375915527344, 0.018166784286499024, 0.01822719955444336, 0.018189311981201172, 0.0182108154296875, 0.018174976348876954, 0.018280448913574218, 0.01822822380065918, 0.01816166305541992, 0.018155519485473632, 0.018177024841308592, 0.01824563217163086, 0.018111520767211915, 0.018137056350708006, 0.018149375915527344, 0.018100223541259765, 0.01813811111450195, 0.01783500862121582, 0.01787494468688965, 0.017894399642944335, 0.017953792572021485, 0.017885183334350584, 0.017896448135375977, 0.017854463577270507, 0.01788313674926758, 0.017912832260131836, 0.017934335708618163, 0.018101247787475586, 0.01818726348876953, 0.018156543731689453, 0.018149375915527344, 0.018177024841308592, 0.01805619239807129, 0.01822003173828125, 0.018223104476928712, 0.018168832778930662, 0.018167808532714845, 0.018589696884155273, 0.018256895065307616, 0.018077695846557617, 0.018156543731689453, 0.018137088775634767, 0.018282495498657226, 0.018156543731689453, 0.018117631912231445, 0.01825484848022461, 0.018134016036987305, 0.018223104476928712, 0.018164735794067383, 0.018197504043579102, 0.01816985511779785, 0.018124799728393554, 0.018155519485473632, 0.018290687561035156, 0.018130943298339842, 0.037168128967285156, 0.01818009567260742, 0.018239551544189454, 0.018205631256103517, 0.018103296279907227, 0.018289663314819335, 0.018159616470336915, 0.018160640716552736, 0.01822208023071289, 0.01824563217163086, 0.018258943557739257, 0.0182794246673584, 0.01820569610595703, 0.01816268730163574, 0.01822822380065918, 0.018748416900634765, 0.01879859161376953, 0.018307071685791015, 0.018050048828125, 0.01819340705871582, 0.01815449523925781, 0.01820569610595703, 0.01810534477233887, 0.0184268798828125, 0.018166784286499024, 0.018199552536010744, 0.018164735794067383, 0.01816268730163574, 0.018464767456054687, 0.018880512237548826, 0.01871670341491699, 0.01874940872192383, 0.0186562557220459, 0.018355199813842774, 0.018729984283447267, 0.018807807922363282, 0.01882009506225586, 0.018563072204589845, 0.018144256591796876, 0.01816985511779785, 0.018226175308227538, 0.018223104476928712, 0.01814630317687988, 0.018119680404663087, 0.018130943298339842, 0.018096128463745118, 0.018131967544555663, 0.018359296798706053, 0.018117631912231445, 0.018168832778930662, 0.018172927856445312, 0.018096128463745118, 0.018293760299682618, 0.01820057678222656, 0.018135040283203126, 0.018155519485473632, 0.018283519744873047, 0.01820057678222656, 0.018164735794067383, 0.01820364761352539, 0.018145280838012694, 0.01822412872314453, 0.01813811111450195, 0.03717836761474609, 0.01821388816833496, 0.018144256591796876, 0.018122751235961913, 0.018102272033691406, 0.018163711547851562, 0.018121728897094725, 0.018184192657470705, 0.018119680404663087, 0.01819545555114746, 0.01816166305541992, 0.018160640716552736, 0.018266111373901366, 0.01821696090698242, 0.018255872726440428, 0.018323455810546875, 0.018198528289794923, 0.01815449523925781, 0.018103296279907227, 0.018280448913574218, 0.018265087127685545, 0.018174976348876954, 0.018153472900390624, 0.018174976348876954, 0.018192384719848635, 0.018147327423095702, 0.018134016036987305, 0.018181119918823242, 0.018050048828125, 0.01806438446044922, 0.018141183853149414, 0.018076671600341796, 0.01815760040283203, 0.018163679122924804, 0.018155519485473632, 0.018151424407958985, 0.01803468894958496, 0.01807360076904297, 0.018167808532714845, 0.018008064270019532, 0.017787904739379884, 0.017830911636352538, 0.017772544860839845, 0.01799782371520996, 0.018382848739624022, 0.018126848220825196, 0.017991680145263672, 0.01817087936401367, 0.018077695846557617, 0.018139135360717772, 0.018092031478881835, 0.018158592224121094, 0.018059263229370116, 0.018089984893798827, 0.018041856765747072, 0.018061311721801757, 0.018103296279907227, 0.018142208099365235, 0.018017280578613282, 0.018050048828125, 0.018076671600341796, 0.01803468894958496, 0.017994752883911135, 0.03722649765014648, 0.018111488342285157, 0.01818623924255371, 0.017994752883911135, 0.01804800033569336, 0.01926246452331543, 0.019359743118286133, 0.01949286460876465, 0.01882316780090332, 0.01883033561706543, 0.018815999984741212, 0.019165184020996092, 0.018874368667602538, 0.01860915184020996, 0.01880166435241699, 0.018739200592041014, 0.018692096710205077, 0.018678783416748047, 0.018107391357421874, 0.018124799728393554, 0.018082815170288084, 0.018174976348876954, 0.018091007232666014, 0.018122751235961913, 0.018191360473632814, 0.018147327423095702, 0.018148351669311523, 0.018145280838012694, 0.01804287910461426, 0.018082815170288084, 0.017983488082885742, 0.01805721664428711, 0.018076671600341796, 0.018067455291748045, 0.018149375915527344, 0.018094079971313477, 0.018135040283203126, 0.01814630317687988, 0.018142208099365235, 0.018115583419799804, 0.018166784286499024, 0.018386943817138672, 0.019382272720336914, 0.018767871856689454, 0.018694143295288086, 0.01863270378112793, 0.01861427116394043, 0.018083839416503905, 0.018103296279907227, 0.018050048828125, 0.018113536834716795, 0.018058240890502928, 0.01802342414855957, 0.01777663993835449, 0.017921024322509766, 0.01782681655883789, 0.017921024322509766, 0.01846784019470215, 0.018112512588500978, 0.018089984893798827, 0.018061311721801757, 0.018089984893798827, 0.01805516815185547, 0.036992000579833983, 0.018264064788818358, 0.0181790714263916, 0.01810534477233887, 0.018128896713256838, 0.018123775482177733, 0.018157567977905274, 0.018098175048828127, 0.01805516815185547, 0.018114559173583983, 0.01809715270996094, 0.01816166305541992, 0.018075647354125975, 0.018110464096069336, 0.018122751235961913, 0.018165760040283203, 0.01822208023071289, 0.018057247161865235, 0.018113504409790038, 0.01807360076904297, 0.018062335968017578, 0.018144256591796876, 0.01813811111450195, 0.018101247787475586, 0.018135040283203126, 0.018324480056762696, 0.018190336227416993, 0.018036735534667968, 0.017916927337646483, 0.017898496627807618, 0.01784012794494629, 0.01798454475402832, 0.018193376541137694, 0.018103328704833985, 0.018072544097900392, 0.018150400161743165, 0.01800601577758789, 0.01804595184326172, 0.01846784019470215, 0.02028441619873047, 0.019355648040771483, 0.018916351318359375, 0.019009536743164062, 0.01843404769897461, 0.018092031478881835, 0.017987583160400392, 0.018111488342285157, 0.01802444839477539, 0.01803775978088379, 0.018012191772460936, 0.018046943664550782, 0.018084863662719726, 0.018102272033691406, 0.018140159606933593, 0.018076671600341796, 0.01803878402709961, 0.018139135360717772, 0.018066432952880858, 0.018126848220825196, 0.018110464096069336, 0.018114559173583983, 0.018098175048828127, 0.01814630317687988, 0.037294078826904296, 0.018145280838012694, 0.018086912155151368, 0.018075647354125975, 0.018165760040283203, 0.018132991790771484, 0.018043903350830077, 0.018018304824829103, 0.018028543472290038, 0.01806540870666504, 0.018144256591796876, 0.018074623107910158, 0.018058240890502928, 0.0180316162109375, 0.01807974433898926, 0.018182144165039063, 0.018156543731689453, 0.017967103958129883, 0.01810534477233887, 0.018052095413208007, 0.018083839416503905, 0.017984512329101563, 0.01803878402709961, 0.018317312240600587, 0.018141183853149414, 0.01800396728515625, 0.018159616470336915, 0.018051071166992186, 0.017992704391479493, 0.01800499153137207, 0.01804287910461426, 0.01803059196472168, 0.01802649688720703, 0.017954816818237306, 0.018076671600341796, 0.018121728897094725, 0.01807257652282715, 0.018082815170288084, 0.01803059196472168, 0.01807974433898926, 0.017958911895751953, 0.01796505546569824, 0.01797532844543457, 0.018025440216064455, 0.01803878402709961, 0.01806540870666504, 0.01796505546569824, 0.018125823974609375, 0.018075647354125975, 0.018061311721801757, 0.0180316162109375, 0.018134016036987305, 0.018086912155151368, 0.018164735794067383, 0.01799679946899414, 0.01802137565612793, 0.01804083251953125, 0.017947647094726564, 0.018076671600341796, 0.018101247787475586, 0.018081792831420897, 0.018067455291748045, 0.018050079345703126, 0.037448673248291015, 0.01804595184326172, 0.01804287910461426, 0.01805721664428711, 0.018019327163696287, 0.017979391098022462, 0.01803878402709961, 0.01813811111450195, 0.018076671600341796, 0.01804287910461426, 0.018136064529418947, 0.01821286392211914, 0.01808076858520508, 0.01781862449645996, 0.017942527770996093, 0.017855487823486327, 0.018158592224121094, 0.01843507194519043, 0.018691072463989256, 0.018387968063354493, 0.018655231475830078, 0.018695167541503906, 0.018689023971557618, 0.01859891128540039, 0.018722816467285155, 0.018726911544799805, 0.018397184371948243, 0.018044927597045898, 0.018075647354125975, 0.018089984893798827, 0.01805721664428711, 0.018367488861083983, 0.01881907272338867, 0.018697216033935548, 0.01864499282836914, 0.01866649627685547, 0.01862860870361328, 0.018646015167236327, 0.01884160041809082, 0.021174272537231444, 0.019122175216674805, 0.018735103607177735, 0.01868083190917969, 0.01863167953491211, 0.018770944595336913, 0.01869004821777344, 0.018700288772583007, 0.018790399551391602, 0.018677759170532226, 0.01881395149230957, 0.01878937530517578, 0.018729984283447267, 0.018126848220825196, 0.018069503784179687, 0.018150400161743165, 0.018163711547851562, 0.018404352188110353, 0.01885593605041504, 0.018689023971557618, 0.018748416900634765, 0.018749439239501953, 0.018803712844848632, 0.018762752532958983, 0.037664768218994144, 0.01887539291381836, 0.018889728546142577, 0.018763776779174804, 0.01877507209777832, 0.0187412166595459, 0.018119680404663087, 0.01802342414855957, 0.018107391357421874, 0.018082815170288084, 0.018150400161743165, 0.018117631912231445, 0.018062335968017578, 0.018276351928710938, 0.018740224838256835, 0.01885798454284668, 0.01875660705566406, 0.018753536224365236, 0.018559999465942383, 0.01843302345275879, 0.018131967544555663, 0.01803878402709961, 0.018724863052368163, 0.018746368408203123, 0.018697216033935548, 0.018694143295288086, 0.01867263984680176, 0.018733055114746093, 0.018939903259277344, 0.019005439758300782, 0.018803712844848632, 0.018717695236206054, 0.01846886444091797, 0.018082815170288084, 0.018060287475585936, 0.01808793640136719, 0.01844428825378418, 0.018759679794311524, 0.018736127853393555, 0.0185743350982666, 0.018044927597045898, 0.01803264045715332, 0.01802444839477539, 0.01799884796142578, 0.018070528030395508, 0.01820364761352539, 0.018120704650878908, 0.01862758445739746, 0.01864192008972168, 0.018712575912475587, 0.018655231475830078, 0.018743295669555664, 0.01866547203063965, 0.01861734390258789, 0.0187238712310791, 0.018577375411987306, 0.01866035270690918, 0.018686975479125977, 0.01861324882507324, 0.01904742431640625, 0.018710527420043945, 0.018672672271728516, 0.018756576538085937, 0.03872665786743164, 0.0188272647857666, 0.018716672897338867, 0.01861529541015625, 0.018856000900268555, 0.01869100761413574, 0.018774015426635742, 0.0186746883392334, 0.018679807662963867, 0.01840947151184082, 0.017886207580566405, 0.017796096801757814, 0.01823539161682129, 0.018374656677246092, 0.018529279708862305, 0.018464767456054687, 0.018569215774536133, 0.01862348747253418, 0.019160064697265625, 0.01885593605041504, 0.01883545684814453, 0.018778112411499022, 0.018763776779174804, 0.018713600158691408, 0.018767871856689454, 0.018744319915771485, 0.01897881507873535, 0.02040934371948242, 0.020281343460083007, 0.018932735443115235, 0.018964479446411133, 0.01883852767944336, 0.018106367111206053, 0.018100223541259765, 0.018060287475585936, 0.018084863662719726, 0.01822003173828125, 0.018050048828125, 0.018067455291748045, 0.01802444839477539, 0.018092031478881835, 0.0180633602142334, 0.018075647354125975, 0.018059263229370116, 0.01801215934753418, 0.018120704650878908, 0.018118656158447266, 0.018052095413208007, 0.018059263229370116, 0.01803264045715332, 0.01808076858520508, 0.018027519226074217, 0.018068479537963866, 0.018044927597045898, 0.018103296279907227, 0.018051071166992186, 0.018059263229370116, 0.018085887908935547, 0.018165760040283203, 0.018076671600341796, 0.018082815170288084, 0.018075647354125975, 0.018073631286621095]",tokens/s,53.73325331661872,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -7926,32 +6768,46 @@ NameError: name 'exlv2_ext' is not defined ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) +TypeError: DeciCoderAttention.forward() got an unexpected keyword argument 'cache_position' -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-32B,Qwen/Qwen1.5-32B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mistral-7B-v0.1,mistralai/Mistral-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -7961,32 +6817,56 @@ NameError: name 'exlv2_ext' is not defined ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 1200, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 976, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 718, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 325, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,r,r,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,r,r,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -8025,7 +6905,7 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949140-6ae044bc7df6be9e12190c3b;383dee7a-6c62-4ae2-99a1-7878e5cfbe54) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949133-1763ea6738638c21768845eb;c6347db2-66bb-45eb-b8b7-e60822dbdd0a) Repository Not Found for url: https://huggingface.co/r/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. @@ -8055,8 +6935,8 @@ Traceback (most recent call last): OSError: r is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-564M,facebook/xglm-564M,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,l,l,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -8064,28 +6944,69 @@ If this is a private repository, make sure to pass a token having permission to File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/l/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669491da-14392e250078240e4874a1fe;ce456542-069f-4140-ac2f-0547584442ec) + +Repository Not Found for url: https://huggingface.co/l/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation - cls._check_and_enable_flash_attn_2( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 - raise ValueError( -ValueError: XGLMForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmps7jy47cp/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + raise EnvironmentError( +OSError: l is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-2.7B,EleutherAI/gpt-neo-2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,a,a,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -8093,69 +7014,69 @@ ValueError: XGLMForCausalLM does not support Flash Attention 2.0 yet. Please req File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/a/resolve/main/config.json -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-410m,EleutherAI/pythia-410m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949186-2778934b2e9c92af5add50ad;2c178255-a962-4296-8157-6faa1fa7e578) + +Repository Not Found for url: https://huggingface.co/a/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + raise EnvironmentError( +OSError: a is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,0,0,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,1,1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -8167,7 +7088,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/0/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/1/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -8194,9 +7115,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694951a-2e63f503383e131173776bd3;a8610390-05ae-4e3e-bc7a-e7b44b00b464) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669495d8-6e7bc83278d01246445ae00e;c5c31fda-fd9f-42e7-9e41-3a985ee5d71a) -Repository Not Found for url: https://huggingface.co/0/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/1/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -8221,11 +7142,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: 0 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: 1 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-6B-nl,Salesforce/codegen-6B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-7b,huggyllama/llama-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -8235,26 +7156,56 @@ If this is a private repository, make sure to pass a token having permission to ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation - cls._check_and_enable_flash_attn_2( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 - raise ValueError( -ValueError: CodeGenForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpufwpg6aa/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 414, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-70b-hf,meta-llama/Llama-2-70b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-2.7b,EleutherAI/pythia-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -8264,39 +7215,58 @@ ValueError: CodeGenForCausalLM does not support Flash Attention 2.0 yet. Please ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 112.00 MiB. GPU + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward + outputs = self.gpt_neox( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward + outputs = layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward + attention_layer_outputs = self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 339, in forward + query, key, value, present = self._attn_projections_and_rope( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope + qkv = self.query_key_value(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,2,2,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,B,B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -8308,7 +7278,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/2/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/B/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -8335,9 +7305,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669493a7-189dd79b2f9f56bc4f380cc6;51481734-098e-4522-acd5-252a20c74930) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669493f7-2380cd24135617be1ae4dd2d;c2b5372d-44f8-49c6-9a7a-a9413a12d142) -Repository Not Found for url: https://huggingface.co/2/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/B/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -8362,11 +7332,70 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: 2 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: B is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,a,a,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-30b,huggyllama/llama-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 414, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,2,2,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -8378,7 +7407,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/a/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/2/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -8405,9 +7434,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949194-415dc2620a2075d5164260f2;7fb73872-7101-4af2-8b80-b131a0c919cb) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694939a-394731614e35532d646178ed;29d4ce01-bbb2-4bb4-87f8-d34ca42d88b0) -Repository Not Found for url: https://huggingface.co/a/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/2/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -8432,11 +7461,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: a is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: 2 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-350m,facebook/opt-350m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-350m,facebook/opt-350m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -8446,32 +7475,44 @@ If this is a private repository, make sure to pass a token having permission to ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 1118, in forward + outputs = self.model.decoder( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 836, in forward + inputs_embeds = self.project_in(inputs_embeds) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/phi-1_5,microsoft/phi-1_5,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-MoE-A2.7B,Qwen/Qwen1.5-MoE-A2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -8491,22 +7532,27 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3724, in from_pretrained + hf_quantizer.preprocess_model( + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 182, in preprocess_model + return self._process_model_before_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 85, in _process_model_before_weight_loading + model, has_been_replaced = replace_with_awq_linear( + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear + _, has_been_replaced = replace_with_awq_linear( + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear + _, has_been_replaced = replace_with_awq_linear( + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear + _, has_been_replaced = replace_with_awq_linear( + [Previous line repeated 1 more time] + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 166, in replace_with_awq_linear + model._modules[name] = target_cls( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 46, in __init__ + assert out_features % (32 // self.w_bit) == 0 +AssertionError -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-2.7b,facebook/opt-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-70B,meta-llama/Meta-Llama-3-70B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -8526,22 +7572,90 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/polyglot-ko-12.8b,EleutherAI/polyglot-ko-12.8b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward + outputs = self.gpt_neox( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward + outputs = layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward + attention_layer_outputs = self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 339, in forward + query, key, value, present = self._attn_projections_and_rope( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope + qkv = self.query_key_value(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-13b,huggyllama/llama-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-65b,huggyllama/llama-65b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -8561,22 +7675,29 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 86.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-7b,tiiuae/falcon-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-14B,Qwen/Qwen1.5-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -8584,32 +7705,187 @@ NameError: name 'exlv2_ext' is not defined File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code - answer = input( -EOFError: EOF when reading a line + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1221, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1023, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 763, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 349, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -During handling of the above exception, another exception occurred: +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-12b,stabilityai/stablelm-2-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 1268, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 1062, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 792, in forward + self_attn_output, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 560, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,8,8,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/8/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694928f-1be66f637da322ac444cb0f9;d74fbd72-54b4-41b2-b79b-99d9308e1104) + +Repository Not Found for url: https://huggingface.co/8/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. + +The above exception was the direct cause of the following exception: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights - self.create_no_weights_model() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model - meta_model = self.automodel_class.from_config(self.pretrained_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config - trust_remote_code = resolve_trust_remote_code( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code - raise ValueError( -ValueError: The repository for tiiuae/falcon-7b contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/tiiuae/falcon-7b. -Please pass the argument `trust_remote_code=True` to allow custom code to be run. + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + raise EnvironmentError( +OSError: 8 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-MoE-A2.7B,Qwen/Qwen1.5-MoE-A2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-8B,meta-llama/Meta-Llama-3-8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -8619,32 +7895,56 @@ Please pass the argument `trust_remote_code=True` to allow custom code to be run ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 414, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-7b,huggyllama/llama-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/rho-math-1b-v0.1,microsoft/rho-math-1b-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -8654,32 +7954,56 @@ NameError: name 'exlv2_ext' is not defined ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 414, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-70m,EleutherAI/pythia-70m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -8689,32 +8013,58 @@ NameError: name 'exlv2_ext' is not defined ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward + outputs = self.gpt_neox( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward + outputs = layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward + attention_layer_outputs = self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 339, in forward + query, key, value, present = self._attn_projections_and_rope( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope + qkv = self.query_key_value(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-2b,google/recurrentgemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,databricks/dbrx-base,databricks/dbrx-base,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -8726,7 +8076,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -8743,10 +8093,10 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-6694820f-6dfab0e854bcb2f92d82d8f0;ecfad464-772d-42ec-a5af-d26dbe85c88d) +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66947b5a-14378b9a30e3d0c35418818b;b3683f41-9fa5-4d56-9dfe-a678c491ca92) 403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json. +Cannot access content at: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json. If you are trying to create or update content,make sure you have a token with the `write` role. The above exception was the direct cause of the following exception: @@ -8785,11 +8135,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/recurrentgemma-2b is not the path to a directory containing a file named config.json. +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like databricks/dbrx-base is not the path to a directory containing a file named config.json. Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-30b,facebook/opt-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-2.7B,EleutherAI/gpt-neo-2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -8799,32 +8149,62 @@ Checkout your internet connection or see how to run the library in offline mode ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 970, in forward + transformer_outputs = self.transformer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 838, in forward + outputs = block( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 565, in forward + attn_outputs = self.attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 517, in forward + return self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 318, in forward + query = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-160m,EleutherAI/pythia-160m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-2.7b,facebook/opt-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -8834,32 +8214,56 @@ NameError: name 'exlv2_ext' is not defined ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 1118, in forward + outputs = self.model.decoder( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 884, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 525, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 292, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-7b,stabilityai/stablelm-base-alpha-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciLM-7B,Deci/DeciLM-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -8869,32 +8273,56 @@ NameError: name 'exlv2_ext' is not defined ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciLM-7B/c3c9f4226801dc0433f32aebffe0aac68ee2f051/transformers_v4_35_2__modeling_llama.py"", line 1034, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciLM-7B/c3c9f4226801dc0433f32aebffe0aac68ee2f051/modeling_decilm.py"", line 274, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciLM-7B/c3c9f4226801dc0433f32aebffe0aac68ee2f051/transformers_v4_35_2__modeling_llama.py"", line 672, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciLM-7B/c3c9f4226801dc0433f32aebffe0aac68ee2f051/modeling_decilm.py"", line 84, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,m,m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-7b,google/recurrentgemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -8906,7 +8334,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/m/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/google/recurrentgemma-7b/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -8933,9 +8361,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948c74-02b0fbca7e23d6547042e369;b3b8e0f4-923e-4889-ab00-5654001a7a3c) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948272-5ba0203a4f38e7e2422d20e0;37272a59-d7ff-496c-ab1f-986badf65d9c) -Repository Not Found for url: https://huggingface.co/m/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/google/recurrentgemma-7b/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -8960,46 +8388,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: m is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: google/recurrentgemma-7b is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-3b-4e1t,stabilityai/stablelm-3b-4e1t,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-125m,EleutherAI/gpt-neo-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -9009,33 +8402,62 @@ NameError: name 'exlv2_ext' is not defined ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 970, in forward + transformer_outputs = self.transformer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 838, in forward + outputs = block( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 565, in forward + attn_outputs = self.attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 517, in forward + return self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 318, in forward + query = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2,openai-community/gpt2,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1224.593408,1005.060096,0.0,358.612992,318.913024,s,23,0.170830846786499,0.007427428121152131,0.00024413026802978468,0.007357215881347657,0.0075946943283081055,0.007852940797805786,0.008269951295852663,"[0.008380415916442872, 0.00787830400466919, 0.007307871818542481, 0.007413631916046143, 0.007416895866394043, 0.0072780799865722655, 0.007253759860992431, 0.007340799808502197, 0.00735097599029541, 0.0072897601127624514, 0.007357215881347657, 0.007351200103759766, 0.007452095985412598, 0.007375872135162354, 0.007336959838867187, 0.007404831886291504, 0.007378367900848388, 0.007350815773010254, 0.007241919994354248, 0.007624671936035156, 0.007474783897399902, 0.00736736011505127, 0.007204256057739258]",tokens/s,34466.843141968995,kWh,8.354114192041346e-08,4.5776604383460934e-08,1.7923360244695143e-07,3.0855134875082585e-07,tokens/kWh,829683620.0406166,MB,1224.593408,1005.060096,0.0,358.612992,328.804864,s,23,10.12951983642578,0.44041390593155577,0.009542742855595688,0.4373620910644531,0.4437781982421875,0.45109108581542967,0.474916849975586,"[0.4814091796875, 0.45189859008789063, 0.4373620910644531, 0.43599356079101564, 0.4377264404296875, 0.4396331787109375, 0.4402783508300781, 0.43823895263671875, 0.43630859375, 0.4375812683105469, 0.43703091430664065, 0.43696951293945313, 0.4364114990234375, 0.43596710205078126, 0.43623919677734374, 0.43678070068359376, 0.43731332397460937, 0.43723104858398437, 0.4438235473632812, 0.44186441040039065, 0.4435968017578125, 0.4382613220214844, 0.4316002502441406]",tokens/s,143.04725430216266,kWh,5.045933914928732e-06,2.7649476769741185e-06,8.713782771215293e-06,1.6524664363118138e-05,tokens/kWh,3812482.8810811713,,s,1448,10.284382205963144,0.007102473899145811,0.0009630348618537469,0.006931456089019775,0.00721827836036682,0.007574528217315674,0.014597724084854125,"[0.007964672088623047, 0.00796569585800171, 0.007897088050842285, 0.00785203218460083, 0.007930880069732665, 0.007737343788146973, 0.007622655868530274, 0.00760422420501709, 0.007505919933319092, 0.0074967041015625, 0.0075335679054260255, 0.007648255825042725, 0.007678976058959961, 0.007658495903015137, 0.007508992195129394, 0.007552000045776367, 0.007705599784851074, 0.00764415979385376, 0.007676928043365478, 0.007573503971099854, 0.007642111778259277, 0.007664639949798584, 0.00765337610244751, 0.0074629120826721195, 0.007479296207427978, 0.007540736198425293, 0.007504896163940429, 0.007546879768371582, 0.007592959880828858, 0.007724031925201416, 0.007574528217315674, 0.007631872177124023, 0.007477248191833496, 0.007482367992401123, 0.007755775928497314, 0.0074967041015625, 0.007511040210723877, 0.007269375801086426, 0.007320576190948487, 0.007468031883239746, 0.007742464065551758, 0.00800051212310791, 0.007601151943206787, 0.007601151943206787, 0.008147968292236327, 0.008087552070617676, 0.007609344005584716, 0.007886847972869874, 0.007772160053253174, 0.007862271785736084, 0.0077844481468200685, 0.00765235185623169, 0.007622655868530274, 0.007872511863708496, 0.007607295989990235, 0.007804927825927735, 0.007388160228729248, 0.007648255825042725, 0.007409664154052734, 0.007129087924957276, 0.007120895862579346, 0.007165952205657959, 0.01587097644805908, 0.007638016223907471, 0.007574528217315674, 0.007745535850524903, 0.007613440036773681, 0.007448575973510742, 0.00725708818435669, 0.00749567985534668, 0.007291903972625732, 0.007451648235321045, 0.007557119846343994, 0.007046144008636474, 0.007103487968444824, 0.006964223861694336, 0.007108607769012451, 0.007080959796905518, 0.007032832145690918, 0.006998047828674316, 0.007235551834106445, 0.006897664070129395, 0.007023615837097168, 0.007216127872467041, 0.007019552230834961, 0.006999008178710938, 0.007031807899475098, 0.007042079925537109, 0.006928351879119873, 0.007155712127685547, 0.006977536201477051, 0.007123968124389648, 0.006990848064422607, 0.007591936111450195, 0.007071743965148926, 0.006994944095611572, 0.006910975933074951, 0.0069928960800170895, 0.007258111953735351, 0.006973440170288086, 0.007234591960906983, 0.0069836478233337405, 0.007014400005340577, 0.006899712085723877, 0.007013376235961914, 0.007256063938140869, 0.006994944095611572, 0.007252992153167725, 0.007035903930664063, 0.007158783912658692, 0.006909952163696289, 0.006960127830505371, 0.0070594558715820314, 0.007104512214660645, 0.006937600135803222, 0.0069632000923156735, 0.0069324798583984375, 0.007048192024230957, 0.00692633581161499, 0.00800153636932373, 0.007895040035247802, 0.007285759925842285, 0.007116799831390381, 0.00709119987487793, 0.007049215793609619, 0.01459609603881836, 0.00693555212020874, 0.006933504104614257, 0.006979584217071533, 0.006875135898590088, 0.00694271993637085, 0.006948863983154297, 0.006976511955261231, 0.006959104061126709, 0.0069283838272094726, 0.00693452787399292, 0.006937600135803222, 0.006903808116912841, 0.006919167995452881, 0.0069283838272094726, 0.006905856132507324, 0.007003136157989502, 0.007137279987335205, 0.006895616054534912, 0.006892543792724609, 0.0068986878395080565, 0.006917119979858399, 0.00692633581161499, 0.006939648151397705, 0.00692633581161499, 0.006933504104614257, 0.00690176010131836, 0.006895616054534912, 0.006918144226074219, 0.00692633581161499, 0.0068986878395080565, 0.006986752033233643, 0.006941696166992187, 0.00695091199874878, 0.0068853759765625, 0.0069324798583984375, 0.006906879901885986, 0.006952960014343262, 0.006914048194885254, 0.00693555212020874, 0.00689356803894043, 0.006964223861694336, 0.006908927917480469, 0.006937600135803222, 0.00693555212020874, 0.007006207942962647, 0.006982656002044678, 0.007010303974151612, 0.006971392154693603, 0.006910975933074951, 0.006913023948669434, 0.006918144226074219, 0.006919167995452881, 0.006913023948669434, 0.006947840213775635, 0.006929408073425293, 0.006910975933074951, 0.0069027838706970214, 0.006880256175994873, 0.006883327960968018, 0.0069283838272094726, 0.007147520065307617, 0.006989823818206787, 0.014668800354003907, 0.006913023948669434, 0.00693452787399292, 0.006882304191589355, 0.00694374418258667, 0.006876160144805908, 0.006906879901885986, 0.006904831886291504, 0.0068884482383728025, 0.006895616054534912, 0.006920191764831543, 0.006875135898590088, 0.006978559970855713, 0.006938623905181885, 0.006918144226074219, 0.007023615837097168, 0.006938623905181885, 0.006894591808319092, 0.006882304191589355, 0.006928415775299073, 0.006888415813446045, 0.006894591808319092, 0.006958079814910889, 0.006945792198181152, 0.006919167995452881, 0.006920191764831543, 0.006819839954376221, 0.006814720153808594, 0.006752255916595459, 0.006714367866516113, 0.006791168212890625, 0.00672870397567749, 0.0067870721817016606, 0.006815743923187256, 0.006841343879699707, 0.006661119937896728, 0.00682700777053833, 0.0067348480224609375, 0.006766592025756836, 0.0067870721817016606, 0.006717440128326416, 0.006973440170288086, 0.007019519805908203, 0.006986752033233643, 0.007194623947143554, 0.006993919849395752, 0.0069632000923156735, 0.006990848064422607, 0.007023615837097168, 0.006989823818206787, 0.006961152076721191, 0.007007232189178467, 0.006951935768127441, 0.007015423774719238, 0.006973440170288086, 0.006993919849395752, 0.006976511955261231, 0.0072765440940856935, 0.006922239780426025, 0.007046144008636474, 0.006909952163696289, 0.007103487968444824, 0.006964223861694336, 0.014816287994384766, 0.0069242558479309085, 0.007008255958557129, 0.006899712085723877, 0.006957056045532227, 0.006952960014343262, 0.006903808116912841, 0.007002111911773682, 0.007018496036529541, 0.0069847040176391605, 0.007208960056304932, 0.006906879901885986, 0.007000127792358399, 0.006973375797271728, 0.006986783981323242, 0.007034848213195801, 0.006924287796020508, 0.006998015880584717, 0.006948863983154297, 0.00688640022277832, 0.00694374418258667, 0.006968319892883301, 0.006874112129211426, 0.006914048194885254, 0.00687718391418457, 0.006922239780426025, 0.00687820816040039, 0.0068986878395080565, 0.006887423992156983, 0.006941696166992187, 0.006927360057830811, 0.006922239780426025, 0.006933504104614257, 0.006924287796020508, 0.006929408073425293, 0.00690176010131836, 0.006960127830505371, 0.006919167995452881, 0.006922239780426025, 0.006909952163696289, 0.006914048194885254, 0.006906879901885986, 0.00694374418258667, 0.006897664070129395, 0.007015423774719238, 0.006918144226074219, 0.006923264026641846, 0.006927360057830811, 0.00693555212020874, 0.006977536201477051, 0.006917119979858399, 0.006937600135803222, 0.0069212160110473635, 0.00692633581161499, 0.006949888229370117, 0.006940671920776367, 0.006956031799316406, 0.006988800048828125, 0.0069283838272094726, 0.006905856132507324, 0.006929408073425293, 0.006905888080596924, 0.006922207832336426, 0.014533632278442383, 0.006973440170288086, 0.006919167995452881, 0.006920191764831543, 0.006881279945373535, 0.006919167995452881, 0.006936575889587402, 0.006895616054534912, 0.006916096210479736, 0.006924287796020508, 0.006922239780426025, 0.006907904148101806, 0.006941696166992187, 0.006944767951965332, 0.007005184173583984, 0.006919167995452881, 0.00692633581161499, 0.00687820816040039, 0.0069324798583984375, 0.006889472007751465, 0.006889472007751465, 0.007050240039825439, 0.00713318395614624, 0.007243775844573975, 0.007284736156463623, 0.0071905279159545895, 0.007258111953735351, 0.007041024208068848, 0.006989823818206787, 0.007035903930664063, 0.007030784130096435, 0.0069918718338012695, 0.006993919849395752, 0.006941696166992187, 0.0069253120422363285, 0.006946815967559815, 0.006966271877288818, 0.006931456089019775, 0.007050240039825439, 0.006999040126800537, 0.006977536201477051, 0.006973440170288086, 0.006953983783721924, 0.006923264026641846, 0.006951935768127441, 0.006907904148101806, 0.007014431953430176, 0.006917088031768799, 0.006968319892883301, 0.006927360057830811, 0.006930431842803955, 0.00694271993637085, 0.006913023948669434, 0.007008255958557129, 0.006936575889587402, 0.00692633581161499, 0.006958079814910889, 0.007015423774719238, 0.006990848064422607, 0.006922239780426025, 0.00692633581161499, 0.00693452787399292, 0.007012351989746094, 0.014345215797424317, 0.00676966381072998, 0.006661119937896728, 0.0067717118263244626, 0.006789120197296142, 0.006773759841918945, 0.00672051191329956, 0.006830080032348633, 0.006714367866516113, 0.006793216228485107, 0.006797311782836914, 0.00676358413696289, 0.0067491202354431155, 0.006756351947784424, 0.006776832103729248, 0.006715392112731934, 0.006752255916595459, 0.007037951946258545, 0.0069959678649902345, 0.006970367908477783, 0.00693555212020874, 0.006985727787017822, 0.0073062400817871095, 0.006953983783721924, 0.00690176010131836, 0.007269375801086426, 0.006917119979858399, 0.006968319892883301, 0.007024640083312988, 0.007193600177764893, 0.007230463981628418, 0.006991936206817627, 0.007226304054260254, 0.006900735855102539, 0.007223296165466309, 0.0069970240592956544, 0.006896607875823975, 0.007322624206542969, 0.007062528133392334, 0.006974463939666748, 0.00688640022277832, 0.007178239822387696, 0.0069621758460998535, 0.007023615837097168, 0.0069212160110473635, 0.007299071788787842, 0.0071833600997924804, 0.007261184215545655, 0.007209983825683594, 0.007198719978332519, 0.007049215793609619, 0.0069959678649902345, 0.007003136157989502, 0.007105535984039306, 0.007074816226959229, 0.006998015880584717, 0.0069918718338012695, 0.00690176010131836, 0.006965248107910156, 0.007762944221496582, 0.006952960014343262, 0.006976511955261231, 0.0069202561378479, 0.01471072006225586, 0.0072724480628967286, 0.006916096210479736, 0.006939648151397705, 0.006899712085723877, 0.007030784130096435, 0.006989823818206787, 0.006977536201477051, 0.007060480117797851, 0.0072120318412780765, 0.006953983783721924, 0.006909952163696289, 0.006884352207183838, 0.006938623905181885, 0.006926400184631348, 0.00695084810256958, 0.006960127830505371, 0.006939648151397705, 0.0068853759765625, 0.006904831886291504, 0.006896639823913574, 0.006917119979858399, 0.006908959865570068, 0.006914015769958496, 0.006940671920776367, 0.006941696166992187, 0.006894591808319092, 0.006892543792724609, 0.007236608028411865, 0.007029759883880615, 0.006912000179290771, 0.006895679950714112, 0.006928319931030273, 0.006906879901885986, 0.006958079814910889, 0.006897664070129395, 0.006916096210479736, 0.006875167846679688, 0.006910943984985351, 0.00690176010131836, 0.00689356803894043, 0.0069027838706970214, 0.007012351989746094, 0.006970367908477783, 0.006946879863739014, 0.006910912036895752, 0.006938623905181885, 0.006899712085723877, 0.0069028158187866215, 0.006964191913604736, 0.006917119979858399, 0.006930431842803955, 0.006939648151397705, 0.0070594558715820314, 0.006999040126800537, 0.006949888229370117, 0.00695091199874878, 0.007007232189178467, 0.006937600135803222, 0.006905856132507324, 0.006920191764831543, 0.006880256175994873, 0.00692633581161499, 0.014599167823791503, 0.0069253120422363285, 0.006918144226074219, 0.006918144226074219, 0.006866943836212158, 0.006870016098022461, 0.00694374418258667, 0.0069816322326660156, 0.006914048194885254, 0.006931456089019775, 0.006946815967559815, 0.006905856132507324, 0.006940671920776367, 0.006916096210479736, 0.007143424034118652, 0.006927360057830811, 0.006937600135803222, 0.006957056045532227, 0.006896639823913574, 0.006907904148101806, 0.006887423992156983, 0.006913023948669434, 0.006900735855102539, 0.006895616054534912, 0.006890495777130127, 0.0068915200233459475, 0.006884352207183838, 0.0069324798583984375, 0.006916096210479736, 0.006897664070129395, 0.006910975933074951, 0.006903808116912841, 0.00693452787399292, 0.007013376235961914, 0.00692633581161499, 0.006889472007751465, 0.006912000179290771, 0.0068986878395080565, 0.006977536201477051, 0.006904895782470703, 0.006909887790679931, 0.006899712085723877, 0.006912000179290771, 0.006887423992156983, 0.006910975933074951, 0.006879231929779053, 0.006884352207183838, 0.0068915200233459475, 0.006903808116912841, 0.006946815967559815, 0.006875135898590088, 0.006924287796020508, 0.006918144226074219, 0.006905856132507324, 0.006973440170288086, 0.006930431842803955, 0.006915071964263916, 0.00691206407546997, 0.007011263847351074, 0.0069212160110473635, 0.006913023948669434, 0.006920191764831543, 0.006917119979858399, 0.014561280250549317, 0.006904831886291504, 0.0069283838272094726, 0.006930431842803955, 0.006904831886291504, 0.006907904148101806, 0.006908927917480469, 0.006931456089019775, 0.0069283838272094726, 0.006903808116912841, 0.006924287796020508, 0.006895616054534912, 0.006883327960968018, 0.007070720195770264, 0.006931456089019775, 0.006934559822082519, 0.006951903820037842, 0.007005184173583984, 0.0070225920677185055, 0.006919167995452881, 0.006883327960968018, 0.006973440170288086, 0.006927360057830811, 0.006957056045532227, 0.006895616054534912, 0.006903808116912841, 0.007022624015808106, 0.007080927848815918, 0.006919167995452881, 0.006929408073425293, 0.006917119979858399, 0.006916096210479736, 0.006899712085723877, 0.006899712085723877, 0.006895616054534912, 0.006917119979858399, 0.006946815967559815, 0.006915071964263916, 0.006927360057830811, 0.006884352207183838, 0.006908927917480469, 0.00687820816040039, 0.006930431842803955, 0.006919167995452881, 0.006918144226074219, 0.007233535766601563, 0.007015423774719238, 0.006924287796020508, 0.006957056045532227, 0.0069253120422363285, 0.006894591808319092, 0.006938623905181885, 0.006927360057830811, 0.006912000179290771, 0.006912000179290771, 0.006947840213775635, 0.007037951946258545, 0.006979584217071533, 0.006904831886291504, 0.006974463939666748, 0.006968319892883301, 0.006972415924072266, 0.006949888229370117, 0.014623744010925293, 0.006917119979858399, 0.006960127830505371, 0.006922239780426025, 0.0069283838272094726, 0.00698367977142334, 0.0068986878395080565, 0.006946815967559815, 0.006912000179290771, 0.0069027838706970214, 0.00688640022277832, 0.0069324798583984375, 0.006915071964263916, 0.00689356803894043, 0.006929408073425293, 0.006899712085723877, 0.006931456089019775, 0.006884352207183838, 0.006897664070129395, 0.006930431842803955, 0.006949888229370117, 0.006898752212524414, 0.006896575927734375, 0.006960127830505371, 0.006882304191589355, 0.006930431842803955, 0.006897664070129395, 0.006989823818206787, 0.006908927917480469, 0.006970367908477783, 0.007172095775604248, 0.007028736114501953, 0.006956031799316406, 0.00694374418258667, 0.006889472007751465, 0.0068915200233459475, 0.006998015880584717, 0.006939648151397705, 0.0069283838272094726, 0.006924352169036865, 0.006933440208435058, 0.0069253120422363285, 0.006907904148101806, 0.007010303974151612, 0.006948863983154297, 0.006965248107910156, 0.0069324798583984375, 0.006885407924652099, 0.006927328109741211, 0.006943808078765869, 0.006981567859649658, 0.006958079814910889, 0.006923295974731445, 0.006906847953796386, 0.00693452787399292, 0.0068986878395080565, 0.006922239780426025, 0.006908927917480469, 0.006931456089019775, 0.006900735855102539, 0.006931456089019775, 0.006889472007751465, 0.006872096061706543, 0.01465238380432129, 0.006907904148101806, 0.006927360057830811, 0.006946815967559815, 0.006900735855102539, 0.006948863983154297, 0.006927360057830811, 0.006892543792724609, 0.006960127830505371, 0.006889503955841064, 0.00689353609085083, 0.0069621758460998535, 0.006900735855102539, 0.006875135898590088, 0.006910975933074951, 0.006908927917480469, 0.006912000179290771, 0.006855679988861084, 0.006907904148101806, 0.007006207942962647, 0.006874112129211426, 0.006908927917480469, 0.006940671920776367, 0.006881279945373535, 0.00693452787399292, 0.0068986878395080565, 0.006946815967559815, 0.006880256175994873, 0.00688640022277832, 0.006918144226074219, 0.0069283838272094726, 0.0068915200233459475, 0.00698367977142334, 0.0069283838272094726, 0.006909952163696289, 0.007021567821502686, 0.006881279945373535, 0.0070522880554199216, 0.0069324798583984375, 0.00693555212020874, 0.006896639823913574, 0.006949920177459717, 0.006969312191009522, 0.006952960014343262, 0.006909952163696289, 0.006976511955261231, 0.0068853759765625, 0.006871039867401123, 0.006940671920776367, 0.006964223861694336, 0.006941696166992187, 0.006859776020050049, 0.006858751773834228, 0.006897664070129395, 0.00692633581161499, 0.006903808116912841, 0.006887423992156983, 0.006958079814910889, 0.006865920066833496, 0.006944767951965332, 0.007127039909362793, 0.00709119987487793, 0.007139328002929687, 0.014806015968322754, 0.006964223861694336, 0.00694271993637085, 0.006897664070129395, 0.00694271993637085, 0.006931456089019775, 0.0069110398292541505, 0.006891456127166748, 0.006899712085723877, 0.006905856132507324, 0.0069027838706970214, 0.006922239780426025, 0.006948863983154297, 0.00690176010131836, 0.006965248107910156, 0.00694271993637085, 0.006922304153442383, 0.006911935806274414, 0.006879231929779053, 0.007000063896179199, 0.007001088142395019, 0.006974463939666748, 0.006907904148101806, 0.006933504104614257, 0.00693452787399292, 0.006912000179290771, 0.006887423992156983, 0.00692633581161499, 0.006903808116912841, 0.006927360057830811, 0.006933504104614257, 0.006930431842803955, 0.006933504104614257, 0.0069253120422363285, 0.006906879901885986, 0.00693452787399292, 0.007009280204772949, 0.0068915200233459475, 0.006912000179290771, 0.006920191764831543, 0.006969344139099121, 0.006940671920776367, 0.006894591808319092, 0.006872064113616944, 0.006859776020050049, 0.0069253120422363285, 0.006975488185882568, 0.007011328220367432, 0.006889472007751465, 0.006876160144805908, 0.00688643217086792, 0.006930399894714356, 0.006944767951965332, 0.006916096210479736, 0.006895616054534912, 0.006900735855102539, 0.006912000179290771, 0.0068986878395080565, 0.006919167995452881, 0.00687718391418457, 0.006874112129211426, 0.0068915200233459475, 0.006866943836212158, 0.014652416229248047, 0.0069212160110473635, 0.006944767951965332, 0.00687718391418457, 0.0069642882347106935, 0.006937535762786865, 0.006914048194885254, 0.0069212160110473635, 0.006927360057830811, 0.0069253120422363285, 0.006930431842803955, 0.006933504104614257, 0.006915103912353515, 0.0069283838272094726, 0.006927328109741211, 0.006971392154693603, 0.006904831886291504, 0.006937600135803222, 0.006914048194885254, 0.006896639823913574, 0.00689356803894043, 0.006919167995452881, 0.006933504104614257, 0.006907904148101806, 0.0068689918518066405, 0.006903808116912841, 0.007013376235961914, 0.006936575889587402, 0.006941696166992187, 0.006883359909057617, 0.006904799938201905, 0.00687718391418457, 0.00688643217086792, 0.006876128196716309, 0.006919167995452881, 0.006908927917480469, 0.0068925762176513675, 0.0069201598167419436, 0.006894591808319092, 0.0068689918518066405, 0.006906879901885986, 0.006959104061126709, 0.006904831886291504, 0.006931488037109375, 0.0068873920440673825, 0.006906879901885986, 0.006896671772003174, 0.006886367797851563, 0.006938623905181885, 0.00687820816040039, 0.00687718391418457, 0.006907904148101806, 0.006998015880584717, 0.0069027838706970214, 0.006923264026641846, 0.006890495777130127, 0.0068986878395080565, 0.006960127830505371, 0.0069027838706970214, 0.0069212160110473635, 0.0068884482383728025, 0.006894591808319092, 0.006938623905181885, 0.014593024253845215, 0.006933504104614257, 0.006898719787597657, 0.0069242558479309085, 0.006897664070129395, 0.006896639823913574, 0.0069253120422363285, 0.006961152076721191, 0.006929408073425293, 0.006920191764831543, 0.006914048194885254, 0.0069283838272094726, 0.0068915200233459475, 0.006884352207183838, 0.006931456089019775, 0.006946815967559815, 0.0069027838706970214, 0.006856704235076904, 0.0069253120422363285, 0.0069212160110473635, 0.006968319892883301, 0.006905856132507324, 0.006894591808319092, 0.006916096210479736, 0.006867968082427979, 0.0069324798583984375, 0.006917119979858399, 0.006860799789428711, 0.007000063896179199, 0.007016448020935059, 0.007054336071014404, 0.006895679950714112, 0.006895552158355713, 0.006907904148101806, 0.0069283838272094726, 0.006920191764831543, 0.006859776020050049, 0.007019519805908203, 0.006895616054534912, 0.006855679988861084, 0.006979584217071533, 0.006900735855102539, 0.006946815967559815, 0.006892543792724609, 0.006904831886291504, 0.006873087882995605, 0.006938623905181885, 0.006903808116912841, 0.006917119979858399, 0.006920191764831543, 0.006860799789428711, 0.006915071964263916, 0.006945792198181152, 0.006906879901885986, 0.006913023948669434, 0.0068884482383728025, 0.006949888229370117, 0.006906879901885986, 0.007002111911773682, 0.006951935768127441, 0.006909952163696289, 0.0069027838706970214, 0.006880256175994873, 0.014742527961730957, 0.006971392154693603, 0.006909952163696289, 0.006938623905181885, 0.0068884482383728025, 0.006948863983154297, 0.006922239780426025, 0.006908927917480469, 0.0069283838272094726, 0.006914048194885254, 0.00687820816040039, 0.006920191764831543, 0.0068884482383728025, 0.006875135898590088, 0.006957056045532227, 0.0069212160110473635, 0.00693452787399292, 0.006905856132507324, 0.006978559970855713, 0.006904831886291504, 0.0069253120422363285, 0.006929408073425293, 0.006948863983154297, 0.006897664070129395, 0.006883327960968018, 0.00692633581161499, 0.006916096210479736, 0.006927360057830811, 0.007006207942962647, 0.006929408073425293, 0.0069212160110473635, 0.006900735855102539, 0.0069253120422363285, 0.006931456089019775, 0.006907904148101806, 0.00709939193725586, 0.006915071964263916, 0.00694374418258667, 0.006969344139099121, 0.006910975933074951, 0.006994944095611572, 0.006936575889587402, 0.0069069118499755855, 0.006930399894714356, 0.006910975933074951, 0.0069253120422363285, 0.00690176010131836, 0.00689356803894043, 0.006899712085723877, 0.0068853759765625, 0.006951935768127441, 0.006900735855102539, 0.006927360057830811, 0.006890495777130127, 0.0068915200233459475, 0.0069027838706970214, 0.006995999813079834, 0.006994912147521973, 0.006920191764831543, 0.0069324798583984375, 0.006895616054534912, 0.0069550080299377445, 0.006908927917480469, 0.014665727615356445, 0.006914048194885254, 0.006918144226074219, 0.006918144226074219, 0.006912000179290771, 0.00694374418258667, 0.00690176010131836, 0.006952960014343262, 0.006883327960968018, 0.006876160144805908, 0.006899712085723877, 0.006956031799316406, 0.006949888229370117, 0.006945792198181152, 0.0069253120422363285, 0.006944767951965332, 0.006945792198181152, 0.006855679988861084, 0.006905856132507324, 0.006890495777130127, 0.006905856132507324, 0.0069027838706970214, 0.006953983783721924, 0.006895616054534912, 0.007087103843688965, 0.007011328220367432, 0.006944767951965332, 0.0069253120422363285, 0.007228415966033935, 0.006970367908477783, 0.00694271993637085, 0.006924287796020508, 0.0069959678649902345, 0.007029759883880615, 0.006946815967559815, 0.006916096210479736, 0.0068915200233459475, 0.006931456089019775, 0.0068915200233459475, 0.006907904148101806, 0.006862847805023193, 0.006905856132507324, 0.006903808116912841, 0.006897664070129395, 0.006985727787017822, 0.0068986878395080565, 0.006974463939666748, 0.007048192024230957, 0.006961152076721191, 0.00692633581161499, 0.006879231929779053, 0.0068853759765625, 0.006927360057830811, 0.0069283838272094726, 0.006991936206817627, 0.006887360095977783, 0.006966271877288818, 0.006919167995452881, 0.006979584217071533, 0.006908927917480469, 0.006952960014343262, 0.006882304191589355, 0.006916096210479736, 0.014645248413085938, 0.006903808116912841, 0.0069550080299377445, 0.006904831886291504, 0.006919167995452881, 0.006909952163696289, 0.00693452787399292, 0.006914048194885254, 0.006996992111206054, 0.006957056045532227, 0.006909952163696289, 0.006961152076721191, 0.006930431842803955, 0.00694374418258667, 0.006899712085723877, 0.007104512214660645, 0.006967296123504638, 0.0068915200233459475, 0.006910975933074951, 0.006908927917480469, 0.007009280204772949, 0.006941696166992187, 0.006906879901885986, 0.006910975933074951, 0.006908927917480469, 0.006881279945373535, 0.006944767951965332, 0.0070225920677185055, 0.007060480117797851, 0.006876160144805908, 0.006990848064422607, 0.006943808078765869, 0.006904767990112305, 0.006899712085723877, 0.006931456089019775, 0.006919167995452881, 0.006939648151397705, 0.006909952163696289, 0.0069325118064880375, 0.006895584106445312, 0.006896639823913574, 0.006879231929779053, 0.00690176010131836, 0.006894591808319092, 0.0068884482383728025, 0.006903808116912841, 0.006913087844848633, 0.006928319931030273, 0.006899712085723877, 0.006903840065002441, 0.0069242558479309085, 0.0068915200233459475, 0.006914048194885254, 0.006912000179290771, 0.006933504104614257, 0.006919167995452881, 0.006971392154693603, 0.007261184215545655, 0.006969344139099121, 0.006930431842803955, 0.006971392154693603, 0.006887423992156983, 0.006945792198181152, 0.014636063575744629, 0.007252960205078125, 0.007076863765716553, 0.007001088142395019, 0.006970367908477783, 0.006974463939666748, 0.006895616054534912, 0.0069847040176391605, 0.006874112129211426, 0.0070522880554199216, 0.0069263682365417484, 0.007037919998168945, 0.006966271877288818, 0.007018496036529541, 0.007205887794494629, 0.006953983783721924, 0.0069959678649902345, 0.00704307222366333, 0.00689356803894043, 0.006999040126800537, 0.006931456089019775, 0.0070225920677185055, 0.006976511955261231, 0.00693452787399292, 0.007004159927368164, 0.007181312084197998, 0.006958079814910889, 0.006990848064422607, 0.006975488185882568, 0.006904831886291504, 0.007112703800201416, 0.007269375801086426, 0.0069632000923156735, 0.006927360057830811, 0.00698473596572876, 0.006968287944793701, 0.006958079814910889, 0.007260159969329834, 0.007002111911773682, 0.006919167995452881, 0.006956031799316406, 0.007010303974151612, 0.006985727787017822, 0.007192575931549072, 0.006986752033233643, 0.007312384128570557, 0.007241727828979493, 0.007263232231140137, 0.007411712169647216, 0.007120895862579346, 0.007129087924957276, 0.007027711868286133, 0.007016448020935059, 0.00725708818435669, 0.006986752033233643, 0.007013376235961914, 0.006919167995452881, 0.007062528133392334, 0.007166975975036621, 0.007005184173583984, 0.007010303974151612, 0.007048192024230957, 0.00693452787399292, 0.015050751686096191, 0.006931456089019775, 0.007106560230255127, 0.007230463981628418, 0.007049215793609619, 0.006980607986450196, 0.006979584217071533, 0.0069621758460998535, 0.006921279907226563, 0.007070655822753906, 0.007021567821502686, 0.006990880012512207, 0.0069836478233337405, 0.007192575931549072, 0.007269375801086426, 0.006907904148101806, 0.007000063896179199, 0.006956031799316406, 0.0068915200233459475, 0.006993919849395752, 0.006939648151397705, 0.0068915200233459475, 0.006939648151397705, 0.006964223861694336, 0.006922239780426025, 0.007088128089904785, 0.006985727787017822, 0.00687820816040039, 0.006965248107910156, 0.006884352207183838, 0.007039999961853028, 0.00694271993637085, 0.007050240039825439, 0.006924287796020508, 0.006986752033233643, 0.007234560012817383, 0.007004159927368164, 0.007000063896179199, 0.006998015880584717, 0.0069550080299377445, 0.006915071964263916, 0.007016448020935059, 0.006907904148101806, 0.006964223861694336, 0.0069918718338012695, 0.006897664070129395, 0.00707583999633789, 0.006890495777130127, 0.007128064155578613, 0.007211040019989014, 0.006999008178710938, 0.006974463939666748, 0.006976511955261231, 0.006882304191589355, 0.006985727787017822, 0.00693555212020874, 0.00790015983581543, 0.007143424034118652, 0.006940671920776367, 0.0069632000923156735, 0.006894591808319092, 0.0069816322326660156, 0.0068915200233459475, 0.014715904235839844, 0.00690176010131836, 0.006988800048828125, 0.006951935768127441, 0.006908927917480469, 0.006919167995452881, 0.00688640022277832, 0.0069212160110473635, 0.0068884482383728025, 0.006951935768127441, 0.006890495777130127, 0.0068689918518066405, 0.006906879901885986, 0.007001120090484619, 0.006945759773254395, 0.006952960014343262, 0.0069918718338012695, 0.006864895820617676, 0.006909952163696289, 0.006866943836212158, 0.006892543792724609, 0.006919167995452881, 0.0070348801612854, 0.0070563840866088865, 0.0070052480697631835, 0.006940608024597168, 0.006910975933074951, 0.006906879901885986, 0.007321599960327148, 0.007094272136688232, 0.007371776103973389, 0.007673855781555176, 0.007137279987335205, 0.006964223861694336, 0.006982656002044678, 0.007284736156463623, 0.006924287796020508, 0.007064576148986816, 0.007103487968444824, 0.006976511955261231, 0.006929408073425293, 0.006939648151397705, 0.0069816322326660156, 0.006917119979858399, 0.006888480186462403, 0.007059423923492431, 0.006910975933074951, 0.006922239780426025, 0.006870016098022461, 0.006909952163696289, 0.006894591808319092, 0.007114751815795899, 0.007982079982757568, 0.007064576148986816, 0.007649280071258545, 0.0077281279563903805, 0.00708403205871582, 0.0070225920677185055, 0.007300096035003662, 0.007173120021820068, 0.007039999961853028, 0.006969344139099121, 0.006939648151397705, 0.014486528396606446, 0.006723584175109864, 0.006748159885406494, 0.006717440128326416, 0.0067758078575134275, 0.0067573761940002445, 0.006811647891998291, 0.0067983360290527345, 0.006649856090545654, 0.006770688056945801, 0.006931456089019775, 0.0067983360290527345, 0.0067348480224609375, 0.006781951904296875, 0.006737919807434082, 0.0067573761940002445, 0.006744063854217529, 0.006760447978973389, 0.006822912216186523, 0.006897664070129395, 0.007024640083312988, 0.006904831886291504, 0.007005184173583984, 0.00687820816040039, 0.0070266880989074704, 0.007021567821502686, 0.006913023948669434, 0.006964223861694336, 0.007012351989746094, 0.006915071964263916, 0.007185408115386963, 0.007006207942962647, 0.006979584217071533, 0.00723967981338501, 0.007209983825683594, 0.006987775802612305, 0.0069212160110473635, 0.0069621758460998535, 0.006931456089019775, 0.007063551902770996, 0.0069847040176391605, 0.00698367977142334, 0.007051263809204102, 0.007016448020935059, 0.007003136157989502, 0.007104512214660645, 0.007120895862579346, 0.007079936027526855, 0.007358463764190673, 0.00728166389465332, 0.006987775802612305, 0.0068915200233459475, 0.006978559970855713, 0.007234560012817383, 0.007006207942962647, 0.0069283838272094726, 0.007095295906066895, 0.007061503887176514, 0.007015423774719238, 0.007035903930664063, 0.007011328220367432, 0.007107615947723389, 0.006958047866821289, 0.014362624168395996, 0.006820864200592041, 0.006730751991271973, 0.00682700777053833, 0.00679423999786377, 0.0068280320167541505, 0.006766592025756836, 0.0067276802062988285, 0.006837247848510742, 0.006752255916595459, 0.006815807819366455, 0.006806464195251465, 0.006740992069244385, 0.006767615795135498, 0.006711296081542969, 0.006871039867401123, 0.006770688056945801, 0.006800384044647217, 0.0068393278121948245, 0.00679318380355835, 0.006830080032348633, 0.006724607944488525, 0.00673689603805542, 0.006818816184997558, 0.00675328016281128, 0.006808576107025147, 0.006770688056945801, 0.006814720153808594, 0.006792191982269287, 0.006724607944488525, 0.00677785587310791, 0.006762495994567871, 0.0067041277885437015, 0.006730751991271973, 0.006803455829620361, 0.00672160005569458, 0.006800320148468018, 0.006797376155853271, 0.006750144004821777, 0.006681600093841553, 0.0067348480224609375, 0.0067358717918396, 0.006731776237487793, 0.006802432060241699, 0.006825984001159668, 0.006759424209594727, 0.006781951904296875, 0.007107583999633789, 0.007262207984924316, 0.006866943836212158, 0.006956031799316406, 0.00722431993484497, 0.006994944095611572, 0.007202847957611084, 0.007022560119628906, 0.006889472007751465, 0.007014400005340577, 0.006987775802612305, 0.007175168037414551, 0.0074291200637817386, 0.0069550080299377445, 0.006973440170288086, 0.0067645440101623535]",tokens/s,140.7960119529994,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-j-6b,EleutherAI/gpt-j-6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-4B,Qwen/Qwen1.5-4B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -9045,32 +8467,56 @@ NameError: name 'exlv2_ext' is not defined ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1221, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1023, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 763, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 349, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-16B-nl,Salesforce/codegen-16B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-4.5B,facebook/xglm-4.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -9096,45 +8542,10 @@ ChildProcessError: Traceback (most recent call last): cls._check_and_enable_flash_attn_2( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 raise ValueError( -ValueError: CodeGenForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpl1yd0u0y/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-6.7b,facebook/opt-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined +ValueError: XGLMForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpa90x580i/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-3b-4e1t,stabilityai/stablelm-3b-4e1t,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -9144,32 +8555,56 @@ NameError: name 'exlv2_ext' is not defined ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 1268, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 1062, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 792, in forward + self_attn_output, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 560, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm2-20b,internlm/internlm2-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-30b,facebook/opt-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -9177,32 +8612,58 @@ NameError: name 'exlv2_ext' is not defined File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code - answer = input( -EOFError: EOF when reading a line - -During handling of the above exception, another exception occurred: - -Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights - self.create_no_weights_model() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model - meta_model = self.automodel_class.from_config(self.pretrained_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config - trust_remote_code = resolve_trust_remote_code( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code - raise ValueError( -ValueError: The repository for internlm/internlm2-20b contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/internlm/internlm2-20b. -Please pass the argument `trust_remote_code=True` to allow custom code to be run. + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 1118, in forward + outputs = self.model.decoder( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 884, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 525, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 292, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,t,t,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-2b,google/recurrentgemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -9214,21 +8675,11 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/t/resolve/main/config.json +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json The above exception was the direct cause of the following exception: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn @@ -9239,89 +8690,32 @@ Traceback (most recent call last): response = _request_wrapper( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669490ef-28040acc6c6c8292624420af;71727f08-ce16-4f96-bb4a-7b21966561ed) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status + raise HfHubHTTPError(message, response=response) from e +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-669481f8-2e51f5f66252b0f32e379376;c3945018-fff2-4be5-8f45-759d29442b9e) -Repository Not Found for url: https://huggingface.co/t/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. +403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. +Cannot access content at: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json. +If you are trying to create or update content,make sure you have a token with the `write` role. The above exception was the direct cause of the following exception: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file - raise EnvironmentError( -OSError: t is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error + raise LocalEntryNotFoundError( +huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-66b,facebook/opt-66b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 162.00 MiB. GPU +The above exception was the direct cause of the following exception: -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,.,.,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run @@ -9338,12 +8732,13 @@ ChildProcessError: Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 373, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file raise EnvironmentError( -OSError: . does not appear to have a file named config.json. Checkout 'https://huggingface.co/./tree/None' for available files. +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/recurrentgemma-2b is not the path to a directory containing a file named config.json. +Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mixtral-8x7B-v0.1,mistralai/Mixtral-8x7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mixtral-8x7B-v0.1,mistralai/Mixtral-8x7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -9384,8 +8779,8 @@ ChildProcessError: Traceback (most recent call last): return t.to( torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-72B,Qwen/Qwen2-beta-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-125m,facebook/opt-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -9395,39 +8790,56 @@ torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GP ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 1118, in forward + outputs = self.model.decoder( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 884, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 525, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 292, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-180B,tiiuae/falcon-180B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm-20b,internlm/internlm-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -9435,74 +8847,58 @@ torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GP File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status - raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66949939-3096e9a55b8312ce20cef7c4;4e145226-4519-4501-b294-75923264eb8d) - -403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json. -If you are trying to create or update content,make sure you have a token with the `write` role. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error - raise LocalEntryNotFoundError( -huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file - raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like tiiuae/falcon-180B is not the path to a directory containing a file named config.json. -Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 976, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 866, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 583, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 411, in forward + query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-4B,Qwen/Qwen1.5-4B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-7.5B,facebook/xglm-7.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -9522,55 +8918,16 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm-20b,internlm/internlm-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code - answer = input( -EOFError: EOF when reading a line - -During handling of the above exception, another exception occurred: - -Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights - self.create_no_weights_model() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model - meta_model = self.automodel_class.from_config(self.pretrained_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config - trust_remote_code = resolve_trust_remote_code( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation + cls._check_and_enable_flash_attn_2( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 raise ValueError( -ValueError: The repository for internlm/internlm-20b contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/internlm/internlm-20b. -Please pass the argument `trust_remote_code=True` to allow custom code to be run. +ValueError: XGLMForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmptiq_oici/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-1_6b,stabilityai/stablelm-2-1_6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-3B-v1,togethercomputer/RedPajama-INCITE-Base-3B-v1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -9580,32 +8937,58 @@ Please pass the argument `trust_remote_code=True` to allow custom code to be run ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward + outputs = self.gpt_neox( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward + outputs = layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward + attention_layer_outputs = self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 339, in forward + query, key, value, present = self._attn_projections_and_rope( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope + qkv = self.query_key_value(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,1,1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,M,M,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -9617,7 +9000,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/1/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/M/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -9644,9 +9027,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669495ca-186c53a7650bea1634f7ec7c;a8a285f6-f2de-4bf5-9973-6b32c89bcd29) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948fdf-05786cce5e0d8cde3ad0a625;4bc435f5-be22-438a-92ab-4db3dc87c0ac) -Repository Not Found for url: https://huggingface.co/1/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/M/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -9671,11 +9054,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: 1 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: M is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-1.8B,Qwen/Qwen1.5-1.8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-3b,stabilityai/stablelm-base-alpha-3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -9685,32 +9068,58 @@ If this is a private repository, make sure to pass a token having permission to ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward + outputs = self.gpt_neox( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward + outputs = layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward + attention_layer_outputs = self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 339, in forward + query, key, value, present = self._attn_projections_and_rope( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope + qkv = self.query_key_value(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-13b,huggyllama/llama-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -9718,75 +9127,131 @@ NameError: name 'exlv2_ext' is not defined File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code - answer = input( -EOFError: EOF when reading a line - -During handling of the above exception, another exception occurred: - -Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights - self.create_no_weights_model() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model - meta_model = self.automodel_class.from_config(self.pretrained_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config - trust_remote_code = resolve_trust_remote_code( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code - raise ValueError( -ValueError: The repository for Deci/DeciCoder-1b contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/Deci/DeciCoder-1b. -Please pass the argument `trust_remote_code=True` to allow custom code to be run. - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,s,s,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/s/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948cfb-0e00b796566ae4f404f69367;5b15094d-af6b-4969-9708-4249eadbf561) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 414, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -Repository Not Found for url: https://huggingface.co/s/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-7b-hf,meta-llama/Llama-2-7b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 414, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,-,-,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 106, in _inner_fn + validate_repo_id(arg_value) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 160, in validate_repo_id + raise HFValidationError( +huggingface_hub.errors.HFValidationError: Repo id must use alphanumeric chars or '-', '_', '.', '--' and '..' are forbidden, '-' and '.' cannot start or end the name, max length is 96: '-'. The above exception was the direct cause of the following exception: @@ -9807,13 +9272,12 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 466, in cached_file raise EnvironmentError( -OSError: s is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` +OSError: Incorrect path_or_model_id: '-'. Please provide either the path to a local folder or the repo_id of a model on the Hub. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,TencentARC/Mistral_Pro_8B_v0.1,TencentARC/Mistral_Pro_8B_v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-410m,EleutherAI/pythia-410m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -9823,32 +9287,58 @@ If this is a private repository, make sure to pass a token having permission to ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward + outputs = self.gpt_neox( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward + outputs = layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward + attention_layer_outputs = self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 339, in forward + query, key, value, present = self._attn_projections_and_rope( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope + qkv = self.query_key_value(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-12b,EleutherAI/pythia-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,/,/,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -9860,30 +9350,24 @@ ChildProcessError: Traceback (most recent call last): report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 373, in cached_file + raise EnvironmentError( +OSError: / does not appear to have a file named config.json. Checkout 'https://huggingface.co///tree/None' for available files. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/polyglot-ko-12.8b,EleutherAI/polyglot-ko-12.8b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-13b,facebook/opt-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -9893,32 +9377,56 @@ NameError: name 'exlv2_ext' is not defined ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 1118, in forward + outputs = self.model.decoder( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 884, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 525, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 292, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-3b,stabilityai/stablelm-base-alpha-3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.4b,EleutherAI/pythia-1.4b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -9928,32 +9436,58 @@ NameError: name 'exlv2_ext' is not defined ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward + outputs = self.gpt_neox( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward + outputs = layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward + attention_layer_outputs = self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 339, in forward + query, key, value, present = self._attn_projections_and_rope( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope + qkv = self.query_key_value(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,/,/,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-1_6b,stabilityai/stablelm-2-1_6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -9963,26 +9497,56 @@ NameError: name 'exlv2_ext' is not defined ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 373, in cached_file - raise EnvironmentError( -OSError: / does not appear to have a file named config.json. Checkout 'https://huggingface.co///tree/None' for available files. + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 1268, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 1062, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 792, in forward + self_attn_output, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 560, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-70m,EleutherAI/pythia-70m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-rw-1b,tiiuae/falcon-rw-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -10000,24 +9564,18 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation + cls._check_and_enable_flash_attn_2( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 + raise ValueError( +ValueError: FalconForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpyyymrp2c/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-2b,google/gemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-2b,google/gemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -10046,7 +9604,7 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66948123-12ddcba264ebf794745fb4e4;bd785dea-81ac-4dc7-8166-5244943f2562) +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66948131-3b9e312013a4f2f05b0d57cc;a5e7424f-1441-4583-a3cb-67182b0313e4) 403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. Cannot access content at: https://huggingface.co/google/gemma-2b/resolve/main/config.json. @@ -10091,8 +9649,8 @@ Traceback (most recent call last): OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/gemma-2b is not the path to a directory containing a file named config.json. Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciLM-7B,Deci/DeciLM-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-7b,tiiuae/falcon-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -10100,32 +9658,89 @@ Checkout your internet connection or see how to run the library in offline mode File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code - answer = input( -EOFError: EOF when reading a line - -During handling of the above exception, another exception occurred: - -Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights - self.create_no_weights_model() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model - meta_model = self.automodel_class.from_config(self.pretrained_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config - trust_remote_code = resolve_trust_remote_code( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation + cls._check_and_enable_flash_attn_2( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 raise ValueError( -ValueError: The repository for Deci/DeciLM-7B contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/Deci/DeciLM-7B. -Please pass the argument `trust_remote_code=True` to allow custom code to be run. +ValueError: FalconForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpp9d7838n/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,databricks/dbrx-base,databricks/dbrx-base,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-12b,EleutherAI/pythia-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward + outputs = self.gpt_neox( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward + outputs = layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward + attention_layer_outputs = self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 339, in forward + query, key, value, present = self._attn_projections_and_rope( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope + qkv = self.query_key_value(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-180B,tiiuae/falcon-180B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -10137,7 +9752,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -10154,10 +9769,10 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66947b4c-7972c43449da34fd19dbae7e;2050c297-b44e-4f80-b138-e260934b225e) +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66949949-4b302278458c510215cc2ae4;1e1a56f7-55f7-4a20-a761-437ba8cc1f59) 403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json. +Cannot access content at: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json. If you are trying to create or update content,make sure you have a token with the `write` role. The above exception was the direct cause of the following exception: @@ -10196,11 +9811,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like databricks/dbrx-base is not the path to a directory containing a file named config.json. +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like tiiuae/falcon-180B is not the path to a directory containing a file named config.json. Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-7.5B,facebook/xglm-7.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,TencentARC/Mistral_Pro_8B_v0.1,TencentARC/Mistral_Pro_8B_v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -10210,26 +9825,56 @@ Checkout your internet connection or see how to run the library in offline mode ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: XGLMForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 1200, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 976, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 718, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 325, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,B,B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,m,m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -10241,7 +9886,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/B/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/m/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -10268,9 +9913,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669493e8-51bfdab147ee9dbc7c3e7f0b;cf706216-fc71-4510-b640-badeeeb2c377) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948c66-58d18afd55a71057301549eb;9c2d6a95-43a8-4a7e-99a9-332a4a4e8f29) -Repository Not Found for url: https://huggingface.co/B/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/m/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -10295,46 +9940,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: B is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: m is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-14B,Qwen/Qwen1.5-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-72B,Qwen/Qwen1.5-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -10354,92 +9964,29 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,v,v,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/v/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694949e-4f06a932749666442417e9eb;ea2fdd02-b854-44fe-87b5-e2dce99c9577) - -Repository Not Found for url: https://huggingface.co/v/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file - raise EnvironmentError( -OSError: v is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.3b,EleutherAI/pythia-1.3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-70b-hf,meta-llama/Llama-2-70b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -10459,55 +10006,29 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-40b,tiiuae/falcon-40b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code - answer = input( -EOFError: EOF when reading a line - -During handling of the above exception, another exception occurred: - -Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights - self.create_no_weights_model() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model - meta_model = self.automodel_class.from_config(self.pretrained_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config - trust_remote_code = resolve_trust_remote_code( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code - raise ValueError( -ValueError: The repository for tiiuae/falcon-40b contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/tiiuae/falcon-40b. -Please pass the argument `trust_remote_code=True` to allow custom code to be run. + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 112.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neox-20b,EleutherAI/gpt-neox-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-13b-hf,meta-llama/Llama-2-13b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -10517,32 +10038,56 @@ Please pass the argument `trust_remote_code=True` to allow custom code to be run ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 414, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-13b,facebook/opt-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-7b,stabilityai/stablelm-base-alpha-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -10552,27 +10097,58 @@ NameError: name 'exlv2_ext' is not defined ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward + outputs = self.gpt_neox( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward + outputs = layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward + attention_layer_outputs = self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 339, in forward + query, key, value, present = self._attn_projections_and_rope( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope + qkv = self.query_key_value(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2-large,openai-community/gpt2-large,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.42.3,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,1252.749312,2645.03296,0.0,1998.585856,1692.386816,s,10,0.18764684867858888,0.018764684867858886,0.0005992433307238454,0.01878708839416504,0.01952073516845703,0.019708079528808594,0.019857955017089843,"[0.019895423889160158, 0.018243936538696288, 0.018047775268554687, 0.01779680061340332, 0.01896006393432617, 0.01885526466369629, 0.01893507194519043, 0.018714496612548828, 0.019479103088378906, 0.01871891212463379]",tokens/s,13642.648507169439,kWh,2.0918840269540734e-07,1.1462499605261722e-07,6.201499553131089e-07,9.439633540611335e-07,tokens/kWh,271196968.5037379,MB,1253.888,2645.03296,0.0,1998.585856,1714.454528,s,10,11.419435302734374,1.1419435302734375,0.01935842230442361,1.1489760131835938,1.1544193725585938,1.1615755920410156,1.1673005676269532,"[1.1687318115234375, 1.14187158203125, 1.1200245361328125, 1.09501806640625, 1.1501046142578124, 1.143095458984375, 1.149320556640625, 1.1486314697265625, 1.1528291015625, 1.14980810546875]",tokens/s,55.16910278822167,kWh,1.3099662190341671e-05,7.1781809893895315e-06,2.638012164489513e-05,4.6657964824626325e-05,tokens/kWh,1350251.778807726,,s,629,11.567720458984363,0.018390652558003776,0.0022690962265683495,0.01818726348876953,0.018542176055908206,0.019018138122558592,0.03558961151123047,"[0.019501056671142578, 0.019162111282348633, 0.018941951751708985, 0.019066879272460938, 0.01902899169921875, 0.01900441551208496, 0.019058687210083008, 0.01902387237548828, 0.018993152618408202, 0.018852863311767578, 0.019162111282348633, 0.019190784454345702, 0.01906073570251465, 0.01916214370727539, 0.019212255477905272, 0.018974752426147462, 0.018965471267700196, 0.019121152877807617, 0.01924300765991211, 0.019508224487304687, 0.018880512237548826, 0.018902015686035157, 0.01886617660522461, 0.018918399810791017, 0.019088384628295898, 0.018933759689331055, 0.018364416122436524, 0.018290687561035156, 0.018215936660766603, 0.018141183853149414, 0.018117631912231445, 0.018125823974609375, 0.01810534477233887, 0.018126880645751953, 0.018101215362548828, 0.018391040802001952, 0.018130943298339842, 0.018176000595092775, 0.018163711547851562, 0.018165760040283203, 0.018115583419799804, 0.018102272033691406, 0.018117631912231445, 0.018163711547851562, 0.01817190361022949, 0.018099199295043944, 0.01810534477233887, 0.018035711288452147, 0.018132991790771484, 0.018129919052124025, 0.018310144424438478, 0.01823846435546875, 0.018265087127685545, 0.0180633602142334, 0.017743871688842772, 0.017752063751220702, 0.01804287910461426, 0.018145280838012694, 0.018197504043579102, 0.01824563217163086, 0.018159616470336915, 0.018191360473632814, 0.03562803268432617, 0.017076223373413087, 0.017086463928222655, 0.017167360305786132, 0.017089536666870117, 0.017047552108764647, 0.018058240890502928, 0.018059328079223634, 0.01834899139404297, 0.018276351928710938, 0.01819647979736328, 0.018250751495361327, 0.018142208099365235, 0.018107391357421874, 0.018147327423095702, 0.01824051284790039, 0.018332672119140626, 0.018497535705566406, 0.01864089584350586, 0.01923583984375, 0.01843916893005371, 0.018267135620117187, 0.018134016036987305, 0.018089984893798827, 0.018084863662719726, 0.01804800033569336, 0.018050048828125, 0.018152448654174806, 0.018058240890502928, 0.018107391357421874, 0.018075647354125975, 0.01815449523925781, 0.01826918411254883, 0.01882828712463379, 0.01827020835876465, 0.018112512588500978, 0.01822003173828125, 0.018148351669311523, 0.01818012809753418, 0.01826505661010742, 0.018214912414550782, 0.018086912155151368, 0.01820262336730957, 0.01820569610595703, 0.018292736053466797, 0.018268159866333008, 0.018142208099365235, 0.018082815170288084, 0.01815449523925781, 0.018143232345581056, 0.01820876884460449, 0.01820364761352539, 0.018139135360717772, 0.018288639068603514, 0.01816985511779785, 0.018242559432983398, 0.018145280838012694, 0.018168832778930662, 0.01838591957092285, 0.018288639068603514, 0.01816985511779785, 0.018164735794067383, 0.01818726348876953, 0.035490814208984374, 0.017146879196166993, 0.017096704483032226, 0.017101823806762697, 0.017148927688598634, 0.017076223373413087, 0.017095680236816405, 0.01705369567871094, 0.017084415435791016, 0.01704652786254883, 0.017073152542114257, 0.017122304916381836, 0.017118207931518553, 0.016943103790283204, 0.016923648834228516, 0.016948223114013672, 0.017068031311035157, 0.01701785659790039, 0.017042463302612304, 0.017095647811889648, 0.01701785659790039, 0.017040384292602538, 0.017099775314331055, 0.017438720703125, 0.017123327255249024, 0.017154048919677735, 0.01840025520324707, 0.01818009567260742, 0.018229248046875, 0.018310144424438478, 0.018306079864501952, 0.01845859146118164, 0.01840640068054199, 0.01824870491027832, 0.01821696090698242, 0.018378751754760742, 0.018288639068603514, 0.018337791442871093, 0.018119680404663087, 0.018142240524291992, 0.018222047805786134, 0.018165760040283203, 0.018128896713256838, 0.018109439849853515, 0.018035711288452147, 0.018190336227416993, 0.018142208099365235, 0.018572288513183592, 0.01823846435546875, 0.018312192916870116, 0.01840127944946289, 0.01828659248352051, 0.018241535186767577, 0.018165760040283203, 0.018241535186767577, 0.018564096450805666, 0.018354175567626953, 0.018292736053466797, 0.018290687561035156, 0.01822003173828125, 0.018307071685791015, 0.017810432434082032, 0.018223104476928712, 0.035160064697265625, 0.01702911949157715, 0.01702809524536133, 0.01705881690979004, 0.01706598472595215, 0.016983039855957033, 0.017069055557250978, 0.016987136840820313, 0.017040384292602538, 0.017047552108764647, 0.017079296112060546, 0.01699839973449707, 0.01716633605957031, 0.017104896545410156, 0.017161216735839844, 0.017048576354980468, 0.017089536666870117, 0.016977920532226562, 0.01703628730773926, 0.01696460723876953, 0.0170700798034668, 0.016954368591308593, 0.016942079544067384, 0.01699635124206543, 0.016995328903198242, 0.016898048400878905, 0.016713727951049806, 0.016722944259643553, 0.01681305694580078, 0.017180671691894533, 0.017088512420654296, 0.01701888084411621, 0.01700147247314453, 0.017062911987304686, 0.01698508834838867, 0.01697177505493164, 0.01697279930114746, 0.016986112594604492, 0.017044479370117188, 0.01701068878173828, 0.016991231918334963, 0.016957439422607423, 0.017006591796875, 0.016970752716064453, 0.018117631912231445, 0.018298879623413086, 0.01826201629638672, 0.018158592224121094, 0.018311168670654295, 0.01823846435546875, 0.018192384719848635, 0.018215936660766603, 0.018215936660766603, 0.018316287994384766, 0.017958911895751953, 0.017957887649536132, 0.018362367630004883, 0.018308095932006836, 0.01840742492675781, 0.01827020835876465, 0.01828659248352051, 0.018313215255737304, 0.018189311981201172, 0.037544960021972655, 0.01821286392211914, 0.018301952362060548, 0.018177024841308592, 0.018341888427734376, 0.018166784286499024, 0.01823027229309082, 0.01816985511779785, 0.018239488601684572, 0.018156543731689453, 0.018299903869628906, 0.018185216903686522, 0.01816268730163574, 0.018096128463745118, 0.018284543991088868, 0.018226175308227538, 0.018324480056762696, 0.01860812759399414, 0.018324480056762696, 0.0178155517578125, 0.017785856246948242, 0.018095104217529297, 0.01842278480529785, 0.01823539161682129, 0.017905664443969727, 0.01782681655883789, 0.0179783992767334, 0.018200544357299803, 0.018266111373901366, 0.01816166305541992, 0.01824665641784668, 0.018141183853149414, 0.018144256591796876, 0.018190336227416993, 0.01824358367919922, 0.018172927856445312, 0.01820159912109375, 0.018255872726440428, 0.018272256851196288, 0.018358272552490236, 0.018521087646484375, 0.018334720611572267, 0.018185216903686522, 0.018242559432983398, 0.01826918411254883, 0.01823027229309082, 0.018207744598388673, 0.018310176849365235, 0.019415008544921876, 0.018423807144165038, 0.01822003173828125, 0.018291711807250977, 0.018289663314819335, 0.018283519744873047, 0.0181790714263916, 0.01822208023071289, 0.018185216903686522, 0.01886412811279297, 0.018226175308227538, 0.018282495498657226, 0.018313215255737304, 0.018164735794067383, 0.01845043182373047, 0.03739648056030274, 0.018181119918823242, 0.018241535186767577, 0.01823027229309082, 0.01821392059326172, 0.018124767303466797, 0.018082815170288084, 0.01809715270996094, 0.018166784286499024, 0.018148351669311523, 0.01822719955444336, 0.018189311981201172, 0.018256895065307616, 0.018296831130981444, 0.018318336486816408, 0.018317312240600587, 0.018249727249145507, 0.01822105598449707, 0.01821388816833496, 0.018130943298339842, 0.01822719955444336, 0.018092031478881835, 0.018159616470336915, 0.018121728897094725, 0.018221088409423828, 0.01806332778930664, 0.018075647354125975, 0.01804083251953125, 0.018119680404663087, 0.01819545555114746, 0.018163711547851562, 0.01859686470031738, 0.017810432434082032, 0.017913856506347657, 0.018059263229370116, 0.018198528289794923, 0.01818828773498535, 0.017778688430786133, 0.017869823455810546, 0.017741823196411134, 0.018295808792114256, 0.017896448135375977, 0.017772544860839845, 0.017969152450561524, 0.01826304054260254, 0.018215936660766603, 0.018177024841308592, 0.01818623924255371, 0.01823744010925293, 0.018198528289794923, 0.01825382423400879, 0.01824051284790039, 0.01818726348876953, 0.01818726348876953, 0.017923072814941408, 0.01808793640136719, 0.018089984893798827, 0.0182108154296875, 0.018126848220825196, 0.018173952102661133, 0.018095104217529297, 0.01818009567260742, 0.018108415603637695, 0.03722854232788086, 0.018264064788818358, 0.018149375915527344, 0.018223104476928712, 0.01821183967590332, 0.018185216903686522, 0.01822412872314453, 0.01826918411254883, 0.018124799728393554, 0.018149375915527344, 0.01822208023071289, 0.01824563217163086, 0.018125823974609375, 0.018198528289794923, 0.018142208099365235, 0.018223104476928712, 0.018132991790771484, 0.018152448654174806, 0.018113536834716795, 0.018110464096069336, 0.018173952102661133, 0.018098175048828127, 0.01864396858215332, 0.01861631965637207, 0.01824870491027832, 0.01820876884460449, 0.018185216903686522, 0.0181790714263916, 0.018264064788818358, 0.018883583068847656, 0.018126848220825196, 0.018206720352172853, 0.01845964813232422, 0.01884876823425293, 0.01919385528564453, 0.018539520263671876, 0.018249727249145507, 0.01821183967590332, 0.018140159606933593, 0.018144256591796876, 0.018119680404663087, 0.018159616470336915, 0.018124799728393554, 0.018163711547851562, 0.018130943298339842, 0.01814630317687988, 0.01801625633239746, 0.018094079971313477, 0.018101247787475586, 0.018257919311523436, 0.018185216903686522, 0.018156543731689453, 0.018214912414550782, 0.0180633602142334, 0.018174976348876954, 0.018197504043579102, 0.01824870491027832, 0.01803264045715332, 0.018129919052124025, 0.018128896713256838, 0.01823744010925293, 0.018160640716552736, 0.018131967544555663, 0.03765350341796875, 0.01818422317504883, 0.018552799224853516, 0.018185216903686522, 0.018251775741577148, 0.018109439849853515, 0.018101247787475586, 0.018156543731689453, 0.018367488861083983, 0.018241535186767577, 0.018173952102661133, 0.01819545555114746, 0.01821286392211914, 0.0182476806640625, 0.018231296539306642, 0.018241535186767577, 0.01845043182373047, 0.018157567977905274, 0.018182144165039063, 0.01813811111450195, 0.018151424407958985, 0.018158592224121094, 0.018131967544555663, 0.018102272033691406, 0.018387968063354493, 0.018963455200195312, 0.019009536743164062, 0.01837772750854492, 0.018300928115844727, 0.01823027229309082, 0.018131967544555663, 0.018241535186767577, 0.018181119918823242, 0.018173952102661133, 0.01818009567260742, 0.018192384719848635, 0.018124799728393554, 0.018095104217529297, 0.018111488342285157, 0.01816985511779785, 0.018111488342285157, 0.018273279190063475, 0.018086912155151368, 0.018127872467041017, 0.01804800033569336, 0.018068479537963866, 0.01807257652282715, 0.018143232345581056, 0.01836953544616699, 0.018771968841552734, 0.018332672119140626, 0.018215936660766603, 0.018234367370605468, 0.0180633602142334, 0.018104320526123048, 0.018113536834716795, 0.01809715270996094, 0.018191360473632814, 0.018207744598388673, 0.018197504043579102, 0.018155519485473632, 0.01821183967590332, 0.018310144424438478, 0.03782963180541992, 0.018319360733032225, 0.0182609920501709, 0.01858252716064453, 0.01844633674621582, 0.01822105598449707, 0.01816268730163574, 0.018199552536010744, 0.01820569610595703, 0.018272256851196288, 0.018266111373901366, 0.018281471252441405, 0.018259967803955078, 0.018241535186767577, 0.018298879623413086, 0.018288639068603514, 0.018290687561035156, 0.018226175308227538, 0.01784115219116211, 0.017913856506347657, 0.018182144165039063, 0.018107391357421874, 0.01822003173828125, 0.018142208099365235, 0.018151424407958985, 0.018266111373901366, 0.01818726348876953, 0.018129919052124025, 0.01813811111450195, 0.01824051284790039, 0.01821696090698242, 0.018259967803955078, 0.02001919937133789, 0.01999564743041992, 0.018327552795410155, 0.01823232078552246, 0.018370559692382812, 0.018197504043579102, 0.01824051284790039, 0.018125823974609375, 0.018531328201293946, 0.01827737617492676, 0.01825382423400879, 0.01817190361022949, 0.018314239501953124, 0.01825484848022461, 0.018183168411254884, 0.01818623924255371, 0.018306047439575195, 0.018114559173583983, 0.01822412872314453, 0.01819443130493164, 0.018314239501953124, 0.018771968841552734, 0.01904025650024414, 0.01839411163330078, 0.018292736053466797, 0.018183168411254884, 0.017855487823486327, 0.01780838394165039, 0.018231296539306642, 0.018173952102661133, 0.018111488342285157, 0.037116928100585936, 0.018333696365356447, 0.01808896064758301, 0.01819545555114746, 0.018264064788818358, 0.01824665641784668, 0.01822003173828125, 0.018165760040283203, 0.018125823974609375, 0.018256895065307616, 0.018242559432983398, 0.01821900749206543, 0.01814630317687988, 0.018191360473632814, 0.018185216903686522, 0.01820876884460449, 0.018250751495361327, 0.01823539161682129, 0.018181119918823242, 0.01821183967590332, 0.018050048828125, 0.018000896453857423, 0.01803264045715332, 0.018182144165039063, 0.01789952087402344, 0.017763328552246094, 0.018566144943237304, 0.018084863662719726, 0.018151424407958985, 0.018081792831420897, 0.018124799728393554, 0.018530303955078126, 0.01840332794189453, 0.018327552795410155, 0.018323455810546875, 0.018280448913574218, 0.018316287994384766, 0.018251775741577148, 0.018215936660766603, 0.01822003173828125, 0.018335744857788085, 0.018206720352172853, 0.018151424407958985, 0.01820364761352539, 0.018156543731689453, 0.018185216903686522, 0.01818726348876953, 0.018096128463745118, 0.018185216903686522, 0.018701311111450195, 0.018449407577514648, 0.018172927856445312, 0.018129919052124025, 0.01816783905029297, 0.018184160232543944, 0.01818009567260742, 0.01823027229309082, 0.018265087127685545, 0.01904640007019043, 0.018732032775878905, 0.01906073570251465, 0.01848320007324219, 0.018150400161743165]",tokens/s,54.375449530462205,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-72B,Qwen/Qwen1.5-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-72B,Qwen/Qwen-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -10590,31 +10166,18 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained + model_class = get_class_from_dynamic_module( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module + final_module = get_cached_module_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file + modules_needed = check_imports(resolved_module_file) + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports + raise ImportError( +ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,M,M,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,0,0,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -10626,7 +10189,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/M/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/0/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -10653,9 +10216,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948fd1-68537388089658724ed940ac;a1dc2e5c-a7e6-4175-a53e-84310d994b43) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694950d-516c3f0169bcae4b776073fe;1bda9735-8ee9-483f-938a-6b820cbd2888) -Repository Not Found for url: https://huggingface.co/M/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/0/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -10680,11 +10243,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: M is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: 0 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-7b,google/gemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-7b,google/gemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -10713,7 +10276,7 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66948181-6f9c36c47c1df2f34dc9a2d1;3d7672f1-94f8-4971-9c08-c3dc2a9e9ce6) +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66948191-30cb704d77ac1aa928a61db8;fe0bf4d6-477a-4fed-ada3-5ca129fe865f) 403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. Cannot access content at: https://huggingface.co/google/gemma-7b/resolve/main/config.json. @@ -10758,8 +10321,8 @@ Traceback (most recent call last): OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/gemma-7b is not the path to a directory containing a file named config.json. Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-2.7b,EleutherAI/pythia-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,x,x,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -10767,83 +10330,42 @@ Checkout your internet connection or see how to run the library in offline mode File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/x/resolve/main/config.json -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-7B,Qwen/Qwen1.5-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined +The above exception was the direct cause of the following exception: -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,-,-,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): +Traceback (most recent call last): File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 106, in _inner_fn - validate_repo_id(arg_value) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 160, in validate_repo_id - raise HFValidationError( -huggingface_hub.errors.HFValidationError: Repo id must use alphanumeric chars or '-', '_', '.', '--' and '..' are forbidden, '-' and '.' cannot start or end the name, max length is 96: '-'. + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669492e4-684f91a4746cfedf34b1046c;d06f3984-dae6-4629-9c3e-de9065198821) + +Repository Not Found for url: https://huggingface.co/x/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. The above exception was the direct cause of the following exception: @@ -10864,12 +10386,13 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 466, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: Incorrect path_or_model_id: '-'. Please provide either the path to a local folder or the repo_id of a model on the Hub. +OSError: x is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-125m,facebook/opt-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm2-20b,internlm/internlm2-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -10879,26 +10402,56 @@ OSError: Incorrect path_or_model_id: '-'. Please provide either the path to a lo ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/dc0130882132de7cb2eb1fa54ba5294b8c922076/modeling_internlm2.py"", line 1204, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/dc0130882132de7cb2eb1fa54ba5294b8c922076/modeling_internlm2.py"", line 1004, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/dc0130882132de7cb2eb1fa54ba5294b8c922076/modeling_internlm2.py"", line 738, in forward + hidden_states, self_attn_weights, present_key_value = self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/dc0130882132de7cb2eb1fa54ba5294b8c922076/modeling_internlm2.py"", line 410, in forward + qkv_states = self.wqkv(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-6.7b,EleutherAI/pythia-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -10908,32 +10461,58 @@ ValueError: OPTForCausalLM does not support an attention implementation through ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward + outputs = self.gpt_neox( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward + outputs = layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward + attention_layer_outputs = self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 339, in forward + query, key, value, present = self._attn_projections_and_rope( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope + qkv = self.query_key_value(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-14B,Qwen/Qwen-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-6.7b,facebook/opt-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -10941,32 +10520,58 @@ NameError: name 'exlv2_ext' is not defined File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code - answer = input( -EOFError: EOF when reading a line - -During handling of the above exception, another exception occurred: - -Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights - self.create_no_weights_model() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model - meta_model = self.automodel_class.from_config(self.pretrained_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config - trust_remote_code = resolve_trust_remote_code( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code - raise ValueError( -ValueError: The repository for Qwen/Qwen-14B contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/Qwen/Qwen-14B. -Please pass the argument `trust_remote_code=True` to allow custom code to be run. + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 1118, in forward + outputs = self.model.decoder( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 884, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 525, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 292, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-12b,stabilityai/stablelm-2-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-14B,Qwen/Qwen2-beta-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -10976,32 +10581,56 @@ Please pass the argument `trust_remote_code=True` to allow custom code to be run ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1221, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1023, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 763, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 349, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-30b,huggyllama/llama-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-110B,Qwen/Qwen1.5-110B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -11021,22 +10650,29 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 32.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-564M,facebook/xglm-564M,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -11058,49 +10694,14 @@ ChildProcessError: Traceback (most recent call last): return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation + cls._check_and_enable_flash_attn_2( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 raise ValueError( -ValueError: GPTNeoForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-8B,meta-llama/Meta-Llama-3-8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined +ValueError: XGLMForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmp9pfso7np/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,x,x,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,t,t,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -11112,7 +10713,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/x/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/t/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -11139,9 +10740,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669492d5-4c63eff13ee60a906843596b;f6e40f1f-80fc-4fae-bd4e-a4385b8b20e2) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669490e2-2b6888404018696802e4f36e;bd4a434d-36d8-4fcd-9dfa-8c23f1940452) -Repository Not Found for url: https://huggingface.co/x/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/t/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -11166,11 +10767,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: x is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: t is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,i,i,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neox-20b,EleutherAI/gpt-neox-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -11178,69 +10779,60 @@ If this is a private repository, make sure to pass a token having permission to File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/i/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694902a-69084a0a681811a04cd716e3;e2d4feea-4322-4a56-a342-2d36f9978e50) - -Repository Not Found for url: https://huggingface.co/i/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file - raise EnvironmentError( -OSError: i is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward + outputs = self.gpt_neox( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward + outputs = layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward + attention_layer_outputs = self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 339, in forward + query, key, value, present = self._attn_projections_and_rope( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope + qkv = self.query_key_value(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-72B,Qwen/Qwen-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -11248,32 +10840,58 @@ If this is a private repository, make sure to pass a token having permission to File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code - answer = input( -EOFError: EOF when reading a line - -During handling of the above exception, another exception occurred: - -Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights - self.create_no_weights_model() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model - meta_model = self.automodel_class.from_config(self.pretrained_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config - trust_remote_code = resolve_trust_remote_code( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code - raise ValueError( -ValueError: The repository for Qwen/Qwen-72B contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/Qwen/Qwen-72B. -Please pass the argument `trust_remote_code=True` to allow custom code to be run. + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 414, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.4b,EleutherAI/pythia-1.4b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-72B,Qwen/Qwen2-beta-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -11293,22 +10911,29 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-3B-v1,togethercomputer/RedPajama-INCITE-Base-3B-v1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-7B,Qwen/Qwen1.5-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -11318,32 +10943,115 @@ NameError: name 'exlv2_ext' is not defined ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1221, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1023, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 763, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 349, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-32B,Qwen/Qwen1.5-32B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1221, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1023, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 763, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 349, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-0.5B,Qwen/Qwen1.5-0.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-40b,tiiuae/falcon-40b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -11361,24 +11069,18 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation + cls._check_and_enable_flash_attn_2( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 + raise ValueError( +ValueError: FalconForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpuur1cgl9/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-7B,Qwen/Qwen-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-160m,EleutherAI/pythia-160m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -11386,32 +11088,180 @@ NameError: name 'exlv2_ext' is not defined File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code - answer = input( -EOFError: EOF when reading a line + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward + outputs = self.gpt_neox( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward + outputs = layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward + attention_layer_outputs = self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 339, in forward + query, key, value, present = self._attn_projections_and_rope( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope + qkv = self.query_key_value(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -During handling of the above exception, another exception occurred: +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.3b,EleutherAI/pythia-1.3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward + outputs = self.gpt_neox( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward + outputs = layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward + attention_layer_outputs = self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 339, in forward + query, key, value, present = self._attn_projections_and_rope( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope + qkv = self.query_key_value(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-1.8B,Qwen/Qwen1.5-1.8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights - self.create_no_weights_model() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model - meta_model = self.automodel_class.from_config(self.pretrained_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config - trust_remote_code = resolve_trust_remote_code( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code - raise ValueError( -ValueError: The repository for Qwen/Qwen-7B contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/Qwen/Qwen-7B. -Please pass the argument `trust_remote_code=True` to allow custom code to be run. + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1221, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1023, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 763, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 349, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-14B,Qwen/Qwen2-beta-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-6B-nl,Salesforce/codegen-6B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -11431,22 +11281,17 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation + cls._check_and_enable_flash_attn_2( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 + raise ValueError( +ValueError: CodeGenForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmprehxokgb/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-7b,google/recurrentgemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2,openai-community/gpt2,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1213.62432,1005.060096,0.0,358.612992,318.913024,s,23,0.17213225698471069,0.007484011173248292,0.0002954761638434772,0.00736678409576416,0.007821849536895752,0.007996079683303832,0.008394954490661622,"[0.008502976417541504, 0.007853087902069091, 0.007601344108581543, 0.007378464221954346, 0.007268896102905273, 0.007655648231506348, 0.007272704124450684, 0.0072911038398742675, 0.007318528175354004, 0.007696896076202392, 0.007447904109954834, 0.007239327907562256, 0.0075630397796630855, 0.00736678409576416, 0.00744265604019165, 0.0073199357986450195, 0.0072409920692443844, 0.007361631870269775, 0.008011967658996581, 0.007415616035461426, 0.007298208236694336, 0.007331200122833252, 0.007253344058990478]",tokens/s,34206.25571953657,kWh,8.567134822637681e-08,4.694379339333844e-08,1.8252431812478173e-07,3.1513945974449696e-07,tokens/kWh,812338766.4862884,MB,1213.919232,1005.060096,0.0,358.612992,328.804864,s,23,10.179620391845702,0.44259219094981317,0.01146519580496095,0.440910888671875,0.4509195068359375,0.45184952392578126,0.47989753540039065,"[0.48779537963867187, 0.448875732421875, 0.44378817749023436, 0.45189608764648437, 0.4514304504394531, 0.44095208740234376, 0.4469196472167969, 0.44514892578125, 0.4451697692871094, 0.4480313720703125, 0.43288784790039064, 0.4424725341796875, 0.43655374145507814, 0.4358661193847656, 0.43621551513671875, 0.43264309692382813, 0.43890673828125, 0.4397151184082031, 0.440910888671875, 0.43340951538085937, 0.4314309692382812, 0.4308625793457031, 0.43773809814453124]",tokens/s,142.34322540757108,kWh,5.0166983791335025e-06,2.748945515611113e-06,8.752610144789825e-06,1.6518254039534438e-05,tokens/kWh,3813962.4108708547,,s,1448,10.335379461288454,0.007137692998127384,0.0009868185197434377,0.006937600135803222,0.007357337760925293,0.007660748958587645,0.014534717473983765,"[0.008195072174072266, 0.00812339210510254, 0.00801587200164795, 0.008057855606079101, 0.008011775970458984, 0.007906303882598878, 0.00791756820678711, 0.007833600044250488, 0.007880703926086426, 0.007682047843933106, 0.007670783996582031, 0.007756800174713135, 0.007795711994171142, 0.007764992237091065, 0.007696383953094482, 0.007667712211608887, 0.0077578239440917966, 0.00774348783493042, 0.007739391803741455, 0.007702527999877929, 0.007682047843933106, 0.007706624031066894, 0.007713791847229004, 0.007598144054412842, 0.007613376140594482, 0.007663616180419922, 0.007570432186126709, 0.007678976058959961, 0.007840767860412597, 0.00774451208114624, 0.007902207851409913, 0.007857151985168457, 0.007699456214904785, 0.007651328086853027, 0.0077608962059021, 0.007738368034362793, 0.007944191932678223, 0.007785535812377929, 0.007604159832000732, 0.007642111778259277, 0.007798783779144287, 0.00800153636932373, 0.007988224029541016, 0.007651328086853027, 0.007670783996582031, 0.007618559837341309, 0.007618559837341309, 0.0076871681213378906, 0.007786496162414551, 0.007779327869415284, 0.007712768077850342, 0.0077209601402282715, 0.007654399871826172, 0.00759500789642334, 0.007616511821746826, 0.007543807983398438, 0.007494656085968018, 0.007342080116271973, 0.0075345921516418455, 0.007566336154937744, 0.0072427520751953125, 0.007305215835571289, 0.015635456085205078, 0.007311359882354736, 0.007363584041595459, 0.007344128131866455, 0.0074403839111328125, 0.007830527782440186, 0.008690688133239746, 0.008432703971862793, 0.00839571189880371, 0.007342112064361572, 0.007289824008941651, 0.007284736156463623, 0.007127039909362793, 0.007045119762420654, 0.007054336071014404, 0.007201791763305664, 0.006994944095611572, 0.006974463939666748, 0.006927360057830811, 0.007143424034118652, 0.0069550080299377445, 0.006974463939666748, 0.00693555212020874, 0.006971392154693603, 0.0069816322326660156, 0.006960159778594971, 0.006988768100738525, 0.0069632000923156735, 0.006927360057830811, 0.00689356803894043, 0.007094272136688232, 0.006958079814910889, 0.0069621758460998535, 0.006900735855102539, 0.006949888229370117, 0.006958144187927246, 0.006945727825164795, 0.006938623905181885, 0.006916128158569336, 0.00694268798828125, 0.007147520065307617, 0.007170048236846924, 0.006980607986450196, 0.006986752033233643, 0.0069816322326660156, 0.006958079814910889, 0.007050240039825439, 0.006980607986450196, 0.006947840213775635, 0.00692633581161499, 0.006940671920776367, 0.007095295906066895, 0.006964223861694336, 0.00694374418258667, 0.006953983783721924, 0.006959104061126709, 0.006947840213775635, 0.006913023948669434, 0.0069550080299377445, 0.006953983783721924, 0.006941696166992187, 0.007145472049713135, 0.007001088142395019, 0.014993408203125, 0.00709222412109375, 0.006938623905181885, 0.006882304191589355, 0.006881279945373535, 0.006842368125915528, 0.006936575889587402, 0.006913023948669434, 0.006815743923187256, 0.006918144226074219, 0.006865920066833496, 0.006867968082427979, 0.0068577280044555666, 0.006858751773834228, 0.006863872051239014, 0.006875135898590088, 0.006853631973266602, 0.007525375843048096, 0.007489535808563232, 0.007001088142395019, 0.00703385591506958, 0.00728166389465332, 0.007162879943847656, 0.007536640167236328, 0.007039999961853028, 0.007048192024230957, 0.007231488227844239, 0.0069283838272094726, 0.006907904148101806, 0.0068055038452148435, 0.006906879901885986, 0.0068986878395080565, 0.0068249602317810056, 0.006871039867401123, 0.006906879901885986, 0.006820864200592041, 0.006870016098022461, 0.006823935985565186, 0.006914048194885254, 0.006959136009216309, 0.0072754878997802735, 0.007408639907836914, 0.007152703762054444, 0.007389120101928711, 0.007087103843688965, 0.007016448020935059, 0.007097343921661377, 0.007047167778015137, 0.0071157760620117185, 0.007316480159759522, 0.00704204797744751, 0.006982656002044678, 0.007080959796905518, 0.007049215793609619, 0.007058432102203369, 0.00704307222366333, 0.006999040126800537, 0.006974463939666748, 0.007352320194244385, 0.007324672222137451, 0.007363584041595459, 0.007136256217956543, 0.007076863765716553, 0.014966815948486327, 0.007409696102142334, 0.007022528171539306, 0.00738099193572998, 0.00745472002029419, 0.007050240039825439, 0.007060480117797851, 0.006982656002044678, 0.007408639907836914, 0.007277567863464355, 0.007288832187652588, 0.007314432144165039, 0.007117824077606201, 0.0073471999168395995, 0.007028736114501953, 0.007010303974151612, 0.007296000003814697, 0.00727347183227539, 0.007276576042175293, 0.007039968013763428, 0.0069621758460998535, 0.0071905279159545895, 0.00707583999633789, 0.007655424118041992, 0.0072427520751953125, 0.0071157760620117185, 0.007131135940551757, 0.007264256000518799, 0.007327744007110596, 0.007291903972625732, 0.00704204797744751, 0.0073820161819458, 0.0073175039291381834, 0.007080959796905518, 0.0070256638526916505, 0.007310336112976074, 0.007068672180175781, 0.007049215793609619, 0.007359488010406494, 0.0070266880989074704, 0.007018496036529541, 0.007278592109680176, 0.007113728046417236, 0.007501823902130127, 0.0073175039291381834, 0.007334911823272705, 0.007279615879058838, 0.0070830078125, 0.007013376235961914, 0.007484416007995606, 0.007090176105499267, 0.007300096035003662, 0.007268352031707764, 0.007077888011932373, 0.00702569580078125, 0.00705020809173584, 0.0067727680206298825, 0.006994912147521973, 0.0068577280044555666, 0.00687718391418457, 0.0069621758460998535, 0.0068392958641052244, 0.006848512172698974, 0.01468825626373291, 0.007111680030822754, 0.007364607810974121, 0.007379968166351319, 0.007293951988220215, 0.007302144050598145, 0.006940671920776367, 0.007279615879058838, 0.007326720237731933, 0.006956031799316406, 0.007027711868286133, 0.007060480117797851, 0.007076863765716553, 0.007342080116271973, 0.007336959838867187, 0.007346176147460938, 0.007097343921661377, 0.007057407855987549, 0.0070522880554199216, 0.0072837119102478025, 0.007009280204772949, 0.007290880203247071, 0.006999040126800537, 0.007349247932434082, 0.007264256000518799, 0.006982656002044678, 0.007415808200836181, 0.0070553598403930665, 0.007288832187652588, 0.0072540159225463864, 0.00703385591506958, 0.007256063938140869, 0.007058432102203369, 0.007041024208068848, 0.007236608028411865, 0.007375872135162354, 0.0073062400817871095, 0.007067647933959961, 0.007071743965148926, 0.006905856132507324, 0.006862847805023193, 0.006831103801727295, 0.006933504104614257, 0.007030784130096435, 0.007114751815795899, 0.006961184024810791, 0.007378911972045899, 0.007236608028411865, 0.0070860800743103025, 0.007071743965148926, 0.007001120090484619, 0.007321568012237549, 0.0070266880989074704, 0.007316480159759522, 0.007300096035003662, 0.007020544052124023, 0.00733900785446167, 0.00739737606048584, 0.007048192024230957, 0.007324672222137451, 0.006982656002044678, 0.0072765440940856935, 0.007237631797790528, 0.01510707187652588, 0.006985727787017822, 0.006979584217071533, 0.007490560054779053, 0.007256063938140869, 0.007046144008636474, 0.0067348480224609375, 0.006822912216186523, 0.006837247848510742, 0.006843391895294189, 0.006853631973266602, 0.006819839954376221, 0.006825984001159668, 0.006837247848510742, 0.0069283838272094726, 0.006841343879699707, 0.006808576107025147, 0.006806528091430664, 0.006895616054534912, 0.006815743923187256, 0.006829055786132812, 0.006858751773834228, 0.00704204797744751, 0.007030784130096435, 0.007068672180175781, 0.00708403205871582, 0.006973440170288086, 0.006959104061126709, 0.006964223861694336, 0.006947840213775635, 0.0069621758460998535, 0.00695091199874878, 0.006960127830505371, 0.006967296123504638, 0.006970367908477783, 0.006953983783721924, 0.006884352207183838, 0.006816768169403077, 0.006875135898590088, 0.006854656219482422, 0.006850560188293457, 0.006810624122619629, 0.006873087882995605, 0.006870016098022461, 0.007052320003509522, 0.007278560161590576, 0.007266304016113281, 0.0069847040176391605, 0.007292960166931152, 0.007252960205078125, 0.007074816226959229, 0.00704204797744751, 0.006967296123504638, 0.007014431953430176, 0.007003104209899903, 0.007286784172058106, 0.006977568149566651, 0.00709935998916626, 0.007393280029296875, 0.0073359360694885255, 0.007111680030822754, 0.0069928960800170895, 0.0073359360694885255, 0.014533632278442383, 0.006855679988861084, 0.007506944179534912, 0.007064576148986816, 0.007284736156463623, 0.0070522880554199216, 0.007080959796905518, 0.00704204797744751, 0.006953983783721924, 0.007001088142395019, 0.007280640125274658, 0.006976511955261231, 0.006967296123504638, 0.00738099193572998, 0.007073791980743408, 0.00704204797744751, 0.007324672222137451, 0.006993919849395752, 0.007066624164581299, 0.007356416225433349, 0.007020544052124023, 0.006980607986450196, 0.0068884482383728025, 0.007078911781311035, 0.007345183849334717, 0.007293920040130616, 0.007304192066192627, 0.007058432102203369, 0.007054336071014404, 0.006940671920776367, 0.007336959838867187, 0.007268352031707764, 0.007261184215545655, 0.007383039951324463, 0.007385087966918945, 0.007312384128570557, 0.007021567821502686, 0.0069959678649902345, 0.007068672180175781, 0.006961152076721191, 0.007123968124389648, 0.007250944137573242, 0.007342080116271973, 0.007113728046417236, 0.00704204797744751, 0.007173120021820068, 0.007278592109680176, 0.007329792022705078, 0.007449600219726562, 0.00695091199874878, 0.006851583957672119, 0.006880256175994873, 0.006897664070129395, 0.006848512172698974, 0.007051263809204102, 0.0069253120422363285, 0.006867968082427979, 0.006882304191589355, 0.006858751773834228, 0.006792191982269287, 0.006841343879699707, 0.006779903888702392, 0.006895616054534912, 0.01447219181060791, 0.007172095775604248, 0.0073471999168395995, 0.007576576232910156, 0.007465983867645264, 0.007352320194244385, 0.007072768211364746, 0.007324672222137451, 0.007292928218841553, 0.007303167819976806, 0.006990848064422607, 0.007078911781311035, 0.006947840213775635, 0.0070266880989074704, 0.007362559795379638, 0.0069816322326660156, 0.007054336071014404, 0.0070348801612854, 0.007058432102203369, 0.006946815967559815, 0.006883359909057617, 0.006878176212310791, 0.006874112129211426, 0.006825984001159668, 0.007016448020935059, 0.007073791980743408, 0.007029759883880615, 0.006994944095611572, 0.007189504146575928, 0.007060480117797851, 0.007044095993041993, 0.006945792198181152, 0.007048192024230957, 0.006937600135803222, 0.006941696166992187, 0.006807551860809326, 0.006872064113616944, 0.00687820816040039, 0.006831103801727295, 0.006799359798431396, 0.0067870721817016606, 0.006863872051239014, 0.00684441614151001, 0.006880256175994873, 0.00683622407913208, 0.0068351998329162595, 0.007450623989105225, 0.00693452787399292, 0.007296000003814697, 0.0073768959045410155, 0.006998015880584717, 0.007038976192474365, 0.007259136199951172, 0.007058432102203369, 0.007111680030822754, 0.007057407855987549, 0.007038976192474365, 0.007117824077606201, 0.007286784172058106, 0.007263232231140137, 0.007035903930664063, 0.007259136199951172, 0.00704307222366333, 0.01439027214050293, 0.00682700777053833, 0.006859776020050049, 0.007128064155578613, 0.007023615837097168, 0.0073175039291381834, 0.006998015880584717, 0.007355391979217529, 0.007331840038299561, 0.00693555212020874, 0.007288832187652588, 0.007228415966033935, 0.007097343921661377, 0.006993919849395752, 0.006975488185882568, 0.006969344139099121, 0.007475200176239013, 0.007070720195770264, 0.0070225920677185055, 0.007303167819976806, 0.006873087882995605, 0.006823935985565186, 0.00674508810043335, 0.006897664070129395, 0.0068392958641052244, 0.007434239864349365, 0.006982656002044678, 0.007323647975921631, 0.0073062400817871095, 0.007073791980743408, 0.006951935768127441, 0.007050240039825439, 0.006871039867401123, 0.006867968082427979, 0.0067717118263244626, 0.0068915200233459475, 0.006905856132507324, 0.006823935985565186, 0.006816768169403077, 0.006823935985565186, 0.006849535942077637, 0.006812672138214112, 0.006834239959716797, 0.0068269438743591305, 0.006854656219482422, 0.006822912216186523, 0.006806528091430664, 0.007372799873352051, 0.0073431038856506346, 0.007008255958557129, 0.007047167778015137, 0.007320576190948487, 0.006998015880584717, 0.007415808200836181, 0.006987775802612305, 0.007264256000518799, 0.007129087924957276, 0.00744755220413208, 0.007197696208953858, 0.007391232013702393, 0.007756800174713135, 0.00724889612197876, 0.007106560230255127, 0.015258624076843261, 0.007053311824798584, 0.00704307222366333, 0.00687718391418457, 0.0068986878395080565, 0.006837247848510742, 0.006834176063537598, 0.006780928134918213, 0.006927360057830811, 0.006812672138214112, 0.006830080032348633, 0.006882304191589355, 0.006819839954376221, 0.006924287796020508, 0.006856704235076904, 0.007327744007110596, 0.0070225920677185055, 0.007003136157989502, 0.00709222412109375, 0.007301119804382325, 0.007288832187652588, 0.0069959678649902345, 0.0072724480628967286, 0.007219200134277344, 0.00728985595703125, 0.007054336071014404, 0.007180287837982178, 0.007039999961853028, 0.007304192066192627, 0.007309343814849854, 0.007380959987640381, 0.00703385591506958, 0.006970367908477783, 0.006937600135803222, 0.007117824077606201, 0.006958079814910889, 0.007385087966918945, 0.006951935768127441, 0.007331840038299561, 0.007268352031707764, 0.0072837119102478025, 0.006937600135803222, 0.007274496078491211, 0.007081984043121338, 0.007299071788787842, 0.006993919849395752, 0.007104512214660645, 0.007288832187652588, 0.0070563840866088865, 0.007156735897064209, 0.00703385591506958, 0.007282688140869141, 0.00704307222366333, 0.0074035201072692874, 0.006968319892883301, 0.007314432144165039, 0.007324672222137451, 0.007074816226959229, 0.006970367908477783, 0.008046591758728027, 0.007085055828094483, 0.0070522880554199216, 0.007054336071014404, 0.01510912036895752, 0.0069918718338012695, 0.007070720195770264, 0.0072724480628967286, 0.006951935768127441, 0.006856704235076904, 0.006837247848510742, 0.006831103801727295, 0.006818816184997558, 0.006773759841918945, 0.006811647891998291, 0.006907904148101806, 0.0067983360290527345, 0.0068689918518066405, 0.006816768169403077, 0.006976511955261231, 0.006865920066833496, 0.006833151817321777, 0.006848512172698974, 0.006790143966674805, 0.00694374418258667, 0.006790143966674805, 0.006804480075836182, 0.006815743923187256, 0.006832159996032715, 0.006866911888122559, 0.00683622407913208, 0.006862847805023193, 0.006796288013458252, 0.006811647891998291, 0.006863872051239014, 0.006809599876403808, 0.006937600135803222, 0.006829055786132812, 0.006810624122619629, 0.0068618240356445315, 0.00677785587310791, 0.006871039867401123, 0.006795263767242431, 0.006913023948669434, 0.0068392958641052244, 0.0069212160110473635, 0.0068249602317810056, 0.006859776020050049, 0.006917119979858399, 0.006814720153808594, 0.006841343879699707, 0.006848512172698974, 0.006887423992156983, 0.006906879901885986, 0.006881279945373535, 0.006870016098022461, 0.006802432060241699, 0.0068403840065002445, 0.006761407852172852, 0.00687820816040039, 0.006825984001159668, 0.00673689603805542, 0.006892543792724609, 0.0068884482383728025, 0.006841343879699707, 0.006825984001159668, 0.006799359798431396, 0.014756863594055175, 0.007226367950439453, 0.007236608028411865, 0.00809267234802246, 0.0074700798988342285, 0.007097343921661377, 0.007128064155578613, 0.0073431038856506346, 0.007114751815795899, 0.00722431993484497, 0.007000063896179199, 0.007351295948028564, 0.007067647933959961, 0.007016448020935059, 0.00714137601852417, 0.007134208202362061, 0.007184383869171143, 0.007386112213134765, 0.007300096035003662, 0.0072837119102478025, 0.007336959838867187, 0.007326720237731933, 0.007062560081481934, 0.007136223793029785, 0.006829055786132812, 0.006880256175994873, 0.006904863834381104, 0.006792160034179687, 0.006924287796020508, 0.006826015949249267, 0.0067604160308837894, 0.006821887969970703, 0.006882304191589355, 0.006898719787597657, 0.006868959903717041, 0.006837247848510742, 0.006811647891998291, 0.006829055786132812, 0.006916096210479736, 0.006834176063537598, 0.006846464157104492, 0.006814720153808594, 0.006897664070129395, 0.006904831886291504, 0.006899712085723877, 0.006858751773834228, 0.006920191764831543, 0.006802495956420899, 0.006924223899841308, 0.006905856132507324, 0.006837247848510742, 0.006739967823028564, 0.006881311893463134, 0.006877151966094971, 0.006774784088134766, 0.006870016098022461, 0.0068689918518066405, 0.006977536201477051, 0.0067348480224609375, 0.006831103801727295, 0.007082047939300537, 0.007328735828399658, 0.007105504035949707, 0.015265791893005372, 0.007007232189178467, 0.007094272136688232, 0.007019519805908203, 0.007029759883880615, 0.007334911823272705, 0.007013376235961914, 0.007321599960327148, 0.007360511779785156, 0.006967296123504638, 0.007035903930664063, 0.007107583999633789, 0.006987775802612305, 0.007321599960327148, 0.006990848064422607, 0.007080959796905518, 0.007327744007110596, 0.006852608203887939, 0.006818816184997558, 0.006819839954376221, 0.006850560188293457, 0.006814720153808594, 0.006842368125915528, 0.006866943836212158, 0.006765567779541016, 0.006838272094726563, 0.006903808116912841, 0.006816768169403077, 0.0068351998329162595, 0.006870016098022461, 0.006903808116912841, 0.0067420158386230465, 0.00682700777053833, 0.006851583957672119, 0.00683622407913208, 0.006849535942077637, 0.00695091199874878, 0.006930431842803955, 0.006820864200592041, 0.006825984001159668, 0.006842368125915528, 0.006903840065002441, 0.006749152183532715, 0.006801407814025879, 0.0068321280479431154, 0.006884352207183838, 0.0067983360290527345, 0.006927360057830811, 0.0068659520149230956, 0.006851552009582519, 0.006815743923187256, 0.006879231929779053, 0.006770688056945801, 0.006820864200592041, 0.0068351998329162595, 0.006905856132507324, 0.006778880119323731, 0.006809599876403808, 0.0069324798583984375, 0.006813695907592773, 0.0068884482383728025, 0.006900735855102539, 0.006858751773834228, 0.014593024253845215, 0.006931519985198974, 0.006945727825164795, 0.0068577280044555666, 0.006807551860809326, 0.00687820816040039, 0.006846464157104492, 0.0068321280479431154, 0.006821887969970703, 0.006852608203887939, 0.006850560188293457, 0.00689356803894043, 0.006864895820617676, 0.006930431842803955, 0.006833151817321777, 0.006841343879699707, 0.006866943836212158, 0.006849535942077637, 0.0072499198913574215, 0.007202816009521484, 0.006822912216186523, 0.006814720153808594, 0.006889472007751465, 0.006825984001159668, 0.006730751991271973, 0.006906879901885986, 0.00687820816040039, 0.006924287796020508, 0.006841407775878906, 0.006832064151763916, 0.006874112129211426, 0.006864895820617676, 0.006862847805023193, 0.006816768169403077, 0.006825984001159668, 0.006821887969970703, 0.006904831886291504, 0.006820864200592041, 0.006754303932189941, 0.006837247848510742, 0.006806528091430664, 0.0069632000923156735, 0.006896639823913574, 0.006838272094726563, 0.0068690237998962405, 0.006818784236907959, 0.006925343990325928, 0.006814688205718994, 0.006924287796020508, 0.006721536159515381, 0.006793216228485107, 0.006865920066833496, 0.006818880081176757, 0.0068269438743591305, 0.0068884482383728025, 0.007058432102203369, 0.008130559921264649, 0.007341055870056152, 0.007233535766601563, 0.00708403205871582, 0.00703385591506958, 0.0070256638526916505, 0.006979584217071533, 0.01458892822265625, 0.006846464157104492, 0.006864895820617676, 0.006960127830505371, 0.006848512172698974, 0.00684441614151001, 0.006829055786132812, 0.006831103801727295, 0.006892543792724609, 0.0068618240356445315, 0.006882304191589355, 0.006905856132507324, 0.006882304191589355, 0.006827040195465088, 0.006789087772369385, 0.006854656219482422, 0.0068249602317810056, 0.0068280320167541505, 0.006865920066833496, 0.006848512172698974, 0.006830080032348633, 0.00687820816040039, 0.0069253120422363285, 0.006853631973266602, 0.006829055786132812, 0.00682700777053833, 0.006895616054534912, 0.006739967823028564, 0.006937600135803222, 0.006820864200592041, 0.006876160144805908, 0.006912000179290771, 0.006804512023925781, 0.006790143966674805, 0.00677785587310791, 0.00704099178314209, 0.007131135940551757, 0.007195648193359375, 0.00703385591506958, 0.007274496078491211, 0.007260159969329834, 0.007279615879058838, 0.007324672222137451, 0.006994944095611572, 0.006920191764831543, 0.006999040126800537, 0.007361536026000977, 0.0070553598403930665, 0.007038976192474365, 0.006946815967559815, 0.007103487968444824, 0.006858751773834228, 0.006846464157104492, 0.006766592025756836, 0.0068689918518066405, 0.006909952163696289, 0.006982656002044678, 0.006907904148101806, 0.006811647891998291, 0.00682700777053833, 0.0067870721817016606, 0.006804480075836182, 0.006803455829620361, 0.014484479904174804, 0.00684441614151001, 0.0068618240356445315, 0.006823935985565186, 0.006817791938781738, 0.0067573761940002445, 0.0068076162338256835, 0.00683513593673706, 0.00682700777053833, 0.006851583957672119, 0.0067758078575134275, 0.0068351998329162595, 0.0068392958641052244, 0.0068618240356445315, 0.006919167995452881, 0.006856704235076904, 0.006812672138214112, 0.0068055038452148435, 0.006791168212890625, 0.006724607944488525, 0.006815743923187256, 0.00690176010131836, 0.006831103801727295, 0.006850560188293457, 0.0068392958641052244, 0.006795263767242431, 0.0067338237762451176, 0.006799359798431396, 0.006945792198181152, 0.006814720153808594, 0.0068853759765625, 0.006910975933074951, 0.006845471858978272, 0.006775775909423828, 0.006874112129211426, 0.006841343879699707, 0.0068689918518066405, 0.00678604793548584, 0.006905856132507324, 0.006766592025756836, 0.006804480075836182, 0.006808576107025147, 0.006880256175994873, 0.006937600135803222, 0.006846464157104492, 0.006829055786132812, 0.006797311782836914, 0.006800384044647217, 0.0068986878395080565, 0.006799359798431396, 0.006816768169403077, 0.006882304191589355, 0.00695091199874878, 0.006711296081542969, 0.00687718391418457, 0.006760447978973389, 0.006851583957672119, 0.006994944095611572, 0.007008255958557129, 0.007278592109680176, 0.007364607810974121, 0.007021567821502686, 0.007110655784606934, 0.014486528396606446, 0.0067983360290527345, 0.0067758078575134275, 0.006808576107025147, 0.006819839954376221, 0.006845439910888672, 0.006817791938781738, 0.006862847805023193, 0.006850560188293457, 0.006914048194885254, 0.006873087882995605, 0.006830080032348633, 0.006825984001159668, 0.006924287796020508, 0.0068055038452148435, 0.006867968082427979, 0.0068986878395080565, 0.006773759841918945, 0.006887423992156983, 0.006834176063537598, 0.006807551860809326, 0.006825984001159668, 0.006724607944488525, 0.006808576107025147, 0.006781951904296875, 0.006873087882995605, 0.006897664070129395, 0.006820864200592041, 0.006953983783721924, 0.006814720153808594, 0.0068055038452148435, 0.006864895820617676, 0.007054336071014404, 0.007000063896179199, 0.006851583957672119, 0.00693452787399292, 0.006875135898590088, 0.006767615795135498, 0.006912000179290771, 0.006930431842803955, 0.007072768211364746, 0.007323647975921631, 0.007137343883514404, 0.007246784210205078, 0.007519231796264648, 0.007401472091674805, 0.007305215835571289, 0.007124991893768311, 0.007411712169647216, 0.007051263809204102, 0.00744652795791626, 0.007027711868286133, 0.007122943878173828, 0.006968319892883301, 0.007057407855987549, 0.006961152076721191, 0.007019519805908203, 0.006977536201477051, 0.007052351951599121, 0.00700819206237793, 0.006982656002044678, 0.007037951946258545, 0.007131135940551757, 0.014568448066711426, 0.00683622407913208, 0.006825984001159668, 0.00679423999786377, 0.006896639823913574, 0.006814720153808594, 0.00689356803894043, 0.006833151817321777, 0.006890495777130127, 0.0068577280044555666, 0.006875135898590088, 0.006852608203887939, 0.00677785587310791, 0.006897664070129395, 0.006802432060241699, 0.006900735855102539, 0.006795263767242431, 0.006851583957672119, 0.006871039867401123, 0.0067758078575134275, 0.0068249602317810056, 0.006874112129211426, 0.0068280320167541505, 0.006838272094726563, 0.0067123198509216305, 0.006875135898590088, 0.006866943836212158, 0.006851615905761718, 0.006802400112152099, 0.0067983360290527345, 0.006980607986450196, 0.0067338237762451176, 0.006904831886291504, 0.006790143966674805, 0.006918144226074219, 0.006833151817321777, 0.006924287796020508, 0.007085055828094483, 0.007234560012817383, 0.007293951988220215, 0.006968319892883301, 0.0069202561378479, 0.007036863803863525, 0.007241727828979493, 0.00728166389465332, 0.007208960056304932, 0.00697657585144043, 0.00704095983505249, 0.006946815967559815, 0.00724889612197876, 0.007309311866760254, 0.007264256000518799, 0.007353343963623047, 0.006953983783721924, 0.007078911781311035, 0.00727347183227539, 0.007308288097381592, 0.007346176147460938, 0.007018496036529541, 0.007307263851165771, 0.007106560230255127, 0.007044095993041993, 0.007268352031707764, 0.0158341121673584, 0.0071833600997924804, 0.007159808158874512, 0.007171072006225586, 0.007048192024230957, 0.007072768211364746, 0.007048192024230957, 0.007138304233551026, 0.007122943878173828, 0.007095295906066895, 0.007088128089904785, 0.007096320152282715, 0.007090176105499267, 0.0070553598403930665, 0.006953983783721924, 0.007385087966918945, 0.007057407855987549, 0.0069928960800170895, 0.0069621758460998535, 0.006957056045532227, 0.0069632000923156735, 0.0069632000923156735, 0.006944767951965332, 0.006987775802612305, 0.006967296123504638, 0.0069959678649902345, 0.006947840213775635, 0.006946815967559815, 0.006946815967559815, 0.006977536201477051, 0.006964223861694336, 0.007103487968444824, 0.006945792198181152, 0.007001088142395019, 0.006977536201477051, 0.0069847040176391605, 0.006988800048828125, 0.006998015880584717, 0.006968319892883301, 0.006985727787017822, 0.006965248107910156, 0.0070266880989074704, 0.0069959678649902345, 0.006982656002044678, 0.007024640083312988, 0.007001088142395019, 0.006975488185882568, 0.006843391895294189, 0.006909952163696289, 0.006802495956420899, 0.00689247989654541, 0.006854688167572022, 0.0068873920440673825, 0.006812672138214112, 0.006874112129211426, 0.006903808116912841, 0.006825984001159668, 0.006889472007751465, 0.0068618240356445315, 0.006879231929779053, 0.006908927917480469, 0.006876160144805908, 0.006922239780426025, 0.014621696472167968, 0.006899712085723877, 0.00693555212020874, 0.006847519874572754, 0.006882271766662598, 0.00687820816040039, 0.006944767951965332, 0.006766592025756836, 0.006940671920776367, 0.006897664070129395, 0.006865920066833496, 0.006841407775878906, 0.006919104099273682, 0.00689356803894043, 0.006847487926483154, 0.006870016098022461, 0.00690176010131836, 0.006906879901885986, 0.006912000179290771, 0.006965248107910156, 0.006863872051239014, 0.006830080032348633, 0.006730751991271973, 0.00690176010131836, 0.006927360057830811, 0.006810624122619629, 0.007012351989746094, 0.00689356803894043, 0.00691919994354248, 0.006855648040771484, 0.006883327960968018, 0.0069253120422363285, 0.006875135898590088, 0.006892543792724609, 0.006822912216186523, 0.006840320110321045, 0.006876160144805908, 0.006833151817321777, 0.006819839954376221, 0.006812672138214112, 0.006814720153808594, 0.006903808116912841, 0.006895616054534912, 0.0068321280479431154, 0.006881279945373535, 0.006841343879699707, 0.006731776237487793, 0.006875135898590088, 0.0069918718338012695, 0.006924287796020508, 0.0068351998329162595, 0.006939648151397705, 0.00687718391418457, 0.006896639823913574, 0.006813695907592773, 0.006858751773834228, 0.006916096210479736, 0.0068884482383728025, 0.0069027838706970214, 0.006879231929779053, 0.00689356803894043, 0.006807551860809326, 0.006790143966674805, 0.0144650239944458, 0.006765567779541016, 0.006876160144805908, 0.00690176010131836, 0.006822912216186523, 0.006920191764831543, 0.006781951904296875, 0.006908927917480469, 0.006758399963378906, 0.0068884482383728025, 0.006837247848510742, 0.006825984001159668, 0.006895616054534912, 0.006811647891998291, 0.006904831886291504, 0.006757440090179444, 0.006893504142761231, 0.006813695907592773, 0.006830080032348633, 0.006797311782836914, 0.0068853759765625, 0.00674508810043335, 0.00678604793548584, 0.006873087882995605, 0.006900735855102539, 0.006816768169403077, 0.006854656219482422, 0.00682700777053833, 0.006744063854217529, 0.006923264026641846, 0.006816768169403077, 0.006825984001159668, 0.006808576107025147, 0.006788095951080322, 0.006864895820617676, 0.0067983360290527345, 0.007007232189178467, 0.006815743923187256, 0.006808576107025147, 0.006830080032348633, 0.006899712085723877, 0.006894591808319092, 0.006729728221893311, 0.006913023948669434, 0.006912000179290771, 0.007111680030822754, 0.006854656219482422, 0.006816768169403077, 0.006829055786132812, 0.006802432060241699, 0.0068986878395080565, 0.006889472007751465, 0.0068392958641052244, 0.0067358717918396, 0.006773759841918945, 0.006892543792724609, 0.0067686400413513184, 0.006929408073425293, 0.006807551860809326, 0.006790143966674805, 0.006814720153808594, 0.006875135898590088, 0.006815743923187256, 0.014535679817199706, 0.006904863834381104, 0.006907872200012207, 0.006808576107025147, 0.006803455829620361, 0.006793216228485107, 0.00690176010131836, 0.006812672138214112, 0.006782976150512696, 0.006817791938781738, 0.006718463897705078, 0.006838304042816162, 0.006800352096557617, 0.006853631973266602, 0.006856704235076904, 0.006875135898590088, 0.006808576107025147, 0.006815743923187256, 0.006871039867401123, 0.006882304191589355, 0.0067123198509216305, 0.00693555212020874, 0.0069928960800170895, 0.0067983360290527345, 0.006738944053649902, 0.006795263767242431, 0.006780928134918213, 0.0068915200233459475, 0.006890495777130127, 0.006781951904296875, 0.006867968082427979, 0.00683622407913208, 0.006870016098022461, 0.0068055038452148435, 0.006714367866516113, 0.006806528091430664, 0.006781951904296875, 0.006781951904296875, 0.006825984001159668, 0.006850560188293457, 0.006818816184997558, 0.006812672138214112, 0.006882368087768554, 0.006911935806274414, 0.006807551860809326, 0.00689356803894043, 0.006797311782836914, 0.006874176025390625, 0.00681056022644043, 0.006914048194885254, 0.006818816184997558, 0.006825984001159668, 0.00682700777053833, 0.006793216228485107, 0.006847487926483154, 0.0068351998329162595, 0.0068055038452148435, 0.006850560188293457, 0.006801407814025879, 0.006872064113616944, 0.0068986878395080565, 0.0068689918518066405, 0.006813695907592773, 0.014460927963256836, 0.006829055786132812, 0.006843391895294189, 0.00684441614151001, 0.006938623905181885, 0.006749184131622315, 0.0068392958641052244, 0.00688640022277832, 0.006897664070129395, 0.00684441614151001, 0.006819839954376221, 0.0068280320167541505, 0.006834176063537598, 0.006892543792724609, 0.00687718391418457, 0.006845439910888672, 0.0069632000923156735, 0.006806528091430664, 0.0068915200233459475, 0.0069283838272094726, 0.00688640022277832, 0.006917119979858399, 0.006831103801727295, 0.006825984001159668, 0.0069918718338012695, 0.007312384128570557, 0.007332863807678222, 0.007145503997802735, 0.0069437122344970705, 0.00729702377319336, 0.00725708818435669, 0.006986752033233643, 0.007379968166351319, 0.0073359360694885255, 0.007027711868286133, 0.007037951946258545, 0.007255040168762207, 0.007329792022705078, 0.006730751991271973, 0.007303167819976806, 0.007400447845458984, 0.006849535942077637, 0.006818816184997558, 0.0067983360290527345, 0.006873087882995605, 0.006714367866516113, 0.006894591808319092, 0.0069027838706970214, 0.006818816184997558, 0.006830080032348633, 0.006841343879699707, 0.006900735855102539, 0.0067348480224609375, 0.006866943836212158, 0.006940671920776367, 0.00672870397567749, 0.006923264026641846, 0.0068055038452148435, 0.006945856094360351, 0.00685152006149292, 0.006808576107025147, 0.006906879901885986, 0.0068280320167541505]",tokens/s,140.10129046771218,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-14B,Qwen/Qwen-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -11454,11 +11299,69 @@ NameError: name 'exlv2_ext' is not defined File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained + model_class = get_class_from_dynamic_module( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module + final_module = get_cached_module_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file + modules_needed = check_imports(resolved_module_file) + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports + raise ImportError( +ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-7B,Qwen/Qwen-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained + model_class = get_class_from_dynamic_module( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module + final_module = get_cached_module_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file + modules_needed = check_imports(resolved_module_file) + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports + raise ImportError( +ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,v,v,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/google/recurrentgemma-7b/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/v/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -11485,9 +11388,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694825f-0c6c6b4663ef0bde734dbdaf;189cb5f0-98fe-4484-abb0-d243990bbd10) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669494ad-6d9704883731337648b27f8a;e3cad4c8-cb4e-4089-83b2-bd05e47a0d0a) -Repository Not Found for url: https://huggingface.co/google/recurrentgemma-7b/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/v/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -11512,11 +11415,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: google/recurrentgemma-7b is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: v is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-rw-1b,tiiuae/falcon-rw-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-125m,EleutherAI/gpt-neo-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -11524,32 +11427,64 @@ If this is a private repository, make sure to pass a token having permission to File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code - answer = input( -EOFError: EOF when reading a line - -During handling of the above exception, another exception occurred: - -Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights - self.create_no_weights_model() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model - meta_model = self.automodel_class.from_config(self.pretrained_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config - trust_remote_code = resolve_trust_remote_code( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code - raise ValueError( -ValueError: The repository for tiiuae/falcon-rw-1b contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/tiiuae/falcon-rw-1b. -Please pass the argument `trust_remote_code=True` to allow custom code to be run. + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 970, in forward + transformer_outputs = self.transformer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 838, in forward + outputs = block( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 565, in forward + attn_outputs = self.attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 517, in forward + return self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 318, in forward + query = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-70B,meta-llama/Meta-Llama-3-70B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,.,.,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -11561,37 +11496,24 @@ ChildProcessError: Traceback (most recent call last): report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 373, in cached_file + raise EnvironmentError( +OSError: . does not appear to have a file named config.json. Checkout 'https://huggingface.co/./tree/None' for available files. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-65b,huggyllama/llama-65b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/phi-1_5,microsoft/phi-1_5,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -11611,29 +11533,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 86.00 MiB. GPU + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,l,l,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,s,s,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -11645,7 +11560,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/l/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/s/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -11672,9 +11587,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669491cd-4323898874a15e627bcd9c3b;531a0a54-8fe3-4618-a4a6-d0b2f3737c4f) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948d0f-021b1999049b241c164628c2;256122c7-411d-40e4-84e2-1960a59d69d7) -Repository Not Found for url: https://huggingface.co/l/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/s/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -11699,11 +11614,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: l is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: s is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-4.5B,facebook/xglm-4.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -11723,16 +11638,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: XGLMForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-110B,Qwen/Qwen1.5-110B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-66b,facebook/opt-66b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -11771,10 +11692,10 @@ ChildProcessError: Traceback (most recent call last): self._buffers[key] = fn(buf) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 32.00 MiB. GPU +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 162.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,8,8,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,i,i,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -11786,7 +11707,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/8/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/i/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -11813,9 +11734,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949280-774e9a271f4e3f6d30d489f8;468d8aa5-9113-437d-b245-36a7c38275d8) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694903f-36aa65bd66fc1618112f4c74;29748bff-44b6-49df-828e-0890bfcfdea6) -Repository Not Found for url: https://huggingface.co/8/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/i/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -11840,11 +11761,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: 8 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: i is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/rho-math-1b-v0.1,microsoft/rho-math-1b-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-6.7b,EleutherAI/pythia-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -11870,16 +11791,16 @@ ChildProcessError: Traceback (most recent call last): return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-7b-hf,meta-llama/Llama-2-7b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-0.5B,Qwen/Qwen1.5-0.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -11905,16 +11826,45 @@ ChildProcessError: Traceback (most recent call last): return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-16B-nl,Salesforce/codegen-16B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation + cls._check_and_enable_flash_attn_2( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 + raise ValueError( +ValueError: CodeGenForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpf1joci74/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-13b-hf,meta-llama/Llama-2-13b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-j-6b,EleutherAI/gpt-j-6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -11940,16 +11890,17 @@ ChildProcessError: Traceback (most recent call last): return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mistral-7B-v0.1,mistralai/Mistral-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2-large,openai-community/gpt2-large,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1241.440256,2645.03296,0.0,1998.585856,1692.285952,s,10,0.1919048309326172,0.01919048309326172,0.0005813408225469491,0.019010607719421386,0.019647625350952148,0.020231876564025877,0.020699277534484865,"[0.02081612777709961, 0.019026687622070312, 0.018811967849731444, 0.01893507194519043, 0.019049951553344727, 0.018704191207885742, 0.01899452781677246, 0.019173408508300783, 0.018875104904174805, 0.019517791748046874]",tokens/s,13339.945573850004,kWh,2.2137678517830954e-07,1.2130415742105693e-07,6.751076978052327e-07,1.0177886404045992e-06,tokens/kWh,251525699.77420157,MB,1241.735168,2645.03296,0.0,1998.585856,1740.085248,s,10,11.541304443359374,1.1541304443359375,0.013489751503469302,1.149205810546875,1.1732497924804688,1.1755724670410155,1.177430606689453,"[1.1778951416015624, 1.1547576904296875, 1.1516905517578124, 1.172733642578125, 1.1467210693359375, 1.1696463623046875, 1.1408421630859376, 1.139661865234375, 1.142564697265625, 1.144791259765625]",tokens/s,54.586550687733464,kWh,1.3797132453780056e-05,7.558356126426566e-06,2.913202725899442e-05,5.048751583920103e-05,tokens/kWh,1247833.230706979,,s,629,11.692877828598027,0.01858963088807317,0.002323445722503397,0.018134016036987305,0.01885880355834961,0.019136306762695315,0.03729248260498047,"[0.019385343551635743, 0.0192225284576416, 0.018934783935546876, 0.01901055908203125, 0.01903001594543457, 0.018994176864624023, 0.019083263397216797, 0.019182592391967773, 0.01884671974182129, 0.018938880920410156, 0.019106815338134766, 0.019335168838500977, 0.01993011283874512, 0.01969254493713379, 0.019323904037475585, 0.018969663619995115, 0.018957248687744142, 0.01906790351867676, 0.01939455986022949, 0.01918976020812988, 0.018973695755004884, 0.018967552185058592, 0.018592767715454102, 0.01882931137084961, 0.01986457633972168, 0.019759103775024413, 0.01927577590942383, 0.018947071075439453, 0.018954240798950195, 0.018718751907348632, 0.01868899154663086, 0.018881536483764647, 0.018890752792358398, 0.01879449653625488, 0.018750463485717773, 0.018704383850097657, 0.018181119918823242, 0.018052095413208007, 0.01804902458190918, 0.018082815170288084, 0.01805414390563965, 0.018017280578613282, 0.018066432952880858, 0.01804287910461426, 0.01808076858520508, 0.01808793640136719, 0.018129919052124025, 0.01807155227661133, 0.017999872207641602, 0.018085887908935547, 0.01802444839477539, 0.018131967544555663, 0.018059263229370116, 0.018091007232666014, 0.018020351409912108, 0.018124799728393554, 0.017999872207641602, 0.01805516815185547, 0.018081792831420897, 0.01821183967590332, 0.018096128463745118, 0.018970624923706055, 0.039049217224121094, 0.01886207962036133, 0.018746368408203123, 0.018647039413452148, 0.01864089584350586, 0.018724863052368163, 0.01864396858215332, 0.018092031478881835, 0.01817190361022949, 0.018177024841308592, 0.018156543731689453, 0.018041856765747072, 0.018233343124389647, 0.018233343124389647, 0.018225151062011717, 0.01824358367919922, 0.018241535186767577, 0.018158592224121094, 0.018133056640625, 0.01810220718383789, 0.01814630317687988, 0.018093055725097656, 0.01806540870666504, 0.018025472640991212, 0.01816166305541992, 0.018155519485473632, 0.018131967544555663, 0.01815449523925781, 0.01820159912109375, 0.018340864181518556, 0.018150400161743165, 0.018102272033691406, 0.018126848220825196, 0.018134016036987305, 0.01820364761352539, 0.018164735794067383, 0.01820876884460449, 0.018197504043579102, 0.01820159912109375, 0.01819443130493164, 0.01808896064758301, 0.018144256591796876, 0.018129919052124025, 0.018091007232666014, 0.018099199295043944, 0.018150400161743165, 0.018698272705078126, 0.018225120544433593, 0.018116607666015624, 0.018067455291748045, 0.01820057678222656, 0.018164735794067383, 0.018551807403564453, 0.018906112670898437, 0.018751487731933594, 0.01883033561706543, 0.018760704040527345, 0.018741247177124023, 0.018735103607177735, 0.0186746883392334, 0.018655231475830078, 0.018259967803955078, 0.018106367111206053, 0.037272575378417966, 0.01804287910461426, 0.018233343124389647, 0.01804697608947754, 0.018033664703369142, 0.018062335968017578, 0.018127872467041017, 0.018066432952880858, 0.01813711929321289, 0.018199520111083986, 0.01845452880859375, 0.018223104476928712, 0.01807360076904297, 0.018113536834716795, 0.018190336227416993, 0.01820979118347168, 0.018121728897094725, 0.018137088775634767, 0.018068479537963866, 0.018098175048828127, 0.018137088775634767, 0.018147327423095702, 0.018077695846557617, 0.018140159606933593, 0.018127872467041017, 0.018028543472290038, 0.018081792831420897, 0.01804697608947754, 0.018106367111206053, 0.018052095413208007, 0.018062335968017578, 0.01801523208618164, 0.018132991790771484, 0.018094079971313477, 0.018069503784179687, 0.018031648635864258, 0.018113504409790038, 0.018044927597045898, 0.018437120437622072, 0.01925632095336914, 0.01884774398803711, 0.018707456588745116, 0.018890752792358398, 0.01904640007019043, 0.018824192047119142, 0.018703359603881836, 0.018787328720092773, 0.018679807662963867, 0.018689023971557618, 0.018731008529663085, 0.018735103607177735, 0.018665504455566407, 0.018631647109985352, 0.01864396858215332, 0.018618368148803712, 0.018663423538208008, 0.018375680923461913, 0.01799884796142578, 0.017819648742675782, 0.01783193588256836, 0.01783296012878418, 0.017921024322509766, 0.01779916763305664, 0.037171199798583986, 0.01801215934753418, 0.01789952087402344, 0.017904640197753906, 0.018226175308227538, 0.01882828712463379, 0.018754560470581053, 0.018746368408203123, 0.018753536224365236, 0.01880985641479492, 0.0188723201751709, 0.01885798454284668, 0.018932735443115235, 0.018494464874267577, 0.018233343124389647, 0.018856960296630858, 0.018811904907226562, 0.01864908790588379, 0.018693119049072265, 0.018749439239501953, 0.018752511978149415, 0.01867263984680176, 0.01923686408996582, 0.019318784713745117, 0.01998028755187988, 0.018965503692626954, 0.018785280227661134, 0.018815999984741212, 0.018700288772583007, 0.01884262466430664, 0.018718719482421875, 0.018868223190307617, 0.018815999984741212, 0.019164159774780275, 0.01888768005371094, 0.018765823364257812, 0.018686975479125977, 0.018481151580810547, 0.018116607666015624, 0.018117631912231445, 0.018100223541259765, 0.018150400161743165, 0.01819545555114746, 0.018114591598510744, 0.018619359970092772, 0.018117631912231445, 0.018189311981201172, 0.01824051284790039, 0.018177024841308592, 0.018135040283203126, 0.01820262336730957, 0.018158624649047852, 0.01811452865600586, 0.018732032775878905, 0.01821696090698242, 0.018974720001220705, 0.01884979248046875, 0.018716672897338867, 0.018817024230957033, 0.01866444778442383, 0.018647039413452148, 0.019155967712402345, 0.019417087554931642, 0.03750092697143555, 0.018118656158447266, 0.01828659248352051, 0.018125823974609375, 0.01805414390563965, 0.018811904907226562, 0.018735103607177735, 0.0184770565032959, 0.018504703521728515, 0.018662399291992187, 0.018761728286743166, 0.018754560470581053, 0.018148351669311523, 0.018076671600341796, 0.018160640716552736, 0.018207744598388673, 0.018172927856445312, 0.018312192916870116, 0.018480127334594726, 0.018217983245849608, 0.018116607666015624, 0.01823641586303711, 0.018152448654174806, 0.018135040283203126, 0.01826304054260254, 0.01798963165283203, 0.01804595184326172, 0.018339839935302735, 0.018109439849853515, 0.018084863662719726, 0.01803264045715332, 0.01802956771850586, 0.018092031478881835, 0.01806438446044922, 0.01800396728515625, 0.018047008514404297, 0.018133983612060547, 0.018128896713256838, 0.018109439849853515, 0.018044927597045898, 0.018116607666015624, 0.018112512588500978, 0.018077695846557617, 0.018052095413208007, 0.018108415603637695, 0.018172927856445312, 0.018084863662719726, 0.018033664703369142, 0.01804595184326172, 0.018159616470336915, 0.018166784286499024, 0.01809715270996094, 0.018106367111206053, 0.018134016036987305, 0.018110464096069336, 0.01809715270996094, 0.018217983245849608, 0.01862451171875, 0.018117631912231445, 0.018137088775634767, 0.018086912155151368, 0.018139135360717772, 0.018082815170288084, 0.037372928619384765, 0.019594240188598632, 0.01887846374511719, 0.018699264526367186, 0.018685951232910156, 0.018745344161987306, 0.0186562557220459, 0.018723840713500976, 0.018711551666259766, 0.018807807922363282, 0.018708480834960937, 0.018749439239501953, 0.018676736831665038, 0.018697216033935548, 0.018767871856689454, 0.018767871856689454, 0.018817024230957033, 0.018683904647827147, 0.018645023345947264, 0.01865622329711914, 0.01864089584350586, 0.018694143295288086, 0.018293760299682618, 0.018084863662719726, 0.018115583419799804, 0.018192384719848635, 0.01815449523925781, 0.018799615859985352, 0.01866035270690918, 0.018714624404907225, 0.01863884735107422, 0.018683904647827147, 0.018699264526367186, 0.0186746883392334, 0.018709503173828124, 0.01882521629333496, 0.018779136657714843, 0.018700288772583007, 0.01929113578796387, 0.01887027168273926, 0.018775039672851563, 0.018670591354370117, 0.018784255981445314, 0.01879859161376953, 0.01863987159729004, 0.018677759170532226, 0.01880985641479492, 0.01878937530517578, 0.018669567108154296, 0.01821696090698242, 0.018050048828125, 0.018114559173583983, 0.018089984893798827, 0.01817190361022949, 0.018095104217529297, 0.01802444839477539, 0.01803059196472168, 0.018067455291748045, 0.018166784286499024, 0.018106367111206053, 0.018116607666015624, 0.018066432952880858, 0.01820979118347168, 0.03734732818603516, 0.01810534477233887, 0.01814630317687988, 0.01808896064758301, 0.018041856765747072, 0.01805619239807129, 0.018103296279907227, 0.018070528030395508, 0.017984512329101563, 0.018099199295043944, 0.018062335968017578, 0.018096128463745118, 0.01801215934753418, 0.018069503784179687, 0.01802444839477539, 0.018127872467041017, 0.018061311721801757, 0.017991680145263672, 0.01801625633239746, 0.01803468894958496, 0.018074623107910158, 0.01801113510131836, 0.018058240890502928, 0.018307071685791015, 0.01817804718017578, 0.018010112762451173, 0.018112512588500978, 0.018100223541259765, 0.018069503784179687, 0.018035711288452147, 0.01807360076904297, 0.01804800033569336, 0.01803264045715332, 0.01805414390563965, 0.018062335968017578, 0.018094079971313477, 0.018051071166992186, 0.01806540870666504, 0.018123775482177733, 0.017978368759155275, 0.018130943298339842, 0.018027519226074217, 0.018078720092773438, 0.01800294494628906, 0.018018304824829103, 0.01806438446044922, 0.018033695220947266, 0.018548704147338866, 0.018318336486816408, 0.018074623107910158, 0.01804287910461426, 0.018137088775634767, 0.018116607666015624, 0.018299903869628906, 0.018448383331298827, 0.018397184371948243, 0.01822105598449707, 0.018160640716552736, 0.018083839416503905, 0.01819340705871582, 0.018143232345581056, 0.018141183853149414, 0.01808896064758301, 0.037615615844726565, 0.01807360076904297, 0.018068479537963866, 0.018083839416503905, 0.018127872467041017, 0.01803775978088379, 0.018241535186767577, 0.01798963165283203, 0.018557952880859374, 0.018586624145507814, 0.018172927856445312, 0.018067455291748045, 0.01803878402709961, 0.018145280838012694, 0.018100223541259765, 0.018101247787475586, 0.018332672119140626, 0.018173952102661133, 0.01820057678222656, 0.017988639831542967, 0.01809404754638672, 0.018164735794067383, 0.018033664703369142, 0.017838079452514647, 0.017934335708618163, 0.018098175048828127, 0.018100223541259765, 0.018076671600341796, 0.018108415603637695, 0.018108415603637695, 0.018044927597045898, 0.01805721664428711, 0.018168832778930662, 0.018124799728393554, 0.017839103698730468, 0.0178657283782959, 0.01810742378234863, 0.018242528915405273, 0.01802649688720703, 0.018190336227416993, 0.018053119659423827, 0.01803468894958496, 0.017968128204345703, 0.017933311462402343, 0.01803878402709961, 0.018069503784179687, 0.0180316162109375, 0.018095104217529297, 0.01797532844543457, 0.018125823974609375, 0.018138080596923827, 0.01808076858520508, 0.01804287910461426, 0.01801215934753418, 0.01802649688720703, 0.01809715270996094, 0.018018304824829103, 0.01804287910461426, 0.017999872207641602, 0.018067455291748045, 0.018019327163696287, 0.01802137565612793, 0.01806540870666504, 0.03730022430419922, 0.018094079971313477, 0.018059263229370116, 0.01804287910461426, 0.018068479537963866, 0.01806540870666504, 0.01783705520629883, 0.017780736923217775, 0.017881088256835938, 0.018093055725097656, 0.018077695846557617, 0.018033664703369142, 0.01805721664428711, 0.018053119659423827, 0.018106367111206053, 0.018098175048828127, 0.01809715270996094, 0.018293760299682618, 0.018572288513183592, 0.018217983245849608, 0.018103296279907227, 0.018078720092773438, 0.01804595184326172, 0.01818009567260742, 0.01806540870666504, 0.018141183853149414, 0.018036735534667968, 0.01805721664428711, 0.01779199981689453, 0.017710079193115236, 0.017810432434082032, 0.017822719573974608, 0.01781760025024414, 0.01787392044067383, 0.01781760025024414, 0.017908735275268553, 0.018152448654174806, 0.018028543472290038, 0.01804902458190918, 0.01803980827331543, 0.018033664703369142, 0.018020351409912108, 0.01802137565612793, 0.018041856765747072, 0.018025472640991212, 0.018141183853149414, 0.018959360122680666, 0.019607551574707033, 0.01887948799133301, 0.01866444778442383, 0.01859174346923828, 0.01863680076599121, 0.018182144165039063, 0.01803980827331543, 0.018092031478881835, 0.01807257652282715, 0.018306047439575195, 0.018158592224121094, 0.018062335968017578, 0.018176000595092775, 0.01822105598449707, 0.018059263229370116, 0.018125823974609375, 0.03789209747314453, 0.018148351669311523, 0.01803468894958496, 0.018094079971313477, 0.017999872207641602, 0.018111488342285157, 0.01804902458190918, 0.018020351409912108, 0.018093055725097656, 0.01810534477233887, 0.018127872467041017, 0.018068511962890624, 0.0180664005279541, 0.018096128463745118, 0.01821696090698242, 0.018103296279907227, 0.018053119659423827, 0.018055200576782227, 0.018034656524658202, 0.01801113510131836, 0.018131967544555663, 0.01807360076904297, 0.01802649688720703, 0.01801420783996582, 0.01799679946899414, 0.018027519226074217, 0.01835212707519531, 0.018299903869628906, 0.018121728897094725, 0.018103296279907227, 0.01825484848022461, 0.018123775482177733, 0.01818623924255371, 0.018493440628051756, 0.01862451171875, 0.01944371223449707, 0.01863167953491211, 0.018110464096069336, 0.018092031478881835, 0.018112512588500978, 0.018126848220825196, 0.01802649688720703, 0.018069503784179687, 0.0180316162109375, 0.018068479537963866, 0.018126848220825196, 0.018089984893798827, 0.018099199295043944, 0.018084863662719726, 0.01804697608947754, 0.01818623924255371, 0.01801625633239746, 0.01804697608947754, 0.018050048828125, 0.018163711547851562, 0.01810534477233887, 0.017994752883911135, 0.018119680404663087, 0.01820057678222656, 0.01805619239807129, 0.018568191528320312, 0.018714624404907225, 0.018725887298583984]",tokens/s,53.79342957484891,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -11967,7 +11918,7 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained hf_quantizer.postprocess_model(model) @@ -11975,16 +11926,16 @@ ChildProcessError: Traceback (most recent call last): return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-32B,Qwen/Qwen1.5-32B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mistral-7B-v0.1,mistralai/Mistral-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -12010,16 +11961,16 @@ ChildProcessError: Traceback (most recent call last): return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,r,r,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,r,r,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -12058,7 +12009,7 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949125-4b50de4f413955673a827664;93fa1441-9ae0-4a2c-8b5c-8aec9da2e84b) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949139-133786530bb9da5b413c96aa;ac686b55-2c86-4f0e-88a6-9bbd00c42b3a) Repository Not Found for url: https://huggingface.co/r/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. @@ -12088,8 +12039,8 @@ Traceback (most recent call last): OSError: r is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-564M,facebook/xglm-564M,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,l,l,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -12097,92 +12048,69 @@ If this is a private repository, make sure to pass a token having permission to File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: XGLMForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/l/resolve/main/config.json -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-2.7B,EleutherAI/gpt-neo-2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: GPTNeoForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` +The above exception was the direct cause of the following exception: -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-410m,EleutherAI/pythia-410m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669491e2-6ca0ac411b0e535c5d450960;d366e3c5-63dc-4d39-b796-571c449dc05e) + +Repository Not Found for url: https://huggingface.co/l/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + raise EnvironmentError( +OSError: l is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,0,0,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,a,a,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -12194,7 +12122,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/0/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/a/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -12221,9 +12149,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669494f9-3448c0fa69d6c72831ab4d47;7a87d3d3-884b-45de-b104-74a2f51fe37a) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694918d-64cec4f566f3d39b311c3360;ba53cb0d-2431-423c-a60f-3d6c2c367cea) -Repository Not Found for url: https://huggingface.co/0/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/a/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -12248,11 +12176,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: 0 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: a is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-6B-nl,Salesforce/codegen-6B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,1,1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -12260,29 +12188,70 @@ If this is a private repository, make sure to pass a token having permission to File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: CodeGenForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/1/resolve/main/config.json -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-70b-hf,meta-llama/Llama-2-70b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669495df-2cbdc8593eea08c73e900421;367ac5f9-0f91-4fe6-bec2-088720c44ad8) + +Repository Not Found for url: https://huggingface.co/1/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + raise EnvironmentError( +OSError: 1 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-7b,huggyllama/llama-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) @@ -12301,29 +12270,57 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 112.00 MiB. GPU + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-2.7b,EleutherAI/pythia-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,2,2,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,B,B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -12335,7 +12332,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/2/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/B/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -12362,9 +12359,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694938c-72b9537548fba59f1bbe3a78;43e7f0b7-8cc4-4cf5-ad69-d17d58561d43) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669493fd-013e08995fdf1f4d0ea581b1;01e8675b-edd7-4148-a6f3-5dd1e864ce33) -Repository Not Found for url: https://huggingface.co/2/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/B/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -12389,11 +12386,46 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: 2 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: B is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,a,a,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-30b,huggyllama/llama-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,2,2,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -12405,7 +12437,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/a/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/2/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -12432,9 +12464,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949179-43251b7e1a565f046d6e7a76;eae8dee5-7f7f-446e-ac3a-56af95cbedd5) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669493a1-02192fe012f8ec46150875d6;6840c524-3d96-4f6d-8fe9-94973540ecb8) -Repository Not Found for url: https://huggingface.co/a/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/2/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -12459,11 +12491,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: a is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: 2 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-350m,facebook/opt-350m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-350m,facebook/opt-350m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -12483,16 +12515,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/phi-1_5,microsoft/phi-1_5,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-MoE-A2.7B,Qwen/Qwen1.5-MoE-A2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -12518,16 +12556,16 @@ ChildProcessError: Traceback (most recent call last): return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-2.7b,facebook/opt-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-70B,meta-llama/Meta-Llama-3-70B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -12547,16 +12585,29 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-13b,huggyllama/llama-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/polyglot-ko-12.8b,EleutherAI/polyglot-ko-12.8b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -12582,49 +12633,16 @@ ChildProcessError: Traceback (most recent call last): return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-7b,tiiuae/falcon-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code - answer = input( -EOFError: EOF when reading a line - -During handling of the above exception, another exception occurred: - -Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights - self.create_no_weights_model() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model - meta_model = self.automodel_class.from_config(self.pretrained_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config - trust_remote_code = resolve_trust_remote_code( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code - raise ValueError( -ValueError: The repository for tiiuae/falcon-7b contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/tiiuae/falcon-7b. -Please pass the argument `trust_remote_code=True` to allow custom code to be run. + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-MoE-A2.7B,Qwen/Qwen1.5-MoE-A2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-65b,huggyllama/llama-65b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -12644,22 +12662,29 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 86.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-7b,huggyllama/llama-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-14B,Qwen/Qwen1.5-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -12685,16 +12710,16 @@ ChildProcessError: Traceback (most recent call last): return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-12b,stabilityai/stablelm-2-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -12720,16 +12745,16 @@ ChildProcessError: Traceback (most recent call last): return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-2b,google/recurrentgemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,8,8,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -12741,11 +12766,21 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/8/resolve/main/config.json The above exception was the direct cause of the following exception: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn @@ -12756,28 +12791,13 @@ Traceback (most recent call last): response = _request_wrapper( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status - raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-669481e6-52fddd9b1de31b0076876073;8de1d97e-984b-47eb-9b56-8622c2efb6a7) - -403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json. -If you are trying to create or update content,make sure you have a token with the `write` role. - -The above exception was the direct cause of the following exception: + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949295-5e3b7acd50cc194f42a607fa;c240b588-f5a2-42c2-be4a-a16f526ecd6c) -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error - raise LocalEntryNotFoundError( -huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. +Repository Not Found for url: https://huggingface.co/8/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. The above exception was the direct cause of the following exception: @@ -12798,13 +12818,13 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/recurrentgemma-2b is not the path to a directory containing a file named config.json. -Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. +OSError: 8 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-30b,facebook/opt-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-8B,meta-llama/Meta-Llama-3-8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -12824,16 +12844,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-160m,EleutherAI/pythia-160m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/rho-math-1b-v0.1,microsoft/rho-math-1b-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -12859,16 +12885,16 @@ ChildProcessError: Traceback (most recent call last): return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-7b,stabilityai/stablelm-base-alpha-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-70m,EleutherAI/pythia-70m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -12894,16 +12920,16 @@ ChildProcessError: Traceback (most recent call last): return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,m,m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,databricks/dbrx-base,databricks/dbrx-base,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -12915,21 +12941,11 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/m/resolve/main/config.json +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json The above exception was the direct cause of the following exception: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn @@ -12940,13 +12956,28 @@ Traceback (most recent call last): response = _request_wrapper( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948c59-0a9f5388510a358f7b3585c7;588c1abf-eccc-43d0-ae22-69da7dabd488) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status + raise HfHubHTTPError(message, response=response) from e +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66947b61-3dd454f06d4669706371a771;9097486f-9799-43ca-9c32-0c49eeb86a6c) -Repository Not Found for url: https://huggingface.co/m/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. +403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. +Cannot access content at: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json. +If you are trying to create or update content,make sure you have a token with the `write` role. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error + raise LocalEntryNotFoundError( +huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. The above exception was the direct cause of the following exception: @@ -12967,13 +12998,13 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file raise EnvironmentError( -OSError: m is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like databricks/dbrx-base is not the path to a directory containing a file named config.json. +Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-3b-4e1t,stabilityai/stablelm-3b-4e1t,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-2.7B,EleutherAI/gpt-neo-2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -12999,16 +13030,16 @@ ChildProcessError: Traceback (most recent call last): return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-125m,EleutherAI/gpt-neo-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-2.7b,facebook/opt-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -13028,17 +13059,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: GPTNeoForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2,openai-community/gpt2,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.42.3,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,1228.386304,1002.962944,0.0,356.51584,319.013888,s,25,0.17499311971664427,0.006999724788665772,0.0002502547192134345,0.006900447845458985,0.007165145587921143,0.007245798397064208,0.007853303222656248,"[0.008038944244384765, 0.006923200130462647, 0.006900447845458985, 0.006933184146881104, 0.006880576133728027, 0.006815231800079345, 0.006844160079956055, 0.006788415908813477, 0.0067693119049072265, 0.006920479774475098, 0.006882304191589355, 0.0071567678451538086, 0.006879392147064209, 0.007167232036590576, 0.006890048027038574, 0.0068763837814331055, 0.007155519962310791, 0.007082911968231201, 0.0070314879417419434, 0.007011424064636231, 0.0068913278579711915, 0.007162015914916992, 0.006900288105010986, 0.006826623916625977, 0.007265439987182617]",tokens/s,36572.86646676812,kWh,8.150109774308188e-08,4.46547292366166e-08,1.7293998509524707e-07,2.9909581207494555e-07,tokens/kWh,855913020.7274622,MB,1228.386304,1002.962944,0.0,356.51584,319.016448,s,25,10.13888803100586,0.40555552124023436,0.006311312712275679,0.4059725341796875,0.41398695068359376,0.41548115234375,0.41856573608398434,"[0.41943405151367186, 0.4079971618652344, 0.39821878051757814, 0.39863568115234377, 0.39658810424804686, 0.39883779907226563, 0.39907968139648436, 0.39881124877929686, 0.41027752685546875, 0.3991168212890625, 0.39967874145507815, 0.4059725341796875, 0.4137551574707031, 0.4085873718261719, 0.39897418212890623, 0.4062608947753906, 0.40200985717773435, 0.40696990966796875, 0.41320684814453124, 0.4053135986328125, 0.40550439453125, 0.4070886535644531, 0.4086114807128906, 0.4141414794921875, 0.4158160705566406]",tokens/s,155.3424788974366,kWh,4.94671478769522e-06,2.710110287520569e-06,8.266001951238741e-06,1.5922827026454533e-05,tokens/kWh,3956583.833720634,,s,1574,10.298755065441126,0.006543046420229436,0.0009065478681006509,0.006355999946594238,0.0066198528289794925,0.006672076821327209,0.013541457796096801,"[0.007553023815155029, 0.007541759967803955, 0.007498752117156982, 0.007409664154052734, 0.007941120147705078, 0.0069253120422363285, 0.006652927875518798, 0.00662937593460083, 0.006646783828735352, 0.006633471965789795, 0.006604800224304199, 0.0067983360290527345, 0.006624256134033203, 0.006653952121734619, 0.006639616012573242, 0.0066406397819519045, 0.006626304149627686, 0.006649856090545654, 0.006614016056060791, 0.006621183872222901, 0.006628352165222168, 0.006662144184112549, 0.006616064071655273, 0.006665215969085693, 0.006718463897705078, 0.00659660816192627, 0.006651904106140137, 0.006834176063537598, 0.006624256134033203, 0.006623231887817383, 0.006614016056060791, 0.006594560146331787, 0.006635519981384277, 0.006584320068359375, 0.006608895778656006, 0.006612991809844971, 0.0066304001808166506, 0.006595583915710449, 0.0066078720092773435, 0.006628352165222168, 0.006616064071655273, 0.0066119680404663084, 0.006525951862335205, 0.006498303890228272, 0.006526976108551025, 0.006487040042877197, 0.006495232105255127, 0.006487040042877197, 0.006569983959197998, 0.006379519939422608, 0.006252543926239014, 0.006254591941833496, 0.006284287929534912, 0.00632422399520874, 0.006354944229125976, 0.0063211522102355954, 0.006364160060882569, 0.006338560104370118, 0.0063201279640197755, 0.006326272010803223, 0.006315008163452148, 0.006311935901641846, 0.013566975593566894, 0.006316031932830811, 0.006298624038696289, 0.0063201279640197755, 0.006344704151153564, 0.006319104194641113, 0.006331391811370849, 0.006323200225830078, 0.006335487842559814, 0.006322175979614258, 0.006358016014099121, 0.006372352123260498, 0.006303743839263916, 0.006379519939422608, 0.006315008163452148, 0.00636518383026123, 0.006347775936126709, 0.00662937593460083, 0.007802879810333252, 0.007903232097625732, 0.007887872219085693, 0.007824384212493896, 0.006624256134033203, 0.006551551818847656, 0.006576128005981445, 0.006462463855743408, 0.006359039783477783, 0.006407167911529541, 0.006405119895935059, 0.00643071985244751, 0.0064204797744750975, 0.006385663986206055, 0.006385663986206055, 0.006342656135559082, 0.006355967998504639, 0.006334464073181153, 0.006367231845855713, 0.006338560104370118, 0.006322175979614258, 0.006336512088775635, 0.006360064029693604, 0.0063272957801818845, 0.00633241605758667, 0.006339583873748779, 0.006359039783477783, 0.006326272010803223, 0.0064542717933654785, 0.006344704151153564, 0.006348800182342529, 0.006339583873748779, 0.006306816101074219, 0.006323200225830078, 0.006344704151153564, 0.006472703933715821, 0.006535168170928955, 0.006359039783477783, 0.006425600051879882, 0.006412288188934326, 0.006355967998504639, 0.006393856048583985, 0.006352896213531494, 0.0063836159706115725, 0.006378496170043945, 0.01365503978729248, 0.006351871967315674, 0.006328320026397705, 0.006339583873748779, 0.0063211522102355954, 0.006352896213531494, 0.006337535858154297, 0.006345727920532227, 0.006335487842559814, 0.006315008163452148, 0.006355967998504639, 0.0063508801460266115, 0.00633135986328125, 0.006347775936126709, 0.006371327877044678, 0.006358016014099121, 0.006330368041992188, 0.006339583873748779, 0.00633241605758667, 0.006341631889343262, 0.006363135814666748, 0.006351871967315674, 0.00637440013885498, 0.00643071985244751, 0.006362112045288086, 0.006343679904937744, 0.006339583873748779, 0.006322175979614258, 0.0062975997924804685, 0.00626585578918457, 0.006291456222534179, 0.006246399879455566, 0.006270976066589356, 0.006244351863861084, 0.006285312175750732, 0.006254591941833496, 0.006260735988616943, 0.006264832019805908, 0.006291456222534179, 0.006273024082183838, 0.006239232063293457, 0.00628223991394043, 0.006227968215942382, 0.006294528007507324, 0.0062740478515625, 0.006308864116668702, 0.006285312175750732, 0.006392831802368164, 0.006340608119964599, 0.006330368041992188, 0.006354944229125976, 0.006335487842559814, 0.006323200225830078, 0.006337535858154297, 0.006237184047698975, 0.00626585578918457, 0.006254591941833496, 0.006262784004211426, 0.006262784004211426, 0.006273024082183838, 0.006322175979614258, 0.006329343795776367, 0.0063498239517211915, 0.013574144363403321, 0.006351871967315674, 0.0063272957801818845, 0.006416384220123291, 0.006345727920532227, 0.006398975849151611, 0.006466559886932373, 0.006325247764587402, 0.006358016014099121, 0.006358016014099121, 0.006358016014099121, 0.006342656135559082, 0.006338560104370118, 0.006326272010803223, 0.006348800182342529, 0.006322175979614258, 0.006341631889343262, 0.0063170561790466305, 0.006346784114837647, 0.0063200960159301755, 0.006329343795776367, 0.006400000095367431, 0.006338560104370118, 0.0063569917678833006, 0.006446080207824707, 0.006358016014099121, 0.0063569917678833006, 0.006323200225830078, 0.006325247764587402, 0.006337535858154297, 0.006341631889343262, 0.006340608119964599, 0.00636518383026123, 0.006339583873748779, 0.006331391811370849, 0.0063498239517211915, 0.006315008163452148, 0.006341631889343262, 0.006371327877044678, 0.006300672054290772, 0.006342656135559082, 0.0063201279640197755, 0.006342656135559082, 0.006293504238128662, 0.006366208076477051, 0.006284287929534912, 0.006259712219238281, 0.0062740478515625, 0.006264832019805908, 0.006250495910644531, 0.006248447895050049, 0.006259712219238281, 0.0062679038047790524, 0.006238207817077636, 0.006242303848266601, 0.006231040000915527, 0.0062494721412658695, 0.006238207817077636, 0.006262784004211426, 0.00633241605758667, 0.0062576642036437985, 0.006259712219238281, 0.006255616188049316, 0.013544447898864746, 0.006300672054290772, 0.006345727920532227, 0.006344704151153564, 0.006329343795776367, 0.006352896213531494, 0.0063201279640197755, 0.006367231845855713, 0.006322175979614258, 0.006341631889343262, 0.006329343795776367, 0.00638976001739502, 0.006337535858154297, 0.006329343795776367, 0.006345727920532227, 0.0063498239517211915, 0.0063539199829101565, 0.006387712001800537, 0.006310912132263183, 0.006340608119964599, 0.006301695823669433, 0.0062576642036437985, 0.0062341117858886715, 0.006278143882751465, 0.006254591941833496, 0.006247424125671387, 0.0062975997924804685, 0.006230016231536865, 0.0062638077735900875, 0.006244351863861084, 0.0062679038047790524, 0.006277120113372803, 0.006237184047698975, 0.006244351863861084, 0.006210559844970703, 0.006259712219238281, 0.006266880035400391, 0.0063283839225769046, 0.006219711780548096, 0.006268928050994873, 0.0062566399574279785, 0.006260735988616943, 0.006245376110076905, 0.006250495910644531, 0.006285312175750732, 0.006333439826965332, 0.006364160060882569, 0.006348800182342529, 0.006300672054290772, 0.006351871967315674, 0.006240255832672119, 0.006242303848266601, 0.0062464637756347655, 0.006262720108032227, 0.006248447895050049, 0.0062228479385375976, 0.006261760234832763, 0.0063211522102355954, 0.0062576642036437985, 0.006209536075592041, 0.006245376110076905, 0.006276095867156982, 0.006243328094482422, 0.013425663948059082, 0.006345727920532227, 0.006366208076477051, 0.006371327877044678, 0.006328320026397705, 0.006311935901641846, 0.00632422399520874, 0.0063539199829101565, 0.006340608119964599, 0.006342656135559082, 0.006334464073181153, 0.006346752166748047, 0.006329343795776367, 0.006348800182342529, 0.006338560104370118, 0.006318079948425293, 0.006333439826965332, 0.006388735771179199, 0.0063272957801818845, 0.006350912094116211, 0.006325183868408203, 0.006355967998504639, 0.0063211522102355954, 0.006333439826965332, 0.006351871967315674, 0.006306816101074219, 0.006325247764587402, 0.006345727920532227, 0.0063805441856384275, 0.006335487842559814, 0.006355967998504639, 0.006302720069885254, 0.006245376110076905, 0.006280191898345947, 0.006252543926239014, 0.0063498239517211915, 0.006242303848266601, 0.006284287929534912, 0.006289408206939697, 0.006280191898345947, 0.006346752166748047, 0.0063498239517211915, 0.006347775936126709, 0.0063508481979370115, 0.006347775936126709, 0.006300672054290772, 0.0062197761535644535, 0.006250495910644531, 0.006247424125671387, 0.006277120113372803, 0.006301695823669433, 0.006284287929534912, 0.006262784004211426, 0.00626585578918457, 0.006363135814666748, 0.006362112045288086, 0.006379519939422608, 0.00636627197265625, 0.006358975887298584, 0.0064133119583129885, 0.006367231845855713, 0.006362112045288086, 0.00636518383026123, 0.013474847793579102, 0.006304736137390137, 0.006323232173919678, 0.006257631778717041, 0.00624128007888794, 0.006244351863861084, 0.006248447895050049, 0.006277120113372803, 0.006258687973022461, 0.006303743839263916, 0.0062740478515625, 0.0063272957801818845, 0.006352896213531494, 0.006315008163452148, 0.006352896213531494, 0.006358016014099121, 0.006330368041992188, 0.006330368041992188, 0.006344704151153564, 0.00636518383026123, 0.0063211522102355954, 0.006347775936126709, 0.0063294081687927245, 0.006420415878295898, 0.006358016014099121, 0.006328320026397705, 0.006343679904937744, 0.006364160060882569, 0.006335487842559814, 0.006344704151153564, 0.006355967998504639, 0.006371327877044678, 0.00636518383026123, 0.0063211522102355954, 0.006343679904937744, 0.006344704151153564, 0.0063201279640197755, 0.006239232063293457, 0.006293504238128662, 0.00632422399520874, 0.006340608119964599, 0.0063539199829101565, 0.006364160060882569, 0.006326272010803223, 0.006331391811370849, 0.006387712001800537, 0.006437888145446777, 0.00633241605758667, 0.006347775936126709, 0.006355967998504639, 0.006359039783477783, 0.006352896213531494, 0.006370304107666015, 0.006326272010803223, 0.006337535858154297, 0.006359072208404541, 0.006336480140686035, 0.0063272957801818845, 0.0063498239517211915, 0.006315040111541748, 0.0063200960159301755, 0.00628223991394043, 0.006285312175750732, 0.013402112007141113, 0.0063170561790466305, 0.006387712001800537, 0.00633241605758667, 0.006262784004211426, 0.00626585578918457, 0.006268928050994873, 0.00626585578918457, 0.006294528007507324, 0.006299647808074951, 0.006277120113372803, 0.006385663986206055, 0.006337567806243897, 0.006363103866577149, 0.006330431938171387, 0.006377439975738525, 0.006355936050415039, 0.006333439826965332, 0.006363135814666748, 0.006334496021270752, 0.006326240062713623, 0.0064542717933654785, 0.006329343795776367, 0.006344704151153564, 0.006341631889343262, 0.006333439826965332, 0.006271999835968017, 0.006259712219238281, 0.0062638077735900875, 0.006252543926239014, 0.006246399879455566, 0.0062576642036437985, 0.006258687973022461, 0.0062566399574279785, 0.006334464073181153, 0.0063498239517211915, 0.006312960147857666, 0.006330368041992188, 0.006300672054290772, 0.006333439826965332, 0.006349887847900391, 0.006418367862701416, 0.006323200225830078, 0.006313983917236328, 0.006328320026397705, 0.006315008163452148, 0.006339583873748779, 0.0063498239517211915, 0.006355967998504639, 0.0063539199829101565, 0.006322175979614258, 0.0063272957801818845, 0.006322175979614258, 0.006319104194641113, 0.006360064029693604, 0.006335487842559814, 0.006340608119964599, 0.0063201279640197755, 0.006338560104370118, 0.006394879817962646, 0.006402048110961914, 0.006336512088775635, 0.0063211522102355954, 0.013421567916870117, 0.006616064071655273, 0.006685696125030518, 0.006583295822143555, 0.006564864158630371, 0.0065771517753601075, 0.006532095909118653, 0.006549503803253174, 0.006567935943603515, 0.006543360233306885, 0.0065484800338745115, 0.00653004789352417, 0.006536191940307618, 0.006542335987091064, 0.0065710082054138185, 0.006550528049468994, 0.006557695865631104, 0.0066344962120056155, 0.00652185583114624, 0.006583295822143555, 0.006567935943603515, 0.006520832061767578, 0.006569983959197998, 0.006535168170928955, 0.006551551818847656, 0.0065474557876586915, 0.006527999877929688, 0.006554624080657959, 0.006463488101959228, 0.006458367824554443, 0.006569983959197998, 0.006790143966674805, 0.006398975849151611, 0.006395904064178467, 0.007122943878173828, 0.007017471790313721, 0.006656000137329102, 0.006595583915710449, 0.006564864158630371, 0.006590464115142822, 0.006599679946899414, 0.006574079990386963, 0.006592512130737305, 0.0067348480224609375, 0.006368256092071533, 0.006345727920532227, 0.006308864116668702, 0.006351871967315674, 0.006345727920532227, 0.006338560104370118, 0.006392831802368164, 0.0063498239517211915, 0.006330368041992188, 0.006302720069885254, 0.00633241605758667, 0.006333439826965332, 0.006315008163452148, 0.006326272010803223, 0.006310912132263183, 0.0063211522102355954, 0.006340672016143798, 0.00630675220489502, 0.006346752166748047, 0.013609984397888183, 0.006345727920532227, 0.006343679904937744, 0.0063272957801818845, 0.006323200225830078, 0.006330368041992188, 0.006333439826965332, 0.006354944229125976, 0.006346752166748047, 0.006335487842559814, 0.006337535858154297, 0.006348800182342529, 0.0063272957801818845, 0.006331391811370849, 0.006347775936126709, 0.006339583873748779, 0.006310912132263183, 0.006319104194641113, 0.006375423908233643, 0.006299647808074951, 0.006300735950469971, 0.006322112083435059, 0.006328320026397705, 0.006300672054290772, 0.006435840129852295, 0.006328320026397705, 0.006347775936126709, 0.006405119895935059, 0.006336512088775635, 0.006370304107666015, 0.0063508481979370115, 0.006328320026397705, 0.006347775936126709, 0.006347775936126709, 0.0063201279640197755, 0.006325247764587402, 0.0063170561790466305, 0.0063272957801818845, 0.006304768085479737, 0.006363135814666748, 0.006377471923828125, 0.006348800182342529, 0.006338592052459717, 0.006314976215362549, 0.006348800182342529, 0.0063170561790466305, 0.00628223991394043, 0.006262784004211426, 0.006254591941833496, 0.006262784004211426, 0.0062904319763183595, 0.0062904319763183595, 0.006266880035400391, 0.006288383960723877, 0.00630790376663208, 0.006268864154815674, 0.00628223991394043, 0.0062576642036437985, 0.006338560104370118, 0.0065218877792358396, 0.006366176128387451, 0.0063569917678833006, 0.006330368041992188, 0.013532159805297851, 0.006331391811370849, 0.006326272010803223, 0.006303743839263916, 0.006318079948425293, 0.006369279861450195, 0.006342656135559082, 0.006354944229125976, 0.006341631889343262, 0.0063569917678833006, 0.006308864116668702, 0.0063610877990722655, 0.006354944229125976, 0.006339583873748779, 0.006340608119964599, 0.00636518383026123, 0.006388735771179199, 0.0063508481979370115, 0.006334464073181153, 0.0063272957801818845, 0.006301695823669433, 0.006336512088775635, 0.006295551776885986, 0.006325247764587402, 0.0063272957801818845, 0.006309887886047363, 0.006323200225830078, 0.006300672054290772, 0.006334464073181153, 0.006348800182342529, 0.006479872226715088, 0.00636521577835083, 0.006327263832092285, 0.006336512088775635, 0.006636544227600098, 0.0063508481979370115, 0.006322175979614258, 0.006299647808074951, 0.0063498239517211915, 0.006301695823669433, 0.00633241605758667, 0.006334464073181153, 0.006330368041992188, 0.006387712001800537, 0.006308864116668702, 0.006339583873748779, 0.006313983917236328, 0.00632422399520874, 0.00633241605758667, 0.006369279861450195, 0.006307839870452881, 0.006307839870452881, 0.006362112045288086, 0.006336512088775635, 0.006307839870452881, 0.006328320026397705, 0.006291456222534179, 0.006311935901641846, 0.006340640068054199, 0.0062863039970397945, 0.006346752166748047, 0.006344704151153564, 0.006330368041992188, 0.01417625617980957, 0.006680575847625733, 0.007311359882354736, 0.00695091199874878, 0.0065710082054138185, 0.006619135856628418, 0.006626304149627686, 0.0066109437942504885, 0.006896639823913574, 0.007411712169647216, 0.00667852783203125, 0.006569983959197998, 0.006575104236602783, 0.006576128005981445, 0.006584320068359375, 0.006497280120849609, 0.006366208076477051, 0.006243328094482422, 0.006244351863861084, 0.006262784004211426, 0.00626585578918457, 0.006271999835968017, 0.006341631889343262, 0.006309887886047363, 0.006328320026397705, 0.0063272957801818845, 0.006322175979614258, 0.006492159843444824, 0.006329343795776367, 0.0063508481979370115, 0.0063170561790466305, 0.0063211522102355954, 0.006322175979614258, 0.006313983917236328, 0.006367231845855713, 0.00633241605758667, 0.006331391811370849, 0.006316031932830811, 0.006325247764587402, 0.006329343795776367, 0.006300672054290772, 0.006355967998504639, 0.006323200225830078, 0.006359039783477783, 0.0063610877990722655, 0.006348800182342529, 0.006340608119964599, 0.006331391811370849, 0.006360064029693604, 0.0063539199829101565, 0.006341631889343262, 0.0063272957801818845, 0.006293504238128662, 0.006461440086364746, 0.0063508481979370115, 0.006352896213531494, 0.0063272957801818845, 0.006330368041992188, 0.006352896213531494, 0.00638976001739502, 0.006411263942718506, 0.006364192008972168, 0.006347743988037109, 0.013545536041259765, 0.006293439865112304, 0.006326272010803223, 0.006346752166748047, 0.006339583873748779, 0.006386688232421875, 0.006369279861450195, 0.006340608119964599, 0.006345727920532227, 0.006348800182342529, 0.006553599834442139, 0.0074414081573486324, 0.007172095775604248, 0.008360960006713868, 0.007012351989746094, 0.0066938881874084475, 0.006558720111846924, 0.006568960189819336, 0.006591487884521485, 0.006663167953491211, 0.0065781760215759275, 0.006591519832611084, 0.006590432167053223, 0.006583295822143555, 0.006527999877929688, 0.006648831844329834, 0.00658841609954834, 0.006606847763061524, 0.006754303932189941, 0.006639616012573242, 0.006535168170928955, 0.006597631931304931, 0.006586368083953857, 0.00657919979095459, 0.00657203197479248, 0.006638591766357422, 0.006512639999389648, 0.006337535858154297, 0.0063272957801818845, 0.0063569917678833006, 0.0063539199829101565, 0.006335487842559814, 0.006384640216827392, 0.006345727920532227, 0.006359039783477783, 0.006347775936126709, 0.006338560104370118, 0.006344704151153564, 0.006316031932830811, 0.00638156795501709, 0.006494207859039307, 0.006662144184112549, 0.006584320068359375, 0.006542335987091064, 0.006576128005981445, 0.006589439868927002, 0.006760447978973389, 0.006642687797546387, 0.00658739185333252, 0.006532127857208252, 0.006598624229431152, 0.006594560146331787, 0.00657203197479248, 0.014103551864624024, 0.00659660816192627, 0.0065781760215759275, 0.006557695865631104, 0.006559743881225586, 0.00657919979095459, 0.00658739185333252, 0.006556672096252441, 0.006576128005981445, 0.006602752208709717, 0.00658841609954834, 0.006584320068359375, 0.0066007041931152345, 0.006558720111846924, 0.006586368083953857, 0.006576128005981445, 0.006555647850036621, 0.0065669121742248536, 0.006532095909118653, 0.006586368083953857, 0.006643712043762207, 0.0065710082054138185, 0.006590464115142822, 0.006565887928009034, 0.006562816143035889, 0.006546432018280029, 0.0065484800338745115, 0.006560768127441406, 0.006562816143035889, 0.006585343837738037, 0.0065710082054138185, 0.006556672096252441, 0.006556672096252441, 0.006586368083953857, 0.006822912216186523, 0.0065484800338745115, 0.006464511871337891, 0.00638976001739502, 0.006238207817077636, 0.006276095867156982, 0.0064245758056640625, 0.0063569917678833006, 0.00637337589263916, 0.006312960147857666, 0.006323200225830078, 0.006300672054290772, 0.006334464073181153, 0.006323200225830078, 0.006363135814666748, 0.006346752166748047, 0.006334464073181153, 0.006334464073181153, 0.006323200225830078, 0.0063508481979370115, 0.0063498239517211915, 0.006342656135559082, 0.006339583873748779, 0.006335487842559814, 0.006343679904937744, 0.006415359973907471, 0.0063610877990722655, 0.006379519939422608, 0.0063508481979370115, 0.013540351867675781, 0.006306816101074219, 0.006302720069885254, 0.006303743839263916, 0.006346752166748047, 0.006351871967315674, 0.006336512088775635, 0.006335487842559814, 0.006315040111541748, 0.0063835840225219724, 0.0063211522102355954, 0.0063539199829101565, 0.006347775936126709, 0.00632422399520874, 0.006372352123260498, 0.0063272957801818845, 0.006354944229125976, 0.006307839870452881, 0.006311935901641846, 0.006351871967315674, 0.0063272957801818845, 0.006333439826965332, 0.00632422399520874, 0.006336512088775635, 0.006343679904937744, 0.006391808032989502, 0.0064849920272827145, 0.0063272957801818845, 0.006334464073181153, 0.006308864116668702, 0.006337535858154297, 0.006375423908233643, 0.00632422399520874, 0.006312960147857666, 0.006348800182342529, 0.00633241605758667, 0.0063498239517211915, 0.006281216144561768, 0.006343679904937744, 0.0063201279640197755, 0.006323200225830078, 0.006322175979614258, 0.006307839870452881, 0.006308864116668702, 0.006297632217407227, 0.006309855937957764, 0.0062873601913452145, 0.006243328094482422, 0.006319104194641113, 0.006339583873748779, 0.006302720069885254, 0.006308864116668702, 0.00653004789352417, 0.006338560104370118, 0.006243328094482422, 0.006260735988616943, 0.006223872184753418, 0.0062740478515625, 0.0062873601913452145, 0.006325247764587402, 0.006342656135559082, 0.00633241605758667, 0.00633241605758667, 0.013538304328918458, 0.006305791854858398, 0.0063201279640197755, 0.006355967998504639, 0.0063272957801818845, 0.0071905279159545895, 0.006692863941192627, 0.006627327919006347, 0.006545407772064209, 0.006565887928009034, 0.0065669121742248536, 0.006585343837738037, 0.006595583915710449, 0.006563839912414551, 0.006583295822143555, 0.006498303890228272, 0.0066078720092773435, 0.006591487884521485, 0.006567935943603515, 0.006550528049468994, 0.006534143924713135, 0.0067010560035705566, 0.006738944053649902, 0.0066447358131408694, 0.006623231887817383, 0.0065484800338745115, 0.006585343837738037, 0.0066007041931152345, 0.0065669121742248536, 0.0063170561790466305, 0.006325247764587402, 0.006352896213531494, 0.0063508481979370115, 0.006322175979614258, 0.00633241605758667, 0.006326272010803223, 0.006341631889343262, 0.006310912132263183, 0.006316031932830811, 0.006348800182342529, 0.006289408206939697, 0.006318079948425293, 0.006301695823669433, 0.006330368041992188, 0.006312960147857666, 0.0063508481979370115, 0.006307839870452881, 0.006326335906982422, 0.006351808071136475, 0.006346752166748047, 0.006372384071350098, 0.006464479923248291, 0.0062975997924804685, 0.006333439826965332, 0.006339583873748779, 0.006326303958892822, 0.00633955192565918, 0.006329343795776367, 0.006329343795776367, 0.00638976001739502, 0.006347775936126709, 0.006343679904937744, 0.006351871967315674, 0.013858816146850587, 0.006318079948425293, 0.006269951820373535, 0.006247424125671387, 0.0062566399574279785, 0.006277120113372803, 0.0063201279640197755, 0.00633241605758667, 0.006351871967315674, 0.006341631889343262, 0.006334464073181153, 0.006367231845855713, 0.0063201279640197755, 0.006375423908233643, 0.006359039783477783, 0.006351871967315674, 0.006368256092071533, 0.006331391811370849, 0.006333439826965332, 0.006348800182342529, 0.006318079948425293, 0.006363135814666748, 0.006392831802368164, 0.006328320026397705, 0.006382656097412109, 0.006395840167999268, 0.0063508481979370115, 0.006355967998504639, 0.0063907837867736815, 0.0065382399559021, 0.006352896213531494, 0.006335487842559814, 0.006323200225830078, 0.006363135814666748, 0.0063201279640197755, 0.006360064029693604, 0.006364160060882569, 0.006319104194641113, 0.006338560104370118, 0.0063211522102355954, 0.006339583873748779, 0.0063610877990722655, 0.006337535858154297, 0.006345727920532227, 0.0063498239517211915, 0.006408192157745361, 0.006341631889343262, 0.0063498239517211915, 0.006362112045288086, 0.006359039783477783, 0.006348800182342529, 0.006322175979614258, 0.006319104194641113, 0.006351871967315674, 0.006311935901641846, 0.006342656135559082, 0.006316031932830811, 0.006887423992156983, 0.0067338237762451176, 0.006602752208709717, 0.006619135856628418, 0.006602752208709717, 0.006591487884521485, 0.01399500846862793, 0.006564864158630371, 0.00659660816192627, 0.006553599834442139, 0.00653926420211792, 0.006597631931304931, 0.0065781760215759275, 0.00653926420211792, 0.006567935943603515, 0.006497280120849609, 0.006352896213531494, 0.006359039783477783, 0.006344704151153564, 0.006344704151153564, 0.0063610877990722655, 0.0063539199829101565, 0.006341631889343262, 0.0063211522102355954, 0.006342656135559082, 0.006333439826965332, 0.006345727920532227, 0.006341631889343262, 0.00632422399520874, 0.006307839870452881, 0.006315008163452148, 0.006328320026397705, 0.006459392070770263, 0.006576128005981445, 0.006601727962493896, 0.0065484800338745115, 0.006592512130737305, 0.006593535900115967, 0.006565887928009034, 0.0066119680404663084, 0.006568960189819336, 0.006563839912414551, 0.006405119895935059, 0.006418432235717773, 0.006535168170928955, 0.006617087841033936, 0.006565887928009034, 0.006543360233306885, 0.006558720111846924, 0.006552639961242676, 0.0065985918045043945, 0.006584320068359375, 0.006687744140625, 0.006435840129852295, 0.006351871967315674, 0.0063272957801818845, 0.006329343795776367, 0.006331391811370849, 0.006339583873748779, 0.006336512088775635, 0.006336512088775635, 0.006397952079772949, 0.006358016014099121, 0.006367231845855713, 0.006323200225830078, 0.006620160102844238, 0.006355967998504639, 0.006335519790649414, 0.006356959819793701, 0.013624320030212403, 0.0063170561790466305, 0.00628223991394043, 0.0063201279640197755, 0.006336512088775635, 0.006379519939422608, 0.006331391811370849, 0.006304800033569336, 0.006493152141571045, 0.006665215969085693, 0.0066979842185974124, 0.006715392112731934, 0.006619135856628418, 0.006852608203887939, 0.007166975975036621, 0.006658048152923584, 0.006584320068359375, 0.006662144184112549, 0.00658739185333252, 0.006594560146331787, 0.006597631931304931, 0.006562816143035889, 0.0065484800338745115, 0.006445055961608887, 0.0063569917678833006, 0.006468607902526856, 0.006880256175994873, 0.006615039825439453, 0.006583295822143555, 0.006616064071655273, 0.006603775978088379, 0.006628352165222168, 0.006658048152923584, 0.006810624122619629, 0.006584320068359375, 0.006451200008392334, 0.006351871967315674, 0.006369344234466553, 0.006613952159881592, 0.006575104236602783, 0.0063508481979370115, 0.006345727920532227, 0.0064737281799316405, 0.0065812478065490725, 0.006590464115142822, 0.006584320068359375, 0.006568960189819336, 0.00658841609954834, 0.006594560146331787, 0.006601727962493896, 0.006545407772064209, 0.006574079990386963, 0.006575104236602783, 0.006573056221008301, 0.006582272052764892, 0.006558720111846924, 0.006612991809844971, 0.006558720111846924, 0.0065710082054138185, 0.006575104236602783, 0.006565887928009034, 0.006576128005981445, 0.006585343837738037, 0.013684736251831055, 0.006346752166748047, 0.006388735771179199, 0.006403071880340576, 0.006362112045288086, 0.0063272957801818845, 0.0064102401733398436, 0.006333439826965332, 0.006565887928009034, 0.006631423950195312, 0.006559743881225586, 0.006612991809844971, 0.00657203197479248, 0.006412288188934326, 0.006355967998504639, 0.006387712001800537, 0.00633241605758667, 0.006366208076477051, 0.006305823802947998, 0.0063794879913330075, 0.0063508481979370115, 0.006348800182342529, 0.0064225602149963375, 0.006326240062713623, 0.006553599834442139, 0.0065781760215759275, 0.0065146880149841305, 0.006550528049468994, 0.006556672096252441, 0.006688767910003662, 0.006586368083953857, 0.006553599834442139, 0.006549503803253174, 0.006561791896820069, 0.006567935943603515, 0.006459392070770263, 0.006468607902526856, 0.0064737281799316405, 0.00643993616104126, 0.006464511871337891, 0.0064471039772033695, 0.0064471039772033695, 0.006284287929534912, 0.006376448154449463, 0.00628326416015625, 0.0062904319763183595, 0.006239232063293457, 0.006311935901641846, 0.006388735771179199, 0.00626585578918457, 0.006298624038696289, 0.0062638077735900875, 0.006499328136444092, 0.006605823993682861, 0.006582335948944092, 0.006577087879180908, 0.006540319919586182, 0.00632316780090332, 0.006334464073181153, 0.006347775936126709, 0.0063211522102355954, 0.006299647808074951, 0.006298624038696289, 0.013540351867675781, 0.006284287929534912, 0.0063498239517211915, 0.006307839870452881, 0.006331391811370849, 0.006343679904937744, 0.006295551776885986, 0.006497280120849609, 0.006576128005981445, 0.006319104194641113, 0.006334464073181153, 0.006356031894683838, 0.006310848236083985, 0.00637443208694458, 0.006343647956848144, 0.0063569917678833006, 0.006362112045288086, 0.006288383960723877, 0.006318079948425293, 0.006367231845855713, 0.0063201279640197755, 0.006336512088775635, 0.006334464073181153, 0.006516736030578613, 0.0065177597999572755, 0.006330368041992188, 0.006339583873748779, 0.006331391811370849, 0.0063508481979370115, 0.006376448154449463, 0.006322175979614258, 0.006355967998504639, 0.006339583873748779, 0.0062873601913452145, 0.006277120113372803, 0.006306816101074219, 0.006441984176635742, 0.006354944229125976, 0.006400000095367431, 0.0064481601715087895, 0.006589407920837402, 0.006568960189819336, 0.006575104236602783, 0.006586368083953857, 0.00658841609954834, 0.0065669121742248536, 0.006593535900115967, 0.006583295822143555, 0.006557695865631104, 0.006591487884521485, 0.006527999877929688, 0.0065669121742248536, 0.006463488101959228, 0.006529024124145508, 0.006575104236602783, 0.006545407772064209, 0.0065382399559021, 0.00658022403717041, 0.006534143924713135, 0.006536191940307618, 0.006555647850036621, 0.00653926420211792, 0.00658022403717041, 0.01406668758392334, 0.006556672096252441, 0.006573056221008301, 0.006558720111846924, 0.006558720111846924, 0.006584320068359375, 0.006593535900115967, 0.006619135856628418, 0.006565919876098633, 0.006564864158630371, 0.006589407920837402, 0.0065443840026855465, 0.006532095909118653, 0.006386688232421875, 0.0063569917678833006, 0.006402048110961914, 0.006369279861450195, 0.006311935901641846, 0.006366208076477051, 0.006342656135559082, 0.006562816143035889, 0.006598656177520752, 0.006523903846740723, 0.006594560146331787, 0.006601727962493896, 0.006555647850036621, 0.006455296039581298, 0.006396927833557129, 0.006313983917236328, 0.006369279861450195, 0.006307839870452881, 0.006371327877044678, 0.0063836159706115725, 0.0065136637687683106, 0.0063836159706115725, 0.00638976001739502, 0.006556672096252441, 0.006590464115142822, 0.006540287971496582, 0.006481919765472412, 0.006435840129852295, 0.006292479991912842, 0.006289408206939697, 0.0062740478515625, 0.006262784004211426, 0.0062863359451293946, 0.0062679038047790524, 0.006250495910644531, 0.006398975849151611, 0.006347775936126709, 0.0065485119819641115, 0.006573023796081543, 0.006589439868927002, 0.006621183872222901, 0.006602752208709717, 0.006575104236602783, 0.006529024124145508, 0.0063610877990722655, 0.006348800182342529, 0.006418432235717773, 0.006340608119964599, 0.006368256092071533, 0.006372352123260498, 0.013567999839782715, 0.0064245758056640625, 0.006529024124145508, 0.006575104236602783, 0.006619135856628418, 0.006550528049468994, 0.006595583915710449, 0.006590464115142822, 0.006543360233306885, 0.006593535900115967, 0.006552576065063476, 0.006565887928009034, 0.006494207859039307, 0.006326303958892822, 0.00638153600692749, 0.006367231845855713, 0.006330368041992188, 0.006515711784362793, 0.006567935943603515, 0.006685696125030518, 0.006481919765472412, 0.006453248023986816, 0.006451200008392334, 0.006505472183227539, 0.006331391811370849, 0.006295551776885986, 0.006278143882751465, 0.0062638077735900875, 0.0062863359451293946, 0.006394879817962646, 0.00657919979095459, 0.00658841609954834, 0.006568960189819336, 0.006604800224304199, 0.00658739185333252, 0.0066109437942504885, 0.00658022403717041, 0.006546463966369629, 0.006536191940307618, 0.006556640148162842, 0.006592512130737305, 0.006557695865631104, 0.006593535900115967, 0.0065443840026855465, 0.006582272052764892, 0.006558720111846924, 0.0065382399559021, 0.006556672096252441, 0.006585343837738037, 0.006604832172393799, 0.006500319957733154, 0.006387712001800537, 0.006351935863494873, 0.006343616008758545, 0.006391808032989502, 0.006341631889343262, 0.006362112045288086, 0.006337535858154297, 0.006540287971496582, 0.006371327877044678, 0.006310912132263183, 0.006352896213531494, 0.006352896213531494, 0.01367347240447998, 0.006591487884521485, 0.0065484800338745115, 0.006677504062652588, 0.006626304149627686, 0.006788095951080322, 0.006605823993682861, 0.0065372161865234375, 0.006333439826965332, 0.006369279861450195, 0.006322175979614258, 0.00638156795501709, 0.006378496170043945, 0.006351871967315674, 0.00636518383026123, 0.006529024124145508, 0.0066119680404663084, 0.006621183872222901, 0.006585343837738037, 0.00656492805480957, 0.006626239776611328, 0.006565887928009034, 0.0065710082054138185, 0.00659660816192627, 0.0065669121742248536, 0.006598656177520752, 0.006589439868927002, 0.006546432018280029, 0.0066109437942504885, 0.006589439868927002, 0.006534143924713135, 0.006642687797546387, 0.0066007041931152345, 0.006549503803253174, 0.006639616012573242, 0.006569983959197998, 0.006773759841918945, 0.0066406397819519045, 0.0065771517753601075, 0.006616064071655273, 0.006615039825439453, 0.006546432018280029, 0.006608895778656006, 0.0066416640281677245, 0.006534175872802734, 0.006616032123565674, 0.0066375679969787596, 0.00658739185333252, 0.006638591766357422, 0.006621183872222901, 0.006582272052764892, 0.0066375679969787596, 0.0065812478065490725, 0.006542335987091064, 0.0065382399559021, 0.006474751949310303, 0.006479872226715088, 0.0065710082054138185, 0.00653004789352417, 0.006699007987976074, 0.006642687797546387, 0.006553599834442139, 0.0066406397819519045, 0.014166015625, 0.006624256134033203, 0.006648831844329834, 0.006559743881225586, 0.006635519981384277, 0.00667852783203125, 0.00657203197479248, 0.006632448196411133, 0.006670335769653321, 0.006561791896820069, 0.006660096168518067, 0.0066344962120056155, 0.006597631931304931, 0.006661119937896728, 0.006627327919006347, 0.006591487884521485, 0.006631423950195312, 0.006584320068359375, 0.0066007041931152345, 0.006633471965789795, 0.006520832061767578, 0.006591487884521485, 0.006525951862335205, 0.006432767868041992, 0.0065413122177124024, 0.00657203197479248, 0.006455296039581298, 0.006535168170928955, 0.006466559886932373, 0.0065781760215759275, 0.006616064071655273, 0.00652288007736206, 0.006623231887817383, 0.006817791938781738, 0.006590464115142822, 0.006673408031463623, 0.006645760059356689, 0.006555647850036621, 0.006639616012573242, 0.006662144184112549, 0.00658739185333252, 0.006666240215301514, 0.0066713600158691405, 0.006501376152038574, 0.006546432018280029, 0.006534143924713135, 0.006626304149627686, 0.006622208118438721, 0.00659660816192627, 0.006631423950195312, 0.006619135856628418, 0.006562816143035889, 0.006619135856628418, 0.0065382399559021, 0.0064287037849426265, 0.006519775867462158, 0.006512639999389648, 0.00657919979095459, 0.006752255916595459, 0.006648831844329834, 0.006575104236602783, 0.006623231887817383, 0.006612991809844971]",tokens/s,152.83400663462425,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-j-6b,EleutherAI/gpt-j-6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciLM-7B,Deci/DeciLM-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -13056,18 +13092,94 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: GPTJForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-7b,google/recurrentgemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/google/recurrentgemma-7b/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694827a-76afe2bd12238ae5791ab1e5;c14281ad-9f6d-4207-a978-fe4cbe3250f2) + +Repository Not Found for url: https://huggingface.co/google/recurrentgemma-7b/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-16B-nl,Salesforce/codegen-16B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + raise EnvironmentError( +OSError: google/recurrentgemma-7b is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -13087,16 +13199,57 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: CodeGenForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-4B,Qwen/Qwen1.5-4B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-6.7b,facebook/opt-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-4.5B,facebook/xglm-4.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -13118,14 +13271,14 @@ ChildProcessError: Traceback (most recent call last): return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation + cls._check_and_enable_flash_attn_2( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 raise ValueError( -ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` +ValueError: XGLMForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpi4hzcsjj/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-3b-4e1t,stabilityai/stablelm-3b-4e1t,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -13151,16 +13304,16 @@ ChildProcessError: Traceback (most recent call last): return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm2-20b,internlm/internlm2-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-30b,facebook/opt-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -13168,32 +13321,34 @@ NameError: name 'exlv2_ext' is not defined File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code - answer = input( -EOFError: EOF when reading a line - -During handling of the above exception, another exception occurred: - -Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights - self.create_no_weights_model() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model - meta_model = self.automodel_class.from_config(self.pretrained_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config - trust_remote_code = resolve_trust_remote_code( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code - raise ValueError( -ValueError: The repository for internlm/internlm2-20b contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/internlm/internlm2-20b. -Please pass the argument `trust_remote_code=True` to allow custom code to be run. + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,t,t,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-2b,google/recurrentgemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -13205,21 +13360,11 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/t/resolve/main/config.json +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json The above exception was the direct cause of the following exception: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn @@ -13230,13 +13375,28 @@ Traceback (most recent call last): response = _request_wrapper( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669490d4-561b28403b9cb6f97c1f4a99;6be8f682-7bbe-4217-ab1f-18d9dcb77923) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status + raise HfHubHTTPError(message, response=response) from e +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-669481ff-551622401da134c31e980f63;aacf66f4-10d4-468f-b4da-4ffaa2b351af) -Repository Not Found for url: https://huggingface.co/t/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. +403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. +Cannot access content at: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json. +If you are trying to create or update content,make sure you have a token with the `write` role. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error + raise LocalEntryNotFoundError( +huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. The above exception was the direct cause of the following exception: @@ -13257,13 +13417,13 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file raise EnvironmentError( -OSError: t is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/recurrentgemma-2b is not the path to a directory containing a file named config.json. +Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-66b,facebook/opt-66b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mixtral-8x7B-v0.1,mistralai/Mixtral-8x7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -13283,16 +13443,29 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,.,.,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-125m,facebook/opt-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -13304,24 +13477,30 @@ ChildProcessError: Traceback (most recent call last): report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 373, in cached_file - raise EnvironmentError( -OSError: . does not appear to have a file named config.json. Checkout 'https://huggingface.co/./tree/None' for available files. + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mixtral-8x7B-v0.1,mistralai/Mixtral-8x7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm-20b,internlm/internlm-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -13339,31 +13518,24 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-72B,Qwen/Qwen2-beta-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-7.5B,facebook/xglm-7.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -13383,29 +13555,16 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation + cls._check_and_enable_flash_attn_2( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 + raise ValueError( +ValueError: XGLMForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpckq6u6ex/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-180B,tiiuae/falcon-180B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-3B-v1,togethercomputer/RedPajama-INCITE-Base-3B-v1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -13413,77 +13572,34 @@ torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GP File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status - raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66949941-15319ee233ca581836f6074e;b3d9eb1e-b318-4073-a1d6-3dbbb7c11305) - -403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json. -If you are trying to create or update content,make sure you have a token with the `write` role. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error - raise LocalEntryNotFoundError( -huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file - raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like tiiuae/falcon-180B is not the path to a directory containing a file named config.json. -Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-4B,Qwen/Qwen1.5-4B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,3193.102336,5128.060928,0.0,4481.613824,4276.256768,s,10,3.2413734130859373,0.32413734130859373,0.0016825840816240875,0.3241157684326172,0.32623468627929686,0.3264099456787109,0.32655015319824215,"[0.326585205078125, 0.3253639221191406, 0.3222522888183594, 0.32284228515625, 0.32339013671875, 0.32129388427734373, 0.32326702880859376, 0.3248414001464844, 0.32534152221679685, 0.3261957397460937]",tokens/s,789.7886709580806,kWh,3.8053463575326738e-06,2.0845240635480878e-06,1.689038677618604e-05,2.27802571972668e-05,tokens/kWh,11237801.126789523,MB,3193.102336,5128.060928,0.0,4481.613824,4465.661952,s,10,189.078173828125,18.9078173828125,0.012273201694566093,18.9097021484375,18.920707812499998,18.9233919921875,18.9255393359375,"[18.91315625, 18.920111328125, 18.9024375, 18.901080078125, 18.88138671875, 18.897064453125, 18.91123828125, 18.908166015625, 18.926076171875, 18.91745703125]",tokens/s,3.331955176236681,kWh,0.00022324078258437416,0.00012235523933478362,0.0009709997090908196,0.0013165957310099774,tokens/kWh,47850.67922988926,,s,629,191.68752508544924,0.3047496424251975,0.038502073286161766,0.300015625,0.3008729064941406,0.3014152465820313,0.6232092919921874,"[0.3012270202636719, 0.30114816284179685, 0.3007774658203125, 0.30110003662109375, 0.29941351318359377, 0.29971661376953124, 0.2996531066894531, 0.2997452697753906, 0.30033203125, 0.3001241455078125, 0.30014566040039065, 0.3000565795898438, 0.3007344665527344, 0.30101809692382814, 0.2998548583984375, 0.2999808044433594, 0.3005767822265625, 0.29991937255859374, 0.3002378234863281, 0.3010672607421875, 0.30078155517578126, 0.30025625610351564, 0.29994802856445313, 0.3000330505371094, 0.3002951354980469, 0.30040884399414064, 0.30003506469726565, 0.30066790771484375, 0.30030438232421874, 0.30015179443359374, 0.30028594970703126, 0.3002818603515625, 0.30056243896484375, 0.3007068786621094, 0.3003309326171875, 0.29966232299804685, 0.2997370910644531, 0.2999521179199219, 0.29981594848632814, 0.2995947570800781, 0.29999102783203124, 0.29974835205078126, 0.299620361328125, 0.2994493408203125, 0.2994759826660156, 0.29976165771484375, 0.30030642700195315, 0.3000166320800781, 0.2999060363769531, 0.30026956176757813, 0.2995128173828125, 0.29971661376953124, 0.2999552001953125, 0.3005082092285156, 0.30011181640625, 0.2995394592285156, 0.3000186767578125, 0.30043032836914063, 0.29998388671875, 0.29997259521484376, 0.299610107421875, 0.29887283325195313, 0.6254059448242187, 0.3006320495605469, 0.3013908386230469, 0.30085733032226564, 0.3013273620605469, 0.29998489379882814, 0.2996244506835937, 0.3003135986328125, 0.299826171875, 0.2998814697265625, 0.300400634765625, 0.29994085693359374, 0.3004631042480469, 0.3001395263671875, 0.2999992370605469, 0.299926513671875, 0.300759033203125, 0.300590087890625, 0.29988455200195313, 0.29991729736328127, 0.30021221923828123, 0.30040472412109376, 0.3002593383789062, 0.30088909912109374, 0.3011358642578125, 0.2998763427734375, 0.30023577880859376, 0.30020709228515624, 0.3008174133300781, 0.3003627624511719, 0.300759033203125, 0.3007027587890625, 0.30042620849609375, 0.30063821411132813, 0.2999624328613281, 0.29996844482421875, 0.30086349487304687, 0.30146969604492185, 0.29992141723632815, 0.3000361022949219, 0.3000586242675781, 0.29992755126953125, 0.2999654541015625, 0.2998486938476562, 0.30020095825195314, 0.3000299377441406, 0.30309478759765623, 0.3002388610839844, 0.2999859313964844, 0.3003576354980469, 0.30067608642578125, 0.3001446533203125, 0.30003302001953125, 0.3000166320800781, 0.2999244689941406, 0.3001692199707031, 0.29990194702148437, 0.3005317077636719, 0.30013031005859375, 0.2998405151367188, 0.29998797607421873, 0.2999336853027344, 0.30006988525390627, 0.622824462890625, 0.30008013916015625, 0.29997259521484376, 0.2997729187011719, 0.29949029541015626, 0.300337158203125, 0.30040985107421875, 0.30018765258789065, 0.2999029846191406, 0.29995724487304687, 0.30025112915039065, 0.30034637451171875, 0.29992959594726565, 0.30029824829101565, 0.3003873291015625, 0.2998978576660156, 0.30032589721679687, 0.3002255249023438, 0.3004590454101562, 0.3001773681640625, 0.2999449462890625, 0.2996777038574219, 0.2997125244140625, 0.3017687072753906, 0.2998691711425781, 0.29983026123046874, 0.2998783874511719, 0.30037503051757813, 0.3002183532714844, 0.29920254516601563, 0.29975244140625, 0.2997073974609375, 0.29997671508789064, 0.2997862548828125, 0.30004327392578123, 0.2995845031738281, 0.29983743286132813, 0.29989376831054687, 0.3005511779785156, 0.3004989318847656, 0.3004620666503906, 0.2998620300292969, 0.2996592712402344, 0.2998609924316406, 0.29997567749023435, 0.2994964599609375, 0.3000780944824219, 0.30188134765625, 0.29991015625, 0.30026956176757813, 0.30005453491210937, 0.29941964721679687, 0.3000770568847656, 0.2994923400878906, 0.29899981689453126, 0.299219970703125, 0.29973809814453123, 0.29967666625976563, 0.30005966186523436, 0.3000115661621094, 0.3005040283203125, 0.2999951477050781, 0.30062490844726564, 0.6233589477539062, 0.29990194702148437, 0.3002234802246094, 0.2998190002441406, 0.30008734130859377, 0.30004833984375, 0.2998200378417969, 0.3000770568847656, 0.300015625, 0.3000606689453125, 0.29941146850585937, 0.29921484375, 0.299578369140625, 0.2996756591796875, 0.2996449279785156, 0.30001971435546876, 0.3000995788574219, 0.29999002075195313, 0.3003607177734375, 0.30082763671875, 0.3000340576171875, 0.300611572265625, 0.30002584838867186, 0.299694091796875, 0.29959066772460935, 0.30004019165039064, 0.2999818115234375, 0.30008218383789065, 0.29999002075195313, 0.3006935119628906, 0.2997913513183594, 0.29910015869140627, 0.2994124755859375, 0.29980160522460936, 0.2999715881347656, 0.3000504455566406, 0.3000074157714844, 0.2999378051757812, 0.2999920654296875, 0.3000719299316406, 0.2999992370605469, 0.30074981689453123, 0.30103448486328127, 0.2998681640625, 0.3038136291503906, 0.3005091857910156, 0.3002746887207031, 0.2998763427734375, 0.299767822265625, 0.29981594848632814, 0.2999541625976562, 0.29982720947265623, 0.299641845703125, 0.29993267822265623, 0.29993472290039064, 0.2999715881347656, 0.2998343811035156, 0.29893017578125, 0.29962136840820314, 0.30002072143554687, 0.2994237365722656, 0.299831298828125, 0.30021630859375, 0.623921142578125, 0.3000299377441406, 0.30005966186523436, 0.299926513671875, 0.299947021484375, 0.300115966796875, 0.29993572998046875, 0.30002072143554687, 0.30004531860351563, 0.29974118041992187, 0.30062188720703126, 0.29995513916015626, 0.29942477416992186, 0.2993663940429688, 0.29983026123046874, 0.2999603271484375, 0.2999285888671875, 0.3015209045410156, 0.29998797607421873, 0.30004327392578123, 0.30011700439453126, 0.2999449462890625, 0.30022860717773436, 0.3003965759277344, 0.30081021118164064, 0.30038836669921876, 0.30042520141601564, 0.30013336181640626, 0.3006033935546875, 0.29989376831054687, 0.29989273071289063, 0.30014874267578123, 0.3004436340332031, 0.299747314453125, 0.2998476867675781, 0.3000094604492187, 0.29924453735351564, 0.29881036376953124, 0.29879910278320315, 0.2987581481933594, 0.29875506591796874, 0.29884518432617185, 0.298787841796875, 0.2988482666015625, 0.29977191162109373, 0.3000657958984375, 0.2989967346191406, 0.2990592041015625, 0.2991626281738281, 0.2990673828125, 0.29893017578125, 0.2991349792480469, 0.299323486328125, 0.29853277587890625, 0.29891278076171873, 0.29906942749023435, 0.2987386779785156, 0.3028009033203125, 0.29910748291015626, 0.2988552551269531, 0.2989045715332031, 0.299146240234375, 0.29900595092773435, 0.621075439453125, 0.2991349792480469, 0.2998179931640625, 0.29896807861328123, 0.2991811828613281, 0.2986914672851563, 0.29862911987304686, 0.29889239501953124, 0.2989116516113281, 0.2987960205078125, 0.29937152099609377, 0.29994189453125, 0.29974630737304686, 0.30000537109375, 0.300537841796875, 0.29991015625, 0.30004837036132814, 0.300326904296875, 0.3002030029296875, 0.3000575866699219, 0.3000770568847656, 0.3004405822753906, 0.2999531555175781, 0.30005148315429686, 0.3000484008789063, 0.3000626525878906, 0.30036172485351564, 0.3001272277832031, 0.30000640869140627, 0.2996879272460938, 0.29982925415039063, 0.29986611938476565, 0.3000391540527344, 0.2998128662109375, 0.29970330810546875, 0.30041189575195315, 0.3001200561523438, 0.29997772216796875, 0.3035576171875, 0.30046923828125, 0.29996749877929685, 0.3007201232910156, 0.3004538879394531, 0.29997671508789064, 0.30013543701171874, 0.30009344482421874, 0.3003351135253906, 0.3000340576171875, 0.300626953125, 0.29982925415039063, 0.29992959594726565, 0.299978759765625, 0.3000924072265625, 0.30002484130859375, 0.29995724487304687, 0.2998896789550781, 0.299720703125, 0.2996705322265625, 0.2998804626464844, 0.2997698669433594, 0.3005307006835938, 0.29985382080078127, 0.30008731079101564, 0.6239016723632812, 0.3004989318847656, 0.3000094604492187, 0.3003781127929688, 0.3024650268554688, 0.30008941650390625, 0.30021728515625, 0.29997671508789064, 0.3000985717773437, 0.2997452697753906, 0.3001559143066406, 0.299789306640625, 0.299578369140625, 0.3000637512207031, 0.3000022888183594, 0.30041189575195315, 0.300179443359375, 0.30062490844726564, 0.3001978759765625, 0.29980978393554686, 0.30084915161132814, 0.3001692199707031, 0.30007400512695315, 0.3024322204589844, 0.3004334106445313, 0.29990194702148437, 0.30002584838867186, 0.2999787902832031, 0.3001108093261719, 0.3005962219238281, 0.3003105163574219, 0.30027059936523437, 0.299931640625, 0.2999029846191406, 0.3000309753417969, 0.30007601928710936, 0.2999808044433594, 0.299936767578125, 0.3001610107421875, 0.29992755126953125, 0.29989376831054687, 0.29997567749023435, 0.3000391540527344, 0.3000443115234375, 0.3002992248535156, 0.2999715881347656, 0.2998241577148438, 0.2998548278808594, 0.3000862731933594, 0.300653564453125, 0.3015086059570313, 0.29992242431640626, 0.299863037109375, 0.29971966552734375, 0.29996954345703125, 0.2999613342285156, 0.3001968688964844, 0.2997841796875, 0.2999797668457031, 0.29949029541015626, 0.2995916748046875, 0.29981695556640625, 0.30072625732421876, 0.6255585327148437, 0.30017230224609376, 0.299831298828125, 0.3000555419921875, 0.30022042846679686, 0.30029925537109375, 0.30140109252929687, 0.30094949340820315, 0.2998886413574219, 0.29979647827148437, 0.30036376953125, 0.29990194702148437, 0.30001458740234377, 0.300010498046875, 0.29990707397460936, 0.29992959594726565, 0.3013775329589844, 0.2998958129882813, 0.3009157104492188, 0.3004344177246094, 0.2997698974609375, 0.299400146484375, 0.3000780944824219, 0.300410888671875, 0.3009054870605469, 0.3005409240722656, 0.301384765625, 0.30065350341796876, 0.30062591552734375, 0.30096075439453124, 0.3004375, 0.30160894775390623, 0.3008819274902344, 0.3004241943359375, 0.29964389038085937, 0.2996091003417969, 0.2996643981933594, 0.29964901733398436, 0.2998384704589844, 0.29929779052734373, 0.29952517700195314, 0.30001556396484375, 0.29967666625976563, 0.29992242431640626, 0.2999613342285156, 0.299926513671875, 0.2998753356933594, 0.2995947570800781, 0.2999183349609375, 0.2996172790527344, 0.29993267822265623, 0.30100991821289064, 0.30017843627929686, 0.30001254272460937, 0.29992141723632815, 0.29997055053710936, 0.300147705078125, 0.3002347412109375, 0.29967462158203123, 0.299504638671875, 0.299514892578125, 0.29878680419921877, 0.2995189819335938, 0.6255062866210938, 0.30063821411132813, 0.30005966186523436, 0.30045697021484374, 0.3000965270996094, 0.2999285888671875, 0.300015625, 0.300263427734375, 0.299894775390625, 0.29981695556640625, 0.30063821411132813, 0.300000244140625, 0.29996954345703125, 0.29998797607421873, 0.30009344482421874, 0.2999808044433594, 0.3002378234863281, 0.30191104125976564, 0.3011993713378906, 0.30066586303710935, 0.3013355407714844, 0.30207794189453124, 0.302529541015625, 0.30110720825195314, 0.3007958984375, 0.3010785217285156, 0.30087783813476565, 0.2998056945800781, 0.30067608642578125, 0.3011614685058594, 0.3007979431152344, 0.30112152099609374, 0.3007201232910156, 0.3007068176269531, 0.30179122924804686, 0.3001978759765625, 0.3004272766113281, 0.2999080810546875, 0.3004764099121094, 0.30043954467773437, 0.3001835632324219, 0.3006484375, 0.3004712829589844, 0.3014246826171875, 0.3003248291015625, 0.30087884521484376, 0.3002808227539063, 0.299840576171875, 0.3000575256347656, 0.30002383422851564, 0.2996745910644531, 0.29950567626953123, 0.2997145690917969, 0.29997567749023435, 0.30001458740234377, 0.30037503051757813, 0.30008114624023435, 0.2989066162109375, 0.30013543701171874, 0.2999111633300781, 0.29975347900390625, 0.2997350463867188, 0.30005453491210937, 0.6268078002929688, 0.30009548950195314, 0.29986407470703125, 0.30065869140625, 0.3011307373046875, 0.30074368286132813, 0.3008604125976562, 0.30035250854492185, 0.30087167358398437, 0.29988760375976564, 0.30013644409179685, 0.3006300048828125, 0.3005399169921875, 0.30181991577148437, 0.30090756225585935, 0.29990191650390624, 0.30007601928710936, 0.30002688598632815, 0.2999869384765625, 0.3001077880859375, 0.30047845458984374, 0.29997567749023435, 0.3000227966308594, 0.3018362731933594, 0.30386279296875, 0.30291455078125, 0.303236083984375, 0.3023329162597656, 0.30000436401367186, 0.2989014892578125, 0.2988851318359375, 0.29931622314453127, 0.2989588623046875, 0.29878271484375, 0.2992056274414063, 0.30051431274414064, 0.3006761169433594, 0.29950460815429686, 0.29902847290039064, 0.2990940246582031, 0.29902545166015626, 0.29914212036132815, 0.29988455200195313, 0.299652099609375, 0.30047232055664064, 0.2996326293945312, 0.30089727783203124, 0.29991729736328127, 0.3000965270996094, 0.30000234985351565, 0.29993365478515627, 0.3000115051269531, 0.2999603881835938, 0.29999508666992186, 0.29998284912109374, 0.2999869384765625, 0.30106521606445313, 0.3007928466796875, 0.300732421875, 0.29975653076171876, 0.29992755126953125, 0.30012313842773436, 0.29981491088867185]",tokens/s,3.281382029005844,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm-20b,internlm/internlm-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,4499.935232,14621.868032,0.0,13975.420928,13365.937152,s,10,16.410234252929687,1.6410234252929687,0.0022480805464608366,1.6403901367187501,1.6418083374023436,1.6447224060058594,1.6470536608886719,"[1.647636474609375, 1.63996875, 1.6411607666015624, 1.640802978515625, 1.64035791015625, 1.6397760009765625, 1.6397884521484376, 1.6398060302734374, 1.6405145263671874, 1.64042236328125]",tokens/s,156.00021063337155,kWh,1.9377978377872043e-05,1.0617021217130968e-05,9.108710064739678e-05,0.00012108210024239978,tokens/kWh,2114267.9181109504,MB,4499.935232,14621.868032,0.0,13975.420928,13814.413824,s,10,975.3211015625,97.53211015625,0.011202982505412533,97.52955078125,97.54984375,97.55100390625,97.55193203125,"[97.540578125, 97.52715625, 97.522640625, 97.5219296875, 97.5304609375, 97.51653125, 97.5521640625, 97.5495859375, 97.5314140625, 97.528640625]",tokens/s,0.6459411151780855,kWh,0.0011513337257504463,0.0006310327948099438,0.005346427777138807,0.007128794297699197,tokens/kWh,8837.399056434146,,s,629,988.5350541992196,1.5715978604121124,0.19496209506894618,1.548072998046875,1.5490094970703125,1.549420166015625,3.189316650390625,"[1.547826171875, 1.5488624267578126, 1.5484969482421875, 1.5483443603515625, 1.5481630859375, 1.5493089599609375, 1.548452880859375, 1.5482459716796875, 1.5481619873046875, 1.5497840576171875, 1.54772998046875, 1.5493929443359375, 1.547630615234375, 1.5480760498046875, 1.547937744140625, 1.5482552490234376, 1.5470531005859376, 1.5489443359375, 1.5480074462890625, 1.548041259765625, 1.5472659912109374, 1.549042724609375, 1.5482132568359375, 1.5479869384765625, 1.54851123046875, 1.5473919677734376, 1.5474892578125, 1.547378662109375, 1.548716064453125, 1.548441650390625, 1.5491409912109375, 1.5472435302734375, 1.5476378173828125, 1.5480125732421874, 1.5484580078125, 1.5489659423828126, 1.5496949462890626, 1.5483074951171876, 1.5473623046875, 1.547552734375, 1.547135009765625, 1.548559326171875, 1.5482398681640626, 1.5498638916015626, 1.54827880859375, 1.5483668212890624, 1.5489197998046875, 1.548549072265625, 1.54787939453125, 1.547683837890625, 1.549091796875, 1.5491134033203124, 1.548537841796875, 1.548310546875, 1.547894775390625, 1.54776171875, 1.5491932373046875, 1.5472711181640626, 1.547672607421875, 1.5473602294921875, 1.5482440185546875, 1.548180419921875, 3.190286376953125, 1.5480146484375, 1.5486883544921874, 1.5482091064453125, 1.54775244140625, 1.5473919677734376, 1.547894775390625, 1.5473858642578124, 1.548252197265625, 1.5479337158203126, 1.54754052734375, 1.5482122802734375, 1.54810986328125, 1.5476787109375, 1.5477442626953124, 1.54800634765625, 1.5478446044921874, 1.5483709716796874, 1.5485460205078125, 1.5486474609375, 1.5467080078125, 1.546982421875, 1.5480340576171876, 1.5470633544921875, 1.5475240478515624, 1.5482020263671874, 1.5471483154296874, 1.5476029052734375, 1.548863525390625, 1.5478087158203124, 1.5482347412109374, 1.54766845703125, 1.54899658203125, 1.5479388427734375, 1.547747314453125, 1.547916259765625, 1.5490928955078125, 1.548327880859375, 1.548775390625, 1.5474073486328126, 1.547236328125, 1.5476397705078124, 1.5474749755859376, 1.5477001953125, 1.5486075439453124, 1.54838427734375, 1.5483780517578125, 1.5483616943359375, 1.5482193603515626, 1.548074951171875, 1.547906005859375, 1.549001708984375, 1.5483565673828126, 1.5475179443359375, 1.5475548095703124, 1.5477432861328124, 1.54893310546875, 1.54842724609375, 1.5487344970703125, 1.5480279541015625, 1.5475323486328125, 1.5480032958984375, 1.5488101806640624, 3.191152587890625, 1.5476182861328125, 1.548537841796875, 1.5480074462890625, 1.54785791015625, 1.548368896484375, 1.5487181396484375, 1.548142578125, 1.5480279541015625, 1.547535400390625, 1.5482972412109375, 1.54859521484375, 1.5482921142578125, 1.5488890380859375, 1.5477381591796875, 1.5481619873046875, 1.54773193359375, 1.54867919921875, 1.547737060546875, 1.5486033935546875, 1.5482552490234376, 1.5477698974609375, 1.5484517822265624, 1.5468912353515625, 1.5473387451171876, 1.5476397705078124, 1.5484375, 1.547588623046875, 1.5468543701171875, 1.54747802734375, 1.547462646484375, 1.5476142578125, 1.5486832275390625, 1.5478487548828126, 1.54682373046875, 1.547431884765625, 1.54697216796875, 1.5476439208984376, 1.547420654296875, 1.547546630859375, 1.5470274658203125, 1.5474892578125, 1.547757568359375, 1.547947021484375, 1.5482930908203125, 1.549538330078125, 1.547505615234375, 1.548253173828125, 1.549297607421875, 1.547484130859375, 1.548220458984375, 1.548078125, 1.547826171875, 1.54688916015625, 1.5470919189453125, 1.5475538330078125, 1.54765625, 1.5476009521484375, 1.5491522216796876, 1.5480196533203125, 1.5481773681640625, 1.5486719970703124, 1.54946044921875, 3.19001904296875, 1.5467274169921874, 1.5485091552734376, 1.54712060546875, 1.5472425537109376, 1.548200927734375, 1.5474647216796875, 1.5484794921875, 1.5470428466796875, 1.5474134521484375, 1.5471728515625, 1.54741455078125, 1.547334716796875, 1.5476378173828125, 1.5483443603515625, 1.5476234130859374, 1.5473817138671875, 1.548241943359375, 1.548495849609375, 1.5476910400390624, 1.5492137451171875, 1.5486300048828125, 1.547925537109375, 1.5481497802734374, 1.5477288818359376, 1.547779052734375, 1.5494564208984376, 1.5475230712890624, 1.547504638671875, 1.5472803955078125, 1.5474217529296874, 1.54842724609375, 1.547715576171875, 1.54804736328125, 1.54720458984375, 1.5474442138671876, 1.5468114013671874, 1.548011474609375, 1.5478446044921874, 1.5482470703125, 1.548304443359375, 1.5482255859375, 1.549054931640625, 1.548583984375, 1.5483463134765625, 1.5490682373046876, 1.5485091552734376, 1.5480699462890626, 1.5479337158203126, 1.5475302734375, 1.5479091796875, 1.548273681640625, 1.5492208251953126, 1.547388916015625, 1.54747802734375, 1.5476285400390626, 1.54806787109375, 1.548291015625, 1.5489659423828126, 1.5477606201171874, 1.5477279052734374, 1.5477841796875, 1.5487047119140624, 3.189357666015625, 1.54832177734375, 1.54777294921875, 1.5475640869140626, 1.548190673828125, 1.54800439453125, 1.54889111328125, 1.548938232421875, 1.547832275390625, 1.5472568359375, 1.5471380615234376, 1.5473438720703125, 1.5473499755859375, 1.548291015625, 1.5484302978515625, 1.547525146484375, 1.54766748046875, 1.54760400390625, 1.54752001953125, 1.547726806640625, 1.54796435546875, 1.5488388671875, 1.5483873291015624, 1.54832177734375, 1.54785791015625, 1.548337158203125, 1.548981201171875, 1.5488040771484375, 1.5480023193359376, 1.547864013671875, 1.5482235107421876, 1.54768994140625, 1.5485205078125, 1.5483873291015624, 1.5479071044921875, 1.54815380859375, 1.5473756103515626, 1.5484302978515625, 1.5488572998046874, 1.54754248046875, 1.548105712890625, 1.5480648193359374, 1.548222412109375, 1.5480238037109375, 1.547357177734375, 1.5477821044921876, 1.5485142822265625, 1.54811181640625, 1.5482706298828126, 1.547442138671875, 1.547783203125, 1.548359619140625, 1.54857373046875, 1.5488572998046874, 1.5484447021484375, 1.5478978271484376, 1.5483546142578124, 1.5478446044921874, 1.54789990234375, 1.548568603515625, 1.5481129150390625, 1.5489515380859376, 1.5481129150390625, 3.18936376953125, 1.5473162841796875, 1.548347412109375, 1.5468809814453126, 1.5473695068359374, 1.5474237060546876, 1.5484447021484375, 1.548760009765625, 1.5489996337890626, 1.547483154296875, 1.547210693359375, 1.5470223388671875, 1.5469271240234375, 1.5475926513671876, 1.54830029296875, 1.5476080322265624, 1.547652099609375, 1.5482685546875, 1.547872314453125, 1.5475855712890625, 1.5479234619140625, 1.5485009765625, 1.54821630859375, 1.54749853515625, 1.54756298828125, 1.5474810791015625, 1.5483934326171875, 1.5483914794921876, 1.5475958251953126, 1.5481610107421875, 1.5478609619140624, 1.5482193603515626, 1.5480648193359374, 1.5481988525390624, 1.5481087646484375, 1.5474114990234376, 1.54781494140625, 1.5477237548828124, 1.5477821044921876, 1.5474083251953126, 1.5495556640625, 1.5478026123046875, 1.54785693359375, 1.547255859375, 1.54735302734375, 1.5477073974609374, 1.547969482421875, 1.5477288818359376, 1.5476070556640624, 1.5480606689453125, 1.548168212890625, 1.5479029541015625, 1.5480186767578126, 1.5485255126953126, 1.5468739013671875, 1.546857421875, 1.54753125, 1.5483514404296874, 1.54785888671875, 1.548099609375, 1.54840478515625, 1.54806884765625, 1.5480648193359374, 3.188536376953125, 1.547326416015625, 1.5486146240234375, 1.5495721435546874, 1.5473060302734376, 1.5487816162109376, 1.549453369140625, 1.5489608154296874, 1.5496785888671876, 1.5480616455078124, 1.54798486328125, 1.5475947265625, 1.549253662109375, 1.5481968994140625, 1.548053466796875, 1.549401123046875, 1.5481220703125, 1.547989990234375, 1.548347412109375, 1.5480863037109376, 1.548441650390625, 1.5491942138671875, 1.5479951171875, 1.5477596435546874, 1.5479132080078124, 1.5479019775390626, 1.5476695556640625, 1.5486505126953125, 1.548642333984375, 1.5483924560546876, 1.548464111328125, 1.5485399169921874, 1.5489935302734374, 1.5492823486328124, 1.549126708984375, 1.5488082275390624, 1.5485020751953125, 1.5481436767578125, 1.5480247802734375, 1.5473438720703125, 1.5484078369140626, 1.5497154541015625, 1.548389404296875, 1.548622802734375, 1.5483453369140625, 1.5479080810546875, 1.548316650390625, 1.548980224609375, 1.5480084228515625, 1.5479080810546875, 1.5483177490234374, 1.54800634765625, 1.5485972900390625, 1.5479234619140625, 1.5486607666015626, 1.548347412109375, 1.5482081298828125, 1.547925537109375, 1.548674072265625, 1.548291015625, 1.55034423828125, 1.54886865234375, 1.5481036376953126, 3.189357666015625, 1.5474586181640626, 1.5491717529296876, 1.5481129150390625, 1.548072998046875, 1.5476490478515625, 1.5485419921875, 1.5480074462890625, 1.54784765625, 1.5483238525390626, 1.547341796875, 1.547925537109375, 1.547810791015625, 1.5478056640625, 1.5477412109375, 1.54859521484375, 1.5481068115234375, 1.548200927734375, 1.547937744140625, 1.547672607421875, 1.547968505859375, 1.5481712646484376, 1.5496058349609374, 1.54743603515625, 1.5484375, 1.548396484375, 1.5478035888671875, 1.5489986572265626, 1.54951171875, 1.547946044921875, 1.5478077392578125, 1.5477493896484376, 1.5488133544921876, 1.5480872802734376, 1.5481773681640625, 1.54931103515625, 1.5479542236328125, 1.5490611572265625, 1.547883544921875, 1.547809814453125, 1.5479930419921875, 1.549116455078125, 1.5483084716796875, 1.54863720703125, 1.54834130859375, 1.548610595703125, 1.5488941650390624, 1.5497103271484376, 1.5490672607421876, 1.5479500732421876, 1.5488173828125, 1.5487139892578126, 1.5484384765625, 1.5487242431640624, 1.5489197998046875, 1.5499970703125, 1.5479736328125, 1.549170654296875, 1.548205078125, 1.5482030029296876, 1.54952294921875, 1.548652587890625, 1.5488470458984376, 3.190570068359375, 1.5475732421875, 1.54899560546875, 1.5490723876953125, 1.548262451171875, 1.5477442626953124, 1.5488890380859375, 1.5484302978515625, 1.5486300048828125, 1.548895263671875, 1.5487139892578126, 1.54817333984375, 1.548970947265625, 1.5481988525390624, 1.5474852294921875, 1.548536865234375, 1.5487886962890625, 1.548294189453125, 1.54817333984375, 1.547431884765625, 1.54737353515625, 1.5477801513671876, 1.5483740234375, 1.547725830078125, 1.547284423828125, 1.5479593505859375, 1.5474329833984375, 1.5482255859375, 1.54836376953125, 1.54859521484375, 1.5475343017578125, 1.5487181396484375, 1.548205078125, 1.5478056640625, 1.5484302978515625, 1.54993359375, 1.5491451416015625, 1.548178466796875, 1.5477718505859375, 1.5477421875, 1.5473060302734376, 1.548078125, 1.548304443359375, 1.5474052734375, 1.5479808349609374, 1.547030517578125, 1.547672607421875, 1.5480975341796874, 1.5481231689453125, 1.547429931640625, 1.5478343505859375, 1.5476173095703125, 1.5473643798828125, 1.547039794921875, 1.5472691650390624, 1.5484384765625, 1.5475506591796875, 1.548432373046875, 1.54777294921875, 1.5470867919921876, 1.54768896484375, 1.5496007080078125, 1.548421142578125, 3.189211181640625, 1.5468963623046874, 1.547869140625, 1.54876416015625, 1.5484989013671875, 1.5492301025390625, 1.5475916748046874, 1.546978271484375, 1.5469158935546874, 1.54728759765625, 1.5486658935546875, 1.5481077880859375, 1.5487529296875, 1.54709912109375, 1.547663330078125, 1.5471912841796875, 1.54923828125, 1.54927001953125, 1.54796435546875, 1.5475865478515625, 1.5476448974609376, 1.547410400390625, 1.548801025390625, 1.5483770751953125, 1.547400146484375, 1.5478026123046875, 1.54826953125, 1.547557861328125, 1.547953125, 1.549897705078125, 1.5482357177734376, 1.5481138916015624, 1.547904052734375, 1.5478404541015625, 1.5473480224609375, 1.54821630859375, 1.5495045166015624, 1.547509765625, 1.5476746826171874, 1.546893310546875, 1.54714013671875, 1.5480177001953126, 1.548304443359375, 1.547969482421875, 1.547404296875, 1.5485450439453126, 1.547778076171875, 1.5482039794921876, 1.549432861328125, 1.54890234375, 1.5484302978515625, 1.5484652099609375, 1.547947998046875, 1.5474166259765625, 1.547483154296875, 1.5496939697265626, 1.5482757568359375, 1.547537353515625, 1.5478927001953124, 1.54752001953125, 1.547925537109375, 1.5486146240234375, 1.5490406494140625]",tokens/s,0.6362950887053097,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-1_6b,stabilityai/stablelm-2-1_6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1452.249088,2449.997824,0.0,1803.55072,1664.521216,s,10,1.3683243865966794,0.13683243865966793,0.001337233378547869,0.13643169403076172,0.13770939025878906,0.13902387695312501,0.14007546630859374,"[0.14033836364746094, 0.13655836486816406, 0.13525657653808593, 0.13630502319335938, 0.13605914306640626, 0.13580105590820313, 0.13619818115234375, 0.13698959350585938, 0.1374172821044922, 0.1374008026123047]",tokens/s,1870.9013922987058,kWh,1.6058788441859926e-06,8.799470783644112e-07,6.656266586270105e-06,9.14209250882051e-06,tokens/kWh,28002341.887593575,MB,1453.084672,2449.997824,0.0,1803.55072,1763.593728,s,10,81.66558447265625,8.166558447265626,0.005684297838363884,8.165376708984375,8.17551572265625,8.17556669921875,8.17560748046875,"[8.17105712890625, 8.1615234375, 8.15890625, 8.16109033203125, 8.165703125, 8.16225, 8.16505029296875, 8.17550439453125, 8.1688818359375, 8.17561767578125]",tokens/s,7.714387940380691,kWh,9.658040946623585e-05,5.293287202049287e-05,0.0003923776359739301,0.0005418909174606587,tokens/kWh,116259.56067915421,,s,629,82.76125488281265,0.13157592191226153,0.016262281457391132,0.129438720703125,0.13028741455078124,0.1309923309326172,0.26588740966796875,"[0.1330462646484375, 0.13207244873046875, 0.13133619689941406, 0.12958412170410155, 0.1294899139404297, 0.1299087371826172, 0.12952166748046876, 0.12904652404785155, 0.12932403564453124, 0.12959437561035156, 0.12922367858886719, 0.13178367614746095, 0.12983705139160157, 0.12965171813964843, 0.12943974304199218, 0.12977151489257813, 0.12933529663085938, 0.12956877136230469, 0.1295636444091797, 0.12963430786132812, 0.12953907775878906, 0.12950630187988282, 0.12945408630371094, 0.12915711975097657, 0.12958924865722657, 0.12955238342285155, 0.12918885803222657, 0.12946330261230468, 0.1300633544921875, 0.12945613098144532, 0.12942131042480468, 0.130693115234375, 0.1296414794921875, 0.12933836364746093, 0.129259521484375, 0.1293465576171875, 0.12949095153808593, 0.12932199096679686, 0.12919705200195314, 0.129396728515625, 0.12944178771972656, 0.12925645446777342, 0.12930149841308594, 0.12936805725097655, 0.12971110534667968, 0.12947967529296875, 0.1293475799560547, 0.12937420654296874, 0.12945510864257812, 0.12943974304199218, 0.12923904418945312, 0.12946636962890626, 0.12930047607421874, 0.12932710266113281, 0.12942848205566407, 0.1293578186035156, 0.12930149841308594, 0.12927488708496093, 0.12947865295410158, 0.12933529663085938, 0.12928306579589843, 0.12944178771972656, 0.2679490661621094, 0.12944281005859376, 0.12929330444335937, 0.1295994873046875, 0.1293639678955078, 0.12922061157226564, 0.1296312255859375, 0.1300070343017578, 0.129291259765625, 0.1292584991455078, 0.12935987854003905, 0.12954214477539064, 0.12965989685058593, 0.12922880554199218, 0.12928102111816406, 0.13002546691894531, 0.13103411865234374, 0.12998860168457033, 0.12921856689453126, 0.12967832946777344, 0.12930764770507813, 0.1296117706298828, 0.12917861938476563, 0.12936805725097655, 0.12924006652832032, 0.13045452880859376, 0.12976127624511719, 0.12940185546875, 0.129154052734375, 0.129870849609375, 0.12965274047851563, 0.12968447875976563, 0.12930560302734376, 0.129406982421875, 0.12957696533203125, 0.12942848205566407, 0.12912844848632812, 0.12938957214355468, 0.12942131042480468, 0.1295319061279297, 0.12902093505859374, 0.12939776611328124, 0.12929023742675783, 0.1295431671142578, 0.12914994812011718, 0.131240966796875, 0.1315758056640625, 0.12955442810058593, 0.12934962463378907, 0.12950119018554687, 0.1294192657470703, 0.12930560302734376, 0.12917555236816405, 0.12942745971679687, 0.12936909484863282, 0.1293506622314453, 0.1292216339111328, 0.12930560302734376, 0.12932710266113281, 0.12941722106933592, 0.12931890869140625, 0.1293260803222656, 0.12920217895507813, 0.26541976928710936, 0.12952268981933593, 0.12942335510253905, 0.129438720703125, 0.12940083312988282, 0.12945613098144532, 0.12953599548339845, 0.12932095336914062, 0.1292216339111328, 0.12939776611328124, 0.12944178771972656, 0.12960153198242189, 0.129470458984375, 0.13039923095703124, 0.1294571533203125, 0.12955955505371095, 0.12928614807128908, 0.1294202880859375, 0.129259521484375, 0.12932095336914062, 0.12926258850097655, 0.12934144592285157, 0.12937420654296874, 0.12949708557128906, 0.12930149841308594, 0.12997734069824218, 0.12926771545410157, 0.1293711395263672, 0.12937318420410157, 0.13014016723632812, 0.1300695037841797, 0.12950630187988282, 0.12973773193359375, 0.12933529663085938, 0.12930458068847656, 0.1293711395263672, 0.12979302978515625, 0.12978994750976564, 0.12939366149902343, 0.13079551696777345, 0.12929330444335937, 0.12930458068847656, 0.12950425720214845, 0.1293291473388672, 0.12928306579589843, 0.12939468383789063, 0.12921139526367187, 0.13056614685058593, 0.1297909698486328, 0.12958822631835937, 0.12945613098144532, 0.12936703491210938, 0.1293086700439453, 0.12931173706054688, 0.12922265625, 0.129512451171875, 0.12923802185058594, 0.12934144592285157, 0.13001522827148437, 0.1295636444091797, 0.1292533721923828, 0.12930458068847656, 0.12924517822265624, 0.2659522705078125, 0.1293527069091797, 0.129328125, 0.12934860229492187, 0.1293148193359375, 0.12935679626464844, 0.12930560302734376, 0.12933734130859376, 0.12967628479003906, 0.12982579040527345, 0.12926463317871092, 0.12944793701171875, 0.12915916442871095, 0.12936090087890625, 0.1293506622314453, 0.1294264373779297, 0.12922061157226564, 0.12930047607421874, 0.12926258850097655, 0.1294448699951172, 0.12934349060058595, 0.129328125, 0.12933836364746093, 0.12944383239746093, 0.12915711975097657, 0.12933938598632813, 0.1303726043701172, 0.1295083465576172, 0.1293885498046875, 0.12941107177734376, 0.12947763061523437, 0.12969778442382812, 0.12942848205566407, 0.12960972595214842, 0.13009408569335937, 0.1296506805419922, 0.12932095336914062, 0.12933631896972655, 0.1293148193359375, 0.12935577392578124, 0.12930149841308594, 0.129944580078125, 0.1299752960205078, 0.13082009887695312, 0.13123277282714843, 0.129976318359375, 0.12939776611328124, 0.12972647094726564, 0.1297725372314453, 0.12937522888183595, 0.12929843139648436, 0.12931686401367187, 0.12993843078613282, 0.12966297912597657, 0.129470458984375, 0.12965274047851563, 0.12924826049804689, 0.1299988555908203, 0.12943359375, 0.12968345642089843, 0.12955853271484374, 0.12938957214355468, 0.12927590942382813, 0.2658734130859375, 0.1293506622314453, 0.12944691467285158, 0.1293885498046875, 0.12947354125976562, 0.12939981079101562, 0.12928819274902345, 0.12991282653808595, 0.12973670959472655, 0.12963430786132812, 0.12942233276367188, 0.129364990234375, 0.12963226318359375, 0.12936090087890625, 0.12928819274902345, 0.12908441162109374, 0.12943565368652343, 0.1296312255859375, 0.1292093505859375, 0.12931993103027345, 0.12937216186523437, 0.1293834228515625, 0.12934553527832032, 0.12939263916015625, 0.12918988037109375, 0.12930252075195312, 0.1292359619140625, 0.12959027099609374, 0.12928306579589843, 0.12924313354492187, 0.1291550750732422, 0.129617919921875, 0.12926258850097655, 0.1292359619140625, 0.1293322296142578, 0.12940800476074218, 0.12928819274902345, 0.12947967529296875, 0.12928512573242187, 0.13084877014160157, 0.12966297912597657, 0.12936294555664063, 0.12929536437988282, 0.12989439392089844, 0.1293639678955078, 0.1298913269042969, 0.12968038940429688, 0.12977459716796874, 0.1292738494873047, 0.1299230651855469, 0.12984115600585938, 0.1298524169921875, 0.12960870361328125, 0.12983091735839844, 0.12971725463867187, 0.12981964111328126, 0.13102899169921875, 0.13176730346679688, 0.13048524475097656, 0.13046885681152343, 0.12975410461425782, 0.12993125915527343, 0.130081787109375, 0.2661335144042969, 0.1312348175048828, 0.13016166687011718, 0.12974490356445312, 0.12950425720214845, 0.12989849853515625, 0.13022105407714843, 0.13010943603515626, 0.12975205993652345, 0.13035621643066406, 0.12987493896484376, 0.1298892822265625, 0.13020057678222657, 0.13007872009277344, 0.12971827697753907, 0.12933427429199218, 0.1293506622314453, 0.12941619873046875, 0.12931277465820312, 0.12941311645507814, 0.12987596130371093, 0.12993434143066407, 0.12928921508789062, 0.12916940307617186, 0.12927897644042968, 0.129470458984375, 0.12943359375, 0.12916326904296874, 0.12934962463378907, 0.12948069763183595, 0.12918476867675782, 0.12958412170410155, 0.12934451293945312, 0.12950936889648437, 0.12927180480957032, 0.12952268981933593, 0.129328125, 0.1293578186035156, 0.13088050842285157, 0.12939878845214844, 0.12924006652832032, 0.12944178771972656, 0.12921856689453126, 0.12951962280273438, 0.12917759704589843, 0.12927488708496093, 0.12930047607421874, 0.1292359619140625, 0.12929638671875, 0.12937318420410157, 0.1292584991455078, 0.1293639678955078, 0.12952986145019532, 0.12940902709960939, 0.12924826049804689, 0.12945613098144532, 0.12931071472167968, 0.12931993103027345, 0.12928614807128908, 0.12941619873046875, 0.12934860229492187, 0.12924620056152344, 0.12929536437988282, 0.2658928527832031, 0.12976742553710938, 0.12933836364746093, 0.1294448699951172, 0.12936192321777343, 0.1305374755859375, 0.1294581756591797, 0.12936909484863282, 0.13020774841308594, 0.1295667266845703, 0.12935577392578124, 0.1293516845703125, 0.12933836364746093, 0.12947456359863282, 0.13004389953613282, 0.13297048950195312, 0.12997836303710938, 0.12952268981933593, 0.1292922821044922, 0.12959642028808593, 0.12940185546875, 0.1293527069091797, 0.1293834228515625, 0.13002546691894531, 0.12959129333496094, 0.1294202880859375, 0.1293854675292969, 0.12959744262695314, 0.12931686401367187, 0.1293711395263672, 0.1293516845703125, 0.1293291473388672, 0.12929638671875, 0.1294264373779297, 0.13180621337890625, 0.12990361022949218, 0.1295431671142578, 0.12950323486328125, 0.1293824005126953, 0.12971417236328125, 0.1290260467529297, 0.129438720703125, 0.1293291473388672, 0.12946022033691407, 0.12919398498535156, 0.12934860229492187, 0.12931993103027345, 0.1294571533203125, 0.12999270629882811, 0.12952677917480468, 0.12935679626464844, 0.1295800323486328, 0.12942950439453124, 0.13058047485351562, 0.12943463134765626, 0.1296117706298828, 0.12902093505859374, 0.1293578186035156, 0.12931788635253907, 0.12939366149902343, 0.12926054382324217, 0.129364990234375, 0.1295247344970703, 0.26704998779296873, 0.13152255249023437, 0.12972236633300782, 0.1295697937011719, 0.12936703491210938, 0.12935987854003905, 0.13026611328125, 0.130302978515625, 0.12928819274902345, 0.129544189453125, 0.12924006652832032, 0.1293322296142578, 0.12927999877929688, 0.12953599548339845, 0.12984831237792968, 0.12931993103027345, 0.12948480224609374, 0.1293824005126953, 0.13099110412597656, 0.1302159423828125, 0.12943052673339844, 0.12947148132324218, 0.12942233276367188, 0.12940083312988282, 0.12913253784179687, 0.12946022033691407, 0.1293096923828125, 0.12943463134765626, 0.1309276123046875, 0.13064703369140626, 0.12926873779296874, 0.129396728515625, 0.13017190551757812, 0.12957901000976563, 0.12975001525878907, 0.13083033752441406, 0.13063987731933593, 0.12994560241699218, 0.12968345642089843, 0.12934349060058595, 0.129364990234375, 0.12946022033691407, 0.12915711975097657, 0.1293260803222656, 0.13071565246582031, 0.1304012756347656, 0.12986265563964844, 0.13138021850585938, 0.13076173400878907, 0.12949197387695313, 0.12930560302734376, 0.1294520263671875, 0.12977049255371093, 0.12957183837890626, 0.12964454650878907, 0.13065728759765624, 0.12959437561035156, 0.12931788635253907, 0.12932199096679686, 0.1294929962158203, 0.12976025390625, 0.1295626220703125, 0.12928306579589843, 0.2670551147460937, 0.13002035522460936, 0.12955033874511718, 0.12985139465332032, 0.12954725646972656, 0.12931277465820312, 0.12925645446777342, 0.13027226257324218, 0.1294694366455078, 0.1295308837890625, 0.1293824005126953, 0.12973260498046876, 0.1293701171875, 0.13028352355957032, 0.13105357360839845, 0.13017805480957031, 0.1294264373779297, 0.1304217529296875, 0.12934144592285157, 0.12950425720214845, 0.12933836364746093, 0.12946124267578124, 0.1294581756591797, 0.12975514221191406, 0.12941107177734376, 0.1294151611328125, 0.12950527954101562, 0.12952064514160155, 0.12930560302734376, 0.12943052673339844, 0.12936703491210938, 0.1306746826171875, 0.12937625122070312, 0.1297418212890625, 0.12938957214355468, 0.12986880493164063, 0.1292728271484375, 0.12953497314453125, 0.13047296142578124, 0.1296373748779297, 0.1293711395263672, 0.13099314880371093, 0.1300480041503906, 0.12995071411132814, 0.12928102111816406, 0.12935475158691406, 0.12918988037109375, 0.12929843139648436, 0.12932301330566406, 0.1293711395263672, 0.12942745971679687, 0.1291304931640625, 0.12926976013183594, 0.12948684692382811, 0.12928102111816406, 0.12931993103027345, 0.1292728271484375, 0.12934860229492187, 0.1300746307373047, 0.1295749053955078, 0.13162393188476562, 0.12988621520996094, 0.1299630126953125, 0.2670069885253906, 0.1296711730957031, 0.12933734130859376, 0.129396728515625, 0.1302415313720703, 0.1293096923828125, 0.12932301330566406, 0.12936909484863282, 0.1292728271484375, 0.12964659118652344, 0.1292410888671875, 0.12936090087890625, 0.129227783203125, 0.12946124267578124, 0.12994969177246093, 0.12929536437988282, 0.12978585815429688, 0.12964659118652344, 0.1294264373779297, 0.1293639678955078, 0.12969676208496095, 0.12943052673339844, 0.1292349395751953, 0.1293148193359375, 0.1295564727783203, 0.12957594299316405, 0.13105255126953125, 0.131240966796875, 0.13059481811523438, 0.1293588409423828, 0.1293588409423828, 0.12939059448242188, 0.129328125, 0.12935577392578124, 0.12926463317871092, 0.1297838134765625, 0.13002546691894531, 0.12994969177246093, 0.1295677490234375, 0.12959642028808593, 0.12966297912597657, 0.12990054321289063, 0.1307125701904297, 0.12997222900390626, 0.13009202575683593, 0.12955955505371095, 0.12987187194824218, 0.13022822570800782, 0.1295114288330078, 0.12963328552246095, 0.12929638671875, 0.12961587524414062, 0.12946841430664063, 0.1294254150390625, 0.131989501953125, 0.131093505859375, 0.12946226501464844, 0.129470458984375, 0.13014732360839842, 0.13120204162597657, 0.13035110473632813, 0.12946124267578124, 0.13090509033203124]",tokens/s,7.600174754365983,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,1,1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,M,M,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -13495,7 +13611,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/1/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/M/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -13522,9 +13638,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669495d1-2b15a10d7e57708f3509f03a;6417b781-f373-4b15-803a-c6ba2cba3507) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948fe6-7c509360614f81c367915a07;37b8a00d-d972-4899-8226-d021077ad739) -Repository Not Found for url: https://huggingface.co/1/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/M/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -13549,12 +13665,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: 1 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: M is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-1.8B,Qwen/Qwen1.5-1.8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1866.50624,3328.704512,0.0,2682.257408,2578.238464,s,10,1.4175592651367188,0.14175592651367186,0.0022402045159939975,0.14135794067382812,0.14292337188720702,0.14542544631958007,0.1474271058654785,"[0.14792752075195312, 0.14161701965332033, 0.1391898193359375, 0.1415839385986328, 0.14236735534667969, 0.14101449584960937, 0.13986236572265626, 0.1410111083984375, 0.14185369873046874, 0.14113194274902344]",tokens/s,1805.9209677932563,kWh,1.6547061226986076e-06,9.066846465884736e-07,6.786722250360737e-06,9.348113019647817e-06,tokens/kWh,27385205.919305906,MB,1866.50624,3328.704512,0.0,2682.257408,2667.0976,s,10,83.8020732421875,8.38020732421875,0.04772557025936409,8.37658544921875,8.433103320312501,8.4430912109375,8.4510815234375,"[8.4288447265625, 8.39970703125, 8.4144833984375, 8.4530791015625, 8.4308837890625, 8.3407841796875, 8.3356474609375, 8.31612109375, 8.32905859375, 8.3534638671875]",tokens/s,7.51771377038971,kWh,9.806880771561905e-05,5.3749043913185225e-05,0.00039216448579924195,0.0005439823374280462,tokens/kWh,115812.5837281126,,s,629,84.93340989685055,0.1350292685164556,0.016826908436194207,0.13322035217285155,0.13436354370117187,0.1346594787597656,0.27325439575195315,"[0.1383321533203125, 0.13691903686523438, 0.13555609130859375, 0.1336924133300781, 0.1340948486328125, 0.13436006164550782, 0.1343426513671875, 0.1342003173828125, 0.13426687622070313, 0.13448089599609375, 0.13400473022460938, 0.13385011291503907, 0.13449215698242187, 0.13411634826660157, 0.13182975769042968, 0.13270323181152344, 0.13469491577148437, 0.13397605895996093, 0.13359616088867188, 0.13410610961914063, 0.13234483337402345, 0.13145497131347655, 0.13187686157226564, 0.1315246124267578, 0.13338418579101563, 0.13427098083496095, 0.13404261779785157, 0.13425152587890626, 0.13394534301757813, 0.13425050354003906, 0.1328660430908203, 0.1342433319091797, 0.13415116882324218, 0.13333401489257812, 0.1342013397216797, 0.13399346923828126, 0.1340968933105469, 0.134508544921875, 0.13404876708984376, 0.1326940155029297, 0.1316812744140625, 0.13177658081054688, 0.13164845275878906, 0.13489971923828126, 0.13331251525878907, 0.1342248992919922, 0.13452799987792968, 0.13407334899902343, 0.13159321594238282, 0.13165260314941407, 0.13322035217285155, 0.13399244689941406, 0.13447474670410156, 0.13405696105957032, 0.13407948303222655, 0.13395046997070312, 0.13439283752441405, 0.1342300109863281, 0.13573222351074218, 0.1321625671386719, 0.13170687866210937, 0.13169970703125, 0.2737838134765625, 0.13152255249023437, 0.13275955200195313, 0.13433351135253907, 0.1345811767578125, 0.13403852844238281, 0.13368319702148437, 0.13302169799804686, 0.13411737060546874, 0.13280256652832031, 0.13474508666992188, 0.13335859680175782, 0.1340590057373047, 0.13169459533691405, 0.13173248291015624, 0.13171405029296876, 0.13407743835449218, 0.1342689208984375, 0.13365248107910158, 0.13403340148925783, 0.1339299774169922, 0.13434367370605468, 0.1315061798095703, 0.13148466491699218, 0.13182156372070314, 0.1337518005371094, 0.1333534698486328, 0.1340999755859375, 0.13400575256347655, 0.13407852172851562, 0.1340497283935547, 0.13159117126464845, 0.13308108520507814, 0.13406515502929686, 0.13437747192382812, 0.1340518341064453, 0.1342433319091797, 0.13421466064453125, 0.13415834045410155, 0.1342986297607422, 0.13406617736816406, 0.13197926330566406, 0.1316177978515625, 0.13170687866210937, 0.13170687866210937, 0.13363917541503906, 0.13486598205566405, 0.13352549743652345, 0.13383468627929687, 0.13421055603027343, 0.13174989318847657, 0.13169973754882813, 0.13152662658691405, 0.13283226013183594, 0.13399142456054688, 0.13478297424316407, 0.13450035095214843, 0.1341460418701172, 0.1339115447998047, 0.13337496948242186, 0.134002685546875, 0.13234687805175782, 0.13289779663085938, 0.2724710388183594, 0.13155020141601562, 0.13163827514648438, 0.131810302734375, 0.1316618194580078, 0.13126144409179688, 0.13352549743652345, 0.13428326416015626, 0.13351628112792968, 0.13398326110839845, 0.1340497589111328, 0.1338419189453125, 0.13386444091796876, 0.13370777893066407, 0.13431910705566405, 0.1338470458984375, 0.13402931213378907, 0.13414399719238282, 0.13386752319335937, 0.13391973876953125, 0.13366067504882811, 0.13545677185058594, 0.13440921020507812, 0.13534104919433593, 0.13244415283203126, 0.134466552734375, 0.13180108642578126, 0.131599365234375, 0.13178880310058594, 0.13154098510742188, 0.13177754211425782, 0.13156147766113283, 0.13368832397460936, 0.134044677734375, 0.13403347778320313, 0.13381727600097656, 0.13421772766113282, 0.1335265350341797, 0.13435289001464842, 0.133959716796875, 0.13362889099121095, 0.1339842529296875, 0.13384602355957032, 0.13403443908691406, 0.13420748901367188, 0.13402316284179688, 0.1340590057373047, 0.13474713134765626, 0.13409791564941406, 0.13352960205078124, 0.13388697814941405, 0.1340088348388672, 0.13404978942871093, 0.13377023315429687, 0.13412864685058593, 0.13397708129882813, 0.13398016357421874, 0.13395968627929689, 0.1340712890625, 0.13423004150390624, 0.13353570556640626, 0.13389414978027345, 0.13325209045410155, 0.27623629760742185, 0.134403076171875, 0.13430271911621094, 0.13406105041503907, 0.1344286651611328, 0.1346447296142578, 0.13446553039550782, 0.13406207275390625, 0.13451161193847655, 0.13428941345214843, 0.1343856658935547, 0.13401190185546874, 0.134466552734375, 0.13412249755859376, 0.13459762573242187, 0.1339463653564453, 0.13446553039550782, 0.13476864624023438, 0.1342044219970703, 0.13403443908691406, 0.13416653442382812, 0.134276123046875, 0.13387055969238282, 0.13414707946777343, 0.13453106689453126, 0.13373338317871095, 0.13383680725097657, 0.13395046997070312, 0.133791748046875, 0.13404570007324218, 0.1341265869140625, 0.13388697814941405, 0.1346693115234375, 0.1340518341064453, 0.1335562286376953, 0.1343969268798828, 0.13446348571777345, 0.1351065673828125, 0.1340641326904297, 0.13445733642578125, 0.13435903930664062, 0.1340631103515625, 0.1340518341064453, 0.13444816589355468, 0.13536051940917967, 0.13402621459960937, 0.13327052307128906, 0.13432012939453125, 0.1344593963623047, 0.13412249755859376, 0.1338419189453125, 0.13387469482421874, 0.13338726806640624, 0.13416653442382812, 0.13386854553222657, 0.13441127014160156, 0.13412351989746094, 0.13347328186035157, 0.13382246398925782, 0.13420338439941407, 0.1338275909423828, 0.13340467834472655, 0.1342750701904297, 0.27683428955078127, 0.13397196960449217, 0.1343129577636719, 0.1338665008544922, 0.13388082885742186, 0.1340958709716797, 0.1340712890625, 0.13391871643066405, 0.13356646728515625, 0.1333104705810547, 0.13409178161621094, 0.133396484375, 0.1351403503417969, 0.13372825622558593, 0.13417575073242188, 0.13519052124023437, 0.1343938903808594, 0.1338654327392578, 0.133359619140625, 0.1340712890625, 0.13396890258789063, 0.1339894104003906, 0.1338838653564453, 0.13374668884277344, 0.133538818359375, 0.13404876708984376, 0.13366169738769532, 0.1339351043701172, 0.13478195190429687, 0.13399859619140625, 0.13399449157714843, 0.13394432067871093, 0.13413682556152343, 0.1340262451171875, 0.13399449157714843, 0.13403546142578124, 0.13435289001464842, 0.1340712890625, 0.13406112670898437, 0.1335233917236328, 0.13358387756347656, 0.13382553100585937, 0.13504620361328126, 0.13462828063964843, 0.13439897155761718, 0.13393516540527345, 0.13389511108398439, 0.1334097900390625, 0.13408767700195312, 0.13458636474609376, 0.13346713256835938, 0.13414297485351562, 0.13160243225097656, 0.1317795867919922, 0.13214413452148438, 0.13376716613769532, 0.133718017578125, 0.13606605529785157, 0.13217485046386718, 0.13167718505859374, 0.13171302795410156, 0.13281280517578126, 0.13389926147460937, 0.27561163330078126, 0.1342044219970703, 0.13399655151367187, 0.13381837463378907, 0.13696818542480468, 0.13187277221679689, 0.13215437316894532, 0.13239193725585938, 0.1329521026611328, 0.13212156677246092, 0.13276876831054688, 0.132463623046875, 0.13214002990722656, 0.13234072875976563, 0.13270118713378906, 0.13262847900390626, 0.1321871337890625, 0.1320509490966797, 0.13238067626953126, 0.13276876831054688, 0.1321564178466797, 0.1327431640625, 0.1328158721923828, 0.13263360595703125, 0.1317580871582031, 0.1315215301513672, 0.13196083068847655, 0.1318225860595703, 0.13159117126464845, 0.13150003051757814, 0.13156454467773437, 0.13174887084960937, 0.1325496368408203, 0.1326755828857422, 0.13302169799804686, 0.13294898986816406, 0.1324881896972656, 0.13196800231933595, 0.13392588806152345, 0.1337159729003906, 0.13316915893554687, 0.1326755828857422, 0.13233255004882813, 0.13182054138183594, 0.13182566833496093, 0.13186253356933594, 0.13180519104003907, 0.1316822967529297, 0.13177548217773438, 0.13161984252929687, 0.1317611541748047, 0.131852294921875, 0.13162086486816407, 0.1321553955078125, 0.13262950134277343, 0.13191372680664062, 0.13178265380859375, 0.13150515747070313, 0.13170176696777344, 0.1315205078125, 0.13172735595703125, 0.13178778076171874, 0.13167103576660155, 0.2728120422363281, 0.13346815490722655, 0.1335142364501953, 0.1333534698486328, 0.13239910888671874, 0.13167616271972657, 0.13235302734375, 0.1338050537109375, 0.13347225952148437, 0.1334886474609375, 0.1320120391845703, 0.1320816650390625, 0.13306573486328124, 0.13341183471679688, 0.13176934814453126, 0.13158195495605468, 0.13284147644042968, 0.13212979125976562, 0.1316290588378906, 0.1317058563232422, 0.13171098327636718, 0.13157887268066407, 0.13160960388183593, 0.13298486328125, 0.13236732482910157, 0.13162188720703125, 0.13165260314941407, 0.13161062622070313, 0.13162495422363282, 0.13157376098632811, 0.13175910949707031, 0.13201100158691406, 0.13279539489746095, 0.13196493530273437, 0.13224140930175782, 0.13323365783691407, 0.13173248291015624, 0.13189529418945312, 0.133254150390625, 0.13235711669921876, 0.1316505584716797, 0.13167922973632812, 0.13156556701660158, 0.13257522583007814, 0.1328158721923828, 0.13173350524902344, 0.13212261962890626, 0.13244415283203126, 0.13331968688964843, 0.1319720916748047, 0.13162188720703125, 0.1338275909423828, 0.13188710021972655, 0.13169049072265626, 0.1329100799560547, 0.13289677429199218, 0.13157273864746094, 0.13191987609863282, 0.1330063934326172, 0.13177952575683594, 0.1324830780029297, 0.1317232666015625, 0.132210693359375, 0.2737438659667969, 0.13398220825195312, 0.13256195068359375, 0.13281686401367188, 0.13316409301757812, 0.13165664672851562, 0.131557373046875, 0.1315246124267578, 0.1316116485595703, 0.13375692749023438, 0.13275033569335937, 0.13160755920410155, 0.13167514038085937, 0.1316546630859375, 0.13151744079589844, 0.1325260772705078, 0.13415525817871093, 0.13211955261230468, 0.13158604431152343, 0.13158706665039063, 0.131599365234375, 0.13191885375976561, 0.13164959716796876, 0.13163615417480468, 0.131557373046875, 0.1315635223388672, 0.13156454467773437, 0.13150822448730468, 0.13155328369140626, 0.131778564453125, 0.13244825744628907, 0.13156761169433595, 0.13152870178222656, 0.13237452697753907, 0.13321420288085936, 0.1316188507080078, 0.13167100524902345, 0.13171507263183593, 0.13173043823242186, 0.13229055786132812, 0.13326028442382812, 0.13208883666992188, 0.13159730529785157, 0.13276570129394533, 0.13298074340820312, 0.13150210571289062, 0.13231517028808593, 0.13168019104003906, 0.1316177978515625, 0.13166490173339843, 0.13228031921386718, 0.131704833984375, 0.13154815673828124, 0.1315246124267578, 0.13159117126464845, 0.13162803649902344, 0.13144985961914063, 0.13153074645996093, 0.13159423828125, 0.13154304504394532, 0.1314959411621094, 0.13150822448730468, 0.13215335083007812, 0.2743265380859375, 0.13167922973632812, 0.13160243225097656, 0.13170278930664062, 0.13161068725585937, 0.13170375061035156, 0.13167820739746094, 0.13153996276855467, 0.13159628295898437, 0.13154917907714844, 0.13170994567871094, 0.13149491882324219, 0.1311682586669922, 0.1336678466796875, 0.13168333435058593, 0.1315020751953125, 0.13163827514648438, 0.1326510009765625, 0.13166490173339843, 0.131599365234375, 0.1316054992675781, 0.1315574035644531, 0.1316433563232422, 0.13159321594238282, 0.13151744079589844, 0.13169664001464843, 0.13158604431152343, 0.13171609497070313, 0.13180723571777345, 0.13306982421875, 0.1319505920410156, 0.13152665710449218, 0.1316188201904297, 0.13160755920410155, 0.13153485107421875, 0.1316321258544922, 0.13152255249023437, 0.13150413513183593, 0.13162393188476562, 0.13158604431152343, 0.13178880310058594, 0.13175398254394532, 0.13282815551757812, 0.13279335021972657, 0.1332623291015625, 0.13260493469238283, 0.1335029754638672, 0.1333217315673828, 0.13349990844726561, 0.13284454345703126, 0.13330943298339842, 0.13328793334960937, 0.13312818908691407, 0.13345382690429688, 0.13288447570800782, 0.13335142517089843, 0.1332725830078125, 0.1326561279296875, 0.13411943054199219, 0.1333104705810547, 0.13202330017089844, 0.1328404541015625, 0.13351219177246093, 0.27342642211914064, 0.1317181396484375, 0.131778564453125, 0.1316300811767578, 0.13164851379394532, 0.13157376098632811, 0.13182464599609375, 0.1316505584716797, 0.1314580535888672, 0.1316853790283203, 0.13220352172851563, 0.13342617797851564, 0.13168435668945314, 0.1316259765625, 0.13177754211425782, 0.13159423828125, 0.13173356628417968, 0.1318133087158203, 0.1316444091796875, 0.1315082550048828, 0.13163209533691406, 0.13170994567871094, 0.13161062622070313, 0.13163929748535155, 0.13251788330078124, 0.13330738830566408, 0.13480653381347657, 0.13196902465820312, 0.1324451904296875, 0.13310054016113282, 0.13354290771484376, 0.13340882873535156, 0.1336657257080078, 0.13366886901855468, 0.133396484375, 0.13281893920898438, 0.13362892150878905, 0.13327769470214842, 0.1322239990234375, 0.13191474914550783, 0.13346099853515625, 0.1332162628173828, 0.13334835815429688, 0.13336679077148436, 0.13285171508789062, 0.13309132385253905, 0.13161369323730468, 0.13310464477539063, 0.13307391357421874, 0.13365248107910158, 0.13310464477539063, 0.13244313049316406, 0.1326376953125, 0.13354908752441405, 0.13300936889648438, 0.13332179260253907, 0.13388691711425782, 0.13313023376464844, 0.1333780517578125, 0.13311077880859376, 0.13335551452636718, 0.13207347106933592, 0.1331865539550781]",tokens/s,7.405801801245284,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-3b,stabilityai/stablelm-base-alpha-3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -13564,89 +13679,116 @@ If this is a private repository, make sure to pass a token having permission to ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) -TypeError: DeciCoderAttention.forward() got an unexpected keyword argument 'cache_position' - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,s,s,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/s/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-13b,huggyllama/llama-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-7b-hf,meta-llama/Llama-2-7b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,-,-,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948d02-27681008592811d63d300b85;7f6b8ec3-25cb-4d45-b82b-b63da8dd38e8) - -Repository Not Found for url: https://huggingface.co/s/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 106, in _inner_fn + validate_repo_id(arg_value) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 160, in validate_repo_id + raise HFValidationError( +huggingface_hub.errors.HFValidationError: Repo id must use alphanumeric chars or '-', '_', '.', '--' and '..' are forbidden, '-' and '.' cannot start or end the name, max length is 96: '-'. The above exception was the direct cause of the following exception: @@ -13667,17 +13809,47 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 466, in cached_file raise EnvironmentError( -OSError: s is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` +OSError: Incorrect path_or_model_id: '-'. Please provide either the path to a local folder or the repo_id of a model on the Hub. + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-410m,EleutherAI/pythia-410m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,TencentARC/Mistral_Pro_8B_v0.1,TencentARC/Mistral_Pro_8B_v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2454.69184,7298.613248,0.0,6652.166144,6323.221504,s,10,7.735312255859376,0.7735312255859375,0.0028429451285762273,0.7729794311523437,0.7762465698242188,0.7783619323730468,0.7800542224121094,"[0.780477294921875, 0.7757764892578125, 0.7711934204101563, 0.770524658203125, 0.7719502563476562, 0.7706873168945313, 0.7725225219726563, 0.7734363403320312, 0.7744036254882812, 0.77434033203125]",tokens/s,330.9497943099635,kWh,9.102796527565035e-06,4.9879214771863185e-06,4.3937086431680494e-05,5.802780443643185e-05,tokens/kWh,4411678.202997362,MB,2454.69184,7298.613248,0.0,6652.166144,6382.564864,s,10,458.5464296875,45.85464296875,0.0073453057278341505,45.852935546875,45.866698828124996,45.8672068359375,45.8676132421875,"[45.8568515625, 45.857828125, 45.85469140625, 45.8511796875, 45.845234375, 45.8491953125, 45.85046484375, 45.84668359375, 45.8665859375, 45.86771484375]",tokens/s,1.3739066738112995,kWh,0.0005414656486152074,0.00029677022395511814,0.002569976393586324,0.003408212266156649,tokens/kWh,18484.764175514054,,s,629,464.77344433593714,0.7389084965595191,0.09178579233429768,0.727773193359375,0.7285446655273438,0.7288094848632812,1.4987512353515624,"[0.72828515625, 0.7276810302734374, 0.7278029174804688, 0.72793701171875, 0.7272877807617187, 0.727383056640625, 0.7272335205078125, 0.7274444580078125, 0.7278551025390625, 0.727720947265625, 0.7276083374023438, 0.7281663818359375, 0.7275867919921875, 0.72804248046875, 0.72800048828125, 0.7276687622070312, 0.7281151733398438, 0.7279267578125, 0.7276728515625, 0.7276615600585937, 0.7278981323242187, 0.7287255249023438, 0.7286405029296875, 0.7275847778320312, 0.7281510620117188, 0.7281069946289063, 0.7279093627929687, 0.7283015747070313, 0.7283804321289062, 0.7276973876953124, 0.7277127685546875, 0.7276400756835938, 0.7282882690429687, 0.7277936401367188, 0.7284705200195313, 0.727784423828125, 0.727952392578125, 0.727930908203125, 0.728369140625, 0.728827880859375, 0.7278551025390625, 0.72924365234375, 0.7275161743164062, 0.7274977416992188, 0.7274014892578125, 0.727947265625, 0.7273707275390625, 0.7273738403320312, 0.7270891723632813, 0.72770458984375, 0.727604248046875, 0.7274721069335938, 0.728226806640625, 0.7281571655273438, 0.7279820556640625, 0.7282749633789063, 0.7275151977539063, 0.7279564208984375, 0.7273912353515625, 0.7277537231445312, 0.7282349853515625, 0.7278714599609375, 1.503824951171875, 0.72740966796875, 0.7277650146484375, 0.7272868041992188, 0.7274219360351563, 0.7278981323242187, 0.7287039794921875, 0.7276185302734375, 0.7274321899414062, 0.7271383056640625, 0.72722021484375, 0.7271024780273437, 0.7274373168945313, 0.7272499389648438, 0.7280332641601562, 0.7276113891601562, 0.7276943359375, 0.7272652587890625, 0.7283251342773438, 0.7285104370117188, 0.7281961059570312, 0.7280137939453125, 0.7283834838867187, 0.7276124267578125, 0.7279022216796875, 0.7284910278320312, 0.7285155639648437, 0.728142822265625, 0.7280394287109375, 0.7274547119140625, 0.7279277954101563, 0.7275509643554687, 0.7277987670898437, 0.7278591918945313, 0.728226806640625, 0.7301795654296875, 0.726887451171875, 0.727372802734375, 0.7274393310546875, 0.7276984252929688, 0.72789404296875, 0.7279503173828125, 0.7277659912109375, 0.7282677612304688, 0.7285678100585937, 0.7279226684570312, 0.7286671142578125, 0.7283712158203125, 0.7282360229492187, 0.727741455078125, 0.7277588500976563, 0.7276482543945313, 0.727857177734375, 0.7283681030273438, 0.7278796997070313, 0.7283937377929688, 0.727920654296875, 0.7278295288085938, 0.728015869140625, 0.7276452026367187, 0.7281694946289062, 0.7286343383789062, 0.7274926147460937, 1.4987724609375, 0.7273533325195313, 0.727457763671875, 0.7278960571289063, 0.7272560424804687, 0.7277005004882813, 0.7277772827148438, 0.7281305541992188, 0.7275653076171875, 0.727499755859375, 0.7276851196289063, 0.7280271606445312, 0.7270768432617187, 0.7270553588867188, 0.7272847290039063, 0.7274874877929688, 0.7273748779296875, 0.727520263671875, 0.727920654296875, 0.7277373657226562, 0.7273338623046876, 0.728322021484375, 0.7278253784179688, 0.7282452392578125, 0.72855859375, 0.7283507080078125, 0.7274547119140625, 0.727931884765625, 0.7276277465820312, 0.7273011474609375, 0.7271905517578126, 0.727736328125, 0.7286302490234375, 0.728036376953125, 0.727710693359375, 0.7286405029296875, 0.728036376953125, 0.7283230590820312, 0.72854833984375, 0.7284182739257813, 0.7284367065429688, 0.729618408203125, 0.7277322387695313, 0.7279042358398438, 0.7280332641601562, 0.7283035888671875, 0.7280281372070313, 0.7276656494140625, 0.7277639770507812, 0.7281858520507812, 0.7287337036132813, 0.7282145385742187, 0.7282606201171875, 0.7274495849609375, 0.727203857421875, 0.7272243041992188, 0.727235595703125, 0.7272662963867188, 0.7274495849609375, 0.727531494140625, 0.7289282836914063, 0.7277404174804688, 0.7281520385742187, 1.498346435546875, 0.7277035522460937, 0.7284224243164062, 0.7275243530273438, 0.727741455078125, 0.727731201171875, 0.7279708251953125, 0.7275581665039063, 0.7280773315429687, 0.7281356811523437, 0.7283568725585937, 0.7276912841796875, 0.7285411987304687, 0.7277701416015625, 0.7284715576171875, 0.72749462890625, 0.7280516967773437, 0.7273963623046875, 0.7273779296875, 0.7273543701171875, 0.7274270629882813, 0.7274116821289063, 0.727689208984375, 0.7282974853515625, 0.7277066040039063, 0.7288258666992188, 0.72807421875, 0.727720947265625, 0.728501220703125, 0.7287817993164063, 0.728057861328125, 0.7277598876953125, 0.72751513671875, 0.7276728515625, 0.7286773681640625, 0.7274321899414062, 0.7279042358398438, 0.727920654296875, 0.727573486328125, 0.7276513061523437, 0.7273072509765625, 0.7275028686523437, 0.7276226806640625, 0.727731201171875, 0.7275745239257813, 0.727709716796875, 0.7274833984375, 0.7272919311523437, 0.7273953247070313, 0.7276328735351563, 0.7272529907226563, 0.7279380493164063, 0.7277659912109375, 0.7278837890625, 0.7274598388671875, 0.7278622436523438, 0.727636962890625, 0.7282718505859375, 0.7279830932617187, 0.7275888671875, 0.72747314453125, 0.7274137573242188, 0.7276810302734374, 1.500190673828125, 0.7274137573242188, 0.727794677734375, 0.72776806640625, 0.7275325317382813, 0.728131591796875, 0.7274035034179688, 0.7273656616210937, 0.727741455078125, 0.7269683227539062, 0.7274475708007813, 0.727498779296875, 0.7274158325195312, 0.7276226806640625, 0.7277803344726562, 0.7272796020507812, 0.7277967529296875, 0.7278120727539062, 0.7281182861328125, 0.7282227172851562, 0.729248779296875, 0.7279073486328125, 0.727394287109375, 0.7274772338867187, 0.7273768920898438, 0.7279462280273438, 0.7280506591796875, 0.7277485961914063, 0.7276800537109375, 0.7273492431640625, 0.7277352905273438, 0.7280148315429688, 0.7277557983398437, 0.7279503173828125, 0.72796875, 0.727677978515625, 0.7273717651367188, 0.7274014892578125, 0.7277393798828125, 0.7273564453125, 0.7273922729492187, 0.7276431274414062, 0.7273267211914063, 0.727183349609375, 0.7276964111328125, 0.7270574340820313, 0.7279892578125, 0.7274506225585937, 0.7283281860351563, 0.7276236572265625, 0.7274864501953126, 0.7277271118164063, 0.7274741821289062, 0.7276431274414062, 0.727984130859375, 0.7277352905273438, 0.727568359375, 0.7290419311523437, 0.7279063110351562, 0.7274669799804687, 0.7279380493164063, 0.7273656616210937, 0.727736328125, 1.4986966552734375, 0.7277783203125, 0.7279697875976563, 0.7273380126953125, 0.7279759521484375, 0.7274772338867187, 0.7276113891601562, 0.72751513671875, 0.727520263671875, 0.7276339111328125, 0.7279185791015625, 0.7278212890625, 0.7281500244140625, 0.7277086791992188, 0.7276032104492187, 0.7277926635742188, 0.7276728515625, 0.7275827026367188, 0.7275140991210938, 0.7280179443359375, 0.7281879272460937, 0.7278212890625, 0.727699462890625, 0.72736767578125, 0.7276728515625, 0.7279083251953125, 0.7273850708007813, 0.7275069580078125, 0.7274024658203125, 0.7273922729492187, 0.7274700927734375, 0.7275847778320312, 0.7282288818359375, 0.7278090209960938, 0.7279667358398437, 0.7283240966796874, 0.7274004516601562, 0.7275899047851563, 0.729038818359375, 0.728173583984375, 0.727530517578125, 0.7272581176757813, 0.727572509765625, 0.7277127685546875, 0.72736767578125, 0.7276503295898438, 0.7283455810546875, 0.72766259765625, 0.7285360717773437, 0.7277281494140625, 0.72745166015625, 0.7276943359375, 0.7278653564453125, 0.7278253784179688, 0.7273615112304688, 0.7273717651367188, 0.7274547119140625, 0.7275899047851563, 0.7274557495117188, 0.7279779663085938, 0.7282565307617187, 0.728158203125, 0.7288606567382813, 1.500291015625, 0.7285186767578125, 0.7282554931640625, 0.727962646484375, 0.72707275390625, 0.7270717163085938, 0.7278837890625, 0.7273738403320312, 0.7277557983398437, 0.7276339111328125, 0.728394775390625, 0.7282606201171875, 0.728369140625, 0.727878662109375, 0.7280169067382812, 0.727794677734375, 0.7282175903320313, 0.7275038452148438, 0.7273502807617187, 0.7271946411132812, 0.7275499267578125, 0.7277998046875, 0.7273502807617187, 0.7283394775390625, 0.7281551513671874, 0.7276728515625, 0.729017333984375, 0.7274383544921875, 0.7284019165039063, 0.7275847778320312, 0.727709716796875, 0.7274024658203125, 0.7274024658203125, 0.7272263793945313, 0.7275448608398437, 0.727203857421875, 0.7272734985351562, 0.7281172485351562, 0.72766259765625, 0.7277854614257813, 0.7278192749023438, 0.7277168579101563, 0.7283128051757812, 0.7274014892578125, 0.7279892578125, 0.7273103637695313, 0.7277905883789062, 0.72785302734375, 0.7278776245117188, 0.727984130859375, 0.7275591430664062, 0.7280732421875, 0.728015869140625, 0.7281817626953125, 0.7277322387695313, 0.72749365234375, 0.7281449584960937, 0.7275447387695313, 0.7287470092773437, 0.727857177734375, 0.727446533203125, 0.7272703857421875, 0.7274813232421875, 1.5015628662109375, 0.7280670776367187, 0.7274475708007813, 0.7279002075195312, 0.7276564331054688, 0.727930908203125, 0.7274649658203125, 0.7278028564453125, 0.7277875366210937, 0.7275980834960938, 0.7279329223632812, 0.7276553955078126, 0.7276932983398438, 0.7277240600585938, 0.7281275024414062, 0.7278305053710937, 0.7283988647460937, 0.727973876953125, 0.7275120849609376, 0.7283138427734375, 0.7280885620117188, 0.728431640625, 0.7279882202148438, 0.7285555419921875, 0.727773193359375, 0.7274137573242188, 0.727572509765625, 0.7277168579101563, 0.7279124755859375, 0.7280169067382812, 0.7274721069335938, 0.7271577758789063, 0.7273502807617187, 0.7277578125, 0.72791552734375, 0.7280302124023438, 0.7272263793945313, 0.727066650390625, 0.7275479125976563, 0.7274383544921875, 0.727099365234375, 0.7272929077148438, 0.7277578125, 0.728215576171875, 0.727783447265625, 0.7276656494140625, 0.72743115234375, 0.7274690551757812, 0.7273277587890625, 0.7281571655273438, 0.7275397338867188, 0.727414794921875, 0.7275867919921875, 0.7271116943359375, 0.727257080078125, 0.727667724609375, 0.7276851196289063, 0.7272703857421875, 0.7279493408203125, 0.7277250366210938, 0.7286610107421875, 0.7273246459960937, 0.7279380493164063, 1.50266162109375, 0.72736767578125, 0.7276441650390625, 0.727141357421875, 0.7274188842773438, 0.7278018798828125, 0.727625732421875, 0.727541748046875, 0.7280783081054687, 0.7277342529296875, 0.72876953125, 0.728369140625, 0.7288411865234375, 0.7279749145507812, 0.7283046264648437, 0.72797900390625, 0.7282718505859375, 0.7281930541992188, 0.728658935546875, 0.7289108276367188, 0.7287183227539062, 0.7283169555664063, 0.7286814575195313, 0.7278428344726563, 0.7285463256835938, 0.72789404296875, 0.72875830078125, 0.72804248046875, 0.7291146240234375, 0.7289763793945313, 0.7286661376953125, 0.728784912109375, 0.728363037109375, 0.7279595336914062, 0.7274700927734375, 0.7275233154296875, 0.7272816772460937, 0.7279974365234375, 0.7284090576171875, 0.72762060546875, 0.728300537109375, 0.727457763671875, 0.7274711303710938, 0.727183349609375, 0.7278960571289063, 0.7272171630859375, 0.7289682006835938, 0.7285933837890625, 0.7276564331054688, 0.7285442504882812, 0.7269273681640624, 0.72795751953125, 0.7275642700195313, 0.7277936401367188, 0.7290480346679687, 0.72764208984375, 0.727804931640625, 0.7280322265625, 0.7278858032226563, 0.727383056640625, 0.7281940307617187, 0.7273421020507812, 0.72789404296875, 1.502066650390625, 0.7280179443359375, 0.7290101928710937, 0.7292303466796874, 0.7280660400390625, 0.728395751953125, 0.72835791015625, 0.72821142578125, 0.7285330200195312, 0.7277250366210938, 0.728616943359375, 0.7284172973632812, 0.7285718994140625, 0.728131591796875, 0.7278837890625, 0.7286558837890625, 0.7279124755859375, 0.7291678466796875, 0.728326171875, 0.7273584594726562, 0.7271588134765625, 0.7275980834960938, 0.7273738403320312, 0.7279912719726562, 0.72772607421875, 0.7297515258789062, 0.7277824096679687, 0.7272632446289062, 0.7278909301757812, 0.7273318481445312, 0.7274424438476562, 0.7272509155273438, 0.7275796508789063, 0.7279483032226562, 0.7278059692382812, 0.7278919677734375, 0.7276881713867187, 0.7284940795898438, 0.7285985107421875, 0.7283128051757812, 0.7282175903320313, 0.7282974853515625, 0.728426513671875, 0.7279165649414062, 0.7284940795898438, 0.7287070922851563, 0.7288955078125, 0.7288780517578125, 0.7277035522460937, 0.72800048828125, 0.72765234375, 0.728056884765625, 0.7274495849609375, 0.7280240478515625, 0.727583740234375, 0.727520263671875, 0.7282698364257812, 0.7273543701171875, 0.7287091064453125, 0.7278960571289063, 0.7277035522460937, 0.7276973876953124, 0.727141357421875]",tokens/s,1.3533475452727455,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-12b,EleutherAI/pythia-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1531.768832,9676.783616,0.0,9030.336512,8583.572992,s,10,9.471071899414062,0.9471071899414062,0.0007865321197485112,0.9470617980957031,0.9481417907714844,0.9482434417724609,0.9483247625732422,"[0.9481192016601563, 0.9483450927734375, 0.9464827270507813, 0.9463027954101563, 0.9464989624023438, 0.9459486694335938, 0.9466808471679687, 0.9474427490234375, 0.9474686889648437, 0.9477821655273437]",tokens/s,270.2967549172948,kWh,1.1175276083175583e-05,6.1235719211254035e-06,5.30962293456365e-05,7.039507734993748e-05,tokens/kWh,3636617.9232591945,MB,1531.768832,9676.783616,0.0,9030.336512,8872.966144,s,10,564.2868125,56.42868125,0.005902619636999738,56.430064453125,56.434701171875,56.4354833984375,56.4361091796875,"[56.42066796875, 56.42100390625, 56.427828125, 56.43380078125, 56.436265625, 56.4306328125, 56.43452734375, 56.42949609375, 56.41955859375, 56.43303125]",tokens/s,1.116453523357858,kWh,0.0006659982151861745,0.00036502579988969956,0.003165337650954964,0.004196361666030838,tokens/kWh,15013.005316004865,,s,629,571.914466552734,0.9092439849804999,0.11250283527003516,0.8956805419921875,0.8961118286132812,0.8962535400390624,1.84229025390625,"[0.8955299682617187, 0.8956344604492188, 0.8952893676757813, 0.8954654541015625, 0.8952473754882813, 0.8954511108398437, 0.8954111938476562, 0.895388671875, 0.8953507690429687, 0.8954296264648437, 0.8954921264648438, 0.8958034057617188, 0.8957071533203125, 0.895331298828125, 0.89537841796875, 0.8954317016601563, 0.895688720703125, 0.8951869506835938, 0.89523095703125, 0.895341552734375, 0.8953385009765625, 0.89526171875, 0.8952105712890625, 0.8952554931640625, 0.8955637817382812, 0.8952135620117188, 0.895278076171875, 0.89569384765625, 0.8954439697265625, 0.8954368286132812, 0.8953395385742188, 0.895320068359375, 0.895224853515625, 0.8956580200195312, 0.8956251220703125, 0.895593505859375, 0.8955872802734375, 0.895393798828125, 0.89556591796875, 0.8955975341796875, 0.8953139038085938, 0.8952350463867188, 0.8954644775390626, 0.8952453002929688, 0.8950845336914063, 0.89560888671875, 0.8954244384765625, 0.8954317016601563, 0.8957972412109375, 0.8959805297851563, 0.8959723510742188, 0.896089111328125, 0.8958925170898437, 0.8958883666992188, 0.8961648559570312, 0.8958853149414062, 0.896374755859375, 0.896205810546875, 0.8961065063476562, 0.89630517578125, 0.89601025390625, 0.8961126098632812, 1.844611083984375, 0.8954337158203125, 0.89558837890625, 0.8955914306640625, 0.8959385375976563, 0.8956160278320312, 0.8950343627929688, 0.8949083862304688, 0.8952064208984375, 0.895373291015625, 0.8951787719726563, 0.895162353515625, 0.8951439208984375, 0.895182861328125, 0.895109130859375, 0.8953907470703125, 0.8957255859375, 0.8957091674804688, 0.8956385498046875, 0.8958136596679688, 0.8958320922851563, 0.8952658081054687, 0.8952637329101563, 0.8951807861328125, 0.8952391967773438, 0.8951900024414062, 0.8952842407226562, 0.8955750122070313, 0.89556787109375, 0.8954613647460937, 0.895562744140625, 0.8955679321289063, 0.8955903930664062, 0.8953548583984375, 0.8952647705078125, 0.8954501342773438, 0.8954869995117187, 0.89586181640625, 0.8957409057617187, 0.8956713256835938, 0.8955576171875, 0.8954132690429687, 0.8955822143554687, 0.89568359375, 0.8954531860351562, 0.8953220825195313, 0.89735986328125, 0.8953026733398437, 0.8954552612304687, 0.8961781616210938, 0.8958126220703125, 0.8957644653320312, 0.8956436767578125, 0.8958248901367187, 0.896047119140625, 0.8958515014648437, 0.8958351440429687, 0.8958453979492188, 0.895657958984375, 0.8957132568359375, 0.8961444091796875, 0.8957071533203125, 0.8954951782226562, 1.842377685546875, 0.895404052734375, 0.8950650634765625, 0.8951746826171875, 0.8952135620117188, 0.895152099609375, 0.8950364379882813, 0.8954869995117187, 0.8951756591796876, 0.8951070556640625, 0.89539794921875, 0.8955360717773437, 0.8956303100585937, 0.895278076171875, 0.8953108520507812, 0.895466552734375, 0.8955247802734375, 0.8954808349609376, 0.89577880859375, 0.8958197631835938, 0.8954214477539062, 0.8957296752929688, 0.8957849731445312, 0.8969154663085938, 0.8955699462890625, 0.8955740356445312, 0.8955402221679688, 0.8957010498046875, 0.8956046752929687, 0.8959457397460937, 0.89588427734375, 0.895657958984375, 0.8959969482421875, 0.8955279541015625, 0.89569384765625, 0.8956375122070312, 0.8958167114257812, 0.89558837890625, 0.895529052734375, 0.89546337890625, 0.8958197631835938, 0.8958023681640624, 0.895668212890625, 0.895762451171875, 0.8955596923828125, 0.89588427734375, 0.8957982788085938, 0.896742431640625, 0.8959180297851562, 0.895889404296875, 0.8958699340820313, 0.8959774780273437, 0.8961423950195313, 0.8960029907226562, 0.895941650390625, 0.8961116333007813, 0.8960184326171875, 0.8960419921875, 0.8958904418945313, 0.8957849731445312, 0.8956774291992188, 0.8956559448242187, 0.8954009399414062, 1.84203369140625, 0.8953282470703126, 0.8955074462890625, 0.8958883666992188, 0.895805419921875, 0.895224853515625, 0.8955054321289062, 0.89569482421875, 0.8954593505859375, 0.895592529296875, 0.89609619140625, 0.89571533203125, 0.89652734375, 0.8958136596679688, 0.8957890625, 0.8957183837890625, 0.8957440185546875, 0.8959334106445312, 0.895752197265625, 0.8961761474609375, 0.8955248413085938, 0.896421875, 0.895963134765625, 0.895330322265625, 0.8955340576171875, 0.8957603759765626, 0.8954306640625, 0.8958146362304688, 0.895805419921875, 0.8954982299804688, 0.8955299682617187, 0.8953681640625, 0.8958136596679688, 0.8957706298828125, 0.89615869140625, 0.8956036987304687, 0.8954429321289062, 0.895578125, 0.8957962036132813, 0.8954183959960937, 0.8954849243164062, 0.89569384765625, 0.8957583618164062, 0.8959283447265625, 0.8975103759765625, 0.8956825561523437, 0.8957440185546875, 0.895594482421875, 0.8960829467773438, 0.8958392333984375, 0.8954531860351562, 0.8957625122070313, 0.8960316772460938, 0.8954849243164062, 0.8954644775390626, 0.8962181396484376, 0.895805419921875, 0.8961618041992188, 0.8958760986328125, 0.8960430297851563, 0.89603173828125, 0.8957348022460937, 0.8958709716796875, 1.8425006103515624, 0.8954132690429687, 0.8952770385742187, 0.8951552124023437, 0.8951265258789063, 0.8949452514648437, 0.8951756591796876, 0.8958238525390625, 0.895236083984375, 0.895140869140625, 0.8951900024414062, 0.8952207641601563, 0.895283203125, 0.8956876831054688, 0.8953272094726562, 0.89558837890625, 0.8958331298828125, 0.896849853515625, 0.8957357788085938, 0.8959354858398437, 0.8956190795898438, 0.8957183837890625, 0.89544189453125, 0.8957081298828125, 0.8961085205078125, 0.8960030517578125, 0.895741943359375, 0.8960706787109375, 0.8960758056640625, 0.8956846313476563, 0.8959539794921875, 0.8957930908203126, 0.8956805419921875, 0.8956405639648437, 0.8957777709960938, 0.895805419921875, 0.8960061645507813, 0.8956876831054688, 0.8957982788085938, 0.8960235595703125, 0.896294921875, 0.8963491821289062, 0.8959744262695313, 0.8960379028320312, 0.8958555908203125, 0.8957880249023438, 0.8960327758789063, 0.8959774780273437, 0.8963082275390625, 0.8961085205078125, 0.8957849731445312, 0.8961433715820313, 0.896015380859375, 0.8959569702148438, 0.89592626953125, 0.895857666015625, 0.89588427734375, 0.8977633056640625, 0.8960972900390625, 0.8961024169921875, 0.8960040893554687, 0.8959642333984374, 0.895754150390625, 1.8420654296875, 0.895541259765625, 0.8955330810546875, 0.895551513671875, 0.8954542846679687, 0.89588525390625, 0.8957655639648437, 0.8955913696289063, 0.8954900512695313, 0.895973388671875, 0.8957081298828125, 0.895446044921875, 0.8953692016601562, 0.8954695434570312, 0.8955350952148438, 0.8955064086914063, 0.8957685546875, 0.895510498046875, 0.8955617065429687, 0.89569384765625, 0.8958258666992187, 0.8956436767578125, 0.8955709228515625, 0.8953487548828125, 0.895425537109375, 0.89541015625, 0.8953661499023438, 0.8959344482421875, 0.8957112426757813, 0.8955719604492187, 0.8957173461914063, 0.8952852783203125, 0.895425537109375, 0.8956323852539062, 0.8953405151367188, 0.8953170166015625, 0.8956170043945313, 0.89562109375, 0.8976466064453125, 0.8961249389648438, 0.8960225830078125, 0.8955401611328125, 0.8958443603515625, 0.8955822143554687, 0.8957726440429687, 0.8958177490234375, 0.8958822631835938, 0.8957255859375, 0.89603173828125, 0.8960040893554687, 0.8958167114257812, 0.8959232177734375, 0.8961556396484375, 0.895921142578125, 0.8957132568359375, 0.8960726928710937, 0.8958699340820313, 0.8956088256835938, 0.8956508178710938, 0.8958750610351562, 0.8959140014648438, 0.896184326171875, 0.8957747192382812, 1.8425538330078124, 0.8953139038085938, 0.8954296264648437, 0.8954317016601563, 0.8954019775390625, 0.8954296264648437, 0.895804443359375, 0.89565185546875, 0.8956016845703125, 0.8954736938476563, 0.8951910400390625, 0.8951807861328125, 0.8956160278320312, 0.8953865966796875, 0.895224853515625, 0.8951572265625, 0.895447021484375, 0.8951286010742188, 0.8952534790039063, 0.8959088745117187, 0.8953425903320312, 0.8954378051757812, 0.8953170166015625, 0.8966533203125, 0.8956589965820313, 0.8957174072265625, 0.8958781127929687, 0.8958924560546875, 0.89592626953125, 0.895657958984375, 0.8963993530273437, 0.8960133056640625, 0.8955350952148438, 0.895636474609375, 0.8958023681640624, 0.8959241943359375, 0.8960481567382812, 0.8959610595703125, 0.8962498779296875, 0.8960297241210937, 0.8959395751953125, 0.8961136474609375, 0.896173095703125, 0.8961300048828125, 0.8959856567382812, 0.8956856079101563, 0.8959078369140625, 0.8958648071289063, 0.8959365234375, 0.8959959106445312, 0.89580029296875, 0.8960338134765625, 0.8962744140625, 0.8961085205078125, 0.896195556640625, 0.8962867431640625, 0.8956589965820313, 0.896268310546875, 0.8962437133789063, 0.896083984375, 0.895952880859375, 0.8960859985351562, 0.8958607177734375, 1.8435286865234375, 0.8953579711914063, 0.8959723510742188, 0.895552490234375, 0.8962406616210937, 0.895710205078125, 0.8959600830078125, 0.895594482421875, 0.8955453491210937, 0.8953630981445313, 0.8957020263671875, 0.8955637817382812, 0.895478759765625, 0.8956026611328125, 0.89554736328125, 0.8955330810546875, 0.8961474609375, 0.895688720703125, 0.8956405639648437, 0.89556787109375, 0.8954163208007813, 0.8957962036132813, 0.8957061157226562, 0.8955453491210937, 0.895515625, 0.8955586547851563, 0.8955166625976563, 0.8954368286132812, 0.8956876831054688, 0.8957532348632813, 0.8957552490234375, 0.89554638671875, 0.8954439697265625, 0.8958248901367187, 0.8957378540039063, 0.8956109008789063, 0.895552490234375, 0.8955668334960938, 0.8956426391601563, 0.8957552490234375, 0.8958330688476562, 0.8957849731445312, 0.8957276000976563, 0.895825927734375, 0.8963133544921875, 0.8962559814453125, 0.89609423828125, 0.8956958618164063, 0.8961679077148438, 0.8956907348632812, 0.8954450073242187, 0.8954439697265625, 0.8957511596679687, 0.8955791625976562, 0.8954685668945312, 0.8961618041992188, 0.8959201049804687, 0.8955299682617187, 0.8956661987304687, 0.8956989135742187, 0.8956763916015625, 0.895662109375, 0.8958924560546875, 1.8434007568359374, 0.8952268676757813, 0.8956057739257812, 0.8958668823242187, 0.8953005981445312, 0.8950661010742188, 0.8951449584960938, 0.8954685668945312, 0.8951981811523437, 0.8952791137695313, 0.8951910400390625, 0.895224853515625, 0.8951367797851563, 0.8953661499023438, 0.8954818725585938, 0.8955637817382812, 0.8956846313476563, 0.8963553466796875, 0.8955187377929688, 0.89537841796875, 0.8953743286132813, 0.895267822265625, 0.8952647705078125, 0.8953159790039062, 0.895520751953125, 0.8957470703125, 0.8953702392578125, 0.8953262329101562, 0.8954111938476562, 0.8956661987304687, 0.8953436279296875, 0.8954030151367187, 0.895283203125, 0.8952268676757813, 0.89514599609375, 0.8952166137695312, 0.8958832397460937, 0.89552587890625, 0.8954111938476562, 0.895561767578125, 0.8955135498046874, 0.895520751953125, 0.8956928100585938, 0.8956426391601563, 0.8954716186523437, 0.8955125732421875, 0.8955330810546875, 0.8961566772460937, 0.8961351928710938, 0.8959539184570312, 0.8957091674804688, 0.89584228515625, 0.8958197631835938, 0.8957470703125, 0.8957593383789062, 0.8957214965820313, 0.8955811767578125, 0.8955985717773437, 0.8961331176757813, 0.8957828979492187, 0.8960563354492187, 0.8956763916015625, 0.8957511596679687, 1.8439761962890624, 0.8954634399414062, 0.89548388671875, 0.8955084838867188, 0.89558837890625, 0.895562744140625, 0.8955801391601562, 0.895515625, 0.8953907470703125, 0.8954337158203125, 0.8955177001953125, 0.8955903930664062, 0.8959283447265625, 0.8955166625976563, 0.89547265625, 0.8954685668945312, 0.895752197265625, 0.895425537109375, 0.8954317016601563, 0.8954531860351562, 0.8953671875, 0.89560986328125, 0.8953211059570313, 0.8955269165039063, 0.8957849731445312, 0.8958924560546875, 0.8968284301757813, 0.8958668823242187, 0.8959989624023438, 0.8959027099609375, 0.8958955688476562, 0.8957982788085938, 0.8957511596679687, 0.895730712890625, 0.8959959106445312, 0.8958034057617188, 0.895724609375, 0.8958135375976563, 0.8960409545898438, 0.8961474609375, 0.8957860107421876, 0.8955709228515625, 0.8958484497070313, 0.89590576171875, 0.895847412109375, 0.895763427734375, 0.8960266723632813, 0.8961084594726563, 0.8961710205078125, 0.89615869140625, 0.8962139892578125, 0.895963134765625, 0.8957614135742188, 0.8957449951171875, 0.8958822631835938, 0.8960726928710937, 0.8957849731445312, 0.8957849731445312, 0.895599609375, 0.895626220703125, 0.8956661987304687, 0.8960829467773438, 0.8956692504882813]",tokens/s,1.09981480935664,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/polyglot-ko-12.8b,EleutherAI/polyglot-ko-12.8b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,,MB,1723.056128,9941.024768,0.0,9294.577664,8910.495232,s,10,10.523069458007814,1.0523069458007812,0.0008028232056597039,1.0523904418945311,1.0530852783203124,1.05345859375,1.05375724609375,"[1.0527669677734375, 1.0538319091796875, 1.05145703125, 1.0517464599609374, 1.052252197265625, 1.0511856689453125, 1.0525286865234376, 1.0530023193359375, 1.0528663330078125, 1.051431884765625]",tokens/s,243.27502638043498,kWh,1.2425229681862726e-05,6.805541535795782e-06,6.044174279779546e-05,7.967251401545396e-05,tokens/kWh,3213153.283331113,MB,1723.056128,9941.024768,0.0,9294.577664,9220.876288,s,10,626.3534921875,62.63534921875,0.004239119732727424,62.635099609375004,62.63956796875,62.641526171875,62.643092734375,"[62.6319921875, 62.6329375, 62.6391328125, 62.643484375, 62.63139453125, 62.6282421875, 62.63577734375, 62.634421875, 62.63843359375, 62.63767578125]",tokens/s,1.0058218048721415,kWh,0.0007394197557369868,0.0004052695339850652,0.003591932262432407,0.004736621552154459,tokens/kWh,13300.619292952455,,s,629,634.8295839233394,1.009268018956025,0.1250286498200473,0.9942149047851563,0.9945757568359375,0.99473427734375,2.0461909814453128,"[0.9937213745117187, 0.9941636962890625, 0.9939281616210938, 0.9936691284179687, 0.9940469970703125, 0.9936640014648438, 0.99386572265625, 0.9940029296875, 0.9938134765625, 0.9938718872070312, 0.9940316162109375, 0.9940879516601563, 0.9947422485351562, 0.9942005615234375, 0.994029541015625, 0.993860595703125, 0.9938984985351562, 0.994188232421875, 0.9941381225585938, 0.9940950927734375, 0.9939527587890625, 0.9939947509765625, 0.99481396484375, 0.994408447265625, 0.994361328125, 0.9940614013671875, 0.99426806640625, 0.9940326538085937, 0.9939323120117187, 0.993944580078125, 0.9940070190429687, 0.994107421875, 0.994229248046875, 0.9940459594726563, 0.9943674926757813, 0.9942251586914063, 0.99422412109375, 0.9942691650390625, 0.9943838500976563, 0.994155517578125, 0.994197509765625, 0.9944873046875, 0.9943777465820313, 0.994418701171875, 0.994387939453125, 0.9942783813476562, 0.9941801147460938, 0.9943582763671875, 0.9945180053710938, 0.9940408325195312, 0.9938134765625, 0.9940326538085937, 0.9944760131835938, 0.9945057373046875, 0.9942804565429687, 0.99428662109375, 0.9941749877929688, 0.994018310546875, 0.9942005615234375, 0.994018310546875, 0.9942138671875, 0.99439306640625, 2.048400390625, 0.9937254638671875, 0.9939384155273437, 0.993649658203125, 0.993681396484375, 0.993491943359375, 0.9935380249023438, 0.993723388671875, 0.9939885864257813, 0.993955810546875, 0.9941115112304687, 0.9941227416992188, 0.9936732177734375, 0.9938882446289062, 0.993818603515625, 0.9939773559570313, 0.9937152099609375, 0.9938954467773438, 0.994029541015625, 0.9940746459960937, 0.9940223999023438, 0.9943040161132812, 0.9939876098632813, 0.9940018920898438, 0.993870849609375, 0.9941780395507812, 0.9940029296875, 0.9939568481445312, 0.9940223999023438, 0.9943408813476563, 0.9943121948242187, 0.9944913940429687, 0.994107421875, 0.9944105224609375, 0.9942425537109375, 0.9945681762695312, 0.9944022827148438, 0.9939404907226562, 0.994323486328125, 0.9944729614257812, 0.9945559692382813, 0.9941841430664062, 0.9939691772460938, 0.9944022827148438, 0.9942015991210937, 0.9941749877929688, 0.996316162109375, 0.994234375, 0.9943941040039063, 0.9945528564453125, 0.9943756713867188, 0.9942384643554687, 0.99406640625, 0.9946685180664062, 0.9946071166992188, 0.9947156372070313, 0.9943460083007812, 0.9942159423828125, 0.9944033203125, 0.994250732421875, 0.994207763671875, 0.9942732543945313, 0.9941258544921875, 2.0457523193359375, 0.9937326049804688, 0.993923095703125, 0.9941954345703125, 0.9940490112304687, 0.9940633544921875, 0.9942056884765625, 0.9942149047851563, 0.9938370361328125, 0.9937274780273437, 0.9940162353515625, 0.9940469970703125, 0.99371826171875, 0.9940367431640625, 0.9938534545898438, 0.9942271728515625, 0.9941575927734375, 0.9941626586914063, 0.9939773559570313, 0.9939947509765625, 0.993728515625, 0.993818603515625, 0.99376025390625, 0.9947381591796876, 0.9940807495117188, 0.9942988891601563, 0.9943746337890625, 0.9940838623046875, 0.9939465942382812, 0.9941636962890625, 0.9940090942382812, 0.99420263671875, 0.9942149047851563, 0.9942138671875, 0.9943306274414062, 0.9944053955078125, 0.9946675415039062, 0.9946388549804688, 0.9943070678710938, 0.9942528076171875, 0.9945692138671876, 0.9944391479492187, 0.9944893188476562, 0.9945906982421875, 0.9944791259765625, 0.99445556640625, 0.9944688720703125, 0.9956966552734375, 0.9946471557617188, 0.9943448486328125, 0.99428662109375, 0.9943275756835938, 0.9942988891601563, 0.9942845458984375, 0.99435107421875, 0.9946736450195313, 0.9949030151367187, 0.99470849609375, 0.9946101684570312, 0.99445556640625, 0.9944708862304688, 0.9945303344726563, 0.9944258422851563, 2.046361572265625, 0.9943121948242187, 0.993902587890625, 0.9938494262695312, 0.9939803466796875, 0.993817626953125, 0.99403369140625, 0.9938892822265625, 0.993890380859375, 0.9941790161132813, 0.9943521118164063, 0.994566162109375, 0.9950842895507812, 0.9945149536132812, 0.9943418579101563, 0.994255859375, 0.9942322998046875, 0.9944514770507813, 0.9944678344726563, 0.9941493530273438, 0.99386572265625, 0.994466796875, 0.994135009765625, 0.9944791259765625, 0.993997802734375, 0.9939465942382812, 0.993850341796875, 0.994050048828125, 0.994281494140625, 0.9941104736328125, 0.9941370849609374, 0.99445556640625, 0.9942169799804688, 0.9945046997070313, 0.9944360961914063, 0.994355224609375, 0.9945057373046875, 0.9943777465820313, 0.9944063720703125, 0.9943849487304688, 0.9944248046875, 0.9944248046875, 0.9944043579101562, 0.9945538330078125, 0.9957181396484375, 0.9942650756835938, 0.9944627075195313, 0.9945119018554688, 0.9939578857421875, 0.9942630615234375, 0.9940695190429687, 0.994323486328125, 0.9945487060546875, 0.9944248046875, 0.9942774047851562, 0.9945712890625, 0.9945681762695312, 0.994572265625, 0.9946071166992188, 0.9948231811523438, 0.994545654296875, 0.9945897216796875, 0.994703369140625, 2.0469268798828124, 0.9937100830078125, 0.99370703125, 0.9939507446289062, 0.9940214233398438, 0.993982421875, 0.9939998779296875, 0.994187255859375, 0.9942363891601562, 0.994165771484375, 0.9937623291015625, 0.9936098022460937, 0.9937017822265625, 0.99392919921875, 0.9935421142578125, 0.9941094360351562, 0.9936434936523437, 0.9947597045898438, 0.9939476318359375, 0.9940572509765625, 0.993876953125, 0.9940459594726563, 0.9939384155273437, 0.9936783447265625, 0.9934899291992187, 0.9937745971679688, 0.9935821533203125, 0.9939537353515625, 0.993924072265625, 0.9939793701171875, 0.9942067260742188, 0.9939005737304687, 0.9939332885742187, 0.9940510864257812, 0.9938903198242187, 0.9940438842773438, 0.9939251098632812, 0.9943121948242187, 0.9945211181640625, 0.9941473388671875, 0.9944022827148438, 0.9940101318359374, 0.9942968139648437, 0.9944330444335937, 0.994639892578125, 0.9945938110351562, 0.9943070678710938, 0.99437158203125, 0.9943593139648438, 0.9942528076171875, 0.9945589599609375, 0.994482177734375, 0.9939876098632813, 0.9945620727539063, 0.9944330444335937, 0.9943951416015625, 0.9943367919921875, 0.9962434692382812, 0.9943162841796875, 0.994186279296875, 0.9945906372070312, 0.9944248657226562, 0.9944125366210937, 2.04558642578125, 0.993912841796875, 0.9936803588867188, 0.9937315673828125, 0.9937705688476562, 0.9936362915039062, 0.9941083984375, 0.9939169311523437, 0.993712158203125, 0.9938135375976562, 0.9937837524414063, 0.9940541381835938, 0.9938093872070313, 0.9940275268554688, 0.9939824829101562, 0.9938954467773438, 0.9938401489257812, 0.9937479858398437, 0.9936363525390625, 0.9938779907226563, 0.9936895751953125, 0.9938565063476562, 0.9942282104492187, 0.9945733032226562, 0.9943101196289063, 0.994271240234375, 0.9942517700195312, 0.9937531127929687, 0.9937540893554687, 0.9940654296875, 0.9936906127929688, 0.9937561645507812, 0.9941299438476563, 0.994255859375, 0.9943173217773438, 0.99435107421875, 0.9943480224609375, 0.9938595581054688, 0.9955552978515625, 0.9940582275390625, 0.994145263671875, 0.9937991943359376, 0.9941483764648438, 0.994471923828125, 0.9942374267578125, 0.9941565551757813, 0.994735107421875, 0.99420263671875, 0.9940562133789063, 0.994302978515625, 0.9941094360351562, 0.9940899658203125, 0.9943009033203125, 0.9945149536132812, 0.9943971557617187, 0.9942517700195312, 0.9943009033203125, 0.9943582763671875, 0.9941473388671875, 0.9944699096679688, 0.9942067260742188, 0.9939999389648437, 0.994462646484375, 2.0474276123046873, 0.9942875366210937, 0.9945169677734375, 0.9941104736328125, 0.99388623046875, 0.99411865234375, 0.9940193481445313, 0.9938565063476562, 0.9939681396484376, 0.9939568481445312, 0.9942251586914063, 0.9939885864257813, 0.9937736206054687, 0.9940674438476562, 0.9934888916015625, 0.9936240844726563, 0.9936025390625, 0.9939957885742188, 0.9941309204101563, 0.9939783935546875, 0.9941585693359375, 0.9935872192382813, 0.9937633056640625, 0.99496142578125, 0.9941268310546875, 0.9944862670898438, 0.993723388671875, 0.9938739013671875, 0.9938882446289062, 0.9944063720703125, 0.9942282104492187, 0.9941043090820313, 0.9945272216796875, 0.9945446166992188, 0.9939815063476563, 0.9940366821289063, 0.9942149047851563, 0.9942435913085937, 0.9943531494140625, 0.9939906616210937, 0.994450439453125, 0.9943357543945313, 0.9943040161132812, 0.9945149536132812, 0.9941370849609374, 0.9942384643554687, 0.99449853515625, 0.9946624145507813, 0.9942548217773437, 0.9945487060546875, 0.9945855712890626, 0.9943418579101563, 0.9944760131835938, 0.9945589599609375, 0.9944545288085938, 0.9943593139648438, 0.9944330444335937, 0.9942958374023437, 0.9943746337890625, 0.9943889770507812, 0.9947330322265625, 0.9947310180664063, 0.9944688720703125, 2.047277099609375, 0.9937192993164062, 0.9936015625, 0.993828857421875, 0.9938534545898438, 0.9940787353515625, 0.9938462524414062, 0.9938677978515625, 0.9937264404296875, 0.9940316162109375, 0.9937715454101562, 0.9938134765625, 0.9937797241210937, 0.9938841552734375, 0.9937469482421875, 0.9938042602539062, 0.9948897094726562, 0.99428759765625, 0.99430810546875, 0.9943807983398437, 0.9940869140625, 0.994150390625, 0.9942937622070313, 0.994207763671875, 0.9942947998046875, 0.9942835083007813, 0.9943101196289063, 0.994366455078125, 0.9940070190429687, 0.9944422607421874, 0.9940172729492187, 0.9939844970703124, 0.9939251098632812, 0.9939476318359375, 0.9940101318359374, 0.9939158935546875, 0.9941954345703125, 0.9944647827148437, 0.994376708984375, 0.9946132202148438, 0.9943787231445312, 0.9942466430664062, 0.994313232421875, 0.9944729614257812, 0.9945261840820312, 0.9942916870117188, 0.9944391479492187, 0.9942671508789063, 0.994545654296875, 0.994798583984375, 0.9944873046875, 0.9943193359375, 0.994164794921875, 0.9943551635742187, 0.9943255004882813, 0.99406640625, 0.9942916870117188, 0.994587646484375, 0.9942916870117188, 0.9949767456054688, 0.9941903076171875, 0.9943889770507812, 0.9943162841796875, 2.047072265625, 0.9936138305664063, 0.9937510375976563, 0.9939783935546875, 0.9938709106445313, 0.9944656982421874, 0.993997802734375, 0.99403369140625, 0.993713134765625, 0.9936732177734375, 0.9935554809570313, 0.9939323120117187, 0.9941073608398437, 0.994260986328125, 0.9937418212890625, 0.9940961303710938, 0.9939844970703124, 0.9946102294921875, 0.993966064453125, 0.9940264892578125, 0.9938206787109375, 0.9939199829101563, 0.9943121948242187, 0.9942937622070313, 0.9941575927734375, 0.9946552124023438, 0.9939906616210937, 0.9938114624023437, 0.9936793823242187, 0.9941647338867188, 0.9941442260742187, 0.994471923828125, 0.9945323486328125, 0.99468798828125, 0.9943142700195312, 0.994466796875, 0.9942467041015625, 0.9940725708007813, 0.9942282104492187, 0.994255859375, 0.9944166259765626, 0.9944391479492187, 0.9945436401367187, 0.9948764038085938, 0.99462451171875, 0.9944658203125, 0.994460693359375, 0.994155517578125, 0.9942097778320312, 0.9942763671875, 0.9942702026367187, 0.994260986328125, 0.9944309692382812, 0.9945098266601563, 0.9942968139648437, 0.9946491088867188, 0.9945579223632812, 0.99460302734375, 0.994281494140625, 0.9945108642578125, 0.99460302734375, 0.9943797607421875, 0.9946961669921875, 2.04813623046875, 0.99420263671875, 0.99418115234375, 0.9938411254882813, 0.9938524169921875, 0.9939671020507812, 0.9941248168945312, 0.994044921875, 0.9940910034179687, 0.9938984985351562, 0.9937213745117187, 0.9939066772460937, 0.9943142700195312, 0.9939824829101562, 0.9937520751953125, 0.9941227416992188, 0.9939323120117187, 0.9941923828125, 0.9938759765625, 0.9943316650390625, 0.994208740234375, 0.99416064453125, 0.9944412231445312, 0.99399169921875, 0.9939773559570313, 0.9942149658203125, 0.9955389404296875, 0.9943828735351562, 0.9939456176757813, 0.9944596557617188, 0.9941442260742187, 0.9940377807617188, 0.9945589599609375, 0.994135009765625, 0.9938985595703125, 0.9942609252929687, 0.994212890625, 0.9942732543945313, 0.9943726196289062, 0.994460693359375, 0.9944248657226562, 0.9942844848632812, 0.9949808349609375, 0.9943121948242187, 0.9940910034179687, 0.994150390625, 0.9942640380859376, 0.9941688232421875, 0.9940387573242188, 0.9946736450195313, 0.994753662109375, 0.99428857421875, 0.994555908203125, 0.9943367919921875, 0.9942702026367187, 0.994302978515625, 0.994234375, 0.9944371337890625, 0.9942466430664062, 0.9943602905273438, 0.9947944946289062, 0.99437158203125, 0.9947586669921875]",tokens/s,0.9908170884423626,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-3b,stabilityai/stablelm-base-alpha-3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1386.098688,4467.458048,0.0,3821.010944,3588.539392,s,10,2.8072667541503904,0.28072667541503904,0.0013891453980565372,0.2802557830810547,0.2808915802001953,0.2828903091430664,0.2844892922973633,"[0.2848890380859375, 0.28023013305664063, 0.2801990051269531, 0.28025711059570313, 0.2802708740234375, 0.2801849365234375, 0.2804474182128906, 0.280294189453125, 0.28023959350585936, 0.28025445556640627]",tokens/s,911.9190387643711,kWh,3.3119122141305312e-06,1.8147647802379651e-06,1.6291780008722804e-05,2.1418457003091298e-05,tokens/kWh,11952308.234110976,MB,1386.098688,4467.458048,0.0,3821.010944,3698.945536,s,10,163.89264257812502,16.389264257812503,0.003489083519208589,16.3881943359375,16.392421484375,16.3953728515625,16.3977339453125,"[16.39832421875, 16.389771484375, 16.3869296875, 16.391765625, 16.388423828125, 16.38619921875, 16.38796484375, 16.390015625, 16.3857890625, 16.387458984375]",tokens/s,3.8439797546109427,kWh,0.00019345068814485898,0.00010602696284692681,0.000949664353866678,0.0012491420048584639,tokens/kWh,50434.61812585377,,s,629,166.15247476196274,0.264153377999941,0.03329400953216876,0.260126708984375,0.26031758422851564,0.26039378051757817,0.540367294921875,"[0.2604298095703125, 0.26013287353515624, 0.26008575439453124, 0.26007962036132815, 0.26021786499023436, 0.2603202514648438, 0.2601820068359375, 0.26012875366210936, 0.2602219543457031, 0.26012368774414063, 0.2601778869628906, 0.26016357421875, 0.2602014770507812, 0.2604083251953125, 0.26030694580078123, 0.26017074584960936, 0.26030694580078123, 0.2600079345703125, 0.2600693664550781, 0.25997927856445313, 0.2600478820800781, 0.2602444763183594, 0.2602977294921875, 0.2602588195800781, 0.26022711181640623, 0.26007958984375, 0.26012161254882815, 0.26005709838867186, 0.26022503662109375, 0.26006732177734376, 0.2602147827148438, 0.2602352600097656, 0.2603049011230469, 0.26016973876953126, 0.260178955078125, 0.26042266845703127, 0.2604431457519531, 0.2602874755859375, 0.26027420043945315, 0.2602597961425781, 0.26024856567382815, 0.26021273803710937, 0.2602014770507812, 0.26022091674804687, 0.26042776489257813, 0.26031103515625, 0.2603397216796875, 0.2603745422363281, 0.2603683776855469, 0.2603018798828125, 0.26036627197265627, 0.2605783081054687, 0.2604216613769531, 0.26033352661132814, 0.260316162109375, 0.2602147827148438, 0.26032333374023436, 0.2602229614257813, 0.2604031982421875, 0.26052197265625, 0.26033868408203126, 0.260274169921875, 0.5405133056640625, 0.25998745727539063, 0.25996185302734376, 0.25998541259765623, 0.2601246643066406, 0.2599372863769531, 0.26018405151367185, 0.25999563598632813, 0.25993011474609373, 0.2600499267578125, 0.25996185302734376, 0.2602874755859375, 0.2600693664550781, 0.25998745727539063, 0.2600140686035156, 0.26008270263671873, 0.259999755859375, 0.26005197143554687, 0.2600048522949219, 0.2604021911621094, 0.2602219543457031, 0.26024551391601564, 0.26012161254882815, 0.2601471862792969, 0.26012057495117186, 0.260178955078125, 0.26022091674804687, 0.26046771240234373, 0.2601615295410156, 0.26024038696289065, 0.26021273803710937, 0.2602147827148438, 0.26016973876953126, 0.2602188720703125, 0.2601195373535156, 0.26058139038085937, 0.260274169921875, 0.2602301330566406, 0.26009088134765623, 0.26012875366210936, 0.2600478820800781, 0.260136962890625, 0.2601390075683594, 0.26003045654296875, 0.2600919189453125, 0.2601973876953125, 0.26009088134765623, 0.2600837097167969, 0.26009292602539064, 0.260305908203125, 0.26029464721679685, 0.26030899047851563, 0.2602496032714844, 0.26015640258789063, 0.26017791748046876, 0.2601666564941406, 0.26009088134765623, 0.2602219543457031, 0.26042266845703127, 0.26024346923828123, 0.2601379699707031, 0.2602014770507812, 0.2602086486816406, 0.5403678588867188, 0.2603028564453125, 0.2600447998046875, 0.2601502685546875, 0.2600048522949219, 0.26019326782226565, 0.2600621948242188, 0.2599915466308594, 0.2599700622558594, 0.2602352600097656, 0.2600621948242188, 0.26012774658203125, 0.2601891784667969, 0.26008984375, 0.2599700622558594, 0.26002740478515624, 0.25998849487304687, 0.26010009765625, 0.2601195373535156, 0.2601656188964844, 0.26014004516601563, 0.260073486328125, 0.26001715087890626, 0.2600939636230469, 0.2603970642089844, 0.26008779907226565, 0.26007040405273435, 0.26021786499023436, 0.2600970153808594, 0.2600345458984375, 0.2600058898925781, 0.2600550537109375, 0.2601164855957031, 0.260126708984375, 0.26001715087890626, 0.2600202331542969, 0.26008779907226565, 0.2600335388183594, 0.2601031799316406, 0.26019021606445314, 0.26009292602539064, 0.26026190185546877, 0.26016973876953126, 0.26018405151367185, 0.260126708984375, 0.2599700622558594, 0.260210693359375, 0.26018405151367185, 0.2603049011230469, 0.26017279052734377, 0.2600960998535156, 0.26008053588867186, 0.2600447998046875, 0.26002328491210935, 0.2600110168457031, 0.2601195373535156, 0.2600560607910156, 0.2601257019042969, 0.2600007629394531, 0.26009292602539064, 0.2601082763671875, 0.26012057495117186, 0.26048614501953127, 0.5407078247070313, 0.26011749267578127, 0.26015640258789063, 0.260136962890625, 0.260284423828125, 0.26017074584960936, 0.26010015869140624, 0.26020858764648436, 0.2601666564941406, 0.26003662109375, 0.2600970153808594, 0.26017587280273435, 0.26000897216796875, 0.26008575439453124, 0.2603550720214844, 0.26025164794921873, 0.2600058898925781, 0.2601666564941406, 0.2600345458984375, 0.2600980529785156, 0.2600058898925781, 0.2600386657714844, 0.26025982666015623, 0.2601533508300781, 0.26014617919921873, 0.2602496032714844, 0.2600744934082031, 0.2601820068359375, 0.2601922607421875, 0.2602076110839844, 0.26013592529296875, 0.26038885498046876, 0.26029364013671874, 0.26032333374023436, 0.26011239624023436, 0.26018508911132815, 0.2602854309082031, 0.2602239990234375, 0.2601471862792969, 0.2601748352050781, 0.26018405151367185, 0.260453369140625, 0.2603192443847656, 0.2602230224609375, 0.26013180541992187, 0.260316162109375, 0.2601594848632813, 0.2601441345214844, 0.26007244873046875, 0.26016973876953126, 0.2601164855957031, 0.26031103515625, 0.26038681030273436, 0.2602608642578125, 0.260073486328125, 0.26023934936523435, 0.26009906005859373, 0.2601584777832031, 0.2600621948242188, 0.26027008056640627, 0.26026904296875, 0.26036532592773437, 0.26014004516601563, 0.5404119262695313, 0.25996902465820315, 0.25991064453125, 0.2599966735839844, 0.2600755310058594, 0.2599987182617188, 0.2600939636230469, 0.26010726928710937, 0.25997927856445313, 0.26001202392578127, 0.26005197143554687, 0.26035198974609375, 0.26012261962890626, 0.2601553955078125, 0.26011544799804687, 0.26016256713867186, 0.2600048522949219, 0.26005093383789063, 0.259989501953125, 0.26000384521484377, 0.260421630859375, 0.26011749267578127, 0.26003250122070315, 0.2600284118652344, 0.2600130615234375, 0.26020556640625, 0.26025982666015623, 0.2602270812988281, 0.2600611877441406, 0.2601308288574219, 0.2600919189453125, 0.26027008056640627, 0.26002532958984376, 0.2602301330566406, 0.2600560607910156, 0.26042266845703127, 0.26021786499023436, 0.26033355712890627, 0.2601820068359375, 0.2600202331542969, 0.26016461181640627, 0.26014105224609374, 0.2602024841308594, 0.2601257019042969, 0.26028338623046876, 0.2601830749511719, 0.26015127563476564, 0.2601236572265625, 0.2601257019042969, 0.26051788330078124, 0.26029876708984373, 0.26014004516601563, 0.2600867919921875, 0.26011444091796876, 0.2600611877441406, 0.26010726928710937, 0.26002227783203125, 0.26012261962890626, 0.2603407287597656, 0.2602506103515625, 0.26011239624023436, 0.26010726928710937, 0.26004376220703124, 0.540248046875, 0.2601922607421875, 0.2599966735839844, 0.2599495544433594, 0.25990451049804686, 0.26010531616210936, 0.2599730224609375, 0.25991168212890625, 0.2599587707519531, 0.2602270812988281, 0.2600191955566406, 0.2600007629394531, 0.26014617919921873, 0.2600867919921875, 0.25993011474609373, 0.26002944946289064, 0.2599649353027344, 0.260105224609375, 0.2600478820800781, 0.2600663146972656, 0.25986868286132814, 0.25998541259765623, 0.2599813232421875, 0.2601082763671875, 0.2602352600097656, 0.2601041870117187, 0.2601082763671875, 0.2601973876953125, 0.26011749267578127, 0.2600663146972656, 0.2600140686035156, 0.2602147827148438, 0.2602076110839844, 0.2603673706054688, 0.26010009765625, 0.2600714111328125, 0.2600816650390625, 0.26017587280273435, 0.26004583740234377, 0.26028851318359375, 0.26024652099609374, 0.26011239624023436, 0.26015435791015623, 0.2601615295410156, 0.2600407104492187, 0.2600172119140625, 0.26012051391601565, 0.2601451416015625, 0.2603325500488281, 0.2601820068359375, 0.2600765380859375, 0.2600335388183594, 0.26003762817382814, 0.26007962036132815, 0.2600447998046875, 0.2601666564941406, 0.260105224609375, 0.26013388061523435, 0.26012261962890626, 0.26009906005859373, 0.2600611877441406, 0.260178955078125, 0.260537353515625, 0.5406893920898438, 0.25999563598632813, 0.26002944946289064, 0.26001202392578127, 0.2599638977050781, 0.25995263671875, 0.2599413757324219, 0.2603120727539063, 0.2600202331542969, 0.25998541259765623, 0.2599034729003906, 0.2599710693359375, 0.25996902465820315, 0.26002227783203125, 0.26024038696289065, 0.26017587280273435, 0.2601492614746094, 0.2600837097167969, 0.2600110168457031, 0.2600202331542969, 0.26000384521484377, 0.26016357421875, 0.2602168273925781, 0.2602137451171875, 0.26002740478515624, 0.2602188720703125, 0.2599925842285156, 0.2601041870117187, 0.26011651611328124, 0.26032635498046874, 0.2602158203125, 0.2603356018066406, 0.26014617919921873, 0.26028033447265625, 0.2600919189453125, 0.26025164794921873, 0.26034381103515625, 0.26021786499023436, 0.2602567749023437, 0.26020965576171873, 0.2601257019042969, 0.26006427001953125, 0.2600478820800781, 0.26008062744140625, 0.2602711181640625, 0.2601513061523438, 0.2601615295410156, 0.26016259765625, 0.260000732421875, 0.2599966735839844, 0.26008474731445314, 0.2601062316894531, 0.2602567749023437, 0.26017074584960936, 0.26014208984375, 0.2601134033203125, 0.26016461181640627, 0.2600837097167969, 0.2601308288574219, 0.2603345947265625, 0.26025369262695314, 0.260274169921875, 0.2600980529785156, 0.5405234985351562, 0.26009292602539064, 0.2600345458984375, 0.2600663146972656, 0.26004376220703124, 0.2600058898925781, 0.26000997924804686, 0.26011444091796876, 0.260068359375, 0.26003250122070315, 0.25992703247070315, 0.26030694580078123, 0.2600396728515625, 0.2602669982910156, 0.2600560607910156, 0.26017691040039065, 0.260063232421875, 0.2601308288574219, 0.260136962890625, 0.2602291259765625, 0.26010931396484377, 0.26014822387695313, 0.2599966735839844, 0.260052978515625, 0.26002740478515624, 0.2600663146972656, 0.2601533508300781, 0.260232177734375, 0.26017074584960936, 0.26018817138671874, 0.2603263854980469, 0.26019021606445314, 0.26006527709960936, 0.26017587280273435, 0.26023934936523435, 0.2603714599609375, 0.2601922607421875, 0.2601615295410156, 0.26031716918945313, 0.26016461181640627, 0.26007244873046875, 0.2601922607421875, 0.26012875366210936, 0.2601185302734375, 0.26021786499023436, 0.26016973876953126, 0.26021273803710937, 0.260136962890625, 0.2601031799316406, 0.260379638671875, 0.2602291259765625, 0.26033050537109376, 0.26011544799804687, 0.2603222961425781, 0.26023934936523435, 0.26016973876953126, 0.2601441345214844, 0.26020660400390627, 0.26016461181640627, 0.2604021911621094, 0.2601748352050781, 0.26020965576171873, 0.26023834228515624, 0.5403658447265625, 0.26022808837890626, 0.26013491821289064, 0.26002227783203125, 0.2600079345703125, 0.2600202331542969, 0.25998028564453124, 0.26002328491210935, 0.26002532958984376, 0.260173828125, 0.26014208984375, 0.2601799621582031, 0.2599915466308594, 0.26002944946289064, 0.25997720336914065, 0.26005914306640626, 0.2599342041015625, 0.25996185302734376, 0.26002944946289064, 0.2600068969726563, 0.25997515869140625, 0.26023321533203125, 0.25999563598632813, 0.26012161254882815, 0.26036224365234373, 0.26008575439453124, 0.2602362976074219, 0.2601871337890625, 0.26005810546875, 0.2601082763671875, 0.2600693664550781, 0.2600611877441406, 0.2601021423339844, 0.2602342529296875, 0.2601605224609375, 0.2600130615234375, 0.25995367431640626, 0.2600386657714844, 0.2599915466308594, 0.2601390075683594, 0.2602229614257813, 0.260105224609375, 0.2600284118652344, 0.2600478820800781, 0.25997927856445313, 0.2600284118652344, 0.260094970703125, 0.260094970703125, 0.26026190185546877, 0.26019021606445314, 0.2601257019042969, 0.26014004516601563, 0.26012161254882815, 0.2601113586425781, 0.26005197143554687, 0.2601246643066406, 0.2601041870117187, 0.26011239624023436, 0.2600488891601562, 0.2601082763671875, 0.26012979125976565, 0.2600478820800781, 0.2603417663574219, 0.5405787963867188, 0.2601574401855469, 0.2599966735839844, 0.2600396728515625, 0.2600345458984375, 0.26000180053710936, 0.260031494140625, 0.26007244873046875, 0.2600499267578125, 0.26014935302734377, 0.26003753662109375, 0.26024551391601564, 0.26003762817382814, 0.2600888366699219, 0.26008984375, 0.26002740478515624, 0.26008575439453124, 0.2600960083007812, 0.25997515869140625, 0.26009906005859373, 0.2599413757324219, 0.25995672607421877, 0.2602147827148438, 0.26008270263671873, 0.2601390075683594, 0.260126708984375, 0.25999462890625, 0.260052978515625, 0.26000384521484377, 0.26012261962890626, 0.26016256713867186, 0.26027621459960937, 0.2600560607910156, 0.26024755859375, 0.2600263671875, 0.26005093383789063, 0.26024139404296875, 0.2604267578125, 0.26019021606445314, 0.2602567749023437, 0.26005093383789063, 0.2601103210449219, 0.2600130615234375, 0.2600140686035156, 0.26001715087890626, 0.2600120849609375, 0.2602270202636719, 0.26012979125976565, 0.26007040405273435, 0.26004376220703124, 0.26005810546875, 0.260284423828125, 0.26034585571289065, 0.2601922607421875, 0.26010726928710937, 0.26014617919921873, 0.26003662109375, 0.26012057495117186, 0.2601257019042969, 0.2601308288574219, 0.2602854309082031, 0.2605189208984375, 0.2602649536132812]",tokens/s,3.7856793941897777,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,/,/,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,/,/,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -13705,9 +13877,142 @@ ChildProcessError: Traceback (most recent call last): raise EnvironmentError( OSError: / does not appear to have a file named config.json. Checkout 'https://huggingface.co///tree/None' for available files. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-70m,EleutherAI/pythia-70m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1279.725568,872.93952,0.0,226.492416,184.397824,s,12,0.17399129676818847,0.014499274730682373,0.0004405777377392672,0.014355583667755127,0.01475712022781372,0.015286664152145383,0.01576770728111267,"[0.01588796806335449, 0.014419008255004882, 0.014310144424438476, 0.01430396842956543, 0.014377471923828124, 0.014377087593078612, 0.01433407974243164, 0.014250847816467285, 0.014390144348144531, 0.01479468822479248, 0.014266719818115234, 0.014279168128967285]",tokens/s,17656.055544507362,kWh,1.7155437431226257e-07,9.399407219055296e-08,3.2474264005518264e-07,5.902910865579981e-07,tokens/kWh,433684339.52262825,MB,1280.053248,872.93952,0.0,226.492416,197.932544,s,12,10.420531616210937,0.8683776346842448,0.009197306451406238,0.8653596801757812,0.8716784362792969,0.8835345275878906,0.8948784387207032,"[0.8977144165039063, 0.866240966796875, 0.8642362670898438, 0.8648695068359376, 0.8719328002929687, 0.8635298461914063, 0.862948974609375, 0.866379638671875, 0.86938916015625, 0.865849853515625, 0.8638052368164062, 0.8636349487304688]",tokens/s,72.54908174012076,kWh,1.0699516429705703e-05,5.862862695252688e-06,1.9223555826850592e-05,3.578593495180898e-05,tokens/kWh,1760468.186309475,,s,755,10.563054601669307,0.013990800796912995,0.001781085498877292,0.013702143669128418,0.014027775764465332,0.014339276885986327,0.028389335021972658,"[0.015265791893005372, 0.014698495864868164, 0.014765055656433105, 0.014334976196289062, 0.014128128051757812, 0.014334976196289062, 0.014543871879577636, 0.014234623908996581, 0.0144650239944458, 0.01454694366455078, 0.014418944358825684, 0.01439027214050293, 0.01425100803375244, 0.014261247634887696, 0.014215167999267577, 0.014323712348937988, 0.014708736419677734, 0.014633983612060546, 0.01434931182861328, 0.01467801570892334, 0.014370816230773926, 0.014229503631591797, 0.014525440216064453, 0.014231552124023437, 0.014211071968078613, 0.014244864463806153, 0.014368767738342286, 0.014796799659729003, 0.014531583786010742, 0.014297087669372559, 0.014436384201049805, 0.014063584327697753, 0.014220288276672363, 0.013916159629821777, 0.014133248329162598, 0.014468095779418945, 0.014696479797363281, 0.014910431861877441, 0.014256128311157227, 0.014102527618408203, 0.01407590389251709, 0.014150655746459961, 0.014071807861328126, 0.013922304153442382, 0.013725728034973144, 0.01371132755279541, 0.013733887672424316, 0.013731840133666993, 0.014045184135437011, 0.014156800270080566, 0.014639103889465332, 0.014141440391540527, 0.013728863716125488, 0.013714336395263671, 0.013676544189453126, 0.013729791641235351, 0.013732864379882812, 0.013691904067993164, 0.013711359977722168, 0.013743103981018067, 0.013743103981018067, 0.013660223960876464, 0.0284968318939209, 0.013691904067993164, 0.01368883228302002, 0.013686783790588379, 0.013670399665832519, 0.01399295997619629, 0.013728768348693847, 0.013667327880859375, 0.013691904067993164, 0.01365503978729248, 0.013710335731506347, 0.013666303634643554, 0.013699071884155273, 0.013669376373291015, 0.013689855575561523, 0.013734911918640137, 0.013744128227233888, 0.01374617576599121, 0.01366323184967041, 0.013693951606750488, 0.013799424171447755, 0.013740032196044923, 0.013728768348693847, 0.013709312438964843, 0.013709312438964843, 0.01379532814025879, 0.013731840133666993, 0.013713408470153808, 0.013707263946533203, 0.013776896476745605, 0.01368883228302002, 0.013706239700317382, 0.013716480255126954, 0.013789183616638183, 0.014757887840270996, 0.013946911811828614, 0.013715423583984376, 0.013734911918640137, 0.013693951606750488, 0.01369600009918213, 0.013839360237121581, 0.013735936164855958, 0.013712384223937989, 0.013700096130371094, 0.013719552040100098, 0.013707263946533203, 0.013677568435668945, 0.013913087844848633, 0.013707263946533203, 0.013698047637939453, 0.013667360305786132, 0.013723615646362305, 0.013713408470153808, 0.013699071884155273, 0.013731840133666993, 0.013686783790588379, 0.013784064292907714, 0.01374828815460205, 0.013744064331054687, 0.013783040046691895, 0.013717503547668456, 0.013740032196044923, 0.013710335731506347, 0.028412927627563478, 0.013706239700317382, 0.013686783790588379, 0.013731840133666993, 0.013669376373291015, 0.013661184310913087, 0.013645824432373046, 0.013658111572265624, 0.013669376373291015, 0.013628416061401367, 0.013694975852966309, 0.013636608123779297, 0.013705216407775878, 0.013678591728210449, 0.013858816146850587, 0.01386086368560791, 0.01368883228302002, 0.013693951606750488, 0.013660160064697266, 0.01374518394470215, 0.013757408142089844, 0.013689855575561523, 0.013717503547668456, 0.01369600009918213, 0.013725695610046386, 0.013678591728210449, 0.013732895851135254, 0.013722592353820801, 0.0136878080368042, 0.013707263946533203, 0.013698047637939453, 0.013684736251831055, 0.013669376373291015, 0.013684736251831055, 0.01375641632080078, 0.013708288192749024, 0.013765631675720215, 0.013703167915344238, 0.013721599578857421, 0.013702143669128418, 0.013694975852966309, 0.013763584136962891, 0.01369600009918213, 0.013714431762695312, 0.013794303894042969, 0.013682687759399414, 0.013697024345397948, 0.013739007949829102, 0.013708288192749024, 0.013678591728210449, 0.013742079734802246, 0.013710335731506347, 0.013716480255126954, 0.013678591728210449, 0.013706239700317382, 0.013776896476745605, 0.013827072143554688, 0.013702143669128418, 0.013737983703613281, 0.013683712005615235, 0.013726719856262207, 0.013710335731506347, 0.013788160324096679, 0.028406784057617186, 0.013711359977722168, 0.013690879821777344, 0.013694975852966309, 0.013714431762695312, 0.013697024345397948, 0.013701120376586913, 0.01367142391204834, 0.013676544189453126, 0.013768704414367675, 0.01366528034210205, 0.013711423873901367, 0.013736895561218262, 0.013741056442260742, 0.01368064022064209, 0.013705216407775878, 0.013719552040100098, 0.013714431762695312, 0.013728768348693847, 0.013700096130371094, 0.01368883228302002, 0.013689855575561523, 0.013683712005615235, 0.013835264205932616, 0.013717503547668456, 0.013843520164489746, 0.013794239997863769, 0.013710335731506347, 0.013718527793884277, 0.013725695610046386, 0.01368064022064209, 0.013674495697021484, 0.013712384223937989, 0.013718527793884277, 0.013752320289611816, 0.013718527793884277, 0.013736960411071777, 0.01367347240447998, 0.013757439613342285, 0.01370419216156006, 0.013725695610046386, 0.013716480255126954, 0.013707263946533203, 0.013740032196044923, 0.013692928314208984, 0.013726719856262207, 0.013685759544372558, 0.013721664428710938, 0.013703104019165038, 0.01367142391204834, 0.013768704414367675, 0.01369600009918213, 0.013686783790588379, 0.013691904067993164, 0.01368883228302002, 0.013734911918640137, 0.013686783790588379, 0.01375334358215332, 0.013711359977722168, 0.013979647636413574, 0.013771776199340821, 0.013735936164855958, 0.013831232070922852, 0.028631999969482423, 0.013729824066162109, 0.013675488471984864, 0.01368172836303711, 0.013717439651489258, 0.013657088279724122, 0.01366528034210205, 0.013697024345397948, 0.013677568435668945, 0.01365503978729248, 0.013760512351989745, 0.013660160064697266, 0.01366220760345459, 0.013717503547668456, 0.013717503547668456, 0.013676544189453126, 0.013710335731506347, 0.013657088279724122, 0.013947903633117676, 0.013619199752807617, 0.013640704154968262, 0.01366528034210205, 0.013693951606750488, 0.01365401554107666, 0.013627391815185547, 0.013701120376586913, 0.013742079734802246, 0.013648896217346192, 0.013675552368164062, 0.013744095802307128, 0.01440665626525879, 0.01619865608215332, 0.016926719665527345, 0.014181376457214356, 0.01386188793182373, 0.013735936164855958, 0.01376153564453125, 0.013664256095886231, 0.013693951606750488, 0.013689855575561523, 0.013661184310913087, 0.013678591728210449, 0.013649920463562011, 0.014139391899108887, 0.013820927619934082, 0.013752320289611816, 0.013699071884155273, 0.014027775764465332, 0.01368064022064209, 0.013682687759399414, 0.013675519943237305, 0.013695039749145509, 0.01367750358581543, 0.01376460838317871, 0.014016511917114258, 0.0136878080368042, 0.013678591728210449, 0.01369600009918213, 0.013848575592041015, 0.013717503547668456, 0.0136878080368042, 0.013729791641235351, 0.013838335990905762, 0.028457984924316407, 0.013737983703613281, 0.013685759544372558, 0.013691904067993164, 0.013822976112365723, 0.013697024345397948, 0.013604864120483399, 0.013649920463562011, 0.013724672317504882, 0.013774847984313965, 0.013691904067993164, 0.01366528034210205, 0.013736960411071777, 0.013702143669128418, 0.0136878080368042, 0.013701120376586913, 0.013822976112365723, 0.013692928314208984, 0.013674495697021484, 0.013799424171447755, 0.013674495697021484, 0.01368166446685791, 0.013725695610046386, 0.013814784049987794, 0.013684736251831055, 0.01368883228302002, 0.013848608016967773, 0.013685728073120117, 0.013669376373291015, 0.013674495697021484, 0.01367961597442627, 0.01367244815826416, 0.013739007949829102, 0.01367961597442627, 0.013712384223937989, 0.013697024345397948, 0.013697024345397948, 0.013740032196044923, 0.01376460838317871, 0.013657088279724122, 0.013855744361877441, 0.013742079734802246, 0.013683712005615235, 0.013691904067993164, 0.013676544189453126, 0.013682687759399414, 0.013661184310913087, 0.013661184310913087, 0.013647904396057129, 0.013673439979553222, 0.013668352127075196, 0.013643775939941406, 0.013797375679016113, 0.013658111572265624, 0.013664256095886231, 0.013652031898498534, 0.01367033576965332, 0.013643775939941406, 0.013650943756103515, 0.013666303634643554, 0.013641728401184081, 0.01367142391204834, 0.013726719856262207, 0.028403711318969727, 0.013668352127075196, 0.013674495697021484, 0.01363046360015869, 0.013641728401184081, 0.013643775939941406, 0.01365503978729248, 0.01366220760345459, 0.01366220760345459, 0.01368166446685791, 0.013640704154968262, 0.013685759544372558, 0.013637632369995116, 0.013725695610046386, 0.013702143669128418, 0.013674495697021484, 0.013714431762695312, 0.013770751953125, 0.013796352386474609, 0.013739007949829102, 0.013711359977722168, 0.01367244815826416, 0.013684736251831055, 0.013736960411071777, 0.01367244815826416, 0.013675519943237305, 0.01368992042541504, 0.01368569564819336, 0.01368166446685791, 0.01367961597442627, 0.0136878080368042, 0.01367961597442627, 0.013676544189453126, 0.013953023910522461, 0.013818880081176758, 0.01379532814025879, 0.013685759544372558, 0.01367347240447998, 0.013747200012207032, 0.013718527793884277, 0.013677568435668945, 0.013668352127075196, 0.013685759544372558, 0.01365503978729248, 0.013649920463562011, 0.013637632369995116, 0.013633536338806153, 0.013768704414367675, 0.01365401554107666, 0.013760543823242188, 0.013644767761230468, 0.013698047637939453, 0.013644800186157227, 0.013639679908752441, 0.013675519943237305, 0.013670399665832519, 0.013651968002319336, 0.013715456008911133, 0.01376972770690918, 0.013659135818481445, 0.01366528034210205, 0.013699071884155273, 0.013642751693725585, 0.02831974411010742, 0.013700096130371094, 0.013639679908752441, 0.013622271537780761, 0.013687840461730957, 0.013710304260253907, 0.013718527793884277, 0.01368166446685791, 0.01366323184967041, 0.013705216407775878, 0.01368064022064209, 0.013686783790588379, 0.013666303634643554, 0.013668352127075196, 0.013682687759399414, 0.013727744102478028, 0.013724672317504882, 0.013721599578857421, 0.013724672317504882, 0.014102527618408203, 0.01380352020263672, 0.013740032196044923, 0.013737983703613281, 0.013920255661010742, 0.013740032196044923, 0.013717503547668456, 0.013843456268310546, 0.01380352020263672, 0.013684736251831055, 0.013757439613342285, 0.013758463859558106, 0.013974528312683105, 0.013858816146850587, 0.01417420768737793, 0.013920255661010742, 0.013936639785766602, 0.01377280044555664, 0.013703167915344238, 0.01368883228302002, 0.013677568435668945, 0.013684736251831055, 0.013694975852966309, 0.013688863754272461, 0.013667296409606934, 0.013786111831665039, 0.013828096389770507, 0.013668352127075196, 0.013664256095886231, 0.013733887672424316, 0.013702143669128418, 0.013656064033508301, 0.013676544189453126, 0.01377894401550293, 0.013708288192749024, 0.0136878080368042, 0.013683712005615235, 0.013735936164855958, 0.01395404815673828, 0.013817855834960938, 0.013650943756103515, 0.013703167915344238, 0.013696063995361328, 0.013751232147216796, 0.028461055755615236, 0.013700096130371094, 0.013645824432373046, 0.014017536163330077, 0.013718527793884277, 0.015047679901123047, 0.014234623908996581, 0.014027775764465332, 0.01408512020111084, 0.014048255920410157, 0.014173184394836426, 0.013982720375061035, 0.014036992073059081, 0.013888511657714844, 0.013721599578857421, 0.01374617576599121, 0.013685759544372558, 0.013708288192749024, 0.013652992248535157, 0.013644800186157227, 0.013687871932983398, 0.013667263984680177, 0.01366220760345459, 0.01367347240447998, 0.01367961597442627, 0.013639679908752441, 0.01368166446685791, 0.013686783790588379, 0.013645824432373046, 0.013686783790588379, 0.01366220760345459, 0.013650943756103515, 0.013632512092590332, 0.013693951606750488, 0.013690879821777344, 0.013845503807067871, 0.013686783790588379, 0.013660160064697266, 0.013715456008911133, 0.01387724781036377, 0.014060544013977052, 0.01405951976776123, 0.013849599838256836, 0.013645824432373046, 0.013682687759399414, 0.013699071884155273, 0.013699071884155273, 0.013707263946533203, 0.013682687759399414, 0.013713408470153808, 0.013652992248535157, 0.013708288192749024, 0.01368166446685791, 0.01368064022064209, 0.013719552040100098, 0.013873151779174805, 0.01370419216156006, 0.013788224220275879, 0.013749183654785157, 0.013675519943237305, 0.01366329574584961, 0.01380140781402588, 0.014252032279968262, 0.029146112442016602, 0.013622271537780761, 0.013830143928527832, 0.013846528053283692, 0.013924351692199707, 0.013684736251831055, 0.013667327880859375, 0.01367347240447998, 0.01363865566253662, 0.01366323184967041, 0.013697024345397948, 0.013644800186157227, 0.013669376373291015, 0.01386086368560791, 0.013948927879333496, 0.013683712005615235, 0.013719552040100098, 0.013699071884155273, 0.013691904067993164, 0.013702143669128418, 0.013697024345397948, 0.013853728294372558, 0.013726688385009766, 0.013720576286315917, 0.013678591728210449, 0.01369600009918213, 0.013735936164855958, 0.013697024345397948, 0.013715456008911133, 0.013755392074584961, 0.013735936164855958, 0.013721599578857421, 0.013707263946533203, 0.013883392333984374, 0.013845503807067871, 0.013723648071289063, 0.013712384223937989, 0.013705216407775878, 0.01368883228302002, 0.013685759544372558, 0.013721599578857421, 0.013728768348693847, 0.013697024345397948, 0.013751296043395997, 0.013793279647827148, 0.013677568435668945, 0.01369600009918213, 0.013702143669128418, 0.013920255661010742, 0.013789183616638183, 0.013728768348693847, 0.013712384223937989, 0.01368166446685791, 0.013733920097351074, 0.013666272163391113, 0.01387724781036377, 0.013720576286315917, 0.013702143669128418, 0.013740032196044923, 0.013721599578857421, 0.013722623825073242, 0.013712384223937989, 0.01376153564453125, 0.02837708854675293, 0.01365401554107666, 0.01364684772491455, 0.013660160064697266, 0.013664256095886231, 0.013692928314208984, 0.013957119941711426, 0.01405951976776123, 0.013983743667602539, 0.01367961597442627, 0.013649920463562011, 0.013858880043029785, 0.013722559928894044, 0.013641728401184081, 0.013668352127075196, 0.013664256095886231, 0.013723648071289063, 0.01365503978729248, 0.013669376373291015, 0.01367142391204834, 0.01370419216156006, 0.01368166446685791, 0.01367142391204834, 0.013675519943237305, 0.013628416061401367, 0.013627391815185547, 0.013661184310913087, 0.013818880081176758, 0.013710335731506347, 0.013647871971130371, 0.013670399665832519, 0.01368064022064209, 0.01367347240447998, 0.013683712005615235, 0.01368883228302002, 0.013701120376586913, 0.013677568435668945, 0.013657088279724122, 0.013692928314208984, 0.013644800186157227, 0.013676544189453126, 0.013677568435668945, 0.01380352020263672, 0.013749247550964355, 0.013674495697021484, 0.013695039749145509, 0.013658047676086426, 0.013690879821777344, 0.01367244815826416, 0.013657088279724122, 0.013640704154968262, 0.013657088279724122, 0.013793279647827148, 0.013695008277893066, 0.013856736183166504, 0.013647871971130371, 0.013661215782165528, 0.013750240325927735, 0.013722623825073242, 0.013768704414367675, 0.013710335731506347, 0.013717503547668456, 0.01366220760345459, 0.028322816848754883, 0.013648896217346192, 0.013686783790588379, 0.01369600009918213, 0.013699071884155273, 0.0136878080368042, 0.013691904067993164, 0.013702143669128418, 0.013697024345397948, 0.013683712005615235, 0.013700096130371094, 0.013693951606750488, 0.013722623825073242, 0.013705216407775878, 0.013691935539245605, 0.013717472076416016, 0.013724672317504882, 0.013700096130371094, 0.013664256095886231, 0.013639679908752441, 0.013757439613342285, 0.013656064033508301, 0.013667327880859375, 0.01366431999206543, 0.013849535942077636, 0.013924351692199707, 0.013633567810058594, 0.013722592353820801, 0.013668352127075196, 0.013906944274902343, 0.013789183616638183, 0.013662240028381348, 0.013687775611877442, 0.013670399665832519, 0.01367347240447998, 0.01366528034210205, 0.013657088279724122, 0.013661184310913087, 0.013678591728210449, 0.013684736251831055, 0.013658143997192384, 0.013722592353820801, 0.01366528034210205, 0.013637632369995116, 0.01367347240447998, 0.01365503978729248, 0.01367347240447998, 0.013744128227233888, 0.01370419216156006, 0.013693951606750488, 0.013711359977722168, 0.01368064022064209, 0.01368064022064209, 0.013691904067993164, 0.01369600009918213, 0.013724672317504882, 0.013697024345397948, 0.01367142391204834, 0.013682687759399414, 0.01365503978729248, 0.013683712005615235, 0.013806591987609864, 0.013955072402954101]",tokens/s,71.4755369986145,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-2b,google/gemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-13b,facebook/opt-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.4b,EleutherAI/pythia-1.4b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-1_6b,stabilityai/stablelm-2-1_6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-rw-1b,tiiuae/falcon-rw-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation + cls._check_and_enable_flash_attn_2( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 + raise ValueError( +ValueError: FalconForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmprcrhg91d/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-2b,google/gemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -13736,7 +14041,7 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-6694812a-10ce2a3d2f4cf6aa71b5736a;9d3ee60d-36f8-4d2c-967d-24d6f4ce493a) +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66948139-2e5cac304163c3a310aca370;1e056ae5-db30-4221-8c89-a45b3dbb08a2) 403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. Cannot access content at: https://huggingface.co/google/gemma-2b/resolve/main/config.json. @@ -13781,9 +14086,72 @@ Traceback (most recent call last): OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/gemma-2b is not the path to a directory containing a file named config.json. Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciLM-7B,,cuda,0,42,,,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,MB,1662.808064,5516.034048,0.0,4869.586944,4743.593472,s,10,6.1237835083007806,0.6123783508300781,0.001253925145814982,0.6120383911132812,0.6140244384765625,0.6141366088867187,0.6142263452148438,"[0.6138787841796876, 0.614248779296875, 0.6107066650390625, 0.61129736328125, 0.6111465454101562, 0.6114146728515625, 0.6116507568359375, 0.612426025390625, 0.61399951171875, 0.613014404296875]",tokens/s,418.0422114089963,kWh,7.21943411562178e-06,3.95425479798766e-06,3.477342651153299e-05,4.594711542514243e-05,tokens/kWh,5571622.889299289,MB,1662.808064,5516.034048,0.0,4869.586944,4769.651712,s,10,360.87087890624997,36.087087890625,0.01748383820965051,36.082986328125,36.11191953125,36.119573046875,36.125695859375,"[36.11021875, 36.1272265625, 36.08849609375, 36.07920703125, 36.0845625, 36.08481640625, 36.08141015625, 36.0650625, 36.07158203125, 36.078296875]",tokens/s,1.7457767773045123,kWh,0.00042595356252458363,0.00023346088450391426,0.0019820382702698735,0.0026414527172983716,tokens/kWh,23850.51210170259,,s,629,365.80599053955063,0.5815675525271077,0.07276675093795772,0.5726207885742187,0.5739550537109376,0.5744299926757812,1.1846730029296875,"[0.5736171264648438, 0.573517822265625, 0.5738854370117188, 0.57415576171875, 0.5742704467773437, 0.5731041259765625, 0.57312255859375, 0.5737461547851562, 0.5739632568359375, 0.5725850219726563, 0.5728665161132812, 0.5735147705078125, 0.5726494750976563, 0.573000732421875, 0.57260546875, 0.5726546020507812, 0.572073974609375, 0.5728809204101563, 0.572885986328125, 0.5725767822265625, 0.5731676025390625, 0.5745838012695312, 0.5729105834960937, 0.5730211791992188, 0.5729566650390625, 0.5723678588867187, 0.5724866333007812, 0.5726197509765625, 0.5735526123046875, 0.5740676879882812, 0.5729720458984375, 0.5732095947265625, 0.5726760864257813, 0.5724497680664062, 0.5724518432617187, 0.572790771484375, 0.5723668823242187, 0.5727159423828125, 0.5731563720703124, 0.5741424560546875, 0.5723576049804687, 0.5724334106445312, 0.5723883666992188, 0.5724548950195313, 0.5725368041992187, 0.5722142944335937, 0.5739407348632812, 0.5740206298828125, 0.572927001953125, 0.573212646484375, 0.5730181274414062, 0.5728184204101563, 0.5730816040039063, 0.5726177368164063, 0.572484619140625, 0.5727293701171875, 0.5740543823242188, 0.5732669677734376, 0.57483056640625, 0.574424072265625, 0.5744517211914062, 0.5744885864257813, 1.18734130859375, 0.5729505004882812, 0.5725030517578125, 0.5725654907226563, 0.5738137817382812, 0.572379150390625, 0.5741465454101562, 0.574750732421875, 0.573475830078125, 0.5734666137695312, 0.5736826782226563, 0.5750292358398438, 0.5742151489257813, 0.5739274291992188, 0.5746913452148438, 0.5744281616210938, 0.5742459106445312, 0.5746903076171875, 0.5750845336914062, 0.5739735107421875, 0.5736888427734375, 0.574476318359375, 0.5740001220703125, 0.573032470703125, 0.5722992553710937, 0.57221630859375, 0.571994140625, 0.573065185546875, 0.573844482421875, 0.5739673461914062, 0.5742745361328125, 0.5743206787109375, 0.5743236694335937, 0.5738577880859375, 0.5742110595703125, 0.5753764038085938, 0.5745797119140625, 0.57402880859375, 0.5725982666015625, 0.5732260131835938, 0.5737594604492188, 0.5739530029296875, 0.5731553344726562, 0.572927978515625, 0.57257470703125, 0.5744312133789062, 0.5755975952148438, 0.5727283325195313, 0.5721149291992188, 0.572199951171875, 0.5723617553710938, 0.572105712890625, 0.57270068359375, 0.5733294067382813, 0.5723873291015625, 0.57191015625, 0.573065185546875, 0.5727866821289063, 0.5724027099609375, 0.5726883544921875, 0.5723258666992187, 0.5720657958984375, 0.5731727294921874, 1.1836395263671875, 0.5721917724609376, 0.5728533325195313, 0.5732484741210937, 0.5725409545898438, 0.5732628784179687, 0.5741773071289062, 0.5730109252929687, 0.5731737670898438, 0.573043701171875, 0.5734686889648437, 0.5732505493164063, 0.5726914672851563, 0.5729924926757812, 0.5729525756835937, 0.5732260131835938, 0.574719970703125, 0.5727836303710937, 0.5730283813476562, 0.5724508056640625, 0.5733519287109375, 0.5728767700195313, 0.5725736694335938, 0.5743431396484375, 0.5745357055664062, 0.573507568359375, 0.572695556640625, 0.5729177856445312, 0.573022216796875, 0.5733980102539062, 0.5731030883789062, 0.5730037841796874, 0.572927978515625, 0.5738895263671875, 0.573137939453125, 0.57310107421875, 0.5718549194335938, 0.5721885986328125, 0.57208935546875, 0.5725255737304688, 0.5722398681640625, 0.5733836669921875, 0.5725736694335938, 0.57238525390625, 0.5722880249023438, 0.5720064086914063, 0.5721456909179687, 0.57385986328125, 0.5721773681640625, 0.5720176391601562, 0.5720484008789063, 0.5730570068359375, 0.5720934448242188, 0.5720852661132813, 0.5719961547851562, 0.5719992065429688, 0.5727928466796876, 0.5721221313476562, 0.5721630859375, 0.572600341796875, 0.5723125610351563, 0.5724631958007812, 0.5727794799804687, 1.1843287353515626, 0.572779541015625, 0.57261669921875, 0.5734041748046875, 0.5739274291992188, 0.57350146484375, 0.57328125, 0.5731553344726562, 0.5729392700195313, 0.5729403076171875, 0.5732833251953126, 0.57289013671875, 0.5743707885742187, 0.5724887084960938, 0.5720043334960937, 0.5718681640625, 0.5722941284179688, 0.5721036987304687, 0.5721763916015625, 0.57200537109375, 0.5717247924804687, 0.572310546875, 0.5729740600585937, 0.5724682006835937, 0.5719664916992188, 0.5723975830078125, 0.5722286376953125, 0.5723289794921875, 0.572221435546875, 0.5728389282226563, 0.5737000732421875, 0.5728737182617187, 0.5730037841796874, 0.572178466796875, 0.5720411376953125, 0.5717974853515625, 0.5721036987304687, 0.5720719604492187, 0.5719695434570312, 0.5730037841796874, 0.5722941284179688, 0.5718763427734375, 0.5725706176757812, 0.5727713012695312, 0.5752719116210937, 0.5729822998046875, 0.5730355224609375, 0.5741107177734375, 0.5727109375, 0.5726207885742187, 0.5727815551757812, 0.5729136352539063, 0.572896240234375, 0.572600341796875, 0.5730191650390625, 0.5724456787109375, 0.573222900390625, 0.57379736328125, 0.5722828979492187, 0.572052490234375, 0.5719766845703125, 0.5719429321289062, 0.5717380981445312, 1.1848990478515624, 0.5739724731445313, 0.5733632202148438, 0.5733693237304688, 0.5734880981445313, 0.5738117065429688, 0.5729403076171875, 0.5730672607421875, 0.5729863891601562, 0.5730140380859375, 0.57394482421875, 0.5726064453125, 0.5722265625, 0.5720391845703126, 0.5731246337890625, 0.5720433349609375, 0.57220703125, 0.5742510375976563, 0.5736365966796875, 0.572663818359375, 0.5723699340820313, 0.5724794921875, 0.5720340576171875, 0.5722705688476563, 0.5724047241210938, 0.57236376953125, 0.5725368041992187, 0.5725255737304688, 0.5728256225585937, 0.5726392211914062, 0.5721354370117188, 0.5721804809570312, 0.5721774291992188, 0.5723484497070312, 0.5721793823242187, 0.572990478515625, 0.5730048217773438, 0.5721558837890625, 0.572242919921875, 0.5721978759765625, 0.5722470703125, 0.5720596313476562, 0.5724047241210938, 0.5724436645507812, 0.5722009887695313, 0.5737861328125, 0.57619970703125, 0.5726668701171875, 0.5722962036132813, 0.5730099487304687, 0.5725439453125, 0.5726085205078125, 0.5728368530273438, 0.5743206176757812, 0.5726044311523437, 0.5726791381835937, 0.5723678588867187, 0.5721937866210938, 0.572822509765625, 0.5727109375, 0.5722070922851562, 0.5722654418945312, 0.5724968872070313, 1.1851029052734374, 0.5723607177734376, 0.57244775390625, 0.5727620849609375, 0.5731502075195313, 0.5729341430664062, 0.5733734130859375, 0.5732301025390625, 0.572663818359375, 0.5735577392578125, 0.5724036865234375, 0.5722737426757812, 0.5723555297851562, 0.5722726440429687, 0.5723494262695312, 0.5725409545898438, 0.5730109252929687, 0.57223681640625, 0.5723402099609375, 0.5722613525390625, 0.572516357421875, 0.5727579956054687, 0.5724467163085938, 0.572221435546875, 0.5731195068359375, 0.5724169921875, 0.5723781127929688, 0.5720811767578124, 0.5718343505859375, 0.5718425903320312, 0.57302734375, 0.5730027465820312, 0.5725501708984375, 0.5730252685546875, 0.57335498046875, 0.5724067993164063, 0.5720145874023438, 0.5724354858398437, 0.5753599853515625, 0.572169189453125, 0.5720125732421875, 0.5726105346679687, 0.5732147216796875, 0.57269970703125, 0.5723483276367187, 0.572010498046875, 0.5722890014648437, 0.5727958984375, 0.5723873901367188, 0.57226953125, 0.5728460693359375, 0.57364892578125, 0.5736980590820312, 0.5732618408203125, 0.5729075317382812, 0.5730396118164063, 0.5730027465820312, 0.5737277221679687, 0.5737984008789062, 0.574740478515625, 0.5733519287109375, 0.5725675659179688, 0.572537841796875, 1.184806884765625, 0.5725839233398438, 0.5726617431640625, 0.573106201171875, 0.5745018920898437, 0.5735618286132812, 0.573259765625, 0.5744578857421875, 0.5749258422851562, 0.5728265991210938, 0.5725081787109375, 0.5727150268554687, 0.5735505981445312, 0.573075439453125, 0.5722562255859375, 0.57212109375, 0.5720760498046875, 0.5723033447265625, 0.5736908569335938, 0.5737195434570312, 0.5725010375976562, 0.57371337890625, 0.5728123168945313, 0.5738147583007812, 0.571978759765625, 0.5718763427734375, 0.5724252319335937, 0.5723299560546875, 0.5721712646484375, 0.5726679077148438, 0.57254296875, 0.5723995971679687, 0.5719193725585937, 0.5722777709960938, 0.571779052734375, 0.5716900024414062, 0.5719306030273438, 0.5717493896484375, 0.571821044921875, 0.5734307861328125, 0.5732904663085937, 0.5728604125976563, 0.572748779296875, 0.57318603515625, 0.5727365112304688, 0.5732413330078125, 0.57249072265625, 0.5729822998046875, 0.573169677734375, 0.5721641235351562, 0.5722808227539062, 0.5722900390625, 0.57253173828125, 0.5722101440429688, 0.5723197631835938, 0.5721200561523437, 0.5727498168945313, 0.5729525756835937, 0.5725030517578125, 0.5723596801757812, 0.5721190185546875, 0.5728788452148438, 0.57232177734375, 1.18618115234375, 0.5729382934570313, 0.5724763793945312, 0.5728051147460937, 0.572410888671875, 0.5722828979492187, 0.5726187744140625, 0.57223681640625, 0.5720278930664062, 0.5722142944335937, 0.5735720825195313, 0.5724139404296875, 0.5722695922851563, 0.5720924072265625, 0.572410888671875, 0.5720698852539062, 0.5738741455078125, 0.5721026611328125, 0.5729136352539063, 0.5728265991210938, 0.5724375, 0.5722224731445312, 0.57202587890625, 0.573212646484375, 0.572484619140625, 0.5720780639648437, 0.57230859375, 0.57369384765625, 0.5728798828125, 0.572020751953125, 0.5721231079101563, 0.5717554931640625, 0.572156982421875, 0.5722654418945312, 0.5718435668945312, 0.5726340942382813, 0.573137939453125, 0.5722542114257813, 0.5726156616210938, 0.572095458984375, 0.572031982421875, 0.5723658447265625, 0.5724303588867188, 0.5722726440429687, 0.5725307006835938, 0.5731655883789063, 0.5721272583007813, 0.5720043334960937, 0.572042236328125, 0.572242919921875, 0.5721856079101563, 0.5724548950195313, 0.5724661865234375, 0.5730764770507812, 0.5732301025390625, 0.5725450439453125, 0.5724866333007812, 0.5721734008789062, 0.5719572143554688, 0.5721549072265625, 0.572000244140625, 0.5720064086914063, 0.5725757446289063, 1.1873709716796874, 0.5724487915039063, 0.5732085571289063, 0.572284912109375, 0.5727989501953125, 0.5728409423828125, 0.5729740600585937, 0.573497314453125, 0.572516357421875, 0.572705810546875, 0.5721886596679687, 0.5721958618164062, 0.5724036865234375, 0.5723381958007813, 0.57270068359375, 0.5734564208984375, 0.5733170776367188, 0.5739089965820312, 0.5724610595703125, 0.5728818969726562, 0.5730293579101563, 0.57270068359375, 0.572495849609375, 0.5729935302734375, 0.5724405517578125, 0.572822509765625, 0.5726105346679687, 0.572315673828125, 0.5717718505859375, 0.5719408569335938, 0.5722603759765625, 0.5722347412109375, 0.5724713134765625, 0.5740123901367188, 0.5722296142578125, 0.5719521484375, 0.572314697265625, 0.572317626953125, 0.5720811767578124, 0.5719705810546875, 0.5717545166015625, 0.5723504638671875, 0.5726515502929688, 0.5724016723632812, 0.5723504638671875, 0.572231689453125, 0.572205078125, 0.5721190185546875, 0.572031982421875, 0.5724467163085938, 0.573043701171875, 0.5730468139648438, 0.5726412353515625, 0.5725030517578125, 0.5725399169921875, 0.5724713134765625, 0.5720606689453125, 0.5723914184570312, 0.5728767700195313, 0.573179931640625, 0.5726597290039063, 0.572295166015625, 0.5719317016601563, 1.1857969970703126, 0.5727313842773437, 0.572368896484375, 0.572347412109375, 0.5732669677734376, 0.5725573120117188, 0.5721907348632812, 0.5723095092773437, 0.5727498168945313, 0.5725081787109375, 0.5725491333007813, 0.5726720581054687, 0.5733457641601563, 0.5733345336914063, 0.5721354370117188, 0.5723043823242188, 0.5719183349609375, 0.5717770385742188, 0.5724968872070313, 0.5726105346679687, 0.573053955078125, 0.5741567993164063, 0.5731102905273437, 0.5720698852539062, 0.5720145874023438, 0.57215185546875, 0.574278564453125, 0.5722521362304688, 0.5720453491210937, 0.5730723266601563, 0.5723924560546875, 0.5727354736328125, 0.572337158203125, 0.5723197631835938, 0.5723668212890625, 0.572221435546875, 0.5729075317382812, 0.5726556396484375, 0.5724456787109375, 0.5738014526367188, 0.5731779174804688, 0.572559326171875, 0.5726812133789062, 0.5728235473632812, 0.572885986328125, 0.5726618041992187, 0.5722745971679688, 0.5731082153320313, 0.5732781982421875, 0.5720135498046875, 0.5721507568359375, 0.57227880859375, 0.5728726806640625, 0.572346435546875, 0.5726781005859375, 0.5728286743164063, 0.5733345336914063, 0.5729228515625, 0.572737548828125, 0.5724548950195313, 0.5741793212890625, 0.5722265625, 0.572494873046875]",tokens/s,1.7194907034525255,,,,,,main,False,False -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,databricks/dbrx-base,databricks/dbrx-base,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-7b,tiiuae/falcon-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation + cls._check_and_enable_flash_attn_2( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 + raise ValueError( +ValueError: FalconForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmp5sj3r5_q/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-12b,EleutherAI/pythia-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-180B,tiiuae/falcon-180B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -13795,7 +14163,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -13812,10 +14180,10 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66947b53-2b5e40457723b735115df74c;0af0b51f-0135-4589-9ea0-66c7e96b251c) +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66949950-2a69c88c0d96ccfe10b0664e;78d50d99-e0dd-4404-b05f-d052d8ae4bdd) 403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json. +Cannot access content at: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json. If you are trying to create or update content,make sure you have a token with the `write` role. The above exception was the direct cause of the following exception: @@ -13854,11 +14222,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like databricks/dbrx-base is not the path to a directory containing a file named config.json. +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like tiiuae/falcon-180B is not the path to a directory containing a file named config.json. Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-7.5B,facebook/xglm-7.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,TencentARC/Mistral_Pro_8B_v0.1,TencentARC/Mistral_Pro_8B_v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -13878,88 +14246,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation - cls._check_and_enable_flash_attn_2( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 - raise ValueError( -ValueError: XGLMForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmppi9ax6e5/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,B,B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/B/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669493f0-68e8bdad2c7e64af22b921fd;f188bfd6-b853-4b0d-a4e7-5240103fdc64) - -Repository Not Found for url: https://huggingface.co/B/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file - raise EnvironmentError( -OSError: B is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-14B,Qwen/Qwen1.5-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,3927.220224,12732.33408,0.0,12085.886976,11337.364992,s,10,11.005286376953126,1.1005286376953127,0.00219951912246486,1.1001186523437498,1.1034800170898438,1.1035955383300782,1.1036879553222656,"[1.1009342041015624, 1.102259765625, 1.0977261962890625, 1.099001708984375, 1.0989405517578126, 1.0975576171875, 1.0993031005859375, 1.103454345703125, 1.1023978271484376, 1.1037110595703126]",tokens/s,232.615482443152,kWh,1.2971816278166244e-05,7.107321095700172e-06,6.386246775661464e-05,8.394160513048104e-05,tokens/kWh,3049739.156191579,MB,3927.220224,12732.33408,0.0,12085.886976,11686.79936,s,10,645.4452890625,64.54452890625001,0.006590572212624524,64.54356250000001,64.553694140625,64.5538998046875,64.5540643359375,"[64.5536484375, 64.5513828125, 64.538359375, 64.55410546875, 64.5438203125, 64.5392109375, 64.53455859375, 64.5433046875, 64.5480546875, 64.53884375]",tokens/s,0.9760703357445925,kWh,0.0007619009707371396,0.00041758989640207795,0.003727131037257969,0.004906621904397187,tokens/kWh,12839.791047184834,,s,629,654.3247843627931,1.0402619783192257,0.1307385835871094,1.0244464111328124,1.0251733154296874,1.0253723876953125,2.12362228515625,"[1.0239293212890626, 1.0247884521484374, 1.0239590454101561, 1.0238433227539063, 1.0245233154296876, 1.0249482421875, 1.0245938720703125, 1.024648193359375, 1.0243778076171874, 1.0244761962890625, 1.0242918701171875, 1.02411474609375, 1.0238392333984374, 1.02443310546875, 1.0240072021484374, 1.025123291015625, 1.0243983154296874, 1.0239702758789062, 1.0238289794921875, 1.024879638671875, 1.0246707763671874, 1.0245980224609375, 1.0249052734375, 1.0246092529296875, 1.0252646484375, 1.025154052734375, 1.0244208984375, 1.0245867919921876, 1.025153076171875, 1.0249769287109376, 1.025039306640625, 1.0247618408203125, 1.0240020751953125, 1.0246666259765624, 1.024626708984375, 1.024693359375, 1.0244617919921875, 1.024501708984375, 1.02472802734375, 1.0254991455078124, 1.024680908203125, 1.025005615234375, 1.0249237060546874, 1.0251907958984374, 1.0256405029296876, 1.0250250244140624, 1.025184814453125, 1.02483251953125, 1.024786376953125, 1.0252471923828126, 1.0244935302734375, 1.0253773193359375, 1.024436279296875, 1.025090576171875, 1.025364990234375, 1.0249923095703124, 1.0241658935546876, 1.024015380859375, 1.0247249755859376, 1.0251048583984375, 1.0238597412109376, 1.02401123046875, 2.12693603515625, 1.0248826904296875, 1.024394287109375, 1.02513671875, 1.02491650390625, 1.024427978515625, 1.02502294921875, 1.0245028076171876, 1.0245499267578124, 1.024806884765625, 1.024963623046875, 1.024541748046875, 1.02464306640625, 1.0238269653320313, 1.024679931640625, 1.025101806640625, 1.0239959106445313, 1.0239354858398437, 1.024395263671875, 1.0241566162109375, 1.0247188720703124, 1.0248836669921875, 1.0245191650390626, 1.0240450439453126, 1.024563232421875, 1.0246707763671874, 1.0240665283203125, 1.02398974609375, 1.02415869140625, 1.024153564453125, 1.0244813232421874, 1.0248365478515624, 1.0246881103515626, 1.0250660400390625, 1.024818115234375, 1.02487451171875, 1.0241402587890625, 1.0241505126953125, 1.0248140869140625, 1.0247342529296875, 1.0252052001953125, 1.024384033203125, 1.0249267578125, 1.0247813720703125, 1.0250096435546876, 1.02519091796875, 1.0286304931640624, 1.0247679443359374, 1.0250260009765626, 1.02523291015625, 1.0252830810546876, 1.024384033203125, 1.0238484497070313, 1.0244556884765625, 1.0247547607421874, 1.0238433227539063, 1.0240604248046874, 1.0238505249023437, 1.0239692993164062, 1.02425390625, 1.0245499267578124, 1.0240184326171875, 1.0239478149414063, 2.123869140625, 1.024112548828125, 1.0244178466796876, 1.024606201171875, 1.024331787109375, 1.024970703125, 1.0241341552734375, 1.0240655517578126, 1.0246256103515625, 1.024216064453125, 1.02445361328125, 1.0246973876953125, 1.02462158203125, 1.0241884765625, 1.024816162109375, 1.0244024658203126, 1.0240604248046874, 1.0241331787109376, 1.02439013671875, 1.024101318359375, 1.02460107421875, 1.0241126708984376, 1.0239580078125, 1.0260316162109375, 1.024153564453125, 1.024626708984375, 1.025184814453125, 1.024384033203125, 1.0247044677734376, 1.0242744140625, 1.0245263671875, 1.0240440673828124, 1.0243983154296874, 1.0242017822265626, 1.025048583984375, 1.02445263671875, 1.0241658935546876, 1.024067626953125, 1.0245570068359375, 1.0243236083984375, 1.0241505126953125, 1.0240552978515625, 1.0239324340820313, 1.02377880859375, 1.0250537109375, 1.0241873779296875, 1.0242979736328126, 1.0260521240234375, 1.0243245849609375, 1.0240809326171876, 1.024226318359375, 1.02384228515625, 1.0239518432617187, 1.02460107421875, 1.0242713623046875, 1.023963134765625, 1.0244454345703125, 1.02419970703125, 1.0243572998046875, 1.025553466796875, 1.0245345458984374, 1.0243184814453126, 1.02401123046875, 2.12367041015625, 1.0241259765625, 1.0242652587890626, 1.0244208984375, 1.0240543212890625, 1.0244075927734375, 1.0240450439453126, 1.024143310546875, 1.024236572265625, 1.0248232421875, 1.0240543212890625, 1.0240615234375, 1.0252451171875, 1.0245201416015626, 1.02453857421875, 1.024142333984375, 1.024111572265625, 1.0240758056640624, 1.0245355224609376, 1.0249923095703124, 1.0250772705078126, 1.025503173828125, 1.024585693359375, 1.025353759765625, 1.0251724853515625, 1.025302490234375, 1.0245509033203124, 1.02447412109375, 1.025395751953125, 1.0254765625, 1.025158203125, 1.02477001953125, 1.025292236328125, 1.024942138671875, 1.024954345703125, 1.024868408203125, 1.025138671875, 1.0246287841796875, 1.0256414794921875, 1.025081298828125, 1.0248232421875, 1.023910888671875, 1.0245693359375, 1.0238443603515626, 1.027009521484375, 1.0242816162109376, 1.0239989624023438, 1.0243726806640625, 1.0255267333984375, 1.024779296875, 1.0242899169921875, 1.0245653076171874, 1.0248477783203125, 1.0242303466796876, 1.025016845703125, 1.024173095703125, 1.0242969970703124, 1.024927734375, 1.0247515869140624, 1.02410546875, 1.0243441162109375, 1.024101318359375, 1.024564208984375, 2.12349853515625, 1.0242017822265626, 1.024427978515625, 1.0245703125, 1.0245938720703125, 1.025349609375, 1.02506396484375, 1.02497900390625, 1.0247310791015625, 1.0254193115234376, 1.0243072509765625, 1.02436865234375, 1.02426416015625, 1.024543701171875, 1.0246932373046875, 1.0242508544921876, 1.0247291259765625, 1.0247679443359374, 1.0248099365234375, 1.0243450927734374, 1.0237440185546876, 1.0239437255859376, 1.02409619140625, 1.0248201904296874, 1.024573486328125, 1.0249298095703125, 1.0247445068359375, 1.024711669921875, 1.0242037353515625, 1.025076171875, 1.0243707275390626, 1.0241719970703125, 1.0248785400390625, 1.0241934814453124, 1.0238074951171876, 1.0240870361328125, 1.0238863525390625, 1.024194580078125, 1.0243511962890626, 1.023699951171875, 1.0239385375976562, 1.0239354858398437, 1.0245355224609376, 1.0244464111328124, 1.02446484375, 1.0242958984375, 1.024153564453125, 1.0246614990234375, 1.0249881591796874, 1.0237716674804687, 1.02404296875, 1.0248468017578125, 1.0250352783203125, 1.024362548828125, 1.0239723510742187, 1.02413623046875, 1.0246624755859375, 1.029676025390625, 1.02432568359375, 1.0238546142578124, 1.0238064575195311, 1.0237429809570313, 1.02468603515625, 2.1217158203125, 1.0237695922851562, 1.024711669921875, 1.02485498046875, 1.0252984619140626, 1.0250035400390625, 1.0246727294921876, 1.024594970703125, 1.0253424072265624, 1.024754638671875, 1.0237081298828126, 1.024232421875, 1.024865234375, 1.0245396728515626, 1.02403173828125, 1.02407275390625, 1.02489599609375, 1.0252052001953125, 1.0250966796875, 1.023773681640625, 1.02441162109375, 1.02495947265625, 1.0239385375976562, 1.0248038330078124, 1.0244832763671874, 1.0240286865234376, 1.0238095092773438, 1.02410546875, 1.024607177734375, 1.0238873901367187, 1.0241719970703125, 1.0245919189453125, 1.0244515380859376, 1.0247874755859374, 1.0245714111328126, 1.02497998046875, 1.0246953125, 1.024564208984375, 1.02820654296875, 1.02466455078125, 1.02426220703125, 1.02436962890625, 1.0242867431640625, 1.0247608642578125, 1.023847412109375, 1.0239989624023438, 1.0239672241210938, 1.024320556640625, 1.0242447509765624, 1.02379931640625, 1.02389453125, 1.024280517578125, 1.0238443603515626, 1.0239979248046875, 1.02392626953125, 1.02389453125, 1.0241024169921875, 1.0241402587890625, 1.024089111328125, 1.0238341064453125, 1.0239702758789062, 1.0240225830078125, 1.02510595703125, 2.124275634765625, 1.02431640625, 1.0250086669921874, 1.0248448486328126, 1.0252420654296874, 1.024489501953125, 1.0244403076171875, 1.0246031494140626, 1.0247711181640624, 1.0237265625, 1.0236641235351562, 1.0239344482421875, 1.0241915283203125, 1.023867919921875, 1.02379931640625, 1.0237245483398438, 1.024006103515625, 1.023836181640625, 1.024227294921875, 1.02468603515625, 1.0239273071289063, 1.0240594482421874, 1.0241719970703125, 1.024067626953125, 1.023867919921875, 1.0238515014648437, 1.025666015625, 1.0245263671875, 1.024973876953125, 1.02382080078125, 1.0239006958007812, 1.0243861083984376, 1.0252000732421875, 1.025047607421875, 1.0245989990234374, 1.0247177734375, 1.023931396484375, 1.0238443603515626, 1.0247506103515625, 1.0237757568359376, 1.0241033935546875, 1.0239365844726562, 1.0244884033203125, 1.0237399291992189, 1.024362548828125, 1.024405517578125, 1.024089111328125, 1.0244864501953126, 1.02445263671875, 1.02447509765625, 1.024986083984375, 1.0248734130859376, 1.0243768310546875, 1.024090087890625, 1.024077880859375, 1.0242088623046874, 1.0244178466796876, 1.0243809814453124, 1.024343017578125, 1.024501708984375, 1.0247445068359375, 1.024690185546875, 1.0249298095703125, 2.128819091796875, 1.02439111328125, 1.0247823486328125, 1.0247977294921875, 1.02436767578125, 1.0251878662109375, 1.025364990234375, 1.0248714599609374, 1.024216064453125, 1.023978515625, 1.024204833984375, 1.024175048828125, 1.0241976318359376, 1.02432568359375, 1.024288818359375, 1.024332763671875, 1.02521142578125, 1.0247762451171876, 1.0244351806640626, 1.0237880249023437, 1.0244085693359375, 1.024279541015625, 1.024522216796875, 1.0245447998046875, 1.0244136962890624, 1.02485302734375, 1.0252779541015624, 1.0244249267578125, 1.0243072509765625, 1.024364501953125, 1.0249554443359374, 1.02441064453125, 1.02491748046875, 1.025059814453125, 1.0243563232421875, 1.024710693359375, 1.0254488525390626, 1.0243583984375, 1.024216064453125, 1.0244423828125, 1.024673828125, 1.0236497802734374, 1.0240399169921874, 1.02411572265625, 1.0241024169921875, 1.0244669189453126, 1.024669677734375, 1.0245672607421874, 1.0250875244140625, 1.0249993896484375, 1.024100341796875, 1.0239754028320311, 1.0242611083984374, 1.0236723022460938, 1.0240758056640624, 1.025005615234375, 1.0246123046875, 1.024385009765625, 1.024511962890625, 1.0244013671875, 1.0243123779296874, 1.0240665283203125, 1.0242939453125, 2.1268427734375, 1.0253404541015625, 1.0243931884765625, 1.0240972900390626, 1.0241934814453124, 1.0252298583984376, 1.024215087890625, 1.0247833251953125, 1.024521240234375, 1.023973388671875, 1.0242017822265626, 1.0258052978515626, 1.024546875, 1.0249359130859375, 1.025333251953125, 1.0250526123046875, 1.02436962890625, 1.0253035888671875, 1.0246348876953124, 1.0245201416015626, 1.02516015625, 1.0252349853515625, 1.02502294921875, 1.024257080078125, 1.0243369140625, 1.0239395751953124, 1.02425390625, 1.0249779052734376, 1.024067626953125, 1.0241177978515625, 1.0244976806640624, 1.025036376953125, 1.02519189453125, 1.02483349609375, 1.0254356689453126, 1.0247762451171876, 1.024606201171875, 1.0247310791015625, 1.024310302734375, 1.0240450439453126, 1.024733154296875, 1.0244976806640624, 1.0241402587890625, 1.0240235595703124, 1.025154052734375, 1.023847412109375, 1.0244290771484375, 1.0241136474609376, 1.0241822509765626, 1.0238689575195312, 1.0249298095703125, 1.0245478515625, 1.0244771728515625, 1.0245509033203124, 1.024611328125, 1.0240921630859374, 1.024890869140625, 1.0240205078125, 1.024279541015625, 1.0245560302734376, 1.0247720947265626, 1.024206787109375, 1.0244300537109374, 2.128713623046875, 1.024427001953125, 1.0249287109375, 1.025007568359375, 1.0242989501953126, 1.025701904296875, 1.0250526123046875, 1.024421875, 1.02443115234375, 1.0251038818359375, 1.024236572265625, 1.0237388916015624, 1.0245765380859375, 1.023847412109375, 1.0237470703125, 1.0244495849609374, 1.024459716796875, 1.024206787109375, 1.02432666015625, 1.024251953125, 1.0239293212890626, 1.024359375, 1.02411669921875, 1.0238505249023437, 1.024151611328125, 1.025427490234375, 1.0240450439453126, 1.024953369140625, 1.02416796875, 1.0247802734375, 1.0241229248046875, 1.024373779296875, 1.024141357421875, 1.0242396240234375, 1.02449560546875, 1.0251766357421874, 1.024015380859375, 1.0237122802734375, 1.0239969482421876, 1.0238975830078125, 1.0237726440429689, 1.02384130859375, 1.02431640625, 1.0243133544921874, 1.0245919189453125, 1.024943115234375, 1.0246246337890625, 1.024611328125, 1.024716796875, 1.024035888671875, 1.0247413330078126, 1.024973876953125, 1.024796630859375, 1.0246318359375, 1.0259609375, 1.0238064575195311, 1.0238228759765624, 1.02377880859375, 1.02478955078125, 1.02438916015625, 1.0245723876953126, 1.0243604736328125, 1.02432568359375]",tokens/s,0.9612963088545465,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-6B,,cuda,0,42,,,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,MB,1608.957952,5448.925184,0.0,4802.47808,4489.12128,s,10,5.066485656738281,0.5066485656738281,0.0011948895817140703,0.5068220977783202,0.5079840667724609,0.5080279983520508,0.5080631436157227,"[0.5075723266601563, 0.5061219482421875, 0.504515380859375, 0.5053372497558594, 0.5061441345214843, 0.5055963745117188, 0.5075000610351562, 0.5076519470214844, 0.5080719299316406, 0.5079743041992187]",tokens/s,505.2812093912223,kWh,5.964234835571714e-06,3.2679267622643234e-06,2.7223952334698433e-05,3.6456113932534466e-05,tokens/kWh,7022141.758547072,MB,1610.637312,5448.925184,0.0,4802.47808,4557.793792,s,10,299.1010234375,29.910102343749998,0.01023537902845777,29.913578125,29.921135546875,29.9219037109375,29.9225182421875,"[29.899591796875, 29.901322265625, 29.913013671875, 29.890712890625, 29.920396484375, 29.922671875, 29.92096484375, 29.9152421875, 29.90296484375, 29.914142578125]",tokens/s,2.106311749654192,kWh,0.00035296389131082433,0.00019345485010443554,0.0015722178549955057,0.0021186365964107655,tokens/kWh,29736.104864198915,,s,629,303.18425177001956,0.4820099392210167,0.06023141623810366,0.4746004333496094,0.4757639221191406,0.4761423828125,0.98077423828125,"[0.474365966796875, 0.47431475830078124, 0.4748533630371094, 0.47396148681640626, 0.47435162353515625, 0.47414068603515624, 0.47463320922851565, 0.47518923950195313, 0.47532952880859375, 0.4745502624511719, 0.4740556945800781, 0.47391131591796876, 0.47444989013671873, 0.47430245971679685, 0.4739420166015625, 0.4737402954101563, 0.473987060546875, 0.47486770629882813, 0.4739993591308594, 0.475114501953125, 0.47402597045898437, 0.4752353210449219, 0.47403109741210936, 0.4739563598632813, 0.4750960693359375, 0.4755916748046875, 0.4742686767578125, 0.47484210205078126, 0.4754851989746094, 0.4751022033691406, 0.4755619812011719, 0.4745973815917969, 0.47523736572265624, 0.474829833984375, 0.474850341796875, 0.47421026611328126, 0.4759234619140625, 0.47534796142578123, 0.4750888977050781, 0.4741591186523437, 0.4745441284179687, 0.473744384765625, 0.4741099548339844, 0.473807861328125, 0.47429119873046877, 0.4740597839355469, 0.4742881164550781, 0.47400347900390627, 0.4744253234863281, 0.47619073486328123, 0.4757626953125, 0.4742860717773438, 0.47489535522460935, 0.47489950561523436, 0.47460345458984377, 0.4742686767578125, 0.4739921875, 0.4739420166015625, 0.47433624267578123, 0.4748810119628906, 0.4744110107421875, 0.47424615478515625, 0.980806640625, 0.4736993408203125, 0.47429733276367186, 0.4741478271484375, 0.4741099548339844, 0.47420416259765624, 0.4742000732421875, 0.47553228759765626, 0.4755077209472656, 0.4747817077636719, 0.47485235595703124, 0.4747202453613281, 0.4752384033203125, 0.4742318115234375, 0.4740137023925781, 0.4751011962890625, 0.47453387451171875, 0.4759981994628906, 0.4747898864746094, 0.4742266845703125, 0.47406185913085935, 0.4743239440917969, 0.4744366149902344, 0.47420416259765624, 0.47499981689453125, 0.47433114624023437, 0.47446322631835935, 0.47578317260742187, 0.47489739990234375, 0.4754503784179688, 0.4746977233886719, 0.47437005615234373, 0.4743680114746094, 0.47590194702148436, 0.47595211791992187, 0.47569818115234375, 0.474777587890625, 0.474113037109375, 0.4756346740722656, 0.4741652526855469, 0.47452056884765625, 0.4742778930664063, 0.474176513671875, 0.47388363647460935, 0.473754638671875, 0.47433624267578123, 0.474029052734375, 0.47412841796875, 0.4740433654785156, 0.47558758544921875, 0.4756910400390625, 0.4747693786621094, 0.47467111206054685, 0.4742625427246094, 0.4742799377441406, 0.473807861328125, 0.474387451171875, 0.47398092651367185, 0.4740495300292969, 0.47483187866210935, 0.4742236022949219, 0.4746342468261719, 0.4739717102050781, 0.98069091796875, 0.4739993591308594, 0.4743341979980469, 0.4740321350097656, 0.4741048278808594, 0.47378021240234375, 0.4756019287109375, 0.4752998352050781, 0.47476327514648436, 0.47476531982421877, 0.47458303833007814, 0.474603515625, 0.4745164794921875, 0.47447552490234374, 0.4745482177734375, 0.47400344848632814, 0.4754913330078125, 0.47445709228515626, 0.4743076171875, 0.4742041320800781, 0.47417855834960937, 0.4741171264648438, 0.47425332641601564, 0.47636785888671873, 0.4741949462890625, 0.4747110290527344, 0.4743659973144531, 0.47549435424804687, 0.47543499755859375, 0.4749854736328125, 0.4751646728515625, 0.4754985046386719, 0.4756643981933594, 0.475114501953125, 0.4750315551757813, 0.47576882934570314, 0.47484927368164065, 0.47597467041015623, 0.4747806701660156, 0.47479296875, 0.47538177490234373, 0.4749906005859375, 0.47488409423828126, 0.4746322021484375, 0.4749168701171875, 0.47477862548828126, 0.4759582824707031, 0.47688909912109373, 0.47617330932617186, 0.47571865844726563, 0.4744898681640625, 0.4741591186523437, 0.47446939086914064, 0.4745513000488281, 0.4750899047851562, 0.4740403137207031, 0.474461181640625, 0.4741929016113281, 0.47546676635742186, 0.47404339599609374, 0.474176513671875, 0.47427685546875, 0.47412841796875, 0.979821533203125, 0.4742574157714844, 0.4741734313964844, 0.47405874633789064, 0.47411508178710937, 0.47479910278320314, 0.476015625, 0.47458816528320313, 0.4742225952148437, 0.47418679809570313, 0.4743782043457031, 0.47417138671875, 0.4748810119628906, 0.47444174194335936, 0.4738058166503906, 0.4744478759765625, 0.47413861083984377, 0.47446221923828125, 0.47416116333007813, 0.47388262939453124, 0.47408843994140626, 0.47393484497070315, 0.4740771789550781, 0.47400857543945313, 0.47406695556640627, 0.4738518981933594, 0.4751022033691406, 0.4763402099609375, 0.47449191284179687, 0.4742512512207031, 0.4740157470703125, 0.4743352355957031, 0.47394509887695313, 0.473849853515625, 0.47430963134765625, 0.4738713684082031, 0.47423590087890627, 0.4743987121582031, 0.47423590087890627, 0.4738887634277344, 0.4744407043457031, 0.4742297668457031, 0.4740741271972656, 0.47423590087890627, 0.47649996948242185, 0.4742901611328125, 0.4741949462890625, 0.47464346313476563, 0.476073974609375, 0.47489022827148436, 0.4758292541503906, 0.47497113037109373, 0.47431890869140625, 0.4741651916503906, 0.4740843505859375, 0.47435162353515625, 0.47437310791015624, 0.4743291015625, 0.47532852172851564, 0.474313720703125, 0.474640380859375, 0.47469473266601564, 0.4747908630371094, 0.9814691772460937, 0.4747683715820312, 0.4747376708984375, 0.4743690185546875, 0.4749127807617187, 0.4760391540527344, 0.4749434814453125, 0.4753387451171875, 0.4744488830566406, 0.4743935852050781, 0.4743935852050781, 0.47374334716796873, 0.47430349731445315, 0.47411404418945313, 0.47499264526367185, 0.47437823486328123, 0.4740597839355469, 0.4755292053222656, 0.474429443359375, 0.4746004333496094, 0.47424716186523436, 0.4757176208496094, 0.474365966796875, 0.4744038391113281, 0.47409765625, 0.47461581420898435, 0.47587124633789063, 0.47467724609375, 0.47449700927734373, 0.4752076721191406, 0.47526400756835935, 0.4758815002441406, 0.4752086791992188, 0.4745318298339844, 0.4740362548828125, 0.47401980590820314, 0.474777587890625, 0.47447760009765627, 0.47450723266601563, 0.4745646057128906, 0.4748257141113281, 0.4746987609863281, 0.4746670227050781, 0.4746844177246094, 0.4750899047851562, 0.474967041015625, 0.4748011474609375, 0.47588555908203123, 0.47625112915039064, 0.4750325622558594, 0.4751790161132812, 0.47611801147460936, 0.4751523742675781, 0.4750223388671875, 0.4746065979003906, 0.4746875, 0.47461068725585936, 0.47841998291015625, 0.4753489990234375, 0.47590911865234375, 0.4750417785644531, 0.474998779296875, 0.47562240600585937, 0.9817487182617187, 0.47520870971679685, 0.4753449096679688, 0.47469158935546873, 0.4756121520996094, 0.47580160522460935, 0.47535000610351563, 0.47563983154296874, 0.47536431884765623, 0.4756459655761719, 0.4758149108886719, 0.47476327514648436, 0.47486669921875, 0.4744960021972656, 0.4750315551757813, 0.4745902099609375, 0.4752404479980469, 0.4754586181640625, 0.47481234741210937, 0.47426150512695314, 0.4745635986328125, 0.4747796630859375, 0.4742758483886719, 0.4749291381835937, 0.4753070068359375, 0.4757319641113281, 0.47559988403320314, 0.4744366149902344, 0.4746649475097656, 0.47449087524414063, 0.47499365234375, 0.47450009155273437, 0.47397579956054686, 0.47451034545898435, 0.47416116333007813, 0.4750878601074219, 0.47417752075195313, 0.47466085815429687, 0.4771686401367187, 0.4746567687988281, 0.47440997314453126, 0.4744816589355469, 0.4743618469238281, 0.47448269653320313, 0.47479705810546874, 0.47491070556640624, 0.47615179443359373, 0.4757442626953125, 0.4753827819824219, 0.4749906005859375, 0.4746219482421875, 0.4746925964355469, 0.4743485412597656, 0.4746967163085937, 0.47494552612304686, 0.4743270263671875, 0.47532647705078124, 0.47462603759765626, 0.4751585388183594, 0.4746270751953125, 0.47493734741210936, 0.47487387084960936, 0.4749823913574219, 0.9828372192382813, 0.4750807189941406, 0.4744366149902344, 0.4755558471679687, 0.47547698974609376, 0.47533465576171874, 0.4759132080078125, 0.4759879760742188, 0.47586407470703124, 0.4761640930175781, 0.4759255065917969, 0.4748451843261719, 0.474919921875, 0.476189697265625, 0.4745257263183594, 0.4750560913085938, 0.475325439453125, 0.474986572265625, 0.4742686157226563, 0.4745994262695313, 0.4747817077636719, 0.4749609069824219, 0.4750120849609375, 0.47644467163085935, 0.47719833374023435, 0.47524453735351563, 0.4750530700683594, 0.4744356384277344, 0.47469769287109376, 0.4745891418457031, 0.47447756958007814, 0.4750274658203125, 0.47433831787109376, 0.47436083984375, 0.4751431579589844, 0.4747120666503906, 0.474977294921875, 0.47543295288085935, 0.4742215576171875, 0.47395327758789063, 0.474292236328125, 0.473849853515625, 0.4742840270996094, 0.4745062255859375, 0.47460455322265627, 0.475863037109375, 0.4749680786132813, 0.4751790161132812, 0.4745482177734375, 0.47489227294921876, 0.4745994873046875, 0.47445599365234375, 0.47442022705078124, 0.47415603637695314, 0.47442739868164063, 0.474777587890625, 0.47418060302734377, 0.4745369567871094, 0.47485952758789063, 0.4748001708984375, 0.474187744140625, 0.47446221923828125, 0.47530703735351565, 0.9833133544921875, 0.4750899047851562, 0.4764405822753906, 0.47526705932617186, 0.4746055603027344, 0.47418368530273436, 0.4742369384765625, 0.4743475341796875, 0.474524658203125, 0.474323974609375, 0.4742778930664063, 0.47433010864257813, 0.4754462585449219, 0.47468850708007815, 0.474829833984375, 0.4747304992675781, 0.47638424682617186, 0.4761231994628906, 0.47679379272460937, 0.4750878601074219, 0.4745164794921875, 0.47426150512695314, 0.4747745361328125, 0.47573504638671876, 0.4750520324707031, 0.474893310546875, 0.4743792724609375, 0.4743096923828125, 0.474462158203125, 0.47433831787109376, 0.4749609069824219, 0.4743250427246094, 0.4742419738769531, 0.47488204956054686, 0.47455438232421876, 0.4743075866699219, 0.4756408386230469, 0.47438339233398436, 0.4743741760253906, 0.47458706665039063, 0.47492404174804687, 0.47545547485351564, 0.47435980224609375, 0.47457485961914064, 0.4752353210449219, 0.47622964477539065, 0.47467416381835936, 0.47408126831054687, 0.47500799560546875, 0.47463320922851565, 0.4743915405273437, 0.4742758483886719, 0.47516363525390626, 0.47539404296875, 0.4750796813964844, 0.4738518981933594, 0.4742266845703125, 0.477939697265625, 0.474281982421875, 0.47408126831054687, 0.4742758483886719, 0.4744366149902344, 0.4743372802734375, 0.9826785278320312, 0.4751769714355469, 0.47564697265625, 0.47452569580078124, 0.4744765319824219, 0.47413861083984377, 0.47415090942382815, 0.4741754760742187, 0.4749885559082031, 0.47412017822265623, 0.4737423400878906, 0.4744488830566406, 0.4739051513671875, 0.4738478088378906, 0.4745400390625, 0.47486770629882813, 0.47466085815429687, 0.47589376831054686, 0.47535205078125, 0.4755548095703125, 0.4743424072265625, 0.47426663208007813, 0.47488409423828126, 0.47611911010742186, 0.47500384521484373, 0.4744591369628906, 0.47539813232421874, 0.47478475952148436, 0.47490567016601565, 0.47446112060546874, 0.475104248046875, 0.4745164794921875, 0.47489535522460935, 0.47453900146484373, 0.4745594787597656, 0.47434445190429686, 0.47417752075195313, 0.47448269653320313, 0.4744724731445312, 0.4748072509765625, 0.47473458862304685, 0.4740843505859375, 0.4747591552734375, 0.4748912658691406, 0.4760514526367188, 0.47554150390625, 0.4754565124511719, 0.47558041381835936, 0.4751912841796875, 0.47503564453125, 0.47414990234375, 0.4742850646972656, 0.47414886474609375, 0.47481036376953123, 0.47404852294921873, 0.4742584228515625, 0.4739358825683594, 0.4744171447753906, 0.4741263427734375, 0.47414169311523435, 0.4739491882324219, 0.47383755493164065, 0.4742522888183594, 0.983693359375, 0.47566241455078123, 0.47446722412109377, 0.4746977233886719, 0.4751247253417969, 0.47474688720703123, 0.47455032348632814, 0.4745143737792969, 0.474745849609375, 0.4746485900878906, 0.4754575500488281, 0.47418881225585935, 0.474029052734375, 0.47392666625976565, 0.4740771789550781, 0.4740321350097656, 0.4739317626953125, 0.4744591369628906, 0.47454925537109377, 0.47516058349609375, 0.47410687255859374, 0.4743935852050781, 0.4761661376953125, 0.4749885559082031, 0.47419699096679685, 0.47460250854492186, 0.47660543823242185, 0.4745430908203125, 0.4743280639648437, 0.47440179443359376, 0.4743813171386719, 0.47454721069335937, 0.4742799377441406, 0.4744407043457031, 0.4743854064941406, 0.47423898315429686, 0.47517593383789064, 0.4753879089355469, 0.47501516723632814, 0.47492202758789065, 0.4744867858886719, 0.47409762573242187, 0.47553741455078125, 0.4761282653808594, 0.47627365112304687, 0.47592141723632814, 0.474745849609375, 0.47454931640625, 0.47427374267578126, 0.47429937744140627, 0.47435775756835935, 0.47429937744140627, 0.475188232421875, 0.4755568542480469, 0.4755281982421875, 0.4754483337402344, 0.4758005676269531, 0.47536639404296877, 0.4753592224121094, 0.4763494567871094, 0.47446011352539064, 0.4744376220703125, 0.4739686279296875]",tokens/s,2.074646015839662,,,,,,main,False,False -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,v,v,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,m,m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -13971,7 +14273,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/v/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/m/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -13998,9 +14300,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669494a6-18dccbfa372ab65852cd8251;5c29abb0-3b1f-43f3-b115-1af2e4d377dc) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948c6d-6b9ca4037afd9e181c826e56;07f6a07c-afc9-405b-96b7-10926cccde8d) -Repository Not Found for url: https://huggingface.co/v/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/m/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -14025,12 +14327,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: v is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: m is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.3b,EleutherAI/pythia-1.3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,,MB,1610.354688,2254.962688,0.0,1608.515584,1463.6928,s,10,1.209205665588379,0.1209205665588379,0.0011005379634326184,0.1205662727355957,0.1215480598449707,0.12274063606262207,0.12369469703674317,"[0.12393321228027344, 0.12128304290771484, 0.12008969879150391, 0.12004278564453125, 0.12018284606933594, 0.12025001525878906, 0.12034620666503906, 0.12078633880615235, 0.12113209533691406, 0.121159423828125]",tokens/s,2117.0922969124094,kWh,1.4171419990441157e-06,7.762810317477228e-07,6.305967346357218e-06,8.499390377149056e-06,tokens/kWh,30119807.261502665,MB,1610.952704,2254.962688,0.0,1608.515584,1560.974848,s,10,70.14807763671874,7.0148077636718735,0.00472223733563277,7.012995361328125,7.0220806640625,7.0226084472656245,7.023030673828125,"[7.017875, 7.0128837890625, 7.0119638671875, 7.01192919921875, 7.01310693359375, 7.0105234375, 7.0078984375, 7.02196337890625, 7.01679736328125, 7.02313623046875]",tokens/s,8.981001635748731,kWh,8.273579535030184e-05,4.5345370896494765e-05,0.0003660393860852451,0.0004941205523320418,tokens/kWh,127499.25034015773,,s,629,71.1210855636597,0.11307008833650187,0.01439647456429658,0.11126681518554687,0.11167272796630859,0.11198136138916015,0.23187720581054685,"[0.11166719818115234, 0.11130470275878906, 0.11149517059326172, 0.11213107299804688, 0.11133849334716797, 0.11115827178955077, 0.11096371459960938, 0.11128832244873046, 0.11117977905273438, 0.11118182373046875, 0.11122688293457031, 0.1112647705078125, 0.11119513702392578, 0.11100774383544922, 0.111087646484375, 0.11108963012695312, 0.11133439636230469, 0.11160678100585937, 0.11127910614013672, 0.1123737564086914, 0.1114972152709961, 0.11121971130371094, 0.11113676452636718, 0.1111009292602539, 0.11132621002197265, 0.11129344177246094, 0.11116851043701172, 0.11124531555175782, 0.1112442855834961, 0.11126681518554687, 0.11126579284667969, 0.11136102294921875, 0.11114291381835938, 0.11164262390136719, 0.1114081268310547, 0.11137843322753906, 0.11116134643554687, 0.11157810974121093, 0.1113333740234375, 0.11127091217041016, 0.11125965118408203, 0.11129241943359375, 0.11120745849609374, 0.11137942504882813, 0.11125247955322265, 0.11137229156494141, 0.11129138946533203, 0.11126988983154297, 0.11214335632324218, 0.11184333038330078, 0.11213414764404298, 0.11166515350341796, 0.11144300842285157, 0.11137529754638673, 0.11148185729980468, 0.11138457489013671, 0.11156582641601563, 0.1114777603149414, 0.1114081268310547, 0.11125965118408203, 0.11127603149414063, 0.11128425598144531, 0.2332733154296875, 0.11126271820068359, 0.11134259033203125, 0.1112136001586914, 0.11113475036621094, 0.1112872314453125, 0.11119516754150391, 0.11118179321289062, 0.11123712158203125, 0.11110195159912109, 0.11118694305419922, 0.11108454132080078, 0.11117158508300781, 0.1111357421875, 0.1112248306274414, 0.11135078430175781, 0.1113016357421875, 0.11121049499511719, 0.11146649932861329, 0.11143270111083985, 0.11139379119873047, 0.11125862121582031, 0.11111116790771484, 0.11113369750976562, 0.11115213012695313, 0.11124736022949219, 0.11156070709228516, 0.11131289672851563, 0.11127193450927735, 0.11115929412841796, 0.11136819458007813, 0.11125145721435546, 0.11122073364257813, 0.11129753875732422, 0.11136614227294922, 0.11128217315673829, 0.11125145721435546, 0.11142047882080078, 0.11116230773925781, 0.11125759887695312, 0.1110487060546875, 0.11122994995117187, 0.11132518768310547, 0.1113026885986328, 0.11126576232910156, 0.11120947265625, 0.11332198333740234, 0.11140608215332032, 0.11135590362548828, 0.11126579284667969, 0.11120845031738281, 0.11143065643310547, 0.1113917465209961, 0.11126988983154297, 0.11125350189208984, 0.11131187438964844, 0.11131903839111328, 0.11127091217041016, 0.11129446411132812, 0.11129446411132812, 0.11138969421386719, 0.1114603500366211, 0.11127808380126954, 0.23181004333496094, 0.11102105712890625, 0.1111910400390625, 0.11175424194335938, 0.11164672088623047, 0.11138969421386719, 0.11125247955322265, 0.11111219024658203, 0.11101798248291016, 0.11089920043945313, 0.11102413177490235, 0.11136723327636719, 0.1116630401611328, 0.11121561431884766, 0.11134259033203125, 0.11122585296630859, 0.11111116790771484, 0.11116339111328125, 0.11112857818603515, 0.11112242889404297, 0.11111014556884766, 0.11112966156005859, 0.11107218933105469, 0.11174297332763672, 0.11127603149414063, 0.11119821166992187, 0.11121663665771485, 0.11118080139160157, 0.11127808380126954, 0.1111583023071289, 0.11111011505126953, 0.11111014556884766, 0.11128832244873046, 0.11131903839111328, 0.1111562271118164, 0.11147058868408204, 0.11126681518554687, 0.1112279052734375, 0.11108051300048828, 0.11122681427001953, 0.11114086151123047, 0.11119923400878906, 0.11140201568603515, 0.11115004730224609, 0.1115494384765625, 0.11138969421386719, 0.11126886749267578, 0.11192524719238281, 0.111351806640625, 0.11120127868652344, 0.11122994995117187, 0.11163238525390624, 0.11214540863037109, 0.11136921691894532, 0.11118592071533204, 0.11130879974365235, 0.11120845031738281, 0.11130470275878906, 0.1112442855834961, 0.11167743682861328, 0.11148799896240234, 0.11126988983154297, 0.11132012939453124, 0.23181817626953125, 0.11116236877441406, 0.11126585388183594, 0.11114182281494141, 0.11116748809814453, 0.1111695327758789, 0.11111014556884766, 0.11164057922363281, 0.11159449768066407, 0.11120127868652344, 0.11121766662597657, 0.11119206237792968, 0.11146649932861329, 0.11107635498046875, 0.11124121856689453, 0.11109375762939454, 0.11119718170166015, 0.11117465972900391, 0.11109478759765624, 0.11113471984863281, 0.11132415771484375, 0.11108249664306641, 0.11122585296630859, 0.11124838256835938, 0.11113267517089843, 0.11119821166992187, 0.11118386840820313, 0.11122380828857421, 0.11127808380126954, 0.11117056274414062, 0.11127500915527344, 0.111388671875, 0.11147878265380859, 0.111246337890625, 0.11121868896484376, 0.1112616958618164, 0.1112811508178711, 0.11174400329589844, 0.11160575866699218, 0.11130368041992188, 0.11123001861572265, 0.11139884948730469, 0.11166207885742188, 0.11131187438964844, 0.11219455718994141, 0.11126377868652344, 0.11129955291748046, 0.11126886749267578, 0.11122278594970703, 0.11126886749267578, 0.1113169937133789, 0.11135282897949218, 0.11117362976074219, 0.1112442855834961, 0.11130060577392578, 0.11121766662597657, 0.11142655944824219, 0.111246337890625, 0.11133132934570313, 0.11140409851074219, 0.11129542541503906, 0.11128422546386718, 0.11133952331542969, 0.23190016174316405, 0.11121459197998047, 0.11119718170166015, 0.11123302459716797, 0.11124736022949219, 0.1111551971435547, 0.1117624282836914, 0.11134259033203125, 0.11116851043701172, 0.11123609924316406, 0.11112960052490234, 0.11113983917236328, 0.11123097229003906, 0.11135692596435547, 0.11133030700683594, 0.1111756820678711, 0.11099750518798829, 0.11165388488769531, 0.11119923400878906, 0.11110399627685547, 0.11134361267089844, 0.11165695953369141, 0.11130470275878906, 0.11117874908447266, 0.11137843322753906, 0.11113881683349609, 0.11112754821777343, 0.11104460906982422, 0.11110195159912109, 0.1110456314086914, 0.11133542633056641, 0.11121971130371094, 0.11121459197998047, 0.11156275177001954, 0.11139590454101563, 0.11135379028320312, 0.11121868896484376, 0.11118592071533204, 0.11130982208251954, 0.11158528137207031, 0.11178291320800782, 0.11122176361083984, 0.11130470275878906, 0.11126681518554687, 0.111246337890625, 0.11125452423095702, 0.11126374053955078, 0.11133030700683594, 0.11145932769775391, 0.11136000061035156, 0.11132621002197265, 0.11127705383300782, 0.11152998352050782, 0.1112442855834961, 0.11130265808105469, 0.11128729248046874, 0.11133952331542969, 0.11251200103759766, 0.11131084442138672, 0.1113221435546875, 0.11128931427001953, 0.11129036712646484, 0.11130879974365235, 0.2321817626953125, 0.11112652587890624, 0.11125247955322265, 0.11120230102539062, 0.11118284606933594, 0.11110912322998047, 0.11104768371582031, 0.11113471984863281, 0.11123814392089844, 0.11114495849609375, 0.11111321258544922, 0.11121971130371094, 0.11117874908447266, 0.11118592071533204, 0.11127603149414063, 0.11113369750976562, 0.11118796539306641, 0.11104364776611328, 0.11120121765136719, 0.11109683227539062, 0.11134873962402343, 0.11129241943359375, 0.11124531555175782, 0.11129138946533203, 0.1111695327758789, 0.11111936187744141, 0.11120230102539062, 0.11098214721679688, 0.11109478759765624, 0.11121772766113282, 0.11126573181152344, 0.11151564788818359, 0.11180134582519531, 0.1111551971435547, 0.11124018859863281, 0.11106508636474609, 0.11120845031738281, 0.11125452423095702, 0.11243007659912109, 0.11165286254882813, 0.11120947265625, 0.11119308471679687, 0.11124224090576172, 0.11133747100830078, 0.1112647705078125, 0.11123200225830078, 0.11110912322998047, 0.11123097229003906, 0.11112140655517579, 0.11116134643554687, 0.11120230102539062, 0.11124838256835938, 0.11131597137451171, 0.11115929412841796, 0.11126681518554687, 0.11124326324462891, 0.11124940490722657, 0.11136819458007813, 0.1113364486694336, 0.11219558715820313, 0.11167436981201172, 0.11133542633056641, 0.11132006072998046, 0.23260365295410157, 0.1113016357421875, 0.11109069061279297, 0.11130675506591797, 0.11117772674560547, 0.11111116790771484, 0.11099852752685548, 0.11096575927734376, 0.11118592071533204, 0.11106201934814453, 0.11124940490722657, 0.1109964828491211, 0.11128729248046874, 0.11114086151123047, 0.11112041473388672, 0.11092476654052734, 0.11116646575927734, 0.11122585296630859, 0.11110297393798828, 0.11115929412841796, 0.1110282211303711, 0.11134361267089844, 0.11134054565429688, 0.11161497497558594, 0.11118796539306641, 0.11125145721435546, 0.1112965087890625, 0.11122898864746093, 0.11125344085693359, 0.11107839965820313, 0.1114081268310547, 0.11136511993408203, 0.11113164520263671, 0.11111936187744141, 0.11107635498046875, 0.11111628723144532, 0.1109964828491211, 0.11101900482177735, 0.11115827178955077, 0.11171942138671875, 0.11166413116455078, 0.11109580993652343, 0.11116649627685547, 0.11109782409667969, 0.11119821166992187, 0.11115110778808594, 0.11119206237792968, 0.11109580993652343, 0.1113333740234375, 0.111388671875, 0.11111014556884766, 0.11112242889404297, 0.11119926452636719, 0.11117769622802734, 0.11110707092285156, 0.11125350189208984, 0.111246337890625, 0.11176140594482421, 0.11179315185546874, 0.11137229156494141, 0.1111234588623047, 0.1113917465209961, 0.11129138946533203, 0.23285554504394532, 0.11228876495361328, 0.1119969253540039, 0.11132012939453124, 0.1113087387084961, 0.1110118408203125, 0.11107635498046875, 0.11119821166992187, 0.11114905548095703, 0.11114291381835938, 0.11154227447509765, 0.111283203125, 0.11145011138916015, 0.11127091217041016, 0.11112140655517579, 0.11115110778808594, 0.11166719818115234, 0.11149517059326172, 0.11157708740234375, 0.11116441345214843, 0.11162931060791016, 0.11222220611572266, 0.11127398681640625, 0.11119721221923828, 0.11121660614013672, 0.11111833953857422, 0.11153817749023437, 0.11167436981201172, 0.11123817443847656, 0.11156681823730469, 0.11157299041748046, 0.11123200225830078, 0.11113267517089843, 0.11120339202880859, 0.11119302368164062, 0.11129446411132812, 0.11130265808105469, 0.11117874908447266, 0.11140914916992188, 0.11178803253173829, 0.11143987274169923, 0.111388671875, 0.11134054565429688, 0.11126271820068359, 0.11172557067871093, 0.11178189086914063, 0.11163648223876953, 0.11228876495361328, 0.11165491485595704, 0.11137843322753906, 0.11123712158203125, 0.11235433959960937, 0.11163645172119141, 0.11138969421386719, 0.11162419128417969, 0.11138253021240234, 0.11193548583984375, 0.11135289764404296, 0.11133433532714844, 0.11140198516845704, 0.11156582641601563, 0.11123814392089844, 0.11139584350585938, 0.23310745239257813, 0.11154329681396484, 0.11122585296630859, 0.11103334045410156, 0.11112242889404297, 0.11111321258544922, 0.11110502624511719, 0.11125759887695312, 0.11132006072998046, 0.11105689239501954, 0.11160371398925781, 0.11119308471679687, 0.11138662719726562, 0.11129039764404297, 0.11160777282714844, 0.1111203842163086, 0.11147058868408204, 0.11210137939453126, 0.11113471984863281, 0.11226214599609376, 0.11134054565429688, 0.11112960052490234, 0.11109683227539062, 0.11101696014404297, 0.11132927703857422, 0.11150438690185546, 0.11192934417724609, 0.11167231750488281, 0.11156684875488282, 0.11118489837646485, 0.11123814392089844, 0.11113683319091797, 0.11117254638671875, 0.11120333099365234, 0.11124940490722657, 0.11127398681640625, 0.11138355255126953, 0.11188531494140624, 0.11153510284423829, 0.11116134643554687, 0.11122892761230468, 0.11117874908447266, 0.11126892852783203, 0.11124422454833985, 0.11132723236083984, 0.111246337890625, 0.1125038070678711, 0.11145523071289062, 0.1111695327758789, 0.11121663665771485, 0.11127193450927735, 0.11120537567138672, 0.11170098876953125, 0.11128729248046874, 0.11114701080322266, 0.112110595703125, 0.11148185729980468, 0.11123916625976563, 0.1111910400390625, 0.11130879974365235, 0.11141222381591796, 0.11127603149414063, 0.11140608215332032, 0.23328665161132814, 0.11162009429931641, 0.11125350189208984, 0.11111116790771484, 0.11114086151123047, 0.1111234588623047, 0.11114803314208985, 0.11112454223632813, 0.11118073272705079, 0.11184435272216797, 0.11149311828613281, 0.1110835189819336, 0.11113676452636718, 0.11192729949951172, 0.11148902130126953, 0.1111900177001953, 0.1112074203491211, 0.11114393615722656, 0.11168256378173828, 0.11129446411132812, 0.11139584350585938, 0.11125043487548827, 0.11120435333251953, 0.11126886749267578, 0.11185561370849609, 0.11130675506591797, 0.11252838134765625, 0.11186688232421875, 0.11209420776367188, 0.11134873962402343, 0.11136819458007813, 0.11132006072998046, 0.11117056274414062, 0.1115688934326172, 0.111425537109375, 0.11140096282958985, 0.11195801544189453, 0.11133439636230469, 0.11169280242919923, 0.11158016204833984, 0.11150745391845703, 0.11149209594726563, 0.11174915313720703, 0.11140297698974609, 0.11168153381347656, 0.11251609802246093, 0.11149823760986328, 0.1112125473022461, 0.11124947357177735, 0.11128211212158202, 0.11113369750976562, 0.11132518768310547, 0.11279666900634766, 0.11159654235839844, 0.11184844970703126, 0.11136102294921875, 0.11125350189208984, 0.11140096282958985, 0.11135078430175781, 0.11131084442138672, 0.11126579284667969, 0.11146348571777344, 0.111246337890625]",tokens/s,8.844071979708314,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-40b,tiiuae/falcon-40b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-72B,Qwen/Qwen1.5-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -14048,21 +14349,31 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation - cls._check_and_enable_flash_attn_2( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 - raise ValueError( -ValueError: FalconForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpdp6k6q32/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neox-20b,EleutherAI/gpt-neox-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,,MB,2108.223488,15043.395584,0.0,14396.94848,13898.251776,s,10,16.774060791015625,1.6774060791015626,0.0018297475804955295,1.6770918579101561,1.6789085327148436,1.6804502990722656,1.6816837121582031,"[1.6819920654296876, 1.67540869140625, 1.6774444580078125, 1.676206298828125, 1.6767392578125, 1.6753848876953126, 1.6765943603515625, 1.6776787109375, 1.67856591796875, 1.678046142578125]",tokens/s,152.61659248136053,kWh,1.9787035716904537e-05,1.0841899168262898e-05,9.527879844519888e-05,0.0001259077333303663,tokens/kWh,2033234.919163287,MB,2108.223488,15043.395584,0.0,14396.94848,14315.959808,s,10,982.2773984375,98.22773984375,0.006322715714689567,98.22801562500001,98.23432265625,98.236829296875,98.238834609375,"[98.233765625, 98.224484375, 98.2393359375, 98.2251640625, 98.22903125, 98.2138984375, 98.2302578125, 98.2295859375, 98.224875, 98.227]",tokens/s,0.6413666862356148,kWh,0.001159520428114467,0.0006355184711477705,0.005722492522434801,0.0075175314216970384,tokens/kWh,8380.410598374077,,s,629,995.810533813476,1.5831646006573552,0.19919555203142542,1.559141357421875,1.55962734375,1.5598268310546874,3.23526474609375,"[1.5585750732421875, 1.55860986328125, 1.5594239501953124, 1.5595242919921875, 1.558529052734375, 1.5586417236328125, 1.559109619140625, 1.5591219482421874, 1.5598243408203125, 1.5595867919921875, 1.55911572265625, 1.5588905029296876, 1.5587757568359375, 1.5587236328125, 1.559189453125, 1.558750244140625, 1.5590482177734375, 1.5591536865234374, 1.5591956787109376, 1.55924169921875, 1.558993896484375, 1.559488525390625, 1.559013427734375, 1.5594393310546875, 1.5592908935546874, 1.5589068603515626, 1.55905126953125, 1.559194580078125, 1.5587266845703125, 1.5591065673828124, 1.5589693603515624, 1.558802490234375, 1.558849609375, 1.559245849609375, 1.5592437744140626, 1.559234619140625, 1.55915771484375, 1.5592222900390624, 1.5598233642578125, 1.55966162109375, 1.559911376953125, 1.5597353515625, 1.559793701171875, 1.5596707763671875, 1.55985302734375, 1.55943115234375, 1.5597127685546874, 1.5593175048828125, 1.55945263671875, 1.559732177734375, 1.559920654296875, 1.5596063232421875, 1.5595447998046874, 1.5596646728515624, 1.559162841796875, 1.5595458984375, 1.55953662109375, 1.5590595703125, 1.559057373046875, 1.5596236572265625, 1.5592509765625, 1.559478271484375, 3.234529296875, 1.55871337890625, 1.5585946044921875, 1.5587962646484375, 1.5588270263671875, 1.558576171875, 1.558561767578125, 1.55837744140625, 1.5585587158203125, 1.5589652099609375, 1.5587061767578125, 1.55881787109375, 1.558748046875, 1.5588065185546875, 1.5585740966796875, 1.5593819580078125, 1.5591004638671875, 1.558873046875, 1.5587451171875, 1.5594066162109375, 1.559108642578125, 1.55873583984375, 1.5592396240234374, 1.559013427734375, 1.558961181640625, 1.5588013916015624, 1.5588310546875, 1.5591044921875, 1.5594649658203126, 1.558951904296875, 1.5591546630859374, 1.55907177734375, 1.5593482666015626, 1.5590062255859376, 1.559110595703125, 1.5595079345703124, 1.55951513671875, 1.5589560546875, 1.5587255859375, 1.5589560546875, 1.559404541015625, 1.5599503173828124, 1.5588074951171875, 1.5591341552734375, 1.5587113037109375, 1.55890380859375, 1.561585693359375, 1.5592509765625, 1.5593123779296876, 1.5594271240234374, 1.55922021484375, 1.5592386474609374, 1.559277587890625, 1.559350341796875, 1.5596614990234374, 1.5596533203125, 1.559194580078125, 1.5592427978515624, 1.5593604736328126, 1.5594066162109375, 1.559331787109375, 1.5592806396484375, 1.559973876953125, 3.23797607421875, 1.5602718505859374, 1.559963623046875, 1.5592427978515624, 1.5589161376953125, 1.5587706298828126, 1.5589017333984374, 1.559024658203125, 1.559089111328125, 1.5593585205078124, 1.5589334716796874, 1.5592069091796874, 1.5589990234375, 1.5592745361328124, 1.5593963623046876, 1.559119873046875, 1.5596800537109374, 1.5589478759765625, 1.5588074951171875, 1.5590042724609374, 1.558916015625, 1.55900927734375, 1.5591424560546876, 1.559677978515625, 1.5591373291015624, 1.559119873046875, 1.5591474609375, 1.5588157958984374, 1.5592601318359376, 1.5591690673828125, 1.559141357421875, 1.5591485595703125, 1.55908203125, 1.559183349609375, 1.55915576171875, 1.559400390625, 1.5592960205078126, 1.5591761474609376, 1.5593154296875, 1.5590482177734375, 1.558973388671875, 1.559626708984375, 1.559330810546875, 1.5593973388671876, 1.5593338623046875, 1.559593994140625, 1.5598807373046875, 1.5612364501953124, 1.55947412109375, 1.5594168701171875, 1.5596483154296874, 1.5595643310546874, 1.559582763671875, 1.55965234375, 1.5598623046875, 1.559635986328125, 1.5595242919921875, 1.5597813720703124, 1.5598643798828125, 1.5591075439453126, 1.5595611572265624, 1.55919873046875, 1.5593585205078124, 3.23542333984375, 1.55846044921875, 1.558307861328125, 1.5589805908203125, 1.558640625, 1.5585218505859375, 1.55879833984375, 1.558877197265625, 1.5586907958984375, 1.5587757568359375, 1.5589539794921874, 1.559329833984375, 1.559342041015625, 1.5588546142578126, 1.5590174560546874, 1.559341064453125, 1.558877197265625, 1.5588382568359376, 1.55911474609375, 1.5592764892578126, 1.5589847412109374, 1.5587337646484376, 1.55911376953125, 1.5587901611328125, 1.5588280029296875, 1.5588690185546874, 1.5593216552734375, 1.559299072265625, 1.559120849609375, 1.558898681640625, 1.5588414306640626, 1.55898876953125, 1.5588966064453125, 1.5587901611328125, 1.558739990234375, 1.5589232177734376, 1.5593912353515624, 1.55947314453125, 1.559403564453125, 1.559525390625, 1.559373779296875, 1.5593902587890625, 1.5591658935546875, 1.559456787109375, 1.5621683349609374, 1.558978515625, 1.5591126708984375, 1.55909326171875, 1.5591383056640624, 1.5590767822265625, 1.55901025390625, 1.5589765625, 1.559456787109375, 1.5590185546875, 1.55949462890625, 1.55913623046875, 1.5593287353515626, 1.559487548828125, 1.559192626953125, 1.55945263671875, 1.5594342041015625, 1.5596298828125, 1.5594813232421876, 3.236599853515625, 1.5593328857421875, 1.5589642333984375, 1.55854541015625, 1.558728759765625, 1.558466552734375, 1.55877783203125, 1.5593133544921876, 1.5591546630859374, 1.5588116455078125, 1.5587174072265626, 1.5586641845703124, 1.558667236328125, 1.558561767578125, 1.5583734130859375, 1.558703125, 1.5588648681640624, 1.55964111328125, 1.5586856689453126, 1.558662109375, 1.5585587158203125, 1.558540283203125, 1.5592540283203125, 1.558740966796875, 1.559257080078125, 1.5590430908203126, 1.5589775390625, 1.558866943359375, 1.5591044921875, 1.5596021728515626, 1.559546875, 1.55960009765625, 1.55951513671875, 1.5589847412109374, 1.5592540283203125, 1.559413818359375, 1.5594434814453124, 1.5591956787109376, 1.559342041015625, 1.5589847412109374, 1.5589805908203125, 1.5593165283203125, 1.559119873046875, 1.5594117431640624, 1.5589334716796874, 1.5593184814453125, 1.559287841796875, 1.5593902587890625, 1.5601192626953124, 1.5590482177734375, 1.559271484375, 1.559646240234375, 1.5597353515625, 1.5595601806640624, 1.5594761962890624, 1.559477294921875, 1.5593011474609375, 1.5621007080078124, 1.559258056640625, 1.5594239501953124, 1.559357421875, 1.5594639892578126, 1.559361572265625, 3.23485693359375, 1.5584061279296875, 1.5584429931640624, 1.558455322265625, 1.558666259765625, 1.5583436279296874, 1.5583365478515625, 1.55860888671875, 1.55905224609375, 1.558590576171875, 1.558578125, 1.5587183837890626, 1.55867236328125, 1.5587255859375, 1.5585269775390624, 1.5587215576171876, 1.558656982421875, 1.5586744384765625, 1.5588331298828124, 1.559310302734375, 1.558556640625, 1.5583118896484376, 1.5588935546875, 1.5596380615234375, 1.559288818359375, 1.558983642578125, 1.559357421875, 1.559225341796875, 1.558750244140625, 1.558867919921875, 1.5587225341796875, 1.5589283447265625, 1.5586417236328125, 1.5587911376953125, 1.5586907958984375, 1.559267333984375, 1.5594957275390624, 1.558765625, 1.5612979736328125, 1.5589273681640625, 1.5587225341796875, 1.558982666015625, 1.5588209228515626, 1.5590604248046875, 1.558908935546875, 1.5590697021484374, 1.5586539306640625, 1.5587706298828126, 1.5595069580078125, 1.559635986328125, 1.5590185546875, 1.55902978515625, 1.5588546142578126, 1.5590277099609375, 1.5595592041015625, 1.5593226318359374, 1.5589283447265625, 1.5589744873046876, 1.5589171142578124, 1.5588587646484375, 1.5594556884765625, 1.5590963134765625, 1.5595478515625, 3.235958740234375, 1.5587061767578125, 1.5582955322265626, 1.558918212890625, 1.559405517578125, 1.5590072021484376, 1.559066650390625, 1.559258056640625, 1.558982666015625, 1.5591373291015624, 1.5590123291015625, 1.559109619140625, 1.5587010498046876, 1.5590697021484374, 1.558677490234375, 1.558846435546875, 1.559234619140625, 1.55937890625, 1.558992919921875, 1.5595223388671875, 1.559162841796875, 1.5587706298828126, 1.559435302734375, 1.560753173828125, 1.55900830078125, 1.5587052001953126, 1.5587420654296875, 1.55875634765625, 1.5585545654296875, 1.55881884765625, 1.5590809326171875, 1.559193603515625, 1.559277587890625, 1.55932568359375, 1.55913623046875, 1.5592764892578126, 1.559235595703125, 1.5595654296875, 1.559406494140625, 1.5591424560546876, 1.558719482421875, 1.55981103515625, 1.5590491943359375, 1.5598408203125, 1.55958984375, 1.55905029296875, 1.5590296630859375, 1.5592437744140626, 1.559709716796875, 1.559160888671875, 1.5592642822265625, 1.55951513671875, 1.559525390625, 1.55964111328125, 1.559710693359375, 1.5596390380859375, 1.5594691162109375, 1.55936767578125, 1.5593133544921876, 1.5591116943359375, 1.5594761962890624, 1.5594700927734375, 1.5595284423828124, 3.23728076171875, 1.558865966796875, 1.5586630859375, 1.5593482666015626, 1.5598438720703125, 1.559294921875, 1.559099365234375, 1.5591485595703125, 1.558935546875, 1.55944970703125, 1.558636474609375, 1.5588331298828124, 1.5585986328125, 1.558814697265625, 1.55905224609375, 1.5590338134765624, 1.56031591796875, 1.5590655517578125, 1.5592652587890625, 1.5588966064453125, 1.5590400390625, 1.5587420654296875, 1.5598909912109375, 1.559056396484375, 1.5592652587890625, 1.5594056396484375, 1.5589385986328126, 1.5587860107421876, 1.55886083984375, 1.5590543212890624, 1.559300048828125, 1.5590921630859376, 1.559215087890625, 1.5589744873046876, 1.5589600830078125, 1.5591177978515625, 1.5594957275390624, 1.5592960205078126, 1.558877197265625, 1.5592017822265625, 1.5588270263671875, 1.5589222412109376, 1.5591588134765626, 1.559298095703125, 1.5588055419921876, 1.5590748291015626, 1.559099365234375, 1.5595028076171875, 1.5594915771484374, 1.5594495849609376, 1.559300048828125, 1.55938916015625, 1.5596697998046876, 1.5595755615234375, 1.5595201416015625, 1.5593564453125, 1.5596134033203124, 1.55945263671875, 1.5595294189453126, 1.5592764892578126, 1.559214111328125, 1.55919873046875, 1.5595919189453125, 3.238277099609375, 1.5593380126953125, 1.558845458984375, 1.559089111328125, 1.5596502685546876, 1.559151611328125, 1.55905126953125, 1.5589949951171875, 1.558698974609375, 1.5589119873046875, 1.559118896484375, 1.5591055908203124, 1.5588433837890625, 1.55887109375, 1.559098388671875, 1.559488525390625, 1.5590921630859376, 1.5589212646484376, 1.5586201171875, 1.5587542724609376, 1.5588372802734376, 1.5583734130859375, 1.559034912109375, 1.5590389404296876, 1.5593184814453125, 1.559047119140625, 1.559078857421875, 1.5590113525390625, 1.5589908447265626, 1.5593114013671876, 1.559214111328125, 1.559314453125, 1.5593348388671875, 1.5594014892578125, 1.5593011474609375, 1.55919873046875, 1.5591455078125, 1.559130126953125, 1.5589488525390625, 1.55922021484375, 1.5590164794921875, 1.55928369140625, 1.5593359375, 1.55940869140625, 1.5589334716796874, 1.5590072021484376, 1.5590543212890624, 1.5592960205078126, 1.5591453857421875, 1.5592960205078126, 1.55916796875, 1.55928271484375, 1.559329833984375, 1.5590318603515625, 1.5594649658203126, 1.5592314453125, 1.55926123046875, 1.5591290283203125, 1.5590205078125, 1.5590174560546874, 1.559034912109375, 1.5591658935546875, 1.559373779296875, 3.237329833984375, 1.558613037109375, 1.5583804931640626, 1.5587542724609376, 1.5585423583984375, 1.559004150390625, 1.5588382568359376, 1.55866015625, 1.5590809326171875, 1.558877197265625, 1.558772705078125, 1.558992919921875, 1.558794189453125, 1.559083984375, 1.55869287109375, 1.5590604248046875, 1.55894580078125, 1.5587255859375, 1.5587962646484375, 1.558877197265625, 1.5590615234375, 1.558513671875, 1.5592530517578125, 1.5587318115234374, 1.5593697509765625, 1.559119873046875, 1.5611954345703125, 1.559103515625, 1.5589058837890626, 1.5593779296875, 1.559484375, 1.5593184814453125, 1.5594208984375, 1.5591065673828124, 1.559189453125, 1.5593656005859375, 1.5593656005859375, 1.55962060546875, 1.5591669921875, 1.5591322021484375, 1.559208984375, 1.5593665771484375, 1.559109619140625, 1.5592222900390624, 1.5591434326171876, 1.559194580078125, 1.5592008056640625, 1.55911376953125, 1.55950390625, 1.5590687255859375, 1.559582763671875, 1.5593564453125, 1.5598284912109375, 1.5596851806640626, 1.55951513671875, 1.55947216796875, 1.5594691162109375, 1.5591895751953124, 1.5594127197265626, 1.55911572265625, 1.559299072265625, 1.5592508544921875, 1.5591474609375]",tokens/s,0.6316462606508407,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-13b,facebook/opt-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,3081.781248,9521.594368,0.0,8875.147264,8264.141824,s,10,10.63840625,1.0638406249999999,0.0011581823391520636,1.0637650756835937,1.0652460571289062,1.0654749572753905,1.0656580773925781,"[1.0649481201171875, 1.065703857421875, 1.0634771728515624, 1.0627923583984376, 1.063096435546875, 1.0621585693359374, 1.064052978515625, 1.0644849853515626, 1.0651951904296875, 1.06249658203125]",tokens/s,240.63754850497463,kWh,1.2549749844604067e-05,6.874677577252441e-06,5.877399146358986e-05,7.819841888544636e-05,tokens/kWh,3273723.479946787,MB,3081.781248,9521.594368,0.0,8875.147264,8556.643328,s,10,631.86266796875,63.186266796874996,0.007118498406389631,63.1850546875,63.19375234375,63.198333203125,63.201997890625,"[63.192734375, 63.2029140625, 63.18565625, 63.17730078125, 63.18101953125, 63.1805546875, 63.18579296875, 63.18146875, 63.1907734375, 63.184453125]",tokens/s,0.9970520999844192,kWh,0.0007460630791551536,0.0004089103833046283,0.003496975492022614,0.004651948954482396,tokens/kWh,13542.710940389017,,s,629,640.4335947265614,1.0181774160994632,0.12635276340148643,1.0029219970703125,1.0034655395507812,1.0036467651367187,2.0656750390625,"[1.00284619140625, 1.002883056640625, 1.0025042114257812, 1.0028574829101562, 1.0028175659179688, 1.002925048828125, 1.0030203247070313, 1.0030990600585938, 1.0027622680664063, 1.0032742309570313, 1.0026455078125, 1.003062255859375, 1.0025420532226563, 1.0029680786132813, 1.0027857666015625, 1.00307763671875, 1.0029732055664062, 1.0030858154296876, 1.002630126953125, 1.0030980834960936, 1.0028267822265624, 1.003293701171875, 1.0026495971679688, 1.0032005004882814, 1.0028339233398438, 1.0035537719726562, 1.0033336181640624, 1.0031492919921876, 1.0029854736328125, 1.0029179077148438, 1.0027100219726564, 1.0030469360351562, 1.0027202758789062, 1.0029025268554688, 1.002692626953125, 1.003177978515625, 1.0032864990234376, 1.0032291870117187, 1.0031237182617188, 1.0033694458007814, 1.0031052856445313, 1.0034606323242188, 1.0029014892578125, 1.0031063232421875, 1.002977294921875, 1.0030796508789062, 1.0032691040039063, 1.003052001953125, 1.003093994140625, 1.0031728515625, 1.0026219482421874, 1.003230224609375, 1.0031892700195313, 1.003472900390625, 1.0031318969726561, 1.0034933471679688, 1.0038251342773437, 1.0035701904296874, 1.0035916748046876, 1.0035220336914064, 1.0029598999023437, 1.0031124267578124, 2.068518798828125, 1.0033325805664062, 1.0031472778320312, 1.0031912841796875, 1.0029844360351563, 1.0031206665039063, 1.0034401245117188, 1.0029373168945312, 1.0032005004882814, 1.00276123046875, 1.003198486328125, 1.0033233642578125, 1.0032588500976563, 1.0031349487304688, 1.0031708374023438, 1.0031646728515624, 1.0034074096679688, 1.0032445068359375, 1.0034769897460938, 1.0028963623046876, 1.0031943969726562, 1.0029393920898437, 1.0032639770507812, 1.0037217407226562, 1.0034319458007812, 1.0026045532226562, 1.003093017578125, 1.0026946411132813, 1.0035282592773438, 1.0035670166015624, 1.0035159301757812, 1.0033766479492188, 1.0034708251953126, 1.0032630004882812, 1.0034298706054687, 1.002693603515625, 1.0028206176757812, 1.0027888793945312, 1.0029660034179688, 1.0028257446289062, 1.0030294799804687, 1.00284619140625, 1.003236328125, 1.0038517456054687, 1.0034739379882813, 1.0031769409179687, 1.003452392578125, 1.0032343139648439, 1.0034002075195312, 1.0033592529296875, 1.0034892578125, 1.003430908203125, 1.0036060180664061, 1.0037442626953126, 1.0036817626953125, 1.003325439453125, 1.0032271118164062, 1.0029475708007813, 1.0032077026367188, 1.0028257446289062, 1.0033950805664062, 1.0032373657226563, 1.0033449096679687, 2.06620166015625, 1.003240478515625, 1.0030346069335938, 1.0028810424804688, 1.0028892211914062, 1.0025840454101562, 1.0026762084960938, 1.0028451538085938, 1.0030079956054687, 1.0030458984375, 1.0029598999023437, 1.0025256958007813, 1.002809326171875, 1.0025021362304687, 1.002545166015625, 1.002588134765625, 1.0025830688476562, 1.0028103637695311, 1.002876953125, 1.0027571411132812, 1.0027847900390625, 1.0027694091796875, 1.0029219970703125, 1.0027468872070313, 1.0030151977539064, 1.002692626953125, 1.0029998168945313, 1.0028185424804688, 1.002977294921875, 1.0030653686523439, 1.0028308715820313, 1.0027254028320312, 1.0027396850585937, 1.002481689453125, 1.0026741943359374, 1.002397705078125, 1.0026148071289063, 1.0031001586914063, 1.003051025390625, 1.0032445678710937, 1.0031226806640625, 1.00276123046875, 1.0029619140625, 1.0027110595703126, 1.00299365234375, 1.0028328857421875, 1.0028206176757812, 1.0037903442382812, 1.0038609619140626, 1.0040064086914062, 1.0035978393554688, 1.0031810302734374, 1.0034503784179687, 1.0034176025390624, 1.0035722045898436, 1.0029711303710938, 1.0032793579101562, 1.003167724609375, 1.0029445190429687, 1.0031759643554687, 1.0028656616210938, 1.002893310546875, 1.0028052368164062, 2.0654345703125, 1.0026424560546876, 1.0026322021484375, 1.0025789184570313, 1.0027899169921874, 1.0024918823242188, 1.0032875366210938, 1.002587158203125, 1.002587158203125, 1.0025154418945312, 1.0026045532226562, 1.0023638916015625, 1.002629150390625, 1.0024959716796875, 1.0028257446289062, 1.0028626098632814, 1.0027550659179687, 1.0028287963867188, 1.0026536865234374, 1.0024857788085937, 1.0027151489257813, 1.0024734497070313, 1.0031738891601563, 1.0028011474609375, 1.003345947265625, 1.002503173828125, 1.0029957275390624, 1.0027591552734374, 1.003062255859375, 1.003240478515625, 1.0029967651367186, 1.002982421875, 1.0035916748046876, 1.0024970092773438, 1.0031472778320312, 1.0028124389648438, 1.0027591552734374, 1.0026690673828125, 1.0027110595703126, 1.0026762084960938, 1.0028493041992188, 1.0025471801757813, 1.0032220458984376, 1.0027745361328124, 1.0030745849609375, 1.0030172119140626, 1.0028216552734375, 1.002661865234375, 1.0027734985351562, 1.00288818359375, 1.0029906005859375, 1.00273046875, 1.0033080444335938, 1.0029434814453124, 1.0028789672851564, 1.0029700927734375, 1.0029117431640624, 1.0027509765625, 1.002767333984375, 1.0027171630859375, 1.0029578247070312, 1.002545166015625, 1.003062255859375, 2.0657685546875, 1.0028359375, 1.0028124389648438, 1.0024847412109374, 1.0028124389648438, 1.0025441284179688, 1.0027601928710939, 1.0023495483398437, 1.0028533935546875, 1.0025604858398438, 1.0030325927734376, 1.0025574340820314, 1.0029946899414062, 1.0025062255859376, 1.0027683715820312, 1.002640380859375, 1.0027284545898438, 1.0027683715820312, 1.0030612182617187, 1.002598388671875, 1.0030366821289063, 1.0028635864257813, 1.0032056274414063, 1.0027100219726564, 1.0028585205078124, 1.0025328369140625, 1.0029660034179688, 1.0023075561523438, 1.0032752685546875, 1.002946533203125, 1.0032271118164062, 1.0027387084960937, 1.0030264282226562, 1.0025748291015626, 1.0029188842773438, 1.0027284545898438, 1.002767333984375, 1.0028052368164062, 1.0030530395507813, 1.0026967163085938, 1.0031349487304688, 1.0030233764648437, 1.0033059692382813, 1.002514404296875, 1.0027438354492189, 1.0027816772460938, 1.0031032104492188, 1.0027970581054688, 1.0033837890625, 1.0027315063476563, 1.0034063110351563, 1.0029496459960938, 1.0030530395507813, 1.0026383056640624, 1.00305615234375, 1.0027919311523437, 1.0027427978515624, 1.0032557983398438, 1.0037903442382812, 1.0031646728515624, 1.003399169921875, 1.0027448120117188, 1.0029649658203126, 2.064649169921875, 1.0027888793945312, 1.0026015014648437, 1.0022328491210937, 1.0030059814453125, 1.0026045532226562, 1.0029281005859374, 1.0032117919921875, 1.0038660888671875, 1.0030458984375, 1.0028523559570313, 1.00279296875, 1.0029219970703125, 1.00295068359375, 1.0030786743164062, 1.00269775390625, 1.0029230346679687, 1.0029240112304687, 1.0026373291015624, 1.0023751220703125, 1.0028328857421875, 1.0023956298828125, 1.002513427734375, 1.002144775390625, 1.003087890625, 1.0024324951171875, 1.0031769409179687, 1.0026843872070312, 1.0027018432617187, 1.0026710815429687, 1.0026076049804689, 1.0026281127929688, 1.00263525390625, 1.0025758666992188, 1.00335107421875, 1.0025952758789063, 1.0027919311523437, 1.0030172119140626, 1.0029312133789063, 1.0026270751953126, 1.0026127319335938, 1.0024099731445313, 1.0028635864257813, 1.0025287475585938, 1.003124755859375, 1.0027868041992187, 1.0029752197265625, 1.0032691040039063, 1.0028994750976563, 1.0029813842773438, 1.0031022338867188, 1.0025799560546875, 1.0030069580078125, 1.0030786743164062, 1.0034902954101563, 1.00322509765625, 1.0034298706054687, 1.0037340087890625, 1.0030960693359374, 1.00282470703125, 1.0031349487304688, 1.0028359375, 1.0032772827148437, 2.06746826171875, 1.0032711791992188, 1.00282470703125, 1.0029578247070312, 1.0026793212890626, 1.0024990844726562, 1.0027325439453125, 1.0022778930664062, 1.0023464965820312, 1.0023444213867188, 1.0030346069335938, 1.0042449951171875, 1.0037616577148438, 1.0032691040039063, 1.0031185913085938, 1.0024017944335937, 1.0026875, 1.0032916259765625, 1.0031452026367187, 1.0032855224609376, 1.0035599365234376, 1.0035138549804687, 1.0038927612304687, 1.0032435302734375, 1.002841064453125, 1.0024775390625, 1.0027438354492189, 1.0022512817382812, 1.002450927734375, 1.00248779296875, 1.002692626953125, 1.0029946899414062, 1.0030489501953126, 1.0032496337890624, 1.0034002075195312, 1.003052001953125, 1.0032271118164062, 1.0028707885742187, 1.0030796508789062, 1.0030028686523438, 1.0040872802734375, 1.00299365234375, 1.0028626098632814, 1.00265576171875, 1.002756103515625, 1.002808349609375, 1.0027335815429688, 1.0026813354492188, 1.00265673828125, 1.002919921875, 1.0032476196289062, 1.0029752197265625, 1.0029025268554688, 1.00297216796875, 1.0027991333007813, 1.0026178588867187, 1.002767333984375, 1.0026639404296875, 1.0027540283203125, 1.0026741943359374, 1.0029127807617189, 1.002988525390625, 1.0027018432617187, 2.066872314453125, 1.0026639404296875, 1.00259228515625, 1.0022307739257812, 1.0025277709960938, 1.0030377197265625, 1.0026045532226562, 1.002482666015625, 1.0029168701171876, 1.002771484375, 1.0028124389648438, 1.0024642333984375, 1.0027807006835938, 1.0025420532226563, 1.0025379638671874, 1.002556396484375, 1.002534912109375, 1.0028687133789063, 1.002840087890625, 1.0028328857421875, 1.0028451538085938, 1.0025236206054688, 1.0027632446289063, 1.0025379638671874, 1.0027888793945312, 1.0026751708984376, 1.003261962890625, 1.0027161865234375, 1.0028973999023438, 1.0030325927734376, 1.00279296875, 1.0027479248046876, 1.0025471801757813, 1.0023690185546874, 1.0029291381835939, 1.0029486083984376, 1.0027970581054688, 1.0028840942382813, 1.0029475708007813, 1.0030294799804687, 1.0031657104492187, 1.0029014892578125, 1.003304931640625, 1.0028472290039063, 1.0032578735351563, 1.0034647216796875, 1.0028277587890626, 1.0030632934570312, 1.0030980834960936, 1.00314111328125, 1.0028748779296874, 1.002660888671875, 1.0028431396484374, 1.0028472290039063, 1.0029691162109375, 1.0030172119140626, 1.002925048828125, 1.0033325805664062, 1.0035189819335937, 1.0036541137695312, 1.004179443359375, 1.0036951293945313, 1.002919921875, 2.06862841796875, 1.0036357421875, 1.0038538208007812, 1.0032230224609375, 1.0033796997070312, 1.002618896484375, 1.002708984375, 1.0022072143554688, 1.0026813354492188, 1.0022891235351563, 1.002555419921875, 1.0025963745117188, 1.00295166015625, 1.0026690673828125, 1.002914794921875, 1.003019287109375, 1.0031646728515624, 1.002956787109375, 1.0028861694335938, 1.0026751708984376, 1.003303955078125, 1.0028124389648438, 1.0030386962890625, 1.0028052368164062, 1.00309912109375, 1.0027315063476563, 1.0034688110351562, 1.0020556640625, 1.003325439453125, 1.0033530883789064, 1.003283447265625, 1.0034749145507813, 1.0035108032226563, 1.0035435791015626, 1.0037903442382812, 1.0029168701171876, 1.0031943969726562, 1.0024591064453126, 1.0026526489257812, 1.0026332397460938, 1.0027837524414063, 1.0034381103515626, 1.0032527465820313, 1.0027008056640625, 1.0030745849609375, 1.002945556640625, 1.0031943969726562, 1.0027479248046876, 1.0030663452148438, 1.002672119140625, 1.0029179077148438, 1.0026751708984376, 1.002841064453125, 1.0025738525390624, 1.0032977905273437, 1.0027786254882813, 1.0031134643554687, 1.00257177734375, 1.0031124267578124, 1.0026741943359374, 1.0032947387695312, 1.0030386962890625, 1.0032332763671874, 2.068487060546875, 1.0029629516601561, 1.0030684204101563, 1.0028482666015626, 1.0030899047851562, 1.0025728149414062, 1.0029260864257812, 1.0024949951171875, 1.0026229858398437, 1.0027960205078126, 1.003514892578125, 1.0023598022460938, 1.0027949829101563, 1.0025420532226563, 1.0026260375976563, 1.00259228515625, 1.0028103637695311, 1.002603515625, 1.00250830078125, 1.002608642578125, 1.0032783203125, 1.0025861206054687, 1.0032824096679687, 1.0027950439453126, 1.0030663452148438, 1.0023987426757812, 1.0027417602539062, 1.0023075561523438, 1.0025850830078125, 1.0028851318359375, 1.003109375, 1.0031339721679688, 1.003430908203125, 1.0028308715820313, 1.00331005859375, 1.0026096801757813, 1.0028687133789063, 1.0031749267578125, 1.003378662109375, 1.0034810791015625, 1.0036776733398438, 1.0027991333007813, 1.0026577758789061, 1.0023618774414063, 1.002555419921875, 1.0025308227539063, 1.00274072265625, 1.0025973510742188, 1.0027908935546874, 1.003040771484375, 1.0038589477539062, 1.002471435546875, 1.003072509765625, 1.0029865112304688, 1.0029404296875, 1.0026116943359376, 1.003293701171875, 1.00347802734375, 1.0035588989257813, 1.00347802734375, 1.0037841796875, 1.0034053344726563, 1.0032077026367188]",tokens/s,0.9821471034300691,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2-large,openai-community/gpt2-large,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1255.170048,2645.03296,0.0,1998.585856,1692.285952,s,10,0.19596438217163084,0.019596438217163083,0.0005758753327798738,0.019594847679138182,0.020116428565979005,0.020397430515289305,0.020622232074737547,"[0.02067843246459961, 0.01995683288574219, 0.018657087326049804, 0.019397823333740235, 0.01875289535522461, 0.019354879379272463, 0.019658687591552735, 0.019531007766723632, 0.020053983688354492, 0.019922752380371094]",tokens/s,13063.598454120523,kWh,2.196003245524462e-07,1.203308225381941e-07,6.683390311598506e-07,1.008270178250491e-06,tokens/kWh,253900200.08744156,MB,1255.46496,2645.03296,0.0,1998.585856,1740.085248,s,10,11.909100097656252,1.1909100097656249,0.015963798664011486,1.1926223754882814,1.1998400390625,1.2087030395507812,1.215793439941406,"[1.2175660400390624, 1.1913038330078125, 1.18787646484375, 1.1978704833984375, 1.1491290283203126, 1.195384033203125, 1.1938314208984375, 1.19254345703125, 1.19089404296875, 1.1927012939453125]",tokens/s,52.90072254275419,kWh,1.3774184907753079e-05,7.5477682720333215e-06,2.8730712265842306e-05,5.005266544562869e-05,tokens/kWh,1258674.227218444,,s,629,12.064169954299933,0.019179920436088915,0.0023597437619934914,0.018893823623657227,0.019228466796875003,0.019791871643066405,0.038067117614746133,"[0.02008166313171387, 0.01979801559448242, 0.0196177921295166, 0.01978265571594238, 0.019717119216918946, 0.019862527847290038, 0.019771392822265626, 0.01966592025756836, 0.01981439971923828, 0.019919872283935547, 0.019991552352905274, 0.0198154239654541, 0.01984102439880371, 0.019713024139404296, 0.019945472717285157, 0.019693599700927735, 0.019734495162963866, 0.019999744415283204, 0.019870719909667968, 0.019916799545288084, 0.019698688507080078, 0.01944063949584961, 0.019574783325195313, 0.019809280395507813, 0.019941375732421874, 0.019547136306762695, 0.019590143203735352, 0.019150848388671874, 0.018918399810791017, 0.019148799896240236, 0.01879756736755371, 0.018762752532958983, 0.01876479911804199, 0.018760704040527345, 0.018949119567871094, 0.01901158332824707, 0.018997247695922852, 0.018856960296630858, 0.018832384109497072, 0.018873344421386717, 0.018898944854736328, 0.018821151733398437, 0.01887945556640625, 0.018886655807495118, 0.018907136917114258, 0.01886412811279297, 0.01882521629333496, 0.01883033561706543, 0.01877299118041992, 0.01884569549560547, 0.01886310386657715, 0.018886655807495118, 0.01883340835571289, 0.01906790351867676, 0.01885081672668457, 0.018737152099609376, 0.018815999984741212, 0.01884774398803711, 0.019143680572509765, 0.018949119567871094, 0.020289535522460937, 0.01920512008666992, 0.03925708770751953, 0.018815999984741212, 0.01889587211608887, 0.018832384109497072, 0.018815999984741212, 0.018876415252685547, 0.01883647918701172, 0.018874368667602538, 0.018893823623657227, 0.018908159255981445, 0.018892799377441406, 0.01882624053955078, 0.018942975997924806, 0.018923519134521484, 0.018984960556030273, 0.01907711982727051, 0.018955263137817382, 0.018844671249389648, 0.018907136917114258, 0.018997247695922852, 0.0189040641784668, 0.018984960556030273, 0.01885081672668457, 0.01881705665588379, 0.018884576797485352, 0.01886720085144043, 0.018889728546142577, 0.01884774398803711, 0.018916351318359375, 0.018886655807495118, 0.018868223190307617, 0.018915327072143554, 0.01883852767944336, 0.018860031127929687, 0.018909183502197266, 0.018886655807495118, 0.018922496795654296, 0.018905088424682616, 0.018777088165283205, 0.01884364891052246, 0.018903039932250978, 0.018914304733276367, 0.018931711196899414, 0.018917375564575196, 0.018893823623657227, 0.018744319915771485, 0.019489791870117186, 0.01881497573852539, 0.018911231994628908, 0.018894847869873048, 0.018968576431274413, 0.01905971145629883, 0.018966527938842775, 0.01887027168273926, 0.018861055374145508, 0.018988031387329102, 0.018940959930419922, 0.01884156799316406, 0.018929664611816405, 0.018964479446411133, 0.018922496795654296, 0.01888467216491699, 0.018768831253051756, 0.03698995208740234, 0.018000896453857423, 0.01803878402709961, 0.01861529541015625, 0.01846886444091797, 0.018893823623657227, 0.01886207962036133, 0.018841632843017576, 0.018986976623535157, 0.01903001594543457, 0.018913280487060546, 0.018872352600097658, 0.018723808288574218, 0.01885593605041504, 0.018965503692626954, 0.018915327072143554, 0.018923519134521484, 0.01879347229003906, 0.018799615859985352, 0.01884876823425293, 0.01886310386657715, 0.018957311630249024, 0.0188723201751709, 0.01919385528564453, 0.018920480728149416, 0.018839519500732423, 0.018932735443115235, 0.01881395149230957, 0.018926591873168946, 0.019110912322998046, 0.01883647918701172, 0.018770944595336913, 0.018880512237548826, 0.01885081672668457, 0.018919424057006837, 0.018876415252685547, 0.018939903259277344, 0.01885081672668457, 0.018897920608520507, 0.018840576171875, 0.018856960296630858, 0.01884876823425293, 0.01887539291381836, 0.01882009506225586, 0.018813983917236328, 0.018836448669433594, 0.018860031127929687, 0.019740671157836915, 0.019281919479370118, 0.018899967193603515, 0.018890783309936522, 0.018863071441650392, 0.01886412811279297, 0.01881804847717285, 0.018817024230957033, 0.018861055374145508, 0.01885081672668457, 0.018868223190307617, 0.018972671508789063, 0.018760704040527345, 0.018917375564575196, 0.018985984802246093, 0.01883647918701172, 0.03859558486938477, 0.018811904907226562, 0.019163135528564454, 0.02009702491760254, 0.019518463134765626, 0.018994176864624023, 0.01887948799133301, 0.019116031646728517, 0.01887539291381836, 0.018940927505493164, 0.01884364891052246, 0.01884364891052246, 0.01904435157775879, 0.018973695755004884, 0.018964479446411133, 0.019170303344726563, 0.01942630386352539, 0.018782207489013672, 0.018939903259277344, 0.018861055374145508, 0.018964479446411133, 0.018869247436523438, 0.018767871856689454, 0.01895427131652832, 0.018802656173706054, 0.018971647262573242, 0.018899967193603515, 0.01889587211608887, 0.01884876823425293, 0.019386367797851564, 0.018991104125976564, 0.019079168319702147, 0.018916351318359375, 0.018882560729980468, 0.01925632095336914, 0.018929664611816405, 0.018899967193603515, 0.018811935424804686, 0.01888355255126953, 0.018973695755004884, 0.018752511978149415, 0.0189040641784668, 0.019373056411743163, 0.02027008056640625, 0.020695039749145508, 0.01957683181762695, 0.019105791091918945, 0.01883852767944336, 0.018929664611816405, 0.018824192047119142, 0.01904025650024414, 0.01886412811279297, 0.01887539291381836, 0.01883852767944336, 0.01881292724609375, 0.018732032775878905, 0.018886655807495118, 0.018578432083129884, 0.01839926338195801, 0.018844640731811524, 0.018790399551391602, 0.01878937530517578, 0.018752511978149415, 0.03698483276367188, 0.017928192138671875, 0.01796505546569824, 0.01789952087402344, 0.0178657283782959, 0.017949695587158202, 0.017992704391479493, 0.017977344512939454, 0.017977344512939454, 0.018036735534667968, 0.017976320266723633, 0.017991680145263672, 0.017904640197753906, 0.01803468894958496, 0.01804902458190918, 0.018043903350830077, 0.017953792572021485, 0.01813811111450195, 0.01799782371520996, 0.018018304824829103, 0.017966079711914062, 0.018051071166992186, 0.017977344512939454, 0.01800704002380371, 0.01799679946899414, 0.01804083251953125, 0.017994752883911135, 0.018061311721801757, 0.018028543472290038, 0.018044927597045898, 0.017864704132080078, 0.017921024322509766, 0.017951744079589844, 0.017963008880615236, 0.017930240631103517, 0.01801420783996582, 0.017941503524780272, 0.018001920700073244, 0.017939456939697264, 0.017915903091430666, 0.017966079711914062, 0.017979391098022462, 0.017955839157104494, 0.01800294494628906, 0.017899551391601563, 0.017976287841796876, 0.01799679946899414, 0.01827123260498047, 0.01843097686767578, 0.018742271423339844, 0.01887948799133301, 0.018784255981445314, 0.018868223190307617, 0.01879859161376953, 0.01882009506225586, 0.01982771110534668, 0.02038377571105957, 0.020016096115112306, 0.01902079963684082, 0.018759679794311524, 0.018523136138916017, 0.018774015426635742, 0.018930688858032226, 0.03848601531982422, 0.019079168319702147, 0.018916351318359375, 0.018967552185058592, 0.01886207962036133, 0.01879347229003906, 0.018959360122680666, 0.01920921516418457, 0.019406848907470704, 0.018989055633544923, 0.018952192306518553, 0.019162111282348633, 0.018876415252685547, 0.01877299118041992, 0.01900748825073242, 0.018959360122680666, 0.019094528198242186, 0.01884364891052246, 0.018897920608520507, 0.018896896362304686, 0.01880473518371582, 0.018931711196899414, 0.018745344161987306, 0.01838591957092285, 0.01842995262145996, 0.01898089599609375, 0.01894806480407715, 0.018896896362304686, 0.018777151107788086, 0.018982847213745116, 0.01923583984375, 0.018766847610473633, 0.01887846374511719, 0.018757631301879883, 0.018769920349121092, 0.019090431213378906, 0.019116031646728517, 0.01899929618835449, 0.019524608612060547, 0.02007961654663086, 0.01907711982727051, 0.01902284812927246, 0.018975744247436522, 0.019171327590942384, 0.018874368667602538, 0.018787328720092773, 0.01904844856262207, 0.018750463485717773, 0.01922662353515625, 0.018884607315063476, 0.018779136657714843, 0.01897881507873535, 0.019174400329589843, 0.019117055892944337, 0.01881907272338867, 0.01883955192565918, 0.019125247955322267, 0.01887846374511719, 0.018976768493652343, 0.018964479446411133, 0.018942975997924806, 0.01901260757446289, 0.019120128631591796, 0.03889766311645508, 0.018888704299926756, 0.01882624053955078, 0.01916316795349121, 0.01887331199645996, 0.01903104019165039, 0.018936832427978514, 0.018971647262573242, 0.018852863311767578, 0.018949119567871094, 0.018922496795654296, 0.018955263137817382, 0.0188221435546875, 0.018824192047119142, 0.018950143814086915, 0.018929664611816405, 0.018951168060302736, 0.01887129592895508, 0.019127296447753905, 0.019130367279052735, 0.018890752792358398, 0.018958335876464845, 0.0188723201751709, 0.019166208267211913, 0.01922150421142578, 0.018877439498901367, 0.018980863571166993, 0.018884607315063476, 0.0188590087890625, 0.018983936309814452, 0.019647487640380858, 0.018966527938842775, 0.018917375564575196, 0.01881907272338867, 0.018967552185058592, 0.018912256240844725, 0.018912256240844725, 0.01900032043457031, 0.018948095321655273, 0.01884979248046875, 0.018891775131225585, 0.018865152359008788, 0.018935808181762694, 0.018865152359008788, 0.018948095321655273, 0.018892799377441406, 0.018840576171875, 0.01882009506225586, 0.018924543380737305, 0.01885798454284668, 0.018974752426147462, 0.018999263763427733, 0.018900991439819336, 0.018874368667602538, 0.018922496795654296, 0.018955263137817382, 0.018931711196899414, 0.01878937530517578, 0.018860031127929687, 0.018972671508789063, 0.018959360122680666, 0.019132448196411134, 0.018904031753540038, 0.03866828918457031, 0.01882521629333496, 0.01878118324279785, 0.018948095321655273, 0.018792448043823243, 0.018868223190307617, 0.018778112411499022, 0.018958368301391602, 0.01888559913635254, 0.0188272647857666, 0.018973695755004884, 0.01886720085144043, 0.018776063919067384, 0.01901055908203125, 0.018993152618408202, 0.018917375564575196, 0.019162111282348633, 0.018950143814086915, 0.018990079879760743, 0.018930688858032226, 0.018890752792358398, 0.018946048736572265, 0.018886655807495118, 0.018832384109497072, 0.018940927505493164, 0.018965503692626954, 0.01929113578796387, 0.018768896102905275, 0.018882560729980468, 0.018877439498901367, 0.01883340835571289, 0.018912256240844725, 0.018927648544311525, 0.01891529655456543, 0.018811904907226562, 0.018910207748413087, 0.01882009506225586, 0.018910207748413087, 0.018745344161987306, 0.018956287384033203, 0.018868223190307617, 0.018768896102905275, 0.01880575942993164, 0.018736127853393555, 0.018824192047119142, 0.018956287384033203, 0.01884979248046875, 0.018948095321655273, 0.01881907272338867, 0.01880985641479492, 0.01883955192565918, 0.018891775131225585, 0.01883340835571289, 0.01884979248046875, 0.01884569549560547, 0.018924543380737305, 0.018920448303222655, 0.018898944854736328, 0.018893823623657227, 0.019284992218017577, 0.01971609687805176, 0.01968639945983887, 0.01919692802429199, 0.03932364654541016, 0.018924543380737305, 0.019127296447753905, 0.01901875114440918, 0.018907136917114258, 0.018896896362304686, 0.01885798454284668, 0.01881292724609375, 0.01900441551208496, 0.018884607315063476, 0.018885631561279297, 0.01883955192565918, 0.018886688232421876, 0.018969663619995115, 0.018922399520874024, 0.018976768493652343, 0.018914304733276367, 0.01907302474975586, 0.019050495147705078, 0.018923519134521484, 0.018939903259277344, 0.0189040641784668, 0.018877439498901367, 0.01883852767944336, 0.018897920608520507, 0.018779136657714843, 0.018916351318359375, 0.018919424057006837, 0.018974720001220705, 0.018869247436523438, 0.01886617660522461, 0.018947071075439453, 0.018897920608520507, 0.018967552185058592, 0.018948095321655273, 0.018880512237548826, 0.01887846374511719, 0.018902015686035157, 0.01886310386657715, 0.01887846374511719, 0.018799615859985352, 0.018912256240844725, 0.018832384109497072, 0.01883852767944336, 0.018920448303222655, 0.019014656066894533, 0.0188272647857666, 0.018974720001220705, 0.01883852767944336, 0.018874368667602538, 0.018527231216430663, 0.018898944854736328, 0.01881292724609375, 0.01879756736755371, 0.018902015686035157, 0.018908159255981445, 0.018832384109497072, 0.018918399810791017, 0.018792448043823243, 0.018888704299926756, 0.01884880065917969, 0.018927583694458006, 0.018953216552734374, 0.039212032318115236, 0.018920448303222655, 0.018912256240844725, 0.018958335876464845, 0.018861055374145508, 0.018928640365600585, 0.01884774398803711, 0.01884569549560547, 0.01886617660522461, 0.018934783935546876, 0.018942975997924806, 0.01904332733154297, 0.018899967193603515, 0.018918399810791017, 0.01901670455932617, 0.018998271942138673, 0.019309568405151366, 0.02033459281921387, 0.01902899169921875, 0.018954240798950195, 0.019001344680786132, 0.018902015686035157, 0.018910207748413087, 0.018935808181762694, 0.01882828712463379, 0.0188590087890625, 0.019208192825317383, 0.019014656066894533, 0.018882560729980468, 0.019042303085327148, 0.019025951385498046, 0.019065824508666993, 0.018945024490356444, 0.018880512237548826, 0.018861055374145508, 0.018893823623657227, 0.01887539291381836, 0.018876415252685547, 0.01903104019165039, 0.018890752792358398, 0.01881497573852539, 0.01882009506225586, 0.01887948799133301, 0.01878835105895996, 0.018860031127929687, 0.018661376953125, 0.018603008270263673, 0.01880473518371582, 0.018817024230957033, 0.0188723201751709, 0.018905088424682616, 0.018860031127929687, 0.018917375564575196, 0.018925567626953126, 0.018750463485717773, 0.01882009506225586, 0.018754560470581053, 0.0188538875579834, 0.01883443260192871, 0.01882931137084961, 0.01881088066101074, 0.018900991439819336, 0.018924543380737305]",tokens/s,52.13785966068979,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-72B,Qwen/Qwen1.5-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-70b-hf,meta-llama/Llama-2-70b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -14101,10 +14412,10 @@ ChildProcessError: Traceback (most recent call last): self._buffers[key] = fn(buf) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 112.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,M,M,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-13b-hf,meta-llama/Llama-2-13b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -14112,29 +14423,128 @@ torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GP File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/M/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-7b,stabilityai/stablelm-base-alpha-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-72B,Qwen/Qwen-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained + model_class = get_class_from_dynamic_module( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module + final_module = get_cached_module_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file + modules_needed = check_imports(resolved_module_file) + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports + raise ImportError( +ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,0,0,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/0/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata r = _request_wrapper( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper @@ -14143,9 +14553,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948fd8-3123b8f004e8a25d67ac588c;b342c455-777e-4586-bdba-562372d10dcb) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949513-18f7095e1c0a0dd50cfbd6e8;08addee7-113b-40f5-9f9e-480d6dbc74ac) -Repository Not Found for url: https://huggingface.co/M/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/0/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -14170,11 +14580,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: M is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: 0 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-7b,google/gemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-7b,google/gemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -14203,7 +14613,7 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66948188-61698c3155d92a4641002213;cb1b519a-94d7-4b05-b855-768da720d205) +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66948199-501abf544af13d907f908b6a;6bc76075-90c5-4095-be9e-73b444905df8) 403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. Cannot access content at: https://huggingface.co/google/gemma-7b/resolve/main/config.json. @@ -14248,85 +14658,8 @@ Traceback (most recent call last): OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/gemma-7b is not the path to a directory containing a file named config.json. Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-2.7b,EleutherAI/pythia-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2221.408256,3330.801664,0.0,2684.35456,2447.595008,s,10,2.311121505737305,0.2311121505737305,0.0008602880707090342,0.23093637084960938,0.23197196044921875,0.23249637908935547,0.23291591400146486,"[0.2330207977294922, 0.23185542297363282, 0.23051023864746092, 0.23036329650878906, 0.2304237823486328, 0.2300004119873047, 0.23067584228515625, 0.2311968994140625, 0.231619384765625, 0.23145542907714844]",tokens/s,1107.6873256749418,kWh,2.719861554979074e-06,1.4903567604051204e-06,1.2427491002590687e-05,1.6637709317974884e-05,tokens/kWh,15386733.54050159,MB,2222.546944,3330.801664,0.0,2684.35456,2597.68064,s,10,135.98273144531248,13.598273144531248,0.005626597165862265,13.59927783203125,13.6021646484375,13.60570927734375,13.60854498046875,"[13.60925390625, 13.5985986328125, 13.5982265625, 13.6012080078125, 13.59995703125, 13.5903544921875, 13.5950361328125, 13.600318359375, 13.601376953125, 13.5884013671875]",tokens/s,4.63294120734267,kWh,0.00016051297066488652,8.797306729544289e-05,0.0007245357930120089,0.0009730218309723382,tokens/kWh,64746.74873126358,,s,629,137.8431466979981,0.21914649713513207,0.027476947243743017,0.21579168701171875,0.2161471496582031,0.2163871795654297,0.4466235400390625,"[0.2167510986328125, 0.21612850952148438, 0.2157936706542969, 0.21595852661132814, 0.21579776000976564, 0.21578341674804688, 0.21598515319824219, 0.21577626037597655, 0.21600563049316407, 0.21667738342285156, 0.2159656982421875, 0.21651968383789064, 0.21600767517089844, 0.21581004333496093, 0.21593600463867188, 0.21574656677246093, 0.2157589111328125, 0.21606707763671876, 0.2157782440185547, 0.21572096252441406, 0.2157322235107422, 0.21579058837890625, 0.21588172912597656, 0.21599232482910155, 0.2161080322265625, 0.21578341674804688, 0.21588172912597656, 0.21578341674804688, 0.21624217224121095, 0.21602406311035155, 0.2159482879638672, 0.21581619262695312, 0.21592169189453125, 0.21585302734375, 0.2157742004394531, 0.21580697631835938, 0.2158233642578125, 0.21585305786132813, 0.216163330078125, 0.2158858184814453, 0.21590425109863282, 0.2159718475341797, 0.2159482879638672, 0.21587660217285157, 0.2160394287109375, 0.21591244506835938, 0.2157660217285156, 0.21589913940429686, 0.21592576599121094, 0.21606399536132812, 0.21596365356445313, 0.2158428192138672, 0.21607833862304687, 0.21651866149902343, 0.21638246154785157, 0.21635379028320312, 0.21680844116210937, 0.21638656616210938, 0.21633331298828126, 0.21572709655761718, 0.21570457458496095, 0.21581517028808594, 0.448078857421875, 0.21560012817382812, 0.21530323791503905, 0.21556626892089845, 0.21550796508789063, 0.2154915771484375, 0.21565951538085937, 0.21555711364746094, 0.21552742004394532, 0.21577728271484375, 0.2157127685546875, 0.21635789489746093, 0.21575782775878907, 0.21568818664550782, 0.2154915771484375, 0.2156810302734375, 0.21565440368652344, 0.21555404663085936, 0.21562060546875, 0.21577728271484375, 0.2157557830810547, 0.21564006042480469, 0.21555815124511718, 0.21571583557128907, 0.2157373504638672, 0.21600973510742189, 0.21567079162597655, 0.2159482879638672, 0.21565235900878907, 0.2156820526123047, 0.21579469299316406, 0.21556941223144532, 0.215583740234375, 0.21569842529296876, 0.21576191711425782, 0.21580294799804686, 0.21571781921386718, 0.215583740234375, 0.21599334716796875, 0.2168739776611328, 0.21618482971191405, 0.21625753784179688, 0.21591142272949218, 0.21590835571289063, 0.21615206909179688, 0.21587557983398437, 0.21748121643066406, 0.21573324584960937, 0.21585816955566406, 0.21574758911132813, 0.21579161071777345, 0.21602613830566406, 0.21589602661132812, 0.21573837280273436, 0.21600767517089844, 0.2161459197998047, 0.216195068359375, 0.21681561279296874, 0.21595545959472656, 0.2159800262451172, 0.21614183044433594, 0.21579263305664062, 0.21579168701171875, 0.44681414794921875, 0.21564927673339843, 0.21552024841308592, 0.2156093444824219, 0.21581517028808594, 0.21569024658203126, 0.21543324279785156, 0.2153850555419922, 0.21555917358398438, 0.21604454040527343, 0.2156441650390625, 0.21566259765625, 0.2157373504638672, 0.21574348449707031, 0.2156165771484375, 0.2157229461669922, 0.21567692565917967, 0.21569024658203126, 0.2158540802001953, 0.21572198486328126, 0.2158008270263672, 0.21594009399414063, 0.21594009399414063, 0.2173450164794922, 0.21601280212402343, 0.21582643127441406, 0.21562265014648438, 0.216121337890625, 0.21586329650878905, 0.21575065612792968, 0.21581721496582032, 0.21577626037597655, 0.21595135498046875, 0.21587046813964844, 0.2158223419189453, 0.21579263305664062, 0.21578854370117187, 0.21617765808105469, 0.21579571533203126, 0.2159615936279297, 0.2160906219482422, 0.2161459197998047, 0.21604864501953125, 0.2158551025390625, 0.2156943359375, 0.21593498229980468, 0.2158254089355469, 0.21669273376464843, 0.21583258056640625, 0.21568307495117187, 0.21580288696289063, 0.21581210327148437, 0.21588070678710938, 0.21590118408203124, 0.2158018493652344, 0.2157803497314453, 0.2158192596435547, 0.2158192596435547, 0.2157670440673828, 0.21574758911132813, 0.21588890075683595, 0.2157137908935547, 0.21567079162597655, 0.44661248779296875, 0.215657470703125, 0.21567999267578125, 0.21604351806640626, 0.2158858184814453, 0.21600665283203124, 0.21593600463867188, 0.2156145324707031, 0.21560723876953125, 0.21591346740722656, 0.21581619262695312, 0.21606809997558593, 0.216342529296875, 0.21595750427246094, 0.21586636352539063, 0.21600154113769532, 0.2158540802001953, 0.21593907165527343, 0.21594522094726562, 0.21608345031738282, 0.21599334716796875, 0.21589401245117187, 0.21608038330078125, 0.21600665283203124, 0.21591448974609376, 0.21582131958007814, 0.21565542602539062, 0.2157004852294922, 0.21572921752929688, 0.21575570678710937, 0.215878662109375, 0.21577113342285156, 0.2156390380859375, 0.21572709655761718, 0.21576191711425782, 0.215878662109375, 0.21596774291992188, 0.21590835571289063, 0.21587660217285157, 0.21585305786132813, 0.2158356475830078, 0.21571685791015624, 0.21579263305664062, 0.21578956604003907, 0.21685247802734375, 0.2158223419189453, 0.21567692565917967, 0.21570661926269533, 0.21589503479003908, 0.21621554565429688, 0.2161643524169922, 0.21638758850097656, 0.215878662109375, 0.21575885009765625, 0.21584588623046874, 0.21589401245117187, 0.2158745574951172, 0.21597900390625, 0.21583769226074218, 0.21566361999511718, 0.2158182373046875, 0.21573017883300782, 0.21579776000976564, 0.44662783813476564, 0.21568511962890624, 0.2158233642578125, 0.21589605712890625, 0.2156615753173828, 0.21600154113769532, 0.21570355224609375, 0.2157639617919922, 0.21581312561035157, 0.21569024658203126, 0.215552001953125, 0.21569638061523438, 0.21593087768554686, 0.2157076416015625, 0.21581004333496093, 0.21580902099609375, 0.21563699340820314, 0.21653094482421875, 0.21587660217285157, 0.21565440368652344, 0.21584588623046874, 0.2159288330078125, 0.21573426818847657, 0.21571583557128907, 0.21572096252441406, 0.21561036682128906, 0.21595750427246094, 0.21581210327148437, 0.215841796875, 0.21570559692382812, 0.21621452331542967, 0.2162554931640625, 0.216015869140625, 0.21625958251953126, 0.21600767517089844, 0.2159052734375, 0.2159800262451172, 0.21584077453613282, 0.21585714721679689, 0.2158612518310547, 0.21581517028808594, 0.2157496337890625, 0.21570252990722658, 0.21573837280273436, 0.21577215576171874, 0.21601689147949218, 0.21586534118652342, 0.21566053771972657, 0.21617971801757813, 0.215804931640625, 0.2159964141845703, 0.215910400390625, 0.21567692565917967, 0.21574143981933594, 0.215993408203125, 0.21583967590332032, 0.21577626037597655, 0.21723341369628907, 0.2157936706542969, 0.21567181396484375, 0.21573017883300782, 0.2158602294921875, 0.21591346740722656, 0.44625918579101564, 0.2154598388671875, 0.21547109985351562, 0.215942138671875, 0.2155018310546875, 0.2154967041015625, 0.21560525512695314, 0.21534719848632813, 0.2155335693359375, 0.21555609130859374, 0.21548646545410155, 0.21554893493652344, 0.21556838989257812, 0.2154239959716797, 0.21581210327148437, 0.21597080993652343, 0.2159831085205078, 0.21576191711425782, 0.21572813415527345, 0.21552543640136718, 0.21562054443359374, 0.21571994018554688, 0.21557862854003906, 0.21559500122070313, 0.21570867919921874, 0.21560115051269532, 0.21548851013183593, 0.21564210510253906, 0.21561856079101563, 0.21550079345703124, 0.2157137908935547, 0.21574348449707031, 0.21571481323242186, 0.21626162719726563, 0.21590016174316407, 0.2157127685546875, 0.21570867919921874, 0.21562982177734374, 0.21705215454101562, 0.21569229125976563, 0.21560012817382812, 0.2157373504638672, 0.21579058837890625, 0.21566464233398439, 0.21566361999511718, 0.21576191711425782, 0.21585101318359376, 0.21570867919921874, 0.21573529052734375, 0.21557554626464845, 0.2158305206298828, 0.2157742004394531, 0.2156083221435547, 0.2155704345703125, 0.21572813415527345, 0.21567082214355468, 0.21573321533203124, 0.2156513214111328, 0.21562777709960937, 0.21566265869140624, 0.21600965881347656, 0.21582028198242187, 0.21637837219238282, 0.4470773620605469, 0.2156072998046875, 0.21567079162597655, 0.21566566467285156, 0.21550079345703124, 0.21559091186523438, 0.21565542602539062, 0.21559500122070313, 0.2156697540283203, 0.21570661926269533, 0.21575474548339843, 0.21560426330566407, 0.2156011199951172, 0.21565235900878907, 0.21573939514160156, 0.2161090545654297, 0.2160199737548828, 0.21577523803710938, 0.21591552734375, 0.21555815124511718, 0.2156441650390625, 0.21569842529296876, 0.21553868103027343, 0.21665382385253906, 0.21579571533203126, 0.21555711364746094, 0.2155888671875, 0.21576499938964844, 0.215762939453125, 0.21582028198242187, 0.2158582458496094, 0.2157608337402344, 0.21596368408203126, 0.21594313049316408, 0.2157445068359375, 0.2157639617919922, 0.21581414794921874, 0.21576502990722657, 0.21569635009765625, 0.215762939453125, 0.2158223419189453, 0.21592268371582032, 0.21613157653808593, 0.21586329650878905, 0.21606501770019532, 0.21634661865234375, 0.21581517028808594, 0.21568716430664062, 0.215804931640625, 0.21572096252441406, 0.215689208984375, 0.21578239440917968, 0.21577523803710938, 0.21575167846679688, 0.21579776000976564, 0.21582028198242187, 0.21593600463867188, 0.2157178955078125, 0.21569024658203126, 0.21573324584960937, 0.21574758911132813, 0.21596876525878905, 0.21589605712890625, 0.44737637329101565, 0.21560012817382812, 0.2154035186767578, 0.21556224060058593, 0.21559091186523438, 0.21557760620117186, 0.2155878448486328, 0.2156195831298828, 0.21551922607421875, 0.21568511962890624, 0.21572813415527345, 0.21568818664550782, 0.21565542602539062, 0.21562265014648438, 0.21565440368652344, 0.21580799865722655, 0.21636402893066406, 0.2157178955078125, 0.2158018493652344, 0.21578341674804688, 0.21576499938964844, 0.21569740295410156, 0.21566464233398439, 0.21570970153808594, 0.2157936706542969, 0.21613772583007812, 0.21595237731933595, 0.21639680480957033, 0.21639474487304688, 0.21601791381835939, 0.2160025634765625, 0.21584999084472656, 0.2159288330078125, 0.21633024597167969, 0.21584793090820312, 0.2159964141845703, 0.21607936096191407, 0.2160148468017578, 0.21588992309570312, 0.21595852661132814, 0.21601689147949218, 0.21620632934570314, 0.21618380737304688, 0.216595458984375, 0.21603021240234374, 0.21584690856933594, 0.21581619262695312, 0.21571994018554688, 0.21570252990722658, 0.21567692565917967, 0.21569638061523438, 0.21571072387695311, 0.2158970947265625, 0.2156810302734375, 0.2158981170654297, 0.2158602294921875, 0.21611932373046874, 0.21608546447753907, 0.21588479614257813, 0.21581004333496093, 0.21603225708007812, 0.21623910522460937, 0.21606809997558593, 0.44815972900390627, 0.21594316101074218, 0.21585305786132813, 0.21599130249023438, 0.21577932739257813, 0.21586534118652342, 0.21586431884765625, 0.21613055419921876, 0.21584895324707032, 0.21639578247070312, 0.21571994018554688, 0.215657470703125, 0.21565951538085937, 0.2156748809814453, 0.21572607421875, 0.21584690856933594, 0.21561138916015626, 0.21668966674804688, 0.2158008270263672, 0.21577113342285156, 0.21580902099609375, 0.2158673858642578, 0.21579673767089844, 0.21592063903808595, 0.21624319458007812, 0.21564927673339843, 0.21612953186035155, 0.21587046813964844, 0.2156810302734375, 0.21577830505371093, 0.2156943359375, 0.2155827178955078, 0.21565542602539062, 0.21575372314453126, 0.21602610778808592, 0.2159052734375, 0.2158039093017578, 0.21560421752929687, 0.21574656677246093, 0.2161326141357422, 0.21603021240234374, 0.21574041748046874, 0.21587251281738282, 0.21601791381835939, 0.21597900390625, 0.2160343017578125, 0.21582028198242187, 0.21569126892089843, 0.2157424621582031, 0.21565235900878907, 0.21565440368652344, 0.2158602294921875, 0.21615206909179688, 0.21636915588378905, 0.2160148468017578, 0.21692825317382813, 0.21595960998535157, 0.21593696594238282, 0.21585101318359376, 0.21585101318359376, 0.21587251281738282, 0.2156134338378906, 0.21572813415527345, 0.44772250366210936, 0.2154598388671875, 0.21554896545410157, 0.21563491821289063, 0.21536154174804686, 0.2154977264404297, 0.21561651611328125, 0.2155335693359375, 0.21565338134765624, 0.21574867248535157, 0.21558367919921875, 0.2155714874267578, 0.21574960327148437, 0.2156390380859375, 0.21553868103027343, 0.21560838317871095, 0.21563385009765626, 0.2156810302734375, 0.2155704345703125, 0.2155704345703125, 0.21559603881835937, 0.21553663635253906, 0.21553152465820313, 0.21560525512695314, 0.21560421752929687, 0.21559397888183593, 0.21667225646972657, 0.21568818664550782, 0.21559910583496095, 0.21570457458496095, 0.2156513214111328, 0.21557554626464845, 0.21559193420410155, 0.21564210510253906, 0.21565338134765624, 0.21612953186035155, 0.2163251190185547, 0.21550592041015626, 0.215910400390625, 0.21579469299316406, 0.2157455291748047, 0.215762939453125, 0.21571891784667968, 0.21559295654296876, 0.21559091186523438, 0.2155847625732422, 0.21548442077636717, 0.21573426818847657, 0.21578341674804688, 0.21575270080566405, 0.21571583557128907, 0.2156134338378906, 0.2155878448486328, 0.21560012817382812, 0.21608242797851562, 0.2159646759033203, 0.2156615753173828, 0.21582438659667968, 0.21574348449707031, 0.215689208984375, 0.21561856079101563, 0.21556121826171876, 0.2156380157470703]",tokens/s,4.563157582132701,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-7B,Qwen/Qwen1.5-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2832.146432,8389.132288,0.0,7742.685184,7007.0144,s,10,5.830655212402344,0.5830655212402344,0.0011864011955084602,0.5831084289550781,0.5846742309570313,0.5847881042480468,0.5848792028808594,"[0.5832706909179688, 0.5849019775390625, 0.5821006469726563, 0.5817232055664062, 0.582320068359375, 0.5811737670898437, 0.5829461669921875, 0.5834404907226562, 0.5841292724609375, 0.58464892578125]",tokens/s,439.05871754423805,kWh,6.867315049892591e-06,3.7630052303029514e-06,3.309072091699999e-05,4.372104119719553e-05,tokens/kWh,5855304.288051151,MB,2832.146432,8389.132288,0.0,7742.685184,7283.984384,s,10,342.646671875,34.264667187499995,0.008129823876006116,34.26347265625,34.275117968749996,34.278303125,34.28085125,"[34.26221484375, 34.28148828125, 34.27441015625, 34.256734375, 34.26859765625, 34.26473046875, 34.2578125, 34.267296875, 34.25966015625, 34.2537265625]",tokens/s,1.8386286857904421,kWh,0.0004044825890237167,0.00022169153025011835,0.0019209350367467965,0.002547109156020632,tokens/kWh,24733.92231781122,,s,629,347.34827374267576,0.5522230107196754,0.06935218607240677,0.5438034057617187,0.5445187377929688,0.5449166748046874,1.1266134716796876,"[0.54485400390625, 0.5438034057617187, 0.543246337890625, 0.5442498779296875, 0.5438187255859375, 0.544405517578125, 0.5433927612304688, 0.5439907836914063, 0.5433046875, 0.5437378540039063, 0.5438269653320312, 0.5440072021484375, 0.543795166015625, 0.544226318359375, 0.5433211059570312, 0.5441300659179688, 0.54451708984375, 0.5443307495117188, 0.5436416015625, 0.5442396240234375, 0.5436170043945312, 0.545089599609375, 0.543943603515625, 0.5440245971679688, 0.5435012817382813, 0.54389453125, 0.543447021484375, 0.544269287109375, 0.5434480590820312, 0.5442416381835937, 0.5436282958984375, 0.5436856079101563, 0.5433425903320312, 0.5441137084960938, 0.5437623901367188, 0.5438228759765625, 0.54314599609375, 0.543266845703125, 0.5434480590820312, 0.54394677734375, 0.543478759765625, 0.544342041015625, 0.5433477172851563, 0.5437071533203125, 0.5434163208007813, 0.5436990356445313, 0.5434121704101562, 0.5436589965820312, 0.5431746826171875, 0.5436907348632812, 0.5431572265625, 0.5437921142578125, 0.5443922119140625, 0.5438034057617187, 0.5433538818359375, 0.5437992553710937, 0.54312548828125, 0.5436221313476562, 0.5442550048828125, 0.5447546997070313, 0.5435003051757813, 0.544110595703125, 1.129606201171875, 0.5438555908203125, 0.5446000366210938, 0.5434962158203125, 0.5441279907226563, 0.5435760498046875, 0.5443614501953125, 0.5440512084960938, 0.5445314331054687, 0.544, 0.544395263671875, 0.5442437133789062, 0.5449338989257813, 0.5445150756835937, 0.5455985107421875, 0.5442651977539062, 0.5440481567382812, 0.5437183837890625, 0.5441484985351562, 0.5433558959960938, 0.544912353515625, 0.5442252807617187, 0.544775146484375, 0.5442785034179688, 0.5442467651367188, 0.5443768310546875, 0.544701416015625, 0.5438463745117188, 0.5441720581054688, 0.543763427734375, 0.5439447021484375, 0.5434183959960938, 0.5442539672851563, 0.543873046875, 0.5442447509765626, 0.5435484008789062, 0.544189453125, 0.5435852661132813, 0.5441228637695312, 0.5439774780273438, 0.5444413452148438, 0.5440932006835938, 0.5443020629882812, 0.5437276000976563, 0.5443696899414062, 0.5436436767578126, 0.5473484497070312, 0.5439129638671875, 0.5444976806640625, 0.54388427734375, 0.5441033935546875, 0.5436795043945313, 0.5439283447265625, 0.5437163696289062, 0.5439866943359375, 0.5433651123046875, 0.5438566284179688, 0.5434593505859375, 0.5443276977539062, 0.5436395263671875, 0.54405224609375, 0.5434828491210938, 0.5446829833984375, 1.1269549560546874, 0.5436589965820312, 0.5440983276367187, 0.5438801879882813, 0.5444874267578125, 0.544152587890625, 0.5444679565429688, 0.5439887084960937, 0.5441515502929688, 0.5438320922851563, 0.54458984375, 0.5438555908203125, 0.544068603515625, 0.5435648193359375, 0.5439713134765625, 0.5431132202148438, 0.5440512084960938, 0.54389453125, 0.5443778686523437, 0.543446044921875, 0.5438597412109375, 0.5438648071289063, 0.5439907836914063, 0.5458063354492187, 0.5444915161132813, 0.543572998046875, 0.5443184814453125, 0.5437357788085937, 0.543878173828125, 0.5435125732421875, 0.5439928588867188, 0.5434962158203125, 0.544068603515625, 0.5433712768554687, 0.5437890625, 0.5446963500976563, 0.5459650268554688, 0.5440255737304688, 0.5438883666992187, 0.5443931884765625, 0.5446287231445313, 0.5444362182617187, 0.5449840698242188, 0.5441444091796875, 0.5444034423828125, 0.543510498046875, 0.5440491333007812, 0.5454448852539062, 0.5443717041015625, 0.5432412109375, 0.5437112426757813, 0.5432013549804687, 0.5434971313476562, 0.5437726440429688, 0.5439866943359375, 0.5433477172851563, 0.5437194213867188, 0.5431173095703125, 0.5434132690429687, 0.5431746826171875, 0.544648193359375, 0.5442304077148438, 0.5442119750976563, 1.1263170166015626, 0.5434583129882813, 0.5442969360351563, 0.543373291015625, 0.5437562866210938, 0.543373291015625, 0.5437644653320313, 0.5435750122070313, 0.5440972900390625, 0.5432647705078125, 0.5439580078125, 0.5433252563476563, 0.5438104858398437, 0.5432924194335937, 0.5439324340820313, 0.5438750610351563, 0.5440696411132813, 0.543283203125, 0.543783935546875, 0.54326171875, 0.5440430297851563, 0.543267822265625, 0.5438822631835938, 0.54329443359375, 0.5437296752929688, 0.5433179931640625, 0.5443358764648437, 0.5437020263671875, 0.5440706787109375, 0.5436016845703125, 0.5435985717773437, 0.54325244140625, 0.5440829467773437, 0.5445253295898438, 0.5435402221679687, 0.54327294921875, 0.5437296752929688, 0.5436436767578126, 0.54380029296875, 0.5434234619140625, 0.5437747192382812, 0.5434429321289063, 0.5436068115234375, 0.543056884765625, 0.5473935546875, 0.54410546875, 0.5440604248046875, 0.5434931030273438, 0.5439365234375, 0.5433773803710937, 0.5438289794921874, 0.5436354370117188, 0.5443809204101563, 0.5432913818359375, 0.5437869873046876, 0.5433190307617187, 0.5438975830078125, 0.54358837890625, 0.543973388671875, 0.5433487548828125, 0.5437777709960937, 0.5435279541015625, 0.5438392333984375, 1.126728759765625, 0.5433446655273437, 0.544162841796875, 0.5432760620117187, 0.5441720581054688, 0.5443881225585937, 0.54490625, 0.54394677734375, 0.5442590942382812, 0.5439252319335938, 0.544701416015625, 0.5439826049804688, 0.5446226196289062, 0.5433385009765626, 0.5438064575195313, 0.5434009399414063, 0.5440983276367187, 0.5450567626953124, 0.5439652099609374, 0.5432319946289063, 0.5438095092773437, 0.5432586059570312, 0.5437614135742187, 0.543435791015625, 0.544484375, 0.5434317016601562, 0.5437009887695312, 0.5431490478515625, 0.5438167114257813, 0.543298583984375, 0.5435801391601562, 0.5435494995117187, 0.5441719970703125, 0.5433681640625, 0.5436928100585937, 0.5437245483398437, 0.5445037841796875, 0.5434193725585937, 0.5443307495117188, 0.543531005859375, 0.5440133056640625, 0.5436139526367187, 0.5439487915039063, 0.54411572265625, 0.5449932861328125, 0.5437962036132813, 0.5439794921875, 0.543466552734375, 0.5439456787109375, 0.543562744140625, 0.5440255737304688, 0.5437542114257813, 0.5439508666992188, 0.5435565795898437, 0.5450424194335938, 0.5437081298828125, 0.5441198120117188, 0.5460613403320312, 0.5440328369140625, 0.5436876220703125, 0.5439970092773437, 0.5443685913085937, 0.5439518432617187, 1.1256268310546875, 0.5433876342773437, 0.5439027099609375, 0.5437491455078125, 0.5440143432617187, 0.5435873413085938, 0.5440634765625, 0.5435217895507812, 0.544837646484375, 0.5441290283203125, 0.5442662353515625, 0.5436077880859375, 0.5440040893554687, 0.5432811279296875, 0.5437716674804688, 0.5439754028320313, 0.543921142578125, 0.5436795043945313, 0.5448601684570312, 0.543963134765625, 0.5444270629882813, 0.5435064086914062, 0.5439723510742187, 0.5439713134765625, 0.5442775268554687, 0.5437449951171875, 0.544595947265625, 0.5438966064453125, 0.5437860107421875, 0.5432279052734375, 0.5435350952148438, 0.5433651123046875, 0.5438668823242188, 0.5433426513671875, 0.5449727783203125, 0.5435340576171875, 0.5439334106445313, 0.54326171875, 0.5467739868164062, 0.5434767456054688, 0.5440921630859376, 0.5435054931640625, 0.544133056640625, 0.5435484008789062, 0.5440020751953125, 0.5437808837890625, 0.5440993041992187, 0.5436477661132812, 0.5438197631835937, 0.5434757690429688, 0.54377978515625, 0.5431531372070313, 0.5442908325195313, 0.5436088256835937, 0.5439539184570312, 0.54348291015625, 0.54430517578125, 0.5432504272460937, 0.5439170532226563, 0.5432053833007813, 0.5438597412109375, 0.5436006469726562, 0.543825927734375, 1.1284039306640625, 0.5435811767578125, 0.54392626953125, 0.5432975463867188, 0.5440030517578125, 0.5434276123046875, 0.5444700317382812, 0.5436016845703125, 0.5438228759765625, 0.5433507690429688, 0.5437460327148438, 0.5433599853515625, 0.5435975952148437, 0.5432709350585937, 0.54407373046875, 0.5433487548828125, 0.5436477661132812, 0.5439201049804687, 0.544205810546875, 0.5434214477539062, 0.543847412109375, 0.5432391967773438, 0.5437501220703125, 0.54501171875, 0.543856689453125, 0.5445160522460938, 0.544321533203125, 0.5439661865234375, 0.5444495849609375, 0.5435463256835937, 0.543562744140625, 0.5435699462890625, 0.5438617553710937, 0.5433108520507812, 0.5436497802734375, 0.5432432861328125, 0.5446655883789062, 0.5437214965820313, 0.5437655029296875, 0.543151123046875, 0.5436876831054688, 0.54325146484375, 0.5437511596679687, 0.5447864379882813, 0.5438218994140624, 0.5431879272460938, 0.543825927734375, 0.543182861328125, 0.5435903930664062, 0.54308349609375, 0.5436334228515625, 0.5431613159179688, 0.5436016845703125, 0.5431839599609375, 0.5440931396484375, 0.544869384765625, 0.543978515625, 0.5436641235351563, 0.5438402709960938, 0.54329443359375, 0.5435975952148437, 0.5432872924804687, 0.5449031982421875, 1.12785302734375, 0.5432197265625, 0.5443031005859374, 0.543805419921875, 0.5440696411132813, 0.543562744140625, 0.5437880249023438, 0.5434265747070313, 0.54437890625, 0.5443410034179688, 0.5438085327148438, 0.5433548583984374, 0.5437552490234375, 0.5441167602539062, 0.5438873901367187, 0.5431286010742188, 0.5460684814453125, 0.5433446655273437, 0.54401123046875, 0.5432525024414062, 0.5443113403320312, 0.5433211059570312, 0.5440449829101562, 0.54329443359375, 0.5437286376953125, 0.5433364868164062, 0.5437962036132813, 0.5443225708007813, 0.544879638671875, 0.543446044921875, 0.543447021484375, 0.5436170043945312, 0.5437798461914063, 0.543077392578125, 0.5447864379882813, 0.5435914306640625, 0.5437706298828126, 0.5436293334960938, 0.5449195556640625, 0.5433282470703125, 0.544373779296875, 0.543984619140625, 0.54413720703125, 0.5432801513671875, 0.5436323852539062, 0.5439119262695312, 0.5450363159179688, 0.543909912109375, 0.5446492309570312, 0.5441402587890625, 0.5445682983398438, 0.5445365600585937, 0.5437798461914063, 0.5442201538085938, 0.5439365234375, 0.5434225463867187, 0.5440900268554687, 0.5439365844726562, 0.5439845581054688, 0.5436405639648437, 0.5438587036132813, 0.5438146362304688, 0.5440071411132813, 1.1298836669921875, 0.5435586547851563, 0.5440675659179688, 0.5432913818359375, 0.5438289794921874, 0.5433005981445312, 0.5437767944335937, 0.544300048828125, 0.54409521484375, 0.543405029296875, 0.54519091796875, 0.5432658081054688, 0.5438023681640625, 0.5436221313476562, 0.5439180908203125, 0.5432565307617188, 0.5435023193359375, 0.5447024536132813, 0.54401953125, 0.5435442504882813, 0.5441484985351562, 0.5433333740234375, 0.5439180908203125, 0.5433262329101562, 0.5437921142578125, 0.5436846313476562, 0.5451581420898437, 0.54331494140625, 0.5439129638671875, 0.5431747436523438, 0.5436364135742188, 0.543467529296875, 0.5444925537109375, 0.5434685668945313, 0.5439539184570312, 0.543331298828125, 0.5441863403320313, 0.5441474609375, 0.5438177490234375, 0.5437880249023438, 0.5436282958984375, 0.5433865966796875, 0.5437327270507812, 0.5433026733398437, 0.5443440551757812, 0.5432484130859375, 0.5437440185546875, 0.5434849243164063, 0.5438463745117188, 0.5431654663085937, 0.5436897583007813, 0.5432340698242187, 0.5437265625, 0.5432975463867188, 0.543541259765625, 0.5436201171875, 0.5445703735351562, 0.543752197265625, 0.5440389404296875, 0.5439641723632812, 0.5437122802734375, 0.543457275390625, 0.5449390258789063, 1.1290306396484375, 0.5434531860351562, 0.5440993041992187, 0.5435391845703125, 0.5443635864257812, 0.54331591796875, 0.5436958618164063, 0.54315625, 0.54371533203125, 0.5437439575195312, 0.544100341796875, 0.5435381469726562, 0.5437388916015625, 0.5432217407226563, 0.5436754150390625, 0.54318896484375, 0.5440829467773437, 0.544564208984375, 0.543515625, 0.5431910400390625, 0.5438494873046875, 0.54326171875, 0.5435248413085938, 0.5433456420898437, 0.5437112426757813, 0.5435238647460937, 0.5456578369140626, 0.5435504760742188, 0.5442672729492187, 0.543446044921875, 0.54443212890625, 0.5432156372070313, 0.5440870971679688, 0.5433077392578125, 0.5435750122070313, 0.5440040893554687, 0.5438587036132813, 0.5430794067382813, 0.5436282958984375, 0.5436846313476562, 0.5436190795898438, 0.5430947875976563, 0.5436282958984375, 0.5432340698242187, 0.5435166625976563, 0.5432954711914062, 0.5439907836914063, 0.5439354858398437, 0.5442140502929688, 0.543595458984375, 0.544216064453125, 0.5438013305664062, 0.5442723999023438, 0.5444034423828125, 0.5439794921875, 0.54333642578125, 0.5436118774414063, 0.5431787719726563, 0.5439519653320313, 0.5432032470703125, 0.5435668334960938, 0.5430866088867188, 0.5438269653320312]",tokens/s,1.810862605483909,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,-,-,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 106, in _inner_fn - validate_repo_id(arg_value) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 160, in validate_repo_id - raise HFValidationError( -huggingface_hub.errors.HFValidationError: Repo id must use alphanumeric chars or '-', '_', '.', '--' and '..' are forbidden, '-' and '.' cannot start or end the name, max length is 96: '-'. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 466, in cached_file - raise EnvironmentError( -OSError: Incorrect path_or_model_id: '-'. Please provide either the path to a local folder or the repo_id of a model on the Hub. - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-125m,facebook/opt-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1207.41888,879.230976,0.0,232.783872,169.719808,s,10,0.3329092750549316,0.03329092750549316,0.001090057705435725,0.0329870719909668,0.033882015228271486,0.0350985279083252,0.036071738052368164,"[0.03631504058837891, 0.03281526565551758, 0.03245974349975586, 0.03361167907714844, 0.03344601440429688, 0.033440895080566406, 0.032671966552734376, 0.033158878326416015, 0.03245904159545898, 0.0325307502746582]",tokens/s,7689.782748100329,kWh,3.9167167718924527e-07,2.1461758953218489e-07,8.304311279209363e-07,1.4367203946423665e-06,tokens/kWh,178183591.57052574,MB,1207.41888,879.230976,0.0,232.783872,199.792128,s,10,20.506330566406252,2.050633056640625,0.01795433438952847,2.0542513427734375,2.07115517578125,2.0720841796875,2.0728273828125,"[2.05074072265625, 2.0363714599609377, 2.0684541015625, 2.054240966796875, 2.07094873046875, 2.07301318359375, 2.05426171875, 2.0559150390625, 2.0203577880859376, 2.02202685546875]",tokens/s,30.72222004613905,kWh,2.4533342500768937e-05,1.3444361220557862e-05,5.009960961606961e-05,8.80773133373964e-05,tokens/kWh,715280.6734540922,,s,629,20.768719875335666,0.03301863255220301,0.003999927492502233,0.03273830413818359,0.033139096832275394,0.033337548065185546,0.06495629302978514,"[0.033740798950195314, 0.034253822326660154, 0.0341104621887207, 0.03412275314331055, 0.0335206413269043, 0.03323699188232422, 0.03351859283447266, 0.03322982406616211, 0.033159168243408206, 0.03280998229980469, 0.03333222579956055, 0.033258495330810545, 0.032756736755371094, 0.03297075271606445, 0.03364352035522461, 0.03362918472290039, 0.033584129333496096, 0.03300249481201172, 0.03202867126464844, 0.031971328735351565, 0.031821823120117186, 0.031848447799682614, 0.03192934417724609, 0.03202560043334961, 0.03206041717529297, 0.032089088439941404, 0.03197644805908203, 0.03203379058837891, 0.03201638412475586, 0.031941631317138675, 0.03214438247680664, 0.03217407989501953, 0.03201638412475586, 0.031987712860107424, 0.03198054313659668, 0.03194572830200195, 0.03189145660400391, 0.03199590492248535, 0.03189043235778809, 0.03177676773071289, 0.032366592407226565, 0.03329228973388672, 0.0331960334777832, 0.0321341438293457, 0.032966655731201173, 0.03283865737915039, 0.03283456039428711, 0.032866302490234374, 0.032574462890625, 0.03194470405578613, 0.032132095336914065, 0.032039936065673826, 0.03172454452514648, 0.03170099258422852, 0.03186278343200684, 0.03212492752075195, 0.031920127868652344, 0.032054271697998044, 0.03213926315307617, 0.03209830474853516, 0.03199795150756836, 0.03198873519897461, 0.06604799652099609, 0.031955968856811526, 0.03163852882385254, 0.03178700828552246, 0.03185971260070801, 0.03197337532043457, 0.03201945495605469, 0.031987712860107424, 0.032059391021728514, 0.03199795150756836, 0.03196211242675781, 0.03191500854492187, 0.03182694435119629, 0.031764480590820314, 0.031714303970336914, 0.0317573127746582, 0.031927295684814457, 0.03189145660400391, 0.03197235107421875, 0.03200921630859375, 0.03191500854492187, 0.03215462493896484, 0.03199795150756836, 0.03201126480102539, 0.031936511993408204, 0.03203071975708008, 0.03208294296264649, 0.031936511993408204, 0.032161792755126956, 0.03201331329345703, 0.031562751770019534, 0.03183923149108887, 0.0325928955078125, 0.03195187187194824, 0.03276287841796875, 0.03203276824951172, 0.03358924865722656, 0.032881664276123046, 0.033119232177734374, 0.03294617462158203, 0.03283251190185547, 0.03209011077880859, 0.032072704315185545, 0.03290934371948242, 0.03280073547363281, 0.032763904571533206, 0.03282329559326172, 0.03290419387817383, 0.032740352630615234, 0.032478206634521486, 0.03298611068725586, 0.03275059127807617, 0.033102848052978515, 0.03289395141601562, 0.03265331268310547, 0.032115745544433597, 0.03197641563415527, 0.03259494400024414, 0.03297894287109375, 0.03300044631958008, 0.03283865737915039, 0.03288780975341797, 0.03242803192138672, 0.06496460723876953, 0.03309568023681641, 0.03194470405578613, 0.03273830413818359, 0.03288678359985352, 0.03281919860839844, 0.03297689437866211, 0.032912384033203124, 0.032787487030029296, 0.033037311553955076, 0.03294307327270508, 0.032863231658935545, 0.03278847885131836, 0.03306496047973633, 0.032745471954345705, 0.03307212829589844, 0.03291852951049805, 0.03285094451904297, 0.03298406219482422, 0.03316223907470703, 0.03301683044433594, 0.0328611831665039, 0.03299532699584961, 0.03296051025390625, 0.03287449645996094, 0.0329615364074707, 0.03278745651245117, 0.032949249267578126, 0.033023998260498046, 0.03287449645996094, 0.032909313201904294, 0.03280179214477539, 0.0328089599609375, 0.03198464012145996, 0.032054271697998044, 0.03240140914916992, 0.03320729446411133, 0.033165313720703124, 0.03290726470947265, 0.032584705352783204, 0.032707584381103515, 0.032249855041503905, 0.03290521621704102, 0.0328458251953125, 0.032791553497314455, 0.03254579162597656, 0.03258879852294922, 0.03239424133300781, 0.03282227325439453, 0.032894977569580076, 0.03285811233520508, 0.03289708709716797, 0.032930816650390625, 0.03297683334350586, 0.033140735626220705, 0.032868350982666016, 0.03292364883422851, 0.032985088348388675, 0.033018878936767575, 0.0329431037902832, 0.032927745819091796, 0.032976993560791014, 0.03305363082885742, 0.06707913970947266, 0.03323494338989258, 0.03279257583618164, 0.033137664794921876, 0.0331776008605957, 0.03303014373779297, 0.033274879455566404, 0.0330967025756836, 0.033137664794921876, 0.03282534408569336, 0.03309056091308594, 0.033081344604492184, 0.03303424072265625, 0.033309696197509765, 0.03319500732421875, 0.03301171112060547, 0.033345535278320314, 0.03285094451904297, 0.03292876815795898, 0.03282124710083008, 0.03200307083129883, 0.0319866886138916, 0.032074752807617186, 0.031974399566650394, 0.03197644805908203, 0.03283967971801758, 0.03339263916015625, 0.033058815002441407, 0.032753662109375, 0.03252326583862305, 0.03210553741455078, 0.031921152114868165, 0.03210540771484375, 0.0323768310546875, 0.03219968032836914, 0.0321976318359375, 0.03212799835205078, 0.03213516616821289, 0.03212799835205078, 0.03211775970458984, 0.032985088348388675, 0.034108417510986325, 0.033040382385253905, 0.03294617462158203, 0.03294105529785156, 0.032906238555908206, 0.032069633483886716, 0.031744064331054686, 0.03175724792480469, 0.031899648666381834, 0.03206655883789063, 0.03191296005249023, 0.03192934417724609, 0.032126976013183595, 0.03269740676879883, 0.03293075180053711, 0.03260313415527344, 0.03196211242675781, 0.031904767990112305, 0.03212287902832031, 0.03203788757324219, 0.03282944107055664, 0.03291033554077148, 0.06675456237792969, 0.033050624847412106, 0.0328007698059082, 0.03285299301147461, 0.0328089599609375, 0.03288883209228516, 0.033067008972167966, 0.03282022476196289, 0.03274649429321289, 0.03173785591125488, 0.032020481109619144, 0.03192428779602051, 0.03253753662109375, 0.03285606384277344, 0.033326080322265625, 0.03281919860839844, 0.033073150634765625, 0.03273830413818359, 0.03295129776000977, 0.03292364883422851, 0.03303628921508789, 0.03282841491699219, 0.032919551849365236, 0.03291961669921875, 0.032923583984375, 0.032797695159912106, 0.03295948791503906, 0.03298303985595703, 0.032982078552246094, 0.03352467346191406, 0.032589824676513675, 0.033331199645996096, 0.03296255874633789, 0.032672767639160154, 0.032740352630615234, 0.03300864028930664, 0.03226521682739258, 0.03242803192138672, 0.03284275054931641, 0.03410636901855469, 0.03410943984985351, 0.032530433654785154, 0.032048126220703126, 0.032909313201904294, 0.03273625564575195, 0.03282022476196289, 0.033040382385253905, 0.03312844848632813, 0.033032222747802736, 0.03294512176513672, 0.032824321746826174, 0.032772159576416014, 0.032817089080810546, 0.03304959869384766, 0.032717823028564456, 0.0328007698059082, 0.03302195358276367, 0.03298713684082031, 0.03286937713623047, 0.032884735107421875, 0.032917503356933595, 0.03312947082519531, 0.0328243522644043, 0.06682825469970703, 0.032939006805419925, 0.03280998229980469, 0.0324136962890625, 0.032930816650390625, 0.03313868713378906, 0.03297382354736328, 0.032863231658935545, 0.03299327850341797, 0.03307212829589844, 0.03317145538330078, 0.033142784118652346, 0.032942081451416014, 0.033363967895507815, 0.03327897644042969, 0.03276595306396484, 0.03296255874633789, 0.033056766510009765, 0.03283967971801758, 0.03291648101806641, 0.03299225616455078, 0.032946239471435546, 0.032924606323242185, 0.03313868713378906, 0.03290521621704102, 0.03295641708374023, 0.03341516876220703, 0.0333199348449707, 0.03459379196166992, 0.03333631896972656, 0.032895999908447264, 0.03294412612915039, 0.03291648101806641, 0.03218227386474609, 0.032626686096191404, 0.0323061752319336, 0.03225804901123047, 0.03283148956298828, 0.033329151153564454, 0.03292879867553711, 0.03304956817626953, 0.03294822311401367, 0.03261030578613281, 0.03294105529785156, 0.032903167724609376, 0.03311206436157227, 0.03312025451660156, 0.03289190292358399, 0.03233280181884766, 0.032524288177490236, 0.03305779266357422, 0.03231129455566406, 0.0324505615234375, 0.03278950500488281, 0.03302707290649414, 0.03288678359985352, 0.032996353149414064, 0.03286937713623047, 0.03303014373779297, 0.03281203079223633, 0.03252633666992188, 0.032178176879882815, 0.03199084854125977, 0.065176513671875, 0.03205017471313477, 0.03209011077880859, 0.03212287902832031, 0.03207987213134766, 0.03216588973999023, 0.03170816040039062, 0.03165286445617676, 0.03220684814453125, 0.03201228713989258, 0.03200614547729492, 0.03260927963256836, 0.03219046401977539, 0.03249868774414062, 0.03227340698242188, 0.03234201431274414, 0.03262464141845703, 0.03326873779296875, 0.03293286514282227, 0.032851966857910156, 0.032830463409423825, 0.03336908721923828, 0.03311824035644531, 0.03295331192016602, 0.032176128387451174, 0.03207680130004883, 0.032168991088867185, 0.032793567657470706, 0.03295641708374023, 0.032803871154785155, 0.03245257568359375, 0.03248025512695313, 0.03281612777709961, 0.03295129776000977, 0.033175552368164066, 0.03283359909057617, 0.03288671875, 0.03277721786499024, 0.033051647186279294, 0.033258495330810545, 0.03284275054931641, 0.03292364883422851, 0.03303014373779297, 0.03285504150390625, 0.03174399948120117, 0.03240857696533203, 0.033037311553955076, 0.03285299301147461, 0.032894977569580076, 0.032917503356933595, 0.0321341438293457, 0.03308031845092774, 0.032146430969238284, 0.03266559982299805, 0.03310899353027344, 0.032740352630615234, 0.03243212890625, 0.03290828704833984, 0.032982017517089846, 0.032979969024658204, 0.032942081451416014, 0.032345088958740234, 0.03220172882080078, 0.06660710144042968, 0.032917537689208985, 0.032905185699462894, 0.032873470306396486, 0.033800193786621094, 0.0329615364074707, 0.03261542510986328, 0.03257753753662109, 0.0329881591796875, 0.03291545486450195, 0.032912384033203124, 0.032797695159912106, 0.03293183898925781, 0.033181697845458984, 0.03299020767211914, 0.03279564666748047, 0.03290726470947265, 0.03288883209228516, 0.03297177505493164, 0.03243929672241211, 0.032846847534179685, 0.03225600051879883, 0.03281510543823242, 0.033083393096923826, 0.0330332145690918, 0.032736320495605466, 0.032817089080810546, 0.03186278343200684, 0.03185766410827637, 0.03318483352661133, 0.03217606353759766, 0.03176038360595703, 0.032323585510253904, 0.03279052734375, 0.0322949104309082, 0.032471038818359374, 0.03288780975341797, 0.03274140930175781, 0.03304035186767578, 0.03282841491699219, 0.031971328735351565, 0.03230003356933594, 0.03287551879882813, 0.032753662109375, 0.03289907073974609, 0.03249356842041016, 0.03194367980957031, 0.0321710090637207, 0.03300352096557617, 0.03274649429321289, 0.0328540153503418, 0.03268710327148437, 0.03202764892578125, 0.032950271606445314, 0.03294515228271484, 0.03292671966552734, 0.03265740966796875, 0.03194675254821777, 0.03184127998352051, 0.03206860733032227, 0.03196108818054199, 0.03163750457763672, 0.031665151596069335, 0.0648058853149414, 0.03185663986206055, 0.031904767990112305, 0.031893503189086916, 0.032007167816162106, 0.0315729923248291, 0.031927295684814457, 0.03198259162902832, 0.0319682559967041, 0.03189967918395996, 0.03205014419555664, 0.031955968856811526, 0.03200614547729492, 0.03189657592773437, 0.03188121604919433, 0.03202150344848633, 0.0321638412475586, 0.031991840362548825, 0.03199894332885742, 0.03193343925476074, 0.03197542381286621, 0.0318525447845459, 0.03199078369140625, 0.03202252960205078, 0.03216281509399414, 0.03228876876831055, 0.032105472564697264, 0.0329697265625, 0.03331584167480469, 0.031987712860107424, 0.03201638412475586, 0.03187820816040039, 0.03171219253540039, 0.032074752807617186, 0.03211372756958008, 0.03188115119934082, 0.031936511993408204, 0.032328704833984374, 0.032024574279785153, 0.03211980819702148, 0.031898624420166014, 0.03198566436767578, 0.03184332847595215, 0.032132095336914065, 0.031905792236328126, 0.031921152114868165, 0.03194777679443359, 0.03189145660400391, 0.03162112045288086, 0.03145011138916016, 0.03202867126464844, 0.03241164779663086, 0.03273932647705078, 0.03275980758666992, 0.0327086067199707, 0.032747520446777346, 0.032508926391601564, 0.031954944610595705, 0.03173785591125488, 0.03213926315307617, 0.03191910362243652, 0.032194561004638675, 0.03189452743530274, 0.0649349136352539, 0.032023551940917966, 0.03198566436767578, 0.03202560043334961, 0.03201126480102539, 0.03183616065979004, 0.031854591369628905, 0.0317573127746582, 0.031936511993408204, 0.031903743743896484, 0.03194675254821777, 0.03200511932373047, 0.031974399566650394, 0.03211161422729492, 0.031942655563354495, 0.0321638412475586, 0.03193446350097656, 0.03189145660400391, 0.03212799835205078, 0.032, 0.03198361587524414, 0.031937536239624024, 0.032105472564697264, 0.03191193580627441, 0.031916032791137694, 0.03271680068969727, 0.0333383674621582, 0.03406950378417969, 0.03317657470703125, 0.03253247833251953, 0.03198975944519043, 0.03277926254272461, 0.03240140914916992, 0.03290521621704102, 0.03309465789794922, 0.032075775146484374, 0.03243110275268555, 0.03205017471313477, 0.03197747230529785, 0.03197235107421875, 0.031908863067626955, 0.03199283218383789, 0.03201126480102539, 0.03172659111022949, 0.03145113563537598, 0.031459327697753905, 0.031643648147583005, 0.03180441665649414, 0.032189441680908204, 0.031916032791137694, 0.031955968856811526, 0.031971328735351565, 0.03196723175048828, 0.03189657592773437, 0.031959039688110355, 0.03171327972412109, 0.031732736587524416, 0.03177369689941406, 0.032056320190429685, 0.03193343925476074, 0.03195084762573242, 0.03191910362243652, 0.03195084762573242]",tokens/s,30.28593017651422,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-6.7b,EleutherAI/pythia-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1308.962816,6256.328704,0.0,5609.8816,5292.617216,s,10,5.571213256835938,0.5571213256835937,0.0007666840176307737,0.5568714599609375,0.557456005859375,0.5584093994140625,0.5591721142578125,"[0.55936279296875, 0.556702392578125, 0.5567649536132813, 0.5570609741210938, 0.5566168212890625, 0.5568453979492187, 0.557244140625, 0.5567742919921875, 0.5569439697265625, 0.5568975219726563]",tokens/s,459.5049376110048,kWh,6.58186607890659e-06,3.606554268359711e-06,3.10157809854445e-05,4.1204201332710805e-05,tokens/kWh,6212958.672172324,MB,1308.962816,6256.328704,0.0,5609.8816,5503.948288,s,10,327.20778125,32.720778124999995,0.005308491364446453,32.7202353515625,32.7266998046875,32.72907548828125,32.73097603515625,"[32.72102734375, 32.713080078125, 32.72320703125, 32.723677734375, 32.719443359375, 32.726171875, 32.7142578125, 32.71880859375, 32.71665625, 32.731451171875]",tokens/s,1.9253820847208232,kWh,0.00038621306252148413,0.00021167820178359155,0.0018056511605691545,0.00240354242487423,tokens/kWh,26211.31183207494,,s,629,331.6996517333982,0.527344438367883,0.06619643329461054,0.519362548828125,0.5196838745117187,0.5197864990234375,1.0765131103515626,"[0.5193318481445313, 0.5191546630859375, 0.5195264282226563, 0.5193011474609375, 0.519161865234375, 0.5189949340820312, 0.519024658203125, 0.5189488525390625, 0.51919873046875, 0.518950927734375, 0.5190645751953125, 0.5191629028320313, 0.5196636352539062, 0.5194833984375, 0.5193001098632812, 0.5194168090820312, 0.5192283935546875, 0.5194127807617187, 0.5191557006835937, 0.5193123779296875, 0.5200199584960937, 0.5194977416992187, 0.5196605224609375, 0.519141357421875, 0.5195980834960937, 0.5191690063476563, 0.5194024658203125, 0.51964208984375, 0.5193021240234375, 0.5191884765625, 0.5192212524414063, 0.5194844360351563, 0.5194926147460938, 0.5195140991210937, 0.519436279296875, 0.5195079956054688, 0.5191536865234375, 0.5194281005859375, 0.5195120849609375, 0.5192755126953125, 0.5196728515625, 0.5195980834960937, 0.5193359375, 0.5193533325195312, 0.5194619140625, 0.5194895629882812, 0.5192806396484375, 0.5191629028320313, 0.51945166015625, 0.519245849609375, 0.5195632934570312, 0.519736328125, 0.5192724609375, 0.5192140502929687, 0.5193277587890625, 0.5196113891601563, 0.5192888793945313, 0.519089111328125, 0.5195858154296875, 0.519647216796875, 0.5195612182617187, 0.5193564453125, 1.0763663330078126, 0.518898681640625, 0.5189488525390625, 0.5190789184570312, 0.5190236206054688, 0.5189979858398438, 0.5195140991210937, 0.5191475219726562, 0.5191536865234375, 0.5191444702148438, 0.5191588134765625, 0.519103515625, 0.5190625, 0.5190420532226563, 0.5190901489257812, 0.5192744750976562, 0.5193707275390625, 0.5191854248046875, 0.5194649658203125, 0.5193666381835937, 0.5193236694335938, 0.5194281005859375, 0.5191649169921875, 0.5191342163085938, 0.519046142578125, 0.5191383056640625, 0.5194874877929687, 0.5194271240234375, 0.5192376098632813, 0.5192274169921876, 0.5190830078125, 0.519161865234375, 0.51907275390625, 0.51944140625, 0.5194660034179688, 0.5193697509765625, 0.5191290893554688, 0.5192161254882812, 0.51917822265625, 0.51928271484375, 0.5191895141601562, 0.5192591552734375, 0.5195140991210937, 0.51934619140625, 0.5191177978515625, 0.51966259765625, 0.5194188842773437, 0.5195499267578125, 0.5193359375, 0.5193554077148438, 0.5193215942382813, 0.5193707275390625, 0.5193646240234375, 0.5194526977539062, 0.5195642700195312, 0.5192232666015625, 0.5191710815429688, 0.519193603515625, 0.5191710815429688, 0.519245849609375, 0.5192489013671875, 0.519278564453125, 0.5190645751953125, 1.076937744140625, 0.5192662963867187, 0.5193164672851562, 0.5193584594726562, 0.5193011474609375, 0.5191680297851563, 0.5191188354492188, 0.5191270141601563, 0.5195693969726562, 0.5193901977539063, 0.5192611694335938, 0.519352294921875, 0.519352294921875, 0.5192232666015625, 0.5193594970703125, 0.51930419921875, 0.519245849609375, 0.5191546630859375, 0.5192427368164062, 0.5194291381835937, 0.5196943359375, 0.519520263671875, 0.5194066162109375, 0.5193318481445313, 0.5193011474609375, 0.5194178466796875, 0.5193533325195312, 0.5193809814453125, 0.5195612182617187, 0.5193554077148438, 0.5194926147460938, 0.5192898559570313, 0.5194373168945312, 0.5194137573242188, 0.519341064453125, 0.5194496459960938, 0.5192283935546875, 0.51919873046875, 0.5195048828125, 0.5196339111328125, 0.5195560913085937, 0.519572509765625, 0.51938916015625, 0.5192929077148437, 0.5191874389648438, 0.5194547119140625, 0.5193114013671875, 0.5195682983398437, 0.5193922729492187, 0.5194547119140625, 0.5196246948242188, 0.5193451538085937, 0.5195867919921875, 0.5193400268554688, 0.5194721069335938, 0.5192376098632813, 0.51959912109375, 0.5194547119140625, 0.5198776245117187, 0.5195980834960937, 0.519794677734375, 0.5196093139648438, 0.5194988403320312, 1.07694482421875, 0.51944140625, 0.5193348999023437, 0.519572509765625, 0.5193656616210938, 0.5192765502929687, 0.5190225830078125, 0.5192960205078125, 0.5193001098632812, 0.519414794921875, 0.5196113891601563, 0.5192478637695312, 0.5194208984375, 0.5195591430664063, 0.5194547119140625, 0.5194055786132813, 0.5193932495117187, 0.5193236694335938, 0.519299072265625, 0.519203857421875, 0.519172119140625, 0.519413818359375, 0.5194751586914063, 0.5194956665039062, 0.5193031616210938, 0.5192714233398438, 0.5192642822265625, 0.5195704345703125, 0.5194055786132813, 0.5192109985351563, 0.5192069702148437, 0.5193225708007813, 0.5193994140625, 0.5194393310546875, 0.5193717651367188, 0.51938916015625, 0.5194823608398438, 0.5195161743164063, 0.5194229736328125, 0.5193123779296875, 0.5194803466796875, 0.5196267700195313, 0.5195346069335938, 0.5195284423828125, 0.5194066162109375, 0.5194495849609375, 0.5196309204101562, 0.5191699829101563, 0.5192222900390625, 0.5191680297851563, 0.5192140502929687, 0.5192509155273437, 0.5197455444335938, 0.51945166015625, 0.5199011840820312, 0.5196165161132813, 0.5196021728515625, 0.51944140625, 0.519468017578125, 0.5196871948242188, 0.5198428344726562, 0.5196503295898437, 0.5193164672851562, 1.076336669921875, 0.5190471801757812, 0.51890380859375, 0.5190809326171875, 0.5190072021484375, 0.5190051879882812, 0.519067626953125, 0.5190942993164063, 0.5192550659179688, 0.5191608276367188, 0.51911474609375, 0.5190000610351563, 0.5190625, 0.5189099731445312, 0.5189284057617187, 0.5190532836914062, 0.5191976928710937, 0.5195181884765625, 0.5195192260742187, 0.5192243041992187, 0.5194373779296875, 0.5194208374023438, 0.5193380126953125, 0.51938818359375, 0.5193707275390625, 0.5193901977539063, 0.5194732055664063, 0.5196451416015625, 0.5194977416992187, 0.5196513061523438, 0.5195796508789062, 0.5192212524414063, 0.5195172119140625, 0.5192601318359376, 0.5197967529296875, 0.5195601806640625, 0.5197598876953125, 0.5193154296875, 0.5192755126953125, 0.5190604858398438, 0.519140380859375, 0.519161865234375, 0.5192714233398438, 0.5192130737304688, 0.519172119140625, 0.5193922729492187, 0.5197404174804687, 0.5195489501953126, 0.5196461791992187, 0.5194475708007813, 0.5194373168945312, 0.5194741821289063, 0.5194240112304688, 0.5196431274414063, 0.51991552734375, 0.5195888671875, 0.5194813232421875, 0.5196830444335937, 0.5193574829101563, 0.5195447387695312, 0.519552001953125, 0.5194495849609375, 0.5193912353515625, 1.0770308837890625, 0.519299072265625, 0.519161865234375, 0.519352294921875, 0.519202880859375, 0.519232421875, 0.5192161254882812, 0.5191495971679687, 0.5193451538085937, 0.5194649658203125, 0.5192969970703125, 0.51949365234375, 0.5189734497070313, 0.5189652709960938, 0.5190738525390625, 0.5190205078125, 0.5188731079101563, 0.5189837036132813, 0.5191946411132813, 0.5191895141601562, 0.5194915771484375, 0.5194823608398438, 0.5194649658203125, 0.5193861083984375, 0.519541748046875, 0.5195222778320312, 0.5193441162109375, 0.5196687622070313, 0.5194107055664062, 0.5194291381835937, 0.5196728515625, 0.519736328125, 0.5194956665039062, 0.5196932983398438, 0.51970458984375, 0.5194557495117188, 0.5194752197265625, 0.5195489501953126, 0.5196452026367188, 0.51976904296875, 0.5196585693359375, 0.5195037841796875, 0.5197609252929688, 0.5197005004882812, 0.5194229736328125, 0.51953564453125, 0.5195899047851562, 0.5200025634765625, 0.5196328735351563, 0.5195530395507812, 0.5195929565429688, 0.5197322387695312, 0.519456787109375, 0.5192703857421875, 0.5194905395507813, 0.5194588012695313, 0.5194240112304688, 0.5194588012695313, 0.519572509765625, 0.5200353393554688, 0.5195612182617187, 0.5195438232421875, 0.5196062622070312, 1.0774559326171875, 0.5191044921875, 0.5191157836914062, 0.5191874389648438, 0.5194168090820312, 0.519161865234375, 0.5189949340820312, 0.5192335205078125, 0.5191475219726562, 0.5193502807617187, 0.5192642822265625, 0.5191946411132813, 0.5190123291015625, 0.5190532836914062, 0.5194086303710937, 0.5190615234375, 0.5189734497070313, 0.5190645751953125, 0.5192376098632813, 0.5190942993164063, 0.5191700439453125, 0.5191280517578125, 0.5192765502929687, 0.5192151489257812, 0.5193707275390625, 0.5190543212890625, 0.5191290893554688, 0.5193359375, 0.5194874877929687, 0.5193267211914062, 0.5189846801757813, 0.51919873046875, 0.5191116943359375, 0.5194178466796875, 0.51928369140625, 0.5192315063476562, 0.51917724609375, 0.5193430786132812, 0.5191895141601562, 0.5191710815429688, 0.5193011474609375, 0.5194956665039062, 0.5192806396484375, 0.519357421875, 0.5193850708007812, 0.5195530395507812, 0.5191905517578125, 0.519109619140625, 0.5193072509765625, 0.5192550659179688, 0.5195325317382813, 0.5192079467773437, 0.5195632934570312, 0.5195438232421875, 0.5192283935546875, 0.5193164672851562, 0.5193871459960937, 0.519130126953125, 0.5190543212890625, 0.519066650390625, 0.519762939453125, 0.5196871948242188, 0.51964208984375, 1.0765701904296876, 0.5193727416992188, 0.5190225830078125, 0.51900927734375, 0.51913525390625, 0.5190553588867187, 0.5191137084960937, 0.519404541015625, 0.5193369750976562, 0.5193421020507812, 0.5189796142578125, 0.5190471801757812, 0.5191260375976563, 0.5190000610351563, 0.5188761596679687, 0.5193082885742187, 0.5192929077148437, 0.5189151000976563, 0.5193871459960937, 0.5191874389648438, 0.5193277587890625, 0.5193389892578125, 0.5194967041015625, 0.5193380126953125, 0.518867919921875, 0.5191762084960938, 0.5194178466796875, 0.5198345947265625, 0.5194864501953125, 0.519278564453125, 0.5193430786132812, 0.5191434326171875, 0.51901953125, 0.519066650390625, 0.5193963623046876, 0.5190963134765625, 0.51917822265625, 0.5191843872070312, 0.5193840942382812, 0.5189468383789062, 0.5197189331054688, 0.5195069580078125, 0.5195929565429688, 0.5196318969726562, 0.5192345581054687, 0.5199708251953125, 0.5198817138671875, 0.5194895629882812, 0.5193318481445313, 0.51960009765625, 0.519520263671875, 0.5197168579101562, 0.5195089721679688, 0.5197127685546875, 0.5197619018554688, 0.5193789672851562, 0.5196011352539063, 0.5199605712890625, 0.5192171630859375, 0.519773193359375, 0.5193154296875, 0.5193421020507812, 0.5191127319335938, 1.076674560546875, 0.5193175048828125, 0.5198510131835937, 0.5194219360351563, 0.5192171630859375, 0.5192335205078125, 0.5190491943359375, 0.5191076049804687, 0.519288818359375, 0.519351318359375, 0.51945166015625, 0.5192109985351563, 0.5194281005859375, 0.5190523071289063, 0.518887451171875, 0.5189160766601563, 0.5193380126953125, 0.5191219482421875, 0.5194137573242188, 0.5189949340820312, 0.5194024658203125, 0.5194833984375, 0.5191393432617187, 0.5193871459960937, 0.5191823120117187, 0.519035888671875, 0.5191137084960937, 0.5192263793945312, 0.5193850708007812, 0.5195980834960937, 0.519099365234375, 0.5191802978515625, 0.519103515625, 0.5190819702148437, 0.5191076049804687, 0.5194823608398438, 0.519362548828125, 0.5193380126953125, 0.5192847290039062, 0.5194066162109375, 0.5196646118164062, 0.519319580078125, 0.5197086791992187, 0.5193389892578125, 0.5191321411132812, 0.5191423950195313, 0.5191177978515625, 0.51974658203125, 0.5195028686523437, 0.5193082885742187, 0.5194967041015625, 0.5192734985351563, 0.5193185424804687, 0.5191393432617187, 0.5193789672851562, 0.5193001098632812, 0.519245849609375, 0.5193215942382813, 0.5193871459960937, 0.5200670776367188, 0.5194752197265625, 0.5193564453125, 0.519161865234375, 1.0765865478515626, 0.5188423461914062, 0.5193768920898437, 0.5195335693359375, 0.5195069580078125, 0.5196103515625, 0.5192714233398438, 0.5193687133789062, 0.5194761962890625, 0.5191976928710937, 0.5193594970703125, 0.5194977416992187, 0.5192212524414063, 0.5192960205078125, 0.5195693969726562, 0.51974755859375, 0.519372802734375, 0.5196605224609375, 0.5194926147460938, 0.5194332275390625, 0.5192581176757812, 0.5195612182617187, 0.519888916015625, 0.52008251953125, 0.519522216796875, 0.519762939453125, 0.5197742309570312, 0.5199441528320312, 0.5196011352539063, 0.5197128295898438, 0.519615478515625, 0.5195438232421875, 0.5197282104492188, 0.52025439453125, 0.52010595703125, 0.5197557983398438, 0.5197957153320313, 0.5193380126953125, 0.5193861083984375, 0.5192591552734375, 0.5193103637695312, 0.5194598388671875, 0.519741455078125, 0.5195346069335938, 0.519635986328125, 0.5194772338867187, 0.5194158325195313, 0.5195806884765625, 0.5193267211914062, 0.5193666381835937, 0.5194485473632813, 0.5195233154296875, 0.5197117309570313, 0.519857177734375, 0.519552001953125, 0.519488525390625, 0.5193113403320313, 0.519372802734375, 0.5194302368164062, 0.5193245849609375, 0.5197352905273438, 0.51986328125, 0.5195817260742187]",tokens/s,1.8962938209701676,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-14B,Qwen/Qwen-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained - model_class = get_class_from_dynamic_module( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module - final_module = get_cached_module_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file - modules_needed = check_imports(resolved_module_file) - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports - raise ImportError( -ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-12b,stabilityai/stablelm-2-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2287.439872,9584.508928,0.0,8938.061824,8629.72416,s,10,10.131507629394532,1.013150762939453,0.002692660193456455,1.0122420349121093,1.01416416015625,1.017623095703125,1.020390244140625,"[1.02108203125, 1.01157763671875, 1.012674072265625, 1.0126704711914063, 1.0133955078125, 1.012330322265625, 1.0118361206054687, 1.0117332763671876, 1.012054443359375, 1.0121537475585938]",tokens/s,252.67710331408875,kWh,1.195108746488889e-05,6.548659351992683e-06,5.668768423900405e-05,7.518743105588562e-05,tokens/kWh,3404824.4022291345,MB,2287.439872,9584.508928,0.0,8938.061824,8715.664896,s,10,591.45866796875,59.145866796875,0.006617972035565828,59.14582421874999,59.155115234374996,59.1558447265625,59.1564283203125,"[59.14538671875, 59.13608984375, 59.150515625, 59.1451953125, 59.154953125, 59.15657421875, 59.14678515625, 59.1360078125, 59.1408984375, 59.14626171875]",tokens/s,1.0651631874186793,kWh,0.0006982415291666984,0.00038269747479935173,0.0032679308921203906,0.004348869896086441,tokens/kWh,14486.52213226564,,s,629,599.6304891357424,0.9533076138883024,0.12026100633018022,0.9387591552734375,0.9396539428710937,0.9399756713867188,1.9507973779296877,"[0.9389322509765625, 0.9398538208007813, 0.938841064453125, 0.93900390625, 0.9390182495117188, 0.9385973510742187, 0.9396909790039063, 0.938871826171875, 0.9403566284179687, 0.9389732055664063, 0.939009033203125, 0.9392967529296875, 0.9398015747070313, 0.938829833984375, 0.9383045043945313, 0.9377362060546875, 0.9381539916992188, 0.9390131225585937, 0.9386055908203125, 0.9399725952148438, 0.93948828125, 0.939114501953125, 0.939462646484375, 0.93991015625, 0.9391953735351563, 0.9389260864257812, 0.9383475341796875, 0.9386793212890625, 0.9386414184570312, 0.9392066650390625, 0.9393878784179688, 0.9381703491210938, 0.9381140747070312, 0.9383218994140625, 0.9380587768554688, 0.9380526123046875, 0.9383915405273437, 0.9382041625976563, 0.9384386596679688, 0.9379778442382812, 0.9379686279296875, 0.9389004516601562, 0.938387451171875, 0.93830859375, 0.9408757934570312, 0.9392742309570312, 0.9384775390625, 0.9388594970703125, 0.9387110595703125, 0.938039306640625, 0.9378734130859375, 0.93863525390625, 0.9386055908203125, 0.9390182495117188, 0.938181640625, 0.939652099609375, 0.9389639892578125, 0.9383065795898438, 0.939093017578125, 0.9385164794921875, 0.9385799560546875, 0.9382952880859375, 1.9507384033203126, 0.9382799072265625, 0.9386485595703125, 0.938119140625, 0.9379522705078125, 0.9383259887695312, 0.9382891235351563, 0.938335205078125, 0.9381273803710938, 0.9386373291015625, 0.938450927734375, 0.9386209106445312, 0.9381652221679687, 0.9398865966796875, 0.93909912109375, 0.9384284057617187, 0.9378529052734375, 0.9383649291992188, 0.938302490234375, 0.9382522583007813, 0.9403709716796875, 0.9398660888671875, 0.93905615234375, 0.9389526977539062, 0.9395927124023438, 0.9383956298828126, 0.9380956420898438, 0.9384847412109375, 0.9385236206054688, 0.9388482666015625, 0.9386148071289062, 0.93890966796875, 0.938439697265625, 0.93823486328125, 0.9391492919921876, 0.9383259887695312, 0.9384806518554687, 0.9384683227539062, 0.9383198852539063, 0.9388380126953125, 0.9383782348632812, 0.939188232421875, 0.9388707885742188, 0.9384468383789063, 0.9386332397460937, 0.9392158813476562, 0.9388359375, 0.9386854248046875, 0.9379727172851563, 0.9386455078125, 0.9383505859375, 0.938419189453125, 0.93814990234375, 0.9399869384765625, 0.9389414672851563, 0.9384857788085937, 0.93823486328125, 0.9385400390625, 0.9385010986328125, 0.9388738403320313, 0.9391431884765625, 0.9389598999023437, 0.9393756103515625, 1.951994873046875, 0.938608642578125, 0.9388524169921875, 0.9380965576171875, 0.9379512329101563, 0.9383270263671875, 0.9390551147460937, 0.9391697998046875, 0.938060791015625, 0.9392967529296875, 0.9386834106445312, 0.9387222900390625, 0.93907763671875, 0.940732421875, 0.9389188842773437, 0.9391503295898438, 0.9383372802734375, 0.938250244140625, 0.9387908935546875, 0.9389424438476562, 0.939419677734375, 0.9392752685546875, 0.9382041625976563, 0.9396817626953125, 0.9394974975585938, 0.93903564453125, 0.938745849609375, 0.9387335815429687, 0.9390694580078125, 0.9386281127929688, 0.9390643310546875, 0.9388779296875, 0.9388635864257813, 0.9396141967773437, 0.9400760498046875, 0.9385093383789063, 0.9377218627929688, 0.9381908569335937, 0.9382952880859375, 0.9383936157226562, 0.9382778930664063, 0.9385912475585938, 0.9392332763671875, 0.9384796142578125, 0.9385226440429687, 0.9392466430664063, 0.9381528930664063, 0.9381519165039063, 0.938461181640625, 0.9395015869140625, 0.93941455078125, 0.9390643310546875, 0.9385420532226563, 0.94017333984375, 0.939114501953125, 0.9396920166015625, 0.9393316040039063, 0.938903564453125, 0.9387530517578125, 0.9390448608398437, 0.9396613159179688, 0.9389629516601562, 0.938998779296875, 1.9516702880859376, 0.9386065673828125, 0.9402235107421875, 0.9383372802734375, 0.9382932739257812, 0.938365966796875, 0.9387254028320312, 0.938693603515625, 0.9385010986328125, 0.938767333984375, 0.9391104125976563, 0.9382758178710937, 0.93905712890625, 0.9390704345703125, 0.93931005859375, 0.9386598510742188, 0.9379256591796875, 0.938017822265625, 0.9386240234375, 0.9385728149414062, 0.9389793090820312, 0.9392128295898438, 0.938334228515625, 0.9388523559570312, 0.938787841796875, 0.9384253540039063, 0.9385072631835938, 0.93846630859375, 0.9390551147460937, 0.939335693359375, 0.9389865112304687, 0.9403515014648437, 0.938693603515625, 0.9387028198242188, 0.9390755615234375, 0.9390796508789062, 0.9388257446289062, 0.9389475708007813, 0.9399132080078125, 0.938587158203125, 0.9390377197265625, 0.9394114379882812, 0.940221435546875, 0.9385441284179687, 0.9391052856445312, 0.938335205078125, 0.9382625122070313, 0.9383117065429688, 0.9383178100585937, 0.9387202758789063, 0.9384796142578125, 0.9386547241210937, 0.9381621704101563, 0.93876123046875, 0.9382215576171875, 0.9389844360351562, 0.9389209594726563, 0.9384591064453125, 0.9386475219726562, 0.9395773315429687, 0.9389486083984375, 0.9387765502929688, 0.93916162109375, 1.9526563720703125, 0.9392178955078125, 0.9389434814453125, 0.93859326171875, 0.939198486328125, 0.93855126953125, 0.9389004516601562, 0.9386444702148438, 0.9396828002929688, 0.9400084228515625, 0.9395486450195313, 0.93916162109375, 0.939404296875, 0.9389486083984375, 0.939167724609375, 0.9397196655273438, 0.93857177734375, 0.938660888671875, 0.9386322021484375, 0.9401231079101563, 0.939725830078125, 0.9393346557617187, 0.9393930053710937, 0.9400657958984375, 0.9386649780273437, 0.9385441284179687, 0.9381509399414063, 0.9390632934570312, 0.9386444702148438, 0.9382697143554688, 0.939452392578125, 0.9390592041015625, 0.9396920166015625, 0.93861376953125, 0.9394022216796875, 0.939062255859375, 0.9391001586914063, 0.938335205078125, 0.9390151977539063, 0.9384151000976563, 0.9390755615234375, 0.93837109375, 0.9391544189453125, 0.9386065673828125, 0.9394503784179687, 0.9384161376953125, 0.938771484375, 0.9382778930664063, 0.9383301391601563, 0.9384806518554687, 0.9385072631835938, 0.939251708984375, 0.9386219482421875, 0.939736083984375, 0.9381171264648438, 0.939852783203125, 0.9383362426757812, 0.9384755249023438, 0.9382440795898438, 0.9390888671875, 0.9384498901367188, 0.9385430908203125, 0.93985791015625, 1.9517337646484374, 0.9388739013671875, 0.9396459350585937, 0.9385574951171874, 0.9385686645507813, 0.9384365844726562, 0.9387765502929688, 0.93935205078125, 0.9397186279296875, 0.93812939453125, 0.939156494140625, 0.938771484375, 0.9394319458007813, 0.9387591552734375, 0.9385062255859375, 0.9385093383789063, 0.9380311279296875, 0.9388994750976563, 0.9391216430664062, 0.9395814208984375, 0.939610107421875, 0.9395476684570313, 0.9393233642578125, 0.9399511108398437, 0.9398251342773437, 0.9391124267578125, 0.9394176025390625, 0.9400964965820312, 0.9399777221679687, 0.9401446533203125, 0.939125732421875, 0.9388021850585937, 0.9388124389648438, 0.9400350952148437, 0.9387550659179688, 0.9386065673828125, 0.9382359008789063, 0.9382369384765625, 0.93964697265625, 0.9381478271484375, 0.939219970703125, 0.9382389526367187, 0.9393500366210937, 0.9386393432617187, 0.9393213500976563, 0.9382932739257812, 0.9387704467773438, 0.9389281005859375, 0.9396756591796875, 0.9391441650390625, 0.9385687255859375, 0.9398343505859375, 0.93823486328125, 0.9392557983398437, 0.9380843505859375, 0.939009033203125, 0.9379246215820313, 0.938049560546875, 0.93809765625, 0.9396961059570312, 0.938603515625, 0.9394022216796875, 0.9386465454101562, 1.9507159423828124, 0.9391738891601562, 0.9382543334960938, 0.9382963256835938, 0.9384693603515625, 0.9383526611328125, 0.9399357299804687, 0.93943603515625, 0.9397831420898437, 0.93865673828125, 0.9389649658203125, 0.938598388671875, 0.9392752685546875, 0.938119140625, 0.9378037719726563, 0.9382062377929687, 0.938081298828125, 0.9376358642578125, 0.9382072143554687, 0.9395159301757813, 0.9385308227539062, 0.93964697265625, 0.9388390502929688, 0.9387509765625, 0.9381334838867188, 0.938144775390625, 0.9383526000976562, 0.9388922729492187, 0.9388226318359375, 0.9387222900390625, 0.9390540771484375, 0.9390018310546875, 0.9392066650390625, 0.9401517944335938, 0.9398220825195313, 0.938925048828125, 0.938987548828125, 0.9386342163085938, 0.9397770385742188, 0.9390172119140625, 0.9395302124023438, 0.9389547729492187, 0.9400145874023438, 0.9384099731445312, 0.939598876953125, 0.9384038696289062, 0.9381325073242187, 0.9380997314453124, 0.9389240112304688, 0.938376220703125, 0.9384140625, 0.9392455444335938, 0.9389741821289063, 0.9392086791992188, 0.9387509765625, 0.9395404663085938, 0.93880322265625, 0.938650634765625, 0.9383117065429688, 0.9391912841796874, 0.938625, 0.93869775390625, 0.9389117431640625, 1.9512227783203124, 0.9401149291992188, 0.938693603515625, 0.9384498901367188, 0.9391452026367187, 0.9389598999023437, 0.93937255859375, 0.9388656616210938, 0.939441162109375, 0.938603515625, 0.9388677368164062, 0.9383546752929688, 0.9392056274414062, 0.938287109375, 0.9377484741210937, 0.9378836669921875, 0.93793896484375, 0.9375641479492187, 0.9385707397460937, 0.9388339233398437, 0.938630126953125, 0.9394104614257812, 0.9392772827148438, 0.9391390991210937, 0.938872802734375, 0.9386659545898437, 0.9385103149414062, 0.9388339233398437, 0.9386782836914063, 0.9387857666015625, 0.9381437377929688, 0.9386362915039063, 0.9390151977539063, 0.939298828125, 0.9390264282226563, 0.9383864135742187, 0.9382738037109375, 0.9385748291015625, 0.938534912109375, 0.938250244140625, 0.9396162719726563, 0.9382584228515625, 0.9384591064453125, 0.9386362915039063, 0.9391001586914063, 0.9379573974609375, 0.9382379760742188, 0.938408935546875, 0.9383331909179687, 0.9385953369140625, 0.9381273803710938, 0.9385042114257812, 0.9381089477539063, 0.9387110595703125, 0.9393162231445312, 0.9386168823242188, 0.9382542724609375, 0.9378928833007812, 0.9382205200195313, 0.9389230346679688, 0.9386598510742188, 0.939430908203125, 0.9383444213867187, 1.9508203125, 0.9386854248046875, 0.9382471923828125, 0.938323974609375, 0.9382011108398437, 0.9390366821289062, 0.93852978515625, 0.9385359497070312, 0.9398814697265625, 0.9387048950195312, 0.9394933471679687, 0.939357177734375, 0.9405009765625, 0.9390079956054688, 0.9383884887695313, 0.9386322021484375, 0.9385226440429687, 0.9374658813476563, 0.9394872436523437, 0.9389967651367187, 0.9386393432617187, 0.939273193359375, 0.939357177734375, 0.9387940063476562, 0.9389414672851563, 0.9389557495117188, 0.9387868041992188, 0.9400811767578126, 0.9384970092773437, 0.9387786254882813, 0.938735595703125, 0.938808349609375, 0.939025390625, 0.9387807006835938, 0.9382564086914063, 0.9380014038085938, 0.9381089477539063, 0.9382532958984375, 0.938630126953125, 0.938618896484375, 0.938883056640625, 0.9382164306640625, 0.938872802734375, 0.9385338745117188, 0.9390315551757813, 0.9384253540039063, 0.938555419921875, 0.9387694091796875, 0.9386690673828125, 0.9383936157226562, 0.9389619140625, 0.9384304809570313, 0.9386782836914063, 0.9390888671875, 0.939125732421875, 0.9383280639648437, 0.938625, 0.9386373291015625, 0.9384110107421875, 0.9388840942382812, 0.9385308227539062, 0.9386843872070313, 0.9381119995117188, 1.9515452880859374, 0.9394534301757812, 0.93916259765625, 0.9390397338867188, 0.9386148071289062, 0.9386332397460937, 0.9383301391601563, 0.9385236206054688, 0.9390694580078125, 0.9383864135742187, 0.9387816772460937, 0.938566650390625, 0.9386209106445312, 0.938498046875, 0.938482666015625, 0.9383372802734375, 0.938598388671875, 0.9374115600585937, 0.9391605834960938, 0.9391114501953125, 0.9388984375, 0.9407098999023438, 0.9396029663085937, 0.9391421508789063, 0.938498046875, 0.9380679931640625, 0.9384048461914063, 0.93968896484375, 0.9385738525390624, 0.939087890625, 0.9386076049804688, 0.93890869140625, 0.938851318359375, 0.9392803955078125, 0.93926806640625, 0.9393264770507812, 0.9389168701171875, 0.9393695068359375, 0.938694580078125, 0.9390172119140625, 0.93890966796875, 0.9383895263671875, 0.9392957153320313, 0.9389629516601562, 0.938323974609375, 0.9382389526367187, 0.9378775024414062, 0.9381263427734375, 0.9386209106445312, 0.9382277221679688, 0.9391841430664063, 0.938829833984375, 0.938335205078125, 0.9392312622070312, 0.9389691162109375, 0.9388851318359375, 0.9389680786132812, 0.9386978149414062, 0.9398670654296875, 0.9389967651367187, 0.93882470703125, 0.938935302734375, 0.9384898681640625]",tokens/s,1.0489793487762582,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-30b,huggyllama/llama-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,6386.765824,20902.838272,0.0,20256.391168,19273.711616,s,10,26.8813134765625,2.68813134765625,0.0041309885323175775,2.6865931396484375,2.691104760742187,2.6949006469726564,2.6979373559570314,"[2.68579150390625, 2.698696533203125, 2.6865712890625, 2.6859423828125, 2.686614990234375, 2.68409033203125, 2.68391357421875, 2.689296875, 2.690134765625, 2.69026123046875]",tokens/s,95.23344170782555,kWh,3.169923381672966e-05,1.7372348204735315e-05,0.00014952039739400956,0.00019859197941547455,tokens/kWh,1289075.222239575,MB,6390.304768,20902.838272,0.0,20256.391168,19862.692352,s,10,1586.219609375,158.62196093749998,0.021140987905695616,158.62285937500002,158.64970156249998,158.65553046875,158.66019359375,"[158.621765625, 158.64840625, 158.661359375, 158.62828125, 158.623953125, 158.628453125, 158.605140625, 158.5859375, 158.5989375, 158.617375]",tokens/s,0.39717072987657226,kWh,0.0018725793671773541,0.001026339254797931,0.00885864822580179,0.011757566847777077,tokens/kWh,5358.251483121356,,s,629,1607.8922929687508,2.55626755638911,0.31948633074222244,2.517612548828125,2.519399658203125,2.519920654296875,5.205208671875,"[2.518139892578125, 2.51872265625, 2.517171142578125, 2.517675048828125, 2.517256103515625, 2.51740869140625, 2.51825048828125, 2.5169521484375, 2.517097412109375, 2.516339599609375, 2.5180908203125, 2.51845947265625, 2.51869189453125, 2.518560791015625, 2.519083984375, 2.517611572265625, 2.517076904296875, 2.5172490234375, 2.518533203125, 2.518801513671875, 2.5181748046875, 2.51648193359375, 2.517393310546875, 2.516537353515625, 2.517125, 2.516431884765625, 2.518256591796875, 2.516644775390625, 2.5168720703125, 2.516345947265625, 2.51714453125, 2.516572265625, 2.516453369140625, 2.516675537109375, 2.517611572265625, 2.516471923828125, 2.516367431640625, 2.517232666015625, 2.517244873046875, 2.51826904296875, 2.517273681640625, 2.51704638671875, 2.5178828125, 2.51706884765625, 2.51754296875, 2.518129638671875, 2.519542724609375, 2.5176494140625, 2.517353515625, 2.51711279296875, 2.519594970703125, 2.52010693359375, 2.51871435546875, 2.519090087890625, 2.519048095703125, 2.519532470703125, 2.51997802734375, 2.518859619140625, 2.51943017578125, 2.520383544921875, 2.517666748046875, 2.51677392578125, 5.2204013671875, 2.5192919921875, 2.51740771484375, 2.516737060546875, 2.5188486328125, 2.5170791015625, 2.516949951171875, 2.517423095703125, 2.517424072265625, 2.51706787109375, 2.517665771484375, 2.519553955078125, 2.51833642578125, 2.519075927734375, 2.519300048828125, 2.51761962890625, 2.519573486328125, 2.518274169921875, 2.517041259765625, 2.5171435546875, 2.516961181640625, 2.517271484375, 2.516989013671875, 2.52028515625, 2.518149169921875, 2.5176474609375, 2.517328857421875, 2.51751220703125, 2.51903271484375, 2.51806005859375, 2.51780810546875, 2.51837548828125, 2.519371826171875, 2.517011474609375, 2.519920654296875, 2.5178798828125, 2.517094482421875, 2.51761669921875, 2.51815625, 2.51747216796875, 2.516791259765625, 2.5166181640625, 2.517612548828125, 2.51765576171875, 2.51951513671875, 2.516619384765625, 2.519645263671875, 2.518657958984375, 2.516588623046875, 2.519201904296875, 2.51913720703125, 2.518130615234375, 2.517403564453125, 2.5184736328125, 2.519552001953125, 2.523171875, 2.51789013671875, 2.516390869140625, 2.5189345703125, 2.518498291015625, 2.519341064453125, 2.5183642578125, 2.519233642578125, 5.20647900390625, 2.5165556640625, 2.518474853515625, 2.51786962890625, 2.51740478515625, 2.517843994140625, 2.51732177734375, 2.51726123046875, 2.516327392578125, 2.517376953125, 2.518192138671875, 2.519117919921875, 2.518830078125, 2.516476806640625, 2.51763916015625, 2.517055419921875, 2.517540771484375, 2.51723681640625, 2.519719970703125, 2.51848095703125, 2.517832763671875, 2.516706298828125, 2.51780517578125, 2.518971435546875, 2.5205986328125, 2.51799853515625, 2.51905029296875, 2.52092919921875, 2.517274658203125, 2.51875634765625, 2.5179462890625, 2.51730126953125, 2.51972802734375, 2.519468017578125, 2.518427734375, 2.5177353515625, 2.517422119140625, 2.5163857421875, 2.51761767578125, 2.517665771484375, 2.52023291015625, 2.51808154296875, 2.517843017578125, 2.52073974609375, 2.519414794921875, 2.51922216796875, 2.518572021484375, 2.519636962890625, 2.520416259765625, 2.518666259765625, 2.522156005859375, 2.518053955078125, 2.519404541015625, 2.518847412109375, 2.517646240234375, 2.51810205078125, 2.51926123046875, 2.519097412109375, 2.521001953125, 2.518910888671875, 2.5173779296875, 2.517789794921875, 2.520220703125, 5.20475830078125, 2.51871240234375, 2.5201982421875, 2.520436767578125, 2.51780908203125, 2.516747314453125, 2.51753271484375, 2.516557861328125, 2.51795458984375, 2.51775390625, 2.518048828125, 2.517761962890625, 2.518373291015625, 2.51766064453125, 2.517230712890625, 2.516822021484375, 2.51799755859375, 2.5179033203125, 2.5168720703125, 2.518266845703125, 2.517353515625, 2.5180712890625, 2.518619140625, 2.516643798828125, 2.517336181640625, 2.517548095703125, 2.517536865234375, 2.517360595703125, 2.517929931640625, 2.517650390625, 2.517623779296875, 2.518117431640625, 2.51952734375, 2.51759521484375, 2.517037109375, 2.517159912109375, 2.51675537109375, 2.518679443359375, 2.517864501953125, 2.51694189453125, 2.517684326171875, 2.519645263671875, 2.518003662109375, 2.517291015625, 2.516994140625, 2.51759912109375, 2.5174609375, 2.51873388671875, 2.517940185546875, 2.51837841796875, 2.51715185546875, 2.5170146484375, 2.51955517578125, 2.518741943359375, 2.5189775390625, 2.5173525390625, 2.517677978515625, 2.51769140625, 2.51719580078125, 2.51702783203125, 2.5181552734375, 2.519466064453125, 2.519775146484375, 5.2051865234375, 2.517904296875, 2.51915869140625, 2.51858935546875, 2.519103515625, 2.519520263671875, 2.517877685546875, 2.517642333984375, 2.518906982421875, 2.51755419921875, 2.517623779296875, 2.517487548828125, 2.518580322265625, 2.518183837890625, 2.517307373046875, 2.516926513671875, 2.51662353515625, 2.519920654296875, 2.516429931640625, 2.518091796875, 2.5164921875, 2.5171865234375, 2.51658251953125, 2.517351318359375, 2.516623291015625, 2.517256103515625, 2.517856201171875, 2.517544921875, 2.516708251953125, 2.519246826171875, 2.518055908203125, 2.518032470703125, 2.516893798828125, 2.519097412109375, 2.517005126953125, 2.517876708984375, 2.5175634765625, 2.518494140625, 2.5167412109375, 2.5177138671875, 2.518095947265625, 2.51822998046875, 2.518499267578125, 2.516704345703125, 2.520115234375, 2.517539794921875, 2.5169130859375, 2.517727294921875, 2.517357666015625, 2.5173330078125, 2.518453369140625, 2.520203369140625, 2.517231689453125, 2.517478515625, 2.517189697265625, 2.517262451171875, 2.517794921875, 2.519332763671875, 2.517783447265625, 2.517359619140625, 2.51770458984375, 2.517918701171875, 2.5172275390625, 5.20521728515625, 2.518489013671875, 2.51708203125, 2.5163857421875, 2.51787060546875, 2.5188076171875, 2.518327392578125, 2.517561279296875, 2.519435302734375, 2.52038037109375, 2.517274658203125, 2.517645263671875, 2.517359619140625, 2.517127197265625, 2.516441162109375, 2.516781982421875, 2.518454345703125, 2.517274658203125, 2.51644921875, 2.51639306640625, 2.5190185546875, 2.5164248046875, 2.516654052734375, 2.5163837890625, 2.51848388671875, 2.516992919921875, 2.5170400390625, 2.51709033203125, 2.517877685546875, 2.516539306640625, 2.516367431640625, 2.51928173828125, 2.519300048828125, 2.51730029296875, 2.516928466796875, 2.516885498046875, 2.518531982421875, 2.5179638671875, 2.518365234375, 2.521257080078125, 2.5186845703125, 2.51814697265625, 2.518978515625, 2.518739013671875, 2.51789208984375, 2.517880859375, 2.5175458984375, 2.51723779296875, 2.520966064453125, 2.5173125, 2.517146728515625, 2.517482421875, 2.51751123046875, 2.518137939453125, 2.517230712890625, 2.51829150390625, 2.51913720703125, 2.51747216796875, 2.518295654296875, 2.51835693359375, 2.5180498046875, 2.51679443359375, 2.516978759765625, 5.20618505859375, 2.516756591796875, 2.516822021484375, 2.516474853515625, 2.517072998046875, 2.51698583984375, 2.517000244140625, 2.517266357421875, 2.51782666015625, 2.51772119140625, 2.518513671875, 2.518520751953125, 2.517814208984375, 2.516486083984375, 2.516232177734375, 2.51664892578125, 2.517416015625, 2.51725, 2.517421142578125, 2.51761767578125, 2.517550048828125, 2.517233642578125, 2.51706982421875, 2.517667724609375, 2.518662109375, 2.517381103515625, 2.5167001953125, 2.517783447265625, 2.51818603515625, 2.51659375, 2.51644921875, 2.516968505859375, 2.51725927734375, 2.517319580078125, 2.51740673828125, 2.517291015625, 2.51770068359375, 2.516655029296875, 2.516579345703125, 2.518679443359375, 2.51792578125, 2.517526611328125, 2.518116455078125, 2.51873291015625, 2.517396484375, 2.517900390625, 2.51812255859375, 2.5177353515625, 2.5179853515625, 2.516726806640625, 2.5171015625, 2.517467041015625, 2.518310791015625, 2.51728173828125, 2.516833251953125, 2.51797412109375, 2.517671875, 2.518767578125, 2.51833251953125, 2.518369384765625, 2.519214111328125, 2.5175, 2.517960693359375, 5.207421875, 2.516853759765625, 2.517536865234375, 2.51687841796875, 2.516634521484375, 2.516380615234375, 2.51723681640625, 2.517261474609375, 2.51818798828125, 2.518327392578125, 2.518880126953125, 2.518677490234375, 2.517012451171875, 2.516658203125, 2.5166181640625, 2.51793505859375, 2.517747802734375, 2.519637939453125, 2.5187236328125, 2.518320068359375, 2.517434326171875, 2.516303955078125, 2.516716552734375, 2.516737060546875, 2.516611083984375, 2.516365234375, 2.51681591796875, 2.516877197265625, 2.517065673828125, 2.516994140625, 2.517845947265625, 2.518003662109375, 2.517454833984375, 2.51677685546875, 2.517212158203125, 2.517548095703125, 2.51734228515625, 2.51691015625, 2.5173115234375, 2.51702587890625, 2.51687109375, 2.517181396484375, 2.517095458984375, 2.517434326171875, 2.518919189453125, 2.51658447265625, 2.516896728515625, 2.51681787109375, 2.51647900390625, 2.5165732421875, 2.516769775390625, 2.51728271484375, 2.516929443359375, 2.516444091796875, 2.5165341796875, 2.517580810546875, 2.51643798828125, 2.51633984375, 2.51785302734375, 2.517928955078125, 2.516727783203125, 2.51658544921875, 2.516779052734375, 5.207884765625, 2.51725, 2.51802001953125, 2.517275634765625, 2.516849609375, 2.516008056640625, 2.516381591796875, 2.51746826171875, 2.51627734375, 2.516135986328125, 2.5164912109375, 2.5164912109375, 2.516265869140625, 2.5161103515625, 2.516736083984375, 2.51685693359375, 2.51656396484375, 2.51710986328125, 2.517779541015625, 2.51814697265625, 2.517348388671875, 2.516961181640625, 2.518197265625, 2.51780810546875, 2.518084716796875, 2.518426513671875, 2.517813232421875, 2.517560302734375, 2.51685693359375, 2.51721728515625, 2.516894775390625, 2.517078125, 2.516939697265625, 2.516675537109375, 2.516822021484375, 2.516694091796875, 2.51648828125, 2.516349853515625, 2.51686083984375, 2.51789404296875, 2.516864013671875, 2.516809814453125, 2.516926513671875, 2.51690185546875, 2.51774462890625, 2.518223876953125, 2.51867236328125, 2.520320068359375, 2.518391845703125, 2.518958984375, 2.5195068359375, 2.51765771484375, 2.51833251953125, 2.519100341796875, 2.51811328125, 2.5185771484375, 2.51877587890625, 2.5190849609375, 2.51871337890625, 2.517376953125, 2.516873291015625, 2.516703125, 2.517409912109375, 5.20814892578125, 2.516905029296875, 2.517455810546875, 2.51675341796875, 2.5166611328125, 2.5164248046875, 2.51766064453125, 2.516621337890625, 2.516347900390625, 2.51616455078125, 2.5168916015625, 2.516533203125, 2.51630078125, 2.51683935546875, 2.5170791015625, 2.5168505859375, 2.51635498046875, 2.516509765625, 2.517519287109375, 2.517980224609375, 2.517612548828125, 2.51685888671875, 2.5184287109375, 2.517878662109375, 2.51812548828125, 2.51820849609375, 2.519699462890625, 2.51765771484375, 2.517099609375, 2.517208984375, 2.51761962890625, 2.5169130859375, 2.51656591796875, 2.5162998046875, 2.51715185546875, 2.517620849609375, 2.516823974609375, 2.516893798828125, 2.517906494140625, 2.517166259765625, 2.5167236328125, 2.51692236328125, 2.51753271484375, 2.51745166015625, 2.516619384765625, 2.517034912109375, 2.51966259765625, 2.5194423828125, 2.519153564453125, 2.519391357421875, 2.519334716796875, 2.520791015625, 2.5193984375, 2.51885986328125, 2.518571044921875, 2.519627685546875, 2.519412841796875, 2.5196328125, 2.5182587890625, 2.516928466796875, 2.517813232421875, 2.518243408203125, 2.5184306640625]",tokens/s,0.3911953572702552,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-1.3B,,cuda,0,42,,,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,MB,1554.096128,1957.167104,0.0,1310.72,1163.82464,s,10,1.286997444152832,0.1286997444152832,0.0010709154419692667,0.12870168304443358,0.13024390106201172,0.13026507034301757,0.13028200576782226,"[0.13028623962402344, 0.13023919677734375, 0.1282391662597656, 0.12805363464355468, 0.1269244155883789, 0.12729046630859375, 0.12865869140625, 0.1287446746826172, 0.1295413055419922, 0.1290196533203125]",tokens/s,1989.1259393177147,kWh,1.4998026454163673e-06,8.218217431655106e-07,6.2844740852399835e-06,8.60609847382186e-06,tokens/kWh,29746347.985524923,MB,1554.096128,1959.264256,0.0,1312.817152,1232.774656,s,10,75.16664355468751,7.516664355468751,0.019324999879587898,7.517852294921875,7.5454459960937506,7.548604345703125,7.551131025390625,"[7.5517626953125, 7.5180322265625, 7.52255224609375, 7.52390966796875, 7.544744140625, 7.51767236328125, 7.49461669921875, 7.49106689453125, 7.50185205078125, 7.5004345703125]",tokens/s,8.3813772999142,kWh,8.89009176429398e-05,4.872418928564946e-05,0.00036540068437377195,0.0005030257913023612,tokens/kWh,125242.08716393956,,s,629,76.20247959136968,0.12114861620249542,0.01533479707935131,0.1192816619873047,0.12045271148681641,0.12072119903564453,0.24720068908691412,"[0.12236902618408203, 0.12192870330810547, 0.12110336303710938, 0.12021862030029297, 0.12056371307373047, 0.11989708709716797, 0.11929497528076172, 0.11829862213134766, 0.11859661102294922, 0.11861504364013672, 0.11821469116210938, 0.11968099212646484, 0.11959193420410157, 0.12045926666259765, 0.12021043395996094, 0.1199452133178711, 0.11970047760009765, 0.12003225708007813, 0.120163330078125, 0.11992678070068359, 0.11977011108398437, 0.11847372436523437, 0.11856588745117187, 0.11883724975585938, 0.11842662048339844, 0.11851676940917968, 0.11948745727539062, 0.11911475372314453, 0.119552001953125, 0.1215068130493164, 0.120257568359375, 0.1204623031616211, 0.12012236785888672, 0.12004659271240234, 0.12008038330078125, 0.12001689910888672, 0.11995954895019531, 0.12004761505126953, 0.12005683135986328, 0.12010189056396485, 0.12003635406494141, 0.11968307495117188, 0.12004863739013671, 0.12036300659179687, 0.11988992309570312, 0.1200558090209961, 0.1202534408569336, 0.12022169494628906, 0.12032921600341796, 0.12026265716552734, 0.12077056121826171, 0.12018585968017578, 0.11901235198974609, 0.1193861083984375, 0.11910348510742187, 0.11925606536865234, 0.11975270080566407, 0.12020941162109375, 0.11999846649169922, 0.12033843231201172, 0.11914854431152344, 0.12003942108154297, 0.2506158142089844, 0.12027391815185547, 0.11959091186523438, 0.11991551971435546, 0.1192816619873047, 0.11801292419433594, 0.11855052947998047, 0.11803955078125, 0.11798016357421875, 0.11803241729736329, 0.11873174285888671, 0.12019200134277344, 0.11996057891845703, 0.11952947235107422, 0.11857612609863281, 0.11973939514160156, 0.11993702697753907, 0.11889049530029297, 0.11839385223388672, 0.11943730926513672, 0.11985203552246093, 0.11852082824707032, 0.11822898864746094, 0.11862739562988281, 0.11842758178710938, 0.11852185821533204, 0.1185054702758789, 0.11835596466064453, 0.11835699462890625, 0.11841331481933594, 0.11834674835205078, 0.11860070037841797, 0.12062003326416015, 0.11992473602294922, 0.12043059539794922, 0.12157746887207031, 0.12022579193115235, 0.11964927673339844, 0.12050534057617188, 0.12049407958984375, 0.12015615844726563, 0.11910553741455078, 0.12046438598632812, 0.1204510726928711, 0.12023603057861328, 0.11975885009765624, 0.12176998138427735, 0.12023705291748046, 0.12054937744140624, 0.11995750427246094, 0.12132864379882813, 0.11925917053222657, 0.1186283187866211, 0.11835699462890625, 0.11851776123046875, 0.11839794921875, 0.11879730987548828, 0.11951107025146485, 0.11866006469726563, 0.11900109100341796, 0.11836723327636718, 0.11853414154052734, 0.11843583679199218, 0.24882893371582032, 0.11982233428955077, 0.11939225769042969, 0.12049919891357422, 0.12002508544921875, 0.1198919677734375, 0.12023910522460937, 0.11994217681884765, 0.11870614624023437, 0.11836006164550782, 0.11821260833740234, 0.11851570892333985, 0.11971686553955078, 0.12000460815429688, 0.11984076690673828, 0.11931136322021485, 0.11905126190185547, 0.11986329650878906, 0.11975373077392579, 0.11980595397949219, 0.1196267547607422, 0.11956735992431641, 0.12024422454833984, 0.12106342315673828, 0.11977728271484375, 0.1197127685546875, 0.11865599822998046, 0.11831404876708984, 0.11899692535400391, 0.11852082824707032, 0.11829145812988281, 0.11852595520019531, 0.11846348571777343, 0.11836518096923829, 0.11844812774658203, 0.11833757019042969, 0.11830780792236328, 0.11964620971679688, 0.11897650909423828, 0.11840921783447265, 0.11968511962890625, 0.11841024017333984, 0.11969535827636718, 0.11970559692382812, 0.12029644775390624, 0.12001078033447266, 0.11961955261230468, 0.12051967620849609, 0.11861196899414063, 0.11842150115966797, 0.11837133026123046, 0.12028313446044922, 0.11990322875976563, 0.1188751983642578, 0.12033939361572266, 0.11918643188476563, 0.1187583999633789, 0.12003942108154297, 0.11934515380859376, 0.12007730865478515, 0.12025138854980469, 0.12019916534423829, 0.12015615844726563, 0.24848793029785157, 0.11997798156738282, 0.11991763305664062, 0.12037625885009766, 0.12008345794677734, 0.11944652557373046, 0.12011827087402344, 0.12008448028564453, 0.11987149047851563, 0.12019404602050782, 0.12016851043701172, 0.11977823638916016, 0.11987865447998047, 0.11973426818847656, 0.12008038330078125, 0.11942092895507812, 0.11997491455078126, 0.11880242919921875, 0.11979673767089843, 0.1197127685546875, 0.11939532470703125, 0.11976703643798828, 0.11997494506835937, 0.12019094085693359, 0.12064665222167968, 0.12001996612548828, 0.12060364532470703, 0.12040294647216797, 0.11997388458251954, 0.11948646545410156, 0.11998822021484375, 0.11993907165527344, 0.11955097961425781, 0.11953561401367188, 0.11927756500244141, 0.11897036743164062, 0.11999334716796875, 0.11905126190185547, 0.11846553802490234, 0.11841843414306641, 0.11854847717285157, 0.11835596466064453, 0.11830995178222656, 0.11828428649902344, 0.1203987808227539, 0.11818905639648437, 0.1193707504272461, 0.11814604949951171, 0.11847782135009766, 0.1183078384399414, 0.11799350738525391, 0.11804771423339844, 0.11817372894287109, 0.11848700714111328, 0.11852082824707032, 0.11849932861328125, 0.12020735931396484, 0.120089599609375, 0.12004761505126953, 0.12012134552001953, 0.11869286346435547, 0.11855974578857421, 0.11863142395019531, 0.24572006225585938, 0.1183477783203125, 0.11846041870117187, 0.11811737823486328, 0.1181470718383789, 0.11830067443847657, 0.11928985595703125, 0.11911065673828125, 0.1185771484375, 0.11835187530517578, 0.12018994903564453, 0.12008550262451172, 0.11990534210205078, 0.1200219497680664, 0.12004659271240234, 0.11994931030273437, 0.12035686492919923, 0.12041522979736329, 0.12053298950195312, 0.12031999969482422, 0.12058419036865234, 0.12013158416748047, 0.12075929260253906, 0.11833036804199219, 0.1206794204711914, 0.12085862731933594, 0.12161433410644532, 0.11919667053222656, 0.1187041244506836, 0.11844300842285156, 0.11833650970458984, 0.11833856201171875, 0.1186355209350586, 0.11820236968994141, 0.12034559631347656, 0.12019712066650391, 0.12016947174072265, 0.11850035095214843, 0.12005375671386719, 0.12051763153076171, 0.11887615966796874, 0.11807539367675782, 0.11823411560058594, 0.11905741119384766, 0.12032307434082032, 0.1189775390625, 0.12029132843017579, 0.12084019470214843, 0.12052992248535156, 0.1207357406616211, 0.12054220581054688, 0.12078284454345703, 0.12055244445800781, 0.12059852600097656, 0.12064358520507812, 0.12082486724853515, 0.1207326431274414, 0.12082278442382813, 0.12053196716308594, 0.12073065948486328, 0.12090262603759766, 0.12064870452880859, 0.12058112335205078, 0.24601292419433593, 0.11817881774902343, 0.11808255767822265, 0.11800780487060547, 0.118255615234375, 0.11830067443847657, 0.11829145812988281, 0.11941478729248046, 0.12005375671386719, 0.1198202896118164, 0.12005785369873047, 0.11806412506103516, 0.11867750549316407, 0.11829145812988281, 0.11833548736572265, 0.11830989074707031, 0.11806822204589844, 0.11833241271972657, 0.11837747192382812, 0.11845120239257813, 0.11834572601318359, 0.11841228485107422, 0.11827609252929687, 0.11805286407470703, 0.11896729278564454, 0.11836313629150391, 0.11981619262695313, 0.12392044830322266, 0.1205656967163086, 0.12015821075439453, 0.11990016174316406, 0.12003533172607422, 0.11934003448486329, 0.1199974365234375, 0.1193154525756836, 0.11959500885009766, 0.11863040161132812, 0.1188106231689453, 0.12067327880859376, 0.11914444732666016, 0.11830477142333984, 0.11853721618652344, 0.1185269775390625, 0.11941990661621094, 0.11858329772949219, 0.1186693115234375, 0.12036608123779297, 0.12004557037353515, 0.1200558090209961, 0.12050841522216797, 0.12022681427001954, 0.12039065551757812, 0.12011212921142578, 0.12010495758056641, 0.12036608123779297, 0.1201817626953125, 0.12043673706054688, 0.12033843231201172, 0.12007526397705078, 0.12000972747802735, 0.12006505584716796, 0.11996975708007812, 0.11998822021484375, 0.2494791717529297, 0.12030156707763671, 0.11901952362060547, 0.11824127960205078, 0.1192816619873047, 0.11887308502197266, 0.11826175689697266, 0.11869388580322265, 0.11826687622070313, 0.11836211395263672, 0.11810918426513672, 0.11887104034423829, 0.11972198486328126, 0.11960012817382812, 0.1192468490600586, 0.118002685546875, 0.11875942230224609, 0.11941478729248046, 0.11890585327148437, 0.11843382263183594, 0.1191526107788086, 0.11959500885009766, 0.11970668792724609, 0.11957036590576171, 0.11933695983886719, 0.11909327697753906, 0.11842966461181641, 0.11905228424072266, 0.11911888122558593, 0.11894780731201172, 0.11848089599609375, 0.1181890869140625, 0.11840406036376953, 0.1190297622680664, 0.11982848358154297, 0.11972096252441407, 0.11864371490478516, 0.11924582672119141, 0.11929804992675781, 0.11825459289550781, 0.11951718139648437, 0.11916287994384765, 0.11947417449951171, 0.11800064086914062, 0.11845017242431641, 0.11818089294433594, 0.11930210876464843, 0.1199810562133789, 0.11853517150878906, 0.11870310211181641, 0.11945164489746093, 0.11844096374511719, 0.1184194564819336, 0.118508544921875, 0.11926220703125, 0.12017356872558593, 0.11892838287353516, 0.1193021469116211, 0.11871849822998047, 0.11844911956787109, 0.11832115173339844, 0.11867545318603516, 0.11844403076171875, 0.24766259765625, 0.11916802978515625, 0.12123133087158203, 0.12028313446044922, 0.11920588684082031, 0.11884953308105468, 0.11862528228759765, 0.11994931030273437, 0.11886182403564453, 0.11885363006591797, 0.12013670349121094, 0.11913011169433593, 0.11992473602294922, 0.11888435363769531, 0.11946598052978516, 0.11882707214355469, 0.1207070083618164, 0.11865702056884765, 0.11839590454101563, 0.11839078521728516, 0.11947724914550781, 0.11919769287109375, 0.11886080169677735, 0.11848601531982422, 0.11876966094970703, 0.11810099029541016, 0.11880960083007812, 0.11817369842529298, 0.11927142333984375, 0.11965235137939453, 0.118761474609375, 0.11863654327392578, 0.11901439666748047, 0.11827814483642578, 0.11898368072509766, 0.11854233551025391, 0.11844915008544922, 0.11848397064208985, 0.11839078521728516, 0.11844608306884766, 0.11859455871582031, 0.11865190124511718, 0.11820441436767579, 0.11907686614990234, 0.11970867156982422, 0.11921715545654298, 0.11824230194091796, 0.11921817779541016, 0.11916390228271484, 0.11929804992675781, 0.11828326416015625, 0.11838361358642578, 0.11848499298095704, 0.11860991668701172, 0.11808153533935548, 0.11826588439941406, 0.11823715209960937, 0.11888639831542969, 0.11884031677246094, 0.11812454223632812, 0.11833446502685546, 0.11847577667236328, 0.11946905517578126, 0.24866712951660155, 0.11849318695068359, 0.11980188751220704, 0.11915773010253906, 0.11846041870117187, 0.1203589096069336, 0.1205381088256836, 0.11978342437744141, 0.11976601409912109, 0.11947417449951171, 0.11962163543701172, 0.11930316925048828, 0.11854541015625, 0.11897344207763672, 0.11885158538818359, 0.11875020599365234, 0.1181839370727539, 0.11931443023681641, 0.11823616027832032, 0.11900313568115234, 0.11816345977783203, 0.11854847717285157, 0.11989708709716797, 0.11902668762207032, 0.11941683197021484, 0.11941580963134765, 0.11852185821533204, 0.11982540893554687, 0.11974553680419922, 0.11874918365478515, 0.11918950653076171, 0.11970355224609375, 0.11946189117431641, 0.11857100677490234, 0.11914035034179687, 0.11940966033935548, 0.1185689926147461, 0.11831394958496094, 0.11820441436767579, 0.11945574188232422, 0.11997388458251954, 0.1203240966796875, 0.11903180694580077, 0.11818495941162109, 0.11810201263427735, 0.11788288116455078, 0.11807539367675782, 0.11814604949951171, 0.11880038452148438, 0.11919872283935547, 0.11881983947753906, 0.11975987243652343, 0.11975373077392579, 0.11953568267822266, 0.12003424072265625, 0.11991961669921875, 0.12044185638427735, 0.11880550384521485, 0.11889356994628907, 0.11842253112792969, 0.11843379211425781, 0.11815936279296875, 0.11811634826660156, 0.24846543884277345, 0.11927139282226562, 0.11798732757568359, 0.11792998504638671, 0.11840512084960937, 0.11863859558105469, 0.11815321350097656, 0.11805184173583984, 0.11871437072753906, 0.11836109161376954, 0.1180794906616211, 0.11815424346923828, 0.1181317138671875, 0.11853004455566406, 0.11842150115966797, 0.11837542724609375, 0.11854847717285157, 0.11832217407226563, 0.11862220764160156, 0.11864985656738282, 0.11943526458740235, 0.11942912292480469, 0.11993395233154297, 0.12021145629882812, 0.12013568115234376, 0.12069990539550782, 0.12175667572021484, 0.12003942108154297, 0.11987763214111329, 0.11907788848876953, 0.1194076156616211, 0.11910553741455078, 0.11873177337646484, 0.11934413146972657, 0.11961958312988281, 0.11883519744873047, 0.11877273559570313, 0.11876761627197266, 0.12034662628173828, 0.12008140563964843, 0.11964415740966797, 0.12007014465332032, 0.12065280151367187, 0.11880754852294922, 0.11892736053466797, 0.11855974578857421, 0.11855052947998047, 0.11903590393066406, 0.11845938873291016, 0.11849523162841796, 0.1184716796875, 0.11835289764404297, 0.11853619384765625, 0.11834368133544922, 0.11937382507324219, 0.11912806701660156, 0.11848806762695313, 0.11961753845214844, 0.1190113296508789, 0.11965132904052735, 0.11860281372070312, 0.11934611511230468, 0.11991145324707031]",tokens/s,8.254324575433342,,,,,,main,False,False -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-8B,meta-llama/Meta-Llama-3-8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1644.60544,7583.82592,0.0,6937.378816,6314.17344,s,10,6.228646179199219,0.6228646179199219,0.003273798456462667,0.6227339782714845,0.6241754699707032,0.6279462249755859,0.6309628289794922,"[0.6317169799804687, 0.6232648315429687, 0.6204146728515625, 0.6228704833984375, 0.6219456176757813, 0.6190134887695312, 0.6202999877929688, 0.6233375244140625, 0.6231851196289062, 0.6225974731445313]",tokens/s,411.0042417482646,kWh,7.31462190548579e-06,4.008082885946565e-06,3.373723287211802e-05,4.505993766355038e-05,tokens/kWh,5681321.663413707,MB,1644.60544,7583.82592,0.0,6937.378816,6464.046592,s,10,368.19280468750003,36.81928046875,0.018694382665316225,36.824119140625,36.835055078125,36.8438986328125,36.8509734765625,"[36.82331640625, 36.826859375, 36.8276015625, 36.8527421875, 36.83308984375, 36.78996875, 36.79416796875, 36.7968203125, 36.823703125, 36.82453515625]",tokens/s,1.7110600532639584,kWh,0.00043422340434458523,0.00023799224410691,0.0019653583664030845,0.00263757401485458,tokens/kWh,23885.58563482566,,s,629,373.2052468261721,0.5933310760352495,0.07394405347043131,0.5842933959960938,0.5858826293945313,0.58612470703125,1.20537375,"[0.5849108276367188, 0.5836380004882813, 0.5857188110351562, 0.5863209228515625, 0.5851494140625, 0.5851401977539062, 0.5856481323242188, 0.5834137573242187, 0.584342529296875, 0.58520166015625, 0.58519140625, 0.5853235473632813, 0.5863526611328125, 0.5858436889648437, 0.5854269409179688, 0.5851904296875, 0.5858662109375, 0.5851248779296875, 0.58393701171875, 0.586082275390625, 0.5860935668945313, 0.5858037719726562, 0.5858048095703124, 0.5849139404296875, 0.5841203002929688, 0.5845104370117188, 0.5843281860351562, 0.58593896484375, 0.5835950317382812, 0.5853214721679687, 0.5840045776367188, 0.58496923828125, 0.5845125122070313, 0.5841981201171875, 0.583709716796875, 0.583604248046875, 0.585080810546875, 0.5840435180664062, 0.5833502807617188, 0.583204833984375, 0.5833809814453125, 0.583488525390625, 0.5837742309570313, 0.5834803466796875, 0.5833226318359375, 0.5833451538085938, 0.5854525146484375, 0.5855877075195313, 0.5852989501953125, 0.5850931396484375, 0.5837567749023438, 0.5835980834960938, 0.583244873046875, 0.5846691284179687, 0.5844193115234375, 0.5830215454101563, 0.58328369140625, 0.5829970092773438, 0.5831393432617188, 0.5830184936523437, 0.583066650390625, 0.5831342163085937, 1.2092733154296875, 0.5848668212890625, 0.5853839721679688, 0.5835458374023438, 0.583478271484375, 0.5848524780273437, 0.5844121704101563, 0.5853265991210937, 0.5850194091796875, 0.5835120849609375, 0.5833359375, 0.5842094116210937, 0.5853716430664062, 0.5833635864257812, 0.583319580078125, 0.5834424438476562, 0.5833430786132813, 0.584900634765625, 0.5847019653320312, 0.5855590209960938, 0.585365478515625, 0.585439208984375, 0.5842821044921875, 0.5841654052734375, 0.5858457641601562, 0.5847449340820312, 0.585164794921875, 0.5848309936523437, 0.584369140625, 0.58404248046875, 0.5838244018554688, 0.583257080078125, 0.5842994995117188, 0.5846712036132813, 0.5851217651367188, 0.5858897705078125, 0.5863434448242187, 0.5853060913085938, 0.5856419677734375, 0.5848340454101563, 0.5839616088867188, 0.5841131591796875, 0.5834690551757813, 0.5832816772460937, 0.5835386962890625, 0.5836953735351562, 0.5837783203125, 0.5832489013671875, 0.5833348999023438, 0.5838141479492187, 0.58338818359375, 0.5840414428710937, 0.5849354248046875, 0.5850501098632812, 0.5841889038085938, 0.5833840942382813, 0.5846098022460937, 0.5854556274414062, 0.5855375366210938, 0.586071044921875, 0.586082275390625, 0.5858805541992187, 0.5854515380859375, 1.2056739501953124, 0.5838673706054688, 0.5836922607421875, 0.5847716064453125, 0.5860086059570313, 0.586287109375, 0.5854852905273438, 0.5859491577148438, 0.5838069458007813, 0.5842606201171875, 0.5834219360351562, 0.58568701171875, 0.5857372436523437, 0.5852446899414062, 0.58332568359375, 0.5833123779296875, 0.5834485473632812, 0.5832437744140625, 0.583193603515625, 0.5835929565429687, 0.5832130737304687, 0.5838284912109375, 0.58541259765625, 0.5862522583007812, 0.5836943359375, 0.5834444580078125, 0.5840834350585937, 0.5839165649414062, 0.5839165649414062, 0.585080810546875, 0.583625732421875, 0.5833779296875, 0.583635986328125, 0.5836810302734375, 0.585175048828125, 0.5848340454101563, 0.5836544189453124, 0.5838428344726563, 0.5849999389648437, 0.5866905517578125, 0.5863915405273438, 0.5861068725585937, 0.5854617309570312, 0.58519140625, 0.585206787109375, 0.5851094970703125, 0.5855795288085938, 0.5858048095703124, 0.5847920532226563, 0.58595947265625, 0.5849281616210937, 0.5841448974609375, 0.5848914184570313, 0.5851996459960938, 0.5850060424804687, 0.585902099609375, 0.5855529174804688, 0.5846098022460937, 0.5835745239257812, 0.5832652587890625, 0.5837926635742188, 0.5831690063476562, 0.5832499389648438, 1.207994384765625, 0.585818115234375, 0.5860628662109375, 0.5862369384765626, 0.5856450805664063, 0.5840588989257812, 0.5840947265625, 0.5850921020507812, 0.5846712036132813, 0.584900634765625, 0.5842124633789062, 0.585068603515625, 0.5859398803710938, 0.5848207397460937, 0.585101318359375, 0.5848822021484374, 0.5862144165039063, 0.5845022583007813, 0.58452685546875, 0.5850029907226563, 0.5852498168945313, 0.58498046875, 0.5852426147460937, 0.584975341796875, 0.5861365966796875, 0.5855333862304688, 0.5858826293945313, 0.5837987670898438, 0.5849784545898438, 0.584690673828125, 0.585865234375, 0.585797607421875, 0.58403125, 0.5845575561523437, 0.583736328125, 0.5857874145507812, 0.584921142578125, 0.5861068115234375, 0.5857382202148438, 0.5839708251953125, 0.5849497680664062, 0.5862993774414063, 0.5846947631835937, 0.5865574340820312, 0.5856399536132812, 0.5843414916992188, 0.5835376586914063, 0.5834024658203125, 0.5844940795898438, 0.5834383544921875, 0.584827880859375, 0.5836144409179688, 0.5839237060546875, 0.5843804321289062, 0.5840660400390625, 0.5849600219726563, 0.5857423095703125, 0.583419921875, 0.5841243896484375, 0.5841254272460937, 0.5858836669921875, 0.586166259765625, 0.5862020874023437, 1.2080977783203124, 0.5857433471679687, 0.5837967529296875, 0.5849077758789063, 0.5842442016601562, 0.5845339965820312, 0.5844049682617187, 0.584521728515625, 0.585860107421875, 0.5852057495117188, 0.5834055786132812, 0.5845022583007813, 0.5843896484375, 0.584616943359375, 0.5853900756835938, 0.585218017578125, 0.584774658203125, 0.583119873046875, 0.5841193237304687, 0.583546875, 0.5849262084960938, 0.5859512329101563, 0.5857454223632812, 0.5856983032226563, 0.5860689697265625, 0.584722412109375, 0.585270263671875, 0.5859860229492188, 0.5858826293945313, 0.5849948120117188, 0.5863117065429687, 0.5867387084960938, 0.5861365966796875, 0.583546875, 0.583605224609375, 0.5836113891601562, 0.58324169921875, 0.5857771606445312, 0.5841275024414062, 0.583731201171875, 0.5836175537109375, 0.5853092041015625, 0.5840271606445312, 0.583151611328125, 0.5838561401367187, 0.5832478637695313, 0.5832324829101563, 0.5840947265625, 0.5859563598632812, 0.5858385620117188, 0.5836267700195312, 0.5830523071289062, 0.58344140625, 0.5830737915039063, 0.5846456298828125, 0.58616015625, 0.5856010131835937, 0.584089599609375, 0.5855467529296875, 0.5856133422851563, 0.5847756958007813, 0.583384033203125, 0.583277587890625, 1.204601806640625, 0.5862328491210937, 0.5855662231445312, 0.5857454223632812, 0.585776123046875, 0.5854013671875, 0.5835397338867188, 0.5845718994140625, 0.584806396484375, 0.5833901977539062, 0.58340966796875, 0.5848545532226562, 0.5836718139648438, 0.583673828125, 0.5833185424804688, 0.5834208984375, 0.5831044921875, 0.58376806640625, 0.5851791381835938, 0.584932373046875, 0.5834536743164063, 0.58336767578125, 0.5833983764648437, 0.583994384765625, 0.5848350830078125, 0.5854105834960938, 0.5858877563476562, 0.584690673828125, 0.5837537231445312, 0.5838837890625, 0.5847900390625, 0.5848023071289062, 0.5842175903320312, 0.5831762084960938, 0.5833820190429687, 0.5859891357421875, 0.5835069580078125, 0.5831127319335937, 0.5831157836914063, 0.5827809448242187, 0.58313623046875, 0.58292431640625, 0.5838295288085937, 0.5834178466796875, 0.5833871459960938, 0.5833328857421874, 0.5838223266601562, 0.5833430786132813, 0.58349462890625, 0.5832028198242187, 0.583478271484375, 0.5832816772460937, 0.5838448486328125, 0.58444287109375, 0.5835448608398438, 0.583488525390625, 0.5832765502929688, 0.5831597900390625, 0.5829530029296875, 0.5834905395507812, 0.5833994140625, 0.583025634765625, 0.5832243041992188, 1.203841064453125, 0.5830482177734375, 0.58326220703125, 0.5829181518554688, 0.5830656127929688, 0.5832324829101563, 0.5837772827148437, 0.5836277465820312, 0.5839247436523437, 0.5832898559570312, 0.5831966552734374, 0.5831823120117188, 0.5834014892578125, 0.5832069091796875, 0.58324169921875, 0.5832232666015625, 0.5835601806640625, 0.5835192260742188, 0.5839534301757813, 0.583889892578125, 0.5849528198242188, 0.583784423828125, 0.5851146240234375, 0.584163330078125, 0.5861038208007813, 0.5857628173828126, 0.5840619506835938, 0.5834321899414062, 0.5833062133789062, 0.5850715942382813, 0.5838827514648437, 0.5832939453125, 0.5836646118164063, 0.5837035522460937, 0.5832540283203125, 0.58330419921875, 0.5831854248046875, 0.5831260375976562, 0.5833052368164062, 0.5834301147460937, 0.5840445556640625, 0.5837404174804688, 0.5842206420898437, 0.5848719482421875, 0.5832294311523437, 0.5834393310546875, 0.5849579467773437, 0.585996337890625, 0.5837516479492187, 0.5843865356445312, 0.5841224365234375, 0.58503466796875, 0.5842933959960938, 0.5842514038085938, 0.5854228515625, 0.5845718994140625, 0.5853296508789062, 0.58530712890625, 0.585987060546875, 0.5857822875976563, 0.5840445556640625, 0.5849928588867187, 0.5844633178710937, 1.2071761474609375, 0.5841336059570312, 0.5841234130859375, 0.5854689331054688, 0.5842175903320312, 0.5836083374023437, 0.5841305541992188, 0.5834137573242187, 0.583314453125, 0.5843251342773438, 0.584774658203125, 0.5859430541992188, 0.58572802734375, 0.5840137939453125, 0.583277587890625, 0.583404541015625, 0.58437939453125, 0.5849334106445313, 0.5850767211914063, 0.5838622436523437, 0.5835120849609375, 0.583267333984375, 0.5832949829101562, 0.5855610961914063, 0.583498779296875, 0.5834619140625, 0.58427392578125, 0.584437744140625, 0.5862256469726562, 0.5834854125976563, 0.5835243530273437, 0.5841622924804688, 0.58366259765625, 0.584537109375, 0.5853388671875, 0.5849989013671875, 0.5844951171875, 0.5839963989257813, 0.5834158325195312, 0.583077880859375, 0.5831526489257812, 0.5830082397460937, 0.5828720703125, 0.5832632446289062, 0.5835222778320313, 0.5850848999023438, 0.5834332275390625, 0.58313623046875, 0.5834127197265625, 0.58305126953125, 0.5829222412109375, 0.5836380004882813, 0.5834926147460937, 0.5847183227539062, 0.58433740234375, 0.5834075927734375, 0.583525390625, 0.585175048828125, 0.5840414428710937, 0.5833728637695312, 0.5833543090820312, 0.5860372314453125, 0.58665673828125, 1.209406494140625, 0.5842022705078125, 0.5846261596679687, 0.5852323608398438, 0.5844152221679687, 0.5856993408203125, 0.5855590209960938, 0.5855303955078125, 0.5856942138671875, 0.5849548950195312, 0.584184814453125, 0.583784423828125, 0.5838602905273438, 0.583943115234375, 0.5855211791992188, 0.5860454711914063, 0.5839083251953125, 0.5838970947265625, 0.58345166015625, 0.584595458984375, 0.5834035034179688, 0.583773193359375, 0.5848862915039063, 0.5850439453125, 0.5842882690429687, 0.5836083374023437, 0.5860198364257813, 0.5854996337890624, 0.5847982177734375, 0.58365234375, 0.5836318969726563, 0.5851351318359375, 0.5849569091796875, 0.5841541137695313, 0.5852262573242187, 0.5854945068359375, 0.58353662109375, 0.5831260375976562, 0.5857720336914063, 0.5833697509765625, 0.5847398681640625, 0.5836799926757813, 0.5841725463867188, 0.5835213012695313, 0.5834793090820313, 0.5834086303710937, 0.5851555786132813, 0.5856593627929687, 0.586039306640625, 0.586672119140625, 0.5860044555664062, 0.583857177734375, 0.5836093139648437, 0.5832765502929688, 0.583372802734375, 0.5853153076171875, 0.5847501220703125, 0.5838038330078125, 0.5834752197265625, 0.5835591430664062, 0.5838551635742187, 0.5840281372070313, 0.5836544189453124, 1.2069908447265625, 0.5845330200195312, 0.5855457153320313, 0.58528564453125, 0.5856204833984375, 0.5856962280273438, 0.5844951171875, 0.585575439453125, 0.5854146728515625, 0.5844561767578125, 0.5846773681640625, 0.5847982177734375, 0.5842196655273437, 0.5833287963867188, 0.5843486938476562, 0.5833656616210937, 0.5831823120117188, 0.5832847290039063, 0.5848411865234375, 0.585359375, 0.5844951171875, 0.5839882202148438, 0.58340966796875, 0.5836564331054688, 0.5833912353515625, 0.5853634643554687, 0.5840670776367187, 0.5857935180664062, 0.584247314453125, 0.5839431762695313, 0.5854044189453125, 0.5834598388671876, 0.5832744750976563, 0.584158203125, 0.5852743530273438, 0.5853818969726563, 0.5850951538085938, 0.5850203857421875, 0.584026123046875, 0.5849088134765625, 0.5856348266601562, 0.5836636352539063, 0.5857105712890625, 0.58444287109375, 0.58351513671875, 0.5845309448242187, 0.5851401977539062, 0.5842554931640624, 0.5832396850585938, 0.583677978515625, 0.58317822265625, 0.5831372680664062, 0.5843138427734375, 0.5847398681640625, 0.5867151489257812, 0.5837537231445312, 0.58568603515625, 0.584394775390625, 0.5833359375, 0.5846251220703125, 0.5849108276367188, 0.5853767700195313, 0.5857874145507812]",tokens/s,1.6853996704204155,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,x,x,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,x,x,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -14365,7 +14698,7 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669492dc-0b78ae6813f5de6f676b55b5;76c09d7c-92b9-4864-8f20-c75ed288e03c) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669492ec-390f1a4214ed187e48fc3ce4;4970d307-6071-4f1a-9cca-1cc4a8d6c351) Repository Not Found for url: https://huggingface.co/x/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. @@ -14395,78 +14728,8 @@ Traceback (most recent call last): OSError: x is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,i,i,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/i/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949031-3a1f54a034a3a88c48a90592;8738dafb-8c32-45c9-a050-4e3569efb582) - -Repository Not Found for url: https://huggingface.co/i/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file - raise EnvironmentError( -OSError: i is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-72B,Qwen/Qwen-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm2-20b,internlm/internlm2-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -14484,21 +14747,24 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained - model_class = get_class_from_dynamic_module( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module - final_module = get_cached_module_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file - modules_needed = check_imports(resolved_module_file) - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports - raise ImportError( -ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.4b,EleutherAI/pythia-1.4b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,,MB,1625.034752,2254.962688,0.0,1608.515584,1463.6928,s,10,1.2100343170166015,0.12100343170166014,0.001022141281647672,0.12073452758789063,0.12208388671874999,0.1227883918762207,0.12335199600219726,"[0.1234928970336914, 0.12192733001708984, 0.12002118682861328, 0.12029216003417968, 0.12038220977783202, 0.1198985595703125, 0.1206871337890625, 0.12078192138671875, 0.12138086700439453, 0.12117005157470703]",tokens/s,2115.6424772413106,kWh,1.4169729851856437e-06,7.764314618920512e-07,6.3009111253815796e-06,8.494315572459274e-06,tokens/kWh,30137801.90013389,MB,1625.034752,2254.962688,0.0,1608.515584,1560.974848,s,10,70.266875,7.0266874999999995,0.015802312461115554,7.021189208984375,7.04873154296875,7.0518982421875,7.0544316015624995,"[7.05506494140625, 7.04802783203125, 7.0200771484375, 7.04010400390625, 7.03416455078125, 7.01334814453125, 7.0082919921875, 7.02230126953125, 7.0167861328125, 7.008708984375]",tokens/s,8.965817819562917,kWh,8.271868514320838e-05,4.533574606695635e-05,0.00036366391262401533,0.0004917183438341799,tokens/kWh,128122.12680282927,,s,629,71.24009573364258,0.11325929369418533,0.01441184935436087,0.111351806640625,0.11215667266845704,0.11239075622558593,0.2323562939453125,"[0.11357389068603516, 0.11349612426757813, 0.11200812530517579, 0.11255910491943359, 0.1121167984008789, 0.11198560333251953, 0.11219558715820313, 0.11200819396972657, 0.11196825408935547, 0.11275468444824219, 0.11222630310058594, 0.11180441284179687, 0.11134464263916016, 0.11147980499267578, 0.11213721466064454, 0.11178495788574219, 0.11166719818115234, 0.11174092864990234, 0.11117977905273438, 0.1110456314086914, 0.11137638092041016, 0.11204710388183593, 0.11143679809570313, 0.11129449462890625, 0.11121353912353515, 0.1112074203491211, 0.11121561431884766, 0.11156582641601563, 0.11124736022949219, 0.1111910400390625, 0.1112965087890625, 0.11185664367675781, 0.11158732604980469, 0.1118187484741211, 0.11172659301757812, 0.11204096221923829, 0.11242803192138671, 0.11206655883789063, 0.11170611572265625, 0.1124925765991211, 0.11240444946289062, 0.11224883270263672, 0.11220172882080078, 0.11224473571777344, 0.11245168304443359, 0.11209001922607421, 0.11190579223632813, 0.11188838195800781, 0.11227750396728516, 0.11232051086425782, 0.11256114959716797, 0.11237478637695313, 0.11200921630859376, 0.11215462493896484, 0.1119549789428711, 0.11200611114501953, 0.11207987213134765, 0.11194371032714844, 0.11197846221923828, 0.11205836486816406, 0.11220787048339843, 0.11210034942626954, 0.2345594940185547, 0.1117286376953125, 0.11186585235595703, 0.11204914855957031, 0.11177677154541016, 0.1115832290649414, 0.11116851043701172, 0.1114071044921875, 0.11131391906738282, 0.11137741088867187, 0.11209728240966797, 0.11197542572021485, 0.11190681457519532, 0.11151052856445312, 0.11113471984863281, 0.11245875549316406, 0.11208191680908203, 0.11218540954589844, 0.11216889953613281, 0.11212287902832031, 0.11191302490234376, 0.11190470123291016, 0.11167948913574219, 0.11192729949951172, 0.11203174591064453, 0.11200819396972657, 0.11200409698486329, 0.11204198455810546, 0.11203584289550782, 0.11207577514648437, 0.11203174591064453, 0.11206861114501954, 0.11190476989746094, 0.11196518707275391, 0.11201945495605468, 0.11220070648193359, 0.1121239013671875, 0.11213619232177735, 0.11214745330810547, 0.11210034942626954, 0.11117158508300781, 0.11123609924316406, 0.11129138946533203, 0.11250688171386719, 0.11131903839111328, 0.11113369750976562, 0.11244338989257813, 0.11134259033203125, 0.11169075012207032, 0.11205427551269531, 0.11214745330810547, 0.11191705322265624, 0.11207884979248046, 0.11197849273681641, 0.11211673736572265, 0.11211161804199218, 0.11191500854492188, 0.11222118377685547, 0.11239730834960937, 0.11132415771484375, 0.11126681518554687, 0.1112985610961914, 0.11182182312011718, 0.23266201782226562, 0.11202662658691406, 0.11120025634765625, 0.11109683227539062, 0.11149005126953125, 0.11119513702392578, 0.11112754821777343, 0.11123916625976563, 0.11105177307128906, 0.1111900177001953, 0.11129036712646484, 0.11116851043701172, 0.11114803314208985, 0.11196927642822266, 0.11116134643554687, 0.11125965118408203, 0.11103539276123046, 0.11127398681640625, 0.11154434967041016, 0.11195798492431641, 0.11191193389892579, 0.1111377944946289, 0.1111562271118164, 0.11188735961914062, 0.11112754821777343, 0.11104972839355469, 0.11122278594970703, 0.11126271820068359, 0.11140402984619141, 0.11229183959960938, 0.11202559661865234, 0.11156588745117188, 0.1111817626953125, 0.11196927642822266, 0.11145932769775391, 0.11130470275878906, 0.11111219024658203, 0.11142041778564453, 0.11112140655517579, 0.11115110778808594, 0.11208601379394531, 0.11188428497314454, 0.11182284545898437, 0.11141017913818359, 0.11125043487548827, 0.11123404693603516, 0.11116646575927734, 0.11186994934082031, 0.11114189147949219, 0.11129446411132812, 0.11111833953857422, 0.1112442855834961, 0.11120845031738281, 0.11120435333251953, 0.11193344116210938, 0.11145116424560547, 0.11117052459716797, 0.11132723236083984, 0.11132109069824218, 0.1112074203491211, 0.11136307525634766, 0.11232870483398437, 0.11170201873779297, 0.2324981689453125, 0.11132723236083984, 0.11152384185791016, 0.11143577575683594, 0.11334963226318359, 0.11229798126220703, 0.11186176300048828, 0.11187916564941407, 0.11197337341308594, 0.11203993225097657, 0.11198976135253906, 0.11205836486816406, 0.11139788818359375, 0.11115929412841796, 0.11112754821777343, 0.11136921691894532, 0.11119513702392578, 0.11117056274414062, 0.11119206237792968, 0.11117465972900391, 0.11126067352294922, 0.11122380828857421, 0.11115827178955077, 0.11134873962402343, 0.1123768310546875, 0.11169586944580077, 0.11113676452636718, 0.11131903839111328, 0.11172249603271485, 0.11171635437011719, 0.11152793884277344, 0.11154022216796874, 0.11121971130371094, 0.11125247955322265, 0.11109174346923828, 0.11109065246582031, 0.111283203125, 0.11159961700439452, 0.11181670379638672, 0.11218841552734375, 0.11207065582275391, 0.11193856048583985, 0.11212083435058594, 0.11199385833740234, 0.11282943725585938, 0.11240140533447265, 0.11203072357177735, 0.11216486358642579, 0.11200102233886719, 0.11202969360351563, 0.112, 0.11213005065917969, 0.11189555358886719, 0.11197647857666015, 0.11237065887451173, 0.11224269104003906, 0.11207270050048829, 0.11202355194091797, 0.11200204467773438, 0.11213520050048828, 0.1117081298828125, 0.11131187438964844, 0.11138969421386719, 0.23215206909179686, 0.11141426849365234, 0.11262156677246093, 0.11177779388427735, 0.11186585235595703, 0.11191295623779297, 0.11129036712646484, 0.11202355194091797, 0.11225702667236329, 0.11216793823242187, 0.11205120086669922, 0.11202252960205078, 0.11183513641357422, 0.11183513641357422, 0.1118361587524414, 0.11228672027587891, 0.11196723175048828, 0.11265023803710937, 0.11201439666748046, 0.11204192352294921, 0.11198668670654296, 0.11204812622070312, 0.1128499526977539, 0.11216585540771484, 0.11173174285888672, 0.11194057464599609, 0.11185971069335937, 0.11190889739990234, 0.11204195404052734, 0.11242700958251953, 0.1118361587524414, 0.11156070709228516, 0.11167436981201172, 0.11125555419921875, 0.11129446411132812, 0.11137535858154297, 0.1112125473022461, 0.11132723236083984, 0.11112652587890624, 0.11121356964111329, 0.11136511993408203, 0.11127808380126954, 0.11119308471679687, 0.11122278594970703, 0.11130265808105469, 0.11126374053955078, 0.11110604858398437, 0.11118386840820313, 0.11117158508300781, 0.11144499206542968, 0.11132316589355469, 0.11124323272705078, 0.11118899536132812, 0.11127705383300782, 0.11124531555175782, 0.11131084442138672, 0.11114189147949219, 0.11251712036132812, 0.11123916625976563, 0.1111562271118164, 0.11102105712890625, 0.111172607421875, 0.11132518768310547, 0.23168409729003905, 0.11126067352294922, 0.11120333099365234, 0.11120333099365234, 0.11132112121582032, 0.11132003021240235, 0.1112279052734375, 0.11117772674560547, 0.11110399627685547, 0.1111541748046875, 0.1111695327758789, 0.11118796539306641, 0.11124940490722657, 0.11112960052490234, 0.11125452423095702, 0.11125759887695312, 0.11122585296630859, 0.11124224090576172, 0.11116646575927734, 0.11114598083496094, 0.11131494140625, 0.11128832244873046, 0.11116134643554687, 0.11131391906738282, 0.11123404693603516, 0.11126681518554687, 0.11123916625976563, 0.1112985610961914, 0.11178495788574219, 0.11137741088867187, 0.11124121856689453, 0.11152281951904297, 0.11121766662597657, 0.11117362976074219, 0.1112125473022461, 0.11121868896484376, 0.111098876953125, 0.1111900177001953, 0.11227442932128906, 0.11120025634765625, 0.11103846740722656, 0.11157708740234375, 0.11146240234375, 0.11182284545898437, 0.11149517059326172, 0.111499267578125, 0.11131289672851563, 0.11149209594726563, 0.11197853088378906, 0.11136713409423828, 0.11115724945068359, 0.11126067352294922, 0.11121151733398438, 0.11126067352294922, 0.11109478759765624, 0.11183001708984375, 0.11150643157958984, 0.11150745391845703, 0.11111833953857422, 0.11116544342041015, 0.11122994995117187, 0.11125452423095702, 0.1113088607788086, 0.23280429077148437, 0.11111014556884766, 0.11133030700683594, 0.11111119842529296, 0.11112957000732422, 0.11102105712890625, 0.11110809326171875, 0.11106201934814453, 0.11103334045410156, 0.11108870697021485, 0.11110905456542969, 0.11238092803955078, 0.11154227447509765, 0.11123506927490234, 0.11109273529052735, 0.11120333099365234, 0.11103129577636718, 0.11100672149658203, 0.11094937896728516, 0.1110487060546875, 0.11100672149658203, 0.1109534683227539, 0.11100569915771484, 0.11172767639160157, 0.11108550262451172, 0.11122688293457031, 0.11107020568847656, 0.11119721221923828, 0.11113673400878907, 0.11125043487548827, 0.1111562271118164, 0.11116236877441406, 0.1111551971435547, 0.11128012847900391, 0.11118694305419922, 0.11127091217041016, 0.11107123565673828, 0.11122994995117187, 0.11122380828857421, 0.1111551971435547, 0.11100466918945312, 0.11141836547851562, 0.11136511993408203, 0.11123814392089844, 0.11123302459716797, 0.11117670440673828, 0.11112960052490234, 0.11146444702148438, 0.11135078430175781, 0.11130470275878906, 0.11135897827148437, 0.11127808380126954, 0.11142451477050781, 0.11136716461181641, 0.1120901107788086, 0.11140300750732422, 0.11124326324462891, 0.11130985260009765, 0.111257568359375, 0.1111551971435547, 0.1111756820678711, 0.11127295684814453, 0.11109580993652343, 0.23243571472167968, 0.11107839965820313, 0.11138361358642578, 0.11138758087158203, 0.111172607421875, 0.11116441345214843, 0.11112754821777343, 0.11145728302001953, 0.11120230102539062, 0.11218739318847656, 0.11158425903320313, 0.11142348480224609, 0.11124326324462891, 0.11134566497802735, 0.11134770965576171, 0.11127603149414063, 0.11175628662109376, 0.11245772552490234, 0.11182899475097656, 0.11139379119873047, 0.11116031646728515, 0.11131187438964844, 0.11135897827148437, 0.11138253021240234, 0.11129446411132812, 0.11140914916992188, 0.1112995834350586, 0.11167334747314453, 0.11146444702148438, 0.11127398681640625, 0.1114286117553711, 0.11160883331298828, 0.111388671875, 0.11126783752441406, 0.111283203125, 0.11141529846191406, 0.11138355255126953, 0.11169382476806641, 0.111425537109375, 0.11148297882080078, 0.11134454345703125, 0.11160371398925781, 0.11167334747314453, 0.11133235168457031, 0.11129036712646484, 0.11148089599609375, 0.11127085113525391, 0.11113471984863281, 0.11119821166992187, 0.11146444702148438, 0.1114419174194336, 0.11144499206542968, 0.11137741088867187, 0.11137126159667969, 0.11174604797363281, 0.11149619293212891, 0.11148902130126953, 0.1114419174194336, 0.1115525131225586, 0.11180646514892578, 0.11210854339599609, 0.11200819396972657, 0.11173580932617187, 0.2335253143310547, 0.11135481262207031, 0.11140300750732422, 0.11150540924072265, 0.11128627014160156, 0.11110707092285156, 0.11116851043701172, 0.11114393615722656, 0.1112995834350586, 0.11127808380126954, 0.11109273529052735, 0.11120953369140625, 0.1113087387084961, 0.11121971130371094, 0.11118284606933594, 0.11124736022949219, 0.1122508773803711, 0.11217715454101562, 0.1113733139038086, 0.11129344177246094, 0.11147058868408204, 0.11150335693359376, 0.111351806640625, 0.11135897827148437, 0.11148492431640625, 0.11133952331542969, 0.11130675506591797, 0.11139481353759766, 0.11144703674316406, 0.11154124450683593, 0.11132825469970703, 0.11111219024658203, 0.11122073364257813, 0.11118386840820313, 0.11125971221923828, 0.1125447006225586, 0.11146546936035157, 0.11134361267089844, 0.11123097229003906, 0.11145728302001953, 0.11127091217041016, 0.1112074203491211, 0.1114224624633789, 0.11159859466552734, 0.11146854400634766, 0.11118284606933594, 0.11170816040039062, 0.11130777740478516, 0.11138662719726562, 0.11138253021240234, 0.11114701080322266, 0.11128729248046874, 0.11132109069824218, 0.11136102294921875, 0.11118284606933594, 0.11117881774902344, 0.11109677124023437, 0.11118796539306641, 0.11113267517089843, 0.11119411468505859, 0.111246337890625, 0.1112279052734375, 0.11181465911865235, 0.23307980346679688, 0.11142041778564453, 0.1113538589477539, 0.11121561431884766, 0.11131903839111328, 0.11121561431884766, 0.11105689239501954, 0.111246337890625, 0.11114291381835938, 0.1110835189819336, 0.1110241928100586, 0.11124934387207032, 0.11121561431884766, 0.11143475341796875, 0.11115007781982422, 0.11116031646728515, 0.11110912322998047, 0.11113881683349609, 0.11112754821777343, 0.11146137237548828, 0.11116646575927734, 0.1111173095703125, 0.11114291381835938, 0.11114495849609375, 0.11101900482177735, 0.11122176361083984, 0.11194265747070313, 0.11108147430419922, 0.11138662719726562, 0.11130368041992188, 0.11116748809814453, 0.11115110778808594, 0.11116649627685547, 0.11112751770019531, 0.1111695327758789, 0.11108454132080078, 0.11120127868652344, 0.11118796539306641, 0.11125555419921875, 0.11124018859863281, 0.11112140655517579, 0.11123712158203125, 0.11195391845703125, 0.1116231689453125, 0.111388671875, 0.11123404693603516, 0.11115110778808594, 0.11121459197998047, 0.1111562271118164, 0.11116748809814453, 0.11117772674560547, 0.11126374053955078, 0.1111910400390625, 0.11120333099365234, 0.11108454132080078, 0.11108761596679688, 0.1111203842163086, 0.1111357421875, 0.11103231811523437, 0.11127603149414063, 0.11121868896484376, 0.11217817687988281, 0.11138457489013671]",tokens/s,8.829297511779728,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-3B-v1,togethercomputer/RedPajama-INCITE-Base-3B-v1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2293.178368,3364.356096,0.0,2717.908992,2483.907584,s,10,2.332126235961914,0.2332126235961914,0.0007025035151089087,0.23313691711425782,0.23428714752197263,0.2343353157043457,0.23437385025024415,"[0.2342764434814453, 0.23438348388671876, 0.23256541442871093, 0.2323934326171875, 0.23265362548828125, 0.23239085388183595, 0.23300813293457032, 0.2332657012939453, 0.2336903381347656, 0.23349880981445312]",tokens/s,1097.7107330316092,kWh,2.7429988588949646e-06,1.5025212867385563e-06,1.2985660641045106e-05,1.7231180786678625e-05,tokens/kWh,14856788.003635412,MB,2293.178368,3364.356096,0.0,2717.908992,2632.491008,s,10,135.513068359375,13.5513068359375,0.004490003668394658,13.54976904296875,13.55813466796875,13.559575634765624,13.560728408203124,"[13.557814453125, 13.5512802734375, 13.549751953125, 13.54661328125, 13.549029296875, 13.5610166015625, 13.5497861328125, 13.546083984375, 13.5524775390625, 13.54921484375]",tokens/s,4.64899811971836,kWh,0.0001599563909630583,8.766855071097778e-05,0.0007514645898075666,0.0009990895314816027,tokens/kWh,63057.411788284844,,s,629,137.39515400695814,0.21843426710168204,0.027695203958367918,0.2150584259033203,0.21541007690429687,0.21553008728027342,0.44768570190429685,"[0.215546875, 0.21509120178222657, 0.21484748840332032, 0.2146693115234375, 0.2148485107421875, 0.21482701110839844, 0.21496627807617188, 0.2148546600341797, 0.2148341827392578, 0.2148423614501953, 0.2148730926513672, 0.21502566528320313, 0.21523968505859375, 0.21587353515625, 0.2149601287841797, 0.2150584259033203, 0.21547929382324219, 0.21505638122558593, 0.21523866271972655, 0.21525401306152345, 0.2153605194091797, 0.21535232543945312, 0.21514854431152344, 0.21529600524902343, 0.2149396514892578, 0.21511885070800782, 0.21522738647460937, 0.21515980529785156, 0.21498982238769532, 0.21505433654785155, 0.21510963439941405, 0.21512602233886718, 0.2155325469970703, 0.21535232543945312, 0.215225341796875, 0.21511270141601563, 0.21541171264648437, 0.21544345092773437, 0.2153164825439453, 0.21536767578125, 0.2153871307373047, 0.21529087829589844, 0.21537893676757813, 0.21553868103027343, 0.21545779418945313, 0.21531546020507814, 0.21509529113769532, 0.2152816619873047, 0.21531954956054689, 0.2148720703125, 0.215088134765625, 0.2149949493408203, 0.21501849365234374, 0.21520999145507813, 0.2153052215576172, 0.21509529113769532, 0.21530111694335938, 0.2151014404296875, 0.21536665344238282, 0.21565542602539062, 0.21544345092773437, 0.21517721557617187, 0.4497049560546875, 0.21492530822753905, 0.21484031677246093, 0.21474610900878907, 0.21518130493164062, 0.21497036743164064, 0.2149539794921875, 0.2148833312988281, 0.21501951599121094, 0.21493760681152344, 0.21485568237304686, 0.21516493225097658, 0.21500518798828125, 0.2150102996826172, 0.2150328369140625, 0.21521510314941406, 0.2148863983154297, 0.21485055541992187, 0.21527859497070312, 0.21493862915039064, 0.21490380859375, 0.2149171142578125, 0.21504307556152344, 0.21492428588867188, 0.21488844299316406, 0.21539634704589844, 0.21504307556152344, 0.2151526336669922, 0.21495603942871094, 0.21498675537109374, 0.21492019653320313, 0.21486285400390626, 0.21517312622070311, 0.2152755126953125, 0.21528883361816406, 0.21505433654785155, 0.21547929382324219, 0.21528985595703126, 0.21551922607421875, 0.21516184997558593, 0.21498265075683592, 0.21506048583984375, 0.21529702758789063, 0.21518438720703126, 0.21498880004882812, 0.21501747131347657, 0.21603123474121094, 0.21503077697753906, 0.21511576843261718, 0.21513523864746092, 0.21525605773925782, 0.21546394348144532, 0.2150963134765625, 0.21497445678710939, 0.2149396514892578, 0.2152611846923828, 0.21501338195800782, 0.2153605194091797, 0.21494989013671875, 0.2149775390625, 0.21501235961914061, 0.21545472717285155, 0.21544960021972656, 0.4477255554199219, 0.21488946533203124, 0.2147993621826172, 0.214830078125, 0.21490687561035157, 0.21492019653320313, 0.21471743774414062, 0.21540556335449218, 0.21555815124511718, 0.2154772491455078, 0.21546086120605468, 0.21494784545898438, 0.21496524047851562, 0.2147747802734375, 0.21512191772460937, 0.215014404296875, 0.214935546875, 0.21500314331054687, 0.21485055541992187, 0.21497445678710939, 0.2149775390625, 0.21503897094726562, 0.21483314514160157, 0.2149283905029297, 0.21502053833007811, 0.21528678894042969, 0.2153553924560547, 0.21509735107421876, 0.21505229187011718, 0.2149539794921875, 0.21523455810546874, 0.2149099578857422, 0.21484339904785157, 0.21541888427734374, 0.21507379150390624, 0.21519564819335937, 0.2150328369140625, 0.21511065673828125, 0.21497343444824218, 0.2153123779296875, 0.21532876586914063, 0.21510963439941405, 0.21525709533691406, 0.21491506958007814, 0.2153175048828125, 0.21504818725585936, 0.2149048309326172, 0.21543218994140625, 0.21501951599121094, 0.21494886779785155, 0.21495603942871094, 0.21506764221191407, 0.21505433654785155, 0.21506150817871095, 0.21549261474609374, 0.2151208953857422, 0.21526220703125, 0.21505331420898438, 0.21497036743164064, 0.21506048583984375, 0.2150440979003906, 0.21503590393066407, 0.21496934509277343, 0.4474736633300781, 0.21475225830078126, 0.2146570281982422, 0.21483314514160157, 0.2149171142578125, 0.21528678894042969, 0.21490380859375, 0.21523353576660156, 0.2151004180908203, 0.214935546875, 0.21490176391601562, 0.21502362060546876, 0.21514854431152344, 0.21500006103515626, 0.21510861206054688, 0.21527040100097655, 0.21625958251953126, 0.2149365692138672, 0.2149539794921875, 0.21506150817871095, 0.21505638122558593, 0.21492326354980468, 0.21511167907714843, 0.21502362060546876, 0.21509120178222657, 0.21505433654785155, 0.21530931091308594, 0.2149396514892578, 0.2147993621826172, 0.21485568237304686, 0.2149283905029297, 0.214972412109375, 0.2149918670654297, 0.214898681640625, 0.21487820434570312, 0.21496421813964844, 0.21520281982421874, 0.214972412109375, 0.2149775390625, 0.21498675537109374, 0.2149212188720703, 0.21492941284179687, 0.21481471252441406, 0.21471128845214843, 0.21537791442871093, 0.21497856140136717, 0.21484442138671875, 0.21496421813964844, 0.21498573303222657, 0.215046142578125, 0.21490176391601562, 0.2149591064453125, 0.2149529571533203, 0.2151034851074219, 0.21514137268066405, 0.2150768585205078, 0.21502259826660156, 0.21512191772460937, 0.2151628875732422, 0.2150584259033203, 0.21498573303222657, 0.21492019653320313, 0.21532365417480467, 0.4478924865722656, 0.21483724975585938, 0.21483314514160157, 0.21480447387695312, 0.21494476318359376, 0.21484339904785157, 0.2147061767578125, 0.214793212890625, 0.21511167907714843, 0.2152048645019531, 0.2148833312988281, 0.21500518798828125, 0.21489459228515626, 0.21502464294433593, 0.2147235870361328, 0.21478810119628905, 0.2147553253173828, 0.21490176391601562, 0.2149591064453125, 0.21520588684082032, 0.21484646606445312, 0.2149109802246094, 0.21492633056640625, 0.21500006103515626, 0.21491302490234376, 0.21484133911132813, 0.2149908447265625, 0.21542912292480468, 0.2149601287841797, 0.21523455810546874, 0.21497958374023438, 0.21499288940429687, 0.21481471252441406, 0.21496524047851562, 0.21497343444824218, 0.21500518798828125, 0.21537484741210938, 0.21541786193847656, 0.21500723266601562, 0.21525605773925782, 0.21530111694335938, 0.21528472900390624, 0.21499903869628906, 0.21505126953125, 0.2150266876220703, 0.21561138916015626, 0.21505638122558593, 0.21511680603027344, 0.2150707244873047, 0.21535232543945312, 0.2149775390625, 0.21508709716796875, 0.21489561462402343, 0.21500825500488283, 0.21495603942871094, 0.21576191711425782, 0.2151034851074219, 0.21574656677246093, 0.21505946350097657, 0.21543321228027343, 0.21538304138183595, 0.21532261657714843, 0.21520895385742186, 0.44758322143554685, 0.21562471008300782, 0.2151034851074219, 0.2150707244873047, 0.21508096313476563, 0.21512396240234374, 0.2149396514892578, 0.21493350219726562, 0.21506355285644532, 0.21523353576660156, 0.21518130493164062, 0.21520281982421874, 0.21525914001464844, 0.2150891571044922, 0.21512294006347657, 0.21514035034179688, 0.21520384216308594, 0.2151761932373047, 0.21500518798828125, 0.21573017883300782, 0.2152489013671875, 0.2153871307373047, 0.21496524047851562, 0.21487718200683595, 0.2150440979003906, 0.21491404724121094, 0.21495706176757812, 0.2153359375, 0.2152611846923828, 0.2150963134765625, 0.21533287048339844, 0.21510861206054688, 0.2150645751953125, 0.21524787902832032, 0.21535334777832033, 0.21540966796875, 0.2150584259033203, 0.21552639770507812, 0.21640089416503908, 0.21548133850097656, 0.2153297882080078, 0.21563392639160156, 0.21536256408691407, 0.21525299072265625, 0.21546290588378905, 0.21525094604492187, 0.21537382507324218, 0.2153553924560547, 0.2156943359375, 0.21538815307617187, 0.21539328002929686, 0.21541273498535157, 0.21524479675292968, 0.2151137237548828, 0.21520179748535156, 0.21540045166015626, 0.21538201904296875, 0.21517106628417967, 0.21503181457519532, 0.21518438720703126, 0.2152314910888672, 0.21534002685546874, 0.2152857666015625, 0.44831845092773437, 0.2153543701171875, 0.21508607482910155, 0.2153891906738281, 0.21522738647460937, 0.2152263641357422, 0.2151383056640625, 0.2148311004638672, 0.2147604522705078, 0.21474508666992187, 0.2151946258544922, 0.21490176391601562, 0.2149283905029297, 0.2148341827392578, 0.21475634765625, 0.21509426879882812, 0.21515367126464843, 0.2148720703125, 0.2148106231689453, 0.21511576843261718, 0.2154588165283203, 0.21494169616699219, 0.21514752197265624, 0.21526629638671874, 0.21540658569335938, 0.2152980499267578, 0.21505433654785155, 0.21525094604492187, 0.21514956665039062, 0.21498573303222657, 0.2155397186279297, 0.21500006103515626, 0.21513113403320314, 0.21502362060546876, 0.21486079406738282, 0.2149171142578125, 0.21485977172851561, 0.21519564819335937, 0.21494682312011718, 0.2151137237548828, 0.2152744903564453, 0.21504512023925781, 0.21480755615234376, 0.21494682312011718, 0.21507379150390624, 0.214935546875, 0.21486796569824218, 0.2152191925048828, 0.21546086120605468, 0.21495603942871094, 0.21510963439941405, 0.21517414855957032, 0.21489356994628905, 0.21515058898925782, 0.21519973754882812, 0.214898681640625, 0.21508709716796875, 0.2153492431640625, 0.2149160919189453, 0.21502873229980468, 0.21509735107421876, 0.21509426879882812, 0.21496217346191407, 0.4484382629394531, 0.21479731750488282, 0.2149713897705078, 0.2148546600341797, 0.21475328063964844, 0.21487615966796875, 0.21529498291015625, 0.21497856140136717, 0.2148106231689453, 0.21494169616699219, 0.21501849365234374, 0.21517312622070311, 0.21516390991210937, 0.2153175048828125, 0.21526835632324218, 0.21509222412109374, 0.21496832275390626, 0.2149171142578125, 0.21479423522949218, 0.21496421813964844, 0.21496115112304687, 0.21497958374023438, 0.21504205322265624, 0.2148106231689453, 0.21492633056640625, 0.21496832275390626, 0.2149160919189453, 0.2148863983154297, 0.21481266784667968, 0.21477171325683594, 0.21533900451660157, 0.21499903869628906, 0.21496115112304687, 0.2150102996826172, 0.2149918670654297, 0.2151761932373047, 0.21486285400390626, 0.215046142578125, 0.21498471069335937, 0.21511065673828125, 0.21503077697753906, 0.21505126953125, 0.2149713897705078, 0.21494169616699219, 0.2152499237060547, 0.21516184997558593, 0.21492428588867188, 0.21485261535644531, 0.215046142578125, 0.215372802734375, 0.21504512023925781, 0.215119873046875, 0.21498675537109374, 0.21502156066894532, 0.21487513732910157, 0.2149959716796875, 0.21509324645996095, 0.2150891571044922, 0.21487820434570312, 0.21541171264648437, 0.21502566528320313, 0.2151208953857422, 0.21514239501953125, 0.4488765563964844, 0.21482086181640625, 0.21482496643066407, 0.21509735107421876, 0.21479014587402342, 0.21473484802246093, 0.2146693115234375, 0.21500518798828125, 0.21510758972167968, 0.21496217346191407, 0.2148106231689453, 0.21478604125976564, 0.21548748779296875, 0.21496627807617188, 0.2150328369140625, 0.21530624389648437, 0.21493862915039064, 0.2148843536376953, 0.21493145751953124, 0.21505126953125, 0.214908935546875, 0.21497958374023438, 0.21564518737792968, 0.21497343444824218, 0.21515367126464843, 0.21530931091308594, 0.21535334777832033, 0.21521817016601563, 0.21496934509277343, 0.21508096313476563, 0.2152929229736328, 0.21582028198242187, 0.21554074096679687, 0.2151751708984375, 0.2154168395996094, 0.21572300720214843, 0.21506253051757812, 0.215151611328125, 0.21505229187011718, 0.2149959716796875, 0.21501235961914061, 0.21538406372070312, 0.2150758361816406, 0.2152110137939453, 0.2150707244873047, 0.21545472717285155, 0.21499903869628906, 0.21496832275390626, 0.2150277099609375, 0.21533900451660157, 0.21492633056640625, 0.21502464294433593, 0.21509837341308594, 0.21507994079589843, 0.21537997436523437, 0.21541375732421875, 0.21506764221191407, 0.21498982238769532, 0.21500108337402343, 0.21577011108398436, 0.21502975463867188, 0.2149222412109375, 0.21507481384277344, 0.4486348876953125, 0.21474919128417969, 0.21470719909667968, 0.21471743774414062, 0.2151700439453125, 0.21507994079589843, 0.2148239288330078, 0.21487820434570312, 0.21485568237304686, 0.21500108337402343, 0.21522840881347657, 0.21483622741699218, 0.21483212280273437, 0.21519155883789062, 0.21522738647460937, 0.2150154266357422, 0.21518438720703126, 0.21501951599121094, 0.21515776062011718, 0.21541375732421875, 0.2148536376953125, 0.21507174682617186, 0.21507174682617186, 0.21522329711914062, 0.21565644836425782, 0.21497958374023438, 0.2154239959716797, 0.21499288940429687, 0.21505229187011718, 0.21485157775878908, 0.21501132202148437, 0.21518540954589843, 0.21500108337402343, 0.21493760681152344, 0.21507174682617186, 0.2150830078125, 0.2148730926513672, 0.21516697692871095, 0.21505946350097657, 0.21500314331054687, 0.21530419921875, 0.2153369598388672, 0.2151331787109375, 0.21504103088378906, 0.21514752197265624, 0.21487615966796875, 0.21510963439941405, 0.21521510314941406, 0.21491302490234376, 0.21509939575195314, 0.21494989013671875, 0.21516082763671876, 0.2149212188720703, 0.2151004180908203, 0.21516697692871095, 0.2149181365966797, 0.2149591064453125, 0.21501644897460936, 0.21512806701660156, 0.21530316162109375, 0.2154035186767578, 0.21518130493164062, 0.21506866455078125]",tokens/s,4.578036281892053,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-0.5B,Qwen/Qwen1.5-0.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1440.489472,1709.703168,0.0,1063.256064,942.605312,s,10,0.8710727081298828,0.08710727081298827,0.0020526611434407644,0.0869946403503418,0.08830768203735351,0.09043918418884277,0.09214438591003418,"[0.09257068634033203, 0.08689478302001953, 0.08709449768066406, 0.08734588623046875, 0.0876402587890625, 0.08528950500488282, 0.08547952270507812, 0.08543309020996094, 0.08549046325683594, 0.08783401489257812]",tokens/s,2938.9050719957663,kWh,1.0307077509193605e-06,5.647778186555472e-07,2.6262726324173835e-06,4.221758201992291e-06,tokens/kWh,60638243.06166823,MB,1440.817152,1709.703168,0.0,1063.256064,942.607872,s,10,54.10364501953125,5.410364501953125,0.04442393039305028,5.402393798828125,5.47523671875,5.4771017578125,5.478593789062501,"[5.402685546875, 5.4450302734375, 5.474822265625, 5.478966796875, 5.39001171875, 5.366296875, 5.3479423828125, 5.3592861328125, 5.4365009765625, 5.40210205078125]",tokens/s,11.64431712082563,kWh,6.414297001805283e-05,3.5154539095709204e-05,0.00015373626912418487,0.00025303377823794696,tokens/kWh,248978.61636779693,,s,629,54.788874206542985,0.08710472846827182,0.01042761753839409,0.08542822265625,0.08754749298095703,0.08829050750732421,0.17079922241210937,"[0.08673382568359375, 0.08457215881347656, 0.08464179229736328, 0.08488550567626953, 0.08813362884521485, 0.08856473541259766, 0.08671949005126953, 0.08648601531982422, 0.08687923431396484, 0.08737894439697266, 0.08506470489501954, 0.0844554214477539, 0.0844400634765625, 0.08486911773681641, 0.08474524688720703, 0.08481378936767578, 0.08675328063964843, 0.08531455993652344, 0.08472268676757813, 0.08468172454833985, 0.08468172454833985, 0.0845322265625, 0.08479436492919921, 0.08471552276611329, 0.08475545501708984, 0.08474521636962891, 0.08502886199951172, 0.0846899871826172, 0.0848424301147461, 0.084569091796875, 0.08475955200195312, 0.08495104217529297, 0.08461721801757813, 0.08463571166992187, 0.08458643341064453, 0.08476876831054687, 0.08473804473876953, 0.08473190307617187, 0.0844554214477539, 0.08442777252197266, 0.08484761810302735, 0.08466124725341796, 0.08562483215332031, 0.08599142456054687, 0.08450764465332031, 0.0840970230102539, 0.08538521575927735, 0.08838041687011719, 0.0868485107421875, 0.08694374084472656, 0.08736255645751953, 0.08686080169677735, 0.08700518035888671, 0.08699289703369141, 0.08753254699707032, 0.0868485107421875, 0.08696627044677735, 0.08728985595703125, 0.08770150756835937, 0.08642969512939454, 0.08510566711425781, 0.08681779479980468, 0.1740953674316406, 0.08652799987792968, 0.08564736175537109, 0.0842209243774414, 0.08706150054931641, 0.08500326538085938, 0.08664473724365235, 0.08596275329589843, 0.0853391342163086, 0.08664268493652344, 0.08708096313476563, 0.08690073394775391, 0.08696934509277343, 0.08694783782958984, 0.08664575958251954, 0.08597196960449219, 0.08684748840332031, 0.08683110046386719, 0.08509439849853516, 0.08638566589355469, 0.08632217407226563, 0.08716287994384765, 0.087119873046875, 0.08713215637207031, 0.08506470489501954, 0.08651168060302734, 0.08632109069824219, 0.08708403015136719, 0.08612662506103516, 0.08650748443603516, 0.08707481384277344, 0.08641535949707031, 0.08600678253173828, 0.08589107513427735, 0.08514252471923828, 0.08699494171142579, 0.08681676483154296, 0.08650956726074219, 0.0871383056640625, 0.08712806701660156, 0.08630374145507813, 0.08593612670898437, 0.08639590454101563, 0.08506681823730469, 0.08687712097167968, 0.08704512023925781, 0.08696115112304688, 0.08838451385498047, 0.08482816314697265, 0.08464895629882813, 0.08431206512451171, 0.08453427124023437, 0.08795238494873046, 0.08794931030273437, 0.08684134674072265, 0.08686592102050782, 0.08699801635742188, 0.08754073333740234, 0.087947265625, 0.08687513732910156, 0.08657100677490234, 0.08599350738525391, 0.08582653045654297, 0.17401548767089844, 0.0865423355102539, 0.08694374084472656, 0.08704204559326172, 0.08744652557373046, 0.08659967803955078, 0.08703897857666015, 0.08700109100341796, 0.08715776062011718, 0.08681574249267578, 0.08705433654785157, 0.08619929504394531, 0.08701548767089844, 0.086857666015625, 0.08725811004638671, 0.08656588745117187, 0.08733184051513672, 0.0871731185913086, 0.08719257354736328, 0.08709120178222657, 0.0869713897705078, 0.0868485107421875, 0.08620236968994141, 0.08700415802001953, 0.08701337432861328, 0.0868331527709961, 0.08713420867919922, 0.08696627044677735, 0.08672972869873047, 0.08645836639404297, 0.08661094665527344, 0.08728678131103515, 0.08693452453613282, 0.08721206665039062, 0.08688022613525391, 0.08789299011230468, 0.08672870635986328, 0.08694477081298828, 0.087731201171875, 0.08747007751464844, 0.08717005157470703, 0.08711270141601563, 0.08729190063476562, 0.08698271942138672, 0.08669484710693359, 0.08654745483398438, 0.08669286346435547, 0.08840806579589844, 0.08711475372314453, 0.08676044464111328, 0.08631705474853515, 0.08654956817626953, 0.08599648284912109, 0.08647679901123047, 0.08694989013671875, 0.08696524810791016, 0.08698060607910156, 0.08548556518554687, 0.08556953430175782, 0.0868823013305664, 0.08658534240722657, 0.08709939575195312, 0.08710451507568359, 0.17466163635253906, 0.08715673828125, 0.08728371429443359, 0.08680345916748047, 0.08702361297607422, 0.0872099838256836, 0.08695299530029296, 0.0865228500366211, 0.08702054595947266, 0.08711270141601563, 0.08681267547607421, 0.0862402572631836, 0.08722022247314454, 0.08714342498779297, 0.08641433715820312, 0.08614297485351563, 0.08621363067626953, 0.08743526458740235, 0.0874260482788086, 0.08645123291015624, 0.08728675079345703, 0.08692940521240235, 0.08707891082763672, 0.08719055938720703, 0.08709014129638672, 0.08714854431152344, 0.08714035034179687, 0.08686592102050782, 0.0871751708984375, 0.08751411437988281, 0.08707379150390625, 0.08701952362060547, 0.08471449279785156, 0.08613683319091797, 0.08813772583007813, 0.08714240264892578, 0.08702566528320313, 0.0872959976196289, 0.08773222351074218, 0.08883302307128907, 0.08757759857177734, 0.08561151885986328, 0.08676659393310547, 0.08834764862060547, 0.08476467132568359, 0.08778854370117188, 0.08729497528076172, 0.08688441467285156, 0.08712287902832032, 0.0869744644165039, 0.0868136978149414, 0.08646246337890626, 0.08621875, 0.08678707122802734, 0.08692428588867188, 0.08732262420654296, 0.08703692626953125, 0.08800665283203125, 0.08684236907958984, 0.08649215698242188, 0.0869048309326172, 0.08684236907958984, 0.08680857849121094, 0.1740042266845703, 0.08717619323730469, 0.0870635528564453, 0.0868219223022461, 0.08698159790039063, 0.08682291412353516, 0.08556953430175782, 0.08729804992675781, 0.08690278625488282, 0.08721305847167969, 0.08680857849121094, 0.08707686614990234, 0.08708812713623047, 0.0862003173828125, 0.08698265838623047, 0.08703385925292968, 0.08684031677246094, 0.08691814422607422, 0.08724281311035156, 0.08704608154296875, 0.08688742065429687, 0.08603648376464844, 0.08850739288330078, 0.08509849548339844, 0.08658636474609376, 0.08696934509277343, 0.08461007690429688, 0.08453526306152344, 0.08452095794677734, 0.08469811248779296, 0.084959228515625, 0.08464383697509766, 0.08490086364746094, 0.08458649444580078, 0.08620851135253907, 0.08480665588378906, 0.08471449279785156, 0.08450867462158203, 0.08490086364746094, 0.0845486068725586, 0.08454962921142578, 0.08446873474121094, 0.0846909408569336, 0.0845506591796875, 0.08456806182861328, 0.08460185241699218, 0.08472268676757813, 0.08459366607666016, 0.08461414337158203, 0.0848005142211914, 0.08458854675292969, 0.08446669006347657, 0.08458854675292969, 0.08470323181152344, 0.08453427124023437, 0.08449433898925782, 0.08460192108154296, 0.08460384368896484, 0.08456192016601563, 0.08444825744628906, 0.08477184295654297, 0.0844421157836914, 0.08439193725585938, 0.17255935668945313, 0.08706764984130859, 0.0871720962524414, 0.0869908447265625, 0.08572518157958985, 0.08475033569335938, 0.0848353271484375, 0.08454962921142578, 0.08473804473876953, 0.08482406616210937, 0.08465305328369141, 0.08468479919433594, 0.08473395538330078, 0.08460902404785156, 0.08453529357910156, 0.08463053131103515, 0.0845455322265625, 0.08432128143310547, 0.08473190307617187, 0.08471449279785156, 0.084578369140625, 0.08457823944091797, 0.08466944122314453, 0.08652288055419922, 0.08498278045654296, 0.08480255889892578, 0.08473702239990234, 0.08468787384033204, 0.08633650970458985, 0.0850851821899414, 0.08458751678466797, 0.08468991851806641, 0.08474726104736328, 0.0846909408569336, 0.0885032958984375, 0.08480870056152344, 0.0858071060180664, 0.08694374084472656, 0.08694989013671875, 0.08657920074462891, 0.08678604888916015, 0.08691814422607422, 0.084853759765625, 0.08535858917236328, 0.08599654388427734, 0.08458137512207031, 0.08471347045898438, 0.084495361328125, 0.08461516571044922, 0.0845322265625, 0.08443698883056641, 0.0841891860961914, 0.08461619567871094, 0.0845137939453125, 0.0844031982421875, 0.08491827392578125, 0.08468889617919922, 0.08446873474121094, 0.08431718444824218, 0.0844595489501953, 0.08526640319824219, 0.08521421051025391, 0.0846397476196289, 0.1709055938720703, 0.08506777954101563, 0.08515379333496094, 0.08487731170654297, 0.08472576141357421, 0.08464383697509766, 0.08466124725341796, 0.08488448333740234, 0.08489778900146484, 0.08490598297119141, 0.08465203094482422, 0.0848189468383789, 0.08532991790771484, 0.08477286529541016, 0.08459468841552735, 0.08518246459960938, 0.08490803527832032, 0.0846561279296875, 0.08462028503417969, 0.08444313812255859, 0.0862208023071289, 0.08462643432617188, 0.08517222595214843, 0.08487423706054688, 0.08629145812988281, 0.08506470489501954, 0.0851937255859375, 0.08485785675048828, 0.08452505493164063, 0.0856289291381836, 0.08493059539794921, 0.08512406158447265, 0.08508620452880859, 0.08450457763671874, 0.084515869140625, 0.08459465789794922, 0.08446975708007813, 0.08475852966308593, 0.08493772888183594, 0.08463161468505859, 0.08454649353027344, 0.0845322265625, 0.08463667297363281, 0.08475753784179688, 0.08451376342773438, 0.08450662231445312, 0.08457318115234375, 0.08449842834472657, 0.08456294250488282, 0.08457523345947265, 0.08489676666259766, 0.08472576141357421, 0.087193603515625, 0.08506368255615235, 0.08472064208984376, 0.08463565063476562, 0.08460390472412109, 0.08499712371826172, 0.08570368194580077, 0.08466124725341796, 0.08457625579833984, 0.08450355529785156, 0.08474214172363281, 0.17052569580078125, 0.0847298583984375, 0.08458444976806641, 0.08468275451660157, 0.08454041290283203, 0.08447081756591797, 0.08448406219482422, 0.08457523345947265, 0.0845301742553711, 0.0844247055053711, 0.08477286529541016, 0.08456502532958984, 0.08428745269775391, 0.08627097320556641, 0.08500633239746094, 0.08606105804443359, 0.08684646606445312, 0.08513126373291016, 0.08685874938964844, 0.08501042938232421, 0.08475545501708984, 0.0846346206665039, 0.08462438201904297, 0.08665497589111328, 0.08509542083740235, 0.08484454345703125, 0.08662322998046874, 0.08476467132568359, 0.08460492706298828, 0.0845998077392578, 0.08459878540039062, 0.08473702239990234, 0.08481484985351563, 0.08530022430419922, 0.08468275451660157, 0.08468685150146485, 0.08445645141601563, 0.08475548553466797, 0.08516194915771484, 0.08527359771728515, 0.08474931335449219, 0.08479542541503907, 0.08579888153076172, 0.08668876647949218, 0.08599346923828124, 0.08607129669189453, 0.08541696166992188, 0.08659865570068359, 0.08641024017333984, 0.08462847900390626, 0.08492339324951172, 0.0848875503540039, 0.084674560546875, 0.08466534423828125, 0.08485273742675781, 0.08462643432617188, 0.08465408325195313, 0.08468479919433594, 0.08457011413574218, 0.0847984619140625, 0.08467558288574219, 0.08471142578125, 0.08483334350585937, 0.1702665557861328, 0.08738406372070312, 0.08923648071289063, 0.08826573181152343, 0.08826470184326173, 0.08866099548339844, 0.08817049407958985, 0.08779468536376953, 0.08849612426757812, 0.08879206085205078, 0.08808345794677734, 0.08809164428710937, 0.0881233901977539, 0.08886784362792968, 0.08884019470214843, 0.08862515258789062, 0.08821043395996093, 0.08844905853271484, 0.08820121765136718, 0.08817353820800782, 0.08852275085449218, 0.08854227447509766, 0.08476563262939453, 0.0872243194580078, 0.08712806701660156, 0.08852275085449218, 0.08827391815185547, 0.08493363189697266, 0.08474214172363281, 0.08446873474121094, 0.08490598297119141, 0.08460697937011719, 0.08487014770507813, 0.08471858978271485, 0.08479743957519531, 0.0852490234375, 0.08817971038818359, 0.0883599395751953, 0.08766566467285156, 0.0848189468383789, 0.08454348754882812, 0.08476876831054687, 0.08462950134277344, 0.08455782318115235, 0.0845998077392578, 0.08457523345947265, 0.08428851318359375, 0.08459468841552735, 0.08465920257568359, 0.08506470489501954, 0.08472268676757813, 0.08413491058349609, 0.08476467132568359, 0.08465715026855469, 0.08452915191650391, 0.08448102569580078, 0.0847267837524414, 0.08448614501953125, 0.08460594940185547, 0.08444416046142578, 0.08624127960205077, 0.08508006286621093, 0.08459878540039062, 0.1760184326171875, 0.08723353576660156, 0.08769331359863282, 0.08806092834472656, 0.08757453155517578, 0.08732978820800781, 0.08919449615478516, 0.08813977813720703, 0.08797286224365235, 0.08746189117431641, 0.08733798217773438, 0.08667750549316407, 0.08574054718017578, 0.08622182464599609, 0.08452095794677734, 0.08488345336914062, 0.08462950134277344, 0.08516403198242188, 0.08760736083984375, 0.08629344177246094, 0.08519782257080079, 0.08494694519042968, 0.08468275451660157, 0.08495308685302734, 0.08589212799072266, 0.08511488342285156, 0.08629449462890625, 0.08508927917480469, 0.08481075286865235, 0.08436326599121094, 0.08498995208740234, 0.08503705596923829, 0.08542822265625, 0.08469503784179687, 0.08443392181396485, 0.08501554870605468, 0.0846376953125, 0.08496742248535157, 0.08612351989746093, 0.08490290832519531, 0.08461516571044922, 0.08477081298828125, 0.0848005142211914, 0.08621977233886718, 0.08505651092529297, 0.08459571075439454, 0.08459878540039062, 0.08486918640136719, 0.08474515533447266, 0.08450969696044922, 0.08503501129150391, 0.0847267837524414, 0.08468889617919922, 0.08508927917480469, 0.0886118392944336, 0.08830156707763671, 0.08738508605957031, 0.08487321472167969, 0.0855920639038086, 0.08490496063232422, 0.08478208160400391, 0.08481689453125, 0.08506368255615235]",tokens/s,11.480433009606973,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-7B,Qwen/Qwen-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -14516,19 +14782,24 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained - model_class = get_class_from_dynamic_module( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module - final_module = get_cached_module_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file - modules_needed = check_imports(resolved_module_file) - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports - raise ImportError( -ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-14B,Qwen/Qwen2-beta-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,3956.158464,12732.33408,0.0,12085.886976,11337.370624,s,10,10.987366088867189,1.098736608886719,0.001768964710489349,1.0985178833007812,1.1007381103515623,1.101008154296875,1.101224189453125,"[1.1001180419921874, 1.1012781982421875, 1.0972359619140626, 1.0976529541015625, 1.097395263671875, 1.09569873046875, 1.0975172119140626, 1.0993828125, 1.1004088134765626, 1.1006781005859374]",tokens/s,232.99487605076595,kWh,1.295269936323166e-05,7.0975890679255816e-06,6.178085498018682e-05,8.183114341134406e-05,tokens/kWh,3128393.2904756567,MB,3956.158464,12732.33408,0.0,12085.886976,11686.804992,s,10,644.0755078125,64.40755078125,0.02043927244380867,64.406017578125,64.42852109374999,64.437791796875,64.445208359375,"[64.41949609375, 64.4215078125, 64.3984453125, 64.3965, 64.3855703125, 64.37932421875, 64.38755078125, 64.41358984375, 64.4470625, 64.4264609375]",tokens/s,0.9781461837288221,kWh,0.0007606077267395126,0.000416880381825722,0.003642305219397435,0.00481979332796267,tokens/kWh,13071.09988191758,,s,629,652.9415617065439,1.038062896194822,0.13045675837303516,1.0222479248046874,1.02322421875,1.0235658081054688,2.119142734375,"[1.0216539916992187, 1.0224589233398438, 1.0223789672851562, 1.0224598999023438, 1.0228684692382812, 1.0230978393554688, 1.0232852783203126, 1.0228684692382812, 1.0223707885742188, 1.0226544799804687, 1.0221055908203125, 1.022455810546875, 1.0223565063476563, 1.0220953369140624, 1.02287255859375, 1.0226544799804687, 1.0230180053710938, 1.0228029174804687, 1.022360595703125, 1.0219008178710938, 1.02221826171875, 1.0227445678710938, 1.0227865600585937, 1.0227056884765624, 1.0226657104492187, 1.0222479248046874, 1.0227005615234375, 1.0229114990234376, 1.0229288940429688, 1.0229381103515625, 1.0223861694335938, 1.0226493530273437, 1.0219724731445312, 1.02327294921875, 1.0225264892578125, 1.021897705078125, 1.0218536987304687, 1.0230333251953125, 1.0221629638671874, 1.022266357421875, 1.0232105102539062, 1.0222919921875, 1.0218916015625, 1.0232176513671876, 1.0224496459960937, 1.0222622680664062, 1.0223595581054687, 1.0233876342773438, 1.0225960693359375, 1.0226697998046874, 1.0229954833984376, 1.0221025390625, 1.0217092895507813, 1.0235074462890625, 1.0223370361328126, 1.0225868530273436, 1.0227589111328126, 1.0223380737304688, 1.0219468994140626, 1.02196533203125, 1.0226288452148438, 1.0231378173828125, 2.124905517578125, 1.0222356567382813, 1.021960205078125, 1.022509033203125, 1.0222704467773438, 1.0222008056640626, 1.0229309692382813, 1.0228899536132812, 1.0222418212890625, 1.022761962890625, 1.0235012817382811, 1.0224527587890626, 1.0228264770507813, 1.0230067138671874, 1.022603271484375, 1.022150634765625, 1.0228582153320311, 1.0227486572265625, 1.0225458984375, 1.023267822265625, 1.0228500366210938, 1.0230599975585937, 1.02280908203125, 1.0225940551757813, 1.0225387573242188, 1.0220328979492188, 1.0222684326171876, 1.0227660522460937, 1.0227394409179686, 1.0236610717773438, 1.0233159790039061, 1.02287158203125, 1.0244444580078125, 1.0236958618164063, 1.022750732421875, 1.0225233764648438, 1.0231818237304688, 1.0220595092773437, 1.0220052490234375, 1.0232534790039063, 1.0219489135742188, 1.02171337890625, 1.0222592163085937, 1.0224414672851563, 1.023140869140625, 1.0223493041992187, 1.0228746337890624, 1.0218157958984375, 1.02228173828125, 1.02193359375, 1.0220175170898438, 1.0220697631835938, 1.02232470703125, 1.0216427612304688, 1.0218946533203126, 1.0215690307617187, 1.022439453125, 1.02179736328125, 1.0224251098632813, 1.0220114135742187, 1.0223197021484376, 1.0227127685546875, 1.0225541381835936, 2.119232421875, 1.0225018920898437, 1.022055419921875, 1.0218680419921875, 1.0223175659179689, 1.0221229858398437, 1.0219366455078125, 1.0225018920898437, 1.0220114135742187, 1.0218792724609376, 1.0220257568359374, 1.0222643432617187, 1.0220001220703125, 1.0221516723632813, 1.0221260986328125, 1.0216611938476563, 1.0218567504882812, 1.0222837524414063, 1.022792724609375, 1.0223380737304688, 1.0225889282226563, 1.0225274658203125, 1.0219089965820312, 1.0221567993164062, 1.0223544311523438, 1.0222837524414063, 1.0220943603515624, 1.022055419921875, 1.0220431518554687, 1.0217420654296876, 1.022118896484375, 1.0222120971679687, 1.02186083984375, 1.0227660522460937, 1.0224302368164062, 1.0219202270507812, 1.0222950439453125, 1.022434326171875, 1.0217748413085936, 1.0216837158203125, 1.021929443359375, 1.0220933227539062, 1.0220226440429687, 1.0222172241210938, 1.021971435546875, 1.0217420654296876, 1.0220123901367189, 1.0219243774414062, 1.0223441772460937, 1.022044189453125, 1.022455810546875, 1.0223093872070312, 1.0240828857421875, 1.0233630981445312, 1.0228223876953124, 1.0220809936523438, 1.022814208984375, 1.0219632568359376, 1.0219100341796874, 1.021834228515625, 1.0227333374023437, 1.0218475341796875, 1.0219889526367187, 2.119702392578125, 1.0218157958984375, 1.0222847900390626, 1.0225991821289062, 1.0219386596679687, 1.0222909545898438, 1.0225694580078124, 1.02200732421875, 1.0223073120117188, 1.0221957397460937, 1.0222427978515625, 1.0221383666992188, 1.0221312255859376, 1.022075927734375, 1.0216263427734376, 1.0212208862304688, 1.02229296875, 1.0224076538085938, 1.023636474609375, 1.0234900512695313, 1.023056884765625, 1.0234654541015624, 1.0236641235351562, 1.02160791015625, 1.0215352172851562, 1.0216673583984375, 1.021822998046875, 1.0217000732421875, 1.022213134765625, 1.02185986328125, 1.0224988403320312, 1.022687255859375, 1.0223042602539063, 1.0217113647460938, 1.0225919799804688, 1.022482421875, 1.022055419921875, 1.0219806518554688, 1.023088623046875, 1.0223472900390624, 1.021929443359375, 1.0223493041992187, 1.0222120971679687, 1.0214901733398438, 1.0219417724609374, 1.0221721801757813, 1.0221773071289062, 1.0221752319335937, 1.0220165405273438, 1.0218884887695312, 1.0218833618164063, 1.0219745483398437, 1.0215157470703125, 1.0211686401367188, 1.0218997802734375, 1.0223994750976562, 1.0220114135742187, 1.022298095703125, 1.02169189453125, 1.0218690795898437, 1.021822998046875, 1.0221168823242188, 1.0219120483398438, 2.118912109375, 1.0223964233398437, 1.0216151123046875, 1.022171142578125, 1.0217677001953125, 1.0219642944335938, 1.0219970703125, 1.0222827758789061, 1.0216611938476563, 1.021549560546875, 1.0215291137695313, 1.0223114013671875, 1.022255126953125, 1.0225100708007813, 1.0217799682617188, 1.02200830078125, 1.0224179077148436, 1.0221260986328125, 1.0218782958984376, 1.0218884887695312, 1.0225499877929687, 1.022076904296875, 1.0219366455078125, 1.0222387084960938, 1.0217011108398437, 1.0217328491210937, 1.02257666015625, 1.0215403442382813, 1.0214144287109375, 1.0214072265625, 1.0221701049804688, 1.0217277221679688, 1.0222387084960938, 1.0218997802734375, 1.0216539916992187, 1.0216837158203125, 1.0219857788085938, 1.0216980590820313, 1.0217205810546874, 1.0214840087890624, 1.02214453125, 1.0218076171875, 1.0222633056640624, 1.0221834106445313, 1.0223790283203125, 1.0221107177734374, 1.022223388671875, 1.0214297485351562, 1.0217717895507812, 1.0216028442382812, 1.0226585693359376, 1.0215946044921875, 1.0224056396484376, 1.0217778930664063, 1.0220472412109376, 1.0222387084960938, 1.0221731567382812, 1.0224568481445313, 1.0223892211914063, 1.021928466796875, 1.0224486694335937, 1.0220421142578124, 1.022455810546875, 2.117295166015625, 1.0219315185546876, 1.0214788818359375, 1.0215782470703125, 1.021528076171875, 1.0218690795898437, 1.0219069213867187, 1.0218506469726563, 1.0224097290039063, 1.0219745483398437, 1.0218424072265626, 1.021686767578125, 1.0215823364257812, 1.0215782470703125, 1.021676513671875, 1.0219089965820312, 1.02179736328125, 1.0221465454101561, 1.0219561157226562, 1.021676513671875, 1.0220635986328126, 1.0227415161132813, 1.0216591186523438, 1.0214799194335937, 1.021432861328125, 1.0216959838867188, 1.021422607421875, 1.0225029296875, 1.0220267333984374, 1.021981689453125, 1.022392333984375, 1.0219192504882812, 1.021675537109375, 1.0215321655273437, 1.0215844116210937, 1.0223329467773437, 1.0216427612304688, 1.0223380737304688, 1.0223411254882813, 1.0224465942382812, 1.0220513305664063, 1.021770751953125, 1.0217267456054688, 1.0211819458007811, 1.0219478759765626, 1.0219786376953126, 1.0217195434570312, 1.02196533203125, 1.0216980590820313, 1.0216949462890625, 1.0220328979492188, 1.02213427734375, 1.0221680908203126, 1.02171337890625, 1.0219458618164063, 1.021823974609375, 1.022129150390625, 1.0220892333984375, 1.0217769165039063, 1.022181396484375, 1.0221486206054688, 1.0219581298828124, 1.0223165283203124, 2.1193359375, 1.021507568359375, 1.0222807006835937, 1.0218096923828126, 1.0217789306640626, 1.0224578857421875, 1.0224793701171875, 1.0222202758789063, 1.0224015502929686, 1.0220513305664063, 1.0227291870117188, 1.0218936157226564, 1.0227210083007812, 1.0215659790039062, 1.021507568359375, 1.0218588256835937, 1.0215946044921875, 1.0212608032226562, 1.0221383666992188, 1.021644775390625, 1.0220400390625, 1.0219151611328126, 1.0219458618164063, 1.0218168334960938, 1.0220155029296876, 1.0220830688476563, 1.0217257080078126, 1.0215249633789063, 1.0215782470703125, 1.0214522705078124, 1.021971435546875, 1.0216908569335938, 1.0222796630859374, 1.0217891845703124, 1.0220093383789062, 1.0221598510742187, 1.0217533569335937, 1.021591552734375, 1.021834228515625, 1.0217297973632813, 1.0220697631835938, 1.0221373291015625, 1.021681640625, 1.021823974609375, 1.022286865234375, 1.0229125366210938, 1.0224752807617188, 1.0218772583007814, 1.0224363403320313, 1.02299853515625, 1.021749267578125, 1.022983154296875, 1.0218731689453124, 1.0215403442382813, 1.022688232421875, 1.0222745361328125, 1.0221066284179687, 1.021812744140625, 1.0228449096679688, 1.0219735107421875, 1.0219089965820312, 1.0222427978515625, 1.0222807006835937, 2.121678955078125, 1.0220349731445313, 1.0220318603515626, 1.022308349609375, 1.0220912475585937, 1.0223062744140625, 1.0220667114257813, 1.0221168823242188, 1.0219243774414062, 1.0236375122070311, 1.0226729125976564, 1.022350341796875, 1.0221209716796875, 1.0218065795898437, 1.0220042114257812, 1.02285107421875, 1.0233190307617188, 1.0220626220703124, 1.0221178588867188, 1.0219304809570313, 1.0225458984375, 1.0225377197265626, 1.0221055908203125, 1.0222172241210938, 1.0222172241210938, 1.0232381591796875, 1.0236713256835936, 1.02211376953125, 1.0223145141601562, 1.0224046020507813, 1.0224127807617187, 1.0221404418945312, 1.0220615844726562, 1.0223544311523438, 1.0224671020507812, 1.0220564575195312, 1.02242919921875, 1.0219437866210936, 1.0222633056640624, 1.0225182495117187, 1.0220728149414062, 1.0216908569335938, 1.0225111083984375, 1.0221690673828125, 1.0233764038085937, 1.0224005126953124, 1.0228797607421876, 1.022582763671875, 1.0221362915039063, 1.0220574951171875, 1.0226176147460937, 1.023177734375, 1.022688232421875, 1.0220369873046875, 1.0229730224609375, 1.0224833984375, 1.0232719116210938, 1.0233231201171875, 1.0232688598632813, 1.0227711791992187, 1.02242919921875, 1.0218782958984376, 1.0227630004882813, 2.123450439453125, 1.0225910034179688, 1.022224365234375, 1.0221588745117187, 1.0227947387695313, 1.0223759155273437, 1.0220062866210937, 1.021928466796875, 1.0225244140625, 1.0222254028320312, 1.0220328979492188, 1.0240491943359376, 1.0243778076171874, 1.0222274780273437, 1.0225735473632813, 1.02270361328125, 1.0226463012695313, 1.0230241088867187, 1.023151123046875, 1.0230661010742188, 1.022940185546875, 1.0235166625976562, 1.0226575317382813, 1.0224097290039063, 1.02308349609375, 1.0247874755859374, 1.0235719604492188, 1.0233917236328125, 1.023362060546875, 1.0236497802734374, 1.0237828979492187, 1.0238555908203124, 1.024322509765625, 1.0232586059570312, 1.0231644287109376, 1.023604736328125, 1.0232422485351562, 1.0228469848632813, 1.0233712768554688, 1.0233978881835937, 1.0237593383789063, 1.02187109375, 1.0220492553710938, 1.0218803100585938, 1.023657958984375, 1.0220001220703125, 1.0220830688476563, 1.0218035278320312, 1.02250390625, 1.02404296875, 1.0239928588867186, 1.0232227783203125, 1.0231644287109376, 1.0232197265625, 1.0240625, 1.0235238647460938, 1.022983154296875, 1.0219345703125, 1.0223042602539063, 1.022192626953125, 1.0235565795898438, 1.0230742797851562, 1.0222684326171876, 2.122977294921875, 1.021991943359375, 1.0222418212890625, 1.022287841796875, 1.0231869506835938, 1.0230241088867187, 1.022814208984375, 1.022866455078125, 1.0224425048828125, 1.0229033203125, 1.0226390991210939, 1.0222633056640624, 1.0229155883789063, 1.0221915893554687, 1.0231552124023438, 1.0233661499023436, 1.0227711791992187, 1.0222151489257814, 1.0229217529296875, 1.0231818237304688, 1.0223114013671875, 1.0220543823242187, 1.02232373046875, 1.0222356567382813, 1.0230077514648437, 1.0234613647460937, 1.0228264770507813, 1.0229319458007813, 1.024480224609375, 1.0225131225585937, 1.0220369873046875, 1.0220902099609375, 1.0221383666992188, 1.0218895263671874, 1.0225633544921875, 1.0228480224609375, 1.0221834106445313, 1.0225643310546875, 1.0235330810546874, 1.02322998046875, 1.0229186401367187, 1.0226974487304688, 1.0228060302734374, 1.022993408203125, 1.023494140625, 1.0230015869140625, 1.0222899169921875, 1.0222520141601563, 1.0227855224609375, 1.0226903076171876, 1.022087158203125, 1.0217963256835938, 1.0218424072265626, 1.0221260986328125, 1.0221178588867188, 1.0227445678710938, 1.023115234375, 1.0224527587890626, 1.0226483154296875, 1.022645263671875, 1.022792724609375, 1.0225899658203126, 1.0227425537109376]",tokens/s,0.9633327649660273,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-7b,google/recurrentgemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-6.7b,facebook/opt-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -14536,69 +14807,34 @@ ImportError: This modeling file requires the following packages that were not fo File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/google/recurrentgemma-7b/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948268-289bb5d42b45f4406907f61a;96ba6bd8-fd65-47cc-9087-9f12eebaae6f) - -Repository Not Found for url: https://huggingface.co/google/recurrentgemma-7b/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file - raise EnvironmentError( -OSError: google/recurrentgemma-7b is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-rw-1b,tiiuae/falcon-rw-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-14B,Qwen/Qwen2-beta-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -14616,18 +14852,24 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation - cls._check_and_enable_flash_attn_2( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 - raise ValueError( -ValueError: FalconForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpb_ykafi2/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-70B,meta-llama/Meta-Llama-3-70B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-110B,Qwen/Qwen1.5-110B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -14666,10 +14908,10 @@ ChildProcessError: Traceback (most recent call last): self._buffers[key] = fn(buf) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 32.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-65b,huggyllama/llama-65b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-564M,facebook/xglm-564M,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -14689,29 +14931,16 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 86.00 MiB. GPU + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation + cls._check_and_enable_flash_attn_2( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 + raise ValueError( +ValueError: XGLMForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpizvfil_q/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,l,l,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,t,t,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -14723,7 +14952,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/l/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/t/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -14750,9 +14979,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669491d4-22858b3357f2964948d23c91;9564856a-ceae-48eb-af48-1e4aa36b295e) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669490e8-1ae525a45983b25275f3212e;8282a1b1-aac1-4d8b-b2cc-5b778ad71580) -Repository Not Found for url: https://huggingface.co/l/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/t/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -14777,11 +15006,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: l is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: t is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-4.5B,facebook/xglm-4.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neox-20b,EleutherAI/gpt-neox-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -14801,16 +15030,57 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation - cls._check_and_enable_flash_attn_2( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 - raise ValueError( -ValueError: XGLMForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmp8cm3__3l/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-110B,Qwen/Qwen1.5-110B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-72B,Qwen/Qwen2-beta-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -14849,10 +15119,10 @@ ChildProcessError: Traceback (most recent call last): self._buffers[key] = fn(buf) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 32.00 MiB. GPU +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,8,8,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-7B,Qwen/Qwen1.5-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -14860,74 +15130,34 @@ torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 32.00 MiB. GP File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/8/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949288-5e1f1e9f425492757171b6c3;e597356b-a8dd-47f1-97ea-9831b9b5026f) - -Repository Not Found for url: https://huggingface.co/8/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file - raise EnvironmentError( -OSError: 8 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/rho-math-1b-v0.1,microsoft/rho-math-1b-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1535.045632,1705.508864,0.0,1059.06176,901.251072,s,10,1.2508666152954102,0.125086661529541,0.0018104018213424833,0.12444574356079102,0.126299910736084,0.12811838493347166,0.12957316429138183,"[0.12993685913085937, 0.12397126770019531, 0.12358041381835938, 0.124216064453125, 0.1243848648071289, 0.12450662231445313, 0.12540995025634766, 0.1256360321044922, 0.1233287353515625, 0.12589580535888673]",tokens/s,2046.5811211976581,kWh,1.4727642404526186e-06,8.07004418028454e-07,5.46138982864209e-06,7.741158487123162e-06,tokens/kWh,33069985.639208503,MB,1535.045632,1705.508864,0.0,1059.06176,931.976704,s,10,74.43358642578124,7.443358642578124,0.00946750701010035,7.4411630859375,7.453821142578125,7.459902514648437,7.464767612304687,"[7.4524697265625, 7.437251953125, 7.43481591796875, 7.44107763671875, 7.44202734375, 7.4486748046875, 7.46598388671875, 7.43750244140625, 7.4325341796875, 7.44124853515625]",tokens/s,8.463921063755025,kWh,8.849523470459816e-05,4.850131187912767e-05,0.0003201225928605506,0.0004571191394442764,tokens/kWh,137819.65042327833,,s,629,75.43097544097903,0.11992205952460892,0.01485084367631047,0.11795148468017579,0.11891920471191407,0.11957084197998047,0.24228786743164063,"[0.1226967010498047, 0.12151910400390625, 0.12056473541259766, 0.11847885131835938, 0.11765760040283203, 0.1177681884765625, 0.11789107513427734, 0.11814604949951171, 0.11932160186767578, 0.11832012939453125, 0.1177927703857422, 0.11863961791992188, 0.117970947265625, 0.11791155242919922, 0.1177927703857422, 0.11780095672607421, 0.11787673950195313, 0.11762687683105469, 0.11790541076660156, 0.11779481506347657, 0.117823486328125, 0.1177896957397461, 0.11771392059326172, 0.11764736175537109, 0.1177733154296875, 0.11770368194580078, 0.11773951721191406, 0.118076416015625, 0.11775590515136719, 0.11770674896240234, 0.11798528289794921, 0.1176780776977539, 0.117775390625, 0.1183753890991211, 0.11995954895019531, 0.11985305786132812, 0.1180579833984375, 0.11781836700439453, 0.11756646728515625, 0.11805900573730468, 0.11770265960693359, 0.11834572601318359, 0.11778355407714844, 0.11779481506347657, 0.11785932922363282, 0.11764838409423828, 0.11807437133789063, 0.11778662109375, 0.11772621154785157, 0.11770982360839843, 0.11952230072021484, 0.11834982299804687, 0.11924479675292969, 0.1183662109375, 0.11791871643066407, 0.11783168029785156, 0.11791667175292969, 0.11793510437011719, 0.11775590515136719, 0.11848908996582032, 0.11845222473144532, 0.11795967864990234, 0.24229991149902344, 0.11855974578857421, 0.11810508728027344, 0.1181112289428711, 0.11786239624023437, 0.11781222534179688, 0.11777536010742187, 0.11783475494384765, 0.1178050537109375, 0.11783270263671874, 0.11801292419433594, 0.11765145874023437, 0.11773747253417968, 0.11818905639648437, 0.11795558166503907, 0.11861913299560548, 0.11793202972412109, 0.11773951721191406, 0.11792384338378906, 0.11784806060791016, 0.11804672241210938, 0.11847372436523437, 0.11889459228515625, 0.11787366485595703, 0.11765760040283203, 0.11804364776611329, 0.1181839370727539, 0.11801395416259766, 0.11794841766357422, 0.11845529937744141, 0.11901849365234375, 0.11806412506103516, 0.11792793273925781, 0.1178419189453125, 0.11779174041748047, 0.1181470718383789, 0.11795148468017579, 0.11775794982910157, 0.11785420989990235, 0.11785318756103516, 0.11791769409179688, 0.1176842269897461, 0.11780198669433593, 0.11803135681152344, 0.11790847778320312, 0.11800678253173828, 0.11986029052734375, 0.11766470336914063, 0.11762483215332031, 0.11772927856445313, 0.11784601593017578, 0.11774259185791015, 0.1181296615600586, 0.11775794982910157, 0.11769548797607422, 0.11781222534179688, 0.11974041748046875, 0.11866316986083984, 0.11849625396728515, 0.11808665466308593, 0.11798220825195313, 0.11786956787109375, 0.11778559875488281, 0.2420991973876953, 0.11768319702148437, 0.11785318756103516, 0.1178757095336914, 0.11764019012451171, 0.11813990020751954, 0.11782553863525391, 0.11776204681396485, 0.11799756622314453, 0.11830271911621094, 0.118508544921875, 0.11805184173583984, 0.11785523223876954, 0.11794841766357422, 0.11769241333007813, 0.11777126312255859, 0.11797299194335938, 0.11789926147460937, 0.1177528305053711, 0.11770880126953125, 0.11770674896240234, 0.11790438079833984, 0.1180794906616211, 0.11948953247070312, 0.11772211456298828, 0.11786239624023437, 0.11781734466552735, 0.11803340911865234, 0.11814604949951171, 0.11789823913574218, 0.11793920135498047, 0.11805184173583984, 0.11791667175292969, 0.11798834991455077, 0.11809382629394531, 0.1178818588256836, 0.11811328125, 0.11793817901611328, 0.11791053009033203, 0.11808255767822265, 0.11819929504394532, 0.11768319702148437, 0.11867545318603516, 0.11808870697021484, 0.11771084594726562, 0.11781324768066406, 0.11782860565185548, 0.11991654205322265, 0.11770674896240234, 0.117823486328125, 0.11866214752197266, 0.11856486511230468, 0.11797299194335938, 0.11779686737060546, 0.11797913360595703, 0.1178941421508789, 0.11789619445800781, 0.11790847778320312, 0.11780812835693359, 0.11815628814697265, 0.11777945709228516, 0.11793202972412109, 0.11774361419677734, 0.24225689697265626, 0.11883827209472657, 0.11843174743652343, 0.11770162963867188, 0.11769651031494141, 0.11803648376464844, 0.11810921478271484, 0.11791152191162109, 0.11775180816650391, 0.1179842529296875, 0.11786649322509765, 0.11789823913574218, 0.11888333129882812, 0.11870105743408203, 0.11781120300292969, 0.11810918426513672, 0.11798937225341796, 0.11783577728271484, 0.11785113525390625, 0.11797196960449219, 0.11792281341552735, 0.11785011291503907, 0.11803040313720703, 0.11771692657470703, 0.117897216796875, 0.11816140747070313, 0.11904307556152344, 0.11791974639892579, 0.11789311981201171, 0.11902464294433594, 0.11833856201171875, 0.12005171203613281, 0.11821363067626953, 0.11774566650390625, 0.11858534240722657, 0.11854847717285157, 0.11799961853027344, 0.11858636474609376, 0.11794432067871094, 0.11810918426513672, 0.11841535949707031, 0.11808563232421875, 0.11770777893066406, 0.11799142456054687, 0.11910041809082031, 0.11799552154541015, 0.11794534301757813, 0.11774361419677734, 0.11787366485595703, 0.11796173095703125, 0.11805900573730468, 0.11948339080810547, 0.1178265609741211, 0.11779071807861329, 0.11765350341796875, 0.11782860565185548, 0.11791667175292969, 0.11784909057617188, 0.11769856262207032, 0.11790643310546875, 0.11776000213623047, 0.11783065795898437, 0.11767705535888671, 0.2425384979248047, 0.11768013000488281, 0.11795558166503907, 0.11765964508056641, 0.11810201263427735, 0.11820953369140624, 0.1178265609741211, 0.11962060546875, 0.11832319641113281, 0.11826278686523438, 0.11800371551513672, 0.11801292419433594, 0.11777126312255859, 0.11808979034423828, 0.1176882553100586, 0.11781632232666016, 0.11816345977783203, 0.11939839935302735, 0.11851058959960938, 0.11840716552734375, 0.11813273620605469, 0.11791053009033203, 0.1183477783203125, 0.11780403137207031, 0.11925299072265624, 0.11806310272216797, 0.11794226837158203, 0.11788288116455078, 0.11790847778320312, 0.11780812835693359, 0.11756851196289063, 0.11803648376464844, 0.11778457641601563, 0.11857817840576172, 0.11874816131591796, 0.11857202911376953, 0.11783372497558593, 0.11794432067871094, 0.11835801696777344, 0.11801395416259766, 0.11805388641357421, 0.11840716552734375, 0.11800678253173828, 0.11772723388671875, 0.11773849487304687, 0.11781427001953125, 0.11807030487060546, 0.11788591766357422, 0.1177896957397461, 0.11810610961914063, 0.11781529235839844, 0.118150146484375, 0.11891506958007812, 0.11792588806152343, 0.1180979232788086, 0.11776000213623047, 0.11800064086914062, 0.12033126068115234, 0.11792998504638671, 0.1180200958251953, 0.1176995849609375, 0.11785523223876954, 0.11783270263671874, 0.24298291015625, 0.1177528305053711, 0.11772723388671875, 0.11784909057617188, 0.11783782196044922, 0.11776409912109374, 0.1176258544921875, 0.11822592163085938, 0.11832115173339844, 0.11806719970703125, 0.11768729400634766, 0.11852082824707032, 0.11796377563476562, 0.11766067504882813, 0.11783372497558593, 0.11778457641601563, 0.11765452575683594, 0.11768319702148437, 0.11780812835693359, 0.11886284637451172, 0.11925299072265624, 0.11837849426269531, 0.11823616027832032, 0.11786137390136718, 0.11829452514648438, 0.11799961853027344, 0.11810099029541016, 0.11921817779541016, 0.11947929382324218, 0.11808767700195312, 0.11842867279052735, 0.11818086242675781, 0.11845017242431641, 0.11814604949951171, 0.11810406494140625, 0.11812249755859375, 0.118150146484375, 0.11768627166748047, 0.12074086761474609, 0.11790029144287109, 0.1178757095336914, 0.11833753967285156, 0.11824742126464843, 0.1190297622680664, 0.11828121948242187, 0.11830067443847657, 0.11778559875488281, 0.1179842529296875, 0.11804879760742187, 0.11841123199462891, 0.11772108459472656, 0.11835801696777344, 0.11804057312011719, 0.11791462707519532, 0.11991449737548829, 0.1183846435546875, 0.11778867340087891, 0.11815936279296875, 0.11795558166503907, 0.11824639892578125, 0.11795558166503907, 0.11841535949707031, 0.11960320281982421, 0.2442239990234375, 0.11785625457763672, 0.11795455932617188, 0.1188362274169922, 0.1178050537109375, 0.11798834991455077, 0.11827916717529297, 0.11871334075927735, 0.11938304138183593, 0.1188136978149414, 0.11833753967285156, 0.11944652557373046, 0.11828736114501953, 0.1178757095336914, 0.1189969940185547, 0.11945779418945313, 0.11926118469238281, 0.11858534240722657, 0.1181296615600586, 0.1187041244506836, 0.11901542663574219, 0.11876454162597656, 0.11830989074707031, 0.12047666931152344, 0.11891817474365235, 0.11892630767822265, 0.11849318695068359, 0.11825049591064453, 0.1181839370727539, 0.11833241271972657, 0.11835699462890625, 0.11903282928466796, 0.11840614318847656, 0.11857100677490234, 0.11871027374267579, 0.11851980590820313, 0.11851673889160157, 0.11861606597900391, 0.11881267547607421, 0.1186324462890625, 0.12009369659423828, 0.11938201904296875, 0.11857305908203125, 0.11787980651855469, 0.11817676544189454, 0.11832524871826172, 0.11826790618896485, 0.11835801696777344, 0.120447998046875, 0.11851776123046875, 0.11879526519775391, 0.11777536010742187, 0.11783372497558593, 0.11804057312011719, 0.11810304260253907, 0.11771186828613281, 0.11789823913574218, 0.11804160308837891, 0.11768934631347656, 0.11759923553466797, 0.11778559875488281, 0.11754393768310546, 0.11777740478515625, 0.24373759460449218, 0.11779174041748047, 0.1175920639038086, 0.11776306915283204, 0.1174999008178711, 0.11786547088623046, 0.11793408203125, 0.11796479797363281, 0.11785113525390625, 0.11759923553466797, 0.12032717132568359, 0.11938098907470703, 0.11796991729736328, 0.11770674896240234, 0.11779891204833984, 0.11797913360595703, 0.11979264068603515, 0.11813990020751954, 0.11899801635742188, 0.11855462646484374, 0.11808153533935548, 0.1180231704711914, 0.11797913360595703, 0.11860889434814453, 0.11787366485595703, 0.11785113525390625, 0.11788492584228516, 0.11816242980957031, 0.11869491577148437, 0.1198888931274414, 0.11808051300048829, 0.11794739532470704, 0.11787468719482422, 0.11797196960449219, 0.11788288116455078, 0.11782246398925782, 0.11781017303466797, 0.11793612670898437, 0.11752345275878906, 0.11755213165283203, 0.11759308624267578, 0.1179535369873047, 0.11776102447509766, 0.11792486572265624, 0.11769344329833985, 0.11778150177001953, 0.11779993438720703, 0.11772313690185547, 0.11796889495849609, 0.11796275329589843, 0.11774463653564453, 0.11760639953613282, 0.11799858856201172, 0.11777126312255859, 0.11769139099121094, 0.1178757095336914, 0.11771699523925781, 0.1177733154296875, 0.11792588806152343, 0.11762687683105469, 0.11798834991455077, 0.11797913360595703, 0.11765555572509766, 0.24334541320800782, 0.11772621154785157, 0.11778457641601563, 0.11770777893066406, 0.11806208038330078, 0.11857817840576172, 0.11794944000244141, 0.11780403137207031, 0.1176094741821289, 0.11765350341796875, 0.11788390350341797, 0.11832118225097656, 0.1179985580444336, 0.11776409912109374, 0.11778253173828125, 0.11771392059326172, 0.11762995147705078, 0.11899801635742188, 0.11768831634521484, 0.11782860565185548, 0.1177343978881836, 0.11791974639892579, 0.11767910766601562, 0.1176975326538086, 0.11781222534179688, 0.1176842269897461, 0.11812044525146484, 0.11786444854736328, 0.11779481506347657, 0.11779280090332031, 0.11815216064453125, 0.11984896087646485, 0.11806412506103516, 0.11796889495849609, 0.11819007873535156, 0.11776102447509766, 0.11791974639892579, 0.11807334136962891, 0.1183795166015625, 0.11832832336425782, 0.11772211456298828, 0.11752243041992187, 0.1177364501953125, 0.117718017578125, 0.11764736175537109, 0.11770265960693359, 0.11787673950195313, 0.11846963500976562, 0.11805900573730468, 0.11839180755615235, 0.11926834869384766, 0.11823616027832032, 0.11819110107421875, 0.11771186828613281, 0.11779891204833984, 0.11797606658935547, 0.11803033447265625, 0.11784806060791016, 0.11762380981445313, 0.11781938934326172, 0.11753062438964844, 0.1183846435546875, 0.11802214050292968, 0.24430592346191407, 0.11781120300292969, 0.11784294128417969, 0.11759410858154297, 0.11747020721435547, 0.11764940643310547, 0.11776000213623047, 0.1176657943725586, 0.11789209747314452, 0.11810304260253907, 0.11752448272705078, 0.11766681671142579, 0.11787366485595703, 0.11762278747558594, 0.11758796691894531, 0.11786854553222656, 0.11814297485351563, 0.11897650909423828, 0.11819315338134766, 0.11778355407714844, 0.11794944000244141, 0.1182208023071289, 0.1181665267944336, 0.11872051239013671, 0.11848806762695313, 0.11986124420166015, 0.12019916534423829, 0.11816754913330078, 0.1177927703857422, 0.11773849487304687, 0.11777740478515625, 0.11786956787109375, 0.11777843475341797, 0.11820543670654297, 0.1184686050415039, 0.11819417572021484, 0.1180917739868164, 0.11786137390136718, 0.11804774475097657, 0.11794329833984375, 0.11819213104248047, 0.11829759979248047, 0.11792998504638671, 0.11812147521972656, 0.11761766052246093, 0.11775590515136719, 0.11777228546142578, 0.11778253173828125, 0.11822898864746094, 0.11784601593017578, 0.11788082885742188, 0.11892332458496094, 0.11907987213134766, 0.11818086242675781, 0.11776000213623047, 0.11779891204833984, 0.1183272933959961, 0.11851878356933594, 0.11775590515136719, 0.11797401428222656, 0.11782144165039063, 0.11866828918457031, 0.11815936279296875]",tokens/s,8.338749384093028,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-7b-hf,meta-llama/Llama-2-7b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2029.023232,5480.382464,0.0,4833.93536,4503.282688,s,10,5.706882629394531,0.5706882629394532,0.0016266379572605122,0.5707381896972656,0.5725719726562499,0.5726634887695312,0.5727367016601562,"[0.5727550048828125, 0.5716815185546875, 0.5690197143554687, 0.56878515625, 0.5694818725585937, 0.5685383911132813, 0.5697948608398438, 0.5724900512695312, 0.571784423828125, 0.5725516357421875]",tokens/s,448.58115476462876,kWh,6.716496138660996e-06,3.680318861643172e-06,3.126274105956043e-05,4.16595560598646e-05,tokens/kWh,6145048.680598735,MB,2029.023232,5480.382464,0.0,4833.93536,4688.699392,s,10,334.41517578125,33.441517578125,0.005471176707679699,33.439892578125,33.450382421875,33.4504509765625,33.4505058203125,"[33.44433203125, 33.4401328125, 33.436796875, 33.43383203125, 33.43801953125, 33.4503671875, 33.45051953125, 33.436765625, 33.4447578125, 33.43965234375]",tokens/s,1.8838857971329028,kWh,0.0003948281717245225,0.0002164000882931032,0.0018034092266768405,0.0024146374866944663,tokens/kWh,26090.872997355913,,s,629,339.0184661254883,0.5389800733314599,0.06780085317370947,0.5307340698242188,0.5313611816406251,0.5316872192382812,1.099913408203125,"[0.5303726196289062, 0.5304791259765625, 0.5303756713867187, 0.5306491088867188, 0.5304463500976563, 0.5305681762695312, 0.5304903564453125, 0.530681884765625, 0.5307289428710937, 0.530619384765625, 0.5308334350585937, 0.53085693359375, 0.5303705444335938, 0.5305958251953125, 0.5302774047851563, 0.5305548706054688, 0.5302968139648437, 0.530682861328125, 0.5306572875976563, 0.53058251953125, 0.5303828735351562, 0.5305906982421875, 0.53028759765625, 0.5303807983398438, 0.5304647827148438, 0.5309767456054687, 0.5310658569335938, 0.5310986328125, 0.5302282104492188, 0.5309931640625, 0.5306439819335937, 0.5309173583984375, 0.53104638671875, 0.5319270629882813, 0.531589111328125, 0.5317703857421875, 0.5316536254882812, 0.5319987182617187, 0.53172021484375, 0.53193115234375, 0.5317007446289063, 0.5311692504882812, 0.5306941528320313, 0.5313402709960937, 0.5311119384765625, 0.5320499267578125, 0.5308436279296875, 0.5309603881835937, 0.53089794921875, 0.5311702880859375, 0.5305272216796875, 0.5305426025390625, 0.5305640869140625, 0.5306859741210938, 0.5304647827148438, 0.5306275634765625, 0.5305589599609375, 0.5307914428710937, 0.5308579711914062, 0.530808837890625, 0.5308436279296875, 0.5311334228515625, 1.1034122314453125, 0.531583984375, 0.5308897094726562, 0.5307801513671875, 0.530830322265625, 0.5305958251953125, 0.5306961669921875, 0.5304053955078125, 0.53068798828125, 0.5302650756835937, 0.5304074096679687, 0.5301115112304687, 0.5304862670898437, 0.5300991821289063, 0.5306500854492188, 0.5302988891601562, 0.5305692138671875, 0.530218994140625, 0.5305047607421876, 0.5306592407226562, 0.5311631469726562, 0.5304155883789062, 0.5312952270507812, 0.5305374755859374, 0.530766845703125, 0.5304176635742187, 0.5306275634765625, 0.5305128784179688, 0.5309767456054687, 0.5305927734375, 0.5308180541992188, 0.5308170166015626, 0.5308436279296875, 0.530608154296875, 0.5307197265625, 0.5304832153320312, 0.5310269165039062, 0.530788330078125, 0.531056640625, 0.5312041015625, 0.5311282958984375, 0.5308856201171875, 0.5310484619140625, 0.5306941528320313, 0.5308334350585937, 0.5305599975585937, 0.5322680053710938, 0.530998291015625, 0.5309849853515625, 0.5308098754882813, 0.5307525024414063, 0.53083544921875, 0.5311477661132813, 0.5306255493164063, 0.5309736938476562, 0.531083251953125, 0.5314232177734375, 0.5308733520507812, 0.531041259765625, 0.530524169921875, 0.531251220703125, 0.5304913330078125, 0.5308006591796876, 1.0999736328125, 0.530502685546875, 0.5307003173828125, 0.5304801025390625, 0.5305569458007813, 0.5305374755859374, 0.5308016357421875, 0.5303275756835938, 0.5305835571289063, 0.5303971557617188, 0.5308845825195313, 0.5308651733398437, 0.5319014282226563, 0.5306552124023437, 0.5313453979492188, 0.5305538330078124, 0.5305252075195312, 0.5303152465820312, 0.5307760620117188, 0.5310126342773438, 0.5308641357421875, 0.5306593017578125, 0.530639892578125, 0.5305968627929688, 0.5306808471679687, 0.5308436279296875, 0.5307340698242188, 0.53047705078125, 0.5306808471679687, 0.5303255004882812, 0.53110986328125, 0.5310003051757812, 0.5306552124023437, 0.5305599975585937, 0.5308487548828125, 0.5304658203125, 0.5309296875, 0.5307279663085938, 0.5307545776367187, 0.5304330444335937, 0.5307012939453125, 0.530713623046875, 0.5310167236328125, 0.5309470825195313, 0.5307689208984375, 0.5305252075195312, 0.5307125854492187, 0.5308221435546875, 0.5308416137695312, 0.530892822265625, 0.5315543212890625, 0.5305845947265625, 0.531040283203125, 0.530492431640625, 0.5305466918945313, 0.5306337280273438, 0.530735107421875, 0.5310238647460938, 0.5306429443359375, 0.5305426025390625, 0.5307340698242188, 0.530535400390625, 0.5311631469726562, 1.09973193359375, 0.53024560546875, 0.53064501953125, 0.530534423828125, 0.5306911010742188, 0.5307279663085938, 0.5305538330078124, 0.5307115478515625, 0.5306583251953125, 0.5304094848632812, 0.5305528564453125, 0.5303408813476562, 0.530830322265625, 0.5302855834960938, 0.5308221435546875, 0.5302835083007813, 0.5305282592773437, 0.5302476806640625, 0.5306634521484375, 0.5304013061523437, 0.5309204711914063, 0.5303469848632812, 0.5309839477539062, 0.5302742919921875, 0.53121435546875, 0.5306419067382813, 0.5312420043945313, 0.5304524536132813, 0.5306388549804687, 0.5301882934570312, 0.5307074584960938, 0.5305753784179688, 0.5308630981445313, 0.530572265625, 0.5305016479492187, 0.5303705444335938, 0.5305282592773437, 0.5302476806640625, 0.5306654663085938, 0.5310330810546875, 0.531125244140625, 0.530513916015625, 0.530820068359375, 0.5313054809570312, 0.5315963134765626, 0.5308518676757813, 0.5307258911132813, 0.5309255981445312, 0.5307606811523438, 0.5307371215820312, 0.53144677734375, 0.5305640869140625, 0.5306583251953125, 0.5305569458007813, 0.53089794921875, 0.5304473876953125, 0.53081396484375, 0.5305446166992187, 0.5308446655273438, 0.5305866088867187, 0.5311211547851562, 0.5311539306640625, 0.5308313598632812, 1.1005552978515625, 0.5304330444335937, 0.5307955322265625, 0.530313232421875, 0.5304658203125, 0.5306838989257813, 0.5304944458007812, 0.5302742919921875, 0.5305692138671875, 0.530356201171875, 0.53049755859375, 0.5303019409179688, 0.5304391479492188, 0.5303101196289063, 0.5306808471679687, 0.5305149536132813, 0.5315686645507812, 0.530671630859375, 0.5310003051757812, 0.5307750244140625, 0.5311651611328125, 0.5306009521484375, 0.5306388549804687, 0.5303910522460937, 0.5305743408203125, 0.53049755859375, 0.5307238159179688, 0.5304903564453125, 0.5306675415039063, 0.5307310180664062, 0.5306060791015625, 0.5304954833984376, 0.5306849365234375, 0.5304647827148438, 0.5310084838867187, 0.531357666015625, 0.5308907470703125, 0.5313607788085938, 0.5305436401367187, 0.5303142700195312, 0.5307197265625, 0.5305866088867187, 0.5307258911132813, 0.5306911010742188, 0.530746337890625, 0.530513916015625, 0.5311181030273437, 0.5308856201171875, 0.5307627563476562, 0.5306132202148437, 0.53115185546875, 0.5308733520507812, 0.5311539306640625, 0.5306583251953125, 0.5317621459960937, 0.5305640869140625, 0.5311201171875, 0.5317539672851562, 0.5310535888671875, 0.5312788696289062, 0.5310422973632812, 0.5307166748046875, 0.5311488037109375, 1.099758544921875, 0.5304155883789062, 0.5309942016601562, 0.5306316528320313, 0.5310044555664063, 0.5309592895507812, 0.5309296875, 0.531293212890625, 0.5310361328125, 0.5315983276367188, 0.5309173583984375, 0.53089892578125, 0.5309368286132813, 0.5309173583984375, 0.5310187377929687, 0.53051904296875, 0.5308784790039063, 0.53064501953125, 0.530935791015625, 0.5305640869140625, 0.53085595703125, 0.5304842529296875, 0.5306941528320313, 0.5305200805664062, 0.5306286010742187, 0.5310453491210938, 0.5314888916015625, 0.5309019165039063, 0.5314559936523438, 0.5304483642578125, 0.5311907958984375, 0.5310607299804687, 0.53081396484375, 0.530460693359375, 0.5306798095703125, 0.5305108642578125, 0.5307340698242188, 0.5307310180664062, 0.5322465209960937, 0.5307340698242188, 0.5311016845703125, 0.5303255004882812, 0.53104541015625, 0.5311344604492187, 0.5315880737304688, 0.5312041015625, 0.5313812255859375, 0.5315963134765626, 0.5314437255859376, 0.5312255859375, 0.5312286987304687, 0.5308856201171875, 0.5311661987304688, 0.5306419067382813, 0.5310013427734375, 0.5312112426757812, 0.5314898071289063, 0.5305784301757812, 0.5307023315429688, 0.5308221435546875, 0.5309501342773437, 0.5306531982421875, 0.5310136108398438, 1.101791259765625, 0.5311979370117188, 0.5310494995117188, 0.5309296875, 0.5306951904296875, 0.5305620727539062, 0.53075146484375, 0.5304832153320312, 0.5304832153320312, 0.5304678344726562, 0.5305579223632813, 0.5303460083007813, 0.530535400390625, 0.53030810546875, 0.5306685180664062, 0.530313232421875, 0.530567138671875, 0.5305947875976562, 0.5310105590820312, 0.5304862670898437, 0.5315010375976562, 0.5307781372070313, 0.5309634399414063, 0.5304596557617187, 0.5305436401367187, 0.5304074096679687, 0.5306552124023437, 0.5303705444335938, 0.5305252075195312, 0.5304309692382813, 0.530587646484375, 0.5305272216796875, 0.5306224365234375, 0.5303101196289063, 0.5306122436523437, 0.5303859252929688, 0.53157373046875, 0.5317867431640625, 0.5306838989257813, 0.531019775390625, 0.5308037109375, 0.5315563354492188, 0.5318829956054687, 0.5318727416992187, 0.531968017578125, 0.5313167114257813, 0.5311610717773437, 0.5309112548828125, 0.5310955810546875, 0.5309736938476562, 0.531399658203125, 0.5308375244140625, 0.5309644775390625, 0.5308323974609375, 0.5311262817382812, 0.5311344604492187, 0.5315696411132812, 0.5313095703125, 0.5322188720703125, 0.5319075927734375, 0.5321328735351563, 0.53180517578125, 0.5310341186523437, 1.1037552490234375, 0.5302538452148438, 0.53066650390625, 0.5303644409179687, 0.530545654296875, 0.5308262329101563, 0.5305938110351562, 0.5302937622070313, 0.5309501342773437, 0.5304954833984376, 0.5306388549804687, 0.5307566528320312, 0.531390380859375, 0.5309030151367188, 0.5311232299804688, 0.5304494018554687, 0.5305374755859374, 0.5301544799804687, 0.5307739868164062, 0.5302302856445312, 0.5306542358398437, 0.5302691650390625, 0.5304893188476563, 0.530271240234375, 0.5304873046875, 0.530249755859375, 0.5306429443359375, 0.5304688720703125, 0.5305733032226563, 0.5302630615234375, 0.5308067626953125, 0.5304801025390625, 0.5307535400390625, 0.5306204223632812, 0.5305897216796875, 0.5304873046875, 0.5308692626953125, 0.5305548706054688, 0.531114013671875, 0.5308733520507812, 0.531294189453125, 0.5308948364257813, 0.53117236328125, 0.5310709838867187, 0.5314703369140625, 0.5308497924804687, 0.5314765014648437, 0.530946044921875, 0.5310259399414062, 0.5308795166015625, 0.5310228271484375, 0.5311436767578125, 0.530756591796875, 0.5304422607421875, 0.5306869506835937, 0.5305169677734375, 0.53072998046875, 0.5304780883789062, 0.5309317016601562, 0.5314334716796875, 0.5309531860351563, 0.5307371215820312, 0.5311385498046876, 1.1027271728515624, 0.5304412231445312, 0.5307801513671875, 0.5308590087890624, 0.5311181030273437, 0.5311273193359375, 0.5310904541015625, 0.53079345703125, 0.5309389038085938, 0.5304013061523437, 0.5307391967773437, 0.5304248046875, 0.530746337890625, 0.5302958374023438, 0.531314697265625, 0.5305169677734375, 0.5308467407226563, 0.5305415649414063, 0.5307044067382812, 0.5304258422851562, 0.5306500854492188, 0.530608154296875, 0.5310791625976562, 0.5308784790039063, 0.5317447509765625, 0.530534423828125, 0.5315819702148438, 0.5309255981445312, 0.531177490234375, 0.53104638671875, 0.5305394897460938, 0.530318359375, 0.5304934692382812, 0.5302620239257813, 0.5305006103515625, 0.5303418579101562, 0.530535400390625, 0.5304043579101563, 0.5306634521484375, 0.5306224365234375, 0.5308016357421875, 0.5306849365234375, 0.5312051391601562, 0.53136279296875, 0.5315717163085938, 0.5321359252929687, 0.5316669311523438, 0.5309634399414063, 0.5312890625, 0.5310740356445313, 0.5311795043945312, 0.531040283203125, 0.531083251953125, 0.53062451171875, 0.5307965698242187, 0.5304965209960938, 0.5307801513671875, 0.530714599609375, 0.5308016357421875, 0.5307023315429688, 0.5310259399414062, 0.5310658569335938, 0.5317560424804687, 1.103698974609375, 0.5303838500976562, 0.5308118896484375, 0.5313546142578125, 0.5313822631835937, 0.5304340209960937, 0.5307258911132813, 0.5303450317382813, 0.530662353515625, 0.5305333862304688, 0.5306746826171875, 0.5304586181640625, 0.5306736450195313, 0.5304258422851562, 0.5309183959960937, 0.53065625, 0.5313136596679687, 0.5311395874023438, 0.5308251953125, 0.5308211059570312, 0.530787353515625, 0.530513916015625, 0.5309204711914063, 0.5309265747070312, 0.5309603881835937, 0.5305927734375, 0.5307289428710937, 0.5303971557617188, 0.5306982421875, 0.5306787719726562, 0.531040283203125, 0.5307310180664062, 0.530882568359375, 0.5309470825195313, 0.5306675415039063, 0.5309173583984375, 0.5313720092773437, 0.5311057739257813, 0.5313310546875, 0.5306521606445312, 0.5313228759765625, 0.5306849365234375, 0.530766845703125, 0.5306306762695312, 0.5308231811523437, 0.5304586791992187, 0.5306050415039063, 0.530514892578125, 0.5307535400390625, 0.5304391479492188, 0.5307156372070313, 0.530545654296875, 0.5310863647460937, 0.5305620727539062, 0.530904052734375, 0.53064599609375, 0.5309317016601562, 0.53065625, 0.5311386108398437, 0.5306500244140625, 0.5308600463867188, 0.5306286010742187, 0.5308651733398437]",tokens/s,1.8553561615347953,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-13b-hf,meta-llama/Llama-2-13b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,3011.678208,9259.450368,0.0,8613.003264,8211.364864,s,10,10.948309448242187,1.0948309448242186,0.0017810888898920402,1.0946644287109375,1.0975797607421875,1.097637109375,1.09768298828125,"[1.0947955322265626, 1.0975670166015625, 1.0945333251953124, 1.09283447265625, 1.093535400390625, 1.0924375, 1.0933472900390624, 1.0952611083984376, 1.0963033447265624, 1.0976944580078125]",tokens/s,233.8260543422092,kWh,1.2896189077032937e-05,7.064633461468475e-06,6.102240992899577e-05,8.098323246749718e-05,tokens/kWh,3161148.20562079,MB,3011.678208,9330.753536,0.0,8684.306432,8503.627264,s,10,640.83317578125,64.083317578125,0.01786692489370897,64.076908203125,64.113046875,64.1131875,64.1133,"[64.113015625, 64.113328125, 64.1000546875, 64.0766796875, 64.07603515625, 64.07292578125, 64.06015625, 64.0786328125, 64.0652109375, 64.07713671875]",tokens/s,0.983095170177413,kWh,0.0007565677230060101,0.0004146680905150424,0.003575465860370403,0.0047467016738914555,tokens/kWh,13272.374024793335,,s,629,649.6630466918949,1.0328506306707386,0.1300798719514248,1.0170562744140625,1.01796640625,1.0183720947265624,2.11047625,"[1.0181212158203126, 1.0173245239257813, 1.0185758666992188, 1.0180556640625, 1.018123291015625, 1.0182379760742188, 1.0183464965820312, 1.0172989501953125, 1.0187325439453125, 1.0184806518554688, 1.0173450317382813, 1.0169671630859376, 1.0177156982421875, 1.016869873046875, 1.0170828857421874, 1.0171054077148438, 1.017406494140625, 1.0178303833007813, 1.0179625244140624, 1.0176153564453125, 1.0172446899414063, 1.0175590209960939, 1.0186322021484375, 1.0177269897460937, 1.017723876953125, 1.0172518310546874, 1.0174484252929688, 1.0174822387695313, 1.0188011474609375, 1.0174320678710937, 1.0174351196289062, 1.0169671630859376, 1.0170900268554688, 1.0175518798828125, 1.0169671630859376, 1.0169815063476562, 1.01698046875, 1.017164794921875, 1.0184673461914062, 1.0172026977539061, 1.0175672607421875, 1.017354248046875, 1.0178375854492188, 1.01718017578125, 1.0172631225585937, 1.0175252685546874, 1.0175877075195312, 1.0180198364257813, 1.01806591796875, 1.0169200439453125, 1.0169722900390625, 1.0176399536132812, 1.0175457153320313, 1.0184530029296874, 1.0189946899414062, 1.017486328125, 1.0173870239257812, 1.0177218627929687, 1.0176204833984375, 1.0178468017578124, 1.0180025024414063, 1.0178231811523437, 2.115484619140625, 1.0167900390625, 1.0173245239257813, 1.0184478759765625, 1.0185051879882812, 1.018660888671875, 1.0180894775390625, 1.01798193359375, 1.0169508056640626, 1.0166098022460937, 1.0167337036132813, 1.0166784057617186, 1.0166610107421874, 1.0168370971679688, 1.0182635498046875, 1.017359375, 1.017260009765625, 1.0175375366210937, 1.0179983520507812, 1.0172620849609375, 1.0179829711914063, 1.0172477416992187, 1.0176378784179687, 1.0178222045898437, 1.018113037109375, 1.0180044555664063, 1.0183690185546874, 1.0185379638671874, 1.017069580078125, 1.0172241821289063, 1.0169231567382813, 1.0170255126953125, 1.016953857421875, 1.0170449829101562, 1.0174218139648437, 1.0171945190429688, 1.0167879638671875, 1.0176768188476562, 1.0178262939453124, 1.017734130859375, 1.01724365234375, 1.0175989990234375, 1.0170029907226563, 1.0170224609375, 1.0177013549804688, 1.0169600219726562, 1.0178672485351563, 1.0179348754882813, 1.01819287109375, 1.0178980102539064, 1.0185748291015626, 1.0183229370117188, 1.0191605834960937, 1.0187940063476562, 1.0190294799804687, 1.018576904296875, 1.0186598510742189, 1.0183741455078126, 1.0177904663085937, 1.0180341796875, 1.0173480834960937, 1.0171412353515625, 1.017723876953125, 2.11309765625, 1.0174781494140626, 1.0174166870117187, 1.0177935180664062, 1.0169886474609375, 1.0179368896484375, 1.01819189453125, 1.0179256591796875, 1.01707568359375, 1.0180884399414063, 1.0175416259765624, 1.0177484741210938, 1.01865673828125, 1.01788671875, 1.0186629028320313, 1.0175426635742189, 1.0182052001953126, 1.0181621704101562, 1.017913330078125, 1.0183598022460938, 1.0172467041015625, 1.0170460205078125, 1.0173931274414063, 1.0176419677734374, 1.0177720336914062, 1.016953857421875, 1.01732763671875, 1.0172713012695314, 1.01722216796875, 1.0184335327148437, 1.0174474487304688, 1.0173317260742187, 1.017807861328125, 1.0172548828125, 1.0176010131835938, 1.0181068725585938, 1.0175713500976562, 1.0182727661132813, 1.0180116577148437, 1.0184151000976562, 1.0177402954101562, 1.017481201171875, 1.0176061401367187, 1.0172026977539061, 1.016680419921875, 1.0167982177734376, 1.016784912109375, 1.0172897338867188, 1.0168883056640625, 1.01704296875, 1.0168678588867188, 1.0165729370117187, 1.0167131958007813, 1.0166456298828126, 1.0165667724609375, 1.0168145751953126, 1.016875, 1.0166814575195313, 1.0167070922851562, 1.0168309936523436, 1.0168156127929688, 1.01669580078125, 1.01747607421875, 2.11044970703125, 1.0169733276367188, 1.0170706176757813, 1.0172846069335937, 1.0169989013671874, 1.0167142333984376, 1.01673779296875, 1.0168524780273438, 1.0172088623046875, 1.017069580078125, 1.0166159057617188, 1.0165391235351562, 1.0165780639648438, 1.016901611328125, 1.0178887939453125, 1.0169794311523437, 1.0168237915039062, 1.017164794921875, 1.017049072265625, 1.0169600219726562, 1.0166497192382813, 1.0166763305664062, 1.0166876220703125, 1.017296875, 1.0177669067382813, 1.0170214233398438, 1.01680126953125, 1.0170153198242187, 1.0169190673828126, 1.0170368041992188, 1.0171064453125, 1.0172354736328124, 1.0170460205078125, 1.0172548828125, 1.017270263671875, 1.01686474609375, 1.016853515625, 1.01725390625, 1.0170050659179688, 1.0172303466796875, 1.01722314453125, 1.01692724609375, 1.0170449829101562, 1.0169825439453124, 1.0179143676757811, 1.0177525634765625, 1.0174228515625, 1.0177669067382813, 1.0174218139648437, 1.017470947265625, 1.016974365234375, 1.01671728515625, 1.0168442993164062, 1.01711669921875, 1.0169733276367188, 1.017064453125, 1.016784912109375, 1.0175057983398437, 1.0172620849609375, 1.0171259155273438, 1.0172252197265625, 1.0170562744140625, 1.0171351318359374, 2.110795654296875, 1.0166190185546875, 1.0167347412109375, 1.0169712524414063, 1.0166886596679687, 1.016806396484375, 1.0165883178710937, 1.0169190673828126, 1.0171340942382812, 1.0177515258789063, 1.0171422729492188, 1.0173849487304687, 1.0172548828125, 1.0168411865234375, 1.0169845581054688, 1.0166845703125, 1.0168084716796875, 1.017049072265625, 1.0166876220703125, 1.0172395629882813, 1.016953857421875, 1.016732666015625, 1.0170419311523438, 1.016896484375, 1.016853515625, 1.0166179809570313, 1.0168473510742186, 1.0165565185546874, 1.0171422729492188, 1.0176635131835938, 1.0167357177734375, 1.0171463623046875, 1.017027587890625, 1.0171187133789064, 1.0174617309570313, 1.0175324096679688, 1.01707568359375, 1.017122802734375, 1.0175518798828125, 1.0175703125, 1.0169467163085937, 1.0168923950195312, 1.0171740112304688, 1.0170286254882812, 1.0166773681640624, 1.0171105346679687, 1.0168504028320313, 1.0169476928710937, 1.0173501586914062, 1.0176942138671874, 1.0172774658203125, 1.0176573486328124, 1.01741259765625, 1.0166753540039062, 1.0169313354492187, 1.0168473510742186, 1.016975341796875, 1.0182573852539063, 1.0172119140625, 1.017554931640625, 1.017101318359375, 1.0170040283203126, 1.0173255615234376, 2.110369873046875, 1.0170951538085937, 1.0169763793945312, 1.0166558837890625, 1.017407470703125, 1.0166405029296874, 1.0165350341796875, 1.0173060913085938, 1.0170572509765625, 1.0168780517578124, 1.0168340454101563, 1.0168545532226563, 1.0169609985351562, 1.0170890502929688, 1.0174730224609374, 1.0169528198242188, 1.0169354248046876, 1.0171760864257813, 1.0170286254882812, 1.0169978637695312, 1.0167285766601561, 1.016795166015625, 1.0171883544921876, 1.0171248779296875, 1.0169425659179687, 1.0167398681640625, 1.016647705078125, 1.017091064453125, 1.0167838745117188, 1.0169794311523437, 1.0168053588867187, 1.0165780639648438, 1.0166886596679687, 1.0169876708984376, 1.016974365234375, 1.017037841796875, 1.0167971801757814, 1.0169210815429688, 1.0174884033203124, 1.0167941284179687, 1.0167725830078125, 1.0167675170898438, 1.0176215209960937, 1.0169835815429686, 1.017260009765625, 1.0171054077148438, 1.017228271484375, 1.01694873046875, 1.0170050659179688, 1.017069580078125, 1.017248779296875, 1.01722216796875, 1.0173972778320313, 1.017143310546875, 1.0172692260742187, 1.0171156616210937, 1.0175375366210937, 1.0173552856445311, 1.0170654907226562, 1.0171207885742188, 1.017069580078125, 1.0168463134765624, 1.0169405517578125, 2.110486572265625, 1.0164469604492188, 1.0168002319335938, 1.016369140625, 1.0169415893554687, 1.0168094482421874, 1.016580078125, 1.0167101440429687, 1.0166886596679687, 1.0167756958007812, 1.0168053588867187, 1.0167296142578126, 1.0168402099609375, 1.01680126953125, 1.0167633666992189, 1.0166968383789063, 1.01671630859375, 1.0167347412109375, 1.0167684936523438, 1.01724365234375, 1.016858642578125, 1.01710546875, 1.0170787353515625, 1.0171729736328126, 1.0169989013671874, 1.0165247802734374, 1.0167285766601561, 1.0167684936523438, 1.0166016235351563, 1.0166517944335938, 1.0164653930664063, 1.0165411987304687, 1.0165831909179688, 1.01671630859375, 1.0165924072265624, 1.0165606689453126, 1.016543212890625, 1.0166599731445312, 1.0167716064453125, 1.0168186645507813, 1.01701123046875, 1.0169200439453125, 1.0169108276367187, 1.0166343383789063, 1.016553466796875, 1.0164080810546876, 1.0169200439453125, 1.016774658203125, 1.01694873046875, 1.0167030029296875, 1.016711181640625, 1.017343994140625, 1.0178682861328125, 1.017290771484375, 1.0172057495117188, 1.0169927978515625, 1.016964111328125, 1.0171351318359374, 1.0170265502929687, 1.0169200439453125, 1.0168862915039063, 1.0171627807617187, 1.0168002319335938, 2.112787353515625, 1.0166026000976562, 1.0169682006835938, 1.0167654418945313, 1.0172047119140626, 1.0169948120117187, 1.0164418334960938, 1.0169876708984376, 1.0169866333007813, 1.0173931274414063, 1.0172119140625, 1.017186279296875, 1.0169815063476562, 1.0177986450195313, 1.0174259033203126, 1.017359375, 1.0174873657226562, 1.0177362060546875, 1.01767578125, 1.017439208984375, 1.0174658813476563, 1.01768701171875, 1.0180730590820313, 1.0177741088867187, 1.0177136840820313, 1.0177843017578125, 1.0180269775390625, 1.0175682373046875, 1.0174586791992188, 1.0174105834960938, 1.01734912109375, 1.0172139282226562, 1.0173184204101562, 1.0173480834960937, 1.0167736206054687, 1.0164807739257813, 1.0166026000976562, 1.0172415771484375, 1.01684326171875, 1.0170951538085937, 1.0171576538085938, 1.0169251708984375, 1.0167306518554688, 1.0167562255859375, 1.0166569213867187, 1.0165821533203125, 1.0164367065429687, 1.0164756469726564, 1.016543212890625, 1.0165913696289062, 1.0170572509765625, 1.0170706176757813, 1.0169989013671874, 1.0169262084960937, 1.0167183227539063, 1.01669580078125, 1.0168842163085938, 1.0169262084960937, 1.016958984375, 1.0170848999023439, 1.0168914184570312, 1.0169169921875, 1.017260009765625, 2.113946533203125, 1.0165718994140625, 1.0166046752929687, 1.016953857421875, 1.0168678588867188, 1.0169241333007812, 1.0169292602539062, 1.0173470458984375, 1.0169763793945312, 1.0174136352539063, 1.0167705688476563, 1.017006103515625, 1.0173532104492187, 1.0174310302734375, 1.0171514892578124, 1.017064453125, 1.0168955078125, 1.0172467041015625, 1.016848388671875, 1.016911865234375, 1.016647705078125, 1.0169364624023438, 1.0165985107421875, 1.0165892944335937, 1.0166067504882812, 1.0164940795898438, 1.0166220703125, 1.0168770751953125, 1.0167285766601561, 1.0169609985351562, 1.0163701782226562, 1.0168135375976564, 1.01677978515625, 1.01676953125, 1.0166210327148437, 1.016521728515625, 1.0165770263671876, 1.0167521362304688, 1.0170449829101562, 1.0166937866210937, 1.0167091064453124, 1.01682177734375, 1.0167613525390624, 1.0167510986328125, 1.0168627319335937, 1.016816650390625, 1.0168186645507813, 1.0168770751953125, 1.0175191040039062, 1.0170839233398437, 1.0171156616210937, 1.0169978637695312, 1.0167551879882812, 1.0168893432617188, 1.0166149291992188, 1.0167460327148437, 1.0174617309570313, 1.0178723754882812, 1.0175508422851562, 1.0171740112304688, 1.0164818115234375, 1.016890380859375, 1.0167900390625, 2.115039306640625, 1.0166619873046876, 1.0170449829101562, 1.0170029907226563, 1.0168207397460938, 1.0171340942382812, 1.0175303955078125, 1.0170664672851562, 1.0168944702148437, 1.0170839233398437, 1.0168811645507811, 1.0166190185546875, 1.0173521728515624, 1.0172764282226563, 1.0172467041015625, 1.0180219116210938, 1.0176358642578125, 1.0167941284179687, 1.0168053588867187, 1.016974365234375, 1.0168657836914063, 1.0167101440429687, 1.0172078247070313, 1.017523193359375, 1.0172088623046875, 1.0169343872070313, 1.0170183715820313, 1.0173358154296874, 1.0169886474609375, 1.0170839233398437, 1.0169886474609375, 1.0171361083984376, 1.0170203857421876, 1.0177321166992188, 1.01720166015625, 1.0167777099609374, 1.0169886474609375, 1.0173583374023438, 1.0168914184570312, 1.0169722900390625, 1.0168985595703126, 1.0167562255859375, 1.016875, 1.0164859008789062, 1.0166527709960937, 1.01667431640625, 1.0164827880859375, 1.0166220703125, 1.0165606689453126, 1.0166558837890625, 1.016774658203125, 1.0169169921875, 1.0172507934570312, 1.0167654418945313, 1.0169661254882814, 1.0170787963867187, 1.0171719970703126, 1.0167449340820311, 1.0168955078125, 1.016932373046875, 1.0169548950195313, 1.0173470458984375, 1.0174095458984376]",tokens/s,0.968194209602791,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mistral-7B-v0.1,mistralai/Mistral-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1859.03104,6201.802752,0.0,5555.355648,5273.986048,s,10,6.183414916992188,0.6183414916992188,0.0011184543236210387,0.618503173828125,0.6196270629882813,0.6198319030761719,0.6199957751464844,"[0.6192075805664062, 0.6172159423828125, 0.6163760986328125, 0.6177174072265625, 0.6180655517578125, 0.6173275146484375, 0.6189407958984375, 0.6189457397460938, 0.61958154296875, 0.6200367431640625]",tokens/s,414.010709998621,kWh,7.2943227158652426e-06,3.997002324692457e-06,3.5828705133529186e-05,4.7120030174086885e-05,tokens/kWh,5432933.70259309,MB,1859.03104,6201.802752,0.0,5555.355648,5324.908032,s,10,366.93543359375,36.693543359375,0.025425135768351863,36.68483984375,36.71502578125,36.739856640625,36.759721328125,"[36.6825078125, 36.6820625, 36.67597265625, 36.67723828125, 36.69059375, 36.7646875, 36.68741015625, 36.687171875, 36.7095078125, 36.67828125]",tokens/s,1.7169233121745884,kWh,0.0004334749158389039,0.00023758188798711938,0.002030957448294073,0.002702014252120096,tokens/kWh,23315.939192610833,,s,629,371.9142907714842,0.5912786816716763,0.07347096675901024,0.5822586669921875,0.5836932861328125,0.5840418579101562,1.2002971240234375,"[0.5831044921875, 0.5822699584960938, 0.5834168090820312, 0.58437939453125, 0.5840988159179688, 0.583689208984375, 0.5825567016601563, 0.5822218017578125, 0.5818173217773438, 0.5815992431640625, 0.5817159423828125, 0.5822648315429687, 0.5821982421875, 0.5821337890625, 0.5815695190429687, 0.5815643920898438, 0.582739990234375, 0.5819013061523437, 0.5815090942382812, 0.5818992919921875, 0.5820938110351562, 0.5823037719726563, 0.5815859375, 0.5816412353515625, 0.5814845581054687, 0.5814404907226562, 0.5816504516601563, 0.5815562133789063, 0.5829365844726563, 0.5825740966796875, 0.5817200927734375, 0.5818470458984375, 0.5818685302734375, 0.5846865844726562, 0.581960693359375, 0.5823938598632813, 0.582456298828125, 0.5820784912109375, 0.581928955078125, 0.5816002807617188, 0.5820436401367187, 0.5819269409179687, 0.581781494140625, 0.5828024291992188, 0.582518798828125, 0.583046142578125, 0.58231396484375, 0.58227197265625, 0.5819197387695313, 0.58180712890625, 0.5825986328125, 0.5820835571289062, 0.5818644409179687, 0.5822269287109375, 0.582245361328125, 0.5821522216796875, 0.5817988891601562, 0.5820927734375, 0.5820047607421875, 0.5820805053710938, 0.582076416015625, 0.5821747436523438, 1.2006451416015624, 0.5828607788085938, 0.5824737548828125, 0.5826815795898438, 0.5828382568359375, 0.582724609375, 0.5826375732421875, 0.5826047973632813, 0.5828505859375, 0.5823723754882812, 0.582371337890625, 0.5822054443359375, 0.5829539794921875, 0.5826570434570313, 0.5828075561523437, 0.582297607421875, 0.5822361450195312, 0.5817088012695313, 0.5831546630859376, 0.5821470947265625, 0.58178564453125, 0.5819739990234375, 0.5819053955078125, 0.581644287109375, 0.5816033325195312, 0.58183984375, 0.5819576416015625, 0.5817825317382812, 0.5819330444335937, 0.5823958740234375, 0.5825853271484375, 0.5823047485351562, 0.5824429931640625, 0.5819678955078125, 0.5820170288085937, 0.58241845703125, 0.5822371826171875, 0.5820948486328125, 0.581960693359375, 0.5820579833984375, 0.5817855834960938, 0.5820006103515625, 0.5823180541992188, 0.5817886962890625, 0.5818910522460937, 0.5815715942382812, 0.5831065673828125, 0.5818674926757812, 0.5818327026367187, 0.5820958862304687, 0.5820795288085937, 0.5822504272460938, 0.5827584228515625, 0.58241845703125, 0.5819842529296875, 0.5818224487304687, 0.5830155029296875, 0.5818920288085937, 0.58241943359375, 0.5820692749023437, 0.5821624145507812, 0.58189208984375, 0.582134765625, 1.199605712890625, 0.5822044067382812, 0.58277685546875, 0.5820149536132813, 0.5822853393554688, 0.5823651733398437, 0.5825372314453126, 0.5818859252929688, 0.58189111328125, 0.5824112548828125, 0.5814589233398437, 0.5815828247070313, 0.5821522216796875, 0.5817999267578124, 0.5821306762695313, 0.5816801147460937, 0.5815941162109375, 0.5823600463867188, 0.5821112060546875, 0.5825054931640625, 0.5818009643554688, 0.5820743408203125, 0.5816873168945312, 0.58237646484375, 0.5829601440429687, 0.5822699584960938, 0.5826181030273437, 0.582033447265625, 0.5821142578125, 0.5820088500976562, 0.581875732421875, 0.5822617797851563, 0.581992431640625, 0.5820211181640625, 0.5821327514648438, 0.5825167236328125, 0.583541748046875, 0.5822965698242187, 0.5826570434570313, 0.5821788330078125, 0.5822116088867187, 0.5822228393554687, 0.582134765625, 0.5822730102539062, 0.5822904052734375, 0.5818532104492188, 0.581939208984375, 0.58212353515625, 0.5819115600585938, 0.581917724609375, 0.581796875, 0.5814108276367187, 0.5820999755859375, 0.581823486328125, 0.5824778442382812, 0.5824727172851563, 0.58199658203125, 0.5818797607421875, 0.582181884765625, 0.5825372314453126, 0.5822669067382813, 0.582498291015625, 0.582295654296875, 1.1999998779296874, 0.5822935180664063, 0.5821593627929688, 0.5819166870117187, 0.58216552734375, 0.5825269775390625, 0.5819852905273437, 0.5826549682617187, 0.58295703125, 0.5822156982421876, 0.5825126342773438, 0.5818338012695312, 0.5822903442382813, 0.5818214111328125, 0.5828648681640625, 0.5822689208984375, 0.5817630615234375, 0.5818245239257812, 0.5817979736328125, 0.582257568359375, 0.5819883422851563, 0.5817487182617187, 0.5817006225585938, 0.5819115600585938, 0.5828761596679688, 0.5822597045898438, 0.5822843017578125, 0.5820897216796875, 0.5826027221679687, 0.581818359375, 0.5817947998046875, 0.5823662109375, 0.5819771118164062, 0.5821470947265625, 0.581907470703125, 0.5817671508789063, 0.5819443359375, 0.5819330444335937, 0.5819166870117187, 0.5820835571289062, 0.5821214599609374, 0.5826129760742188, 0.5820989379882813, 0.5827706909179687, 0.5828003540039063, 0.5829396362304687, 0.5819617309570313, 0.5818541870117188, 0.5825341186523437, 0.5824102172851563, 0.582561767578125, 0.582096923828125, 0.58191259765625, 0.581517333984375, 0.5817364501953125, 0.5814691772460937, 0.5818265380859375, 0.5818490600585937, 0.5822433471679688, 0.5819934692382812, 0.5829918823242187, 0.5824635009765625, 0.5829898071289062, 1.201005615234375, 0.5828812866210937, 0.5822740478515624, 0.58203955078125, 0.58253515625, 0.58185009765625, 0.58208154296875, 0.5819259033203125, 0.58195458984375, 0.5821777954101562, 0.5819033813476563, 0.5821747436523438, 0.5821358032226562, 0.5823917846679687, 0.58222900390625, 0.5823723754882812, 0.5822586669921875, 0.5819432983398437, 0.5823989868164062, 0.582287353515625, 0.5819432983398437, 0.5823098754882813, 0.5821470947265625, 0.58201904296875, 0.5821522216796875, 0.5817927856445313, 0.58224951171875, 0.5818756713867187, 0.5823150024414062, 0.5823600463867188, 0.5821900634765625, 0.5823775024414063, 0.5833564453125, 0.5822730102539062, 0.583024658203125, 0.5828505859375, 0.5830850830078125, 0.5825567016601563, 0.5824440307617188, 0.58309326171875, 0.5827573852539063, 0.58252392578125, 0.5825177612304687, 0.5825382690429688, 0.5826395874023438, 0.582086669921875, 0.5830287475585938, 0.5831290893554687, 0.5821757202148438, 0.5823723754882812, 0.5831546630859376, 0.5824204711914063, 0.5822750854492188, 0.5826437377929687, 0.582055908203125, 0.5820119018554688, 0.5823989868164062, 0.5829959716796875, 0.5821931762695313, 0.5819218139648438, 0.5824594116210937, 0.5828392944335937, 0.5823467407226562, 1.2004127197265626, 0.5823897705078125, 0.5821522216796875, 0.5828423461914063, 0.58172314453125, 0.5815429077148437, 0.5822146606445312, 0.5822965698242187, 0.5824727172851563, 0.5832130737304687, 0.5837701416015625, 0.5834608764648438, 0.58389404296875, 0.583257080078125, 0.5831526489257812, 0.5838325805664063, 0.5842800903320312, 0.5840598754882812, 0.5840148315429687, 0.5834495849609375, 0.5838704833984375, 0.5837393798828125, 0.58374658203125, 0.5832683715820313, 0.5839451904296875, 0.5835653076171875, 0.583952392578125, 0.5841285400390624, 0.5839216918945312, 0.584069091796875, 0.5833717651367187, 0.584079345703125, 0.5822791748046875, 0.58410595703125, 0.5837250366210938, 0.5839124755859375, 0.5839564819335937, 0.583910400390625, 0.5855027465820313, 0.5835325317382812, 0.5842186279296875, 0.5839196166992188, 0.5835909423828125, 0.5837138061523437, 0.5835827026367187, 0.5830758666992187, 0.5837998046875, 0.5836973876953125, 0.5838069458007813, 0.5841008911132812, 0.5842042846679687, 0.5843200073242187, 0.584690673828125, 0.5837639770507812, 0.5840875244140625, 0.58410595703125, 0.5839616088867188, 0.5835899047851563, 0.5849579467773437, 0.5842135009765625, 0.5833236694335937, 0.5823897705078125, 0.581928955078125, 1.2009288330078125, 0.582350830078125, 0.58395751953125, 0.5835161743164062, 0.5829293823242188, 0.5832315063476563, 0.5834116821289063, 0.5836349487304687, 0.5841828002929688, 0.5820057373046875, 0.5825576782226562, 0.5837035522460937, 0.5828607788085938, 0.5823723754882812, 0.5838561401367187, 0.58364111328125, 0.5828628540039062, 0.5813483276367187, 0.581317626953125, 0.5815889892578125, 0.58169140625, 0.5815162963867188, 0.58185009765625, 0.582002685546875, 0.5819638061523438, 0.5832847290039063, 0.5816729736328125, 0.5818470458984375, 0.5819771118164062, 0.5817507934570313, 0.5814476928710938, 0.5819402465820313, 0.5820078125, 0.581517333984375, 0.581465087890625, 0.5822945556640625, 0.5821337890625, 0.5815838623046875, 0.5820989990234375, 0.5824296875, 0.5820457153320312, 0.5824461059570313, 0.5824737548828125, 0.5818050537109375, 0.582128662109375, 0.5824798583984375, 0.5821214599609374, 0.5822095336914063, 0.5823784790039063, 0.582134765625, 0.5822146606445312, 0.5818245239257812, 0.5819381713867188, 0.5824696044921875, 0.5824706420898438, 0.5826283569335937, 0.58235595703125, 0.5820753784179687, 0.5823877563476563, 0.582424560546875, 0.58216552734375, 0.5818204345703125, 0.5826416625976563, 1.201427490234375, 0.5822935180664063, 0.582170654296875, 0.5820518188476562, 0.5819218139648438, 0.5819739990234375, 0.5826621704101562, 0.5824409790039062, 0.5830502319335937, 0.582667236328125, 0.5825014038085937, 0.5823467407226562, 0.5828045043945312, 0.5823252563476562, 0.5821880493164062, 0.5829171142578125, 0.582118408203125, 0.5825382690429688, 0.5823733520507812, 0.5822125854492187, 0.5824266357421874, 0.5821091918945313, 0.5821173706054688, 0.5825208129882813, 0.5826007080078125, 0.5825556640625, 0.5820579833984375, 0.5825986328125, 0.582476806640625, 0.5827225341796874, 0.5821777954101562, 0.5822300415039062, 0.58294580078125, 0.5820938720703125, 0.5819207153320313, 0.5821747436523438, 0.582129638671875, 0.5825044555664063, 0.5818736572265625, 0.5816575927734375, 0.5821951904296875, 0.5822125854492187, 0.5821552734375, 0.5820139770507813, 0.5825054931640625, 0.5818880004882813, 0.5819913940429687, 0.5824952392578125, 0.5821358032226562, 0.5826898193359376, 0.582197265625, 0.5821798095703125, 0.582339599609375, 0.5823529052734375, 0.5823723754882812, 0.5820682373046875, 0.582150146484375, 0.5822054443359375, 0.5825587158203125, 0.5829376220703125, 0.5822269287109375, 0.5832161254882813, 0.5821911010742188, 1.2029603271484375, 0.5822730102539062, 0.5827010498046875, 0.5821941528320312, 0.5827747802734375, 0.5820374755859375, 0.582319091796875, 0.5819852905273437, 0.5823017578125, 0.5824746704101562, 0.5826314086914063, 0.582255615234375, 0.5823743896484375, 0.5821563110351563, 0.5829775390625, 0.5822258911132813, 0.5821051025390624, 0.582297607421875, 0.5837189331054687, 0.5839871826171875, 0.5838991088867187, 0.5836922607421875, 0.584005615234375, 0.5837537231445312, 0.583568359375, 0.5831055297851563, 0.5834229736328125, 0.5836431274414062, 0.5840794067382813, 0.5837383422851562, 0.58393701171875, 0.5841243896484375, 0.5823876953125, 0.5833635864257812, 0.58427392578125, 0.5820712890625, 0.5819453735351563, 0.5823057861328125, 0.582002685546875, 0.5819166870117187, 0.5829539794921875, 0.5820671997070312, 0.5822361450195312, 0.5820221557617188, 0.5820999755859375, 0.58199755859375, 0.5821737060546875, 0.583208984375, 0.5831434326171875, 0.5823364868164063, 0.5827174682617188, 0.5824962768554688, 0.5822781372070313, 0.5826682739257812, 0.5827501831054688, 0.5818245239257812, 0.5817589721679688, 0.5818521728515625, 0.58195556640625, 0.58195458984375, 0.582002685546875, 0.5821552734375, 0.5824307250976563, 1.2025272216796874, 0.5821696166992187, 0.5821286010742187, 0.582107177734375, 0.5820220947265625, 0.5823426513671875, 0.5817620239257812, 0.5823989868164062, 0.5820825805664063, 0.581781494140625, 0.5816698608398437, 0.581696533203125, 0.5820774536132812, 0.5819094848632812, 0.581712890625, 0.5817139282226562, 0.5817886962890625, 0.581992431640625, 0.5820774536132812, 0.5824501953125, 0.5818746948242187, 0.5817753295898438, 0.5824921875, 0.5816432495117188, 0.582413330078125, 0.58231396484375, 0.5824603881835938, 0.5824594116210937, 0.5828782348632813, 0.5824542846679688, 0.582302734375, 0.5820313720703125, 0.58241943359375, 0.5823294067382813, 0.5827665405273438, 0.5818951416015625, 0.5827501831054688, 0.5819842529296875, 0.5818511352539063, 0.5822074584960938, 0.5821696166992187, 0.5824000244140625, 0.582150146484375, 0.582055908203125, 0.5819166870117187, 0.5821051025390624, 0.58183984375, 0.581707763671875, 0.5821583251953125, 0.5820416259765625, 0.581970947265625, 0.5821788330078125, 0.582245361328125, 0.58267138671875, 0.5819248657226562, 0.58211328125, 0.5825842895507812, 0.5821829223632813, 0.5829417114257812, 0.582345703125, 0.5822811889648437, 0.5821439819335937, 0.5820999755859375]",tokens/s,1.6912498809745307,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-32B,Qwen/Qwen1.5-32B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,4397.162496,24111.480832,0.0,23465.033728,21690.932224,s,10,26.23831787109375,2.623831787109375,0.003031033246657479,2.6228023681640624,2.627721069335937,2.628540100097656,2.629195324707031,"[2.629359130859375, 2.621765380859375, 2.6223037109375, 2.621092041015625, 2.623301025390625, 2.620621826171875, 2.62457861328125, 2.6205380859375, 2.627218994140625, 2.6275390625]",tokens/s,97.56723020801203,kWh,3.09448529779911e-05,1.6958929474258183e-05,0.00014797261837800056,0.00019587640083024984,tokens/kWh,1306946.619985398,MB,4397.162496,24111.480832,0.0,23465.033728,21890.217984,s,10,1555.758796875,155.5758796875,0.01362531366110068,155.577890625,155.5897375,155.594603125,155.598495625,"[155.55940625, 155.57425, 155.583734375, 155.59946875, 155.58153125, 155.58503125, 155.568875, 155.58865625, 155.564453125, 155.553390625]",tokens/s,0.4049470915835152,kWh,0.0018369476799004608,0.0010068097738273171,0.008895798588855384,0.011739556042583163,tokens/kWh,5366.4721026484,,s,629,1576.8986267089822,2.50699304723209,0.31148250553470674,2.46929931640625,2.47089541015625,2.471475439453125,5.08945892578125,"[2.468798583984375, 2.46915185546875, 2.46936669921875, 2.469295166015625, 2.469130126953125, 2.468601806640625, 2.46879638671875, 2.46974560546875, 2.468950927734375, 2.468516845703125, 2.468890625, 2.469065673828125, 2.468599853515625, 2.46870947265625, 2.468912109375, 2.469274658203125, 2.468938720703125, 2.46896337890625, 2.4693310546875, 2.46970068359375, 2.469392333984375, 2.46949072265625, 2.47088330078125, 2.4697119140625, 2.469168212890625, 2.468552734375, 2.4692490234375, 2.4690791015625, 2.47006005859375, 2.46929931640625, 2.46951123046875, 2.46925, 2.469129150390625, 2.468915283203125, 2.46999560546875, 2.4695, 2.46917724609375, 2.4696279296875, 2.469708740234375, 2.469084228515625, 2.46938427734375, 2.468663330078125, 2.46932275390625, 2.468631591796875, 2.468556884765625, 2.46858447265625, 2.46909326171875, 2.46888232421875, 2.46854248046875, 2.469202880859375, 2.469517333984375, 2.468483154296875, 2.468864013671875, 2.46881494140625, 2.468998046875, 2.469455810546875, 2.469496826171875, 2.469419921875, 2.4694599609375, 2.469094482421875, 2.47101025390625, 2.468877197265625, 5.09138330078125, 2.468682861328125, 2.468284423828125, 2.471290771484375, 2.471075927734375, 2.47086279296875, 2.470519775390625, 2.471779296875, 2.4712724609375, 2.470220703125, 2.469166015625, 2.47142919921875, 2.469087158203125, 2.470717529296875, 2.469718994140625, 2.4686796875, 2.468135986328125, 2.469396484375, 2.47069482421875, 2.469185546875, 2.46943359375, 2.4694208984375, 2.469435302734375, 2.472340576171875, 2.46964404296875, 2.4692294921875, 2.4692080078125, 2.4687861328125, 2.4688701171875, 2.468831298828125, 2.468864013671875, 2.468359130859375, 2.468737060546875, 2.4681728515625, 2.46879345703125, 2.47047265625, 2.471103515625, 2.4709150390625, 2.469086181640625, 2.467948486328125, 2.46850244140625, 2.46847998046875, 2.468877197265625, 2.47016845703125, 2.472048583984375, 2.471004150390625, 2.46881689453125, 2.46902783203125, 2.469129150390625, 2.468443115234375, 2.468276123046875, 2.46843603515625, 2.468770751953125, 2.46885888671875, 2.468476806640625, 2.46837255859375, 2.46976318359375, 2.4682578125, 2.468187255859375, 2.467946533203125, 2.4700517578125, 2.468588623046875, 2.468370361328125, 5.09084375, 2.46865625, 2.4686162109375, 2.471500732421875, 2.47128173828125, 2.47047265625, 2.470948974609375, 2.46904638671875, 2.46915283203125, 2.468949951171875, 2.469103515625, 2.469283935546875, 2.46955615234375, 2.46936669921875, 2.46929931640625, 2.469792724609375, 2.46934521484375, 2.468339599609375, 2.469074951171875, 2.46917724609375, 2.46955322265625, 2.469060546875, 2.471446533203125, 2.471505859375, 2.471520263671875, 2.46911376953125, 2.470220703125, 2.46964111328125, 2.46999658203125, 2.469699462890625, 2.469473388671875, 2.4692724609375, 2.469899169921875, 2.469782470703125, 2.47012158203125, 2.469866455078125, 2.4691630859375, 2.46879345703125, 2.469590087890625, 2.47096533203125, 2.471996337890625, 2.46934326171875, 2.468957275390625, 2.468894775390625, 2.468242431640625, 2.470201416015625, 2.46946923828125, 2.469783447265625, 2.469652587890625, 2.469385009765625, 2.4691455078125, 2.469442626953125, 2.46881494140625, 2.470005859375, 2.469909423828125, 2.46930224609375, 2.469780517578125, 2.46929296875, 2.468728759765625, 2.46875146484375, 2.468708251953125, 2.469340087890625, 2.468431884765625, 5.08925537109375, 2.469267333984375, 2.4689326171875, 2.468461669921875, 2.470912841796875, 2.47052294921875, 2.47040625, 2.4696259765625, 2.470639404296875, 2.470507568359375, 2.469961669921875, 2.4698583984375, 2.470289306640625, 2.470327392578125, 2.470380615234375, 2.470289306640625, 2.47063037109375, 2.4716962890625, 2.4711904296875, 2.469096435546875, 2.46898583984375, 2.469234619140625, 2.46925927734375, 2.469075927734375, 2.468787109375, 2.470892578125, 2.468845458984375, 2.470190185546875, 2.470021240234375, 2.46980908203125, 2.469390380859375, 2.469427001953125, 2.469474365234375, 2.46984912109375, 2.468821044921875, 2.46932470703125, 2.46972412109375, 2.470828125, 2.470804443359375, 2.47084228515625, 2.471381103515625, 2.471739501953125, 2.4696513671875, 2.469551025390625, 2.46862744140625, 2.468588623046875, 2.468927490234375, 2.469970947265625, 2.469509033203125, 2.468726806640625, 2.470922119140625, 2.47033642578125, 2.470152099609375, 2.47086181640625, 2.469655517578125, 2.469350341796875, 2.469897216796875, 2.4691435546875, 2.468494384765625, 2.469423095703125, 2.470116455078125, 2.470024169921875, 2.4697353515625, 5.09418994140625, 2.47079833984375, 2.471482421875, 2.470703125, 2.4698798828125, 2.469234619140625, 2.469583984375, 2.469041259765625, 2.469078125, 2.468781982421875, 2.469856201171875, 2.470139892578125, 2.4699013671875, 2.46999853515625, 2.469337158203125, 2.4686396484375, 2.46900732421875, 2.46865625, 2.4688505859375, 2.46949365234375, 2.468842529296875, 2.469308349609375, 2.469699462890625, 2.469474365234375, 2.46980810546875, 2.470485107421875, 2.470642578125, 2.470287353515625, 2.46951220703125, 2.46904931640625, 2.47022900390625, 2.470436767578125, 2.46926025390625, 2.469675048828125, 2.47014306640625, 2.46932275390625, 2.468830322265625, 2.469003173828125, 2.469866455078125, 2.46951123046875, 2.468826171875, 2.469062744140625, 2.469338134765625, 2.469421142578125, 2.468864013671875, 2.4689970703125, 2.469686279296875, 2.468821044921875, 2.468958251953125, 2.46921533203125, 2.4694580078125, 2.468634521484375, 2.46913232421875, 2.4693955078125, 2.469814208984375, 2.468588623046875, 2.469433349609375, 2.470032470703125, 2.470792236328125, 2.469285888671875, 2.469370849609375, 2.469603271484375, 2.46991357421875, 5.0895380859375, 2.472522705078125, 2.472004638671875, 2.469856201171875, 2.468981689453125, 2.469172119140625, 2.46925, 2.4692265625, 2.469295166015625, 2.46936376953125, 2.47034765625, 2.468842529296875, 2.470485107421875, 2.471478271484375, 2.469750732421875, 2.468664306640625, 2.471371826171875, 2.468883544921875, 2.471439453125, 2.469444580078125, 2.46917626953125, 2.469329833984375, 2.469687255859375, 2.46869091796875, 2.469650390625, 2.468767822265625, 2.46934619140625, 2.46850048828125, 2.46826806640625, 2.46904443359375, 2.4693974609375, 2.469318603515625, 2.47453076171875, 2.469267333984375, 2.470331298828125, 2.4707685546875, 2.469550048828125, 2.46943017578125, 2.469969970703125, 2.469962646484375, 2.46923486328125, 2.468137939453125, 2.468229248046875, 2.46898779296875, 2.468890625, 2.468874267578125, 2.469168212890625, 2.470299560546875, 2.47147119140625, 2.469370849609375, 2.469350341796875, 2.470095947265625, 2.469555419921875, 2.46888232421875, 2.4688681640625, 2.469992431640625, 2.468869140625, 2.469044189453125, 2.469062744140625, 2.469525390625, 2.468809814453125, 2.46928076171875, 2.468957275390625, 5.09382470703125, 2.469845947265625, 2.4695244140625, 2.469098388671875, 2.46944677734375, 2.469396484375, 2.470770751953125, 2.469032958984375, 2.469140380859375, 2.468855712890625, 2.469170166015625, 2.469623779296875, 2.469095458984375, 2.4704697265625, 2.47050244140625, 2.4702392578125, 2.469874755859375, 2.4695224609375, 2.469214111328125, 2.469747802734375, 2.46868896484375, 2.469425048828125, 2.468915283203125, 2.4693955078125, 2.468820068359375, 2.46910986328125, 2.468548583984375, 2.4704716796875, 2.469411865234375, 2.4691220703125, 2.468193359375, 2.468788330078125, 2.4683017578125, 2.46884033203125, 2.470220703125, 2.4702197265625, 2.468990966796875, 2.468908935546875, 2.4688486328125, 2.4704501953125, 2.470517822265625, 2.470140869140625, 2.469308349609375, 2.470096923828125, 2.469972900390625, 2.4689111328125, 2.468103271484375, 2.468663330078125, 2.468252685546875, 2.468338623046875, 2.467991455078125, 2.468906982421875, 2.46822802734375, 2.468630615234375, 2.469042236328125, 2.469347412109375, 2.47062939453125, 2.471343017578125, 2.467967041015625, 2.468644775390625, 2.46843701171875, 2.4686162109375, 2.473323486328125, 5.0889111328125, 2.468672607421875, 2.4683642578125, 2.468341796875, 2.468705322265625, 2.468413330078125, 2.46852197265625, 2.468662353515625, 2.468912109375, 2.46987158203125, 2.470073486328125, 2.46920068359375, 2.469920654296875, 2.46879638671875, 2.4687412109375, 2.4697333984375, 2.4695244140625, 2.4696298828125, 2.4695244140625, 2.470005859375, 2.468862060546875, 2.47003125, 2.4691630859375, 2.468483154296875, 2.4710625, 2.469022705078125, 2.46885888671875, 2.4692705078125, 2.469971923828125, 2.47102783203125, 2.47071435546875, 2.4704482421875, 2.471227294921875, 2.470994873046875, 2.469182373046875, 2.46873095703125, 2.47003125, 2.468622314453125, 2.4721171875, 2.468535400390625, 2.47090673828125, 2.470928466796875, 2.470781982421875, 2.470194091796875, 2.470340576171875, 2.468509765625, 2.468907958984375, 2.469888916015625, 2.469969970703125, 2.47013671875, 2.472005859375, 2.47183740234375, 2.47176708984375, 2.471166015625, 2.471228515625, 2.4702783203125, 2.47012451171875, 2.468314208984375, 2.46890087890625, 2.46814208984375, 2.46915283203125, 2.467857421875, 2.46899609375, 5.0967275390625, 2.468865966796875, 2.47231494140625, 2.4689765625, 2.469561279296875, 2.469706787109375, 2.468801513671875, 2.468005859375, 2.46970068359375, 2.469357666015625, 2.470153076171875, 2.47166455078125, 2.4716962890625, 2.47134716796875, 2.4716728515625, 2.469540771484375, 2.46961865234375, 2.46875439453125, 2.468744140625, 2.469203857421875, 2.46841748046875, 2.469667724609375, 2.4690810546875, 2.46848828125, 2.468600830078125, 2.469570556640625, 2.46897265625, 2.468644775390625, 2.46887109375, 2.46993310546875, 2.469518310546875, 2.468893798828125, 2.469458740234375, 2.4689755859375, 2.469214111328125, 2.468822998046875, 2.468765625, 2.469544921875, 2.46893359375, 2.46794140625, 2.46793115234375, 2.468474853515625, 2.468509765625, 2.469032958984375, 2.468798583984375, 2.46907177734375, 2.469205078125, 2.46849853515625, 2.468729736328125, 2.469506103515625, 2.4690390625, 2.4686376953125, 2.4710419921875, 2.469719970703125, 2.4685322265625, 2.468116455078125, 2.468727783203125, 2.4698369140625, 2.46875244140625, 2.46940869140625, 2.469123046875, 2.47010205078125, 2.468192138671875, 5.09570947265625, 2.469843994140625, 2.469245849609375, 2.46862939453125, 2.469123046875, 2.470595703125, 2.46889990234375, 2.468484130859375, 2.468884521484375, 2.469498779296875, 2.46938720703125, 2.468440185546875, 2.4687841796875, 2.46934326171875, 2.468601806640625, 2.469178466796875, 2.46820654296875, 2.469718017578125, 2.469128173828125, 2.468865966796875, 2.468513671875, 2.46963525390625, 2.468724609375, 2.4697353515625, 2.468211669921875, 2.468957275390625, 2.4694794921875, 2.46911083984375, 2.4683447265625, 2.4698837890625, 2.468577392578125, 2.468810791015625, 2.468404296875, 2.46858251953125, 2.469440673828125, 2.469866455078125, 2.468959228515625, 2.4695625, 2.46875732421875, 2.46845849609375, 2.469051513671875, 2.46925830078125, 2.470119384765625, 2.468737060546875, 2.468697998046875, 2.469822509765625, 2.469697509765625, 2.4686376953125, 2.4682802734375, 2.468843505859375, 2.471318603515625, 2.4700693359375, 2.469341064453125, 2.469017578125, 2.469211181640625, 2.469179443359375, 2.468263916015625, 2.46847998046875, 2.4693955078125, 2.468968505859375, 2.469316650390625, 2.46883740234375, 2.46984814453125]",tokens/s,0.39888423348603846,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,r,r,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-32B,Qwen/Qwen1.5-32B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -14935,69 +15165,168 @@ If this is a private repository, make sure to pass a token having permission to File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/r/resolve/main/config.json - -The above exception was the direct cause of the following exception: + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694912c-60e453442697ac4940744e43;3a3af6a6-109c-419c-b4f2-14f3bfc8c669) +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-40b,tiiuae/falcon-40b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation + cls._check_and_enable_flash_attn_2( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 + raise ValueError( +ValueError: FalconForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmp76n4ebgl/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new -Repository Not Found for url: https://huggingface.co/r/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-160m,EleutherAI/pythia-160m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -The above exception was the direct cause of the following exception: +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.3b,EleutherAI/pythia-1.3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-1.8B,Qwen/Qwen1.5-1.8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file - raise EnvironmentError( -OSError: r is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-564M,facebook/xglm-564M,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-6B-nl,Salesforce/codegen-6B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -15023,12 +15352,69 @@ ChildProcessError: Traceback (most recent call last): cls._check_and_enable_flash_attn_2( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 raise ValueError( -ValueError: XGLMForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpiuu1nskh/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new +ValueError: CodeGenForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpyigjym7_/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2,openai-community/gpt2,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1214.447616,1005.060096,0.0,358.612992,318.913024,s,23,0.16858035135269164,0.007329580493595289,0.0002587299119465544,0.007231008052825927,0.007471584033966065,0.007511299371719361,0.00818978693008423,"[0.008380064010620117, 0.007363743782043457, 0.007418399810791016, 0.007246111869812012, 0.007178239822387696, 0.007166944026947022, 0.007157599925994873, 0.007199552059173584, 0.007136896133422852, 0.007476480007171631, 0.007105247974395752, 0.0071660480499267576, 0.007231008052825927, 0.007161407947540283, 0.007184447765350342, 0.007153855800628662, 0.007515168190002442, 0.007452000141143799, 0.007419456005096436, 0.007367104053497314, 0.007440927982330322, 0.007213119983673096, 0.00744652795791626]",tokens/s,34926.964813838546,kWh,8.452715794226453e-08,4.6316905321826644e-08,1.8026361583691486e-07,3.11107679101006e-07,tokens/kWh,822866220.2738029,MB,1214.447616,1005.060096,0.0,358.612992,328.804864,s,23,9.953621459960937,0.4327661504330842,0.010704234458509567,0.429077880859375,0.44030704345703126,0.44415710449218754,0.4681292211914063,"[0.47477725219726563, 0.4445589294433594, 0.42644979858398435, 0.4242642822265625, 0.42919677734375, 0.42827423095703127, 0.42818402099609376, 0.4242230834960937, 0.42831201171875, 0.429077880859375, 0.4333373718261719, 0.4317017822265625, 0.437157470703125, 0.4248154602050781, 0.42390850830078125, 0.43650335693359377, 0.4387818298339844, 0.4320978088378906, 0.43937249755859376, 0.4277911987304687, 0.42581710815429685, 0.4244781188964844, 0.44054067993164064]",tokens/s,145.5751563216155,kWh,5.077228334491569e-06,2.782076962048813e-06,8.839489976768277e-06,1.6698795273308658e-05,tokens/kWh,3772727.2518095453,,s,1448,10.106253310203536,0.0069794567059416794,0.000952161877616497,0.006773759841918945,0.0070439937591552735,0.007432703852653502,0.014228009071350098,"[0.007984127998352051, 0.007874559879302979, 0.007838719844818116, 0.00810905647277832, 0.007803904056549072, 0.0076360321044921875, 0.007531455993652344, 0.007589888095855713, 0.007426047801971435, 0.007560192108154297, 0.0076063361167907715, 0.007623616218566894, 0.0076574721336364745, 0.007613440036773681, 0.0075335679054260255, 0.007480319976806641, 0.0076472959518432615, 0.007611328125, 0.0075428481101989745, 0.0075550079345703125, 0.00753868818283081, 0.007555071830749512, 0.007600128173828125, 0.0074065918922424315, 0.007469056129455566, 0.0074403839111328125, 0.007422976016998291, 0.0075304961204528805, 0.007518208026885987, 0.007624703884124756, 0.007686143875122071, 0.007682047843933106, 0.007307263851165771, 0.007299071788787842, 0.007363584041595459, 0.007319551944732666, 0.007326720237731933, 0.0074065918922424315, 0.0074741759300231934, 0.007550975799560547, 0.007709695816040039, 0.007379968166351319, 0.007514111995697022, 0.007488512039184571, 0.007510015964508057, 0.007669760227203369, 0.007569407939910889, 0.007693312168121338, 0.0076687359809875484, 0.0076277761459350585, 0.007525375843048096, 0.007512063980102539, 0.007461887836456299, 0.00764415979385376, 0.007400447845458984, 0.0072427520751953125, 0.007208960056304932, 0.007473152160644531, 0.00729702377319336, 0.00703385591506958, 0.007020544052124023, 0.007089183807373047, 0.014714847564697266, 0.007219200134277344, 0.007350272178649903, 0.007436287879943848, 0.007600128173828125, 0.007280640125274658, 0.007155712127685547, 0.007156735897064209, 0.007203839778900147, 0.007258111953735351, 0.00719974422454834, 0.007029759883880615, 0.007017471790313721, 0.007067647933959961, 0.007037951946258545, 0.0069918718338012695, 0.007010335922241211, 0.006995999813079834, 0.006998976230621338, 0.006979584217071533, 0.0070348801612854, 0.007015423774719238, 0.00698367977142334, 0.006958079814910889, 0.006994944095611572, 0.00698367977142334, 0.006978559970855713, 0.006947840213775635, 0.0070348801612854, 0.006961152076721191, 0.007020544052124023, 0.0069683518409729, 0.007003104209899903, 0.007001088142395019, 0.006972415924072266, 0.006957056045532227, 0.007001088142395019, 0.006966271877288818, 0.006965248107910156, 0.007002111911773682, 0.0069816322326660156, 0.007114751815795899, 0.007004159927368164, 0.007090176105499267, 0.007002111911773682, 0.006996992111206054, 0.007081984043121338, 0.007012351989746094, 0.006987775802612305, 0.006988800048828125, 0.0069928960800170895, 0.007177216053009033, 0.007015423774719238, 0.006977536201477051, 0.007003136157989502, 0.007126016139984131, 0.007016448020935059, 0.006986752033233643, 0.006990848064422607, 0.0069632000923156735, 0.0070041918754577635, 0.007000031948089599, 0.007019519805908203, 0.014730239868164062, 0.007007232189178467, 0.0069550080299377445, 0.007005216121673584, 0.0070368962287902835, 0.006977536201477051, 0.006851583957672119, 0.006823935985565186, 0.006765567779541016, 0.006767615795135498, 0.006763519763946534, 0.006762495994567871, 0.0068055038452148435, 0.006909952163696289, 0.006785024166107178, 0.00677785587310791, 0.006772736072540283, 0.0067420158386230465, 0.006738944053649902, 0.006725632190704346, 0.0067010560035705566, 0.006772736072540283, 0.006744063854217529, 0.006779903888702392, 0.006756351947784424, 0.006751232147216797, 0.006719488143920899, 0.006737919807434082, 0.0067758078575134275, 0.006755328178405762, 0.006710271835327148, 0.006716415882110595, 0.006723584175109864, 0.006725632190704346, 0.00672051191329956, 0.0067123198509216305, 0.006694911956787109, 0.006738944053649902, 0.006696959972381592, 0.00672051191329956, 0.006724607944488525, 0.006721536159515381, 0.00674508810043335, 0.006755328178405762, 0.006785024166107178, 0.006756351947784424, 0.006723584175109864, 0.006751232147216797, 0.0067573761940002445, 0.006761472225189209, 0.006666240215301514, 0.006661119937896728, 0.006723584175109864, 0.006661119937896728, 0.006654975891113281, 0.0066375679969787596, 0.006723584175109864, 0.006718463897705078, 0.006703104019165039, 0.006754303932189941, 0.006707200050354004, 0.006717440128326416, 0.006744063854217529, 0.014316543579101563, 0.0067348480224609375, 0.006750207901000976, 0.0067870721817016606, 0.006694911956787109, 0.006708223819732666, 0.0067010560035705566, 0.00672051191329956, 0.0067276802062988285, 0.0066979842185974124, 0.006687744140625, 0.006713344097137451, 0.006761472225189209, 0.006749184131622315, 0.0067645440101623535, 0.006747136116027832, 0.006710271835327148, 0.006718463897705078, 0.006700032234191895, 0.006749184131622315, 0.006680575847625733, 0.006717440128326416, 0.00667852783203125, 0.006739967823028564, 0.006696959972381592, 0.0067010560035705566, 0.006673408031463623, 0.006703104019165039, 0.006800384044647217, 0.00672051191329956, 0.006776832103729248, 0.006722559928894043, 0.006737919807434082, 0.006756351947784424, 0.0067717118263244626, 0.006748159885406494, 0.006724607944488525, 0.00672870397567749, 0.006800384044647217, 0.006699007987976074, 0.0067276802062988285, 0.006737919807434082, 0.0067041277885437015, 0.006756351947784424, 0.006843391895294189, 0.006760447978973389, 0.006755328178405762, 0.006778880119323731, 0.006690815925598144, 0.006692863941192627, 0.006652927875518798, 0.006653952121734619, 0.006666240215301514, 0.006660096168518067, 0.0066375679969787596, 0.006724607944488525, 0.00674508810043335, 0.006793216228485107, 0.006758399963378906, 0.006758399963378906, 0.006765567779541016, 0.006729728221893311, 0.006829055786132812, 0.014258175849914552, 0.006754303932189941, 0.006767615795135498, 0.006770688056945801, 0.006714367866516113, 0.006759424209594727, 0.006788095951080322, 0.006724607944488525, 0.006732800006866455, 0.006737919807434082, 0.006708223819732666, 0.006724607944488525, 0.006731776237487793, 0.0067010560035705566, 0.0067420158386230465, 0.0067717118263244626, 0.006756351947784424, 0.00674508810043335, 0.0067358717918396, 0.00672870397567749, 0.006722623825073242, 0.006734784126281738, 0.006726655960083008, 0.006713344097137451, 0.00687718391418457, 0.006709248065948486, 0.0067051520347595215, 0.006795263767242431, 0.006717440128326416, 0.00669593620300293, 0.00674508810043335, 0.0067338237762451176, 0.00672051191329956, 0.0067758078575134275, 0.006737919807434082, 0.006726655960083008, 0.006694911956787109, 0.0067358717918396, 0.006706175804138184, 0.006700032234191895, 0.006766592025756836, 0.0067348480224609375, 0.0067348480224609375, 0.006829055786132812, 0.0067276802062988285, 0.006977536201477051, 0.006985727787017822, 0.007014400005340577, 0.0069816322326660156, 0.006931456089019775, 0.006980607986450196, 0.006937600135803222, 0.006938623905181885, 0.0069324798583984375, 0.006961152076721191, 0.006959104061126709, 0.006976511955261231, 0.0069847040176391605, 0.006971392154693603, 0.0069550080299377445, 0.006982656002044678, 0.007070720195770264, 0.007047167778015137, 0.014191616058349609, 0.0067123198509216305, 0.006912000179290771, 0.006758399963378906, 0.0068055038452148435, 0.006760447978973389, 0.006781951904296875, 0.006699007987976074, 0.0068280320167541505, 0.006811647891998291, 0.00673689603805542, 0.006723584175109864, 0.006774784088134766, 0.006723584175109864, 0.006739967823028564, 0.0067358717918396, 0.006739967823028564, 0.006717440128326416, 0.006739967823028564, 0.0067051520347595215, 0.006780928134918213, 0.006706175804138184, 0.006874112129211426, 0.006763519763946534, 0.006729728221893311, 0.006726655960083008, 0.006752255916595459, 0.0067010560035705566, 0.006756351947784424, 0.006718463897705078, 0.006817791938781738, 0.007201791763305664, 0.006953983783721924, 0.007018496036529541, 0.006915071964263916, 0.006966271877288818, 0.006953983783721924, 0.006956031799316406, 0.006920191764831543, 0.00694374418258667, 0.00709939193725586, 0.006912000179290771, 0.006710271835327148, 0.006819839954376221, 0.006730751991271973, 0.006739967823028564, 0.0067276802062988285, 0.006729728221893311, 0.006692863941192627, 0.0067051520347595215, 0.0067358717918396, 0.006722559928894043, 0.006740992069244385, 0.006744063854217529, 0.006699007987976074, 0.006892543792724609, 0.006709248065948486, 0.006807551860809326, 0.0067983360290527345, 0.006761472225189209, 0.006715392112731934, 0.00672051191329956, 0.006797311782836914, 0.014218239784240723, 0.0067358717918396, 0.0069621758460998535, 0.007168000221252442, 0.007048192024230957, 0.007046144008636474, 0.006990848064422607, 0.006974463939666748, 0.006982656002044678, 0.006985727787017822, 0.006969344139099121, 0.006968319892883301, 0.006947840213775635, 0.0068249602317810056, 0.006723584175109864, 0.0067348480224609375, 0.0067276802062988285, 0.006848512172698974, 0.00674508810043335, 0.0067051520347595215, 0.006748223781585693, 0.006714303970336914, 0.0067276802062988285, 0.006804480075836182, 0.006754303932189941, 0.0067758078575134275, 0.006685696125030518, 0.006730751991271973, 0.006726655960083008, 0.0067276802062988285, 0.006749216079711914, 0.006711264133453369, 0.006721536159515381, 0.00672870397567749, 0.006696959972381592, 0.006729728221893311, 0.006738944053649902, 0.0067358717918396, 0.006718463897705078, 0.006738944053649902, 0.00674508810043335, 0.0067010560035705566, 0.00672051191329956, 0.0068055038452148435, 0.0067758078575134275, 0.006834176063537598, 0.00673689603805542, 0.0067051520347595215, 0.006752255916595459, 0.006779903888702392, 0.006749184131622315, 0.006716415882110595, 0.006848512172698974, 0.006749184131622315, 0.00676966381072998, 0.006834176063537598, 0.006716415882110595, 0.006725632190704346, 0.00672054386138916, 0.0067338237762451176, 0.006743008136749267, 0.0067686400413513184, 0.006751232147216797, 0.014236672401428223, 0.006725632190704346, 0.0067348480224609375, 0.006715456008911133, 0.006762432098388672, 0.006743040084838867, 0.006689792156219483, 0.006709248065948486, 0.006738944053649902, 0.006714431762695312, 0.006792128086090088, 0.0067686400413513184, 0.006730751991271973, 0.00672870397567749, 0.006724607944488525, 0.006722559928894043, 0.006778880119323731, 0.006765567779541016, 0.006713344097137451, 0.006707200050354004, 0.006724607944488525, 0.006759424209594727, 0.006701087951660157, 0.006740960121154785, 0.006726687908172608, 0.0067266240119934085, 0.006749184131622315, 0.006730751991271973, 0.006681600093841553, 0.006766592025756836, 0.006635519981384277, 0.006624256134033203, 0.006654975891113281, 0.006649856090545654, 0.006687744140625, 0.006709248065948486, 0.006715392112731934, 0.006750207901000976, 0.006752255916595459, 0.006715392112731934, 0.006703104019165039, 0.006806528091430664, 0.006752255916595459, 0.006755328178405762, 0.006747136116027832, 0.006730751991271973, 0.006707200050354004, 0.006713344097137451, 0.006737919807434082, 0.006721536159515381, 0.0067348480224609375, 0.006743040084838867, 0.006743040084838867, 0.006818816184997558, 0.0067358717918396, 0.006817791938781738, 0.006703104019165039, 0.006765567779541016, 0.006790143966674805, 0.0066938881874084475, 0.006729728221893311, 0.006721536159515381, 0.006699007987976074, 0.01420083236694336, 0.00677785587310791, 0.006897664070129395, 0.006767615795135498, 0.0068392958641052244, 0.00672051191329956, 0.006792191982269287, 0.0068351998329162595, 0.006717504024505615, 0.006688704013824463, 0.006752255916595459, 0.006723584175109864, 0.0067870721817016606, 0.00678604793548584, 0.0068884482383728025, 0.007054336071014404, 0.006791168212890625, 0.006876160144805908, 0.007169023990631103, 0.006994944095611572, 0.006714367866516113, 0.006750207901000976, 0.006793216228485107, 0.006711296081542969, 0.006751232147216797, 0.00672870397567749, 0.00667955207824707, 0.006749184131622315, 0.006797311782836914, 0.006726655960083008, 0.006689792156219483, 0.006719488143920899, 0.006754303932189941, 0.0067010560035705566, 0.006744063854217529, 0.00672051191329956, 0.006690815925598144, 0.006833151817321777, 0.0067276802062988285, 0.006732800006866455, 0.00674508810043335, 0.006746111869812011, 0.006723584175109864, 0.006754303932189941, 0.00673689603805542, 0.006783008098602295, 0.006755296230316162, 0.006714367866516113, 0.006714367866516113, 0.006867968082427979, 0.006754303932189941, 0.006830143928527832, 0.006731711864471436, 0.006782976150512696, 0.0067717118263244626, 0.006706175804138184, 0.00684441614151001, 0.006978559970855713, 0.006996992111206054, 0.006918144226074219, 0.006971392154693603, 0.0068853759765625, 0.006964223861694336, 0.015036416053771973, 0.007065599918365479, 0.006990848064422607, 0.007023615837097168, 0.006948863983154297, 0.006990848064422607, 0.006958079814910889, 0.007014400005340577, 0.00693452787399292, 0.006964223861694336, 0.0069253120422363285, 0.006949888229370117, 0.006964223861694336, 0.006959104061126709, 0.006947840213775635, 0.006916096210479736, 0.006853631973266602, 0.006752255916595459, 0.006746111869812011, 0.006703104019165039, 0.006756351947784424, 0.006773759841918945, 0.00672051191329956, 0.006751232147216797, 0.00672051191329956, 0.0067123198509216305, 0.006843391895294189, 0.006763519763946534, 0.006758399963378906, 0.006754303932189941, 0.0067358717918396, 0.006692863941192627, 0.006746111869812011, 0.00674508810043335, 0.006715392112731934, 0.00674508810043335, 0.006738944053649902, 0.006743040084838867, 0.006750207901000976, 0.00672979211807251, 0.00669484806060791, 0.006716415882110595, 0.006749184131622315, 0.006749184131622315, 0.006710271835327148, 0.006737919807434082, 0.006803455829620361, 0.0067051520347595215, 0.006708223819732666, 0.006780928134918213, 0.006688767910003662, 0.0067348480224609375, 0.006717440128326416, 0.006715392112731934, 0.006817791938781738, 0.0067420158386230465, 0.0067870721817016606, 0.006800384044647217, 0.006766592025756836, 0.006739999771118164, 0.006708191871643066, 0.006755328178405762, 0.006746111869812011, 0.014143487930297852, 0.006750207901000976, 0.006739967823028564, 0.006726655960083008, 0.006748159885406494, 0.0067246718406677244, 0.006729663848876953, 0.0067717118263244626, 0.006810624122619629, 0.006706175804138184, 0.006749184131622315, 0.00673689603805542, 0.006711296081542969, 0.0067420158386230465, 0.006732800006866455, 0.006719488143920899, 0.0067645440101623535, 0.006759424209594727, 0.006724607944488525, 0.00672870397567749, 0.006749184131622315, 0.006729728221893311, 0.006677504062652588, 0.006738944053649902, 0.006686751842498779, 0.0066969280242919925, 0.006802432060241699, 0.006756351947784424, 0.007007232189178467, 0.007004159927368164, 0.006947840213775635, 0.007006207942962647, 0.006967296123504638, 0.006986752033233643, 0.006968319892883301, 0.0070553598403930665, 0.006969344139099121, 0.006975488185882568, 0.006986752033233643, 0.0069632000923156735, 0.006961152076721191, 0.006985727787017822, 0.006971392154693603, 0.007068672180175781, 0.006986752033233643, 0.006994944095611572, 0.006972415924072266, 0.006941696166992187, 0.006953983783721924, 0.006989823818206787, 0.006973440170288086, 0.006994944095611572, 0.006929408073425293, 0.006985727787017822, 0.006967296123504638, 0.0070522880554199216, 0.006951935768127441, 0.007003136157989502, 0.006975488185882568, 0.006987775802612305, 0.006959104061126709, 0.00694374418258667, 0.00694271993637085, 0.014244864463806153, 0.006744063854217529, 0.006746111869812011, 0.0067276802062988285, 0.006718463897705078, 0.006841343879699707, 0.006713344097137451, 0.00678604793548584, 0.006906879901885986, 0.006791168212890625, 0.006716415882110595, 0.006849535942077637, 0.006762495994567871, 0.006692863941192627, 0.006747136116027832, 0.006708223819732666, 0.006703104019165039, 0.00679423999786377, 0.006711296081542969, 0.006789120197296142, 0.006779903888702392, 0.00676358413696289, 0.0067491202354431155, 0.006688767910003662, 0.0067420477867126466, 0.00675222396850586, 0.006725632190704346, 0.006752255916595459, 0.0067420158386230465, 0.006717504024505615, 0.006833087921142578, 0.007392255783081054, 0.007624703884124756, 0.007074816226959229, 0.00697654390335083, 0.007215072154998779, 0.006989823818206787, 0.006999040126800537, 0.007142399787902832, 0.006996992111206054, 0.006988800048828125, 0.006978559970855713, 0.006941696166992187, 0.006982656002044678, 0.00693555212020874, 0.006973440170288086, 0.006958079814910889, 0.006959104061126709, 0.006960127830505371, 0.0069959678649902345, 0.0069632000923156735, 0.006716415882110595, 0.006729728221893311, 0.0067062082290649415, 0.006729695796966553, 0.0067348480224609375, 0.006683648109436035, 0.006800384044647217, 0.006818816184997558, 0.006718463897705078, 0.006850560188293457, 0.0067420158386230465, 0.006748159885406494, 0.014536704063415527, 0.006968319892883301, 0.006966271877288818, 0.00695091199874878, 0.00704204797744751, 0.006987775802612305, 0.006970367908477783, 0.006851583957672119, 0.006754303932189941, 0.0068884482383728025, 0.006730751991271973, 0.006762495994567871, 0.006744063854217529, 0.006726655960083008, 0.00675328016281128, 0.006760447978973389, 0.006747136116027832, 0.006714367866516113, 0.006825984001159668, 0.006810624122619629, 0.006713344097137451, 0.006802432060241699, 0.0073820161819458, 0.0069918718338012695, 0.007038976192474365, 0.007009280204772949, 0.006915071964263916, 0.006946815967559815, 0.0069027838706970214, 0.006979584217071533, 0.007037951946258545, 0.0069847040176391605, 0.007095295906066895, 0.006979584217071533, 0.006982656002044678, 0.006957056045532227, 0.006939648151397705, 0.007016448020935059, 0.007017471790313721, 0.006959104061126709, 0.007007232189178467, 0.006953983783721924, 0.006958079814910889, 0.006985727787017822, 0.007005184173583984, 0.00695091199874878, 0.0069959678649902345, 0.006952960014343262, 0.006946815967559815, 0.006927360057830811, 0.006949888229370117, 0.006945792198181152, 0.006974463939666748, 0.007023615837097168, 0.006964223861694336, 0.006966271877288818, 0.006936575889587402, 0.007049215793609619, 0.007016448020935059, 0.006938623905181885, 0.006959104061126709, 0.006936575889587402, 0.006927360057830811, 0.014215167999267577, 0.006761472225189209, 0.006815743923187256, 0.006685696125030518, 0.006874112129211426, 0.006820864200592041, 0.006779903888702392, 0.006732800006866455, 0.006800384044647217, 0.006703104019165039, 0.00673689603805542, 0.006716415882110595, 0.0066979842185974124, 0.006699007987976074, 0.006696959972381592, 0.006717440128326416, 0.006749184131622315, 0.006707200050354004, 0.00672870397567749, 0.006694911956787109, 0.006708223819732666, 0.0066938881874084475, 0.006688767910003662, 0.006703104019165039, 0.006685696125030518, 0.006864895820617676, 0.006916096210479736, 0.0067983360290527345, 0.006809599876403808, 0.006807551860809326, 0.00673689603805542, 0.006708223819732666, 0.006715392112731934, 0.006714367866516113, 0.00678607988357544, 0.006709216117858886, 0.006750207901000976, 0.0067123198509216305, 0.006722591876983643, 0.006701024055480957, 0.006739007949829102, 0.006764480113983154, 0.006756351947784424, 0.006732800006866455, 0.006713344097137451, 0.006716415882110595, 0.006711296081542969, 0.006681600093841553, 0.006714367866516113, 0.006699007987976074, 0.006694911956787109, 0.006732800006866455, 0.006689792156219483, 0.006703104019165039, 0.0067758078575134275, 0.006743040084838867, 0.006756351947784424, 0.006776832103729248, 0.006760447978973389, 0.006729728221893311, 0.006706175804138184, 0.00673689603805542, 0.00672051191329956, 0.014218239784240723, 0.0067010560035705566, 0.006730751991271973, 0.006715392112731934, 0.006696959972381592, 0.006707200050354004, 0.006708223819732666, 0.006744063854217529, 0.006721536159515381, 0.006673408031463623, 0.006746111869812011, 0.006691840171813965, 0.006708223819732666, 0.006749184131622315, 0.006730751991271973, 0.006725696086883545, 0.006710207939147949, 0.006713344097137451, 0.0067041277885437015, 0.006717440128326416, 0.0067051520347595215, 0.006686719894409179, 0.00669593620300293, 0.006739967823028564, 0.006729728221893311, 0.006884352207183838, 0.0067573761940002445, 0.006692863941192627, 0.006700032234191895, 0.006709248065948486, 0.006714367866516113, 0.006707200050354004, 0.006751232147216797, 0.006714367866516113, 0.0067870721817016606, 0.0067420158386230465, 0.006709248065948486, 0.006677504062652588, 0.0067123198509216305, 0.0067041277885437015, 0.0068351998329162595, 0.006729728221893311, 0.006744063854217529, 0.006694911956787109, 0.006737919807434082, 0.0067348480224609375, 0.00672870397567749, 0.006865920066833496, 0.006730751991271973, 0.0067041277885437015, 0.006690815925598144, 0.0067420158386230465, 0.006709248065948486, 0.006683648109436035, 0.006721536159515381, 0.006699007987976074, 0.006702079772949219, 0.006723584175109864, 0.006755328178405762, 0.0067573761940002445, 0.006694911956787109, 0.006703104019165039, 0.0066826238632202144, 0.014199808120727539, 0.006708223819732666, 0.006726655960083008, 0.006726655960083008, 0.0067051520347595215, 0.006708223819732666, 0.006747136116027832, 0.006862847805023193, 0.00672051191329956, 0.00674508810043335, 0.006713344097137451, 0.006717440128326416, 0.006710271835327148, 0.006726655960083008, 0.006721536159515381, 0.006719488143920899, 0.006707200050354004, 0.006739967823028564, 0.006916096210479736, 0.006788095951080322, 0.006837247848510742, 0.006850560188293457, 0.0070225920677185055, 0.007953407764434815, 0.007171072006225586, 0.006988800048828125, 0.0069632000923156735, 0.007014400005340577, 0.00724889612197876, 0.007015423774719238, 0.006952960014343262, 0.007001088142395019, 0.007005184173583984, 0.006944767951965332, 0.00694374418258667, 0.007057407855987549, 0.006978559970855713, 0.006953983783721924, 0.006904831886291504, 0.006892543792724609, 0.006957056045532227, 0.006884352207183838, 0.006863872051239014, 0.00689356803894043, 0.006924287796020508, 0.006998015880584717, 0.006892543792724609, 0.006951935768127441, 0.007155712127685547, 0.007081984043121338, 0.006960127830505371, 0.007018496036529541, 0.0070522880554199216, 0.007150591850280762, 0.0070860800743103025, 0.0070522880554199216, 0.00693452787399292, 0.007058432102203369, 0.006945792198181152, 0.006958079814910889, 0.006944767951965332, 0.006970367908477783, 0.006941696166992187, 0.014789631843566894, 0.0069632000923156735, 0.006973440170288086, 0.006958079814910889, 0.0069632000923156735, 0.0069621758460998535, 0.006931456089019775, 0.006985727787017822, 0.006957056045532227, 0.006941696166992187, 0.006929408073425293, 0.006923264026641846, 0.006958079814910889, 0.006957056045532227, 0.006990848064422607, 0.006978559970855713, 0.00698367977142334, 0.006944767951965332, 0.006917119979858399, 0.00695091199874878, 0.006904831886291504, 0.006956031799316406, 0.006967296123504638, 0.006953983783721924, 0.006938623905181885, 0.006903808116912841, 0.006965248107910156, 0.006949888229370117, 0.00693555212020874, 0.006973440170288086, 0.006994944095611572, 0.006939648151397705, 0.0069816322326660156, 0.006960127830505371, 0.006980607986450196, 0.0070563840866088865, 0.006985727787017822, 0.006752287864685059, 0.0067337918281555175, 0.006853695869445801, 0.006733759880065918, 0.006716415882110595, 0.006744063854217529, 0.006700032234191895, 0.006732800006866455, 0.006743040084838867, 0.006779903888702392, 0.007061503887176514, 0.007062528133392334, 0.006999040126800537, 0.006979584217071533, 0.006915071964263916, 0.006968319892883301, 0.00692633581161499, 0.0069283838272094726, 0.006938623905181885, 0.00801689624786377, 0.007638016223907471, 0.00704307222366333, 0.007014400005340577, 0.006941696166992187, 0.0070225920677185055, 0.007076863765716553, 0.014768128395080566, 0.006933504104614257, 0.006961152076721191, 0.006966271877288818, 0.006978559970855713, 0.006912000179290771, 0.0067358717918396, 0.006732800006866455, 0.0066979842185974124, 0.006715392112731934, 0.006730751991271973, 0.006721536159515381, 0.006842368125915528, 0.00672870397567749, 0.006711296081542969, 0.006741055965423584, 0.00674399995803833, 0.0067758078575134275, 0.006959104061126709, 0.006964223861694336, 0.006971392154693603, 0.006915135860443115, 0.006940608024597168, 0.006872064113616944, 0.0069959678649902345, 0.007156735897064209, 0.006993919849395752, 0.006974463939666748, 0.006920191764831543, 0.006889472007751465, 0.00695091199874878, 0.006952960014343262, 0.00695091199874878, 0.006915071964263916, 0.0070830078125, 0.006978559970855713, 0.006952960014343262, 0.0069632000923156735, 0.006980607986450196, 0.007064576148986816, 0.0069918718338012695, 0.006924287796020508, 0.006948863983154297, 0.006966271877288818, 0.006948863983154297, 0.00679423999786377, 0.006752319812774658, 0.006724544048309326, 0.006639616012573242, 0.0066641921997070315, 0.006675456047058105, 0.006716415882110595, 0.006661119937896728, 0.006628352165222168, 0.006649856090545654, 0.006746111869812011, 0.006722559928894043, 0.006972415924072266, 0.006773759841918945, 0.0067686400413513184, 0.006724607944488525, 0.006721536159515381, 0.006733888149261474, 0.014669759750366211, 0.007174143791198731, 0.007038976192474365, 0.006959104061126709, 0.006977536201477051, 0.007017471790313721, 0.006961152076721191, 0.006960127830505371, 0.007027711868286133, 0.00693452787399292, 0.007000063896179199, 0.006951935768127441, 0.006958079814910889, 0.006951935768127441, 0.006952960014343262, 0.006959104061126709, 0.006951935768127441, 0.006958079814910889, 0.0069816322326660156, 0.006946815967559815, 0.006924287796020508, 0.00698367977142334, 0.006944767951965332, 0.006986752033233643, 0.006969344139099121, 0.006968319892883301, 0.006915103912353515, 0.0069242558479309085, 0.006949888229370117, 0.007111680030822754, 0.007015423774719238, 0.006973440170288086, 0.006959104061126709, 0.007012351989746094, 0.006980607986450196, 0.006960127830505371, 0.00693555212020874, 0.006985727787017822, 0.006936575889587402, 0.006973440170288086, 0.006958079814910889, 0.0069959678649902345, 0.006958079814910889, 0.006933504104614257, 0.007006207942962647, 0.006975552082061767, 0.006967232227325439, 0.006929408073425293, 0.006957056045532227, 0.006936575889587402, 0.006938623905181885, 0.006901792049407959, 0.0069539518356323245, 0.006959104061126709, 0.006945792198181152, 0.006958079814910889, 0.007050240039825439, 0.006960127830505371, 0.00695091199874878, 0.006949888229370117, 0.006945792198181152, 0.006960127830505371, 0.006976511955261231, 0.014671872138977051, 0.00683622407913208, 0.006738944053649902, 0.006726655960083008, 0.006732800006866455, 0.006713344097137451, 0.006724607944488525, 0.006717440128326416, 0.00672051191329956, 0.006718463897705078, 0.006726655960083008, 0.006715392112731934, 0.006681600093841553, 0.006816768169403077, 0.006746111869812011, 0.006716415882110595, 0.006724607944488525, 0.00672051191329956, 0.006711296081542969, 0.006715392112731934, 0.0067123198509216305, 0.006715392112731934, 0.006703104019165039, 0.00672870397567749, 0.0068392958641052244, 0.0067348480224609375, 0.006721536159515381, 0.006716415882110595, 0.006694911956787109, 0.006722559928894043, 0.0067338237762451176, 0.006718463897705078, 0.0066979842185974124, 0.006731776237487793, 0.006715392112731934, 0.006724607944488525, 0.006729728221893311, 0.00672870397567749, 0.0066938881874084475, 0.006746111869812011, 0.006687744140625, 0.006737919807434082, 0.0067010560035705566, 0.0067041277885437015, 0.007002111911773682, 0.006776832103729248, 0.006823935985565186, 0.00672870397567749, 0.0067983360290527345, 0.006721536159515381, 0.006727744102478028, 0.006747072219848633, 0.007356416225433349, 0.006988800048828125, 0.006908927917480469, 0.0069304962158203125, 0.006955967903137207, 0.007030784130096435, 0.00693452787399292, 0.006971392154693603, 0.00694374418258667, 0.007005184173583984, 0.006920191764831543, 0.014754816055297852, 0.00694374418258667, 0.006967296123504638, 0.006953983783721924, 0.007035903930664063, 0.006876160144805908, 0.0067123198509216305, 0.006750207901000976, 0.0067276802062988285, 0.0067276802062988285, 0.006765567779541016, 0.006766592025756836, 0.006710271835327148, 0.006762495994567871, 0.006740992069244385, 0.006776832103729248, 0.006737919807434082, 0.0067276802062988285, 0.006760447978973389, 0.006696959972381592, 0.006744063854217529, 0.006744063854217529, 0.006723584175109864, 0.0068076162338256835, 0.006731711864471436, 0.0067358717918396, 0.006700064182281494, 0.006725599765777588, 0.006718463897705078, 0.006722591876983643, 0.0067337918281555175, 0.0066938881874084475, 0.006730751991271973, 0.006706175804138184, 0.006865920066833496, 0.006724607944488525, 0.006740992069244385, 0.006723584175109864, 0.0067041277885437015, 0.006717440128326416, 0.006737919807434082, 0.006715392112731934, 0.006823935985565186, 0.006739967823028564, 0.006714367866516113, 0.006762495994567871, 0.0067420477867126466, 0.006771679878234863, 0.006731776237487793, 0.006722559928894043, 0.006687744140625, 0.0067338237762451176, 0.006725632190704346, 0.006715392112731934, 0.006706175804138184, 0.006725632190704346, 0.006715392112731934, 0.006710271835327148, 0.006723584175109864, 0.006709248065948486, 0.006684671878814697, 0.006709248065948486, 0.0067123198509216305, 0.01426643180847168, 0.0067255678176879885, 0.006780928134918213, 0.006709248065948486, 0.006739967823028564, 0.006708223819732666, 0.00673689603805542, 0.006763519763946534, 0.006716415882110595, 0.0067051520347595215, 0.006726655960083008, 0.006707200050354004, 0.006721536159515381, 0.00673689603805542, 0.0067348480224609375, 0.006732800006866455, 0.006763519763946534, 0.0067123198509216305, 0.006706175804138184, 0.006708223819732666, 0.0067010560035705566, 0.00676966381072998, 0.00679423999786377, 0.006707200050354004, 0.006684671878814697, 0.00669593620300293, 0.006684671878814697, 0.006699007987976074, 0.006675456047058105, 0.006808576107025147, 0.006714367866516113, 0.006790143966674805, 0.00673689603805542, 0.0067686400413513184, 0.006692863941192627, 0.006718463897705078, 0.0067123198509216305, 0.006731776237487793, 0.006737919807434082, 0.006729728221893311, 0.006708223819732666, 0.0067420158386230465, 0.0067358717918396, 0.006760447978973389, 0.00672870397567749, 0.006732800006866455, 0.006722559928894043, 0.006713344097137451, 0.006749184131622315, 0.006750207901000976, 0.006699007987976074, 0.0067420158386230465, 0.006740992069244385, 0.006699007987976074, 0.006751232147216797, 0.006732800006866455, 0.006831103801727295, 0.0068055038452148435, 0.006739967823028564, 0.006724607944488525, 0.006737919807434082, 0.006761504173278809, 0.006738912105560302, 0.01487667179107666, 0.006949888229370117, 0.00692633581161499, 0.006870016098022461, 0.007027711868286133, 0.006979584217071533, 0.0069632000923156735, 0.006959104061126709, 0.007003136157989502, 0.007009280204772949, 0.006994976043701172, 0.006966303825378418, 0.007005119800567627, 0.007029759883880615, 0.006985727787017822, 0.007004159927368164, 0.007013376235961914, 0.007021567821502686, 0.0069847040176391605, 0.007036928176879883, 0.007038976192474365, 0.006982656002044678, 0.006987775802612305, 0.006975488185882568, 0.007032832145690918, 0.006986752033233643, 0.006975488185882568, 0.006973440170288086, 0.006967296123504638, 0.006989823818206787, 0.006965248107910156, 0.006952960014343262, 0.006985727787017822, 0.006965248107910156, 0.006945792198181152, 0.006945824146270752, 0.0069508800506591795, 0.007271423816680909, 0.0069928960800170895, 0.006933504104614257, 0.0069621758460998535, 0.0069847040176391605, 0.006964223861694336, 0.006957056045532227, 0.007038976192474365, 0.006969344139099121, 0.0069816322326660156, 0.00694374418258667, 0.006977536201477051, 0.006970367908477783, 0.006953983783721924, 0.006970367908477783, 0.006973440170288086, 0.00693555212020874, 0.007002111911773682, 0.0070553598403930665, 0.0070256638526916505, 0.006982656002044678, 0.006973440170288086, 0.007006207942962647, 0.006969344139099121, 0.0069918718338012695, 0.006994944095611572]",tokens/s,143.27762777705752,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-14B,Qwen/Qwen-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained + model_class = get_class_from_dynamic_module( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module + final_module = get_cached_module_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file + modules_needed = check_imports(resolved_module_file) + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports + raise ImportError( +ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-7B,Qwen/Qwen-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained + model_class = get_class_from_dynamic_module( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module + final_module = get_cached_module_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file + modules_needed = check_imports(resolved_module_file) + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports + raise ImportError( +ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-2.7B,,cuda,0,42,,,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,MB,2234.441728,2932.342784,0.0,2285.89568,2082.575872,s,10,2.433214202880859,0.24332142028808593,0.0008617435568583196,0.24325077056884764,0.24459763488769531,0.24462198333740234,0.24464146209716797,"[0.24380015563964844, 0.24204917907714843, 0.24258213806152343, 0.24336614990234376, 0.24313539123535155, 0.24226588439941407, 0.24288755798339845, 0.24388919067382814, 0.24464633178710937, 0.24459222412109374]",tokens/s,1052.1063032465574,kWh,2.856464352872637e-06,1.5652168180297718e-06,1.2995936322662033e-05,1.7417617493564442e-05,tokens/kWh,14697762.199370166,MB,2234.441728,2959.60576,0.0,2313.158656,2180.684288,s,10,139.734884765625,13.9734884765625,0.01146198033243705,13.9710908203125,13.98807626953125,13.992370166015625,13.995805283203126,"[13.9871220703125, 13.9770771484375, 13.9966640625, 13.980609375, 13.95928515625, 13.96146875, 13.9670087890625, 13.9751728515625, 13.965376953125, 13.965099609375]",tokens/s,4.508537728833344,kWh,0.00016483188493384256,9.03412226583766e-05,0.0007461166431891384,0.0010012897507813577,tokens/kWh,62918.85036358144,,s,629,141.7022607421874,0.22528181358058424,0.02898003334479797,0.22168063354492187,0.2224162872314453,0.22265180053710937,0.4647246643066406,"[0.22235647583007812, 0.22139903259277344, 0.22141644287109374, 0.22147891235351563, 0.2213693389892578, 0.22170726013183595, 0.22163967895507813, 0.2214256591796875, 0.22199398803710937, 0.22159564208984375, 0.22243431091308594, 0.22190284729003906, 0.22202674865722657, 0.2210723876953125, 0.22141133117675782, 0.22209945678710938, 0.22192127990722657, 0.2224189453125, 0.22194073486328125, 0.22234317016601562, 0.22204518127441406, 0.22228582763671875, 0.2221793212890625, 0.22186904907226562, 0.222603271484375, 0.22207487487792968, 0.22233599853515626, 0.22205238342285155, 0.22235133361816406, 0.2235494384765625, 0.22263296508789063, 0.22236671447753906, 0.22127410888671875, 0.2215219268798828, 0.2213519287109375, 0.22189056396484375, 0.22161100769042968, 0.22196940612792967, 0.22203187561035156, 0.22196531677246092, 0.22140007019042968, 0.2213396453857422, 0.2219325408935547, 0.2218577880859375, 0.22200933837890624, 0.22186495971679687, 0.22244557189941405, 0.22216499328613282, 0.22224179077148437, 0.221955078125, 0.2217943115234375, 0.2224179229736328, 0.22189776611328124, 0.2225540771484375, 0.22166732788085938, 0.22277632141113282, 0.22537420654296875, 0.22221209716796875, 0.22146047973632813, 0.22176870727539064, 0.22216294860839844, 0.22160383605957032, 0.46420379638671877, 0.2221997833251953, 0.22188236999511718, 0.22198272705078126, 0.2217697296142578, 0.22201139831542968, 0.2215034942626953, 0.22119526672363282, 0.22219879150390626, 0.22249369812011718, 0.22189773559570314, 0.22246092224121095, 0.22249574279785156, 0.22148197937011718, 0.22124134826660155, 0.221802490234375, 0.22128536987304687, 0.2213744659423828, 0.22234214782714845, 0.22216806030273437, 0.22141746520996095, 0.22162637329101562, 0.22157516479492187, 0.22105191040039063, 0.2215782470703125, 0.2218741760253906, 0.2216898498535156, 0.22149427795410156, 0.2215536651611328, 0.2222725067138672, 0.22197760009765624, 0.22207795715332032, 0.2216847381591797, 0.22156083679199218, 0.2215741424560547, 0.2220595245361328, 0.22160179138183594, 0.22255001831054688, 0.22156492614746093, 0.22203904724121093, 0.22160179138183594, 0.22140109252929688, 0.22128640747070313, 0.22133660888671874, 0.2213908233642578, 0.22154035949707032, 0.22508236694335937, 0.22183013916015626, 0.22202879333496095, 0.2222407684326172, 0.2216785888671875, 0.22169293212890626, 0.22160691833496093, 0.22218649291992187, 0.2214686737060547, 0.22141439819335937, 0.222487548828125, 0.2225991668701172, 0.22195301818847657, 0.22147276306152344, 0.22199909973144533, 0.22176666259765626, 0.22219879150390626, 0.4654428100585937, 0.2218987579345703, 0.22210765075683594, 0.2219008026123047, 0.22165504455566407, 0.22182707214355468, 0.22211891174316406, 0.22192640686035156, 0.221770751953125, 0.22130482482910158, 0.22165913391113282, 0.22189263916015625, 0.2217932434082031, 0.22167552185058595, 0.22172467041015625, 0.22150143432617186, 0.22293606567382812, 0.22162535095214844, 0.2228019256591797, 0.22176255798339845, 0.22248243713378907, 0.22172979736328124, 0.22229402160644532, 0.22310092163085937, 0.22198988342285156, 0.22210150146484375, 0.22238616943359374, 0.22228480529785155, 0.22175334167480468, 0.22205337524414062, 0.22236058044433593, 0.2222407684326172, 0.2220369873046875, 0.2219929656982422, 0.2221854705810547, 0.2224127960205078, 0.22233395385742188, 0.22231858825683593, 0.22264627075195312, 0.22218751525878908, 0.22241587829589843, 0.22255718994140625, 0.2218741760253906, 0.22225920104980468, 0.22183935546875, 0.22192332458496095, 0.22207795715332032, 0.223752197265625, 0.22219673156738282, 0.22203289794921874, 0.22212197875976564, 0.2223206329345703, 0.22238616943359374, 0.22253575134277342, 0.22210047912597655, 0.22248442077636718, 0.2219356231689453, 0.2220912628173828, 0.22202572631835937, 0.22224896240234376, 0.22215168762207033, 0.22308761596679688, 0.22262168884277345, 0.46642996215820315, 0.22230323791503906, 0.22220390319824218, 0.22247935485839843, 0.22223155212402343, 0.22242303466796876, 0.22273023986816406, 0.2226411590576172, 0.22237493896484375, 0.22229808044433594, 0.2220185546875, 0.22259507751464844, 0.22249984741210938, 0.22244659423828125, 0.22167654418945312, 0.22273228454589844, 0.2222581787109375, 0.22126182556152343, 0.2230200653076172, 0.22316950988769532, 0.22224179077148437, 0.22140518188476563, 0.22184857177734374, 0.22160281372070312, 0.22178099060058593, 0.22235443115234374, 0.2213928985595703, 0.22145535278320314, 0.22126591491699218, 0.22138368225097657, 0.22140518188476563, 0.22138983154296876, 0.22134886169433593, 0.22174208068847656, 0.22144720458984374, 0.22132118225097655, 0.22146354675292967, 0.2214001007080078, 0.22144508361816406, 0.2214297637939453, 0.22163763427734376, 0.221517822265625, 0.22244044494628906, 0.22324838256835938, 0.22501274108886718, 0.22167861938476563, 0.22164067077636718, 0.2215004119873047, 0.22143283081054688, 0.22134579467773438, 0.22140518188476563, 0.22115122985839844, 0.22140415954589843, 0.2217195587158203, 0.22167449951171875, 0.2215034942626953, 0.22143795776367187, 0.2215854034423828, 0.22149530029296874, 0.22169497680664063, 0.22140931701660158, 0.22172157287597657, 0.22152806091308594, 0.4667914123535156, 0.22145228576660156, 0.2217512969970703, 0.2216468505859375, 0.22147789001464843, 0.221444091796875, 0.22145126342773438, 0.22144717407226563, 0.22157005310058595, 0.22128947448730468, 0.22147071838378907, 0.22156903076171874, 0.22139801025390626, 0.2215116729736328, 0.2211778564453125, 0.22171034240722656, 0.22124748229980468, 0.22265548706054689, 0.22149836730957032, 0.22151065063476563, 0.22136422729492186, 0.22120550537109376, 0.22162431335449218, 0.22184754943847657, 0.2219530487060547, 0.22183625793457032, 0.22151065063476563, 0.22187826538085936, 0.2214799346923828, 0.22132736206054687, 0.22136524963378906, 0.22137344360351563, 0.22129356384277343, 0.22121778869628905, 0.22129254150390626, 0.2211164093017578, 0.22158746337890625, 0.22140415954589843, 0.22128128051757812, 0.22147071838378907, 0.22140313720703125, 0.22121273803710936, 0.22131808471679687, 0.2216048583984375, 0.22186810302734375, 0.22218540954589844, 0.221623291015625, 0.22134477233886718, 0.22152088928222657, 0.22141746520996095, 0.22138368225097657, 0.22134169006347656, 0.22129458618164063, 0.22138983154296876, 0.22134169006347656, 0.2212956085205078, 0.221159423828125, 0.2240184326171875, 0.22193971252441405, 0.2216089630126953, 0.22141952514648439, 0.22154853820800782, 0.2216837158203125, 0.46434201049804685, 0.22140415954589843, 0.22150758361816406, 0.22161817932128905, 0.2220298309326172, 0.22168780517578124, 0.2222530517578125, 0.22144613647460937, 0.2217840576171875, 0.22155264282226564, 0.22125669860839844, 0.22169197082519532, 0.22176358032226562, 0.22181779479980468, 0.22157926940917969, 0.2215782470703125, 0.2214246368408203, 0.22152294921875, 0.22142771911621092, 0.22154547119140625, 0.22132429504394532, 0.22135606384277343, 0.22152394104003906, 0.22135398864746095, 0.22151577758789062, 0.2220185546875, 0.22214349365234376, 0.22169088745117188, 0.2212464599609375, 0.22148403930664062, 0.221370361328125, 0.22125363159179687, 0.22161305236816406, 0.22148197937011718, 0.22166015625, 0.2215977020263672, 0.22134783935546876, 0.2212351989746094, 0.2241535949707031, 0.22163558959960938, 0.2216785888671875, 0.22160691833496093, 0.221549560546875, 0.22167141723632813, 0.22142054748535156, 0.2214297637939453, 0.22139903259277344, 0.2217943115234375, 0.22149119567871095, 0.221876220703125, 0.22163250732421874, 0.221765625, 0.2215004119873047, 0.2217400360107422, 0.22149427795410156, 0.2213939208984375, 0.2211758117675781, 0.22143487548828125, 0.22141644287109374, 0.22124339294433593, 0.22147071838378907, 0.22166630554199218, 0.22171136474609374, 0.46487347412109375, 0.22141133117675782, 0.22127206420898438, 0.221338623046875, 0.2219622344970703, 0.22154342651367187, 0.22202265930175782, 0.22145330810546876, 0.22258995056152345, 0.22142874145507813, 0.22155264282226564, 0.22175334167480468, 0.2215741424560547, 0.22162739562988282, 0.22164378356933595, 0.2218803253173828, 0.22163250732421874, 0.22160076904296874, 0.22158848571777343, 0.2215116729736328, 0.2215679931640625, 0.22120550537109376, 0.22134477233886718, 0.22316543579101564, 0.22167039489746093, 0.22168063354492187, 0.22168678283691406, 0.2215116729736328, 0.2215188751220703, 0.22155363464355468, 0.22205235290527345, 0.22159359741210938, 0.22261351013183595, 0.2219059143066406, 0.22219161987304686, 0.22189773559570314, 0.22165504455566407, 0.22153114318847655, 0.2218076171875, 0.22219570922851561, 0.22192445373535155, 0.22225091552734375, 0.22204415893554688, 0.22189260864257812, 0.22191104125976563, 0.2215352325439453, 0.22143385314941405, 0.22180557250976562, 0.22147584533691406, 0.22139698791503906, 0.22178713989257812, 0.22213325500488282, 0.22149221801757812, 0.22222848510742188, 0.22150860595703126, 0.2214686737060547, 0.22136627197265624, 0.22127001953125, 0.22115020751953124, 0.22117478942871094, 0.22150143432617186, 0.22140211486816405, 0.22120550537109376, 0.46591384887695314, 0.22151065063476563, 0.22132838439941407, 0.22122496032714845, 0.22145433044433593, 0.22153318786621093, 0.2213519287109375, 0.22116044616699218, 0.22144717407226563, 0.22135296630859375, 0.2212833251953125, 0.22198477172851563, 0.22165811157226561, 0.22226739501953124, 0.22169804382324218, 0.22206361389160156, 0.22276095581054686, 0.22171136474609374, 0.22175949096679687, 0.22171034240722656, 0.22183833312988283, 0.2217021484375, 0.22223257446289063, 0.221876220703125, 0.22166323852539063, 0.22185369873046876, 0.22207693481445312, 0.22190386962890624, 0.2217379913330078, 0.22185165405273438, 0.22234214782714845, 0.22208717346191406, 0.22299136352539062, 0.22185061645507811, 0.22382899475097656, 0.22139187622070314, 0.22159461975097655, 0.22185369873046876, 0.2214072265625, 0.22193971252441405, 0.22215577697753905, 0.22185267639160156, 0.22164480590820312, 0.22156594848632813, 0.2215188751220703, 0.22147990417480468, 0.22186189270019532, 0.22172262573242188, 0.22174310302734376, 0.22215577697753905, 0.22219366455078124, 0.2219448699951172, 0.2216007385253906, 0.22184959411621094, 0.22170930480957032, 0.22189164733886718, 0.2221639404296875, 0.22170518493652344, 0.22201344299316406, 0.2217830352783203, 0.22169395446777343, 0.22200831604003907, 0.22163148498535157, 0.46692044067382815, 0.2217400360107422, 0.22165196228027345, 0.22197555541992187, 0.22193458557128906, 0.22203904724121093, 0.22154655456542968, 0.22138873291015626, 0.22145330810546876, 0.22146354675292967, 0.22145024108886718, 0.22175640869140625, 0.22180351257324218, 0.22217727661132813, 0.22153727722167968, 0.221896728515625, 0.2214164123535156, 0.2225797119140625, 0.22176051330566407, 0.22177381896972656, 0.22154649353027345, 0.221233154296875, 0.2214615020751953, 0.22134681701660155, 0.22129356384277343, 0.22127615356445313, 0.22128640747070313, 0.22148095703125, 0.22134169006347656, 0.22124339294433593, 0.22114816284179686, 0.2213191680908203, 0.2215188446044922, 0.22131814575195313, 0.22146969604492187, 0.22117990112304686, 0.22134375, 0.22164889526367187, 0.22181581115722657, 0.222171142578125, 0.22175640869140625, 0.22172979736328124, 0.22134066772460936, 0.22151986694335937, 0.22140313720703125, 0.22141030883789062, 0.22220594787597656, 0.22215887451171876, 0.22227349853515624, 0.22183116149902343, 0.22192640686035156, 0.22173184204101562, 0.2216898498535156, 0.22144717407226563, 0.22147584533691406, 0.22146354675292967, 0.22156903076171874, 0.22176051330566407, 0.22247833251953125, 0.221802490234375, 0.22252543640136718, 0.22219468688964844, 0.22166015625, 0.46707403564453126, 0.22175640869140625, 0.22192536926269532, 0.22187315368652344, 0.22208204650878907, 0.22162535095214844, 0.22142361450195314, 0.22128025817871094, 0.22170008850097656, 0.2215782470703125, 0.22144613647460937, 0.22178201293945313, 0.22167654418945312, 0.22178816223144532, 0.2213816375732422, 0.2216816711425781, 0.22158131408691406, 0.22198066711425782, 0.22218853759765625, 0.221770751953125, 0.22207693481445312, 0.2219069366455078, 0.22215782165527342, 0.2219069366455078, 0.2217830352783203, 0.2216417236328125, 0.2232033233642578, 0.22143283081054688, 0.22127719116210937, 0.22148300170898438, 0.22127104187011717, 0.2214615020751953, 0.22147584533691406, 0.22175538635253905, 0.22177690124511718, 0.2215290832519531, 0.22144717407226563, 0.22135296630859375, 0.22129356384277343, 0.22165196228027345, 0.22160076904296874, 0.22165402221679686, 0.22142771911621092, 0.22134783935546876, 0.22133555603027344, 0.22152088928222657, 0.22161509704589843, 0.2215034942626953, 0.22159257507324218, 0.22131712341308593, 0.22130586242675782, 0.22127410888671875, 0.22141850280761718, 0.22161305236816406, 0.22188954162597657, 0.22163456726074218, 0.2218014678955078, 0.2217902069091797, 0.22162124633789063, 0.22154444885253907, 0.22161305236816406, 0.2218956756591797, 0.22184857177734374]",tokens/s,4.438884720014453,,,,,,main,False,False -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-410m,EleutherAI/pythia-410m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1378.24256,1340.604416,0.0,694.157312,598.498816,s,10,0.5756522903442383,0.05756522903442383,0.0016369727383896268,0.0568012638092041,0.05918429183959961,0.06064101028442383,0.061806385040283206,"[0.06209772872924805, 0.05672822570800781, 0.056688095092773436, 0.05679859161376953, 0.05886057662963867, 0.057347423553466795, 0.05689571380615235, 0.05671388626098633, 0.05680393600463867, 0.05671811294555664]",tokens/s,4447.129009890898,kWh,6.782567046937489e-07,3.716537143845926e-07,1.9805285685486103e-06,3.0304389876269517e-06,tokens/kWh,84476209.89738722,MB,1378.24256,1340.604416,0.0,694.157312,659.031552,s,10,35.66919848632813,3.566919848632813,0.03950000205433062,3.552089111328125,3.624692236328125,3.64104033203125,3.65411880859375,"[3.57450146484375, 3.532454345703125, 3.56766015625, 3.657388427734375, 3.621059326171875, 3.5402509765625, 3.56031982421875, 3.532387939453125, 3.539317626953125, 3.5438583984375]",tokens/s,17.662297633109883,kWh,4.217196008799568e-05,2.3111615147015983e-05,0.00011743306696224983,0.00018271664219726155,tokens/kWh,344796.1786205822,,s,629,36.1255710258484,0.05743334026366993,0.0068485805293125165,0.05611315155029297,0.058175487518310545,0.05834158096313477,0.11305373931884766,"[0.05799008178710938, 0.05708492660522461, 0.05782732772827148, 0.05744332885742188, 0.057527294158935545, 0.05809561538696289, 0.0565401611328125, 0.05911040115356445, 0.05911040115356445, 0.058807296752929686, 0.058791934967041014, 0.05813555145263672, 0.05813248062133789, 0.05811199951171875, 0.058054656982421876, 0.05821952056884765, 0.057041919708251954, 0.056956928253173826, 0.057338878631591796, 0.05677363204956055, 0.05590323257446289, 0.05592268753051758, 0.05590425491333008, 0.05611008071899414, 0.05601484680175781, 0.05587148666381836, 0.055932926177978515, 0.056509441375732425, 0.05619200134277344, 0.056089599609375, 0.05595647811889649, 0.055981056213378906, 0.056079360961914064, 0.05589503860473633, 0.0559554557800293, 0.056065025329589846, 0.0564029426574707, 0.05732863998413086, 0.057398273468017576, 0.05806694412231445, 0.05649203109741211, 0.05601792144775391, 0.05590425491333008, 0.05598822402954102, 0.05598310470581055, 0.05660671997070312, 0.057234432220458986, 0.05611315155029297, 0.05587251281738281, 0.055923713684082034, 0.05598822402954102, 0.056018943786621096, 0.05615820693969727, 0.05591244888305664, 0.05669478225708008, 0.05584281539916992, 0.05593395233154297, 0.05587148666381836, 0.056016895294189455, 0.056000511169433595, 0.05590016174316406, 0.05584896087646484, 0.11391897583007812, 0.056886272430419924, 0.05697945785522461, 0.05592268753051758, 0.0564951057434082, 0.05716787338256836, 0.056594432830810545, 0.05600153732299805, 0.055695358276367186, 0.05583564758300781, 0.05596057510375976, 0.055913471221923826, 0.05584896087646484, 0.05577318572998047, 0.05587148666381836, 0.056035327911376956, 0.055943168640136716, 0.05580799865722656, 0.05776486587524414, 0.057622528076171874, 0.05631180953979492, 0.055818241119384764, 0.055777278900146485, 0.05587251281738281, 0.0560118408203125, 0.05598918533325195, 0.05593395233154297, 0.05613772964477539, 0.056908798217773435, 0.05586841583251953, 0.055809024810791016, 0.05591961669921875, 0.05592063903808594, 0.05590425491333008, 0.056174591064453126, 0.05596364974975586, 0.05545369720458984, 0.05593804931640625, 0.055806976318359375, 0.05584896087646484, 0.05586431884765625, 0.055890945434570315, 0.055839744567871094, 0.05590630340576172, 0.055741439819335936, 0.05607321548461914, 0.055858177185058595, 0.05598515319824219, 0.05599641418457031, 0.056035327911376956, 0.056120319366455076, 0.05593907165527344, 0.05596364974975586, 0.055932926177978515, 0.055947265625, 0.05584076690673828, 0.05575884628295898, 0.055823360443115234, 0.05576704025268555, 0.05586636734008789, 0.055923713684082034, 0.05593088150024414, 0.0557916145324707, 0.11292671966552735, 0.05593600082397461, 0.056169471740722655, 0.055927806854248044, 0.05587558364868164, 0.05590835189819336, 0.055769088745117185, 0.056676353454589844, 0.05695078277587891, 0.05639987182617188, 0.056005630493164066, 0.05686995315551758, 0.05640902328491211, 0.05631488037109375, 0.05584588623046875, 0.057027584075927736, 0.05787955093383789, 0.05715967941284179, 0.05641113662719727, 0.05674803161621094, 0.057038848876953124, 0.05642956924438477, 0.05662105560302735, 0.05600460815429688, 0.05647359848022461, 0.056395774841308595, 0.05592473602294922, 0.05653299331665039, 0.05728460693359375, 0.056796192169189456, 0.056970207214355466, 0.05783552169799805, 0.056842239379882815, 0.05652377700805664, 0.05740031814575195, 0.056120319366455076, 0.05686272048950195, 0.05625446319580078, 0.05662105560302735, 0.056174591064453126, 0.05706854248046875, 0.056346622467041016, 0.05597798538208008, 0.05667020797729492, 0.05655551910400391, 0.05687705612182617, 0.057256961822509764, 0.05748121643066406, 0.057133056640625, 0.05615923309326172, 0.055962623596191405, 0.05652070236206055, 0.056753150939941405, 0.056771583557128906, 0.056970241546630856, 0.05616844940185547, 0.057388031005859375, 0.05657702255249023, 0.057078784942626956, 0.05769420623779297, 0.05860966491699219, 0.056180736541748044, 0.05587148666381836, 0.11307008361816406, 0.05602406311035156, 0.05604044723510742, 0.056018943786621096, 0.058791934967041014, 0.0583741455078125, 0.05816524887084961, 0.05799321746826172, 0.058156032562255856, 0.058518527984619144, 0.058423297882080075, 0.05813350296020508, 0.058103809356689455, 0.05830451202392578, 0.058180606842041016, 0.058041343688964846, 0.05809254455566406, 0.05821952056884765, 0.05822873687744141, 0.05809151840209961, 0.058120193481445315, 0.05805158233642578, 0.05811609649658203, 0.05830348968505859, 0.058006526947021485, 0.05869670486450195, 0.058369022369384765, 0.058347518920898435, 0.058028030395507815, 0.058055679321289064, 0.058210304260253906, 0.0581058578491211, 0.058054656982421876, 0.058288158416748045, 0.058100704193115235, 0.05831987380981445, 0.058275840759277345, 0.05816524887084961, 0.05805977630615235, 0.05837823867797851, 0.05834444808959961, 0.05804032135009766, 0.05805158233642578, 0.05809971237182617, 0.058052608489990234, 0.05806489562988281, 0.05809254455566406, 0.05809664154052734, 0.05816729736328125, 0.0582042236328125, 0.05809862518310547, 0.05814169692993164, 0.05818675231933594, 0.057608192443847656, 0.05821440124511719, 0.058124320983886715, 0.058272735595703125, 0.058308609008789064, 0.058169345855712894, 0.058071041107177736, 0.058175487518310545, 0.05823897552490234, 0.0583372802734375, 0.11740262603759766, 0.058298366546630856, 0.0585544319152832, 0.05803107070922851, 0.05821948623657226, 0.05826047897338867, 0.05810793685913086, 0.058076126098632816, 0.0581662712097168, 0.05814988708496094, 0.05825843048095703, 0.05809356689453125, 0.05850931167602539, 0.058336254119873046, 0.058426368713378904, 0.05825331115722656, 0.058418174743652344, 0.0581396484375, 0.05809254455566406, 0.05811097717285156, 0.05806796646118164, 0.05830144119262695, 0.05805977630615235, 0.05824512100219727, 0.058036224365234375, 0.058142719268798826, 0.05810892868041992, 0.05846227264404297, 0.058175487518310545, 0.058110912322998046, 0.05813248062133789, 0.0584089584350586, 0.05830451202392578, 0.0581396484375, 0.058211326599121094, 0.05804851150512695, 0.0581662712097168, 0.05817350387573242, 0.05801055908203125, 0.0581662712097168, 0.05825331115722656, 0.05611929702758789, 0.05594521713256836, 0.055949310302734374, 0.05611008071899414, 0.056019966125488284, 0.055982078552246094, 0.055962623596191405, 0.05608448028564453, 0.05570457458496094, 0.056204288482666016, 0.05575372695922851, 0.055787521362304686, 0.05749350357055664, 0.05674803161621094, 0.055940097808837894, 0.05600460815429688, 0.056019966125488284, 0.05588787078857422, 0.05589913558959961, 0.05583052825927735, 0.055907329559326174, 0.05695283126831055, 0.11374079895019532, 0.055927806854248044, 0.05590323257446289, 0.05608652877807617, 0.05595340728759766, 0.056174591064453126, 0.05607321548461914, 0.05605686569213867, 0.056255455017089846, 0.05570969772338867, 0.05589606475830078, 0.05596063995361328, 0.056186817169189454, 0.05588991928100586, 0.055947265625, 0.055981056213378906, 0.056204288482666016, 0.05590016174316406, 0.055982078552246094, 0.05592575836181641, 0.05591862487792969, 0.055920608520507814, 0.05575475311279297, 0.055944190979003904, 0.05595852661132812, 0.055911422729492184, 0.05676134490966797, 0.05655039978027344, 0.055940097808837894, 0.055934974670410156, 0.05602918243408203, 0.056057857513427733, 0.055940097808837894, 0.05590425491333008, 0.056027137756347656, 0.05611724853515625, 0.055994369506835937, 0.05601484680175781, 0.05608448028564453, 0.055962623596191405, 0.05571177673339844, 0.055808990478515626, 0.05793484878540039, 0.057431041717529295, 0.056551422119140625, 0.05656576156616211, 0.05593600082397461, 0.05665689468383789, 0.05718732833862305, 0.055906368255615235, 0.058727359771728514, 0.05800755310058594, 0.05647257614135742, 0.056513534545898435, 0.05671116638183594, 0.05588172912597656, 0.056030208587646485, 0.05598003387451172, 0.05590528106689453, 0.05593600082397461, 0.05535129547119141, 0.05544755172729492, 0.05648691177368164, 0.11342233276367188, 0.05600358581542969, 0.05600153732299805, 0.05581107330322266, 0.055964672088623046, 0.05609062576293945, 0.05611724853515625, 0.05599846267700195, 0.056147968292236325, 0.05704908752441406, 0.05751091384887695, 0.05676031875610352, 0.05597798538208008, 0.05692620849609375, 0.05621247863769531, 0.05710335922241211, 0.05665280151367187, 0.055989246368408206, 0.0569989128112793, 0.056965118408203126, 0.056476673126220706, 0.05757952117919922, 0.05608243179321289, 0.057240577697753904, 0.05665280151367187, 0.056497150421142575, 0.057215999603271485, 0.0573573112487793, 0.05771366500854492, 0.056035327911376956, 0.05668044662475586, 0.05652479934692383, 0.056048641204833986, 0.056766464233398435, 0.05603737640380859, 0.05681568145751953, 0.05561439895629883, 0.055951358795166016, 0.05671014404296875, 0.05602099227905273, 0.05684531021118164, 0.05712998580932617, 0.05622579193115235, 0.05718425750732422, 0.05587046432495117, 0.05815193557739258, 0.05669580841064453, 0.056288257598876956, 0.05639168167114258, 0.05692416000366211, 0.05890764617919922, 0.05709619140625, 0.055943168640136716, 0.05594521713256836, 0.05592473602294922, 0.055702529907226565, 0.05582233428955078, 0.05554380798339844, 0.05590425491333008, 0.0567193603515625, 0.05655756759643555, 0.05586636734008789, 0.05595238494873047, 0.11324825286865234, 0.056097793579101565, 0.05586841583251953, 0.0565401611328125, 0.05603737640380859, 0.05586841583251953, 0.05586841583251953, 0.055787582397460934, 0.05582944107055664, 0.05609062576293945, 0.05594524765014648, 0.05589398574829101, 0.05601484680175781, 0.05601587295532227, 0.05612851333618164, 0.056167423248291014, 0.05636508941650391, 0.05600048065185547, 0.05591449737548828, 0.05615820693969727, 0.05590425491333008, 0.056697856903076174, 0.056491008758544924, 0.05597491073608398, 0.0558837776184082, 0.055894016265869144, 0.05606195068359375, 0.056013824462890625, 0.055877632141113284, 0.0558131217956543, 0.0560445442199707, 0.05591756820678711, 0.05575478363037109, 0.05573014450073242, 0.055923713684082034, 0.05588889694213867, 0.05579673767089844, 0.05603123092651367, 0.05595340728759766, 0.05692416000366211, 0.05709721755981445, 0.0572149772644043, 0.05634969711303711, 0.0558919677734375, 0.05590528106689453, 0.0558766098022461, 0.055841793060302736, 0.05595033645629883, 0.05608448028564453, 0.05609267044067383, 0.05588479995727539, 0.05583769607543945, 0.05596160125732422, 0.0559554557800293, 0.05604556655883789, 0.05690572738647461, 0.05594214248657227, 0.055856128692626954, 0.05609267044067383, 0.05597183990478516, 0.0560076789855957, 0.05595340728759766, 0.055993408203125, 0.11313145446777344, 0.05605068969726563, 0.05714432144165039, 0.05607219314575195, 0.055894016265869144, 0.05605990219116211, 0.055856128692626954, 0.055787521362304686, 0.0557916145324707, 0.05595647811889649, 0.05597183990478516, 0.055567359924316405, 0.05594521713256836, 0.05598720169067383, 0.05587251281738281, 0.055973888397216794, 0.05577318572998047, 0.055757823944091796, 0.055972862243652347, 0.05598310470581055, 0.05603839874267578, 0.056036350250244144, 0.05586438369750977, 0.055879615783691404, 0.05582950210571289, 0.056062976837158204, 0.055747615814208985, 0.05714838409423828, 0.05821952056884765, 0.0560711669921875, 0.05586739349365234, 0.05611520004272461, 0.05608857727050781, 0.05595340728759766, 0.0560076789855957, 0.055930912017822264, 0.05865881729125977, 0.05698665618896484, 0.0559431037902832, 0.05590835189819336, 0.05589811325073242, 0.05590323257446289, 0.05572403335571289, 0.05595852661132812, 0.055923713684082034, 0.05552844619750977, 0.05647052764892578, 0.05722623825073242, 0.05685452651977539, 0.05584384155273438, 0.05696409606933594, 0.05613260650634765, 0.05573222351074219, 0.05603123092651367, 0.05594214248657227, 0.05622579193115235, 0.05601587295532227, 0.055932926177978515, 0.05593907165527344, 0.05829119873046875, 0.05608038330078125, 0.056581119537353515, 0.056043521881103515, 0.11301171112060547, 0.05596160125732422, 0.05600460815429688, 0.05594828796386719, 0.0573306884765625, 0.05730099105834961, 0.056136703491210936, 0.05597183990478516, 0.055757823944091796, 0.05651865768432617, 0.05613772964477539, 0.05588684844970703, 0.05589811325073242, 0.055934974670410156, 0.055951358795166016, 0.05582438278198242, 0.055932926177978515, 0.05587251281738281, 0.05707059097290039, 0.057232383728027345, 0.057132030487060545, 0.056750080108642575, 0.05586227035522461, 0.055964672088623046, 0.05600972747802734, 0.05593088150024414, 0.05628518295288086, 0.05651148986816406, 0.056172542572021485, 0.05634764862060547, 0.055940097808837894, 0.0572149772644043, 0.05617049789428711, 0.05602201461791992, 0.05591654586791992, 0.05619609451293945, 0.0580239372253418, 0.056460289001464846, 0.055949310302734374, 0.056018943786621096, 0.056033279418945314, 0.05574860763549805, 0.0558960952758789, 0.056247264862060546, 0.05595443344116211, 0.05688217544555664, 0.05635276794433594, 0.055982078552246094, 0.055987232208251955, 0.0560035514831543, 0.05590937423706055, 0.05664051055908203, 0.05720883178710937, 0.056853504180908204, 0.056360958099365234, 0.0558919677734375, 0.05595852661132812, 0.05596160125732422, 0.05597491073608398, 0.05603228759765625, 0.0562564811706543, 0.055975936889648435, 0.055949310302734374]",tokens/s,17.41148948344487,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,0,0,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,v,v,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -15040,7 +15426,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/0/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/v/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -15067,9 +15453,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949500-07e242b56a1f32ec76792080;e3fc2d0e-9368-41ac-96e0-04d21929e4fe) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669494b4-549dcc15366ce1242c5eefa3;f15389f7-3f94-4733-accd-4a3f23975402) -Repository Not Found for url: https://huggingface.co/0/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/v/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -15094,11 +15480,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: 0 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: v is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-6B-nl,Salesforce/codegen-6B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-125m,EleutherAI/gpt-neo-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -15118,16 +15504,51 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation - cls._check_and_enable_flash_attn_2( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 - raise ValueError( -ValueError: CodeGenForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpf6kne3cj/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,.,.,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 373, in cached_file + raise EnvironmentError( +OSError: . does not appear to have a file named config.json. Checkout 'https://huggingface.co/./tree/None' for available files. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-70b-hf,meta-llama/Llama-2-70b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/phi-1_5,microsoft/phi-1_5,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -15147,29 +15568,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 112.00 MiB. GPU + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,2,2,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,s,s,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -15181,7 +15595,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/2/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/s/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -15208,9 +15622,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949393-3d2fe20f66c6aa0258d7e342;1ceb2da6-1f33-4669-9748-fd7626e7e9fc) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948cfb-0e00b796566ae4f404f69367;5b15094d-af6b-4969-9708-4249eadbf561) -Repository Not Found for url: https://huggingface.co/2/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/s/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -15235,11 +15649,75 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: 2 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: s is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,a,a,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-66b,facebook/opt-66b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,i,i,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -15251,7 +15729,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/a/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/i/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -15278,9 +15756,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949180-00c8d36e48127f563ccb1729;c119ed00-3b61-4ac1-8cd3-234cb2161b07) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694902a-69084a0a681811a04cd716e3;e2d4feea-4322-4a56-a342-2d36f9978e50) -Repository Not Found for url: https://huggingface.co/a/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/i/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -15305,15 +15783,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: a is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: i is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-350m,facebook/opt-350m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1312.935936,1023.934464,0.0,377.48736,290.348032,s,10,0.6976366119384766,0.06976366119384766,0.0018590846735664541,0.0696058578491211,0.07176354598999024,0.07230553245544434,0.07273912162780762,"[0.07284751892089844, 0.06800761413574219, 0.06769139099121094, 0.06779033660888673, 0.07104889678955079, 0.07164310455322266, 0.07125389099121093, 0.06824649810791016, 0.07096521759033203, 0.06814214324951172]",tokens/s,3669.5321836488733,kWh,8.134236630148721e-07,4.4571909736688417e-07,2.1182893658638067e-06,3.377432126245563e-06,tokens/kWh,75797230.09402885,MB,1312.935936,1023.934464,0.0,377.48736,337.281536,s,10,43.73100244140625,4.373100244140625,0.07142248616314475,4.400765380859375,4.4402288085937505,4.445402490234375,4.449541435546875,"[4.35173583984375, 4.25024462890625, 4.26398681640625, 4.30877587890625, 4.41468994140625, 4.4390791015625, 4.43881396484375, 4.42625927734375, 4.3868408203125, 4.450576171875]",tokens/s,14.40625562709468,kWh,5.082961926562783e-05,2.7857636841584544e-05,0.0001254377571233551,0.00020412501323056748,tokens/kWh,308634.39518232364,,s,629,44.28504171752928,0.07040547172898139,0.008395184351578173,0.07026687622070313,0.07091015625,0.07132590332031251,0.13567237548828126,"[0.0723609619140625, 0.07140863800048829, 0.07176195526123047, 0.07163388824462891, 0.07094169616699218, 0.07094783782958984, 0.07148441314697265, 0.07121202850341797, 0.07107174682617187, 0.07111577606201172, 0.07114342498779297, 0.07076761627197266, 0.07108198547363281, 0.07081574249267578, 0.07077072143554687, 0.07092835235595703, 0.07097344207763671, 0.0714598388671875, 0.07095500946044922, 0.07107481384277343, 0.07127347564697266, 0.07087923431396484, 0.07049420928955077, 0.07076659393310547, 0.07170150756835937, 0.071552001953125, 0.0690360336303711, 0.06716006469726563, 0.06747545623779297, 0.0673433609008789, 0.06707405090332032, 0.06747135925292969, 0.06733312225341796, 0.06719999694824219, 0.06728806304931641, 0.0673095703125, 0.06710784149169922, 0.06706175994873047, 0.0676126708984375, 0.06733926391601562, 0.06688256072998047, 0.06733414459228515, 0.06721126556396484, 0.0674703369140625, 0.06733926391601562, 0.06750822448730469, 0.06778880310058594, 0.06814105224609375, 0.0675225601196289, 0.06693376159667969, 0.06731980895996094, 0.06751334381103516, 0.07044198608398437, 0.0684615707397461, 0.0671098861694336, 0.06701465606689454, 0.06718463897705078, 0.06769561767578125, 0.06716422271728516, 0.06652819061279297, 0.06804582214355469, 0.06770995330810547, 0.13573631286621093, 0.0672204818725586, 0.06833356475830078, 0.06807555389404298, 0.06771196746826172, 0.06805197143554688, 0.06715392303466797, 0.06708428955078125, 0.06746112060546874, 0.06681702423095703, 0.06697062683105469, 0.06744166564941406, 0.06732288360595703, 0.06716006469726563, 0.06725325012207031, 0.06715602874755859, 0.06704019165039063, 0.06741094207763672, 0.06709555053710937, 0.06650572967529297, 0.06745292663574219, 0.06664704132080078, 0.06701261138916016, 0.06722150421142578, 0.06713855743408204, 0.0671098861694336, 0.06744268798828125, 0.06728704071044922, 0.0696258544921875, 0.06788813018798828, 0.06791372680664062, 0.06849024200439453, 0.06736895751953124, 0.06989209747314454, 0.06821990203857421, 0.06771097564697266, 0.06738432312011719, 0.06751948547363282, 0.06726348876953125, 0.06710784149169922, 0.06749183654785157, 0.06747545623779297, 0.06864179229736328, 0.0675563507080078, 0.06683135986328125, 0.06710681915283204, 0.06729011535644532, 0.06674534606933594, 0.06728089904785156, 0.06722354888916016, 0.06724607849121093, 0.06693990325927734, 0.0674703369140625, 0.06723481750488282, 0.06712223815917968, 0.06780818939208984, 0.06794751739501953, 0.06755840301513671, 0.0675758056640625, 0.06719692993164063, 0.0672573471069336, 0.06723481750488282, 0.06736589050292968, 0.13550796508789062, 0.06692147064208985, 0.06734950256347656, 0.07442227172851562, 0.0679557113647461, 0.06727680206298828, 0.06684569549560547, 0.06775091552734375, 0.06815436553955079, 0.06903807830810547, 0.06718975830078125, 0.06693376159667969, 0.06734031677246094, 0.06811030578613281, 0.06972621154785157, 0.06792601776123047, 0.06736486053466798, 0.06915481567382813, 0.06836736297607422, 0.06893875122070313, 0.07033753967285156, 0.06752665710449218, 0.0672194595336914, 0.06725325012207031, 0.06720822143554687, 0.06680572509765625, 0.06687026977539062, 0.0672143325805664, 0.06730445098876953, 0.06715904235839844, 0.06759014129638671, 0.06702899169921875, 0.06747443389892578, 0.06825984191894531, 0.0673280029296875, 0.06705152130126953, 0.06734130859375, 0.06769664001464844, 0.06806425476074218, 0.06706380462646484, 0.06730137634277343, 0.0671825942993164, 0.0676157455444336, 0.06711398315429687, 0.06727577972412109, 0.06933606719970703, 0.06894182586669922, 0.06846259307861328, 0.06729523468017579, 0.06725836944580078, 0.06733312225341796, 0.0672511978149414, 0.0672890853881836, 0.06693376159667969, 0.0676341781616211, 0.06666957092285156, 0.06659993743896485, 0.0665722885131836, 0.0667514877319336, 0.0672368621826172, 0.06741712188720703, 0.06712726593017578, 0.06705049896240234, 0.1353912353515625, 0.0671488037109375, 0.06749900817871093, 0.0674703369140625, 0.06737715148925781, 0.0673064956665039, 0.06735257720947266, 0.06739974212646484, 0.0676075210571289, 0.07006716918945312, 0.06824960327148437, 0.06842777252197266, 0.06737100982666015, 0.06794239807128906, 0.06855276489257812, 0.0674927978515625, 0.06724813079833984, 0.06728294372558594, 0.06814617919921875, 0.06813286590576172, 0.06723583984375, 0.06725222778320313, 0.06753689575195312, 0.06841139221191406, 0.06750617980957031, 0.06819737243652343, 0.06738438415527344, 0.06882195281982421, 0.06757997131347657, 0.06839907073974609, 0.06708633422851562, 0.06791574096679688, 0.06755020904541016, 0.06742527770996094, 0.06748569488525391, 0.066587646484375, 0.06756761932373047, 0.06675154876708984, 0.06733510589599609, 0.06650163269042969, 0.06747647857666016, 0.06739250946044922, 0.06733824157714843, 0.07072870635986328, 0.07021260833740234, 0.07095807647705078, 0.07044915008544922, 0.07039590454101563, 0.07007437133789063, 0.06753177642822265, 0.06737203216552734, 0.07054438018798828, 0.06973747253417968, 0.07040415954589843, 0.07051052856445313, 0.0710830078125, 0.0708136978149414, 0.06919782257080079, 0.06926131439208984, 0.06997299194335938, 0.07050035095214843, 0.0701286392211914, 0.07048499298095703, 0.14131712341308594, 0.06722457885742188, 0.06749183654785157, 0.06760550689697266, 0.07033446502685547, 0.07015731048583984, 0.07011225891113282, 0.06978765106201172, 0.0705269775390625, 0.06983372497558593, 0.06974156951904296, 0.07031603240966797, 0.07043583679199218, 0.0705802230834961, 0.07040614318847656, 0.07013069152832031, 0.0699504623413086, 0.07051058959960937, 0.07024332427978516, 0.06977126312255859, 0.06987673950195313, 0.07046553802490234, 0.07214806365966797, 0.07040809631347657, 0.06932179260253907, 0.07022994995117188, 0.07043071746826172, 0.07018402862548828, 0.07030262756347656, 0.07083622741699219, 0.07088333129882812, 0.06744166564941406, 0.06735155487060547, 0.06759731292724609, 0.06742733001708984, 0.0693780517578125, 0.07071334075927735, 0.07068876647949218, 0.07128985595703125, 0.07055465698242187, 0.07048291015625, 0.07026483154296875, 0.07063346862792969, 0.07024947357177734, 0.0704563217163086, 0.07028530883789062, 0.0700212173461914, 0.07084226989746094, 0.0705269775390625, 0.07041228485107422, 0.07060889434814453, 0.07039590454101563, 0.07050342559814453, 0.0704686050415039, 0.07056486511230468, 0.07071641540527343, 0.07057920074462891, 0.07043276977539062, 0.07038159942626954, 0.07048802947998047, 0.06970470428466796, 0.07084134674072265, 0.07183257293701172, 0.14264422607421876, 0.07059661102294922, 0.0704337921142578, 0.07088127899169921, 0.07030681610107421, 0.07067340850830078, 0.07019110107421875, 0.06985215759277344, 0.07026483154296875, 0.07035391998291016, 0.0703815689086914, 0.07054847717285156, 0.07035903930664063, 0.07019519805908203, 0.0714567642211914, 0.0703662109375, 0.07029964447021485, 0.07025766754150391, 0.07012351989746093, 0.07053107452392578, 0.07036518096923829, 0.07038873291015625, 0.07040204620361327, 0.07045836639404297, 0.07014093017578125, 0.07181926727294922, 0.07061196899414063, 0.07031705474853515, 0.07053209686279296, 0.07042457580566407, 0.07070719909667969, 0.07003033447265625, 0.0699525146484375, 0.07056486511230468, 0.07099187469482422, 0.07034060668945312, 0.07056281280517578, 0.07041228485107422, 0.070940673828125, 0.07032319641113281, 0.0704901123046875, 0.07044915008544922, 0.07032627105712891, 0.07004057312011719, 0.07051776123046875, 0.07030169677734376, 0.07029043579101563, 0.07063859558105469, 0.07095500946044922, 0.07047993469238281, 0.0705125732421875, 0.07045734405517579, 0.07045222473144531, 0.07037542724609375, 0.07044096374511719, 0.0705638427734375, 0.07061196899414063, 0.07037747192382812, 0.07041024017333984, 0.06980403137207031, 0.07040614318847656, 0.07026585388183594, 0.07064780426025391, 0.14216192626953125, 0.07040102386474609, 0.07040819549560547, 0.07026483154296875, 0.07061504364013672, 0.07052496337890625, 0.07054332733154296, 0.07030989074707031, 0.07011020660400391, 0.07049727630615234, 0.07108812713623047, 0.07056179046630859, 0.07050444793701172, 0.07025971221923828, 0.07032217407226563, 0.07038566589355469, 0.07023513793945313, 0.07034368133544922, 0.07049625396728515, 0.07012556457519531, 0.07023721313476562, 0.06932579040527344, 0.07020543670654297, 0.07085977935791016, 0.07015219116210937, 0.07016242980957031, 0.07007129669189453, 0.07072870635986328, 0.07037542724609375, 0.07045836639404297, 0.07033446502685547, 0.07036313629150391, 0.07039180755615235, 0.07009587097167969, 0.07063346862792969, 0.0701839370727539, 0.07108812713623047, 0.07090892791748046, 0.07049727630615234, 0.07038259124755859, 0.07044403076171875, 0.0706519012451172, 0.070761474609375, 0.0694466552734375, 0.0697528305053711, 0.07026380920410157, 0.07064268493652344, 0.0705433578491211, 0.0703477783203125, 0.07133491516113281, 0.0704368667602539, 0.07131238555908204, 0.07170355224609375, 0.0705771484375, 0.07050752258300781, 0.07046451568603515, 0.07079840087890625, 0.07022892761230469, 0.07035084533691406, 0.07033344268798829, 0.0702402572631836, 0.07078604888916015, 0.07056896209716797, 0.13596263122558594, 0.06696959686279297, 0.06721331024169921, 0.06699417877197265, 0.06940467071533203, 0.07078604888916015, 0.07069593811035156, 0.07035187530517578, 0.07053107452392578, 0.07046246337890626, 0.0706344985961914, 0.07024642944335938, 0.07162467193603515, 0.07080652618408204, 0.07045529937744141, 0.07055359649658204, 0.0706519012451172, 0.07040102386474609, 0.06990335845947265, 0.07026080322265625, 0.07056377410888671, 0.07085670471191406, 0.06976921844482421, 0.07021260833740234, 0.06979583740234375, 0.07011634826660157, 0.0700426254272461, 0.07040716552734375, 0.07058329772949219, 0.0699658203125, 0.07026892852783204, 0.0703272933959961, 0.07030989074707031, 0.07069593811035156, 0.07077683258056641, 0.07038259124755859, 0.07024230194091798, 0.07033548736572266, 0.07012454223632812, 0.07299378967285156, 0.07067033386230469, 0.07059865570068359, 0.07034368133544922, 0.07035699462890625, 0.07052902221679687, 0.070687744140625, 0.06977433776855468, 0.07029862213134766, 0.0704901123046875, 0.07047270202636718, 0.07048191833496094, 0.07052799987792968, 0.0706170883178711, 0.07022182464599609, 0.0703272933959961, 0.070255615234375, 0.07052082824707032, 0.07059967803955078, 0.07068160247802735, 0.0705054702758789, 0.07004364776611328, 0.07048089599609375, 0.07136255645751953, 0.14220700073242187, 0.07030985260009766, 0.07026892852783204, 0.0702033920288086, 0.07120588684082031, 0.07035289764404297, 0.07038361358642578, 0.07045222473144531, 0.070181884765625, 0.07042969512939454, 0.07047577667236328, 0.07076150512695313, 0.07077168273925781, 0.07013990020751953, 0.07032422637939453, 0.07050752258300781, 0.07027200317382812, 0.07128268432617188, 0.070614013671875, 0.07047475433349609, 0.07060889434814453, 0.07019827270507813, 0.07051264190673828, 0.07065702056884765, 0.07134515380859376, 0.07106253051757813, 0.07054950714111329, 0.07042253112792969, 0.07038873291015625, 0.0702740478515625, 0.07026687622070313, 0.06861004638671875, 0.0671272964477539, 0.06711507415771484, 0.0671866226196289, 0.06729523468017579, 0.06710169219970703, 0.06714166259765625, 0.06752764892578125, 0.06734130859375, 0.06720921325683593, 0.06747135925292969, 0.06729933166503907, 0.0674150390625, 0.06712422180175781, 0.06744882965087891, 0.06737612915039062, 0.06713958740234376, 0.06726656341552735, 0.0685823974609375, 0.07029043579101563, 0.07070515441894532, 0.0720742416381836, 0.07064166259765625, 0.07065087890625, 0.07042559814453125, 0.07116806030273437, 0.07063648223876953, 0.07048703765869141, 0.07075430297851562, 0.07056896209716797, 0.07044608306884766, 0.07033036804199219, 0.13839053344726562, 0.07068978881835937, 0.07101030731201172, 0.07077279663085938, 0.07043782043457031, 0.070614013671875, 0.07037542724609375, 0.07067443084716797, 0.070181884765625, 0.07043788909912109, 0.07035391998291016, 0.0702003173828125, 0.07099903869628907, 0.07056690979003906, 0.07074406433105469, 0.07023308563232422, 0.07023616027832032, 0.0702208023071289, 0.070150146484375, 0.0707799072265625, 0.07061199951171875, 0.0703927993774414, 0.07016448211669922, 0.07032115173339844, 0.07010406494140625, 0.07089151763916016, 0.07061913299560547, 0.07181926727294922, 0.07085977935791016, 0.07089663696289063, 0.07025459289550781, 0.07071952056884766, 0.07063139343261719, 0.07043276977539062, 0.07035391998291016, 0.07057920074462891, 0.07042867279052735, 0.07073075103759766, 0.07066726684570312, 0.07058124542236328, 0.07049215698242188, 0.07038668823242188, 0.07035903930664063, 0.07047987365722656, 0.07088025665283203, 0.07053414154052734, 0.07050342559814453, 0.07065395355224609, 0.07077375793457032, 0.07083213043212891, 0.070761474609375, 0.07080242919921875, 0.07068364715576173, 0.0717496337890625, 0.07135539245605468, 0.07119155120849609, 0.07112703704833985, 0.07091506958007812, 0.07129190063476562, 0.07068876647949218, 0.07067545318603516, 0.07053619384765625, 0.07090688323974609]",tokens/s,14.20344151445213,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/phi-1_5,microsoft/phi-1_5,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1306.464256,2103.967744,0.0,1457.52064,1272.750592,s,10,1.329427551269531,0.13294275512695314,0.0012200886206429765,0.13265889739990233,0.1341803771972656,0.1350921875,0.1358216357421875,"[0.13600399780273437, 0.13269917297363282, 0.1317310791015625, 0.1318907470703125, 0.131806884765625, 0.1328501434326172, 0.1324745635986328, 0.13397775268554687, 0.13261862182617187, 0.1333745880126953]",tokens/s,1925.6408501202932,kWh,1.562583448681218e-06,8.560805149739424e-07,6.424628677710524e-06,8.843292641365686e-06,tokens/kWh,28948493.55120577,MB,1306.464256,2103.967744,0.0,1457.52064,1369.423872,s,10,78.31643701171875,7.831643701171875,0.021087870794415795,7.826485107421875,7.855575732421875,7.869772485351563,7.881129887695312,"[7.8200595703125, 7.8524208984375, 7.80727783203125, 7.828986328125, 7.81284423828125, 7.83669384765625, 7.82121484375, 7.825626953125, 7.82734326171875, 7.88396923828125]",tokens/s,8.044288326162373,kWh,9.24571096544203e-05,5.067334492555682e-05,0.00037095189544549136,0.0005140823500254685,tokens/kWh,122548.4593993139,,s,629,79.38599323272705,0.12620984615695877,0.015775713114662086,0.12392652893066407,0.12565974731445312,0.1260990447998047,0.2560962493896484,"[0.12357324981689453, 0.12395417785644532, 0.12677222442626954, 0.12635955047607422, 0.124906494140625, 0.12412108612060548, 0.12417945861816407, 0.12488601684570312, 0.12357427215576172, 0.12358553314208984, 0.12521676635742188, 0.12579737854003906, 0.1256099853515625, 0.12379033660888672, 0.12357119750976563, 0.12366028594970703, 0.12364492797851563, 0.12450201416015624, 0.12360806274414063, 0.12366643524169922, 0.12377497863769531, 0.12358348846435546, 0.12363878631591797, 0.12448051452636719, 0.12341043090820313, 0.12406886291503906, 0.1237401580810547, 0.12359986877441406, 0.12348108673095703, 0.12367359924316407, 0.12363571166992188, 0.12357324981689453, 0.12363468933105469, 0.12353740692138672, 0.12361625671386718, 0.12422758483886719, 0.12424396514892579, 0.12538982391357423, 0.12366336059570313, 0.12492594909667969, 0.12365926361083984, 0.12361727905273437, 0.12350054168701172, 0.12435148620605468, 0.12661043548583983, 0.12594380950927733, 0.12404121398925781, 0.12383539581298827, 0.12378726196289062, 0.12356095886230468, 0.12356813049316406, 0.12374221038818359, 0.12462796783447265, 0.12367359924316407, 0.12347289276123047, 0.12355174255371094, 0.1236684799194336, 0.12365004730224609, 0.12358656311035156, 0.12423372650146484, 0.12397772979736328, 0.12430950164794922, 0.25706393432617186, 0.12518399810791014, 0.1238814697265625, 0.12411289978027344, 0.12383539581298827, 0.12371456146240234, 0.12595814514160156, 0.12542259216308593, 0.12580659484863282, 0.12499353790283203, 0.1239152603149414, 0.12502528381347655, 0.12599295806884767, 0.12452146911621094, 0.12406169891357421, 0.12400128173828125, 0.12455014038085938, 0.12355481719970703, 0.12359884643554687, 0.12353740692138672, 0.1237760009765625, 0.1253580780029297, 0.12455423736572266, 0.1236305923461914, 0.12355788421630859, 0.12357529449462891, 0.12357529449462891, 0.123683837890625, 0.12378419494628906, 0.12360908508300782, 0.12378828430175781, 0.12359474945068359, 0.12440064239501954, 0.12405043029785157, 0.12471295928955078, 0.12421119689941407, 0.12409037017822265, 0.12466687774658203, 0.12391321563720703, 0.1252689895629883, 0.1255536651611328, 0.12441907501220703, 0.12589260864257812, 0.12565299224853516, 0.12552909088134764, 0.12456448364257812, 0.12414975738525391, 0.12398387145996094, 0.1251430435180664, 0.12559257507324217, 0.1256447982788086, 0.12538572692871094, 0.12506521606445312, 0.12563251495361327, 0.12649676513671876, 0.12583424377441407, 0.1255536651611328, 0.12570214080810546, 0.12467916870117188, 0.12509900665283202, 0.12491264343261718, 0.12573184204101562, 0.12440268707275391, 0.2558197784423828, 0.12364800262451171, 0.123683837890625, 0.12350975799560547, 0.12375552368164063, 0.12458700561523438, 0.12379647827148438, 0.12382003021240234, 0.12372787475585938, 0.12350975799560547, 0.12364492797851563, 0.12362751770019531, 0.12420403289794922, 0.12373401641845704, 0.12366745758056641, 0.12346367645263671, 0.1236490249633789, 0.12343807983398437, 0.12373401641845704, 0.12360601806640625, 0.1237391357421875, 0.12377907562255859, 0.12418252563476563, 0.12495769500732422, 0.12483993530273438, 0.12376576232910157, 0.12357529449462891, 0.12388044738769531, 0.12398592376708985, 0.12371250915527343, 0.12381696319580078, 0.1249966049194336, 0.12406578826904296, 0.12373709106445313, 0.1236316146850586, 0.12356710052490234, 0.1236305923461914, 0.12532736206054687, 0.12533248138427736, 0.1239900131225586, 0.12350566101074219, 0.12367155456542969, 0.12361727905273437, 0.12359065246582031, 0.12348108673095703, 0.12358451080322265, 0.12368691253662109, 0.12367565155029298, 0.12437299346923827, 0.12555570983886719, 0.12554956817626953, 0.12386406707763672, 0.12385485076904297, 0.12392857360839844, 0.12358246612548827, 0.12377907562255859, 0.12381081390380859, 0.12436070251464844, 0.12358144378662109, 0.12363775634765625, 0.12359168243408203, 0.12367974090576171, 0.12394802856445312, 0.2562037658691406, 0.12365312194824218, 0.1237053451538086, 0.1237760009765625, 0.12487884521484376, 0.12573286437988282, 0.12605644989013673, 0.12572876739501954, 0.12546969604492186, 0.1246740493774414, 0.124980224609375, 0.12507443237304688, 0.12493721771240235, 0.12486860656738281, 0.1260953598022461, 0.12375142669677734, 0.12360294342041016, 0.12364800262451171, 0.12349849700927734, 0.12341350555419922, 0.12356915283203125, 0.12356813049316406, 0.12392652893066407, 0.12379750061035157, 0.12378316497802734, 0.12362239837646484, 0.1237544937133789, 0.12356301116943359, 0.12365824127197265, 0.12351487731933594, 0.12436070251464844, 0.12455014038085938, 0.12394802856445312, 0.12437811279296875, 0.12415590667724609, 0.12446412658691407, 0.1244395523071289, 0.12447334289550781, 0.1255577621459961, 0.1261445083618164, 0.12384767913818359, 0.12500070190429688, 0.12377907562255859, 0.12363775634765625, 0.12484812927246093, 0.12531302642822265, 0.12550348663330077, 0.12423168182373047, 0.12353024291992187, 0.12354150390625, 0.12352819061279297, 0.12369817352294922, 0.12365004730224609, 0.12370738983154297, 0.12456755065917968, 0.12433100891113281, 0.1237739486694336, 0.12359168243408203, 0.12380569458007812, 0.12372684478759766, 0.12373299407958985, 0.12365721893310547, 0.12492594909667969, 0.2555535430908203, 0.12613938903808594, 0.12532940673828125, 0.12536217498779298, 0.1253396453857422, 0.12545536041259767, 0.12536831665039064, 0.12381081390380859, 0.12342476654052735, 0.12351283264160157, 0.12347801971435547, 0.12362035369873046, 0.12350669097900391, 0.12365414428710937, 0.12357324981689453, 0.12354252624511719, 0.12360192108154297, 0.12350975799560547, 0.12355379486083984, 0.12362751770019531, 0.12359065246582031, 0.12350259399414062, 0.12365414428710937, 0.12462079620361328, 0.12366643524169922, 0.12346572875976562, 0.12355891418457031, 0.12368691253662109, 0.12421836853027343, 0.12335001373291016, 0.12413645172119141, 0.12520652770996094, 0.12418355560302734, 0.1253570556640625, 0.12440064239501954, 0.1235230712890625, 0.1235968017578125, 0.12357529449462891, 0.12391321563720703, 0.12415590667724609, 0.12387635040283203, 0.12383539581298827, 0.12365106964111328, 0.12362649536132812, 0.12361727905273437, 0.12473446655273437, 0.12511949157714844, 0.12443341064453126, 0.12362854766845703, 0.12501708984375, 0.12398387145996094, 0.12350873565673828, 0.12383948516845703, 0.1234698257446289, 0.12409651184082031, 0.12359884643554687, 0.12379750061035157, 0.12368077087402343, 0.12469760131835937, 0.12350669097900391, 0.1235077133178711, 0.12355891418457031, 0.12358451080322265, 0.25665740966796874, 0.12402899169921874, 0.12411385345458985, 0.12439552307128907, 0.12551270294189454, 0.12451840209960938, 0.12435968017578125, 0.12583116912841796, 0.1254318084716797, 0.1253939208984375, 0.12529971313476562, 0.1254133758544922, 0.1254062042236328, 0.1256294403076172, 0.12560486602783202, 0.12544409942626952, 0.12538470458984374, 0.12542668914794922, 0.1252710418701172, 0.12386508941650391, 0.12361420440673829, 0.12358144378662109, 0.12357324981689453, 0.12350873565673828, 0.12352819061279297, 0.12368793487548828, 0.12353945922851563, 0.12357222747802735, 0.12369203186035156, 0.12346880340576172, 0.12355583953857421, 0.1235599365234375, 0.12362035369873046, 0.12436275482177735, 0.1252147216796875, 0.12532940673828125, 0.12448358154296875, 0.1234882583618164, 0.12387020874023437, 0.12536627197265626, 0.12422758483886719, 0.12369407653808594, 0.12347187042236328, 0.12357427215576172, 0.12363673400878906, 0.12348006439208985, 0.12376166534423828, 0.12611788940429688, 0.12559974670410157, 0.12563353729248047, 0.12546969604492186, 0.12542668914794922, 0.1254840316772461, 0.12547277069091797, 0.12400947570800781, 0.12405452728271485, 0.12358451080322265, 0.1235599365234375, 0.12348928070068359, 0.12358246612548827, 0.1234862060546875, 0.12351181030273438, 0.12364492797851563, 0.2565027770996094, 0.12444467163085937, 0.124115966796875, 0.12360499572753907, 0.12404326629638672, 0.12441804504394531, 0.1250918426513672, 0.1257748489379883, 0.12563353729248047, 0.12372889709472656, 0.12562022399902345, 0.12486041259765625, 0.12480921936035157, 0.123720703125, 0.12351897430419922, 0.12377088165283204, 0.12374221038818359, 0.12360908508300782, 0.1239920654296875, 0.1237022705078125, 0.12362547302246094, 0.12358758544921875, 0.12353330993652344, 0.12495155334472656, 0.12379033660888672, 0.1237227554321289, 0.12362137603759765, 0.1235445785522461, 0.12405248260498047, 0.12381081390380859, 0.12356403350830078, 0.12472217559814452, 0.12582911682128906, 0.1260021743774414, 0.12565503692626953, 0.12548607635498046, 0.125338623046875, 0.12534374237060547, 0.12404428863525391, 0.12439449310302735, 0.12376576232910157, 0.12392550659179688, 0.12379135894775391, 0.1235384292602539, 0.12375961303710938, 0.12353228759765625, 0.12357427215576172, 0.12382310485839844, 0.1239767074584961, 0.12351385498046875, 0.12377088165283204, 0.12349235534667968, 0.12367667388916016, 0.1235568618774414, 0.12351283264160157, 0.12387225341796874, 0.12435968017578125, 0.12366745758056641, 0.12357734680175782, 0.12359986877441406, 0.12354560089111329, 0.12352819061279297, 0.12502630615234375, 0.26002227783203125, 0.12474163055419922, 0.12465561676025391, 0.12385485076904297, 0.12388966369628907, 0.12364697265625, 0.12477133178710938, 0.12527410888671875, 0.12405145263671875, 0.1237760009765625, 0.12372991943359375, 0.1253529586791992, 0.12522803497314453, 0.12430233764648438, 0.12380057525634766, 0.12450713348388671, 0.12450508880615234, 0.12496998596191407, 0.12366950225830078, 0.12387840270996094, 0.12420403289794922, 0.1244395523071289, 0.12422451019287109, 0.12519014739990234, 0.12686438751220702, 0.12572672271728516, 0.12376882934570313, 0.12486656188964844, 0.1239767074584961, 0.12363263702392578, 0.12419276428222656, 0.12381183624267578, 0.12427263641357422, 0.12527206420898437, 0.12414259338378907, 0.12360499572753907, 0.12352102661132812, 0.12354662322998047, 0.12364083099365235, 0.12379545593261719, 0.1257748489379883, 0.12477439880371094, 0.12361011505126954, 0.12374425506591796, 0.12376268768310547, 0.12368691253662109, 0.12373606109619141, 0.12365824127197265, 0.1240596466064453, 0.12369305419921875, 0.12396441650390624, 0.12373811340332032, 0.12371353912353515, 0.12357119750976563, 0.12355379486083984, 0.1238067169189453, 0.12372889709472656, 0.12425318145751953, 0.12379853057861329, 0.12396031951904297, 0.12386099243164063, 0.12410060882568359, 0.12376780700683594, 0.2569492492675781, 0.12346163177490234, 0.12355788421630859, 0.12358451080322265, 0.12365516662597656, 0.12385894775390625, 0.12412210845947266, 0.12367871856689452, 0.12457984161376953, 0.12387123107910156, 0.12360704040527344, 0.12351078033447266, 0.12353638458251953, 0.12353638458251953, 0.12359782409667969, 0.12352921295166015, 0.12678758239746094, 0.1258260498046875, 0.12560076904296874, 0.12596224212646484, 0.12543590545654296, 0.12542668914794922, 0.12532838439941407, 0.12374221038818359, 0.12540006256103517, 0.12414771270751954, 0.12379750061035157, 0.12367871856689452, 0.12370944213867187, 0.12368077087402343, 0.12369817352294922, 0.12355379486083984, 0.12357119750976563, 0.12395622253417969, 0.12402175903320313, 0.12356505584716797, 0.12348210906982422, 0.12368793487548828, 0.12353536224365234, 0.12395622253417969, 0.12403302764892578, 0.12700466918945313, 0.12573798370361328, 0.12478463745117188, 0.12397158050537109, 0.12360192108154297, 0.12377292633056641, 0.12353024291992187, 0.12364390563964844, 0.12410163116455078, 0.12373197174072266, 0.123936767578125, 0.12391731262207031, 0.12367155456542969, 0.12363980865478516, 0.12377804565429687, 0.12557823944091798, 0.12434022521972657, 0.12393472290039062, 0.12455423736572266, 0.12541849517822265, 0.12554239654541016, 0.12558438110351564, 0.25772952270507815, 0.12436172485351563, 0.12393984222412109, 0.12354867553710938, 0.12373197174072266, 0.12357119750976563, 0.123578369140625, 0.12372889709472656, 0.12355379486083984, 0.12389990234375, 0.12362239837646484, 0.12408729553222657, 0.12435148620605468, 0.1244395523071289, 0.12433100891113281, 0.12407398223876953, 0.12391117095947266, 0.12426445007324219, 0.12396236419677735, 0.12403404998779297, 0.1263288345336914, 0.12405554962158204, 0.12396646118164062, 0.1240995864868164, 0.12518297576904297, 0.12740505981445313, 0.12441292572021484, 0.12416512298583984, 0.12624896240234376, 0.12561100769042968, 0.12505804443359375, 0.12423577880859375, 0.12659302520751953, 0.1257891845703125, 0.1247457275390625, 0.12536627197265626, 0.12574105834960939, 0.12544102478027344, 0.12642201232910155, 0.1264035873413086, 0.12703129577636718, 0.12545126342773438, 0.12710707092285156, 0.12490751647949219, 0.1260052490234375, 0.12597964477539061, 0.1264691162109375, 0.12679987335205078, 0.12610150146484375, 0.12555980682373047, 0.12536831665039064, 0.12553011322021485, 0.12543283081054687, 0.125591552734375, 0.12561817932128908, 0.12541849517822265, 0.1260789794921875, 0.12718182373046874, 0.1256980514526367, 0.12580147552490234, 0.1268490219116211, 0.1256785888671875, 0.12574310302734376]",tokens/s,7.92331209053505,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-2.7b,facebook/opt-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2109.853696,2844.2624,0.0,2197.815296,1927.351296,s,10,2.3800795135498047,0.23800795135498043,0.0010254107368052306,0.23830428314208985,0.23930529022216795,0.23934926986694335,0.23938445358276367,"[0.2383564453125, 0.23939324951171875, 0.23619731140136718, 0.23845465087890624, 0.23723452758789063, 0.23663900756835937, 0.23750480651855468, 0.2382521209716797, 0.2387518768310547, 0.23929551696777343]",tokens/s,1075.594317511624,kWh,2.793223439723023e-06,1.5305452026781454e-06,1.2162554949675677e-05,1.6486323592076845e-05,tokens/kWh,15528022.276781643,MB,2109.853696,2844.2624,0.0,2197.815296,2031.97184,s,10,139.4725029296875,13.94725029296875,0.016539028053013265,13.941937500000002,13.97250703125,13.977812109375,13.982056171875,"[13.953560546875, 13.945388671875, 13.94201171875, 13.9831171875, 13.9309609375, 13.9364580078125, 13.92993359375, 13.94186328125, 13.971328125, 13.937880859375]",tokens/s,4.517019389245513,kWh,0.000164597820511391,9.021296607492203e-05,0.0007178143901425277,0.0009726251767288406,tokens/kWh,64773.153633430826,,s,629,141.39150625610358,0.2247877682926924,0.028297149074530483,0.2211778564453125,0.22228438720703125,0.22277959289550783,0.45843198486328124,"[0.22260429382324218, 0.22169497680664063, 0.2212351989746094, 0.22115533447265626, 0.22176870727539064, 0.22137344360351563, 0.22118502807617188, 0.22141644287109374, 0.22102528381347655, 0.22195199584960937, 0.2219018249511719, 0.22150553894042968, 0.22119935607910157, 0.2213509063720703, 0.22125465393066407, 0.22120550537109376, 0.22150962829589843, 0.2213017578125, 0.22201548767089843, 0.2213632049560547, 0.22165196228027345, 0.22151373291015625, 0.22148095703125, 0.22154649353027345, 0.22147174072265624, 0.22180044555664064, 0.22122802734375, 0.22110105895996093, 0.22116249084472656, 0.221444091796875, 0.22163456726074218, 0.22287872314453125, 0.2216417236328125, 0.222202880859375, 0.2216407012939453, 0.22104165649414062, 0.22102323913574218, 0.22114508056640625, 0.22116044616699218, 0.22107955932617188, 0.2210508728027344, 0.22112460327148437, 0.22108979797363282, 0.2215557098388672, 0.22159564208984375, 0.22146662902832032, 0.2216785888671875, 0.22263194274902343, 0.22135398864746095, 0.22125056457519532, 0.22187930297851563, 0.22126797485351563, 0.2213396453857422, 0.22115225219726561, 0.22118502807617188, 0.22127410888671875, 0.22127104187011717, 0.22109901428222656, 0.22111744689941407, 0.22118911743164063, 0.2214871063232422, 0.22157005310058595, 0.46144613647460936, 0.22118707275390626, 0.2218403778076172, 0.2209945526123047, 0.22095564270019533, 0.22111538696289063, 0.22113792419433595, 0.22112973022460938, 0.22129766845703125, 0.22095974731445311, 0.22107244873046875, 0.2212720031738281, 0.22100991821289062, 0.22110617065429689, 0.22098739624023436, 0.22138470458984374, 0.22130073547363283, 0.22108773803710938, 0.22093721008300782, 0.2209566650390625, 0.2209310760498047, 0.2208204803466797, 0.22089932250976563, 0.22095155334472658, 0.22101708984375, 0.22186495971679687, 0.22131610107421876, 0.22127513122558592, 0.22142361450195314, 0.22218751525878908, 0.2213519287109375, 0.2209669189453125, 0.22220083618164063, 0.2210744323730469, 0.22159461975097655, 0.22113792419433595, 0.22117990112304686, 0.2222161865234375, 0.22108262634277343, 0.2210293731689453, 0.22102117919921874, 0.22107955932617188, 0.22112562561035157, 0.22216499328613282, 0.22140518188476563, 0.22183526611328125, 0.22283879089355468, 0.22166937255859376, 0.2215045166015625, 0.22186904907226562, 0.22122700500488282, 0.2214256591796875, 0.22139903259277344, 0.2215004119873047, 0.22137753295898438, 0.22115737915039063, 0.22106419372558594, 0.22163967895507813, 0.22111334228515625, 0.22137753295898438, 0.2212833251953125, 0.2219683837890625, 0.22127923583984374, 0.45813043212890625, 0.22103347778320312, 0.2213949432373047, 0.22112973022460938, 0.22099250793457031, 0.22118502807617188, 0.2218219451904297, 0.22100376892089843, 0.221154296875, 0.22091162109375, 0.22253260803222658, 0.22119935607910157, 0.2210529327392578, 0.22278041076660157, 0.22130482482910158, 0.22150553894042968, 0.2213519287109375, 0.22121983337402343, 0.2217584686279297, 0.22111436462402342, 0.22102015686035156, 0.22090444946289062, 0.22078054809570313, 0.2211778564453125, 0.22104576110839844, 0.2211420135498047, 0.22199909973144533, 0.22127308654785155, 0.22181170654296875, 0.2217164764404297, 0.2210918426513672, 0.2213201904296875, 0.22124339294433593, 0.2210150451660156, 0.22111231994628905, 0.22106008911132813, 0.22112051391601562, 0.22103245544433595, 0.22106419372558594, 0.2211778564453125, 0.22102323913574218, 0.22111846923828124, 0.22116146850585938, 0.2212884521484375, 0.22095872497558594, 0.22103347778320312, 0.221048828125, 0.2216294403076172, 0.22115122985839844, 0.22118400573730468, 0.221127685546875, 0.22102117919921874, 0.22113177490234376, 0.22128025817871094, 0.2211031036376953, 0.22143180847167968, 0.22129254150390626, 0.22108773803710938, 0.22222642517089844, 0.22198886108398438, 0.2217205810546875, 0.2217574462890625, 0.22159461975097655, 0.4614256591796875, 0.22283775329589844, 0.22295756530761718, 0.22274969482421875, 0.2225858612060547, 0.22346035766601563, 0.22301695251464843, 0.22341127014160156, 0.22270252990722655, 0.22250291442871092, 0.22281216430664064, 0.22286746215820313, 0.22281011962890626, 0.22280703735351562, 0.22268620300292968, 0.22271487426757813, 0.22270976257324218, 0.22246092224121095, 0.222814208984375, 0.22279373168945313, 0.22285516357421875, 0.222635009765625, 0.2227783660888672, 0.2227271728515625, 0.22253773498535157, 0.22261862182617187, 0.223025146484375, 0.22222540283203124, 0.22242611694335937, 0.22123930358886718, 0.22103450012207032, 0.2209105987548828, 0.22106008911132813, 0.22086451721191405, 0.2209740753173828, 0.22110208129882813, 0.2218260498046875, 0.2210365447998047, 0.2210713653564453, 0.22134988403320313, 0.22149017333984375, 0.22106419372558594, 0.22114309692382814, 0.22111225891113281, 0.2225971221923828, 0.22118400573730468, 0.22139187622070314, 0.22111538696289063, 0.22112153625488282, 0.22092594909667967, 0.22134783935546876, 0.221127685546875, 0.22192127990722657, 0.2215854034423828, 0.22127308654785155, 0.22121881103515625, 0.2214686737060547, 0.2213396453857422, 0.22123008728027344, 0.22115327453613282, 0.22119218444824218, 0.22103347778320312, 0.22114303588867187, 0.45854925537109376, 0.22104678344726564, 0.22133247375488282, 0.22091571044921876, 0.22102630615234375, 0.2210508728027344, 0.22108364868164063, 0.22100274658203126, 0.22103141784667968, 0.22081741333007812, 0.22105906677246093, 0.22115737915039063, 0.22105702209472655, 0.22100991821289062, 0.22107749938964844, 0.22084402465820313, 0.22094540405273438, 0.22115327453613282, 0.22110719299316406, 0.220980224609375, 0.22154444885253907, 0.22112460327148437, 0.2211031036376953, 0.22097817993164062, 0.2210498504638672, 0.22134375, 0.2211266632080078, 0.22089112854003906, 0.2209566650390625, 0.22103756713867187, 0.2209976348876953, 0.22094540405273438, 0.22101708984375, 0.2214256591796875, 0.22106623840332032, 0.22102528381347655, 0.2213017578125, 0.2209976348876953, 0.221233154296875, 0.22100274658203126, 0.22102220153808594, 0.22098329162597657, 0.2211584014892578, 0.2211092529296875, 0.22123417663574219, 0.22111744689941407, 0.2211235809326172, 0.22127001953125, 0.22116761779785157, 0.22121881103515625, 0.2211031036376953, 0.2210498504638672, 0.221085693359375, 0.22113587951660157, 0.22125978088378906, 0.2211041259765625, 0.221154296875, 0.22228172302246094, 0.22109901428222656, 0.22121267700195313, 0.22124339294433593, 0.2211584014892578, 0.2214686737060547, 0.457933837890625, 0.2211962890625, 0.22194586181640624, 0.22120755004882814, 0.22100889587402345, 0.2212843475341797, 0.22189056396484375, 0.2212884521484375, 0.2211727294921875, 0.22092083740234375, 0.22090956115722657, 0.2211768341064453, 0.2210160675048828, 0.22107545471191406, 0.22154035949707032, 0.22111436462402342, 0.22106521606445312, 0.22105599975585938, 0.22096998596191406, 0.22127615356445313, 0.22098329162597657, 0.22110617065429689, 0.2209003448486328, 0.22102117919921874, 0.22100376892089843, 0.2210365447998047, 0.22115635681152343, 0.2209239044189453, 0.22113996887207032, 0.22109490966796874, 0.22142259216308594, 0.22121983337402343, 0.22105599975585938, 0.2209105987548828, 0.221159423828125, 0.22130482482910158, 0.22137651062011718, 0.22106521606445312, 0.22213119506835938, 0.22088088989257812, 0.2209105987548828, 0.2210150451660156, 0.22098739624023436, 0.22129458618164063, 0.22125363159179687, 0.22113894653320312, 0.22119833374023437, 0.2218956756591797, 0.22099250793457031, 0.22140518188476563, 0.22130892944335936, 0.22184857177734374, 0.22106930541992187, 0.22177484130859376, 0.22129254150390626, 0.22115635681152343, 0.22096485900878907, 0.22116864013671875, 0.22148915100097658, 0.22126797485351563, 0.221384765625, 0.2214911346435547, 0.22094540405273438, 0.45877044677734374, 0.2209187774658203, 0.22111744689941407, 0.22087065124511718, 0.22097509765625, 0.22129971313476562, 0.2210744323730469, 0.2212843475341797, 0.22100991821289062, 0.22094744873046876, 0.2208368682861328, 0.22104473876953126, 0.22097305297851563, 0.2210682830810547, 0.2209914855957031, 0.2208757781982422, 0.2209628143310547, 0.2210426940917969, 0.22097509765625, 0.22097203063964843, 0.22091468811035156, 0.22095872497558594, 0.22083993530273438, 0.22126591491699218, 0.2211420135498047, 0.22217318725585938, 0.22125978088378906, 0.22093618774414062, 0.2212351989746094, 0.22171852111816406, 0.22144717407226563, 0.22102323913574218, 0.221486083984375, 0.220980224609375, 0.2209935302734375, 0.2213939208984375, 0.22103858947753907, 0.22095462036132812, 0.22107647705078126, 0.22094744873046876, 0.22103858947753907, 0.22127206420898438, 0.22109286499023437, 0.2211461181640625, 0.22218240356445312, 0.22110719299316406, 0.2209812469482422, 0.22119833374023437, 0.22108876037597655, 0.22112870788574218, 0.22101913452148436, 0.22104678344726564, 0.2209669189453125, 0.22112870788574218, 0.2210682830810547, 0.22112051391601562, 0.22107034301757814, 0.22104473876953126, 0.22089421081542968, 0.221011962890625, 0.2210160675048828, 0.2210846710205078, 0.2209628143310547, 0.45941656494140626, 0.2209495086669922, 0.221739013671875, 0.2209863739013672, 0.22102117919921874, 0.221048828125, 0.22226022338867188, 0.22110617065429689, 0.2219622344970703, 0.22180557250976562, 0.22233804321289063, 0.2211041259765625, 0.22118911743164063, 0.22098329162597657, 0.2222192687988281, 0.22136012268066407, 0.22214041137695312, 0.2213079071044922, 0.22128947448730468, 0.22100787353515625, 0.221127685546875, 0.22152703857421874, 0.2220943298339844, 0.2211031036376953, 0.22113792419433595, 0.22100889587402345, 0.22107034301757814, 0.22086758422851563, 0.2210048065185547, 0.22096588134765624, 0.2210846710205078, 0.22087680053710937, 0.221154296875, 0.22088607788085937, 0.22132730102539064, 0.2210529327392578, 0.22137548828125, 0.22103450012207032, 0.22103450012207032, 0.22075392150878906, 0.22111949157714844, 0.2211420135498047, 0.2211461181640625, 0.2211041259765625, 0.22117990112304686, 0.2209812469482422, 0.22081843566894532, 0.22104371643066406, 0.22111949157714844, 0.22109286499023437, 0.22118502807617188, 0.22213119506835938, 0.22129049682617188, 0.22118092346191406, 0.22175027465820313, 0.2221670379638672, 0.22145330810546876, 0.221517822265625, 0.22109490966796874, 0.22186087036132812, 0.2214615020751953, 0.22115122985839844, 0.22144102478027344, 0.46024600219726564, 0.2209976348876953, 0.22151475524902345, 0.22144717407226563, 0.2214246368408203, 0.22156083679199218, 0.2218076171875, 0.22113690185546875, 0.2215905303955078, 0.22111949157714844, 0.2214993896484375, 0.22210354614257813, 0.221412353515625, 0.22127104187011717, 0.22124339294433593, 0.22104165649414062, 0.22167552185058595, 0.22163148498535157, 0.2216048583984375, 0.22217523193359376, 0.22170419311523437, 0.22118092346191406, 0.22107034301757814, 0.22108876037597655, 0.22134988403320313, 0.22161715698242188, 0.22139698791503906, 0.22093209838867187, 0.22118707275390626, 0.22141542053222657, 0.22160383605957032, 0.2212833251953125, 0.22284288024902343, 0.2227220458984375, 0.22272000122070312, 0.22289511108398438, 0.22466764831542968, 0.2222950439453125, 0.22271078491210938, 0.22245887756347657, 0.22309580993652345, 0.2229698486328125, 0.22274867248535157, 0.22293504333496095, 0.22252748107910156, 0.22249267578125, 0.22271795654296875, 0.22294834899902344, 0.2227640380859375, 0.22101913452148436, 0.2211420135498047, 0.22163967895507813, 0.22111949157714844, 0.22116761779785157, 0.2211420135498047, 0.22103347778320312, 0.22134066772460936, 0.22165606689453124, 0.22108979797363282, 0.22110823059082033, 0.2213621826171875, 0.22120448303222656, 0.22122802734375, 0.46055218505859374, 0.22127308654785155, 0.22119218444824218, 0.22088088989257812, 0.22082456970214845, 0.22128128051757812, 0.22141439819335937, 0.22119935607910157, 0.22096383666992186, 0.22105804443359375, 0.22094137573242187, 0.2210590057373047, 0.22101094055175782, 0.22181581115722657, 0.22244248962402344, 0.22087271118164062, 0.22137753295898438, 0.22102732849121093, 0.2222520294189453, 0.22111129760742188, 0.22082662963867186, 0.22154853820800782, 0.22087986755371095, 0.2212034606933594, 0.22097920227050782, 0.22116659545898437, 0.22161100769042968, 0.22113075256347656, 0.2215413818359375, 0.22253465270996095, 0.22111949157714844, 0.2211102752685547, 0.2211788787841797, 0.22141952514648439, 0.22129766845703125, 0.22112562561035157, 0.22104063415527345, 0.22099046325683594, 0.22102835083007813, 0.22090444946289062, 0.22094438171386718, 0.2210181121826172, 0.22109907531738282, 0.22128121948242188, 0.22107647705078126, 0.22143795776367187, 0.2210846710205078, 0.22113792419433595, 0.22100274658203126, 0.22100889587402345, 0.2211266632080078, 0.22113587951660157, 0.2213580780029297, 0.2212833251953125, 0.221154296875, 0.22113587951660157, 0.2210672607421875, 0.22181581115722657, 0.22194586181640624, 0.22132325744628906, 0.22108572387695313, 0.22134576416015625, 0.22117170715332032]",tokens/s,4.448640633764008,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-13b,huggyllama/llama-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,3013.357568,9259.450368,0.0,8613.003264,8211.364864,s,10,10.943852783203125,1.0943852783203125,0.00185809213941572,1.0943612060546875,1.0968373901367188,1.0970477233886717,1.0972159899902343,"[1.097258056640625, 1.09552197265625, 1.0923255615234375, 1.0922135009765626, 1.09405712890625, 1.091574951171875, 1.0937421875, 1.094665283203125, 1.0957034912109376, 1.0967906494140625]",tokens/s,233.92127532354476,kWh,1.2894171526034674e-05,7.065532383967365e-06,5.862768579100175e-05,7.858738970100378e-05,tokens/kWh,3257520.080180627,MB,3013.357568,9330.753536,0.0,8684.306432,8503.627264,s,10,640.7681367187499,64.07681367187499,0.020824056597130436,64.070240234375,64.11088984375,64.113944921875,64.116388984375,"[64.1102109375, 64.0801015625, 64.117, 64.0658984375, 64.065828125, 64.06840234375, 64.058859375, 64.04678125, 64.072078125, 64.0829765625]",tokens/s,0.9831949560196744,kWh,0.000756398006098138,0.0004145729534449856,0.003549850923211795,0.004720821882754919,tokens/kWh,13345.133869620864,,s,629,649.5949702148431,1.032742400977494,0.1300197569102036,1.016932373046875,1.018054443359375,1.0185316284179688,2.1104683203125,"[1.0186362915039062, 1.0175692749023437, 1.0181939086914062, 1.0167439575195312, 1.0171248779296875, 1.016279052734375, 1.0170603637695312, 1.0164469604492188, 1.019283447265625, 1.0177188110351563, 1.0175784912109376, 1.0175529174804687, 1.0177136840820313, 1.0184437866210938, 1.0184273681640625, 1.0175098876953126, 1.0180792236328124, 1.0184560546875, 1.0168545532226563, 1.0170511474609376, 1.0169282836914062, 1.0172200927734374, 1.0169989013671874, 1.016431640625, 1.01659033203125, 1.0177269897460937, 1.0169927978515625, 1.0175907592773437, 1.0173204345703124, 1.0170286254882812, 1.0172518310546874, 1.0171300048828125, 1.0176942749023437, 1.0188645629882813, 1.0181181640625, 1.0181754760742188, 1.0174935302734376, 1.0177156982421875, 1.0180280151367187, 1.0169384765625, 1.0188124389648439, 1.0189732055664062, 1.01850830078125, 1.0174976196289063, 1.0177904663085937, 1.0171678466796874, 1.0175887451171874, 1.0177188110351563, 1.017942138671875, 1.019806640625, 1.0175037231445312, 1.0165176391601562, 1.0163671264648437, 1.018239990234375, 1.0174945068359376, 1.0187335815429688, 1.0170091552734375, 1.017196533203125, 1.0169682006835938, 1.0169784545898437, 1.0177904663085937, 1.0165442504882813, 2.11431005859375, 1.017186279296875, 1.0167265014648437, 1.0168094482421874, 1.016437744140625, 1.0170368041992188, 1.0164561767578124, 1.0164777221679688, 1.01673779296875, 1.0177433471679687, 1.0164715576171874, 1.0170480346679687, 1.0178303833007813, 1.0165759887695311, 1.0164664306640625, 1.0171217651367188, 1.0163681030273437, 1.0164623413085938, 1.0167490844726563, 1.016791015625, 1.0163056640625, 1.0171576538085938, 1.0169917602539063, 1.017670654296875, 1.0177689819335938, 1.0164049682617187, 1.0167510986328125, 1.0171494140625, 1.0164398193359374, 1.0172323608398437, 1.0166558837890625, 1.0169886474609375, 1.01707470703125, 1.0176522216796875, 1.0164090576171876, 1.0175907592773437, 1.016195068359375, 1.0165288696289063, 1.0176030883789062, 1.0171300048828125, 1.0172190551757812, 1.01783447265625, 1.0167275390625, 1.0168729858398438, 1.016838134765625, 1.01656884765625, 1.0176798706054688, 1.0164961547851563, 1.0169405517578125, 1.0169313354492187, 1.0181314697265624, 1.0185051879882812, 1.0174259033203126, 1.0190386962890625, 1.0177259521484374, 1.0175364990234375, 1.01764404296875, 1.0178928833007812, 1.0174586791992188, 1.01879296875, 1.0175662231445313, 1.0174638061523438, 1.0168340454101563, 2.110869384765625, 1.0163967895507813, 1.0164827880859375, 1.0182993774414062, 1.017069580078125, 1.0174013671875, 1.017512939453125, 1.0179420166015625, 1.0180894775390625, 1.0180361938476563, 1.0178211669921875, 1.0178641967773439, 1.0179297485351562, 1.019236328125, 1.0181181640625, 1.0165933837890626, 1.0170029907226563, 1.0190684814453126, 1.0187539672851562, 1.0192598876953125, 1.0180260009765625, 1.018945556640625, 1.0177413330078124, 1.0181325073242187, 1.0181212158203126, 1.018977294921875, 1.0179379272460938, 1.0190817260742187, 1.0184038696289062, 1.0187530517578125, 1.0190274658203125, 1.0183782348632813, 1.0174586791992188, 1.0177177734375, 1.0169108276367187, 1.0171514892578124, 1.0180515747070313, 1.0181908569335938, 1.0179368896484375, 1.0182778930664063, 1.0189833984375, 1.0178088989257812, 1.0176030883789062, 1.0174474487304688, 1.01793994140625, 1.0195138549804688, 1.0180485229492187, 1.0181898193359376, 1.0169937744140625, 1.0169609985351562, 1.016900634765625, 1.0166210327148437, 1.0164254760742188, 1.0164019165039062, 1.0165575561523437, 1.0168330078125, 1.016764404296875, 1.016880126953125, 1.0165565185546874, 1.0169978637695312, 1.016406005859375, 1.0169456787109374, 1.0166640625, 2.10943701171875, 1.0166231079101562, 1.0164449462890626, 1.0163446044921876, 1.0166394653320312, 1.0180321044921874, 1.0164285278320313, 1.016468505859375, 1.0164756469726564, 1.0164132080078125, 1.0169036865234375, 1.0166927490234374, 1.0170050659179688, 1.0168923950195312, 1.0167388305664062, 1.0166712036132812, 1.016595458984375, 1.0170153198242187, 1.016637451171875, 1.0168944702148437, 1.0178826293945313, 1.0176430053710936, 1.017217041015625, 1.0173972778320313, 1.0166896362304687, 1.0168361206054688, 1.0170224609375, 1.0166179809570313, 1.0168811645507811, 1.0171064453125, 1.0169569091796875, 1.017037841796875, 1.0164387817382812, 1.0170715942382813, 1.0171002807617187, 1.0174781494140626, 1.01707470703125, 1.0163302612304688, 1.0170009765625, 1.0169763793945312, 1.0165155639648438, 1.0176727294921875, 1.0179563598632813, 1.0177484741210938, 1.0178109741210937, 1.016742919921875, 1.0165545043945312, 1.016642578125, 1.0165452880859376, 1.0169088134765625, 1.0167982177734376, 1.01705419921875, 1.0169876708984376, 1.0166353759765625, 1.01646337890625, 1.016869873046875, 1.0170398559570313, 1.0165657958984375, 1.016586181640625, 1.0168739624023437, 1.0175160522460938, 1.0169579467773437, 1.0165821533203125, 2.1117490234375, 1.016916015625, 1.017007080078125, 1.0167859497070313, 1.0164111328125, 1.016964111328125, 1.0174464111328125, 1.016838134765625, 1.016722412109375, 1.01697021484375, 1.0166876220703125, 1.0165493774414063, 1.0166353759765625, 1.0168402099609375, 1.0164602661132813, 1.016764404296875, 1.0166251220703124, 1.0166599731445312, 1.0170848999023439, 1.0168576049804687, 1.01642138671875, 1.0169517822265626, 1.01652685546875, 1.016585205078125, 1.0163035888671874, 1.0168361206054688, 1.0171637573242187, 1.01675927734375, 1.0166220703125, 1.0165278930664063, 1.0162329711914062, 1.0164930419921876, 1.0165626831054688, 1.0164500732421875, 1.0164182739257812, 1.016795166015625, 1.0171268920898437, 1.0172815551757812, 1.0167838745117188, 1.0167255249023437, 1.0174822387695313, 1.0175631103515625, 1.0172815551757812, 1.0165330200195313, 1.0170941162109375, 1.0168494262695313, 1.0168780517578124, 1.0167992553710938, 1.0165073852539062, 1.01684326171875, 1.0168442993164062, 1.0172507934570312, 1.0167459716796876, 1.0169251708984375, 1.017218017578125, 1.0175836181640625, 1.0206064453125, 1.0173880615234374, 1.017280517578125, 1.0169978637695312, 1.0173460693359375, 1.0168074340820312, 1.0165514526367188, 2.109128662109375, 1.0168524780273438, 1.01806591796875, 1.0175098876953126, 1.0182809448242187, 1.0176317138671875, 1.016975341796875, 1.0173204345703124, 1.0172610473632813, 1.0172006225585937, 1.017169921875, 1.0174801635742188, 1.0167971801757814, 1.018260498046875, 1.01722314453125, 1.0176788330078126, 1.0169375, 1.0171392211914063, 1.01722314453125, 1.01747509765625, 1.017091064453125, 1.0181314697265624, 1.0181068725585938, 1.0168790893554687, 1.0172938232421875, 1.016933349609375, 1.0170153198242187, 1.0169262084960937, 1.0168422241210937, 1.0174187622070312, 1.016806396484375, 1.0169446411132812, 1.0168545532226563, 1.0171279296875, 1.0165452880859376, 1.0166732788085937, 1.0163753051757813, 1.0164019165039062, 1.0169395141601563, 1.016479736328125, 1.0163753051757813, 1.0167285766601561, 1.016975341796875, 1.0166343383789063, 1.016521728515625, 1.0164971313476563, 1.01644287109375, 1.0162514038085937, 1.0162565307617188, 1.0164049682617187, 1.0166456298828126, 1.0162913208007813, 1.0164541625976562, 1.0166067504882812, 1.0164879150390624, 1.0165186767578125, 1.0164029541015625, 1.0165452880859376, 1.0164561767578124, 1.016764404296875, 1.0167705688476563, 1.0167193603515625, 1.016838134765625, 2.111257568359375, 1.0166507568359375, 1.0164859008789062, 1.0166497192382813, 1.0162554931640626, 1.0165023803710938, 1.0166967163085938, 1.016848388671875, 1.0164193115234375, 1.0167725830078125, 1.01661181640625, 1.0165176391601562, 1.017017333984375, 1.0167285766601561, 1.0165155639648438, 1.0169896850585938, 1.0168555297851563, 1.016900634765625, 1.0165892944335937, 1.0169630737304687, 1.0168340454101563, 1.0165022583007812, 1.01639990234375, 1.0166077270507812, 1.0167879638671875, 1.0163414916992188, 1.016711181640625, 1.016896484375, 1.0175538940429687, 1.0173655395507812, 1.01714013671875, 1.0171791381835937, 1.016394775390625, 1.0165196533203125, 1.0164090576171876, 1.0165565185546874, 1.0166087646484374, 1.0164295654296875, 1.0164623413085938, 1.016205322265625, 1.0160199584960938, 1.0161571655273438, 1.0178303833007813, 1.0175641479492188, 1.0178211669921875, 1.0177904663085937, 1.0168576049804687, 1.0169139404296874, 1.016748046875, 1.0167572631835937, 1.0166681518554688, 1.0166241455078124, 1.0170941162109375, 1.0179061889648438, 1.0177638549804688, 1.0172477416992187, 1.01701220703125, 1.017195556640625, 1.0166302490234376, 1.0166353759765625, 1.0164111328125, 1.0163353881835937, 1.0165473022460938, 2.111709228515625, 1.016605712890625, 1.0165575561523437, 1.0163179321289062, 1.0160752563476563, 1.0163681030273437, 1.0162769775390625, 1.01686376953125, 1.0165380859375, 1.01652685546875, 1.0169149169921874, 1.0168729858398438, 1.016648681640625, 1.0167265014648437, 1.0163302612304688, 1.0163599243164063, 1.0167684936523438, 1.0168627319335937, 1.0168145751953126, 1.0170839233398437, 1.0169886474609375, 1.016784912109375, 1.0166917114257812, 1.016859619140625, 1.0169098510742187, 1.0174157104492187, 1.0167152709960938, 1.0165821533203125, 1.0165196533203125, 1.0169415893554687, 1.01663232421875, 1.016784912109375, 1.0165791015625, 1.0167817993164063, 1.0162913208007813, 1.016732666015625, 1.0160650024414062, 1.0161500244140624, 1.0161346435546874, 1.0164756469726564, 1.0165278930664063, 1.0166435546875, 1.0165442504882813, 1.0163240966796876, 1.0163547973632812, 1.0165545043945312, 1.016332275390625, 1.0163927001953126, 1.0162432250976563, 1.0166128540039063, 1.01661181640625, 1.0168319702148438, 1.0166835327148438, 1.0168361206054688, 1.0165135498046876, 1.0166527709960937, 1.0165084228515624, 1.0164992065429688, 1.016553466796875, 1.0167490844726563, 1.0172364501953124, 1.0167316284179688, 1.0162698364257812, 2.113395751953125, 1.017417724609375, 1.0168319702148438, 1.016943603515625, 1.0170357666015626, 1.01726513671875, 1.016616943359375, 1.0171105346679687, 1.0168176879882813, 1.0170306396484374, 1.0163834838867187, 1.0166005859375, 1.0165791015625, 1.0170603637695312, 1.0170880126953126, 1.0176962280273438, 1.0171422729492188, 1.0168514404296876, 1.0166578979492187, 1.0166784057617186, 1.01640087890625, 1.0165043334960937, 1.0165616455078126, 1.0163988647460938, 1.016511474609375, 1.0165104370117188, 1.0166610107421874, 1.01673779296875, 1.016742919921875, 1.0167920532226562, 1.0162626342773438, 1.0163783569335938, 1.0163292236328125, 1.0166128540039063, 1.0167019653320313, 1.0171371459960938, 1.0175958862304688, 1.0170101928710937, 1.0169866333007813, 1.0172344360351562, 1.0172160034179687, 1.016932373046875, 1.0171678466796874, 1.0173429565429688, 1.0172846069335937, 1.0185523071289062, 1.0170470581054687, 1.0176522216796875, 1.017080810546875, 1.0174044189453124, 1.0174361572265624, 1.017650146484375, 1.0165667724609375, 1.0164510498046875, 1.0166917114257812, 1.0181375732421876, 1.0173368530273437, 1.0173501586914062, 1.0173982543945312, 1.0175170288085937, 1.0172129516601562, 1.0174832763671875, 1.017628662109375, 2.11508642578125, 1.01734912109375, 1.0171422729492188, 1.0165667724609375, 1.0170706176757813, 1.0171514892578124, 1.0170203857421876, 1.0170941162109375, 1.017049072265625, 1.016974365234375, 1.0170296020507812, 1.0174832763671875, 1.0167408447265625, 1.01798193359375, 1.0171473999023437, 1.016896484375, 1.0165084228515624, 1.0163824462890625, 1.016531982421875, 1.016742919921875, 1.0175529174804687, 1.0176614379882813, 1.0177628173828126, 1.0172733154296876, 1.017101318359375, 1.0169559326171875, 1.0170614013671875, 1.0167142333984376, 1.01680126953125, 1.0172303466796875, 1.0184417114257813, 1.0178109741210937, 1.0175836181640625, 1.0166937866210937, 1.016395751953125, 1.0165514526367188, 1.016395751953125, 1.0163200073242187, 1.0162093505859375, 1.0166200561523437, 1.0170992431640624, 1.0166538696289062, 1.0170900268554688, 1.0167030029296875, 1.0169343872070313, 1.0181693725585939, 1.018203125, 1.0185471801757813, 1.0176788330078126, 1.0179194946289063, 1.0182062377929688, 1.0176983032226563, 1.0169210815429688, 1.0170449829101562, 1.0173613891601563, 1.016896484375, 1.0173850708007812, 1.0171493530273437, 1.0174464111328125, 1.0179911499023437, 1.0175467529296875, 1.017291748046875, 1.0167869262695313]",tokens/s,0.9682956747524812,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-7b,tiiuae/falcon-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-6.7b,EleutherAI/pythia-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -15331,18 +15805,24 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation - cls._check_and_enable_flash_attn_2( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 - raise ValueError( -ValueError: FalconForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpxmn1wkr8/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-MoE-A2.7B,Qwen/Qwen1.5-MoE-A2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-0.5B,Qwen/Qwen1.5-0.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -15362,29 +15842,149 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3724, in from_pretrained - hf_quantizer.preprocess_model( - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 182, in preprocess_model - return self._process_model_before_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 85, in _process_model_before_weight_loading - model, has_been_replaced = replace_with_awq_linear( - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear - _, has_been_replaced = replace_with_awq_linear( - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear - _, has_been_replaced = replace_with_awq_linear( - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear - _, has_been_replaced = replace_with_awq_linear( - [Previous line repeated 1 more time] - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 166, in replace_with_awq_linear - model._modules[name] = target_cls( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemm.py"", line 102, in __init__ - assert out_features % (32 // self.w_bit) == 0 -AssertionError + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-16B-nl,Salesforce/codegen-16B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: CodeGenForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-j-6b,EleutherAI/gpt-j-6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: GPTJForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2-large,openai-community/gpt2-large,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.42.3,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,1252.749312,2645.03296,0.0,1998.585856,1692.386816,s,10,0.18764684867858888,0.018764684867858886,0.0005992433307238454,0.01878708839416504,0.01952073516845703,0.019708079528808594,0.019857955017089843,"[0.019895423889160158, 0.018243936538696288, 0.018047775268554687, 0.01779680061340332, 0.01896006393432617, 0.01885526466369629, 0.01893507194519043, 0.018714496612548828, 0.019479103088378906, 0.01871891212463379]",tokens/s,13642.648507169439,kWh,2.0918840269540734e-07,1.1462499605261722e-07,6.201499553131089e-07,9.439633540611335e-07,tokens/kWh,271196968.5037379,MB,1253.888,2645.03296,0.0,1998.585856,1714.454528,s,10,11.419435302734374,1.1419435302734375,0.01935842230442361,1.1489760131835938,1.1544193725585938,1.1615755920410156,1.1673005676269532,"[1.1687318115234375, 1.14187158203125, 1.1200245361328125, 1.09501806640625, 1.1501046142578124, 1.143095458984375, 1.149320556640625, 1.1486314697265625, 1.1528291015625, 1.14980810546875]",tokens/s,55.16910278822167,kWh,1.3099662190341671e-05,7.1781809893895315e-06,2.638012164489513e-05,4.6657964824626325e-05,tokens/kWh,1350251.778807726,,s,629,11.567720458984363,0.018390652558003776,0.0022690962265683495,0.01818726348876953,0.018542176055908206,0.019018138122558592,0.03558961151123047,"[0.019501056671142578, 0.019162111282348633, 0.018941951751708985, 0.019066879272460938, 0.01902899169921875, 0.01900441551208496, 0.019058687210083008, 0.01902387237548828, 0.018993152618408202, 0.018852863311767578, 0.019162111282348633, 0.019190784454345702, 0.01906073570251465, 0.01916214370727539, 0.019212255477905272, 0.018974752426147462, 0.018965471267700196, 0.019121152877807617, 0.01924300765991211, 0.019508224487304687, 0.018880512237548826, 0.018902015686035157, 0.01886617660522461, 0.018918399810791017, 0.019088384628295898, 0.018933759689331055, 0.018364416122436524, 0.018290687561035156, 0.018215936660766603, 0.018141183853149414, 0.018117631912231445, 0.018125823974609375, 0.01810534477233887, 0.018126880645751953, 0.018101215362548828, 0.018391040802001952, 0.018130943298339842, 0.018176000595092775, 0.018163711547851562, 0.018165760040283203, 0.018115583419799804, 0.018102272033691406, 0.018117631912231445, 0.018163711547851562, 0.01817190361022949, 0.018099199295043944, 0.01810534477233887, 0.018035711288452147, 0.018132991790771484, 0.018129919052124025, 0.018310144424438478, 0.01823846435546875, 0.018265087127685545, 0.0180633602142334, 0.017743871688842772, 0.017752063751220702, 0.01804287910461426, 0.018145280838012694, 0.018197504043579102, 0.01824563217163086, 0.018159616470336915, 0.018191360473632814, 0.03562803268432617, 0.017076223373413087, 0.017086463928222655, 0.017167360305786132, 0.017089536666870117, 0.017047552108764647, 0.018058240890502928, 0.018059328079223634, 0.01834899139404297, 0.018276351928710938, 0.01819647979736328, 0.018250751495361327, 0.018142208099365235, 0.018107391357421874, 0.018147327423095702, 0.01824051284790039, 0.018332672119140626, 0.018497535705566406, 0.01864089584350586, 0.01923583984375, 0.01843916893005371, 0.018267135620117187, 0.018134016036987305, 0.018089984893798827, 0.018084863662719726, 0.01804800033569336, 0.018050048828125, 0.018152448654174806, 0.018058240890502928, 0.018107391357421874, 0.018075647354125975, 0.01815449523925781, 0.01826918411254883, 0.01882828712463379, 0.01827020835876465, 0.018112512588500978, 0.01822003173828125, 0.018148351669311523, 0.01818012809753418, 0.01826505661010742, 0.018214912414550782, 0.018086912155151368, 0.01820262336730957, 0.01820569610595703, 0.018292736053466797, 0.018268159866333008, 0.018142208099365235, 0.018082815170288084, 0.01815449523925781, 0.018143232345581056, 0.01820876884460449, 0.01820364761352539, 0.018139135360717772, 0.018288639068603514, 0.01816985511779785, 0.018242559432983398, 0.018145280838012694, 0.018168832778930662, 0.01838591957092285, 0.018288639068603514, 0.01816985511779785, 0.018164735794067383, 0.01818726348876953, 0.035490814208984374, 0.017146879196166993, 0.017096704483032226, 0.017101823806762697, 0.017148927688598634, 0.017076223373413087, 0.017095680236816405, 0.01705369567871094, 0.017084415435791016, 0.01704652786254883, 0.017073152542114257, 0.017122304916381836, 0.017118207931518553, 0.016943103790283204, 0.016923648834228516, 0.016948223114013672, 0.017068031311035157, 0.01701785659790039, 0.017042463302612304, 0.017095647811889648, 0.01701785659790039, 0.017040384292602538, 0.017099775314331055, 0.017438720703125, 0.017123327255249024, 0.017154048919677735, 0.01840025520324707, 0.01818009567260742, 0.018229248046875, 0.018310144424438478, 0.018306079864501952, 0.01845859146118164, 0.01840640068054199, 0.01824870491027832, 0.01821696090698242, 0.018378751754760742, 0.018288639068603514, 0.018337791442871093, 0.018119680404663087, 0.018142240524291992, 0.018222047805786134, 0.018165760040283203, 0.018128896713256838, 0.018109439849853515, 0.018035711288452147, 0.018190336227416993, 0.018142208099365235, 0.018572288513183592, 0.01823846435546875, 0.018312192916870116, 0.01840127944946289, 0.01828659248352051, 0.018241535186767577, 0.018165760040283203, 0.018241535186767577, 0.018564096450805666, 0.018354175567626953, 0.018292736053466797, 0.018290687561035156, 0.01822003173828125, 0.018307071685791015, 0.017810432434082032, 0.018223104476928712, 0.035160064697265625, 0.01702911949157715, 0.01702809524536133, 0.01705881690979004, 0.01706598472595215, 0.016983039855957033, 0.017069055557250978, 0.016987136840820313, 0.017040384292602538, 0.017047552108764647, 0.017079296112060546, 0.01699839973449707, 0.01716633605957031, 0.017104896545410156, 0.017161216735839844, 0.017048576354980468, 0.017089536666870117, 0.016977920532226562, 0.01703628730773926, 0.01696460723876953, 0.0170700798034668, 0.016954368591308593, 0.016942079544067384, 0.01699635124206543, 0.016995328903198242, 0.016898048400878905, 0.016713727951049806, 0.016722944259643553, 0.01681305694580078, 0.017180671691894533, 0.017088512420654296, 0.01701888084411621, 0.01700147247314453, 0.017062911987304686, 0.01698508834838867, 0.01697177505493164, 0.01697279930114746, 0.016986112594604492, 0.017044479370117188, 0.01701068878173828, 0.016991231918334963, 0.016957439422607423, 0.017006591796875, 0.016970752716064453, 0.018117631912231445, 0.018298879623413086, 0.01826201629638672, 0.018158592224121094, 0.018311168670654295, 0.01823846435546875, 0.018192384719848635, 0.018215936660766603, 0.018215936660766603, 0.018316287994384766, 0.017958911895751953, 0.017957887649536132, 0.018362367630004883, 0.018308095932006836, 0.01840742492675781, 0.01827020835876465, 0.01828659248352051, 0.018313215255737304, 0.018189311981201172, 0.037544960021972655, 0.01821286392211914, 0.018301952362060548, 0.018177024841308592, 0.018341888427734376, 0.018166784286499024, 0.01823027229309082, 0.01816985511779785, 0.018239488601684572, 0.018156543731689453, 0.018299903869628906, 0.018185216903686522, 0.01816268730163574, 0.018096128463745118, 0.018284543991088868, 0.018226175308227538, 0.018324480056762696, 0.01860812759399414, 0.018324480056762696, 0.0178155517578125, 0.017785856246948242, 0.018095104217529297, 0.01842278480529785, 0.01823539161682129, 0.017905664443969727, 0.01782681655883789, 0.0179783992767334, 0.018200544357299803, 0.018266111373901366, 0.01816166305541992, 0.01824665641784668, 0.018141183853149414, 0.018144256591796876, 0.018190336227416993, 0.01824358367919922, 0.018172927856445312, 0.01820159912109375, 0.018255872726440428, 0.018272256851196288, 0.018358272552490236, 0.018521087646484375, 0.018334720611572267, 0.018185216903686522, 0.018242559432983398, 0.01826918411254883, 0.01823027229309082, 0.018207744598388673, 0.018310176849365235, 0.019415008544921876, 0.018423807144165038, 0.01822003173828125, 0.018291711807250977, 0.018289663314819335, 0.018283519744873047, 0.0181790714263916, 0.01822208023071289, 0.018185216903686522, 0.01886412811279297, 0.018226175308227538, 0.018282495498657226, 0.018313215255737304, 0.018164735794067383, 0.01845043182373047, 0.03739648056030274, 0.018181119918823242, 0.018241535186767577, 0.01823027229309082, 0.01821392059326172, 0.018124767303466797, 0.018082815170288084, 0.01809715270996094, 0.018166784286499024, 0.018148351669311523, 0.01822719955444336, 0.018189311981201172, 0.018256895065307616, 0.018296831130981444, 0.018318336486816408, 0.018317312240600587, 0.018249727249145507, 0.01822105598449707, 0.01821388816833496, 0.018130943298339842, 0.01822719955444336, 0.018092031478881835, 0.018159616470336915, 0.018121728897094725, 0.018221088409423828, 0.01806332778930664, 0.018075647354125975, 0.01804083251953125, 0.018119680404663087, 0.01819545555114746, 0.018163711547851562, 0.01859686470031738, 0.017810432434082032, 0.017913856506347657, 0.018059263229370116, 0.018198528289794923, 0.01818828773498535, 0.017778688430786133, 0.017869823455810546, 0.017741823196411134, 0.018295808792114256, 0.017896448135375977, 0.017772544860839845, 0.017969152450561524, 0.01826304054260254, 0.018215936660766603, 0.018177024841308592, 0.01818623924255371, 0.01823744010925293, 0.018198528289794923, 0.01825382423400879, 0.01824051284790039, 0.01818726348876953, 0.01818726348876953, 0.017923072814941408, 0.01808793640136719, 0.018089984893798827, 0.0182108154296875, 0.018126848220825196, 0.018173952102661133, 0.018095104217529297, 0.01818009567260742, 0.018108415603637695, 0.03722854232788086, 0.018264064788818358, 0.018149375915527344, 0.018223104476928712, 0.01821183967590332, 0.018185216903686522, 0.01822412872314453, 0.01826918411254883, 0.018124799728393554, 0.018149375915527344, 0.01822208023071289, 0.01824563217163086, 0.018125823974609375, 0.018198528289794923, 0.018142208099365235, 0.018223104476928712, 0.018132991790771484, 0.018152448654174806, 0.018113536834716795, 0.018110464096069336, 0.018173952102661133, 0.018098175048828127, 0.01864396858215332, 0.01861631965637207, 0.01824870491027832, 0.01820876884460449, 0.018185216903686522, 0.0181790714263916, 0.018264064788818358, 0.018883583068847656, 0.018126848220825196, 0.018206720352172853, 0.01845964813232422, 0.01884876823425293, 0.01919385528564453, 0.018539520263671876, 0.018249727249145507, 0.01821183967590332, 0.018140159606933593, 0.018144256591796876, 0.018119680404663087, 0.018159616470336915, 0.018124799728393554, 0.018163711547851562, 0.018130943298339842, 0.01814630317687988, 0.01801625633239746, 0.018094079971313477, 0.018101247787475586, 0.018257919311523436, 0.018185216903686522, 0.018156543731689453, 0.018214912414550782, 0.0180633602142334, 0.018174976348876954, 0.018197504043579102, 0.01824870491027832, 0.01803264045715332, 0.018129919052124025, 0.018128896713256838, 0.01823744010925293, 0.018160640716552736, 0.018131967544555663, 0.03765350341796875, 0.01818422317504883, 0.018552799224853516, 0.018185216903686522, 0.018251775741577148, 0.018109439849853515, 0.018101247787475586, 0.018156543731689453, 0.018367488861083983, 0.018241535186767577, 0.018173952102661133, 0.01819545555114746, 0.01821286392211914, 0.0182476806640625, 0.018231296539306642, 0.018241535186767577, 0.01845043182373047, 0.018157567977905274, 0.018182144165039063, 0.01813811111450195, 0.018151424407958985, 0.018158592224121094, 0.018131967544555663, 0.018102272033691406, 0.018387968063354493, 0.018963455200195312, 0.019009536743164062, 0.01837772750854492, 0.018300928115844727, 0.01823027229309082, 0.018131967544555663, 0.018241535186767577, 0.018181119918823242, 0.018173952102661133, 0.01818009567260742, 0.018192384719848635, 0.018124799728393554, 0.018095104217529297, 0.018111488342285157, 0.01816985511779785, 0.018111488342285157, 0.018273279190063475, 0.018086912155151368, 0.018127872467041017, 0.01804800033569336, 0.018068479537963866, 0.01807257652282715, 0.018143232345581056, 0.01836953544616699, 0.018771968841552734, 0.018332672119140626, 0.018215936660766603, 0.018234367370605468, 0.0180633602142334, 0.018104320526123048, 0.018113536834716795, 0.01809715270996094, 0.018191360473632814, 0.018207744598388673, 0.018197504043579102, 0.018155519485473632, 0.01821183967590332, 0.018310144424438478, 0.03782963180541992, 0.018319360733032225, 0.0182609920501709, 0.01858252716064453, 0.01844633674621582, 0.01822105598449707, 0.01816268730163574, 0.018199552536010744, 0.01820569610595703, 0.018272256851196288, 0.018266111373901366, 0.018281471252441405, 0.018259967803955078, 0.018241535186767577, 0.018298879623413086, 0.018288639068603514, 0.018290687561035156, 0.018226175308227538, 0.01784115219116211, 0.017913856506347657, 0.018182144165039063, 0.018107391357421874, 0.01822003173828125, 0.018142208099365235, 0.018151424407958985, 0.018266111373901366, 0.01818726348876953, 0.018129919052124025, 0.01813811111450195, 0.01824051284790039, 0.01821696090698242, 0.018259967803955078, 0.02001919937133789, 0.01999564743041992, 0.018327552795410155, 0.01823232078552246, 0.018370559692382812, 0.018197504043579102, 0.01824051284790039, 0.018125823974609375, 0.018531328201293946, 0.01827737617492676, 0.01825382423400879, 0.01817190361022949, 0.018314239501953124, 0.01825484848022461, 0.018183168411254884, 0.01818623924255371, 0.018306047439575195, 0.018114559173583983, 0.01822412872314453, 0.01819443130493164, 0.018314239501953124, 0.018771968841552734, 0.01904025650024414, 0.01839411163330078, 0.018292736053466797, 0.018183168411254884, 0.017855487823486327, 0.01780838394165039, 0.018231296539306642, 0.018173952102661133, 0.018111488342285157, 0.037116928100585936, 0.018333696365356447, 0.01808896064758301, 0.01819545555114746, 0.018264064788818358, 0.01824665641784668, 0.01822003173828125, 0.018165760040283203, 0.018125823974609375, 0.018256895065307616, 0.018242559432983398, 0.01821900749206543, 0.01814630317687988, 0.018191360473632814, 0.018185216903686522, 0.01820876884460449, 0.018250751495361327, 0.01823539161682129, 0.018181119918823242, 0.01821183967590332, 0.018050048828125, 0.018000896453857423, 0.01803264045715332, 0.018182144165039063, 0.01789952087402344, 0.017763328552246094, 0.018566144943237304, 0.018084863662719726, 0.018151424407958985, 0.018081792831420897, 0.018124799728393554, 0.018530303955078126, 0.01840332794189453, 0.018327552795410155, 0.018323455810546875, 0.018280448913574218, 0.018316287994384766, 0.018251775741577148, 0.018215936660766603, 0.01822003173828125, 0.018335744857788085, 0.018206720352172853, 0.018151424407958985, 0.01820364761352539, 0.018156543731689453, 0.018185216903686522, 0.01818726348876953, 0.018096128463745118, 0.018185216903686522, 0.018701311111450195, 0.018449407577514648, 0.018172927856445312, 0.018129919052124025, 0.01816783905029297, 0.018184160232543944, 0.01818009567260742, 0.01823027229309082, 0.018265087127685545, 0.01904640007019043, 0.018732032775878905, 0.01906073570251465, 0.01848320007324219, 0.018150400161743165]",tokens/s,54.375449530462205,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code + answer = input( +EOFError: EOF when reading a line + +During handling of the above exception, another exception occurred: + +Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights + self.create_no_weights_model() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model + meta_model = self.automodel_class.from_config(self.pretrained_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config + trust_remote_code = resolve_trust_remote_code( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code + raise ValueError( +ValueError: The repository for Deci/DeciCoder-1b contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/Deci/DeciCoder-1b. +Please pass the argument `trust_remote_code=True` to allow custom code to be run. + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mistral-7B-v0.1,mistralai/Mistral-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-7b,huggyllama/llama-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1979.4944,5480.382464,0.0,4833.93536,4503.282688,s,10,5.706418334960937,0.5706418334960938,0.0011422166985642673,0.5705734558105469,0.5721191223144532,0.5723321746826172,0.5725026165771484,"[0.5707071533203125, 0.5725452270507813, 0.570284912109375, 0.5698196411132812, 0.5708470458984375, 0.569266357421875, 0.5704397583007812, 0.571673828125, 0.57207177734375, 0.5687626342773437]",tokens/s,448.6176529182773,kWh,6.72348948356546e-06,3.6841831159411714e-06,3.142670724010705e-05,4.183437983961368e-05,tokens/kWh,6119368.829691346,MB,1979.4944,5480.382464,0.0,4833.93536,4688.699392,s,10,334.87464062500004,33.487464062499996,0.006284503345517177,33.486009765625,33.4966609375,33.498351953125,33.499704765625005,"[33.50004296875, 33.49628515625, 33.487125, 33.48791796875, 33.48489453125, 33.48313671875, 33.490703125, 33.48450390625, 33.48125, 33.47878125]",tokens/s,1.8813010111013093,kWh,0.0003953183352579305,0.00021666870724086642,0.0018133419907958965,0.002425329033294693,tokens/kWh,25975.85693946752,,s,629,339.4783874511717,0.5397112678079045,0.0678655066405644,0.531504150390625,0.5319763916015625,0.5321570190429687,1.1021465185546875,"[0.531127197265625, 0.5313873901367188, 0.5311314086914063, 0.5313760986328125, 0.5314212036132813, 0.5316044921875, 0.5316137084960938, 0.5314949340820313, 0.5322680053710938, 0.531794921875, 0.5314816284179688, 0.5319925537109375, 0.531863525390625, 0.5316638793945313, 0.5320120239257813, 0.5315921630859375, 0.5318819580078125, 0.5321605224609375, 0.53214208984375, 0.531884033203125, 0.5315399780273438, 0.5322833862304688, 0.532052978515625, 0.5314406127929687, 0.5317867431640625, 0.5322066040039063, 0.531673095703125, 0.53195263671875, 0.5317314453125, 0.5317376098632812, 0.5320519409179687, 0.5320724487304688, 0.531541015625, 0.5316557006835938, 0.53180517578125, 0.5318154296875, 0.5315655517578125, 0.5316137084960938, 0.5321820068359375, 0.531557373046875, 0.5312399291992187, 0.5314426879882812, 0.5312901000976562, 0.53134130859375, 0.531072998046875, 0.5317980346679687, 0.5320304565429688, 0.5319249877929687, 0.5319178466796874, 0.5318133544921875, 0.531989501953125, 0.5314345092773437, 0.531373046875, 0.531641357421875, 0.5318492431640625, 0.5319464721679688, 0.5321226196289063, 0.5319137573242188, 0.5322987670898438, 0.531788818359375, 0.53163623046875, 0.5317109985351562, 1.1043450927734375, 0.531673095703125, 0.5321574096679688, 0.5315389404296875, 0.5321922607421875, 0.531525634765625, 0.5317652587890624, 0.531631103515625, 0.5321697387695312, 0.5315164184570312, 0.5316024169921875, 0.5313341674804688, 0.5321021728515625, 0.5321441040039062, 0.5318215942382812, 0.531609619140625, 0.5315983276367188, 0.5313085327148438, 0.5319906005859375, 0.5317283325195312, 0.5320519409179687, 0.5316751098632813, 0.5315983276367188, 0.5317775268554688, 0.5322587890625, 0.5316044921875, 0.5319588012695312, 0.5312645263671875, 0.5314641723632813, 0.5313402709960937, 0.531599365234375, 0.5311528930664062, 0.5314417114257812, 0.5315245361328125, 0.5315297241210938, 0.531078125, 0.53165771484375, 0.5314437255859376, 0.5313720092773437, 0.53186767578125, 0.531873779296875, 0.5317017822265625, 0.53191064453125, 0.5315491943359375, 0.531904541015625, 0.53142529296875, 0.532937744140625, 0.5315389404296875, 0.5317601318359375, 0.5315614624023437, 0.5316034545898437, 0.5312798461914062, 0.5315686645507812, 0.53125634765625, 0.5316055297851563, 0.5312440185546875, 0.5317672729492188, 0.5314345092773437, 0.5318533325195313, 0.5322587890625, 0.5322587890625, 0.5315594482421875, 0.5315952758789062, 1.10245166015625, 0.5316915283203125, 0.5318369140625, 0.531167236328125, 0.5314037475585938, 0.5311907958984375, 0.531399658203125, 0.5313310546875, 0.5314713745117188, 0.5310955810546875, 0.5314068603515625, 0.5314180908203125, 0.5313095703125, 0.5320089721679687, 0.532147216796875, 0.5318717041015625, 0.5314703369140625, 0.5313587036132813, 0.5315277099609375, 0.5315932006835937, 0.5320427856445312, 0.5314682006835938, 0.5316864013671875, 0.5312532348632812, 0.531578857421875, 0.5313218383789062, 0.5315369262695312, 0.5313751220703125, 0.5314324340820312, 0.5314744262695312, 0.53136181640625, 0.5313638305664062, 0.5315297241210938, 0.5316331787109375, 0.5315000610351562, 0.5318041381835937, 0.5314805908203125, 0.5310812377929688, 0.5316290283203124, 0.531251220703125, 0.5314805908203125, 0.5312870483398437, 0.5313802490234375, 0.5314498291015625, 0.531378173828125, 0.5312542724609375, 0.531356689453125, 0.5313423461914063, 0.5315717163085938, 0.5312665405273438, 0.5319905395507812, 0.5315286865234375, 0.5317857055664063, 0.5316792602539062, 0.5319916381835937, 0.5315020141601563, 0.5320150756835937, 0.531610595703125, 0.5316116333007812, 0.531620849609375, 0.5315635375976563, 0.53176318359375, 0.5320653076171875, 1.1017093505859374, 0.5309368286132813, 0.5314478149414062, 0.531114990234375, 0.5318041381835937, 0.531794921875, 0.5318615112304688, 0.5316116333007812, 0.5316034545898437, 0.5310453491210938, 0.5313955688476563, 0.5313310546875, 0.5316249389648438, 0.5315194702148438, 0.5316045532226562, 0.5311835327148438, 0.5314447631835938, 0.53148876953125, 0.5315830688476563, 0.5314241943359375, 0.5317130126953125, 0.5312276611328125, 0.5314457397460938, 0.5311815795898438, 0.5318450927734375, 0.5317929077148438, 0.5315983276367188, 0.5316392822265625, 0.5314345092773437, 0.5313597412109375, 0.5314928588867187, 0.53110986328125, 0.5317550048828125, 0.531198974609375, 0.5312501831054688, 0.5313074951171874, 0.5314006958007812, 0.5310812377929688, 0.5314263305664062, 0.53121435546875, 0.5314088745117187, 0.5312266235351563, 0.5319813232421875, 0.5324287719726563, 0.53281494140625, 0.532264892578125, 0.5315143432617188, 0.531272705078125, 0.5317017822265625, 0.5313546142578125, 0.531945556640625, 0.5313545532226562, 0.53178369140625, 0.5314877319335938, 0.5314969482421875, 0.5313597412109375, 0.5315460815429688, 0.5314918212890625, 0.5317130126953125, 0.5316566772460938, 0.5317969970703125, 0.5315768432617187, 0.53257421875, 1.1031951904296875, 0.5310873413085937, 0.531431396484375, 0.5310433349609375, 0.5313966064453125, 0.5312911376953126, 0.5316239624023438, 0.5313822631835937, 0.5315317993164063, 0.53124609375, 0.5313659057617187, 0.5311549682617187, 0.5316239624023438, 0.531420166015625, 0.5314857177734374, 0.531357666015625, 0.5316966552734375, 0.5313771362304688, 0.5317969970703125, 0.5319751586914062, 0.531504150390625, 0.5317877807617187, 0.53207958984375, 0.531504150390625, 0.5317980346679687, 0.5316649169921875, 0.5317243041992188, 0.5313710327148438, 0.53178369140625, 0.5310208129882813, 0.5313812255859375, 0.5311692504882812, 0.5312440185546875, 0.530914306640625, 0.531140625, 0.5312010498046875, 0.5316300659179688, 0.5319229736328125, 0.5317314453125, 0.5311651611328125, 0.5311211547851562, 0.531178466796875, 0.5316658935546875, 0.5312122802734375, 0.5314109497070313, 0.5314529418945313, 0.5315552978515625, 0.531398681640625, 0.5312880859375, 0.5313443603515625, 0.53163623046875, 0.5312163696289063, 0.5315215454101563, 0.5311047973632812, 0.5318932495117188, 0.531894287109375, 0.5316249389648438, 0.5334948120117188, 0.5316904907226563, 0.5312880859375, 0.5315880737304688, 0.5312071533203125, 0.5317755126953125, 1.1012259521484375, 0.5312655639648437, 0.531800048828125, 0.5310771484375, 0.5316597900390625, 0.5314877319335938, 0.5313556518554687, 0.531009521484375, 0.5315706787109375, 0.5319342041015624, 0.5316925659179688, 0.5315604248046875, 0.5314334716796875, 0.5310894165039063, 0.531968994140625, 0.53129931640625, 0.5314898071289063, 0.5309706420898438, 0.5316198120117187, 0.5311743774414063, 0.53146826171875, 0.5311262817382812, 0.5313914794921875, 0.5310750732421875, 0.5313494873046875, 0.53096142578125, 0.5314263916015625, 0.5310238037109375, 0.5317867431640625, 0.5314058227539062, 0.531926025390625, 0.5319659423828125, 0.5314160766601562, 0.531178466796875, 0.5314283447265625, 0.5311897583007813, 0.5313648681640625, 0.5312819213867187, 0.53264794921875, 0.531478515625, 0.5314662475585937, 0.5313802490234375, 0.53146728515625, 0.531188720703125, 0.531399658203125, 0.5311815795898438, 0.5315440673828125, 0.5322147827148438, 0.531962890625, 0.5316351928710937, 0.5318799438476562, 0.5312614135742187, 0.5315430297851562, 0.5312973022460937, 0.531641357421875, 0.5314744262695312, 0.5315491943359375, 0.5312296752929687, 0.531863525390625, 0.5313689575195313, 0.5315000610351562, 0.5313095703125, 0.5315379028320313, 1.1023165283203125, 0.5312081909179688, 0.5320724487304688, 0.5311488037109375, 0.5318819580078125, 0.5312911376953126, 0.5314949340820313, 0.5315706787109375, 0.5317857055664063, 0.5313474731445312, 0.5318563842773437, 0.5311016845703125, 0.5315194702148438, 0.53150927734375, 0.5318553466796875, 0.5311559448242188, 0.5314652099609375, 0.5313792114257813, 0.5314171142578125, 0.5314180908203125, 0.5321830444335938, 0.5318389892578125, 0.5316331787109375, 0.5316177368164062, 0.5313392944335937, 0.5313668823242188, 0.5315061645507813, 0.5312501831054688, 0.5319915771484375, 0.5316126708984374, 0.5317601318359375, 0.5316557006835938, 0.53146826171875, 0.5313116455078125, 0.5315369262695312, 0.5313966064453125, 0.5317078857421875, 0.5314437255859376, 0.5320560913085938, 0.5326489868164063, 0.5319014282226563, 0.531631103515625, 0.5314703369140625, 0.5317478637695312, 0.5316761474609375, 0.5316065063476563, 0.531609619140625, 0.5315194702148438, 0.5318502197265625, 0.5314826049804687, 0.5319669799804687, 0.5315072021484375, 0.5315419921875, 0.5310453491210938, 0.5313034057617188, 0.5311867065429687, 0.5317181396484375, 0.531683349609375, 0.5318041381835937, 0.5316966552734375, 0.5320130615234375, 0.5314692993164063, 0.5316198120117187, 1.103932373046875, 0.5310914306640625, 0.531578857421875, 0.5308538818359375, 0.5313659057617187, 0.5314221801757812, 0.5314703369140625, 0.5309716186523438, 0.5315850830078125, 0.5310443115234375, 0.5311928100585938, 0.53098291015625, 0.5311600341796875, 0.5316239624023438, 0.531800048828125, 0.531646484375, 0.5318225708007812, 0.5314242553710937, 0.5319229736328125, 0.53176318359375, 0.5316587524414063, 0.53146826171875, 0.531483642578125, 0.5312266235351563, 0.5317498779296875, 0.5314273071289063, 0.5314631958007813, 0.5311232299804688, 0.5317816162109374, 0.5313494873046875, 0.5318584594726562, 0.5314795532226563, 0.5324308471679687, 0.5313074951171874, 0.5318523559570313, 0.5310309448242188, 0.5311488037109375, 0.5311488037109375, 0.5314488525390625, 0.530966552734375, 0.5313894653320312, 0.5310975952148438, 0.5314426879882812, 0.5313054809570312, 0.5314180908203125, 0.5313187866210938, 0.5313914794921875, 0.5315809326171875, 0.5312921752929688, 0.5312911376953126, 0.531684326171875, 0.5320560913085938, 0.5315133666992188, 0.5317980346679687, 0.5318328247070313, 0.5314559936523438, 0.5321195678710937, 0.5318225708007812, 0.5315963134765626, 0.5315829467773437, 0.5318184814453125, 0.531431396484375, 0.5319127197265625, 1.103847412109375, 0.531304443359375, 0.5315451049804687, 0.531357666015625, 0.5316792602539062, 0.5319639282226563, 0.5315829467773437, 0.5313710327148438, 0.5315205078125, 0.5312491455078125, 0.5314611206054688, 0.5316341552734375, 0.5313760986328125, 0.5311549682617187, 0.531583984375, 0.5310637817382813, 0.5312645263671875, 0.53108837890625, 0.5316741333007813, 0.531162109375, 0.5312429809570313, 0.5314140014648437, 0.531314697265625, 0.5313054809570312, 0.531968017578125, 0.531599365234375, 0.5316085815429688, 0.5312634887695312, 0.5314406127929687, 0.53096240234375, 0.5313423461914063, 0.5313720092773437, 0.5316188354492187, 0.5309050903320313, 0.5311948852539062, 0.5310873413085937, 0.5315645141601563, 0.5312706298828125, 0.5313065185546875, 0.5313433837890625, 0.53119384765625, 0.5309767456054687, 0.5315348510742187, 0.532041748046875, 0.5317161254882813, 0.5314119873046875, 0.5313494873046875, 0.5311979370117188, 0.5316075439453125, 0.5313341674804688, 0.5313423461914063, 0.531177490234375, 0.5312553100585937, 0.531019775390625, 0.5315665893554687, 0.5312440185546875, 0.5314283447265625, 0.5314006958007812, 0.5314877319335938, 0.5311262817382812, 0.5316321411132813, 0.5312686157226563, 0.5320028076171875, 1.103824951171875, 0.5310279541015624, 0.53146826171875, 0.5310341186523437, 0.5313740844726562, 0.5310853271484375, 0.5314447631835938, 0.5311447143554687, 0.5314212036132813, 0.531420166015625, 0.5311948852539062, 0.5308630981445313, 0.5313853149414063, 0.5309020385742188, 0.53150830078125, 0.5310576171875, 0.5312839965820313, 0.5317191772460937, 0.5318482055664062, 0.5312532348632812, 0.5314641723632813, 0.5309531860351563, 0.5312553100585937, 0.5309808349609375, 0.5311590576171875, 0.5310494995117188, 0.531863525390625, 0.5317703857421875, 0.5314180908203125, 0.53118359375, 0.5314396362304687, 0.5311129150390625, 0.5312420043945313, 0.5310259399414062, 0.5311918334960938, 0.5312973022460937, 0.5321564331054688, 0.5315194702148438, 0.5316976928710937, 0.5313034057617188, 0.5316218872070313, 0.531430419921875, 0.5316812744140625, 0.5315625, 0.5316239624023438, 0.5310105590820312, 0.5315389404296875, 0.5312665405273438, 0.5317191772460937, 0.5312142944335938, 0.5314641723632813, 0.53167822265625, 0.5313607788085938, 0.5311918334960938, 0.5314918212890625, 0.53161474609375, 0.5318031616210938, 0.5315338134765625, 0.5315020751953125, 0.5313065185546875, 0.531968994140625, 0.5318994140625, 0.5317734375]",tokens/s,1.8528425468336207,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-34B,,cuda,0,42,,,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,MB,1743.122432,22129.672192,0.0,21483.225088,20799.036928,s,10,27.909502197265624,2.7909502197265623,0.0030225550178342967,2.7914050292968753,2.79439267578125,2.794928149414062,2.7953565283203123,"[2.794273681640625, 2.795463623046875, 2.7873525390625, 2.789448486328125, 2.787631103515625, 2.78628466796875, 2.790373291015625, 2.792436767578125, 2.79304931640625, 2.793188720703125]",tokens/s,91.72503263962948,kWh,3.290233454770512e-05,1.803171549396211e-05,0.0001583880155991868,0.00020932206564085407,tokens/kWh,1222995.765956342,MB,1743.720448,22129.672192,0.0,21483.225088,20902.142976,s,10,1661.799328125,166.1799328125,0.024199823300055656,166.1772734375,166.2117125,166.21745,166.22204,"[166.17496875, 166.167359375, 166.14703125, 166.2104375, 166.2231875, 166.181296875, 166.179578125, 166.204078125, 166.159546875, 166.15184375]",tokens/s,0.37910714569299164,kWh,0.0019616428730719624,0.001075153456676562,0.009382404450362024,0.012419200780110549,tokens/kWh,5072.790199261051,,s,629,1684.2762666015624,2.677704716377683,0.33156351074934576,2.63752294921875,2.6395720703125,2.6405790039062498,5.428127246093751,"[2.63648046875, 2.637477783203125, 2.636610595703125, 2.63773388671875, 2.63674365234375, 2.6374482421875, 2.63684716796875, 2.637740966796875, 2.636241943359375, 2.6376162109375, 2.636966796875, 2.6365615234375, 2.639180908203125, 2.637003662109375, 2.637414306640625, 2.638074951171875, 2.638488525390625, 2.637603759765625, 2.6381865234375, 2.6367314453125, 2.63737646484375, 2.636360595703125, 2.63697314453125, 2.6366044921875, 2.6370693359375, 2.636568603515625, 2.636980224609375, 2.636353515625, 2.63706103515625, 2.636314697265625, 2.637646728515625, 2.63864208984375, 2.637822998046875, 2.63769091796875, 2.636580810546875, 2.636631103515625, 2.6366474609375, 2.636380126953125, 2.635778076171875, 2.639795166015625, 2.637285400390625, 2.636735595703125, 2.63680419921875, 2.636505126953125, 2.636515380859375, 2.637959228515625, 2.6366884765625, 2.638927001953125, 2.6396015625, 2.6393056640625, 2.640069580078125, 2.638898193359375, 2.6396181640625, 2.639129638671875, 2.6404248046875, 2.63950439453125, 2.6398291015625, 2.639203369140625, 2.639447021484375, 2.638824462890625, 2.638972900390625, 2.637701171875, 5.43399951171875, 2.63682861328125, 2.637526123046875, 2.637077392578125, 2.636991455078125, 2.636851318359375, 2.63690966796875, 2.636982177734375, 2.638088134765625, 2.63716455078125, 2.63853662109375, 2.638309326171875, 2.63889111328125, 2.64060107421875, 2.637055908203125, 2.63606884765625, 2.63802880859375, 2.637928466796875, 2.6390927734375, 2.6384384765625, 2.637506591796875, 2.63756298828125, 2.63665869140625, 2.636583984375, 2.63687060546875, 2.6370908203125, 2.637446044921875, 2.63802685546875, 2.6375556640625, 2.637516845703125, 2.63621728515625, 2.637552734375, 2.637285400390625, 2.637663330078125, 2.6371767578125, 2.637763671875, 2.63699560546875, 2.63773583984375, 2.637076416015625, 2.637444091796875, 2.636642333984375, 2.636317626953125, 2.63705078125, 2.636695556640625, 2.637413330078125, 2.63615478515625, 2.6434365234375, 2.637322265625, 2.638057373046875, 2.63786181640625, 2.638676025390625, 2.637177734375, 2.63716455078125, 2.637470703125, 2.63781689453125, 2.636496826171875, 2.63722802734375, 2.637602783203125, 2.638507080078125, 2.637663330078125, 2.636621826171875, 2.63727001953125, 2.6375107421875, 5.42925830078125, 2.638592041015625, 2.6379560546875, 2.637390869140625, 2.636768310546875, 2.63889501953125, 2.638235595703125, 2.638288818359375, 2.637874267578125, 2.638148681640625, 2.637728759765625, 2.637327392578125, 2.63690869140625, 2.637347900390625, 2.6369453125, 2.637433837890625, 2.63707958984375, 2.636822509765625, 2.637656982421875, 2.63617529296875, 2.636454833984375, 2.6358466796875, 2.636423095703125, 2.63856640625, 2.63604833984375, 2.63657470703125, 2.637000732421875, 2.637095947265625, 2.636664794921875, 2.6381435546875, 2.640372802734375, 2.638454833984375, 2.636282958984375, 2.636675048828125, 2.635629638671875, 2.636507080078125, 2.63680615234375, 2.63701611328125, 2.636884033203125, 2.63752294921875, 2.6366669921875, 2.63699462890625, 2.63780859375, 2.6374072265625, 2.636739501953125, 2.6374296875, 2.637625244140625, 2.639678466796875, 2.63699658203125, 2.63729052734375, 2.637656982421875, 2.636547119140625, 2.6364794921875, 2.636135498046875, 2.636613525390625, 2.636599365234375, 2.63747265625, 2.6357861328125, 2.63600439453125, 2.6359716796875, 2.636907470703125, 2.636198974609375, 2.639195068359375, 5.42974560546875, 2.637918212890625, 2.638065673828125, 2.6382080078125, 2.639459228515625, 2.638834716796875, 2.640337890625, 2.639097900390625, 2.638284912109375, 2.639035400390625, 2.636672119140625, 2.63703955078125, 2.63772265625, 2.639283203125, 2.6380830078125, 2.639520751953125, 2.63948291015625, 2.637526123046875, 2.638147705078125, 2.637602783203125, 2.63681640625, 2.63762841796875, 2.638529541015625, 2.63696484375, 2.63714599609375, 2.637178955078125, 2.6376796875, 2.63855810546875, 2.641314697265625, 2.637876220703125, 2.63853369140625, 2.63912548828125, 2.637345703125, 2.636560302734375, 2.636971923828125, 2.636669921875, 2.636619873046875, 2.6392392578125, 2.63902099609375, 2.638465087890625, 2.63775341796875, 2.638636962890625, 2.637673583984375, 2.6372373046875, 2.64167431640625, 2.6387353515625, 2.637962158203125, 2.639416259765625, 2.637681640625, 2.639564697265625, 2.6377236328125, 2.638668701171875, 2.638095458984375, 2.63796728515625, 2.637655029296875, 2.637210693359375, 2.63780859375, 2.638158935546875, 2.637846435546875, 2.63988232421875, 2.641334228515625, 2.636745849609375, 2.63619482421875, 5.42609521484375, 2.63847412109375, 2.64098095703125, 2.6405458984375, 2.64087451171875, 2.64148388671875, 2.64074755859375, 2.64026318359375, 2.640604248046875, 2.640962646484375, 2.638622802734375, 2.63895458984375, 2.636958740234375, 2.636030029296875, 2.636072021484375, 2.637117431640625, 2.636577880859375, 2.642241455078125, 2.64078857421875, 2.641033203125, 2.641383544921875, 2.64137841796875, 2.639701904296875, 2.640848876953125, 2.640034912109375, 2.6397451171875, 2.640384033203125, 2.637106201171875, 2.636432373046875, 2.636267578125, 2.637424560546875, 2.636958740234375, 2.63680712890625, 2.637274169921875, 2.638011474609375, 2.63804931640625, 2.63707861328125, 2.636590087890625, 2.63739794921875, 2.63689013671875, 2.63980029296875, 2.639002685546875, 2.638836669921875, 2.63720849609375, 2.637477783203125, 2.637814697265625, 2.637075439453125, 2.637104248046875, 2.638521240234375, 2.63874755859375, 2.63686962890625, 2.63682763671875, 2.637802490234375, 2.63747998046875, 2.6362255859375, 2.63657568359375, 2.636940185546875, 2.642130859375, 2.6372998046875, 2.63684912109375, 2.63803271484375, 2.63796533203125, 2.637073486328125, 5.4244033203125, 2.636745849609375, 2.6364814453125, 2.6371123046875, 2.637408203125, 2.636239990234375, 2.63697607421875, 2.638215087890625, 2.639066162109375, 2.63918994140625, 2.639048583984375, 2.63975634765625, 2.639510498046875, 2.63817626953125, 2.637822021484375, 2.6385029296875, 2.637655029296875, 2.637551513671875, 2.636876708984375, 2.63750048828125, 2.63714599609375, 2.63798779296875, 2.63727099609375, 2.637442138671875, 2.636712890625, 2.637854736328125, 2.638200927734375, 2.6394736328125, 2.63754541015625, 2.636971923828125, 2.637844482421875, 2.63727197265625, 2.6361865234375, 2.636801025390625, 2.637619140625, 2.637947998046875, 2.63809228515625, 2.637560791015625, 2.6417490234375, 2.63729052734375, 2.63712158203125, 2.63689111328125, 2.63716259765625, 2.635864990234375, 2.6373251953125, 2.63663623046875, 2.63742578125, 2.637765625, 2.63775341796875, 2.638487548828125, 2.638257080078125, 2.63924951171875, 2.639295654296875, 2.639500244140625, 2.63644970703125, 2.637189208984375, 2.637624267578125, 2.639413330078125, 2.639233154296875, 2.63777587890625, 2.637401123046875, 2.637765625, 2.63680712890625, 5.42891748046875, 2.637751220703125, 2.6369423828125, 2.637287353515625, 2.6384208984375, 2.6376162109375, 2.637705078125, 2.6376396484375, 2.636984375, 2.636735595703125, 2.637454345703125, 2.63906005859375, 2.641005615234375, 2.639869873046875, 2.638488525390625, 2.638159912109375, 2.638043212890625, 2.6367958984375, 2.6363330078125, 2.637013916015625, 2.63684716796875, 2.63693115234375, 2.636872802734375, 2.64043212890625, 2.636421142578125, 2.63861962890625, 2.63849169921875, 2.638710693359375, 2.637824951171875, 2.6379111328125, 2.636610595703125, 2.6375966796875, 2.637263916015625, 2.63708984375, 2.637641845703125, 2.637759521484375, 2.6372197265625, 2.63781591796875, 2.63773583984375, 2.638950439453125, 2.637347900390625, 2.63666796875, 2.638234619140625, 2.638180419921875, 2.637719482421875, 2.63872216796875, 2.639690673828125, 2.63703662109375, 2.636780517578125, 2.636748779296875, 2.637224853515625, 2.636233642578125, 2.636378173828125, 2.636863525390625, 2.63923193359375, 2.638593994140625, 2.638180419921875, 2.63895556640625, 2.638899169921875, 2.637263916015625, 2.63600537109375, 2.637727783203125, 2.63825, 5.43155078125, 2.637918212890625, 2.63883056640625, 2.63889208984375, 2.63790185546875, 2.637695068359375, 2.636559326171875, 2.636966796875, 2.63714208984375, 2.639033447265625, 2.6404404296875, 2.640530517578125, 2.64198046875, 2.640649169921875, 2.637720458984375, 2.637758544921875, 2.639655029296875, 2.63736328125, 2.63708251953125, 2.636771240234375, 2.636508056640625, 2.63598583984375, 2.6370068359375, 2.636777587890625, 2.636590087890625, 2.63606884765625, 2.63714111328125, 2.63913671875, 2.637537353515625, 2.63705712890625, 2.636992431640625, 2.638615478515625, 2.636080078125, 2.637097900390625, 2.636854248046875, 2.640509033203125, 2.63925146484375, 2.6389052734375, 2.6383544921875, 2.63872705078125, 2.638085205078125, 2.6382275390625, 2.637551513671875, 2.637571044921875, 2.637200439453125, 2.63806982421875, 2.637642822265625, 2.637718505859375, 2.6373642578125, 2.6366044921875, 2.638297119140625, 2.63918798828125, 2.63943896484375, 2.6392646484375, 2.639478759765625, 2.637856689453125, 2.638085205078125, 2.638904296875, 2.6383564453125, 2.639803466796875, 2.640150634765625, 2.637856689453125, 2.640256103515625, 5.4306796875, 2.637127685546875, 2.6382705078125, 2.640280517578125, 2.639151123046875, 2.639075439453125, 2.63817529296875, 2.638035888671875, 2.638784423828125, 2.639287353515625, 2.637106201171875, 2.637173828125, 2.6368388671875, 2.6376591796875, 2.635720703125, 2.63617333984375, 2.636442626953125, 2.63904150390625, 2.6368818359375, 2.635509765625, 2.636674072265625, 2.6366484375, 2.637701171875, 2.638306396484375, 2.64076806640625, 2.63686865234375, 2.6378896484375, 2.639107177734375, 2.6401259765625, 2.6394111328125, 2.63695166015625, 2.63650927734375, 2.636439453125, 2.63674267578125, 2.637043701171875, 2.637275146484375, 2.637382568359375, 2.63693115234375, 2.636669921875, 2.637486083984375, 2.636729248046875, 2.636916748046875, 2.6372802734375, 2.638066650390625, 2.637075439453125, 2.637048828125, 2.636240966796875, 2.637787109375, 2.636506103515625, 2.636660888671875, 2.63712548828125, 2.637421630859375, 2.637157470703125, 2.636517333984375, 2.637552734375, 2.636777587890625, 2.63666064453125, 2.6360966796875, 2.637487060546875, 2.636655517578125, 2.6372158203125, 2.637021240234375, 2.63826025390625, 5.43210595703125, 2.637992919921875, 2.6383369140625, 2.636921875, 2.637557861328125, 2.637305908203125, 2.63912646484375, 2.63752099609375, 2.6370693359375, 2.638551025390625, 2.6377646484375, 2.638067626953125, 2.637068359375, 2.63798876953125, 2.6374892578125, 2.63644775390625, 2.636535888671875, 2.637727783203125, 2.63798876953125, 2.637382568359375, 2.637177734375, 2.637806640625, 2.63628173828125, 2.6376171875, 2.63735302734375, 2.63743896484375, 2.6397236328125, 2.637740966796875, 2.637970458984375, 2.6363720703125, 2.636199951171875, 2.6363935546875, 2.638331787109375, 2.636755859375, 2.636908447265625, 2.636675048828125, 2.63809033203125, 2.636525634765625, 2.63657373046875, 2.63596435546875, 2.63809130859375, 2.6373671875, 2.636396484375, 2.637010009765625, 2.637177734375, 2.636538818359375, 2.637276123046875, 2.638035888671875, 2.636796875, 2.636739501953125, 2.636539794921875, 2.63828076171875, 2.63714404296875, 2.637462646484375, 2.637360107421875, 2.638277587890625, 2.636430419921875, 2.6370283203125, 2.6365234375, 2.638316650390625, 2.636391357421875, 2.636579833984375, 2.636466064453125]",tokens/s,0.3734541728532224,,,,,,main,False,False -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-2b,google/recurrentgemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,r,r,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -15396,11 +15996,21 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/r/resolve/main/config.json The above exception was the direct cause of the following exception: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn @@ -15411,13 +16021,52 @@ Traceback (most recent call last): response = _request_wrapper( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status - raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-669481ee-1af78b1168dc6d375af06261;fc66bf74-8e04-43ac-b584-4ba86c5f87a0) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949125-4b50de4f413955673a827664;93fa1441-9ae0-4a2c-8b5c-8aec9da2e84b) -403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json. -If you are trying to create or update content,make sure you have a token with the `write` role. +Repository Not Found for url: https://huggingface.co/r/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + raise EnvironmentError( +OSError: r is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,l,l,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/l/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -15430,9 +16079,25 @@ Traceback (most recent call last): return _hf_hub_download_to_cache_dir( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error - raise LocalEntryNotFoundError( -huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669491cd-4323898874a15e627bcd9c3b;531a0a54-8fe3-4618-a4a6-d0b2f3737c4f) + +Repository Not Found for url: https://huggingface.co/l/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. The above exception was the direct cause of the following exception: @@ -15453,16 +16118,13 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/recurrentgemma-2b is not the path to a directory containing a file named config.json. -Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. +OSError: l is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-30b,facebook/opt-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,5945.012224,19933.954048,0.0,19287.506944,18376.2688,s,10,24.42857763671875,2.442857763671875,0.001982296286527604,2.4421226806640624,2.4459630615234373,2.446148400878906,2.4462966723632813,"[2.44311767578125, 2.441929443359375, 2.441054443359375, 2.44091455078125, 2.441591064453125, 2.440709716796875, 2.44231591796875, 2.446333740234375, 2.445921875, 2.444689208984375]",tokens/s,104.79529500530754,kWh,2.881985050108698e-05,1.5794228899012522e-05,0.00013673797050139935,0.00018135204990149886,tokens/kWh,1411619.0036950014,MB,5946.937344,19933.954048,0.0,19287.506944,18871.985152,s,10,1453.1662812499999,145.316628125,0.01677016451823821,145.3091796875,145.3392140625,145.34826328125,145.35550265625,"[145.31590625, 145.308921875, 145.3094375, 145.306953125, 145.3573125, 145.337203125, 145.304828125, 145.303359375, 145.319953125, 145.30240625]",tokens/s,0.4335360709430169,kWh,0.0017155244359870752,0.0009402592492990879,0.00808164824309121,0.010737431928377374,tokens/kWh,5867.324740238933,,s,629,1472.8442895507828,2.3415648482524345,0.29007180854476533,2.306472900390625,2.307840771484375,2.308159619140625,4.7478279296874994,"[2.30830078125, 2.30712939453125, 2.305491943359375, 2.305958984375, 2.306070556640625, 2.306164794921875, 2.306714599609375, 2.306167724609375, 2.30651708984375, 2.306343994140625, 2.306281494140625, 2.3058994140625, 2.306171875, 2.305965087890625, 2.3060673828125, 2.305934326171875, 2.306259033203125, 2.30677197265625, 2.30823828125, 2.3065693359375, 2.3062998046875, 2.3065107421875, 2.305712158203125, 2.3060634765625, 2.30664404296875, 2.30611865234375, 2.305919921875, 2.306153564453125, 2.30573876953125, 2.307145751953125, 2.307577880859375, 2.30742529296875, 2.3060234375, 2.306620361328125, 2.30689892578125, 2.306671630859375, 2.30721337890625, 2.306621337890625, 2.30584423828125, 2.306515869140625, 2.306025390625, 2.307158935546875, 2.307966064453125, 2.3080498046875, 2.30725927734375, 2.30751123046875, 2.30584326171875, 2.306826171875, 2.30643505859375, 2.306669677734375, 2.3066572265625, 2.306987060546875, 2.3064228515625, 2.30631640625, 2.3060048828125, 2.3066552734375, 2.306758544921875, 2.306385986328125, 2.306724853515625, 2.30693994140625, 2.3067626953125, 2.306996337890625, 4.747927734375, 2.3060458984375, 2.306315185546875, 2.305916015625, 2.30605615234375, 2.30666455078125, 2.306251708984375, 2.306472900390625, 2.306552734375, 2.30586376953125, 2.3063408203125, 2.306269287109375, 2.306483154296875, 2.3060849609375, 2.306608154296875, 2.306598876953125, 2.306947021484375, 2.306627685546875, 2.30656298828125, 2.306156494140625, 2.305994873046875, 2.305953857421875, 2.3070966796875, 2.307031005859375, 2.306716552734375, 2.30727587890625, 2.305818603515625, 2.30561181640625, 2.306303955078125, 2.30622607421875, 2.30601513671875, 2.306629638671875, 2.306018310546875, 2.307220458984375, 2.307166259765625, 2.30818310546875, 2.30658251953125, 2.306062255859375, 2.3065908203125, 2.3057265625, 2.306356201171875, 2.30654150390625, 2.306720703125, 2.306249755859375, 2.307949462890625, 2.307349609375, 2.30730859375, 2.306469970703125, 2.306974609375, 2.30639501953125, 2.30609716796875, 2.30603369140625, 2.306250732421875, 2.306716552734375, 2.306428955078125, 2.3060244140625, 2.306080810546875, 2.306798583984375, 2.306280517578125, 2.306587646484375, 2.306314208984375, 2.3067607421875, 2.307210205078125, 4.74750048828125, 2.30618017578125, 2.306073486328125, 2.306304931640625, 2.3058740234375, 2.306080810546875, 2.3063828125, 2.30624560546875, 2.305426513671875, 2.306010009765625, 2.3058330078125, 2.306188232421875, 2.305746826171875, 2.30639501953125, 2.305995849609375, 2.305857421875, 2.305976318359375, 2.306387939453125, 2.307175537109375, 2.3076884765625, 2.30548486328125, 2.305490966796875, 2.3058544921875, 2.30586474609375, 2.306364501953125, 2.30583203125, 2.306301025390625, 2.306060302734375, 2.306914306640625, 2.308274169921875, 2.307685302734375, 2.3084912109375, 2.306903076171875, 2.30611669921875, 2.306157470703125, 2.30603466796875, 2.306026611328125, 2.30809912109375, 2.30824658203125, 2.30763623046875, 2.30674853515625, 2.306740234375, 2.30609521484375, 2.305721435546875, 2.30651806640625, 2.307560546875, 2.30752880859375, 2.306269287109375, 2.30721630859375, 2.306631591796875, 2.30655908203125, 2.3057724609375, 2.30613818359375, 2.306503662109375, 2.306617431640625, 2.307072021484375, 2.30647802734375, 2.305734619140625, 2.3066552734375, 2.306449462890625, 2.30620361328125, 2.30637158203125, 2.306595947265625, 4.74802880859375, 2.306186279296875, 2.305531982421875, 2.305669189453125, 2.306135986328125, 2.3058759765625, 2.306019287109375, 2.306431884765625, 2.306522216796875, 2.30567529296875, 2.3055830078125, 2.306220947265625, 2.30667578125, 2.306291748046875, 2.306946044921875, 2.30719287109375, 2.3062763671875, 2.30605517578125, 2.3061484375, 2.306335693359375, 2.30618115234375, 2.30607666015625, 2.30662646484375, 2.30637158203125, 2.30767724609375, 2.308170654296875, 2.30727978515625, 2.306090087890625, 2.3074775390625, 2.30679248046875, 2.308010009765625, 2.306175048828125, 2.3065908203125, 2.306902099609375, 2.307230712890625, 2.30744677734375, 2.307564453125, 2.306438232421875, 2.306532470703125, 2.306220947265625, 2.306926513671875, 2.30791162109375, 2.30597021484375, 2.30626416015625, 2.306064453125, 2.305848388671875, 2.30631005859375, 2.305681396484375, 2.306680908203125, 2.3066787109375, 2.306912353515625, 2.30727587890625, 2.30600390625, 2.306438232421875, 2.306324462890625, 2.305838134765625, 2.305875, 2.305974365234375, 2.30620166015625, 2.306227294921875, 2.3058759765625, 2.306018310546875, 2.306186279296875, 4.7475712890625, 2.3056015625, 2.305901611328125, 2.30658251953125, 2.307598388671875, 2.307072998046875, 2.30600390625, 2.308192138671875, 2.307829833984375, 2.30786865234375, 2.307883056640625, 2.306185302734375, 2.305741943359375, 2.30852392578125, 2.307919921875, 2.30782763671875, 2.30862841796875, 2.308886474609375, 2.308350830078125, 2.308662353515625, 2.308884521484375, 2.30721337890625, 2.307564453125, 2.307115966796875, 2.307040283203125, 2.30601025390625, 2.307072998046875, 2.305795166015625, 2.3058740234375, 2.306260009765625, 2.3076474609375, 2.3075, 2.305462158203125, 2.305919921875, 2.306641845703125, 2.308442138671875, 2.30645654296875, 2.306227294921875, 2.306621337890625, 2.306598876953125, 2.3067822265625, 2.306314208984375, 2.307274658203125, 2.306165771484375, 2.30636962890625, 2.306336669921875, 2.3068681640625, 2.307556396484375, 2.307939208984375, 2.306641845703125, 2.308420654296875, 2.30788720703125, 2.30803857421875, 2.307458984375, 2.308116455078125, 2.3085107421875, 2.30814306640625, 2.309021728515625, 2.30691845703125, 2.3075400390625, 2.30881787109375, 2.30786962890625, 2.308601806640625, 4.747927734375, 2.30775, 2.307747802734375, 2.306754638671875, 2.30704638671875, 2.30609521484375, 2.305871826171875, 2.305828857421875, 2.306450439453125, 2.3074384765625, 2.30639404296875, 2.306155517578125, 2.30721240234375, 2.3061943359375, 2.306260986328125, 2.3063408203125, 2.305946533203125, 2.30626708984375, 2.3059384765625, 2.306785400390625, 2.30590576171875, 2.307837890625, 2.308127685546875, 2.307727294921875, 2.30624755859375, 2.30803759765625, 2.308209716796875, 2.306083740234375, 2.308106201171875, 2.30796484375, 2.307409912109375, 2.307322998046875, 2.3070556640625, 2.30601416015625, 2.30601220703125, 2.30685400390625, 2.3067841796875, 2.3062333984375, 2.30788818359375, 2.3078798828125, 2.307981201171875, 2.308041748046875, 2.307943359375, 2.3078779296875, 2.306785400390625, 2.306217041015625, 2.30694189453125, 2.3059833984375, 2.30669921875, 2.30706787109375, 2.307828857421875, 2.3062119140625, 2.30769970703125, 2.30689990234375, 2.306872314453125, 2.30632763671875, 2.307541015625, 2.307304443359375, 2.306280517578125, 2.305987548828125, 2.3064677734375, 2.30799365234375, 2.30702490234375, 4.74871826171875, 2.306419677734375, 2.30594775390625, 2.305490966796875, 2.3053935546875, 2.306144287109375, 2.305890380859375, 2.30618310546875, 2.30565380859375, 2.305838134765625, 2.3064453125, 2.306163818359375, 2.305967041015625, 2.30632958984375, 2.30599365234375, 2.30660205078125, 2.306093017578125, 2.30550927734375, 2.3062958984375, 2.30859375, 2.307629150390625, 2.305786865234375, 2.30675244140625, 2.30698291015625, 2.307533935546875, 2.306155517578125, 2.30588916015625, 2.30687744140625, 2.30660205078125, 2.30624658203125, 2.30635205078125, 2.30655078125, 2.30631005859375, 2.307313720703125, 2.306417724609375, 2.306740234375, 2.306871337890625, 2.30619140625, 2.3060859375, 2.305734619140625, 2.3065068359375, 2.30648828125, 2.306944091796875, 2.30637060546875, 2.3063173828125, 2.305910888671875, 2.306567138671875, 2.305996826171875, 2.306691162109375, 2.306502685546875, 2.306821044921875, 2.306130859375, 2.30672900390625, 2.307013671875, 2.306767822265625, 2.306404296875, 2.30620458984375, 2.306543701171875, 2.30641552734375, 2.30656298828125, 2.306662353515625, 2.306578369140625, 2.30736083984375, 4.75277099609375, 2.306112548828125, 2.305987548828125, 2.306069580078125, 2.305553466796875, 2.305196044921875, 2.306450439453125, 2.306493408203125, 2.306361328125, 2.305670166015625, 2.305954833984375, 2.30636328125, 2.305942626953125, 2.305912841796875, 2.3060244140625, 2.306492431640625, 2.306491455078125, 2.3065087890625, 2.306021484375, 2.30662255859375, 2.306044921875, 2.305946533203125, 2.306109375, 2.3060673828125, 2.30651708984375, 2.306368408203125, 2.306166748046875, 2.305617919921875, 2.3070966796875, 2.30624462890625, 2.30612060546875, 2.30616259765625, 2.306585693359375, 2.3061943359375, 2.305982421875, 2.30618212890625, 2.30691015625, 2.307801025390625, 2.30774169921875, 2.305775634765625, 2.30598974609375, 2.307757080078125, 2.307713134765625, 2.3067412109375, 2.306273193359375, 2.306452392578125, 2.30667578125, 2.306123779296875, 2.307871826171875, 2.3065498046875, 2.306324462890625, 2.3063818359375, 2.306296875, 2.306356201171875, 2.306536376953125, 2.30616162109375, 2.306343994140625, 2.3068017578125, 2.307167236328125, 2.3066982421875, 2.3068271484375, 2.30626611328125, 2.306765869140625, 4.75146533203125, 2.305406005859375, 2.306103271484375, 2.306335693359375, 2.306105224609375, 2.305650634765625, 2.305935302734375, 2.3065302734375, 2.306123779296875, 2.306839599609375, 2.306525146484375, 2.3065908203125, 2.3057275390625, 2.3065927734375, 2.306326416015625, 2.305699951171875, 2.306766845703125, 2.306298828125, 2.306177978515625, 2.306017333984375, 2.3064453125, 2.307205078125, 2.3069912109375, 2.30652099609375, 2.307852294921875, 2.30791357421875, 2.307249267578125, 2.30723388671875, 2.308533203125, 2.307859375, 2.307365966796875, 2.30736474609375, 2.306230224609375, 2.306595947265625, 2.306797607421875, 2.306817138671875, 2.307945556640625, 2.306934814453125, 2.306532470703125, 2.306154541015625, 2.306238525390625, 2.306093994140625, 2.306994140625, 2.30653125, 2.30648828125, 2.30630810546875, 2.306410400390625, 2.30582177734375, 2.30702392578125, 2.306610107421875, 2.30685888671875, 2.30723388671875, 2.307060791015625, 2.30736083984375, 2.307283935546875, 2.306974609375, 2.307143798828125, 2.30702685546875, 2.307147705078125, 2.306912353515625, 2.306466796875, 2.30637060546875, 2.305808349609375, 4.75029296875, 2.3062138671875, 2.305847412109375, 2.305751953125, 2.306163818359375, 2.305503173828125, 2.306188232421875, 2.305998779296875, 2.306451416015625, 2.305594482421875, 2.30626513671875, 2.30557080078125, 2.306021484375, 2.305986572265625, 2.30660498046875, 2.306206787109375, 2.305995849609375, 2.306838623046875, 2.306428955078125, 2.306533447265625, 2.306038818359375, 2.306441162109375, 2.306575439453125, 2.30774267578125, 2.30721435546875, 2.307527587890625, 2.30657421875, 2.3058974609375, 2.30637255859375, 2.305725341796875, 2.30624560546875, 2.306049072265625, 2.3060224609375, 2.306079833984375, 2.306041748046875, 2.305879150390625, 2.30664404296875, 2.306240478515625, 2.30664697265625, 2.306007080078125, 2.306346923828125, 2.3059384765625, 2.305849365234375, 2.306935791015625, 2.306491455078125, 2.306400146484375, 2.3062744140625, 2.306458740234375, 2.306747314453125, 2.307177490234375, 2.306862060546875, 2.306808837890625, 2.306905029296875, 2.30681298828125, 2.306693115234375, 2.30618017578125, 2.30659375, 2.306906005859375, 2.30719482421875, 2.306628662109375, 2.306923583984375, 2.306654296875, 2.3069306640625]",tokens/s,0.4270648326252095,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-160m,EleutherAI/pythia-160m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1312.858112,1030.22592,0.0,383.778816,312.280064,s,10,0.275944766998291,0.0275944766998291,0.0013350624992567249,0.0271289119720459,0.027794796180725095,0.02969363794326782,0.031212711353302003,"[0.03159247970581055, 0.027166879653930665, 0.027137279510498047, 0.02737283134460449, 0.02710416030883789, 0.02712054443359375, 0.027108831405639647, 0.027081024169921874, 0.027172767639160156, 0.027087968826293947]",tokens/s,9277.218871905097,kWh,3.2455721808658853e-07,1.778424162839056e-07,7.707522954780324e-07,1.2731519298485266e-06,tokens/kWh,201075766.3702066,MB,1312.858112,1030.22592,0.0,383.778816,347.089408,s,10,16.864729003906252,1.6864729003906251,0.020323100201592524,1.6794135742187501,1.6910009521484375,1.7188808471679686,1.7411847631835937,"[1.7467607421875, 1.67984912109375, 1.6774495849609374, 1.678377685546875, 1.67897802734375, 1.6768824462890626, 1.6750291748046875, 1.684479248046875, 1.684805419921875, 1.6821175537109374]",tokens/s,37.356070165970515,kWh,1.9882176955741114e-05,1.0895638286132514e-05,4.512764553432279e-05,7.590546077619641e-05,tokens/kWh,829979.8111462949,,s,629,17.07843275070189,0.027151721384263763,0.003315017386101685,0.026595327377319337,0.0273623046875,0.02783129653930664,0.05417021270751953,"[0.029247488021850586, 0.027447296142578126, 0.028238847732543947, 0.029016063690185546, 0.02889727973937988, 0.028690431594848635, 0.028497919082641602, 0.029652992248535157, 0.028964864730834962, 0.02876518440246582, 0.029016063690185546, 0.02860851287841797, 0.02900480079650879, 0.029263872146606446, 0.02835353660583496, 0.028241920471191406, 0.02977484893798828, 0.031457279205322264, 0.028201984405517577, 0.02774220848083496, 0.027778047561645508, 0.02750464057922363, 0.027625471115112304, 0.027877376556396483, 0.027576320648193358, 0.027623424530029295, 0.027853824615478515, 0.027623424530029295, 0.02755583953857422, 0.027467775344848632, 0.027467775344848632, 0.027464704513549806, 0.02751692771911621, 0.027671552658081053, 0.028444671630859376, 0.02751081657409668, 0.027527168273925783, 0.02693833541870117, 0.02656768035888672, 0.02656051254272461, 0.026586111068725587, 0.026575904846191406, 0.02656355285644531, 0.026597375869750976, 0.02668339157104492, 0.026562559127807618, 0.0265799674987793, 0.02705510330200195, 0.02689945602416992, 0.02673766326904297, 0.026646528244018555, 0.026635263442993166, 0.02674892807006836, 0.026631168365478516, 0.026613759994506835, 0.026697727203369142, 0.026650623321533205, 0.02710323143005371, 0.026925119400024414, 0.02659014320373535, 0.027423744201660157, 0.027077632904052733, 0.05460070419311523, 0.026619903564453123, 0.026565631866455077, 0.026629119873046874, 0.026554399490356446, 0.02660246467590332, 0.026628095626831053, 0.02656768035888672, 0.026635263442993166, 0.0266527042388916, 0.026569696426391603, 0.026598463058471678, 0.026578880310058593, 0.0265799674987793, 0.02658406448364258, 0.026687488555908204, 0.026688512802124024, 0.02656358337402344, 0.02654003143310547, 0.026614784240722656, 0.026625024795532228, 0.02652672004699707, 0.026619903564453123, 0.028004352569580077, 0.02753945541381836, 0.02736332893371582, 0.027281408309936524, 0.02712678337097168, 0.026574848175048828, 0.026603519439697267, 0.02654310417175293, 0.026565631866455077, 0.0265031681060791, 0.026557439804077147, 0.02653388786315918, 0.026556415557861326, 0.02654412841796875, 0.02655948829650879, 0.02668441581726074, 0.026625024795532228, 0.02655948829650879, 0.026588159561157225, 0.02654310417175293, 0.026572799682617186, 0.02655129623413086, 0.02656768035888672, 0.026604543685913085, 0.02655955123901367, 0.026596288681030273, 0.026562559127807618, 0.026596351623535155, 0.026594303131103517, 0.026558464050292968, 0.02655232048034668, 0.02659328079223633, 0.02651238441467285, 0.026549247741699217, 0.026588159561157225, 0.02657587242126465, 0.02659328079223633, 0.026556415557861326, 0.02650726318359375, 0.02656870460510254, 0.0541736946105957, 0.026597375869750976, 0.026587135314941408, 0.02655232048034668, 0.026550271987915038, 0.026600448608398438, 0.026652671813964843, 0.026689535140991212, 0.02655129623413086, 0.02653081512451172, 0.02658406448364258, 0.026677248001098632, 0.02651548767089844, 0.02671510314941406, 0.027616256713867186, 0.027520000457763674, 0.026843135833740234, 0.026626047134399415, 0.026536991119384765, 0.02662294387817383, 0.026621952056884765, 0.02655129623413086, 0.026534912109375, 0.026634239196777345, 0.026594303131103517, 0.02670182418823242, 0.0265799674987793, 0.02651136016845703, 0.02654003143310547, 0.02653388786315918, 0.02654412841796875, 0.026617855072021485, 0.026968063354492186, 0.02676736068725586, 0.026615808486938477, 0.02655539131164551, 0.02651545524597168, 0.026661888122558593, 0.026573823928833007, 0.026454015731811522, 0.02652470397949219, 0.026513376235961915, 0.0265031681060791, 0.02651852798461914, 0.026694656372070313, 0.026492927551269533, 0.026570751190185548, 0.026505216598510743, 0.026565631866455077, 0.026583040237426758, 0.026574848175048828, 0.02650931167602539, 0.02651033592224121, 0.026664960861206056, 0.026570751190185548, 0.02651238441467285, 0.026582015991210937, 0.02654515266418457, 0.02649087905883789, 0.02654719924926758, 0.026638336181640625, 0.02657689666748047, 0.026598400115966796, 0.05530112075805664, 0.027283456802368163, 0.027225088119506836, 0.02709503936767578, 0.026944511413574217, 0.02655436706542969, 0.02654310417175293, 0.026695680618286134, 0.026656768798828126, 0.0265850887298584, 0.026588191986083986, 0.02655023956298828, 0.026674175262451173, 0.026564607620239256, 0.026580991744995116, 0.026611711502075194, 0.026570751190185548, 0.0265533447265625, 0.026611711502075194, 0.026570751190185548, 0.026529792785644532, 0.02669977569580078, 0.026549247741699217, 0.02660767936706543, 0.02659424018859863, 0.02671001625061035, 0.02650111961364746, 0.02655539131164551, 0.026587135314941408, 0.02655232048034668, 0.026657791137695314, 0.0265533447265625, 0.026541055679321288, 0.026558464050292968, 0.02651238441467285, 0.026514432907104493, 0.026467327117919923, 0.026565631866455077, 0.02692403221130371, 0.026690559387207033, 0.02655436706542969, 0.026600448608398438, 0.026719232559204102, 0.02657689666748047, 0.026662912368774414, 0.02651136016845703, 0.026564607620239256, 0.026537984848022462, 0.026505216598510743, 0.02651238441467285, 0.02656358337402344, 0.02652262306213379, 0.026663936614990235, 0.026497024536132813, 0.026646528244018555, 0.02652876853942871, 0.026637311935424804, 0.02657587242126465, 0.02652672004699707, 0.02657177543640137, 0.026604543685913085, 0.026583040237426758, 0.026484735488891603, 0.054171646118164066, 0.02660147285461426, 0.026550271987915038, 0.02656972885131836, 0.02654515266418457, 0.02658406448364258, 0.026532863616943358, 0.02650726318359375, 0.02657792091369629, 0.02667622375488281, 0.0265799674987793, 0.02656153678894043, 0.026580991744995116, 0.026556480407714845, 0.02659833526611328, 0.026598400115966796, 0.026611711502075194, 0.026615808486938477, 0.026514432907104493, 0.02654207992553711, 0.02656768035888672, 0.02656870460510254, 0.026633216857910157, 0.026589183807373046, 0.02657177543640137, 0.02655436706542969, 0.026660863876342773, 0.026614784240722656, 0.026558464050292968, 0.02655436706542969, 0.026617855072021485, 0.026604543685913085, 0.026554399490356446, 0.026611679077148436, 0.026650623321533205, 0.026488832473754883, 0.02629631996154785, 0.02631372833251953, 0.0275230712890625, 0.027797504425048827, 0.02753023910522461, 0.02730803108215332, 0.02698854446411133, 0.026604543685913085, 0.02653081512451172, 0.026624000549316407, 0.02660147285461426, 0.026764287948608398, 0.026658815383911134, 0.02656870460510254, 0.026557439804077147, 0.02654617691040039, 0.026639360427856446, 0.026580991744995116, 0.026534912109375, 0.02653593635559082, 0.026594303131103517, 0.026620927810668944, 0.026596351623535155, 0.02657587242126465, 0.026604543685913085, 0.026604543685913085, 0.02653388786315918, 0.05420851135253906, 0.0265677433013916, 0.02660960006713867, 0.02667519950866699, 0.026580991744995116, 0.026594303131103517, 0.026562559127807618, 0.026665983200073243, 0.026590208053588867, 0.02653900718688965, 0.026637311935424804, 0.026638336181640625, 0.02654617691040039, 0.026590208053588867, 0.026562559127807618, 0.026696704864501954, 0.026629119873046874, 0.02652774429321289, 0.02652057647705078, 0.02653081512451172, 0.0265533447265625, 0.02654207992553711, 0.026694656372070313, 0.02658406448364258, 0.026640384674072266, 0.02657792091369629, 0.026534912109375, 0.02651545524597168, 0.026521600723266602, 0.02656153678894043, 0.02651852798461914, 0.026580991744995116, 0.02653388786315918, 0.026529792785644532, 0.0265799674987793, 0.026592256546020508, 0.026693632125854492, 0.02651545524597168, 0.026639360427856446, 0.027520000457763674, 0.02674380874633789, 0.026613759994506835, 0.026694656372070313, 0.026521600723266602, 0.026641408920288087, 0.026607616424560547, 0.026558464050292968, 0.026610687255859376, 0.026630144119262695, 0.02669260787963867, 0.026634271621704102, 0.02657072067260742, 0.02654003143310547, 0.02657587242126465, 0.026605567932128905, 0.026534912109375, 0.026697727203369142, 0.026587135314941408, 0.02652060890197754, 0.026654687881469727, 0.026598400115966796, 0.026714111328125, 0.02658406448364258, 0.054166526794433595, 0.02671615982055664, 0.026641408920288087, 0.026625024795532228, 0.0265994873046875, 0.026596288681030273, 0.02654719924926758, 0.026572799682617186, 0.026620927810668944, 0.026605567932128905, 0.02669977569580078, 0.02654316711425781, 0.026589120864868164, 0.026582015991210937, 0.026604543685913085, 0.026550271987915038, 0.026619903564453123, 0.02656051254272461, 0.026521600723266602, 0.026631168365478516, 0.02628505516052246, 0.02677350425720215, 0.026702848434448243, 0.02657177543640137, 0.02660966491699219, 0.02656358337402344, 0.02651545524597168, 0.0265533447265625, 0.026504192352294922, 0.02660147285461426, 0.02653900718688965, 0.026639360427856446, 0.0265850887298584, 0.026626047134399415, 0.02654003143310547, 0.026556447982788087, 0.026569696426391603, 0.026558464050292968, 0.02659328079223633, 0.026556415557861326, 0.02654617691040039, 0.02668339157104492, 0.026589183807373046, 0.026498048782348634, 0.026669055938720702, 0.026529792785644532, 0.026572799682617186, 0.02655129623413086, 0.0265164794921875, 0.026590208053588867, 0.02657792091369629, 0.026616832733154298, 0.026598400115966796, 0.026660863876342773, 0.026573823928833007, 0.026595327377319337, 0.026570751190185548, 0.0265164794921875, 0.02639366340637207, 0.026553279876708986, 0.02658406448364258, 0.026657791137695314, 0.02649497604370117, 0.05412044906616211, 0.026598400115966796, 0.026583040237426758, 0.026651647567749022, 0.02652262306213379, 0.026586111068725587, 0.02655129623413086, 0.026594303131103517, 0.02712678337097168, 0.02734489631652832, 0.026644479751586913, 0.026637311935424804, 0.026594303131103517, 0.026646528244018555, 0.026602495193481446, 0.027348991394042968, 0.027696128845214843, 0.027305984497070314, 0.027241472244262696, 0.02698854446411133, 0.026565631866455077, 0.026608640670776368, 0.027296768188476563, 0.027320320129394532, 0.027320320129394532, 0.027268096923828124, 0.02708684730529785, 0.026829824447631836, 0.026608640670776368, 0.02674073600769043, 0.02660147285461426, 0.026590208053588867, 0.02655129623413086, 0.02654207992553711, 0.02661075210571289, 0.0265860481262207, 0.02667622375488281, 0.026572799682617186, 0.026582015991210937, 0.026586111068725587, 0.02653081512451172, 0.026566656112670898, 0.02655232048034668, 0.026702848434448243, 0.026602495193481446, 0.02654617691040039, 0.026550271987915038, 0.026645503997802734, 0.026550271987915038, 0.026616832733154298, 0.02660966491699219, 0.026596351623535155, 0.026595327377319337, 0.026586111068725587, 0.02654617691040039, 0.02654617691040039, 0.026786815643310546, 0.02656153678894043, 0.026608640670776368, 0.026602495193481446, 0.026529792785644532, 0.026586111068725587, 0.026638336181640625, 0.05429862213134766, 0.026634239196777345, 0.026537984848022462, 0.026639360427856446, 0.02672127914428711, 0.02692915153503418, 0.027014144897460936, 0.026755071640014647, 0.026573823928833007, 0.026562559127807618, 0.026572799682617186, 0.026690559387207033, 0.02657177543640137, 0.026617855072021485, 0.026610687255859376, 0.026606592178344726, 0.026598400115966796, 0.026573823928833007, 0.026597375869750976, 0.026514432907104493, 0.026582015991210937, 0.02659328079223633, 0.026673152923583986, 0.027404319763183593, 0.026896352767944335, 0.026578943252563478, 0.026537984848022462, 0.026552352905273437, 0.02658710479736328, 0.026514432907104493, 0.02651238441467285, 0.026514432907104493, 0.02652262306213379, 0.02651238441467285, 0.02653081512451172, 0.026626047134399415, 0.026565631866455077, 0.026716224670410155, 0.026623935699462892, 0.026580991744995116, 0.02654617691040039, 0.026556415557861326, 0.026479616165161132, 0.02652876853942871, 0.026670080184936523, 0.026643455505371092, 0.026827775955200195, 0.026611711502075194, 0.027028480529785157, 0.027226112365722657, 0.027289600372314454, 0.02755583953857422, 0.0273623046875, 0.0273623046875, 0.02728550338745117, 0.02791116714477539, 0.027173887252807616, 0.0267775993347168, 0.026597375869750976, 0.02654515266418457, 0.02656153678894043, 0.026599424362182617, 0.026617855072021485, 0.05418803024291992, 0.026620927810668944, 0.026647552490234375, 0.02657689666748047, 0.02651238441467285, 0.026595327377319337, 0.026607616424560547, 0.026603519439697267, 0.026594303131103517, 0.026619903564453123, 0.02672230339050293, 0.026630144119262695, 0.026639360427856446, 0.02667622375488281, 0.026677248001098632, 0.026631168365478516, 0.026617855072021485, 0.026565631866455077, 0.026587135314941408, 0.0265164794921875, 0.026616832733154298, 0.026588159561157225, 0.026612735748291014, 0.026612735748291014, 0.02656768035888672, 0.026558464050292968, 0.026629119873046874, 0.026508287429809572, 0.026702848434448243, 0.02671615982055664, 0.0265533447265625, 0.026586111068725587, 0.026626047134399415, 0.02655232048034668, 0.02658406448364258, 0.02654412841796875, 0.02653081512451172, 0.0265799674987793, 0.026612735748291014, 0.026603519439697267, 0.02635366439819336, 0.026727424621582032, 0.02656153678894043, 0.026595327377319337, 0.026583040237426758, 0.026492927551269533, 0.026572799682617186, 0.02653593635559082, 0.026678272247314453, 0.02653900718688965, 0.02690559959411621, 0.02734284782409668, 0.02688102340698242, 0.026624000549316407, 0.02656358337402344, 0.026578943252563478, 0.027030527114868166, 0.027415552139282227, 0.02731724739074707, 0.027236352920532225, 0.027314176559448244, 0.027259904861450194, 0.027412479400634765]",tokens/s,36.83007739537158,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-7b,stabilityai/stablelm-base-alpha-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1477.30432,8196.194304,0.0,7549.7472,6941.631488,s,10,6.0462579345703125,0.6046257934570314,0.0007435687799022576,0.604391815185547,0.6052782531738281,0.6058451202392579,0.6062986138916016,"[0.6064119873046875, 0.6051522827148438, 0.6040460205078125, 0.6039584350585937, 0.6041729736328125, 0.603818603515625, 0.6042236328125, 0.6045599975585938, 0.6048197021484375, 0.6050942993164062]",tokens/s,423.4023800676526,kWh,7.135871880584294e-06,3.909028176627437e-06,3.5656695191997026e-05,4.670159524920876e-05,tokens/kWh,5481611.466030966,MB,1477.30432,8196.194304,0.0,7549.7472,7094.078464,s,10,357.59960156249997,35.759960156249996,0.0025836315483325416,35.759828125,35.7629109375,35.7636703125,35.7642778125,"[35.7644296875, 35.76244140625, 35.755375, 35.758703125, 35.75703515625, 35.75961328125, 35.7587890625, 35.76004296875, 35.7604296875, 35.7627421875]",tokens/s,1.7617469293793129,kWh,0.0004221709076563517,0.00023138749488215953,0.002133793484811199,0.0027873518873497106,tokens/kWh,22602.097814030254,,s,629,362.47207647705085,0.5762672122051682,0.07178708636540315,0.567605224609375,0.5678377075195312,0.5679312866210938,1.1716501220703124,"[0.5675867919921875, 0.5674536743164063, 0.5675294799804688, 0.5675069580078125, 0.5674711303710938, 0.56766259765625, 0.5675397338867187, 0.567414794921875, 0.5675397338867187, 0.567857177734375, 0.5676984252929688, 0.5676615600585937, 0.5676932983398437, 0.567741455078125, 0.567667724609375, 0.5677650146484375, 0.5679800415039062, 0.5678551025390625, 0.5676390380859375, 0.5676298217773438, 0.567710693359375, 0.567710693359375, 0.567568359375, 0.567900146484375, 0.5677824096679688, 0.567510009765625, 0.56774755859375, 0.5680036010742188, 0.56772607421875, 0.5676021728515624, 0.5675284423828125, 0.5676349487304687, 0.5676973876953125, 0.567857177734375, 0.5677864990234375, 0.5676759033203125, 0.5677332763671875, 0.567736328125, 0.5676236572265625, 0.5676482543945313, 0.5678510131835938, 0.5677496337890625, 0.5674977416992187, 0.5674495849609374, 0.5680199584960938, 0.5677691040039062, 0.5677250366210937, 0.5677158203125, 0.5677281494140625, 0.5677322387695313, 0.5676615600585937, 0.5676973876953125, 0.5678653564453126, 0.5677117309570312, 0.5676216430664063, 0.56771484375, 0.5676461791992188, 0.5675673828125, 0.5677025146484375, 0.5677178955078125, 0.5677588500976563, 0.5677485961914063, 1.1728394775390625, 0.5675120849609375, 0.5672499389648438, 0.5673809814453125, 0.567425048828125, 0.5678643188476562, 0.5675172119140625, 0.5675909423828125, 0.5675530395507813, 0.5675233154296875, 0.5674926147460938, 0.567546875, 0.5676093139648437, 0.567673828125, 0.5677547607421874, 0.56760009765625, 0.56751513671875, 0.5678336181640625, 0.5675867919921875, 0.567462890625, 0.5675970458984375, 0.5676533813476563, 0.56762060546875, 0.5676195678710938, 0.5676820678710938, 0.5676759033203125, 0.5675878295898438, 0.5676216430664063, 0.5675888671875, 0.5675222778320312, 0.567667724609375, 0.5676400756835938, 0.5675427856445312, 0.567562255859375, 0.5677056274414063, 0.567699462890625, 0.5677117309570312, 0.5678643188476562, 0.56776806640625, 0.5677557983398438, 0.5678028564453125, 0.5681766357421875, 0.5678325805664063, 0.5677014770507812, 0.5676093139648437, 0.5677567749023438, 0.5677496337890625, 0.5676830444335937, 0.5678008422851563, 0.5677178955078125, 0.5676165161132812, 0.5676011352539062, 0.5678192749023437, 0.5676881713867188, 0.5675899047851563, 0.5676656494140625, 0.5677383422851563, 0.5676973876953125, 0.5679749145507812, 0.5676431274414062, 0.567762939453125, 0.5677230224609375, 0.567647216796875, 1.1716873779296875, 0.5677588500976563, 0.5675479125976562, 0.567457763671875, 0.5674711303710938, 0.5678981323242187, 0.5679073486328124, 0.5674229736328125, 0.5675980834960938, 0.5674864501953125, 0.56749462890625, 0.5673656616210937, 0.5676482543945313, 0.5675530395507813, 0.5675089721679687, 0.5674639282226562, 0.5674158325195312, 0.5674301147460937, 0.5674035034179687, 0.5674526977539063, 0.567446533203125, 0.5673840942382813, 0.567498779296875, 0.56760009765625, 0.5675858154296874, 0.5674158325195312, 0.56747314453125, 0.567436279296875, 0.5673809814453125, 0.567546875, 0.5677117309570312, 0.5675601806640626, 0.5675089721679687, 0.5675140991210937, 0.5675765991210937, 0.5675919189453125, 0.5674424438476563, 0.5677158203125, 0.5675878295898438, 0.56744140625, 0.5677056274414063, 0.5677404174804688, 0.5675233154296875, 0.5674649658203125, 0.567341064453125, 0.5675530395507813, 0.5674721069335937, 0.5675714721679688, 0.5675264282226562, 0.5675673828125, 0.5675612182617188, 0.5674956665039063, 0.5675284423828125, 0.5675427856445312, 0.5675919189453125, 0.567605224609375, 0.5675079956054687, 0.5675581665039062, 0.5677537231445312, 0.5677322387695313, 0.5675714721679688, 0.5675407104492187, 0.5676267700195312, 1.1715543212890625, 0.56745166015625, 0.5672324829101563, 0.5672796020507812, 0.5673430786132813, 0.5674086303710938, 0.5673318481445313, 0.56740966796875, 0.5675089721679687, 0.5676113891601563, 0.5675950317382813, 0.5674301147460937, 0.5677127685546876, 0.5675438232421876, 0.5674536743164063, 0.5673994140625, 0.5674403686523437, 0.5674127197265625, 0.5678090209960938, 0.5673983764648437, 0.5675172119140625, 0.5676820678710938, 0.5676349487304687, 0.5673932495117188, 0.567530517578125, 0.5676093139648437, 0.5676400756835938, 0.5676165161132812, 0.56760009765625, 0.5676707763671875, 0.5676339111328125, 0.567583740234375, 0.567468017578125, 0.5675867919921875, 0.5676011352539062, 0.5675888671875, 0.5676216430664063, 0.5679401245117187, 0.5675479125976562, 0.5676113891601563, 0.56771484375, 0.5675612182617188, 0.567562255859375, 0.5677076416015625, 0.5675817260742188, 0.5677230224609375, 0.5677875366210937, 0.56810595703125, 0.5677905883789063, 0.5677076416015625, 0.56764111328125, 0.5676318969726563, 0.5676728515625, 0.5677659912109375, 0.567630859375, 0.5676646118164063, 0.5677199096679687, 0.567635986328125, 0.5677271118164062, 0.567751708984375, 0.5676656494140625, 0.5677987670898438, 0.5677404174804688, 1.171937255859375, 0.5675632934570313, 0.567510009765625, 0.5676011352539062, 0.5675110473632813, 0.5675509643554687, 0.5675704345703125, 0.5676400756835938, 0.5673451538085937, 0.5674536743164063, 0.5673789672851562, 0.5673011474609375, 0.5673953247070312, 0.567414794921875, 0.5674506225585938, 0.5674485473632812, 0.5674711303710938, 0.5674024658203125, 0.5676707763671875, 0.5677967529296875, 0.5677352905273437, 0.5674874877929688, 0.5676021728515624, 0.5673779296875, 0.5679329223632813, 0.5678540649414062, 0.5675560913085937, 0.5674352416992188, 0.5675601806640626, 0.5673789672851562, 0.5673871459960937, 0.5673840942382813, 0.5674967041015625, 0.5679431762695313, 0.5675222778320312, 0.5674014892578125, 0.5675642700195312, 0.5678223266601562, 0.5675274047851563, 0.5674485473632812, 0.5675612182617188, 0.5675130615234375, 0.5677005004882812, 0.5681069946289062, 0.5675448608398438, 0.56759912109375, 0.5675233154296875, 0.5674772338867188, 0.5674833984375, 0.5675765991210937, 0.5675601806640626, 0.5674649658203125, 0.567468017578125, 0.5676585083007812, 0.5677854614257812, 0.5675899047851563, 0.567546875, 0.5675213012695313, 0.5679288330078125, 0.567762939453125, 0.5678182373046875, 0.5676216430664063, 0.5676011352539062, 1.17129931640625, 0.5673502807617188, 0.567215087890625, 0.5675376586914063, 0.56736767578125, 0.5673421020507813, 0.5673707275390625, 0.567426025390625, 0.5676564331054688, 0.5675714721679688, 0.5674864501953125, 0.5673482055664063, 0.5674526977539063, 0.5674854125976563, 0.5675048828125, 0.5674536743164063, 0.5673359375, 0.56749462890625, 0.5675018310546875, 0.5674526977539063, 0.5674557495117187, 0.5676062622070313, 0.5678377075195312, 0.5674813232421875, 0.5677189331054687, 0.5678090209960938, 0.5677772827148437, 0.5675213012695313, 0.567751708984375, 0.5677783203125, 0.5676656494140625, 0.5676830444335937, 0.5675755615234375, 0.5678561401367187, 0.567636962890625, 0.5677291259765626, 0.5675059204101562, 0.567667724609375, 0.56776806640625, 0.5675161743164062, 0.5675540771484375, 0.5675079956054687, 0.5677742309570313, 0.5676452026367188, 0.56749462890625, 0.5674864501953125, 0.567593994140625, 0.56757861328125, 0.5675172119140625, 0.5676615600585937, 0.56762060546875, 0.5679359741210938, 0.5679605712890625, 0.5678868408203125, 0.5678858032226562, 0.567710693359375, 0.5680302124023437, 0.5678018798828125, 0.5676083374023437, 0.5676615600585937, 0.5680117797851563, 0.5678970947265625, 0.56764111328125, 1.1718861083984375, 0.5675161743164062, 0.5677250366210937, 0.5673861694335938, 0.567342041015625, 0.5673369750976562, 0.5673584594726563, 0.5674086303710938, 0.5673850708007813, 0.5677219848632813, 0.56757861328125, 0.56755712890625, 0.5675601806640626, 0.5676646118164063, 0.5676544189453125, 0.5674854125976563, 0.5673922729492188, 0.567499755859375, 0.5677189331054687, 0.5675161743164062, 0.5676431274414062, 0.56751513671875, 0.567520263671875, 0.5674598388671875, 0.5675693969726563, 0.5675233154296875, 0.5675233154296875, 0.5677301635742188, 0.5675919189453125, 0.5674035034179687, 0.5674905395507812, 0.5677189331054687, 0.5676380004882813, 0.5675653076171875, 0.567541748046875, 0.5674424438476563, 0.5674383544921875, 0.5678059692382813, 0.567689208984375, 0.56762060546875, 0.5675601806640626, 0.5675079956054687, 0.5674854125976563, 0.5674926147460938, 0.56753564453125, 0.5678244018554688, 0.56768408203125, 0.5676267700195312, 0.5678377075195312, 0.5678120727539062, 0.567804931640625, 0.5675601806640626, 0.5677752075195313, 0.5677711181640624, 0.5676748657226562, 0.5678848266601563, 0.5678233642578125, 0.5676984252929688, 0.5676134643554688, 0.56768408203125, 0.5676605224609375, 0.56764111328125, 0.5679544067382812, 1.172231201171875, 0.5673134155273437, 0.5675560913085937, 0.5677117309570312, 0.567499755859375, 0.5674158325195312, 0.5673758544921875, 0.56732568359375, 0.5674649658203125, 0.5678387451171875, 0.5675479125976562, 0.5674649658203125, 0.5675950317382813, 0.5675284423828125, 0.5674014892578125, 0.5673430786132813, 0.5677230224609375, 0.5675120849609375, 0.5674485473632812, 0.5674014892578125, 0.5676533813476563, 0.5676400756835938, 0.567568359375, 0.5674219360351562, 0.5676533813476563, 0.567604248046875, 0.5677455444335937, 0.5675950317382813, 0.5676881713867188, 0.567636962890625, 0.5676769409179687, 0.5676810302734375, 0.56772607421875, 0.567942138671875, 0.5678171997070313, 0.5677557983398438, 0.5677598876953125, 0.5678653564453126, 0.568068115234375, 0.5676103515625, 0.5676461791992188, 0.5675264282226562, 0.5675867919921875, 0.56753564453125, 0.5677793579101562, 0.567762939453125, 0.567562255859375, 0.5676615600585937, 0.5673656616210937, 0.5675407104492187, 0.5676349487304687, 0.567783447265625, 0.5676871948242187, 0.567531494140625, 0.5677056274414063, 0.5678079833984375, 0.5679267578125, 0.5676380004882813, 0.5675755615234375, 0.567530517578125, 0.5676113891601563, 0.5678325805664063, 0.5676062622070313, 1.172675537109375, 0.567414794921875, 0.56749462890625, 0.5675540771484375, 0.5675540771484375, 0.5675079956054687, 0.5674649658203125, 0.5674332275390624, 0.5676083374023437, 0.5674967041015625, 0.5675346069335937, 0.567309326171875, 0.5674373168945313, 0.5676553955078125, 0.5676759033203125, 0.5677711181640624, 0.5675499267578125, 0.5675806884765625, 0.5676011352539062, 0.5674813232421875, 0.5675172119140625, 0.5674291381835938, 0.567647216796875, 0.5675264282226562, 0.5675950317382813, 0.5675899047851563, 0.5676093139648437, 0.5676820678710938, 0.5677025146484375, 0.567605224609375, 0.5676226806640625, 0.5677219848632813, 0.5676124267578125, 0.5677138061523438, 0.5676380004882813, 0.5676656494140625, 0.5676482543945313, 0.56774658203125, 0.5677158203125, 0.5675950317382813, 0.5677445068359375, 0.5677701416015625, 0.5675632934570313, 0.567531494140625, 0.56770458984375, 0.5677557983398438, 0.5675817260742188, 0.5675407104492187, 0.5675028686523438, 0.567583740234375, 0.5677485961914063, 0.5675714721679688, 0.56776806640625, 0.5676380004882813, 0.5676871948242187, 0.5676564331054688, 0.5675089721679687, 0.5678407592773438, 0.567920654296875, 0.56778955078125, 0.5677639770507813, 0.5679882202148437, 0.5677393798828125, 1.17273193359375, 0.56749365234375, 0.5674434814453125, 0.5675346069335937, 0.5677537231445312, 0.5674434814453125, 0.5675059204101562, 0.5675284423828125, 0.567583740234375, 0.5678008422851563, 0.567736328125, 0.5674874877929688, 0.5675048828125, 0.567436279296875, 0.5674956665039063, 0.5676564331054688, 0.567647216796875, 0.567720947265625, 0.56751513671875, 0.5676380004882813, 0.5676185302734374, 0.5676134643554688, 0.5674403686523437, 0.5674761962890625, 0.5675120849609375, 0.5675899047851563, 0.5674024658203125, 0.5674649658203125, 0.5675560913085937, 0.5677567749023438, 0.5676615600585937, 0.5677230224609375, 0.56781005859375, 0.567562255859375, 0.5678551025390625, 0.5675980834960938, 0.5675233154296875, 0.5675581665039062, 0.5675059204101562, 0.5674721069335937, 0.5674967041015625, 0.567530517578125, 0.5675007934570313, 0.5675028686523438, 0.5679646606445312, 0.567546875, 0.5677957153320312, 0.567920654296875, 0.567794677734375, 0.5679216918945312, 0.5680087280273437, 0.5677936401367187, 0.56793701171875, 0.5678694458007812, 0.5679564819335937, 0.56789404296875, 0.5677813720703125, 0.5679912719726562, 0.5678223266601562, 0.5678090209960938, 0.5678837890625, 0.5678981323242187, 0.5679011840820313]",tokens/s,1.7353060851290814,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,m,m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,a,a,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -15474,7 +16136,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/m/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/a/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -15501,9 +16163,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948c60-36fa4198483b6e6d79ee734e;1e77eff2-4763-42e9-b267-c09febf359ff) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949179-43251b7e1a565f046d6e7a76;eae8dee5-7f7f-446e-ac3a-56af95cbedd5) -Repository Not Found for url: https://huggingface.co/m/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/a/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -15528,15 +16190,81 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: m is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: a is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,1,1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/1/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669495ca-186c53a7650bea1634f7ec7c;a8a285f6-f2de-4bf5-9973-6b32c89bcd29) + +Repository Not Found for url: https://huggingface.co/1/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + raise EnvironmentError( +OSError: 1 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-3b-4e1t,stabilityai/stablelm-3b-4e1t,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2112.14336,2911.371264,0.0,2264.92416,2140.72832,s,10,2.4878771514892577,0.24878771514892578,0.001481785323819343,0.24867384338378906,0.25056690216064453,0.25108961105346683,0.2515077781677246,"[0.2516123199462891, 0.25045074462890626, 0.24760211181640626, 0.24728652954101563, 0.24780889892578126, 0.24664930725097656, 0.2480397186279297, 0.24930796813964845, 0.24954534912109375, 0.24957420349121093]",tokens/s,1028.9897145715452,kWh,2.9131745419851165e-06,1.5962883600656e-06,1.3288858869561026e-05,1.7798321771611744e-05,tokens/kWh,14383378.572710099,MB,2112.14336,2911.371264,0.0,2264.92416,2246.907904,s,10,146.0569638671875,14.605696386718751,0.006079082022590375,14.60555517578125,14.610718359375001,14.61447392578125,14.617478378906249,"[14.5972685546875, 14.605400390625, 14.6057099609375, 14.6049326171875, 14.5980126953125, 14.599310546875, 14.6182294921875, 14.609376953125, 14.6088388671875, 14.6098837890625]",tokens/s,4.313385567653395,kWh,0.00017247067014820533,9.452784657802511e-05,0.0007735646039460372,0.0010405631206722677,tokens/kWh,60544.14071421071,,s,629,148.0586790771484,0.23538740711788306,0.029533502655254593,0.23172300720214845,0.23236076049804688,0.2326812683105469,0.4793023583984375,"[0.23325080871582032, 0.23149772644042968, 0.23179673767089845, 0.2320568389892578, 0.2313912353515625, 0.23193907165527344, 0.23138099670410156, 0.23167181396484374, 0.2314608612060547, 0.2322554931640625, 0.23149363708496093, 0.23134413146972657, 0.23120999145507812, 0.23181106567382812, 0.23132569885253906, 0.23138099670410156, 0.2312243194580078, 0.23141888427734375, 0.23158682250976562, 0.23283609008789063, 0.2315028533935547, 0.23156224060058594, 0.2313502655029297, 0.23152435302734375, 0.23198617553710937, 0.23152435302734375, 0.23150592041015625, 0.23154483032226564, 0.23148646545410156, 0.2315581512451172, 0.23163084411621093, 0.23152537536621093, 0.23172300720214845, 0.23159397888183594, 0.23167079162597656, 0.23191448974609374, 0.2319974365234375, 0.2318376922607422, 0.23134413146972657, 0.23214079284667968, 0.23153254699707032, 0.231510009765625, 0.23141171264648439, 0.23148544311523436, 0.23137586975097657, 0.23179263305664063, 0.23232511901855468, 0.23154483032226564, 0.23182234191894532, 0.23154483032226564, 0.23155506896972655, 0.23143218994140624, 0.23180184936523437, 0.23193702697753907, 0.2313113555908203, 0.23155711364746093, 0.23150489807128907, 0.23152333068847655, 0.231404541015625, 0.23146803283691406, 0.2314721221923828, 0.23182131958007812, 0.48205722045898436, 0.23162675476074218, 0.23151513671875, 0.23147418212890625, 0.23139430236816405, 0.23154176330566406, 0.2315345916748047, 0.231478271484375, 0.2315161590576172, 0.2314055633544922, 0.23177113342285155, 0.23148748779296874, 0.23155506896972655, 0.23154995727539063, 0.23152435302734375, 0.23150796508789062, 0.23173222351074219, 0.23166157531738282, 0.23167897033691406, 0.23310336303710938, 0.23195033264160156, 0.23181925964355468, 0.23237017822265624, 0.2315888671875, 0.23168307495117188, 0.23146905517578126, 0.23271218872070312, 0.23225343322753905, 0.2316738586425781, 0.23232205200195313, 0.23157145690917968, 0.23149465942382813, 0.23150489807128907, 0.23166873168945312, 0.23170457458496094, 0.23163084411621093, 0.23201075744628907, 0.23196978759765624, 0.23187762451171876, 0.23154893493652343, 0.23200358581542968, 0.23128781127929687, 0.2326876220703125, 0.23151513671875, 0.2320189514160156, 0.23194111633300782, 0.2343126983642578, 0.23182745361328125, 0.23166975402832032, 0.2321029052734375, 0.2315478973388672, 0.23180390930175782, 0.23187455749511718, 0.23265895080566407, 0.23204351806640625, 0.23161549377441407, 0.23184384155273438, 0.23168307495117188, 0.23198822021484375, 0.23221965026855468, 0.23208038330078126, 0.2315028533935547, 0.2317189178466797, 0.4791541748046875, 0.23152537536621093, 0.23141786193847655, 0.23147109985351563, 0.2316881866455078, 0.23219097900390626, 0.23250738525390624, 0.23175474548339844, 0.23157862854003905, 0.23146905517578126, 0.23150796508789062, 0.23139942932128907, 0.23163084411621093, 0.23131954956054687, 0.23146290588378907, 0.2314721221923828, 0.23149977111816405, 0.23143116760253907, 0.23153561401367187, 0.23136460876464843, 0.23145574951171874, 0.23262821960449218, 0.23162060546875, 0.23222067260742188, 0.2317332458496094, 0.2321459197998047, 0.23204658508300782, 0.23222169494628905, 0.23193394470214843, 0.23173222351074219, 0.23207321166992187, 0.2314967041015625, 0.23171379089355468, 0.23195033264160156, 0.2315335693359375, 0.23165440368652343, 0.23151513671875, 0.2319278106689453, 0.23251968383789062, 0.2320762939453125, 0.2323722229003906, 0.23198104858398438, 0.23364813232421874, 0.231699462890625, 0.23159397888183594, 0.2315478973388672, 0.23241932678222657, 0.2327490539550781, 0.2325544891357422, 0.23194828796386718, 0.2318673858642578, 0.2316810302734375, 0.23178445434570313, 0.23171685791015625, 0.2330030059814453, 0.23198924255371095, 0.23177932739257812, 0.2315345916748047, 0.2316759033203125, 0.23150898742675782, 0.23172915649414064, 0.23147622680664062, 0.23150898742675782, 0.4793599853515625, 0.23149055480957031, 0.23156224060058594, 0.23211724853515625, 0.23157350158691406, 0.2316636199951172, 0.2315335693359375, 0.2317004852294922, 0.23198104858398438, 0.2317076416015625, 0.2317066192626953, 0.2316810302734375, 0.23214694213867187, 0.2314281005859375, 0.23171379089355468, 0.23145368957519533, 0.23175474548339844, 0.2320343017578125, 0.23201075744628907, 0.2313799743652344, 0.23178445434570313, 0.2324234313964844, 0.2315724792480469, 0.23148133850097657, 0.23172813415527344, 0.23166053771972656, 0.23147314453125, 0.2317332458496094, 0.2317066192626953, 0.23179878234863283, 0.23192472839355469, 0.231546875, 0.23191448974609374, 0.2325841979980469, 0.232310791015625, 0.23168716430664063, 0.23217356872558595, 0.23178752136230468, 0.23181004333496094, 0.23151922607421874, 0.23181517028808593, 0.23169024658203125, 0.23222067260742188, 0.23224114990234376, 0.233280517578125, 0.23156326293945312, 0.23260774230957032, 0.23164927673339844, 0.23165132141113282, 0.23178752136230468, 0.2314833984375, 0.23191654968261718, 0.23174041748046875, 0.23182847595214845, 0.23188172912597657, 0.23205477905273436, 0.23170252990722656, 0.23150592041015625, 0.23171072387695313, 0.23180697631835936, 0.23188787841796876, 0.23198924255371095, 0.2316083221435547, 0.48040447998046876, 0.2314649658203125, 0.23149465942382813, 0.23155506896972655, 0.23165338134765626, 0.23153050231933595, 0.23216741943359376, 0.23149977111816405, 0.2316738586425781, 0.2315141143798828, 0.23169229125976562, 0.23125503540039063, 0.23212237548828124, 0.231546875, 0.23149363708496093, 0.2313123779296875, 0.2316011505126953, 0.23193292236328125, 0.23160934448242188, 0.23140045166015624, 0.23142399597167967, 0.2315028533935547, 0.23264256286621093, 0.23136256408691405, 0.23141273498535156, 0.23175270080566407, 0.2318970947265625, 0.23143218994140624, 0.231625732421875, 0.23146803283691406, 0.23153561401367187, 0.23179263305664063, 0.23162265014648437, 0.23143833923339843, 0.23150489807128907, 0.2316769256591797, 0.2315028533935547, 0.23140351867675782, 0.23153254699707032, 0.23176396179199218, 0.23235379028320313, 0.23157145690917968, 0.23215000915527345, 0.23228416442871094, 0.23199436950683594, 0.2316083221435547, 0.2318725128173828, 0.2318663635253906, 0.2320168914794922, 0.2316748809814453, 0.23151718139648436, 0.2315161590576172, 0.23198104858398438, 0.23176908874511717, 0.2314844207763672, 0.23157452392578126, 0.2316400604248047, 0.2338518981933594, 0.23160319519042968, 0.2314608612060547, 0.23169842529296875, 0.23176499938964842, 0.23139634704589843, 0.47871487426757814, 0.23285452270507812, 0.2316759033203125, 0.23147109985351563, 0.2317619171142578, 0.23147418212890625, 0.23200460815429688, 0.23145368957519533, 0.23143423461914062, 0.23151513671875, 0.23195852661132813, 0.23152946472167968, 0.23166259765625, 0.2315407409667969, 0.231804931640625, 0.23130111694335936, 0.23147418212890625, 0.23145368957519533, 0.2317332458496094, 0.23229338073730468, 0.23143423461914062, 0.23145779418945311, 0.2318243865966797, 0.23271629333496094, 0.23164723205566407, 0.23130624389648438, 0.23173426818847656, 0.23160525512695312, 0.23191448974609374, 0.23143936157226563, 0.23173735046386718, 0.2313297882080078, 0.23191654968261718, 0.23161753845214844, 0.23174861145019532, 0.23163494873046875, 0.23162367248535157, 0.23179673767089845, 0.23365119934082032, 0.2315284423828125, 0.23203532409667968, 0.2314844207763672, 0.23151820373535156, 0.23153254699707032, 0.23219815063476562, 0.23247462463378907, 0.23148236083984375, 0.2316247100830078, 0.23154893493652343, 0.23167999267578124, 0.23152333068847655, 0.2313492431640625, 0.23187149047851563, 0.2317332458496094, 0.23147314453125, 0.23146803283691406, 0.231546875, 0.23138099670410156, 0.23195443725585937, 0.23131033325195313, 0.2316083221435547, 0.23169331359863282, 0.23267942810058595, 0.4799190979003906, 0.23168614196777343, 0.2323384246826172, 0.23134413146972657, 0.2315478973388672, 0.23153152465820312, 0.23206399536132813, 0.23240089416503906, 0.2316400604248047, 0.232195068359375, 0.23177113342285155, 0.23198208618164062, 0.231762939453125, 0.23141580200195314, 0.23243571472167968, 0.23172607421875, 0.23175167846679687, 0.23154380798339844, 0.23196159362792967, 0.2322186279296875, 0.23200767517089843, 0.23159706115722656, 0.23196774291992187, 0.23436288452148438, 0.23299481201171876, 0.23171994018554687, 0.23219917297363282, 0.23193702697753907, 0.23206809997558595, 0.23197900390625, 0.232015869140625, 0.23205580139160156, 0.2321817626953125, 0.23225856018066407, 0.23298252868652344, 0.23273779296875, 0.23192576599121092, 0.23256166076660156, 0.23193702697753907, 0.23206912231445312, 0.23249714660644533, 0.23228518676757812, 0.2316943359375, 0.23190733337402344, 0.2321776580810547, 0.23329791259765625, 0.2317434844970703, 0.23172300720214845, 0.23201791381835937, 0.23177830505371094, 0.23229849243164064, 0.23173631286621094, 0.23190631103515624, 0.23168716430664063, 0.23162879943847656, 0.2316021728515625, 0.23181619262695313, 0.23235891723632812, 0.23165338134765626, 0.23182540893554687, 0.23188890075683594, 0.23179878234863283, 0.23223193359375, 0.4815288391113281, 0.23210905456542968, 0.23236915588378906, 0.23213363647460938, 0.23194931030273438, 0.2322708435058594, 0.2319656982421875, 0.23167999267578124, 0.23199026489257812, 0.23194419860839843, 0.23190220642089843, 0.23164620971679686, 0.23152333068847655, 0.23174656677246094, 0.23165132141113282, 0.23153868103027345, 0.23241421508789062, 0.23152333068847655, 0.23160012817382813, 0.2317813720703125, 0.23216844177246093, 0.23163699340820312, 0.2317332458496094, 0.23213157653808594, 0.23221554565429686, 0.23165235900878905, 0.23165029907226561, 0.2321817626953125, 0.23166566467285157, 0.23215718078613282, 0.23198719787597658, 0.23195852661132813, 0.2326824951171875, 0.23238552856445313, 0.23246131896972655, 0.2325893096923828, 0.23215411376953124, 0.23172505187988282, 0.23226573181152343, 0.2317496337890625, 0.23191552734375, 0.23176908874511717, 0.23195545959472658, 0.2318008270263672, 0.23182643127441407, 0.23190016174316405, 0.232416259765625, 0.2320189514160156, 0.23202508544921874, 0.23167999267578124, 0.23148748779296874, 0.23161036682128905, 0.2314598388671875, 0.23159500122070312, 0.23170457458496094, 0.23154278564453126, 0.23169024658203125, 0.23182643127441407, 0.23170355224609376, 0.2315704345703125, 0.23159603881835938, 0.23155404663085938, 0.23165338134765626, 0.4812718200683594, 0.23177317810058592, 0.23226675415039064, 0.23194111633300782, 0.2323927001953125, 0.23203225708007813, 0.2321274871826172, 0.23159910583496093, 0.2321274871826172, 0.23236813354492186, 0.23202099609375, 0.23199026489257812, 0.2322821044921875, 0.23166873168945312, 0.2315704345703125, 0.2316953582763672, 0.2317066192626953, 0.23233638000488283, 0.23172402954101562, 0.23153765869140625, 0.2317015075683594, 0.23190835571289062, 0.2319349822998047, 0.23167079162597656, 0.23204454040527345, 0.23182949829101562, 0.2317066192626953, 0.23161241149902342, 0.23168716430664063, 0.23161651611328124, 0.2314915771484375, 0.23156736755371093, 0.23175578308105468, 0.2314915771484375, 0.2315898895263672, 0.2314639434814453, 0.23174041748046875, 0.23146188354492186, 0.23163699340820312, 0.231689208984375, 0.23188275146484374, 0.23198002624511718, 0.23282687377929687, 0.23209779357910157, 0.23285350036621094, 0.23174656677246094, 0.23175578308105468, 0.23238450622558593, 0.2317015075683594, 0.23150489807128907, 0.23172300720214845, 0.231625732421875, 0.23256166076660156, 0.23199641418457032, 0.232195068359375, 0.23204556274414062, 0.23192166137695314, 0.2320394287109375, 0.23225138854980468, 0.23171379089355468, 0.2317813720703125, 0.23161958312988282, 0.232158203125, 0.4819783630371094, 0.2318551025390625, 0.23196159362792967, 0.23218585205078124, 0.2324418487548828, 0.23145881652832032, 0.2316441650390625, 0.2316216278076172, 0.2316216278076172, 0.23146598815917968, 0.23160525512695312, 0.2316451873779297, 0.23194111633300782, 0.23152639770507813, 0.23173939514160155, 0.23201075744628907, 0.23212953186035157, 0.23183258056640624, 0.23173837280273438, 0.2314915771484375, 0.2315274200439453, 0.23239474487304687, 0.23221554565429686, 0.23157145690917968, 0.23228518676757812, 0.23169842529296875, 0.23386726379394532, 0.23193087768554688, 0.23240908813476563, 0.23179161071777343, 0.2318612518310547, 0.23229029846191407, 0.2322391052246094, 0.2321817626953125, 0.2317076416015625, 0.23165338134765626, 0.231762939453125, 0.23216537475585938, 0.23200869750976563, 0.23169024658203125, 0.2321448974609375, 0.23209881591796874, 0.23225343322753905, 0.2321080322265625, 0.2319605712890625, 0.23185305786132812, 0.23235276794433593, 0.23230157470703125, 0.23171379089355468, 0.23146905517578126, 0.2321694793701172, 0.2319288330078125, 0.231699462890625, 0.23157760620117188, 0.23183871459960936, 0.23164723205566407, 0.23158476257324218, 0.2316769256591797, 0.2315581512451172, 0.23161241149902342, 0.23160627746582033, 0.23157452392578126, 0.23163392639160157]",tokens/s,4.248315626753965,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-125m,,cuda,0,42,,,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,MB,1273.409536,921.174016,0.0,274.726912,220.646912,s,10,0.326115104675293,0.032611510467529296,0.0012484582231843272,0.03218409538269043,0.032784641265869136,0.034564048767089836,0.035987574768066403,"[0.036343456268310544, 0.03226867294311524, 0.03213779067993164, 0.032141822814941406, 0.03203395080566406, 0.03214742279052735, 0.032220767974853515, 0.03238921737670898, 0.03208832168579102, 0.032343681335449216]",tokens/s,7849.989047728858,kWh,3.834838485734976e-07,2.1012961289151069e-07,8.25654520552228e-07,1.419267982017236e-06,tokens/kWh,180374674.2994524,MB,1273.409536,921.174016,0.0,274.726912,250.722304,s,10,20.085640136718748,2.008564013671875,0.006065788108395492,2.006720520019531,2.0181213745117184,2.0185785705566404,2.018944327392578,"[2.018019775390625, 2.006443115234375, 2.0069979248046876, 2.0103148193359375, 2.0040799560546874, 2.00180322265625, 2.00428125, 2.0133179931640623, 2.0013463134765623, 2.0190357666015624]",tokens/s,31.36569189290069,kWh,2.3731767884623614e-05,1.3005590929520364e-05,4.874369069043466e-05,8.548104950457861e-05,tokens/kWh,737005.457526882,,s,629,20.34066634368894,0.03233810229521298,0.0038819833531807996,0.03179007911682129,0.0323544822692871,0.032856268310546874,0.06427897552490235,"[0.03209625625610352, 0.031882240295410154, 0.031893503189086916, 0.032045055389404296, 0.03220787048339844, 0.031922176361083986, 0.031958015441894534, 0.03196518325805664, 0.031784959793090824, 0.03223756790161133, 0.031974399566650394, 0.031955968856811526, 0.03202969741821289, 0.03302809524536133, 0.03192835235595703, 0.031831008911132816, 0.03254272079467774, 0.033226783752441404, 0.032270305633544924, 0.032140289306640625, 0.031940607070922854, 0.032451583862304685, 0.03203788757324219, 0.03188531112670898, 0.032231422424316404, 0.031936511993408204, 0.03298099136352539, 0.03213516616821289, 0.03167948722839355, 0.031526912689208986, 0.031693824768066405, 0.03172966384887695, 0.03170918464660644, 0.03180953598022461, 0.03179929542541504, 0.031628288269042966, 0.031508480072021484, 0.03155660820007324, 0.03158937644958496, 0.03198259162902832, 0.03151974487304687, 0.03146342468261719, 0.031752191543579104, 0.03203481674194336, 0.03182796859741211, 0.03228160095214844, 0.03201331329345703, 0.03220377731323242, 0.03181056022644043, 0.031865856170654294, 0.031473663330078124, 0.031682559967041016, 0.031628288269042966, 0.03277414321899414, 0.03190790367126465, 0.0320777587890625, 0.03253350448608398, 0.032473087310791016, 0.032159744262695314, 0.03166924858093262, 0.03159654426574707, 0.031492095947265625, 0.06451507568359376, 0.032, 0.03342745590209961, 0.032282623291015625, 0.03176243209838867, 0.0318525447845459, 0.03180646324157715, 0.03143065643310547, 0.03154841613769531, 0.03168870353698731, 0.031514623641967776, 0.03150643157958984, 0.03214438247680664, 0.033160190582275394, 0.03213312149047851, 0.03156684875488281, 0.031958015441894534, 0.03179110336303711, 0.03184332847595215, 0.03142963218688965, 0.03191705513000488, 0.031768575668334964, 0.03164057540893555, 0.0317573127746582, 0.03179827117919922, 0.031731712341308595, 0.03301375961303711, 0.031920127868652344, 0.03172352027893066, 0.03289395141601562, 0.031927295684814457, 0.03162521553039551, 0.03168358421325684, 0.03179110336303711, 0.031666175842285156, 0.03177369689941406, 0.031678464889526366, 0.03179315185546875, 0.031765504837036135, 0.031699968338012696, 0.03142860794067383, 0.03162419128417969, 0.031615999221801756, 0.03140505599975586, 0.03147776031494141, 0.031458303451538085, 0.03143987274169922, 0.03174399948120117, 0.0317255687713623, 0.03142758369445801, 0.03156991958618164, 0.031783935546875, 0.03183616065979004, 0.0317890567779541, 0.03189248085021973, 0.03191910362243652, 0.031932416915893554, 0.032277503967285154, 0.032382976531982424, 0.0317706241607666, 0.03181260871887207, 0.031749120712280275, 0.03174502372741699, 0.06404198455810547, 0.03170611190795898, 0.031704063415527346, 0.031628288269042966, 0.03138764762878418, 0.031698944091796875, 0.03154022407531738, 0.03150540733337402, 0.03196416091918945, 0.03177881622314453, 0.032020481109619144, 0.03214233779907227, 0.03199692726135254, 0.031780864715576174, 0.03226009750366211, 0.032115711212158206, 0.03199180793762207, 0.03156787109375, 0.031453184127807614, 0.03144908714294434, 0.0314839038848877, 0.03146649551391602, 0.031458303451538085, 0.03172147178649903, 0.031893503189086916, 0.0328007698059082, 0.03156787109375, 0.031731712341308595, 0.031849472045898435, 0.03165388870239258, 0.03178700828552246, 0.03168259239196777, 0.03179311943054199, 0.031783935546875, 0.03212083053588867, 0.03178188705444336, 0.03179724884033203, 0.033549312591552735, 0.03284889602661133, 0.031834112167358396, 0.03212492752075195, 0.03198259162902832, 0.03174297523498535, 0.031731712341308595, 0.031753215789794925, 0.03182387161254883, 0.031473663330078124, 0.03165388870239258, 0.03157196807861328, 0.031453184127807614, 0.031734783172607424, 0.03165695953369141, 0.03180953598022461, 0.03184537506103516, 0.03207372665405273, 0.032285694122314454, 0.032556095123291016, 0.0321484146118164, 0.0324956169128418, 0.03182592010498047, 0.03148287963867188, 0.03179110336303711, 0.03181056022644043, 0.06443007659912109, 0.03183001518249512, 0.03196928024291992, 0.03182694435119629, 0.03170099258422852, 0.03181056022644043, 0.0315043830871582, 0.03177881622314453, 0.03177574348449707, 0.03191910362243652, 0.0321710090637207, 0.03204403305053711, 0.03181875228881836, 0.031703039169311525, 0.03174604797363281, 0.03175526428222656, 0.031764480590820314, 0.031731712341308595, 0.03183923149108887, 0.03340390396118164, 0.032922622680664065, 0.032161792755126956, 0.03223756790161133, 0.031734783172607424, 0.03291340637207031, 0.032074752807617186, 0.03202150344848633, 0.031716352462768556, 0.03155046463012695, 0.031692800521850584, 0.03226828765869141, 0.03171737670898438, 0.03140505599975586, 0.03134976005554199, 0.03197952079772949, 0.03200307083129883, 0.031696895599365234, 0.03169484710693359, 0.03176755142211914, 0.0321710090637207, 0.03153919982910156, 0.03143987274169922, 0.03146444892883301, 0.03160371208190918, 0.03245568084716797, 0.0314337272644043, 0.03163545608520508, 0.03231846237182617, 0.03222323226928711, 0.031942655563354495, 0.03174399948120117, 0.03162112045288086, 0.03139788818359375, 0.032302078247070314, 0.03218841552734375, 0.03275161743164062, 0.0322529296875, 0.03198361587524414, 0.03178803253173828, 0.031665151596069335, 0.03129241561889649, 0.03186073684692383, 0.031955968856811526, 0.06424063873291015, 0.03157811164855957, 0.03165695953369141, 0.03165081596374512, 0.03146854400634766, 0.031693824768066405, 0.03204095840454101, 0.03246182250976563, 0.03183103942871094, 0.03218636703491211, 0.03204095840454101, 0.031784959793090824, 0.03218431854248047, 0.03177779197692871, 0.031698944091796875, 0.03156684875488281, 0.031731712341308595, 0.03239424133300781, 0.03142758369445801, 0.03172966384887695, 0.03203379058837891, 0.03207167816162109, 0.03187302398681641, 0.033006591796875, 0.03175526428222656, 0.0316180477142334, 0.031959039688110355, 0.031514623641967776, 0.031884288787841795, 0.03161497688293457, 0.031440895080566404, 0.031442943572998046, 0.03174092864990234, 0.03172966384887695, 0.03197747230529785, 0.03176755142211914, 0.03205222320556641, 0.03165695953369141, 0.03194777679443359, 0.03171327972412109, 0.031562751770019534, 0.03168972778320313, 0.031731712341308595, 0.03172966384887695, 0.03186483192443847, 0.032143360137939454, 0.03146240043640137, 0.03147776031494141, 0.03138355255126953, 0.0313753604888916, 0.03180646324157715, 0.0317255687713623, 0.03186380767822266, 0.03160678482055664, 0.032494590759277346, 0.03222528076171875, 0.032045055389404296, 0.03183206367492676, 0.03183206367492676, 0.03180851173400879, 0.03134464073181152, 0.031470592498779294, 0.031731712341308595, 0.06429388427734375, 0.03167436790466309, 0.031923200607299806, 0.03159756851196289, 0.03151667213439941, 0.031647743225097655, 0.031802400588989255, 0.03235427093505859, 0.03198259162902832, 0.03172147178649903, 0.031888383865356446, 0.03179417610168457, 0.031507455825805664, 0.03172761535644531, 0.031579135894775394, 0.031692800521850584, 0.0315156478881836, 0.031440895080566404, 0.03173990440368652, 0.03155356788635254, 0.031624160766601565, 0.03153510475158691, 0.033051647186279294, 0.03177369689941406, 0.031783935546875, 0.03135897636413574, 0.03179007911682129, 0.031714303970336914, 0.031848447799682614, 0.031476736068725586, 0.03139993667602539, 0.03133440017700195, 0.03155763244628906, 0.03146956825256347, 0.03141024017333984, 0.031344575881958006, 0.03177574348449707, 0.03194675254821777, 0.03219046401977539, 0.03170918464660644, 0.031678464889526366, 0.03172249603271484, 0.03172147178649903, 0.031513599395751955, 0.03161497688293457, 0.03177779197692871, 0.03177574348449707, 0.03137228775024414, 0.03147369575500488, 0.031712223052978515, 0.03170918464660644, 0.03205222320556641, 0.03178803253173828, 0.03221299362182617, 0.03220889663696289, 0.03131391906738281, 0.03146956825256347, 0.03166720008850098, 0.031661056518554685, 0.03207376098632812, 0.03320111846923828, 0.032717823028564456, 0.032519168853759765, 0.06434508514404297, 0.031736831665039066, 0.031752191543579104, 0.031851520538330076, 0.03142963218688965, 0.03157196807861328, 0.032121856689453124, 0.03311513519287109, 0.03222534561157227, 0.03178079986572266, 0.03179827117919922, 0.03183206367492676, 0.03181465530395508, 0.03183206367492676, 0.03177267265319824, 0.03184025573730469, 0.031542272567749025, 0.03150540733337402, 0.03178598403930664, 0.03185663986206055, 0.03176038360595703, 0.03312639999389649, 0.03152179145812988, 0.032102401733398435, 0.03188019180297851, 0.03193036842346191, 0.031324159622192385, 0.031851520538330076, 0.03158016014099121, 0.031389696121215824, 0.03189555168151856, 0.03170099258422852, 0.03173785591125488, 0.031285247802734374, 0.03177068710327149, 0.031356864929199216, 0.03158527946472168, 0.031526912689208986, 0.03160985565185547, 0.03185868835449219, 0.031848447799682614, 0.031437824249267575, 0.0317388801574707, 0.03174297523498535, 0.0319866886138916, 0.03175014305114746, 0.031922176361083986, 0.031817728042602536, 0.03180544090270996, 0.03139072036743164, 0.03181260871887207, 0.03197952079772949, 0.03224166488647461, 0.03209011077880859, 0.03164057540893555, 0.03165184020996094, 0.031438848495483396, 0.03207372665405273, 0.03194675254821777, 0.03155148887634277, 0.03187302398681641, 0.03263488006591797, 0.03184025573730469, 0.06429801940917969, 0.03187299156188965, 0.03203276824951172, 0.032094207763671875, 0.03197849655151367, 0.031958015441894534, 0.031926271438598636, 0.031834112167358396, 0.03189452743530274, 0.03218841552734375, 0.032353279113769534, 0.0318791675567627, 0.03179315185546875, 0.031887359619140625, 0.03185868835449219, 0.03156480026245117, 0.03182796859741211, 0.0322426872253418, 0.032043006896972655, 0.03181670379638672, 0.03299020767211914, 0.032031742095947266, 0.03186892890930176, 0.032304126739501955, 0.03237171173095703, 0.0319866886138916, 0.031454208374023435, 0.031525888442993165, 0.03151155281066895, 0.031492095947265625, 0.03167334365844727, 0.031730688095092774, 0.03897753524780274, 0.032933887481689454, 0.031889408111572266, 0.03211980819702148, 0.031719423294067385, 0.031352832794189454, 0.03140505599975586, 0.031687711715698244, 0.031402975082397463, 0.03169177627563476, 0.031749120712280275, 0.03167948722839355, 0.03165695953369141, 0.0316753921508789, 0.03172659111022949, 0.03139072036743164, 0.03140812873840332, 0.03175526428222656, 0.03156684875488281, 0.03263590240478516, 0.03202252960205078, 0.03183923149108887, 0.0319682559967041, 0.031649791717529296, 0.031784959793090824, 0.03172352027893066, 0.03167129516601563, 0.0314337272644043, 0.03163443183898926, 0.03186483192443847, 0.03146137619018555, 0.06431948852539063, 0.03137843132019043, 0.03158016014099121, 0.031425535202026365, 0.031645696640014646, 0.031730688095092774, 0.03186486434936524, 0.031797216415405276, 0.0318156795501709, 0.03175628852844238, 0.031699968338012696, 0.031410175323486327, 0.03138355255126953, 0.03278540802001953, 0.03300454330444336, 0.032178176879882815, 0.0318156795501709, 0.031855615615844726, 0.031870975494384765, 0.03283967971801758, 0.0314204158782959, 0.0314081916809082, 0.031652799606323244, 0.03211775970458984, 0.031666175842285156, 0.03154022407531738, 0.031373311996459964, 0.03173785591125488, 0.031546367645263675, 0.0316753921508789, 0.0315043830871582, 0.031529983520507815, 0.031764480590820314, 0.03139481544494629, 0.03133440017700195, 0.03138559913635254, 0.03137843132019043, 0.031735807418823245, 0.031543296813964845, 0.03143065643310547, 0.03159859275817871, 0.031936511993408204, 0.031735807418823245, 0.03193548774719238, 0.031458303451538085, 0.031456256866455076, 0.031716352462768556, 0.0317388801574707, 0.032037952423095706, 0.031414207458496095, 0.0326901741027832, 0.03216793441772461, 0.031585344314575194, 0.03156883239746094, 0.03191398429870605, 0.031631359100341795, 0.031903743743896484, 0.03156076812744141, 0.03184736061096191, 0.03181363105773926, 0.03224371337890625, 0.03225702285766602, 0.031955968856811526, 0.06444134521484375, 0.03154431915283203, 0.031665151596069335, 0.03288780975341797, 0.031886335372924804, 0.03204403305053711, 0.03172659111022949, 0.031509504318237305, 0.03173785591125488, 0.032, 0.032320510864257815, 0.03182387161254883, 0.03230003356933594, 0.03187404823303223, 0.032198688507080075, 0.03247203063964844, 0.03235532760620117, 0.032702465057373044, 0.03311718368530273, 0.03155148887634277, 0.03170201683044434, 0.03225094223022461, 0.03220576095581055, 0.03237580871582031, 0.032230400085449216, 0.03218431854248047, 0.03240447998046875, 0.032449535369873043, 0.03225600051879883, 0.03243622589111328, 0.0319498233795166, 0.03165081596374512, 0.031528959274291994, 0.03161702346801758, 0.0321003532409668, 0.03190784072875977, 0.03203788757324219, 0.032328704833984374, 0.032467967987060545, 0.03184435272216797, 0.031665151596069335, 0.03177369689941406, 0.03174604797363281, 0.03233894348144531, 0.031704063415527346, 0.03172454452514648, 0.032039936065673826, 0.03196211242675781, 0.031926271438598636, 0.0328611831665039, 0.03221200180053711, 0.03217712020874024, 0.03181056022644043, 0.03184332847595215, 0.032064510345458985, 0.03207372665405273, 0.03184339141845703, 0.03191596794128418, 0.031817760467529294, 0.031796192169189455, 0.03153408050537109, 0.032161792755126956, 0.03232460784912109]",tokens/s,30.92327406447812,,,,,,main,False,False -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2,openai-community/gpt2,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1232.244736,1005.060096,0.0,358.612992,318.913024,s,24,0.17188252639770507,0.007161771933237711,0.0003243953015149955,0.0070352799892425535,0.007393788623809815,0.007410750222206116,0.00821779634475708,"[0.008458335876464844, 0.007218272209167481, 0.007377503871917724, 0.007035391807556152, 0.006997471809387207, 0.006964863777160645, 0.006896895885467529, 0.006932159900665283, 0.006920639991760254, 0.006907519817352295, 0.0068839678764343265, 0.006967360019683838, 0.007303135871887207, 0.007367551803588867, 0.007091263771057129, 0.007035168170928955, 0.0072576642036437985, 0.006943456172943115, 0.007412511825561524, 0.007331488132476807, 0.006977695941925049, 0.007400767803192139, 0.00699567985534668, 0.007205760002136231]",tokens/s,35745.34380408103,kWh,8.272282266742969e-08,4.5327846553754305e-08,1.771287987213526e-07,3.051794679425366e-07,tokens/kWh,838850666.2191416,MB,1232.539648,1005.060096,0.0,358.612992,328.804864,s,24,10.164368652343752,0.4235153605143229,0.013402359087444363,0.4229962463378906,0.43468231201171875,0.43530513000488286,0.46083279296875,"[0.4684530029296875, 0.4353216552734375, 0.431840576171875, 0.4128219909667969, 0.41338916015625, 0.4116455383300781, 0.41182235717773436, 0.41141156005859375, 0.41097488403320315, 0.4117151794433594, 0.41143212890625, 0.4306710510253906, 0.4334475708007812, 0.43521148681640626, 0.41144964599609374, 0.4190294189453125, 0.4116963806152344, 0.4119750061035156, 0.43146246337890626, 0.4310239562988281, 0.42696307373046877, 0.4310359191894531, 0.43171932983398437, 0.42785531616210937]",tokens/s,148.7549351775386,kWh,4.88881335726806e-06,2.6788370271125138e-06,8.551130498695033e-06,1.611878088307561e-05,tokens/kWh,3908484.1748887296,,s,1511,10.320183299064633,0.006830035274033512,0.0009334458342907997,0.006691840171813965,0.006923264026641846,0.007306751966476441,0.013799629211425782,"[0.007993343830108643, 0.008039423942565918, 0.007952383995056152, 0.007895040035247802, 0.007833600044250488, 0.007610367774963379, 0.007690271854400635, 0.007604191780090332, 0.007493631839752197, 0.007529471874237061, 0.007613440036773681, 0.007756800174713135, 0.007661568164825439, 0.007654399871826172, 0.0076687679290771485, 0.007647200107574463, 0.007772160053253174, 0.007723008155822754, 0.00773632001876831, 0.007501823902130127, 0.0075970559120178225, 0.007692287921905518, 0.007699456214904785, 0.007568384170532226, 0.0075038719177246095, 0.0075335679054260255, 0.007614528179168701, 0.007336895942687988, 0.007300096035003662, 0.007535615921020508, 0.00753868818283081, 0.007528448104858398, 0.007377920150756836, 0.0075038719177246095, 0.007502848148345947, 0.007266304016113281, 0.007370751857757568, 0.007285759925842285, 0.007271423816680909, 0.007333888053894043, 0.007404543876647949, 0.007350272178649903, 0.007293951988220215, 0.0070860800743103025, 0.007158783912658692, 0.007108607769012451, 0.007090176105499267, 0.007136256217956543, 0.0072202239036560055, 0.007285759925842285, 0.007223296165466309, 0.007193600177764893, 0.007156735897064209, 0.007122943878173828, 0.007145472049713135, 0.007048223972320557, 0.006976480007171631, 0.0068577280044555666, 0.006855679988861084, 0.007054336071014404, 0.006946815967559815, 0.0066406397819519045, 0.01427455997467041, 0.0069928960800170895, 0.007123968124389648, 0.0074291200637817386, 0.007486495971679687, 0.007579616069793701, 0.007607327938079834, 0.007285791873931885, 0.007080895900726318, 0.006916096210479736, 0.00690176010131836, 0.006837247848510742, 0.006814720153808594, 0.006848512172698974, 0.006859776020050049, 0.006823935985565186, 0.006833151817321777, 0.006855679988861084, 0.006862847805023193, 0.006806528091430664, 0.006830080032348633, 0.0068351998329162595, 0.006816768169403077, 0.00682700777053833, 0.006862847805023193, 0.006846528053283691, 0.006804416179656983, 0.006821887969970703, 0.006904831886291504, 0.0068351998329162595, 0.006896639823913574, 0.006830080032348633, 0.006900735855102539, 0.006841343879699707, 0.00683622407913208, 0.006845439910888672, 0.006834176063537598, 0.006814720153808594, 0.006823935985565186, 0.00682700777053833, 0.006820864200592041, 0.006845439910888672, 0.00684441614151001, 0.006830080032348633, 0.006867968082427979, 0.006841343879699707, 0.006922239780426025, 0.006859776020050049, 0.006872064113616944, 0.006855679988861084, 0.006818816184997558, 0.006988800048828125, 0.006820864200592041, 0.006837247848510742, 0.006816768169403077, 0.006854656219482422, 0.00682700777053833, 0.0068055038452148435, 0.006838272094726563, 0.006840320110321045, 0.006822912216186523, 0.0068351998329162595, 0.006842368125915528, 0.014609408378601075, 0.006852608203887939, 0.006833151817321777, 0.006881279945373535, 0.006899712085723877, 0.006879231929779053, 0.006865920066833496, 0.006904831886291504, 0.006851583957672119, 0.006899712085723877, 0.006859776020050049, 0.006854656219482422, 0.006852608203887939, 0.006855679988861084, 0.0068618240356445315, 0.0068249602317810056, 0.006856768131256103, 0.006852543830871582, 0.006809599876403808, 0.0068280320167541505, 0.006817791938781738, 0.006834176063537598, 0.006813695907592773, 0.006920191764831543, 0.0068915200233459475, 0.0068280320167541505, 0.006845439910888672, 0.00683622407913208, 0.0068618240356445315, 0.0068351998329162595, 0.006834176063537598, 0.0068076162338256835, 0.006836160182952881, 0.006854656219482422, 0.006830080032348633, 0.006843391895294189, 0.006821887969970703, 0.0068689918518066405, 0.00683622407913208, 0.006937600135803222, 0.00690176010131836, 0.00684441614151001, 0.006833151817321777, 0.006840320110321045, 0.0069324798583984375, 0.006849535942077637, 0.0068280320167541505, 0.006894591808319092, 0.006841343879699707, 0.006843391895294189, 0.006812672138214112, 0.006821887969970703, 0.00682700777053833, 0.006804480075836182, 0.006867968082427979, 0.006823935985565186, 0.006815743923187256, 0.006767615795135498, 0.006802432060241699, 0.0069324798583984375, 0.006825984001159668, 0.006831103801727295, 0.006831103801727295, 0.013900799751281738, 0.00653004789352417, 0.006533120155334473, 0.006556672096252441, 0.006542335987091064, 0.00651478385925293, 0.0065207362174987795, 0.006524928092956543, 0.006504447937011719, 0.0065157442092895505, 0.0065392317771911625, 0.0065146880149841305, 0.006575104236602783, 0.0065136637687683106, 0.006525951862335205, 0.006525951862335205, 0.006590464115142822, 0.006534143924713135, 0.006563839912414551, 0.006557695865631104, 0.006511616230010986, 0.006556672096252441, 0.006681600093841553, 0.0066375679969787596, 0.006707200050354004, 0.006534143924713135, 0.006488096237182617, 0.0064992961883544925, 0.006550528049468994, 0.006586368083953857, 0.0065075201988220215, 0.006549503803253174, 0.006560768127441406, 0.006505472183227539, 0.00653107213973999, 0.00653107213973999, 0.0065136637687683106, 0.006508543968200684, 0.006520832061767578, 0.006533120155334473, 0.0065146880149841305, 0.006519807815551758, 0.006543360233306885, 0.006706175804138184, 0.006556672096252441, 0.006560768127441406, 0.006526976108551025, 0.00652185583114624, 0.0065146880149841305, 0.0065443840026855465, 0.006526976108551025, 0.006536191940307618, 0.006510591983795166, 0.006647808074951172, 0.0066109437942504885, 0.006515711784362793, 0.00653107213973999, 0.006625279903411865, 0.006593535900115967, 0.006519807815551758, 0.006575104236602783, 0.0065474557876586915, 0.006552576065063476, 0.013965312004089356, 0.006725632190704346, 0.006696959972381592, 0.006689792156219483, 0.006518784046173095, 0.006554624080657959, 0.006492159843444824, 0.0065484800338745115, 0.006560768127441406, 0.006615039825439453, 0.0065443840026855465, 0.006516736030578613, 0.0066344962120056155, 0.006715392112731934, 0.00669593620300293, 0.00672051191329956, 0.006722591876983643, 0.006665184020996094, 0.00653004789352417, 0.0065413122177124024, 0.006516736030578613, 0.0065484800338745115, 0.006526976108551025, 0.006519807815551758, 0.0065710082054138185, 0.006595583915710449, 0.006533120155334473, 0.006511616230010986, 0.006498303890228272, 0.006542335987091064, 0.006518784046173095, 0.006569983959197998, 0.006553599834442139, 0.006550528049468994, 0.00653004789352417, 0.0065075201988220215, 0.0065136637687683106, 0.006527999877929688, 0.0065136637687683106, 0.006504447937011719, 0.006568960189819336, 0.006516736030578613, 0.006509568214416504, 0.006617087841033936, 0.006519807815551758, 0.0065382399559021, 0.006511616230010986, 0.006516736030578613, 0.006520832061767578, 0.0065443840026855465, 0.0065075201988220215, 0.006515711784362793, 0.0065064959526062015, 0.00652185583114624, 0.006533120155334473, 0.0065146880149841305, 0.006527999877929688, 0.006569983959197998, 0.006503424167633057, 0.006500351905822754, 0.006516736030578613, 0.006496255874633789, 0.006520832061767578, 0.013800448417663574, 0.0065484800338745115, 0.006523903846740723, 0.006492159843444824, 0.006493184089660644, 0.006494207859039307, 0.006560768127441406, 0.006505472183227539, 0.006500351905822754, 0.006540287971496582, 0.006510591983795166, 0.006511616230010986, 0.00652185583114624, 0.006496255874633789, 0.0065710082054138185, 0.006529024124145508, 0.006532095909118653, 0.0066119680404663084, 0.006691840171813965, 0.006487040042877197, 0.006536191940307618, 0.00648089599609375, 0.00653107213973999, 0.0066078720092773435, 0.006512639999389648, 0.006558720111846924, 0.006624256134033203, 0.006502463817596436, 0.006521791934967041, 0.006515711784362793, 0.006665215969085693, 0.006515711784362793, 0.0065064959526062015, 0.006520832061767578, 0.006500351905822754, 0.006518784046173095, 0.006551551818847656, 0.00653004789352417, 0.006560768127441406, 0.0065259838104248045, 0.006515679836273193, 0.006488096237182617, 0.006514656066894531, 0.006523903846740723, 0.006515711784362793, 0.0065075201988220215, 0.006520832061767578, 0.006516736030578613, 0.006495232105255127, 0.006559743881225586, 0.006502399921417237, 0.006503424167633057, 0.006516736030578613, 0.00652185583114624, 0.006478879928588867, 0.0065075201988220215, 0.0064992961883544925, 0.006602752208709717, 0.006545407772064209, 0.006527999877929688, 0.006510591983795166, 0.006556672096252441, 0.006497280120849609, 0.013763584136962891, 0.006534143924713135, 0.006526976108551025, 0.006529024124145508, 0.0065064959526062015, 0.00652288007736206, 0.006519807815551758, 0.006511616230010986, 0.006551551818847656, 0.006550528049468994, 0.006493184089660644, 0.00652185583114624, 0.006499328136444092, 0.0065669121742248536, 0.006535168170928955, 0.006510591983795166, 0.006533120155334473, 0.0065484800338745115, 0.006524928092956543, 0.00657203197479248, 0.006549503803253174, 0.0065146880149841305, 0.006523903846740723, 0.006582272052764892, 0.006560768127441406, 0.006545407772064209, 0.006491136074066162, 0.006533120155334473, 0.006532095909118653, 0.006486015796661377, 0.006552576065063476, 0.006518784046173095, 0.006516736030578613, 0.006542335987091064, 0.0065064959526062015, 0.006583295822143555, 0.006563839912414551, 0.006527999877929688, 0.0065484800338745115, 0.006523903846740723, 0.006543360233306885, 0.0065413122177124024, 0.00653926420211792, 0.0065177597999572755, 0.00653107213973999, 0.006545407772064209, 0.00653107213973999, 0.006542335987091064, 0.0065064959526062015, 0.006540287971496582, 0.0065484800338745115, 0.006519807815551758, 0.006502399921417237, 0.006603775978088379, 0.006535168170928955, 0.0065669121742248536, 0.006512639999389648, 0.00652185583114624, 0.006523903846740723, 0.006495232105255127, 0.00653107213973999, 0.006523903846740723, 0.006518784046173095, 0.013785087585449218, 0.006524928092956543, 0.006550528049468994, 0.006527999877929688, 0.006502399921417237, 0.006593535900115967, 0.006502399921417237, 0.006545407772064209, 0.0065474557876586915, 0.006515711784362793, 0.006556672096252441, 0.0065495681762695315, 0.006510528087615966, 0.006535168170928955, 0.006501376152038574, 0.0065413122177124024, 0.006576128005981445, 0.006512639999389648, 0.0065177597999572755, 0.006511616230010986, 0.006504479885101318, 0.006548448085784912, 0.006603775978088379, 0.0065146880149841305, 0.006516736030578613, 0.006497280120849609, 0.00653004789352417, 0.006505472183227539, 0.006496255874633789, 0.006533152103424073, 0.006500319957733154, 0.006509568214416504, 0.00652185583114624, 0.006504447937011719, 0.006512639999389648, 0.006512639999389648, 0.006487040042877197, 0.00652185583114624, 0.006524928092956543, 0.006500351905822754, 0.006516736030578613, 0.006619135856628418, 0.006508543968200684, 0.006534143924713135, 0.0065413122177124024, 0.0065382399559021, 0.0065382399559021, 0.006491136074066162, 0.006525951862335205, 0.00652288007736206, 0.006512639999389648, 0.006525951862335205, 0.006505536079406738, 0.006543295860290527, 0.00653926420211792, 0.006500351905822754, 0.006529024124145508, 0.006589439868927002, 0.0065146880149841305, 0.0065064959526062015, 0.0065147199630737306, 0.006502367973327637, 0.006497280120849609, 0.013766655921936035, 0.006527999877929688, 0.00652185583114624, 0.006518784046173095, 0.006512639999389648, 0.006503424167633057, 0.00652185583114624, 0.00652185583114624, 0.006498303890228272, 0.006508543968200684, 0.006535168170928955, 0.0065064959526062015, 0.006542399883270263, 0.006519743919372559, 0.006504447937011719, 0.006533120155334473, 0.00653107213973999, 0.006560768127441406, 0.006490111827850342, 0.0065146880149841305, 0.006509568214416504, 0.006500351905822754, 0.0065177597999572755, 0.0065413122177124024, 0.0065064959526062015, 0.006504447937011719, 0.006474751949310303, 0.00652185583114624, 0.006520864009857178, 0.006483935832977295, 0.006499328136444092, 0.006504447937011719, 0.006525951862335205, 0.0065177597999572755, 0.00652185583114624, 0.0065177597999572755, 0.006525951862335205, 0.006589439868927002, 0.0064880638122558594, 0.006551551818847656, 0.006508543968200684, 0.0065443840026855465, 0.006529024124145508, 0.006518784046173095, 0.006505472183227539, 0.006511616230010986, 0.006496255874633789, 0.006481919765472412, 0.006491136074066162, 0.006533120155334473, 0.00653107213973999, 0.006512639999389648, 0.00652288007736206, 0.0065075201988220215, 0.006501376152038574, 0.006582272052764892, 0.006552576065063476, 0.006540287971496582, 0.00652185583114624, 0.006492159843444824, 0.0065372161865234375, 0.006520895957946777, 0.006529983997344971, 0.013715456008911133, 0.006525951862335205, 0.006534143924713135, 0.006516736030578613, 0.006515711784362793, 0.00652288007736206, 0.006479872226715088, 0.006540287971496582, 0.006534143924713135, 0.006509568214416504, 0.006516736030578613, 0.006504447937011719, 0.006498303890228272, 0.00652185583114624, 0.0065064959526062015, 0.00653004789352417, 0.0065781760215759275, 0.0065075201988220215, 0.0065443840026855465, 0.006538271903991699, 0.006487008094787598, 0.006527999877929688, 0.006557695865631104, 0.006527999877929688, 0.006519807815551758, 0.006497280120849609, 0.006681600093841553, 0.0065669121742248536, 0.006529024124145508, 0.006519807815551758, 0.006519807815551758, 0.0065075201988220215, 0.00653926420211792, 0.006518784046173095, 0.00658739185333252, 0.0065075201988220215, 0.006497280120849609, 0.006516736030578613, 0.006512639999389648, 0.006494207859039307, 0.006525951862335205, 0.00653107213973999, 0.006519807815551758, 0.006552576065063476, 0.0065474557876586915, 0.006553599834442139, 0.0065474557876586915, 0.006501376152038574, 0.006543360233306885, 0.0065443840026855465, 0.0065064959526062015, 0.006554624080657959, 0.006540287971496582, 0.0065413122177124024, 0.0065372161865234375, 0.006603775978088379, 0.006525951862335205, 0.006563839912414551, 0.006503424167633057, 0.006545407772064209, 0.006515711784362793, 0.006534143924713135, 0.006552576065063476, 0.013682687759399414, 0.006536191940307618, 0.0065270400047302245, 0.006512576103210449, 0.006529024124145508, 0.006494207859039307, 0.00653004789352417, 0.006556672096252441, 0.006519807815551758, 0.006551551818847656, 0.0065474557876586915, 0.0065372161865234375, 0.006563839912414551, 0.006561791896820069, 0.006527999877929688, 0.006533120155334473, 0.00653004789352417, 0.006553599834442139, 0.006523903846740723, 0.006510591983795166, 0.006527999877929688, 0.00653107213973999, 0.006479936122894287, 0.0065289602279663085, 0.006498303890228272, 0.00653926420211792, 0.00672051191329956, 0.006555647850036621, 0.006533120155334473, 0.0065382399559021, 0.006508543968200684, 0.00653004789352417, 0.0065382399559021, 0.006503424167633057, 0.006499328136444092, 0.006526976108551025, 0.0065064959526062015, 0.0065146880149841305, 0.006526976108551025, 0.006509568214416504, 0.006527999877929688, 0.006505472183227539, 0.006520832061767578, 0.006573056221008301, 0.006516736030578613, 0.0065075201988220215, 0.006510591983795166, 0.006519807815551758, 0.006508543968200684, 0.006491136074066162, 0.00652288007736206, 0.006520832061767578, 0.0065064959526062015, 0.006519807815551758, 0.006508543968200684, 0.006501376152038574, 0.006516736030578613, 0.0065146880149841305, 0.006532095909118653, 0.006524928092956543, 0.006520832061767578, 0.006516736030578613, 0.006501376152038574, 0.013792256355285644, 0.0065710082054138185, 0.00652288007736206, 0.006676544189453125, 0.007540671825408935, 0.007066624164581299, 0.0068392958641052244, 0.006879231929779053, 0.006876160144805908, 0.006834176063537598, 0.006880256175994873, 0.006866943836212158, 0.006873087882995605, 0.006825984001159668, 0.006841343879699707, 0.0068249602317810056, 0.006807551860809326, 0.006838272094726563, 0.006795263767242431, 0.006808576107025147, 0.0068055038452148435, 0.006918144226074219, 0.0068280320167541505, 0.006778880119323731, 0.006833151817321777, 0.006814720153808594, 0.006817791938781738, 0.006815743923187256, 0.006845439910888672, 0.006854656219482422, 0.00682092809677124, 0.0068156800270080566, 0.0067983360290527345, 0.0068249602317810056, 0.006822912216186523, 0.006814720153808594, 0.006783999919891357, 0.006845439910888672, 0.006808576107025147, 0.006819839954376221, 0.006809599876403808, 0.006944767951965332, 0.006852608203887939, 0.006819839954376221, 0.006840320110321045, 0.00683622407913208, 0.00681990385055542, 0.006798272132873535, 0.006862847805023193, 0.006880320072174072, 0.006816703796386719, 0.0068055038452148435, 0.006820864200592041, 0.006815743923187256, 0.006790143966674805, 0.0068577280044555666, 0.006776832103729248, 0.006856704235076904, 0.006820864200592041, 0.006874112129211426, 0.006807551860809326, 0.006838272094726563, 0.006872064113616944, 0.01447321605682373, 0.0068392958641052244, 0.006914048194885254, 0.006894591808319092, 0.006840320110321045, 0.006819839954376221, 0.006793216228485107, 0.006817791938781738, 0.0068392958641052244, 0.006800384044647217, 0.006812672138214112, 0.006815743923187256, 0.00682700777053833, 0.0067983360290527345, 0.0068055038452148435, 0.0068392958641052244, 0.006866943836212158, 0.006837247848510742, 0.006831103801727295, 0.0068392958641052244, 0.00678604793548584, 0.006795263767242431, 0.006829055786132812, 0.006802432060241699, 0.006811647891998291, 0.006818816184997558, 0.006819839954376221, 0.007336959838867187, 0.007061503887176514, 0.006850560188293457, 0.006797311782836914, 0.0069816322326660156, 0.006795263767242431, 0.006820864200592041, 0.006807551860809326, 0.006803455829620361, 0.006829055786132812, 0.006796288013458252, 0.006837247848510742, 0.006790143966674805, 0.006817791938781738, 0.006819839954376221, 0.006802432060241699, 0.00679423999786377, 0.006817791938781738, 0.006881279945373535, 0.0067696962356567384, 0.006842336177825928, 0.006814720153808594, 0.00678604793548584, 0.006843391895294189, 0.0073134078979492185, 0.00707583999633789, 0.0068884482383728025, 0.007676928043365478, 0.007090176105499267, 0.0069212160110473635, 0.006817791938781738, 0.006964223861694336, 0.00703385591506958, 0.0068392958641052244, 0.00682700777053833, 0.006873087882995605, 0.01455513572692871, 0.006838272094726563, 0.006873087882995605, 0.0068280320167541505, 0.006850560188293457, 0.006773759841918945, 0.006806528091430664, 0.006809599876403808, 0.006825984001159668, 0.006817791938781738, 0.006823935985565186, 0.0071198720932006835, 0.006949888229370117, 0.007005184173583984, 0.008019968032836914, 0.007243775844573975, 0.006923264026641846, 0.00713318395614624, 0.007066624164581299, 0.006996992111206054, 0.006957056045532227, 0.006958079814910889, 0.006940671920776367, 0.006837247848510742, 0.006847487926483154, 0.006825984001159668, 0.007000063896179199, 0.007004159927368164, 0.007004159927368164, 0.0069027838706970214, 0.006880256175994873, 0.006895679950714112, 0.006774720191955567, 0.0068392958641052244, 0.006806528091430664, 0.006803455829620361, 0.006842368125915528, 0.006960127830505371, 0.006965248107910156, 0.0068618240356445315, 0.006854656219482422, 0.006937600135803222, 0.00684441614151001, 0.006890495777130127, 0.006914048194885254, 0.006811647891998291, 0.006814720153808594, 0.006846464157104492, 0.0068280320167541505, 0.006800384044647217, 0.006813695907592773, 0.006837247848510742, 0.006803455829620361, 0.00679423999786377, 0.0068392958641052244, 0.006813695907592773, 0.006801407814025879, 0.006912000179290771, 0.006808576107025147, 0.006809599876403808, 0.006806528091430664, 0.006800384044647217, 0.007064576148986816, 0.013950976371765136, 0.006559743881225586, 0.006540351867675781, 0.006517695903778076, 0.006505472183227539, 0.006495232105255127, 0.006523903846740723, 0.006510591983795166, 0.00659660816192627, 0.006633471965789795, 0.006639616012573242, 0.006500351905822754, 0.006551551818847656, 0.0065372161865234375, 0.00653926420211792, 0.006533120155334473, 0.006512639999389648, 0.006516736030578613, 0.006492159843444824, 0.006520832061767578, 0.006509568214416504, 0.00653107213973999, 0.006512639999389648, 0.006523903846740723, 0.006508543968200684, 0.006549503803253174, 0.006542335987091064, 0.0064839677810668945, 0.006533120155334473, 0.006533120155334473, 0.006512639999389648, 0.0065075201988220215, 0.006558720111846924, 0.0064839677810668945, 0.006508543968200684, 0.006649856090545654, 0.006551551818847656, 0.0065146880149841305, 0.006499360084533692, 0.006588384151458741, 0.00653107213973999, 0.006508543968200684, 0.006524991989135742, 0.006502336025238037, 0.006525951862335205, 0.006500351905822754, 0.006506559848785401, 0.0065586562156677245, 0.0065146880149841305, 0.006532095909118653, 0.0065382399559021, 0.00653004789352417, 0.006519807815551758, 0.006494207859039307, 0.006496255874633789, 0.006491136074066162, 0.0064880638122558594, 0.0065064959526062015, 0.006510623931884766, 0.0065361599922180175, 0.006493184089660644, 0.0065075201988220215, 0.0064839677810668945, 0.013864959716796875, 0.006532095909118653, 0.00653926420211792, 0.006496255874633789, 0.006491136074066162, 0.006524928092956543, 0.00652288007736206, 0.006497280120849609, 0.006524928092956543, 0.006515711784362793, 0.0064849920272827145, 0.0065474557876586915, 0.006524928092956543, 0.006529024124145508, 0.006545407772064209, 0.006533120155334473, 0.0065064959526062015, 0.006496255874633789, 0.006502399921417237, 0.006509568214416504, 0.006509568214416504, 0.006526976108551025, 0.006535168170928955, 0.006474751949310303, 0.006523903846740723, 0.0065075201988220215, 0.006489088058471679, 0.00653107213973999, 0.0066447358131408694, 0.0065136637687683106, 0.006546432018280029, 0.006527999877929688, 0.006535200119018555, 0.0065586881637573246, 0.006535168170928955, 0.006546432018280029, 0.006505472183227539, 0.006532095909118653, 0.00653107213973999, 0.006519807815551758, 0.006527999877929688, 0.006552576065063476, 0.006491136074066162, 0.006564864158630371, 0.0065075201988220215, 0.006528031826019287, 0.006522848129272461, 0.006523903846740723, 0.0065064959526062015, 0.00743936014175415, 0.008608799934387207, 0.0074587841033935546, 0.007060480117797851, 0.006941696166992187, 0.0068280320167541505, 0.006870016098022461, 0.006840320110321045, 0.00690176010131836, 0.006821887969970703, 0.006807551860809326, 0.0068351998329162595, 0.006849535942077637, 0.0068280320167541505, 0.014097408294677734, 0.006561791896820069, 0.006553599834442139, 0.00653004789352417, 0.006556672096252441, 0.006526976108551025, 0.0065177597999572755, 0.006543360233306885, 0.00652185583114624, 0.006516736030578613, 0.006516736030578613, 0.006520832061767578, 0.006527999877929688, 0.006533120155334473, 0.006500351905822754, 0.0065372161865234375, 0.006552576065063476, 0.006498303890228272, 0.00653004789352417, 0.006487040042877197, 0.00653107213973999, 0.006527999877929688, 0.006502399921417237, 0.00653004789352417, 0.006520832061767578, 0.0064839677810668945, 0.006499328136444092, 0.006510591983795166, 0.006546432018280029, 0.006532095909118653, 0.006508543968200684, 0.006543360233306885, 0.0065413122177124024, 0.00653004789352417, 0.0066109437942504885, 0.006540287971496582, 0.00652288007736206, 0.006557695865631104, 0.006511616230010986, 0.0066406397819519045, 0.0065372161865234375, 0.006504447937011719, 0.006589439868927002, 0.006603775978088379, 0.0064839677810668945, 0.006511616230010986, 0.00653004789352417, 0.006542335987091064, 0.006554624080657959, 0.006504447937011719, 0.006520832061767578, 0.006527999877929688, 0.006511616230010986, 0.006516736030578613, 0.006532095909118653, 0.006487040042877197, 0.006592544078826904, 0.006533120155334473, 0.0065361599922180175, 0.0065064959526062015, 0.006512639999389648, 0.006505472183227539, 0.006549503803253174, 0.013765631675720215, 0.006526976108551025, 0.0065382399559021, 0.0065484800338745115, 0.006520832061767578, 0.006501376152038574, 0.006524928092956543, 0.006593535900115967, 0.006523903846740723, 0.006598656177520752, 0.006499328136444092, 0.006542335987091064, 0.006536191940307618, 0.00653004789352417, 0.0065136637687683106, 0.00653926420211792, 0.006533120155334473, 0.006525951862335205, 0.006525951862335205, 0.006510591983795166, 0.006510591983795166, 0.006495232105255127, 0.006550528049468994, 0.006529024124145508, 0.00648089599609375, 0.006518784046173095, 0.006536191940307618, 0.0065146880149841305, 0.0065064959526062015, 0.006486015796661377, 0.0066979842185974124, 0.006559743881225586, 0.006510591983795166, 0.006525951862335205, 0.006543360233306885, 0.006523903846740723, 0.006526976108551025, 0.0065413122177124024, 0.00653004789352417, 0.006499328136444092, 0.006524928092956543, 0.00653004789352417, 0.006540287971496582, 0.006515711784362793, 0.006534143924713135, 0.006490111827850342, 0.006504447937011719, 0.006503424167633057, 0.006680575847625733, 0.006489088058471679, 0.006542335987091064, 0.00648089599609375, 0.0065484800338745115, 0.006479872226715088, 0.006515711784362793, 0.006545407772064209, 0.006503424167633057, 0.006809599876403808, 0.0065669121742248536, 0.006527999877929688, 0.006543360233306885, 0.006518784046173095, 0.0065413122177124024, 0.014844927787780762, 0.006867968082427979, 0.007014400005340577, 0.006895616054534912, 0.006855679988861084, 0.006817791938781738, 0.0067983360290527345, 0.0068280320167541505, 0.006812672138214112, 0.0068280320167541505, 0.006944767951965332, 0.006852608203887939, 0.006920191764831543, 0.006803455829620361, 0.006838272094726563, 0.006853631973266602, 0.006814720153808594, 0.006803455829620361, 0.006814720153808594, 0.006807551860809326, 0.006799359798431396, 0.00679423999786377, 0.006817791938781738, 0.006821887969970703, 0.00683622407913208, 0.0068249602317810056, 0.006795263767242431, 0.006770688056945801, 0.006814720153808594, 0.006854656219482422, 0.006831103801727295, 0.006865920066833496, 0.006854656219482422, 0.0068351998329162595, 0.0068351998329162595, 0.006831103801727295, 0.006831103801727295, 0.006838272094726563, 0.0068392958641052244, 0.006834176063537598, 0.0068249602317810056, 0.006810624122619629, 0.006847487926483154, 0.006812672138214112, 0.007004159927368164, 0.006865920066833496, 0.006843391895294189, 0.006852608203887939, 0.006821887969970703, 0.006858751773834228, 0.006813695907592773, 0.006807551860809326, 0.006823935985565186, 0.006848512172698974, 0.006816768169403077, 0.006859776020050049, 0.006837247848510742, 0.006851583957672119, 0.006810624122619629, 0.006855679988861084, 0.006823935985565186, 0.006811647891998291, 0.006850592136383057, 0.014511072158813476, 0.006811647891998291, 0.006855679988861084, 0.006822912216186523, 0.006848512172698974, 0.006813695907592773, 0.006862847805023193, 0.006793216228485107, 0.006822912216186523, 0.006864895820617676, 0.006845439910888672, 0.006826015949249267, 0.006809567928314209, 0.006840320110321045, 0.006837247848510742, 0.006806528091430664, 0.006859776020050049, 0.006813695907592773, 0.006849599838256836, 0.006807487964630127, 0.006851583957672119, 0.006814720153808594, 0.006834176063537598, 0.006840320110321045, 0.006829055786132812, 0.006846464157104492, 0.006884352207183838, 0.006825984001159668, 0.006845439910888672, 0.006814720153808594, 0.006846464157104492, 0.0068618240356445315, 0.00677785587310791, 0.006863872051239014, 0.006830080032348633, 0.0068280320167541505, 0.006810624122619629, 0.006864895820617676, 0.0067983360290527345, 0.006937600135803222, 0.006856704235076904, 0.00683622407913208, 0.006834176063537598, 0.006809599876403808, 0.006858751773834228, 0.006840320110321045, 0.006808640003204346, 0.0068607358932495114, 0.006880256175994873, 0.006843391895294189, 0.00681171178817749, 0.006853568077087402, 0.006813695907592773, 0.006850560188293457, 0.006812672138214112, 0.006823935985565186, 0.0068249602317810056, 0.0069027838706970214, 0.006849535942077637, 0.00682700777053833, 0.006840320110321045, 0.006843391895294189, 0.006808576107025147, 0.013846528053283692, 0.006520832061767578, 0.006509568214416504, 0.006534143924713135, 0.006516736030578613, 0.006527008056640625, 0.006534111976623535, 0.006515711784362793, 0.006516736030578613, 0.006543360233306885, 0.006533120155334473, 0.006516736030578613, 0.006518784046173095, 0.006505472183227539, 0.006532095909118653, 0.0065443840026855465, 0.006529024124145508, 0.006532095909118653, 0.006526976108551025, 0.006515711784362793, 0.006546432018280029, 0.006532095909118653, 0.006558720111846924, 0.006774784088134766, 0.006849535942077637, 0.006837247848510742, 0.006949888229370117, 0.007171072006225586, 0.0071311678886413574, 0.00744547176361084, 0.007161856174468994, 0.0074414081573486324, 0.007116799831390381, 0.0068986878395080565, 0.0068618240356445315, 0.006876160144805908, 0.00684441614151001, 0.00683622407913208, 0.0068628802299499515, 0.0068576960563659665, 0.006879231929779053, 0.006804480075836182, 0.006847487926483154, 0.006843391895294189, 0.006845439910888672, 0.006879231929779053, 0.006862847805023193, 0.006822912216186523, 0.006791168212890625, 0.007130112171173096, 0.006842368125915528, 0.006853631973266602, 0.006847487926483154, 0.006822912216186523, 0.006852608203887939, 0.006838272094726563, 0.006830080032348633, 0.0068321280479431154, 0.006811647891998291, 0.006845439910888672, 0.006819839954376221, 0.00684441614151001, 0.0068321280479431154, 0.014599167823791503, 0.006838272094726563, 0.006821887969970703, 0.0068321280479431154, 0.006842368125915528, 0.006843391895294189, 0.00684441614151001, 0.0068249602317810056, 0.006851615905761718, 0.006811615943908692, 0.006864927768707276, 0.0068269758224487305, 0.006820864200592041, 0.006862847805023193, 0.006830080032348633, 0.0068884482383728025, 0.006837247848510742, 0.006840320110321045, 0.006854656219482422, 0.006791232109069824, 0.006830016136169434, 0.006804480075836182, 0.006800384044647217, 0.006840320110321045, 0.0068280320167541505, 0.006809599876403808, 0.00676966381072998, 0.006829055786132812, 0.006815743923187256, 0.00679423999786377, 0.006838272094726563, 0.006829055786132812, 0.006801407814025879, 0.006876160144805908, 0.006797311782836914, 0.006789120197296142, 0.00678604793548584, 0.006810624122619629, 0.006821887969970703, 0.00682700777053833, 0.006837247848510742, 0.006804480075836182, 0.006830080032348633, 0.006811647891998291, 0.006975488185882568, 0.006833151817321777, 0.006806528091430664, 0.006866943836212158, 0.00692633581161499, 0.006884352207183838, 0.006833151817321777, 0.006858751773834228, 0.006841343879699707, 0.006834176063537598, 0.006867968082427979, 0.0068618240356445315, 0.006867968082427979, 0.006899712085723877, 0.006859776020050049, 0.0068249602317810056, 0.0068321280479431154, 0.0068577280044555666, 0.006837247848510742, 0.013855744361877441, 0.006562880039215088, 0.00689247989654541, 0.006939712047576904, 0.006982592105865479, 0.006859776020050049, 0.006833151817321777, 0.006833151817321777, 0.006905888080596924, 0.006889440059661865, 0.006778880119323731, 0.0068351998329162595, 0.0068249602317810056, 0.0069621758460998535, 0.0068055357933044435, 0.0068873920440673825, 0.0068618240356445315, 0.006809599876403808, 0.006841343879699707, 0.006985727787017822, 0.006808576107025147, 0.006840320110321045, 0.006838272094726563, 0.006924287796020508, 0.006774784088134766, 0.006858751773834228, 0.006848512172698974, 0.006866943836212158, 0.006783999919891357, 0.006855679988861084, 0.006812672138214112, 0.006789120197296142, 0.006813695907592773, 0.006794271945953369, 0.006850527763366699, 0.0068055038452148435, 0.007599103927612305, 0.0069632000923156735, 0.006883327960968018, 0.006840320110321045, 0.006845439910888672, 0.006845439910888672, 0.00679423999786377, 0.006895616054534912, 0.006833151817321777, 0.006796288013458252, 0.006781951904296875, 0.006810624122619629, 0.006819839954376221, 0.0067983360290527345, 0.006820864200592041, 0.006903903961181641, 0.006820767879486084, 0.006845439910888672, 0.006820864200592041, 0.006811647891998291, 0.006808576107025147, 0.00684441614151001, 0.006811647891998291, 0.006816768169403077, 0.006833151817321777, 0.0068392958641052244, 0.006854656219482422, 0.014112768173217773, 0.006528031826019287, 0.006518752098083496, 0.006535168170928955, 0.0066826238632202144, 0.006511616230010986, 0.006540287971496582, 0.006558720111846924, 0.0065146880149841305, 0.006554624080657959, 0.006533120155334473, 0.006774784088134766, 0.006858751773834228, 0.006843391895294189, 0.006834176063537598, 0.006846464157104492, 0.006812672138214112, 0.006800384044647217, 0.006847487926483154, 0.006813695907592773, 0.006833151817321777, 0.006821887969970703, 0.006822912216186523, 0.006803455829620361, 0.006812672138214112, 0.006829055786132812, 0.006812672138214112, 0.006818816184997558, 0.0068321280479431154, 0.00682700777053833, 0.0068249602317810056, 0.006820864200592041, 0.0068351998329162595, 0.00683622407913208, 0.006767615795135498, 0.006837247848510742, 0.006819839954376221, 0.006820864200592041, 0.006815743923187256, 0.006843391895294189, 0.006804480075836182, 0.006821887969970703, 0.00683523178100586, 0.006829023838043213, 0.006842368125915528, 0.0068321280479431154, 0.006810624122619629, 0.0068392958641052244, 0.006783999919891357, 0.007003136157989502, 0.006883327960968018, 0.006802432060241699, 0.006848512172698974, 0.00683622407913208, 0.006863872051239014, 0.006843391895294189, 0.006842368125915528, 0.006903808116912841, 0.006806528091430664, 0.006872064113616944, 0.006909952163696289, 0.006910975933074951, 0.006916096210479736]",tokens/s,146.412128177699,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-j-6b,,cuda,0,42,,,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,MB,2054.77888,5566.365696,0.0,4919.918592,4635.537408,s,10,5.159750671386719,0.5159750671386718,0.0024202673095528563,0.5153813171386719,0.5170659973144531,0.5199656463623047,0.5222853656005859,"[0.5228652954101562, 0.5143955078125, 0.5157650146484375, 0.5144519653320313, 0.5155265502929688, 0.5141107177734375, 0.516309814453125, 0.5146680908203125, 0.516421630859375, 0.515236083984375]",tokens/s,496.14800463061573,kWh,6.087385805116759e-06,3.3354087369571064e-06,2.7887036198498415e-05,3.7309830740572285e-05,tokens/kWh,6861462.379179726,MB,2054.77888,5566.365696,0.0,4919.918592,4794.439168,s,10,301.012869140625,30.101286914062502,0.007474756939868433,30.101162109375,30.1092380859375,30.11128505859375,30.11292263671875,"[30.104474609375, 30.0874609375, 30.10366796875, 30.09865625, 30.095248046875, 30.1085703125, 30.108783203125, 30.11333203125, 30.097923828125, 30.094751953125]",tokens/s,2.0929337732257594,kWh,0.00035535723721815483,0.00019476662748246779,0.0016039330748120972,0.00215405693951272,tokens/kWh,29247.13773548231,,s,629,305.1713383178704,0.4851690593288888,0.06123176770881389,0.4777687072753906,0.47843901367187497,0.47872921142578123,0.9921051538085938,"[0.47712460327148437, 0.4769034118652344, 0.47702426147460936, 0.47709390258789064, 0.47730584716796876, 0.4771205139160156, 0.4773304443359375, 0.47765298461914063, 0.4770846862792969, 0.4785274963378906, 0.47798681640625, 0.47815167236328127, 0.4778588256835937, 0.4773570556640625, 0.477907958984375, 0.47804620361328126, 0.47764480590820313, 0.4777400207519531, 0.4774901733398437, 0.4775546875, 0.4790906982421875, 0.47841998291015625, 0.4775454711914062, 0.4774205322265625, 0.4777062377929687, 0.4773007507324219, 0.47782296752929687, 0.477517822265625, 0.47927194213867186, 0.47922592163085936, 0.4796824951171875, 0.4796200866699219, 0.478603271484375, 0.47771649169921876, 0.4775034790039063, 0.47786904907226563, 0.4779376525878906, 0.4778526611328125, 0.47831039428710936, 0.47768167114257815, 0.4777820129394531, 0.47838104248046875, 0.4779438171386719, 0.4779376525878906, 0.47762432861328125, 0.47779022216796874, 0.47766015625, 0.4779346008300781, 0.47730584716796876, 0.47776666259765627, 0.4777215881347656, 0.4779438171386719, 0.4776980590820312, 0.4786534423828125, 0.47755673217773437, 0.4775034790039063, 0.47755059814453127, 0.47741543579101564, 0.4771686401367187, 0.47783526611328125, 0.4779069519042969, 0.4776560668945313, 0.9921392822265624, 0.4773294067382812, 0.4772085876464844, 0.477370361328125, 0.4770396728515625, 0.4769504699707031, 0.47741748046875, 0.47746356201171875, 0.4771512451171875, 0.47819979858398437, 0.4786329650878906, 0.47734783935546876, 0.477412353515625, 0.4770017395019531, 0.47757003784179686, 0.47735910034179685, 0.47719219970703125, 0.4772116394042969, 0.4775659484863281, 0.47811892700195313, 0.4780257263183594, 0.4779304809570312, 0.4777492370605469, 0.4775045166015625, 0.4776427612304687, 0.4780738525390625, 0.4773498840332031, 0.47781170654296873, 0.4772178039550781, 0.47686654663085937, 0.4779991149902344, 0.47811175537109374, 0.47742669677734373, 0.4774471740722656, 0.47721368408203124, 0.4768757629394531, 0.47745944213867186, 0.4774481811523438, 0.4774799499511719, 0.4782315979003906, 0.4776785583496094, 0.4772024230957031, 0.477707275390625, 0.47777587890625, 0.47741030883789065, 0.47758950805664063, 0.47756494140625, 0.47724337768554687, 0.4777215881347656, 0.47767962646484374, 0.47741543579101564, 0.47842715454101564, 0.4785602111816406, 0.4774819946289062, 0.4774615173339844, 0.4775465087890625, 0.4775475158691406, 0.4778106994628906, 0.4775577697753906, 0.4773294067382812, 0.47762738037109376, 0.47781375122070313, 0.4781895751953125, 0.9939957885742188, 0.47789157104492186, 0.4779029235839844, 0.4775321044921875, 0.4773294067382812, 0.47682968139648435, 0.4777994384765625, 0.478455810546875, 0.4786780090332031, 0.47789056396484375, 0.47756390380859376, 0.4770979919433594, 0.47737344360351563, 0.4772915344238281, 0.4772536315917969, 0.4778649597167969, 0.47748095703125, 0.4771614685058594, 0.47814862060546875, 0.47750143432617187, 0.4773918762207031, 0.47743896484375, 0.4776662902832031, 0.47875582885742185, 0.4773284606933594, 0.4779539794921875, 0.4778567810058594, 0.47754238891601564, 0.47780154418945314, 0.47773382568359374, 0.4781598815917969, 0.4780472412109375, 0.4777594909667969, 0.477765625, 0.47762841796875, 0.47739596557617187, 0.47771444702148436, 0.47763250732421875, 0.4777687072753906, 0.4783943786621094, 0.47779736328125, 0.4777215881347656, 0.47773284912109376, 0.47762841796875, 0.4779315185546875, 0.4779735107421875, 0.4777461853027344, 0.4787445983886719, 0.47787722778320313, 0.4785080261230469, 0.4784373779296875, 0.47873638916015626, 0.47828274536132814, 0.4777001037597656, 0.47793560791015627, 0.4780277709960937, 0.47800115966796874, 0.47787213134765627, 0.47758950805664063, 0.47742156982421874, 0.47888998413085937, 0.478159912109375, 0.47799700927734373, 0.9920173950195312, 0.47721368408203124, 0.4778260498046875, 0.477939697265625, 0.47749530029296877, 0.4772659912109375, 0.4777287292480469, 0.4779949645996094, 0.47825204467773436, 0.4779581298828125, 0.4773775329589844, 0.4774225769042969, 0.47868109130859376, 0.4778076171875, 0.47798785400390625, 0.478139404296875, 0.47792538452148436, 0.4779366455078125, 0.4774615173339844, 0.47746356201171875, 0.477728759765625, 0.47751473999023436, 0.47717376708984377, 0.47695462036132813, 0.4774942626953125, 0.47761920166015626, 0.4774625244140625, 0.4780001220703125, 0.4778526611328125, 0.47788134765625, 0.4775301513671875, 0.47762127685546873, 0.4773498229980469, 0.4779581298828125, 0.4775413818359375, 0.47721881103515623, 0.47748504638671874, 0.4778824462890625, 0.47803488159179686, 0.47796633911132813, 0.47795098876953124, 0.47843328857421874, 0.4778895263671875, 0.47771749877929687, 0.47763766479492187, 0.47745123291015623, 0.47731610107421873, 0.47720550537109374, 0.47810763549804686, 0.47794686889648436, 0.478023681640625, 0.47817214965820315, 0.4775679931640625, 0.4772167663574219, 0.4781783142089844, 0.4780738525390625, 0.4782264404296875, 0.4780769348144531, 0.4779223022460938, 0.4776662902832031, 0.47806668090820315, 0.4780738525390625, 0.47803903198242187, 0.9936957397460937, 0.47736831665039064, 0.4772413330078125, 0.47760589599609377, 0.47733966064453126, 0.4780892028808594, 0.47794790649414065, 0.4774604797363281, 0.47752294921875, 0.4775792541503906, 0.47779022216796874, 0.4776407165527344, 0.4775096435546875, 0.4774523010253906, 0.4773304443359375, 0.4777021484375, 0.477939697265625, 0.4781055908203125, 0.4771205749511719, 0.477898681640625, 0.47731201171875, 0.47782196044921876, 0.4773775329589844, 0.4771747741699219, 0.4777697143554688, 0.47787213134765627, 0.4778188781738281, 0.4779683837890625, 0.47738983154296877, 0.4772915344238281, 0.4775802917480469, 0.47765914916992186, 0.47731201171875, 0.47755877685546877, 0.4773355407714844, 0.4775382995605469, 0.477918212890625, 0.47747378540039065, 0.4770508728027344, 0.4778793029785156, 0.477528076171875, 0.47719937133789064, 0.4775516052246094, 0.4772341613769531, 0.4773990478515625, 0.47757415771484374, 0.47758746337890623, 0.47739495849609376, 0.47834423828125, 0.4778536682128906, 0.4773058776855469, 0.47772262573242186, 0.4777635498046875, 0.4777185363769531, 0.4785080261230469, 0.4780687255859375, 0.4775168151855469, 0.4807618408203125, 0.47829605102539063, 0.47767245483398435, 0.4783206481933594, 0.4779980773925781, 0.4780625915527344, 0.9916989135742188, 0.47712973022460936, 0.4770652160644531, 0.4772781982421875, 0.47782296752929687, 0.47800833129882814, 0.47793356323242187, 0.47763150024414064, 0.47709390258789064, 0.47777484130859377, 0.4777667236328125, 0.47767550659179686, 0.47757720947265625, 0.4771798400878906, 0.47727410888671873, 0.47779531860351565, 0.4776089477539063, 0.4775792541503906, 0.47766937255859376, 0.47783627319335936, 0.47713690185546875, 0.47779226684570314, 0.4778567810058594, 0.4774615173339844, 0.4775833740234375, 0.47805950927734375, 0.47846502685546877, 0.478561279296875, 0.4782633056640625, 0.4781055908203125, 0.47865753173828124, 0.47780044555664064, 0.47805950927734375, 0.4787906494140625, 0.47858688354492185, 0.47910400390625, 0.47804107666015627, 0.4773498840332031, 0.47763455200195315, 0.4782264404296875, 0.47779736328125, 0.47735809326171874, 0.4779683837890625, 0.4779571228027344, 0.47788134765625, 0.47783627319335936, 0.4788439025878906, 0.47873126220703127, 0.47824075317382814, 0.47784039306640624, 0.47777279663085936, 0.47869952392578125, 0.4775126953125, 0.47748504638671874, 0.4778311767578125, 0.47821005249023435, 0.478708740234375, 0.4786903076171875, 0.4786278381347656, 0.4780533752441406, 0.47773080444335936, 0.47787213134765627, 0.47809127807617186, 0.9952440185546875, 0.4780052490234375, 0.47796734619140624, 0.47861553955078123, 0.47840972900390627, 0.478055419921875, 0.4771358642578125, 0.47734375, 0.4771768188476562, 0.47729766845703125, 0.477949951171875, 0.4772239379882813, 0.4777277526855469, 0.47779531860351565, 0.47714407348632815, 0.47731814575195314, 0.47762841796875, 0.47755877685546877, 0.477528076171875, 0.4772034606933594, 0.47703143310546875, 0.47779531860351565, 0.4779202575683594, 0.4790067138671875, 0.478593017578125, 0.4792412109375, 0.47822540283203124, 0.4779069519042969, 0.4779427795410156, 0.47770932006835937, 0.47803802490234376, 0.4777840576171875, 0.47797247314453123, 0.477939697265625, 0.47781991577148436, 0.4778240051269531, 0.47803289794921877, 0.47818240356445313, 0.47798175048828123, 0.4779959716796875, 0.4778680419921875, 0.4780902404785156, 0.47819674682617186, 0.47809945678710936, 0.4779765625, 0.479388671875, 0.4785356750488281, 0.4774143981933594, 0.4776642456054688, 0.47775238037109374, 0.4779253234863281, 0.4778547058105469, 0.4781363220214844, 0.47750860595703126, 0.4780830688476562, 0.47821728515625, 0.4779703674316406, 0.47782196044921876, 0.4780851135253906, 0.4781322326660156, 0.47786392211914064, 0.4776509399414062, 0.4776099853515625, 0.9929461669921875, 0.47778509521484375, 0.48122674560546874, 0.47778509521484375, 0.4777943115234375, 0.47731814575195314, 0.4780748901367188, 0.47792538452148436, 0.47784756469726564, 0.4781158447265625, 0.4780155029296875, 0.47748403930664063, 0.4777891845703125, 0.4779100036621094, 0.4776908874511719, 0.47778713989257815, 0.47860736083984373, 0.47720037841796875, 0.4777891845703125, 0.4777216491699219, 0.4775577087402344, 0.47795404052734375, 0.47750143432617187, 0.47806668090820315, 0.4786780090332031, 0.477744140625, 0.47708673095703125, 0.47796429443359373, 0.4774686584472656, 0.4776775817871094, 0.4779796447753906, 0.47754855346679687, 0.4775096435546875, 0.4782417907714844, 0.47757107543945315, 0.4774205322265625, 0.4781158447265625, 0.4779376525878906, 0.47806362915039063, 0.47810763549804686, 0.4782090148925781, 0.478413818359375, 0.47833804321289064, 0.4782417907714844, 0.4790927429199219, 0.4781537170410156, 0.47856845092773437, 0.4775301208496094, 0.4781506652832031, 0.4774615173339844, 0.4780472412109375, 0.4780318603515625, 0.47794891357421876, 0.47838311767578123, 0.47825408935546876, 0.4780349426269531, 0.47770111083984373, 0.4779857788085938, 0.47789266967773436, 0.47788128662109375, 0.4787712097167969, 0.47795306396484377, 0.47804415893554686, 0.9943838500976563, 0.4787189636230469, 0.47804107666015627, 0.47781375122070313, 0.477370361328125, 0.4773304443359375, 0.47816705322265624, 0.47811993408203124, 0.4777738342285156, 0.47763250732421875, 0.4774573974609375, 0.47708673095703125, 0.47772467041015626, 0.47725567626953125, 0.47783627319335936, 0.47736831665039064, 0.4771112976074219, 0.478445556640625, 0.47864935302734374, 0.4780984191894531, 0.47761102294921876, 0.4776365966796875, 0.4789073791503906, 0.4771778564453125, 0.47777484130859377, 0.47784756469726564, 0.4784169006347656, 0.4775045166015625, 0.47752191162109375, 0.47713177490234376, 0.47731610107421873, 0.47756390380859376, 0.4773212280273437, 0.47744512939453126, 0.4777543640136719, 0.477222900390625, 0.477707275390625, 0.47724850463867186, 0.47723724365234377, 0.4778823547363281, 0.477412353515625, 0.4772392883300781, 0.4777994384765625, 0.47849676513671874, 0.4779949951171875, 0.47791104125976563, 0.47725466918945314, 0.47723629760742187, 0.47771026611328127, 0.478139404296875, 0.4780195922851562, 0.478129150390625, 0.47857867431640627, 0.47747174072265625, 0.47793869018554686, 0.47770932006835937, 0.4779571228027344, 0.47765509033203124, 0.4775464172363281, 0.47778713989257815, 0.477918212890625, 0.4777820129394531, 0.47804107666015627, 0.9942221069335937, 0.47767550659179686, 0.4771686401367187, 0.477431884765625, 0.4771603698730469, 0.47666278076171875, 0.4774676513671875, 0.47758746337890623, 0.47736114501953125, 0.4776488952636719, 0.47701708984375, 0.47684402465820314, 0.47745944213867186, 0.477633544921875, 0.4778076171875, 0.4772536315917969, 0.47761715698242185, 0.47721881103515623, 0.4775362548828125, 0.47752294921875, 0.4779653015136719, 0.47805645751953124, 0.47783526611328125, 0.47724032592773435, 0.4773447570800781, 0.4780175476074219, 0.4793231506347656, 0.4781588439941406, 0.47761715698242185, 0.47719937133789064, 0.4781537170410156, 0.47752294921875, 0.4775311279296875, 0.47761920166015626, 0.4774993896484375, 0.4768399353027344, 0.4775946960449219, 0.47729248046875, 0.47762841796875, 0.4775372924804687, 0.4772720642089844, 0.4776089477539063, 0.4787261352539062, 0.47772262573242186, 0.47747378540039065, 0.47768780517578124, 0.477528076171875, 0.477149169921875, 0.4776355895996094, 0.47729766845703125, 0.4775628662109375, 0.47870361328125, 0.4778188781738281, 0.4776509399414062, 0.4779898986816406, 0.4782561340332031, 0.47833087158203125, 0.47798681640625, 0.4781035461425781, 0.477955078125, 0.47816192626953125, 0.4783472595214844, 0.47877734375]",tokens/s,2.061137207272146,,,,,,main,False,False -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-16B-nl,Salesforce/codegen-16B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-7b,huggyllama/llama-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -15556,19 +16284,57 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation - cls._check_and_enable_flash_attn_2( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 - raise ValueError( -ValueError: CodeGenForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpqa80axcd/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-2.7b,EleutherAI/pythia-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-6.7b,facebook/opt-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2034.978816,5539.10272,0.0,4892.655616,4542.610432,s,10,5.622600402832031,0.5622600402832031,0.0013230028627895694,0.5620163879394531,0.5633294921875001,0.564493603515625,0.565424892578125,"[0.56565771484375, 0.5620866088867188, 0.5614910888671875, 0.5609406127929687, 0.5618070678710938, 0.5607069091796875, 0.5619461669921875, 0.5621692504882813, 0.5627241821289063, 0.56307080078125]",tokens/s,455.30534211724546,kWh,6.621943920114895e-06,3.6285156736691226e-06,3.075088879823785e-05,4.100134839202187e-05,tokens/kWh,6243697.098747441,MB,2035.28192,5539.10272,0.0,4892.655616,4726.279168,s,10,331.3280078125,33.13280078125,0.008409894982587748,33.12982421875,33.142355468750004,33.145203125,33.14748125,"[33.14805078125, 33.124625, 33.1231640625, 33.1260859375, 33.14172265625, 33.1400703125, 33.12555859375, 33.12609375, 33.13908203125, 33.1335546875]",tokens/s,1.9014390125344305,kWh,0.00039121345305516403,0.00021441890828907464,0.0018001254370127661,0.0024057577983570048,tokens/kWh,26187.174803309546,,s,629,335.85907128906234,0.5339571880589229,0.06674281532897068,0.5258792724609375,0.5263243408203125,0.5265016845703125,1.0872363134765626,"[0.5258577880859375, 0.5256417236328125, 0.5264219970703125, 0.5263196411132812, 0.5257113647460937, 0.5258464965820312, 0.525486083984375, 0.5262151489257813, 0.5262940063476562, 0.52614453125, 0.5258035278320312, 0.52607080078125, 0.5257379760742188, 0.5260421142578126, 0.5259489135742188, 0.526060546875, 0.5258331909179688, 0.5260062866210937, 0.5258424072265625, 0.52600732421875, 0.5258045654296875, 0.5261404418945312, 0.5261957397460938, 0.5260748901367187, 0.5259468994140625, 0.5261731567382812, 0.5258363037109375, 0.5262284545898438, 0.5258250122070313, 0.5260421142578126, 0.526023681640625, 0.526244873046875, 0.52615576171875, 0.5261332397460937, 0.52611376953125, 0.5259898681640625, 0.526482421875, 0.526271484375, 0.5264271240234375, 0.5263646850585938, 0.5265366821289063, 0.52632373046875, 0.5263370361328125, 0.5259735107421875, 0.5261414184570312, 0.526107666015625, 0.5262571411132813, 0.5263308715820313, 0.5263267822265625, 0.5261199340820313, 0.52626025390625, 0.5261434936523437, 0.526482421875, 0.5264199829101562, 0.5262622680664063, 0.5264076538085938, 0.5264937133789063, 0.5264998168945313, 0.5264230346679688, 0.5268643798828125, 0.5268623657226562, 0.526497802734375, 1.0878065185546875, 0.5256908569335937, 0.5257564086914063, 0.5259059448242187, 0.5258055419921875, 0.5255567626953125, 0.52566015625, 0.5258875122070312, 0.526002197265625, 0.5259949951171875, 0.5256663208007812, 0.5261107177734375, 0.5259857788085938, 0.5258189086914062, 0.525576171875, 0.525970458984375, 0.5256294555664063, 0.5262294921875, 0.5257728271484375, 0.5257666625976563, 0.525465576171875, 0.5258946533203125, 0.5259468994140625, 0.5260144653320312, 0.5255526123046875, 0.5257932739257812, 0.5255004272460938, 0.5259530029296875, 0.52562841796875, 0.5257584838867188, 0.5257738037109375, 0.525844482421875, 0.5255690307617188, 0.5256724243164063, 0.5258956909179687, 0.5257461547851563, 0.5255751953125, 0.5257482299804688, 0.5255536499023438, 0.5257677001953125, 0.5256314697265625, 0.5257533569335937, 0.5254666137695313, 0.52566015625, 0.5253980102539062, 0.5257482299804688, 0.5259049072265625, 0.5260809936523437, 0.5258383178710937, 0.5262018432617187, 0.5256294555664063, 0.525750244140625, 0.525849609375, 0.5261281127929688, 0.5256796264648438, 0.5259478759765625, 0.5256181640625, 0.5258219604492187, 0.5256539916992188, 0.525886474609375, 0.5259243774414063, 0.5260851440429688, 0.5258331909179688, 1.087382568359375, 0.526060546875, 0.5257789306640624, 0.5258936157226562, 0.5258137817382813, 0.5256263427734374, 0.525675537109375, 0.5257164916992187, 0.525739013671875, 0.525718505859375, 0.5260646362304687, 0.5256406860351562, 0.5256908569335937, 0.5256744995117187, 0.525433837890625, 0.525717529296875, 0.5254287109375, 0.5256908569335937, 0.5254031372070312, 0.5255137329101562, 0.5256263427734374, 0.525770751953125, 0.5254891357421875, 0.5259683837890625, 0.5255454711914063, 0.5256990966796875, 0.5255372924804688, 0.5261035766601563, 0.5256632080078125, 0.5258690795898437, 0.5257625732421874, 0.525728759765625, 0.5260155029296875, 0.5258189086914062, 0.5256539916992188, 0.5256417236328125, 0.5256273803710938, 0.5258055419921875, 0.5257083129882812, 0.525971435546875, 0.5258916015625, 0.52600830078125, 0.5256673583984375, 0.5257686767578125, 0.5254942626953125, 0.52560791015625, 0.5257482299804688, 0.5258803100585937, 0.5259755249023438, 0.5260676879882813, 0.5256151123046875, 0.5258536987304687, 0.5258526611328125, 0.5258741455078125, 0.5255966796875, 0.5259386596679687, 0.5257666625976563, 0.5259059448242187, 0.5259223022460937, 0.5260523681640625, 0.52583935546875, 0.5260933227539063, 0.5256048583984375, 1.0868602294921874, 0.5259120483398437, 0.5255465087890625, 0.5258884887695312, 0.5255741577148437, 0.525613037109375, 0.5256007690429687, 0.5258076171875, 0.5256734619140625, 0.5257328491210937, 0.5254573974609374, 0.525791259765625, 0.525454345703125, 0.5258527221679687, 0.5255577392578125, 0.525912109375, 0.5255772094726563, 0.525727783203125, 0.5255833129882812, 0.5263431396484375, 0.5257984008789063, 0.525792236328125, 0.525896728515625, 0.52569189453125, 0.5255977172851563, 0.52600732421875, 0.525549560546875, 0.5257738037109375, 0.5256058959960938, 0.5258147583007813, 0.52556494140625, 0.5260534057617188, 0.5259837646484375, 0.5260646362304687, 0.5258803100585937, 0.5260369873046875, 0.5255034790039063, 0.5258485717773438, 0.5255608520507813, 0.52600830078125, 0.52562841796875, 0.52608203125, 0.5257349243164062, 0.5257574462890625, 0.5256406860351562, 0.5257717895507813, 0.5257625732421874, 0.5258875122070312, 0.525686767578125, 0.5260492553710937, 0.5258639526367187, 0.5261209716796875, 0.5259990844726562, 0.5260728149414062, 0.5258884887695312, 0.5258946533203125, 0.52564990234375, 0.5258731689453126, 0.5256837158203125, 0.5259202270507812, 0.5259827270507812, 0.5264097290039063, 0.526213134765625, 1.0886195068359374, 0.5266964721679688, 0.5265223388671875, 0.52691455078125, 0.5266104125976563, 0.5267548217773438, 0.5260175170898438, 0.5263544311523437, 0.5261270751953125, 0.5263964233398437, 0.5262694702148437, 0.5260482788085937, 0.5259909057617187, 0.5260492553710937, 0.5259929809570313, 0.5264066772460938, 0.525787109375, 0.5257963256835938, 0.5255126953125, 0.5257431030273437, 0.5255669555664062, 0.5256345825195312, 0.5254779052734375, 0.5258198852539062, 0.5258219604492187, 0.5260687255859375, 0.5260800170898438, 0.525802490234375, 0.5258506469726563, 0.525781005859375, 0.5256857299804687, 0.5258485717773438, 0.52577587890625, 0.5258373413085937, 0.5261895751953125, 0.52682958984375, 0.526614501953125, 0.52650390625, 0.5255485229492187, 0.5258424072265625, 0.525549560546875, 0.5258352661132812, 0.5255639038085937, 0.525822998046875, 0.5257195434570312, 0.525739013671875, 0.5257267456054687, 0.5263533935546875, 0.5261547241210938, 0.5263810424804688, 0.5262264404296875, 0.526551025390625, 0.5261895751953125, 0.5266165771484375, 0.5261998291015625, 0.5261404418945312, 0.5261486206054687, 0.5264189453125, 0.52577587890625, 0.5259304809570312, 0.5256898803710938, 0.5258782958984375, 0.5257636108398438, 1.08657666015625, 0.5256980590820313, 0.52586083984375, 0.5259304809570312, 0.5256939697265625, 0.5258782958984375, 0.5258782958984375, 0.52608203125, 0.5260462036132812, 0.5260513305664063, 0.525549560546875, 0.5258875122070312, 0.5257984008789063, 0.5262018432617187, 0.5257328491210937, 0.5260298461914062, 0.5255608520507813, 0.5259683837890625, 0.52613427734375, 0.52609228515625, 0.5256028442382813, 0.52607080078125, 0.5256304931640625, 0.5257891845703125, 0.525643798828125, 0.5260062866210937, 0.5256611938476563, 0.5261844482421875, 0.5262510375976562, 0.5261025390625, 0.5262673950195312, 0.5262622680664063, 0.5260779418945313, 0.5261721801757813, 0.5261353149414062, 0.5261588745117187, 0.5259642944335937, 0.52661865234375, 0.52625, 0.5263790283203125, 0.5262643432617188, 0.5265131225585937, 0.5259069213867188, 0.526286865234375, 0.5260626220703125, 0.5262888793945313, 0.52619775390625, 0.526224365234375, 0.5260155029296875, 0.526613525390625, 0.526581787109375, 0.5259366455078125, 0.5256642456054688, 0.5257686767578125, 0.5256632080078125, 0.5258198852539062, 0.5258588256835938, 0.5261209716796875, 0.525928466796875, 0.5265029296875, 0.5259878540039062, 0.5262069702148438, 0.5264834594726563, 1.088301025390625, 0.5262653198242188, 0.5256724243164063, 0.5255659790039062, 0.525475830078125, 0.5257636108398438, 0.5255300903320312, 0.5257246704101562, 0.5256058959960938, 0.5256345825195312, 0.5254676513671875, 0.5258137817382813, 0.5256581420898437, 0.5258731689453126, 0.526055419921875, 0.526497802734375, 0.5257297973632813, 0.5260103759765625, 0.5256406860351562, 0.5259428100585938, 0.5259376831054687, 0.5261486206054687, 0.5255321655273437, 0.5259735107421875, 0.5258168334960938, 0.52605029296875, 0.5256571044921875, 0.5257420654296875, 0.5257471923828125, 0.525717529296875, 0.525749267578125, 0.5258168334960938, 0.5255885009765625, 0.5259366455078125, 0.5256325073242187, 0.5258721313476562, 0.5255454711914063, 0.5259120483398437, 0.5255874633789063, 0.5258823852539063, 0.5260584716796874, 0.5260093383789063, 0.525638671875, 0.5257984008789063, 0.5254819946289062, 0.5257584838867188, 0.5255413818359375, 0.5256263427734374, 0.5254993896484375, 0.5260482788085937, 0.5255536499023438, 0.5256744995117187, 0.5257471923828125, 0.5260912475585937, 0.5257963256835938, 0.526045166015625, 0.5258997802734375, 0.5258854370117187, 0.5258956909179687, 0.526097412109375, 0.5258956909179687, 0.52596630859375, 0.525486083984375, 1.0877613525390626, 0.525769775390625, 0.5254829711914063, 0.5259612426757813, 0.525929443359375, 0.5262827758789063, 0.5257748413085938, 0.5258516235351562, 0.5254768676757813, 0.5256775512695312, 0.5254871215820313, 0.5258475341796875, 0.525770751953125, 0.5260123901367187, 0.5260103759765625, 0.52575537109375, 0.525591552734375, 0.5260431518554688, 0.5255874633789063, 0.5257769165039062, 0.52560693359375, 0.5258577880859375, 0.5256089477539062, 0.5257195434570312, 0.52571337890625, 0.5260534057617188, 0.5259540405273437, 0.526023681640625, 0.5256468505859375, 0.5257000732421875, 0.5256878051757813, 0.5258270874023437, 0.5255669555664062, 0.5259325561523438, 0.5256478881835938, 0.5259059448242187, 0.5256539916992188, 0.5259171752929688, 0.525533203125, 0.5258956909179687, 0.5256396484375, 0.5259151611328124, 0.5259089965820313, 0.5258045654296875, 0.525470703125, 0.526087158203125, 0.525570068359375, 0.526012451171875, 0.5258239135742188, 0.526266357421875, 0.5257000732421875, 0.5258916015625, 0.5262540893554688, 0.525970458984375, 0.5258168334960938, 0.5259356079101563, 0.5257216186523438, 0.5257953491210937, 0.5261250610351562, 0.5259458618164062, 0.5255300903320312, 0.5259765625, 0.5258004760742188, 1.0886134033203125, 0.52569189453125, 0.5255536499023438, 0.5258383178710937, 0.5257799682617188, 0.5257584838867188, 0.5256837158203125, 0.5262305297851563, 0.5256099853515624, 0.525781005859375, 0.5258270874023437, 0.5262387084960938, 0.5258424072265625, 0.5259765625, 0.5260114135742188, 0.5261588745117187, 0.5259622192382812, 0.5260318603515625, 0.5257083129882812, 0.526166015625, 0.5256325073242187, 0.52587109375, 0.5258260498046875, 0.5261178588867188, 0.5256458129882813, 0.525897705078125, 0.5261752319335937, 0.5257431030273437, 0.5257799682617188, 0.526298095703125, 0.5260574951171875, 0.52619775390625, 0.52611279296875, 0.526271484375, 0.5262151489257813, 0.5269708862304687, 0.5263012084960937, 0.52657666015625, 0.5264937133789063, 0.5267752685546875, 0.5261527099609375, 0.5262315673828125, 0.5261690673828125, 0.5258997802734375, 0.5257728271484375, 0.5265807495117187, 0.525681640625, 0.5258721313476562, 0.5259049072265625, 0.525970458984375, 0.525633544921875, 0.5261414184570312, 0.5260697631835938, 0.5258782958984375, 0.5258792724609375, 0.52611376953125, 0.5257523193359375, 0.5261752319335937, 0.5259192504882813, 0.52607080078125, 0.5259898681640625, 0.5263278198242187, 0.5262356567382812, 1.089292236328125, 0.5257205810546876, 0.5256959838867188, 0.5258516235351562, 0.525675537109375, 0.525707275390625, 0.525644775390625, 0.5258741455078125, 0.5256427612304687, 0.52611376953125, 0.5256857299804687, 0.5256929321289062, 0.525865966796875, 0.5259274291992188, 0.5254942626953125, 0.52583935546875, 0.5259089965820313, 0.5260984497070312, 0.5255659790039062, 0.52596630859375, 0.5255341796875, 0.5257932739257812, 0.5256161499023437, 0.5257615356445312, 0.5255608520507813, 0.5256908569335937, 0.5256058959960938, 0.5258137817382813, 0.525822998046875, 0.5260390625, 0.5258168334960938, 0.526033935546875, 0.5262326049804688, 0.5259100341796875, 0.5258065795898438, 0.52625, 0.5258567504882813, 0.52642919921875, 0.5261015014648438, 0.525955078125, 0.5256345825195312, 0.5259990844726562, 0.5259017944335938, 0.525970458984375, 0.5258311767578125, 0.5259765625, 0.5258895263671876, 0.5263216552734375, 0.5260062866210937, 0.5263206176757812, 0.5261220092773438, 0.5258639526367187, 0.5263790283203125, 0.52634521484375, 0.52650390625, 0.5263104248046875, 0.5256294555664063, 0.5261782836914063, 0.5257164916992187, 0.526087158203125, 0.526256103515625, 0.52645068359375, 0.5261045532226563]",tokens/s,1.8728093232254581,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1373.622272,6237.454336,0.0,5591.007232,5346.100224,s,10,5.623939697265624,0.5623939697265625,0.0018664729250946,0.5620524597167968,0.563123095703125,0.5654235778808594,0.5672639636230469,"[0.5677240600585938, 0.5623804931640625, 0.5615673828125, 0.5610968627929688, 0.561818603515625, 0.5608659057617188, 0.5612388305664062, 0.5622863159179687, 0.562349365234375, 0.5626118774414063]",tokens/s,455.19691493930475,kWh,6.624708389058526e-06,3.630042331800116e-06,3.1119932303329425e-05,4.1374683024188065e-05,tokens/kWh,6187358.57989147,MB,1373.622272,6237.454336,0.0,5591.007232,5555.342336,s,10,326.497560546875,32.649756054687494,0.006483931910806726,32.650626953125,32.658396484375,32.6586953125,32.658934375,"[32.65203515625, 32.6462578125, 32.658994140625, 32.65576953125, 32.658330078125, 32.651564453125, 32.649689453125, 32.63969140625, 32.6434453125, 32.641783203125]",tokens/s,1.9295703126993242,kWh,0.0003854154377200722,0.00021124086242082436,0.0017644989764128718,0.0023611552765537684,tokens/kWh,26681.853847389422,,s,629,331.03564239501964,0.5262887796423203,0.06675128508752028,0.51820849609375,0.5186688842773437,0.5188689819335938,1.07959478515625,"[0.5180374755859375, 0.5182678833007812, 0.5178931274414063, 0.5179525146484375, 0.517771240234375, 0.5180712890625, 0.5179750366210938, 0.5180805053710937, 0.5178931274414063, 0.51806103515625, 0.5181265869140625, 0.5183170776367187, 0.5182382202148438, 0.5182545776367188, 0.5179371337890625, 0.5179320068359375, 0.5178828735351563, 0.5182423095703125, 0.5177661743164063, 0.5184501953125, 0.5183272705078125, 0.5182412719726562, 0.518329345703125, 0.5184378662109375, 0.51814501953125, 0.518319091796875, 0.5182443237304688, 0.518181884765625, 0.5181737060546875, 0.5180671997070313, 0.5180620727539063, 0.5182228393554688, 0.518096923828125, 0.5180733642578125, 0.5180712890625, 0.5181204223632813, 0.518097900390625, 0.51814501953125, 0.5181767578125, 0.5185771484375, 0.518513671875, 0.5182904052734375, 0.5183529052734375, 0.5182494506835937, 0.5183231811523438, 0.518898681640625, 0.5186907958984375, 0.5187061767578125, 0.5188659057617188, 0.5184491577148438, 0.5182515258789062, 0.5187911376953125, 0.518445068359375, 0.518139892578125, 0.5181849365234374, 0.518667236328125, 0.518803466796875, 0.5185535888671875, 0.5189119873046875, 0.518846435546875, 0.518677490234375, 0.518724609375, 1.0810408935546876, 0.518350830078125, 0.51835595703125, 0.5182074584960937, 0.518297607421875, 0.5182279663085938, 0.5184102172851562, 0.5181460571289063, 0.5180006103515625, 0.5179330444335938, 0.5180252075195313, 0.5179064331054688, 0.5179320068359375, 0.5177804565429688, 0.5182894287109375, 0.5181163330078125, 0.5180518188476563, 0.5180508422851563, 0.5179484252929687, 0.5180457153320313, 0.5182883911132813, 0.5182054443359375, 0.5181962280273438, 0.5179832153320313, 0.5181480712890625, 0.518150146484375, 0.5184532470703125, 0.5180272827148438, 0.5180825805664062, 0.518097900390625, 0.5182258911132812, 0.5182105712890624, 0.5181552734375, 0.5183569946289063, 0.518529052734375, 0.518128662109375, 0.5181829223632812, 0.5179422607421875, 0.5181511840820312, 0.518192138671875, 0.5183323974609375, 0.5181368408203125, 0.5180845947265625, 0.5180733642578125, 0.5180211181640625, 0.5182935180664062, 0.5184542846679687, 0.5183917846679688, 0.5182208251953125, 0.5182781372070312, 0.5181317138671875, 0.5180057373046875, 0.51827099609375, 0.5181931762695312, 0.5183539428710937, 0.5180200805664062, 0.5180907592773437, 0.518160400390625, 0.5181306762695312, 0.518550537109375, 0.5182576904296875, 0.5182935180664062, 0.5190768432617188, 1.0802135009765625, 0.5184102172851562, 0.5183016967773437, 0.5183057861328125, 0.518302734375, 0.5182258911132812, 0.5182843017578125, 0.5182535400390625, 0.5182894287109375, 0.5180989379882812, 0.5188106079101562, 0.5188167724609375, 0.5182730102539063, 0.5184215087890625, 0.5188740844726563, 0.518466552734375, 0.5184788208007812, 0.5185781860351563, 0.518593505859375, 0.5185474853515625, 0.5185228881835937, 0.5185556640625, 0.5184358520507812, 0.5184542846679687, 0.5182996215820312, 0.518150146484375, 0.5181685791015626, 0.5181951904296875, 0.5183805541992188, 0.5179638061523437, 0.5181430053710937, 0.5183969116210938, 0.518614013671875, 0.5185802001953125, 0.518518798828125, 0.5182832641601562, 0.5184378662109375, 0.5184542846679687, 0.5183897705078125, 0.5185802001953125, 0.5184993286132813, 0.518413330078125, 0.518582275390625, 0.5183180541992187, 0.5183262939453125, 0.5186201782226563, 0.5186109619140625, 0.5183580322265625, 0.5184757690429688, 0.5184901123046874, 0.5186160888671875, 0.5187286987304688, 0.5188710327148438, 0.5184942016601563, 0.5181839599609375, 0.5181829223632812, 0.5181522216796876, 0.518096923828125, 0.5179955444335937, 0.5181552734375, 0.51811328125, 0.5180682373046875, 0.5181757202148437, 1.07947314453125, 0.5179699096679687, 0.5179678955078125, 0.51793408203125, 0.5179218139648437, 0.5176954956054688, 0.517823486328125, 0.517739501953125, 0.51822900390625, 0.5179279174804687, 0.517939208984375, 0.5180466918945312, 0.517918701171875, 0.5178296508789062, 0.5179985961914062, 0.5177743530273438, 0.5179566040039062, 0.5178408813476563, 0.5179791259765625, 0.5178828735351563, 0.5179432983398438, 0.5181634521484375, 0.5181337890625, 0.5179771118164063, 0.5182044067382813, 0.51795556640625, 0.5179996337890626, 0.5179801635742187, 0.5180671997070313, 0.518134765625, 0.5181143188476562, 0.5187368774414063, 0.5187942504882812, 0.5189273681640625, 0.5193850708007812, 0.5187921752929687, 0.5189058837890625, 0.5189734497070313, 0.5189846801757813, 0.5192017822265625, 0.5188218994140625, 0.5181880493164063, 0.5183334350585938, 0.518235107421875, 0.5181430053710937, 0.5183231811523438, 0.5186498413085937, 0.5190901489257812, 0.5187317504882812, 0.51865087890625, 0.5185198364257813, 0.5186201782226563, 0.5188372192382813, 0.51859765625, 0.518645751953125, 0.5186754760742187, 0.518487060546875, 0.5186324462890625, 0.5185587158203125, 0.5188239135742188, 0.5186519165039063, 0.5187880859375, 0.5186846923828125, 1.0807930908203125, 0.51770166015625, 0.51816650390625, 0.5179269409179688, 0.518044677734375, 0.5178726196289063, 0.5178777465820312, 0.5178327026367188, 0.5186160888671875, 0.5184112548828125, 0.5178265380859375, 0.5183109130859375, 0.518076416015625, 0.5183846435546875, 0.5180590209960938, 0.5186488037109375, 0.5181992797851562, 0.5183733520507813, 0.5187184448242188, 0.5183948974609375, 0.5185996704101562, 0.518761474609375, 0.518898681640625, 0.5185392456054687, 0.5188966674804687, 0.51905126953125, 0.519035888671875, 0.5190471801757812, 0.5186109619140625, 0.5184972534179687, 0.5185576782226563, 0.5184890747070312, 0.518635498046875, 0.5185792236328125, 0.5188178100585937, 0.5181685791015626, 0.51841845703125, 0.5182699584960937, 0.5182064819335938, 0.518287353515625, 0.5185095825195313, 0.5183477783203125, 0.5183303833007813, 0.51831396484375, 0.5182330932617187, 0.51831396484375, 0.5185115966796875, 0.5181265869140625, 0.5181378784179688, 0.5181726684570312, 0.5181337890625, 0.5182105712890624, 0.51820849609375, 0.518345703125, 0.51832421875, 0.5183549194335938, 0.518307861328125, 0.5184307250976562, 0.5182935180664062, 0.5186068725585937, 0.5185156860351563, 0.5184860229492188, 0.5183590698242188, 1.079120849609375, 0.5180108642578125, 0.5178880004882812, 0.5183908081054688, 0.5182914428710937, 0.5184788208007812, 0.5184235229492188, 0.518445068359375, 0.518530029296875, 0.51832421875, 0.5184675903320313, 0.51827099609375, 0.5184603881835937, 0.5187942504882812, 0.5182791748046875, 0.518677490234375, 0.51831396484375, 0.5182689208984375, 0.5182883911132813, 0.5182525634765625, 0.5183006591796875, 0.5184860229492188, 0.51837646484375, 0.5183355102539062, 0.5185433349609375, 0.5184737548828126, 0.518582275390625, 0.5182945556640625, 0.5185679321289063, 0.5183539428710937, 0.5182320556640625, 0.5178674926757812, 0.5180487670898437, 0.5178419189453125, 0.518265869140625, 0.5178624267578125, 0.5180108642578125, 0.5179617309570312, 0.5181962280273438, 0.5183150024414063, 0.5182945556640625, 0.51801806640625, 0.5179739990234375, 0.5180282592773438, 0.5179627685546875, 0.5179453735351562, 0.5180723266601562, 0.5182699584960937, 0.5180877075195313, 0.5185106201171875, 0.51859765625, 0.5188925170898437, 0.5190215454101562, 0.51888232421875, 0.5181071166992187, 0.5179473876953125, 0.5181839599609375, 0.5182371826171875, 0.5180457153320313, 0.5183866577148437, 0.5179750366210938, 0.518129638671875, 0.51801806640625, 1.07964208984375, 0.5178245239257813, 0.51821875, 0.5180845947265625, 0.5184706420898437, 0.5179371337890625, 0.5181102294921875, 0.5177528076171874, 0.5178818359375, 0.5179115600585937, 0.5181040649414063, 0.51799755859375, 0.5179422607421875, 0.517833740234375, 0.5180364990234375, 0.5180262451171875, 0.5184931640625, 0.518465576171875, 0.518752197265625, 0.5185177612304688, 0.5182627563476563, 0.51831396484375, 0.5179750366210938, 0.5179299926757812, 0.518255615234375, 0.5179238891601563, 0.5180384521484375, 0.5178255615234375, 0.5182105712890624, 0.5178951416015625, 0.5179678955078125, 0.5183211669921876, 0.518451171875, 0.5179801635742187, 0.5185515747070313, 0.518012939453125, 0.5183160400390625, 0.5181572875976562, 0.518414306640625, 0.51803955078125, 0.5180856323242188, 0.5184501953125, 0.5183150024414063, 0.5181255493164062, 0.517992431640625, 0.5180579833984374, 0.5187839965820312, 0.5185628051757812, 0.518540283203125, 0.518202392578125, 0.518066162109375, 0.5179484252929687, 0.5179596557617188, 0.518540283203125, 0.5186969604492188, 0.518518798828125, 0.518950927734375, 0.5188731079101563, 0.5186795654296875, 0.5185914916992187, 0.5187307739257813, 0.5183908081054688, 0.51898876953125, 1.0808607177734375, 0.5182371826171875, 0.5184461059570312, 0.5177640991210938, 0.5177876586914063, 0.517739501953125, 0.5178665161132813, 0.5178562622070313, 0.5178859252929687, 0.5180989379882812, 0.5182730102539063, 0.5177979125976563, 0.5178357543945312, 0.5179658203125, 0.517981201171875, 0.517939208984375, 0.5179945068359375, 0.5179227905273438, 0.518240234375, 0.5178214111328125, 0.5179320068359375, 0.5179780883789062, 0.5183355102539062, 0.5180651245117187, 0.5181480712890625, 0.5180057373046875, 0.5182074584960937, 0.5179883422851562, 0.518451171875, 0.5178818359375, 0.5180845947265625, 0.5179965209960937, 0.51812353515625, 0.5180364990234375, 0.5182320556640625, 0.5181358032226563, 0.5180743408203125, 0.5179351196289063, 0.518034423828125, 0.51783984375, 0.5181317138671875, 0.518181884765625, 0.5181368408203125, 0.518096923828125, 0.5181122436523438, 0.5180252075195313, 0.5180845947265625, 0.5183109130859375, 0.5181265869140625, 0.5181849365234374, 0.5181675415039062, 0.51801904296875, 0.5181522216796876, 0.5180067749023437, 0.5182208251953125, 0.5181409301757812, 0.5182740478515625, 0.5183969116210938, 0.5182013549804687, 0.5183569946289063, 0.518540283203125, 0.5182197875976563, 0.5181859741210938, 1.08067431640625, 0.5179432983398438, 0.5182156982421875, 0.5180016479492188, 0.5179719848632812, 0.51789208984375, 0.5180518188476563, 0.5180037231445312, 0.5178480834960938, 0.5180877075195313, 0.5180457153320313, 0.517917724609375, 0.5178644409179688, 0.5178849487304688, 0.518024169921875, 0.518054931640625, 0.5180067749023437, 0.5178900756835938, 0.5179576416015625, 0.5179576416015625, 0.5179586791992188, 0.5180856323242188, 0.5181337890625, 0.5180282592773438, 0.5181214599609375, 0.5182494506835937, 0.518319091796875, 0.5179115600585937, 0.5183477783203125, 0.5183272705078125, 0.5182802124023438, 0.5183600463867187, 0.5181358032226563, 0.5181696166992188, 0.518255615234375, 0.5183529052734375, 0.5181572875976562, 0.5181859741210938, 0.5181696166992188, 0.51808154296875, 0.51820849609375, 0.5184255981445313, 0.5182371826171875, 0.5183518676757812, 0.5184041137695312, 0.5182156982421875, 0.518381591796875, 0.5181542358398438, 0.5183303833007813, 0.5183754272460938, 0.5185751342773437, 0.5181276245117188, 0.51801904296875, 0.517982177734375, 0.5183969116210938, 0.5180518188476563, 0.5181931762695312, 0.5182013549804687, 0.51814501953125, 0.5182044067382813, 0.5184788208007812, 0.5181685791015626, 0.5182545776367188, 1.0810133056640625, 0.5179525146484375, 0.5181378784179688, 0.5180538940429688, 0.51814501953125, 0.517855224609375, 0.5180466918945312, 0.5178275756835937, 0.5180252075195313, 0.51799755859375, 0.5179699096679687, 0.5178880004882812, 0.5178541870117187, 0.5178347778320312, 0.51806103515625, 0.5181675415039062, 0.5181859741210938, 0.5180692749023438, 0.5179873046875, 0.5182177124023437, 0.518108154296875, 0.5182166748046875, 0.5182371826171875, 0.5179218139648437, 0.5183621215820312, 0.5186570434570312, 0.5182105712890624, 0.5181808471679688, 0.5182515258789062, 0.5181306762695312, 0.5180211181640625, 0.5178193969726562, 0.5181091918945312, 0.5179535522460937, 0.5180016479492188, 0.5181306762695312, 0.518223876953125, 0.5179525146484375, 0.5181911010742187, 0.5179227905273438, 0.5183364868164062, 0.5182883911132813, 0.5184389038085937, 0.5180641479492187, 0.5185689697265625, 0.5180364990234375, 0.5181071166992187, 0.5180067749023437, 0.5183314208984375, 0.5180825805664062, 0.5181122436523438, 0.5179945068359375, 0.5179750366210938, 0.5179535522460937, 0.5183303833007813, 0.5182197875976563, 0.5182955322265625, 0.5183119506835937, 0.51829248046875, 0.518128662109375, 0.518055908203125, 0.5183754272460938, 0.5182371826171875]",tokens/s,1.9000975104953335,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm2-20b,internlm/internlm2-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,4008.419328,15760.621568,0.0,15114.174464,14046.123008,s,10,15.848047607421876,1.5848047607421876,0.001058458314234293,1.584490295410156,1.5859812255859376,1.5864652832031252,1.5868525292968751,"[1.5851588134765624, 1.583447265625, 1.5845269775390625, 1.583828125, 1.58445361328125, 1.583693603515625, 1.5843594970703125, 1.5857567138671875, 1.5869493408203126, 1.5858736572265626]",tokens/s,161.53409324698862,kWh,1.869280167751842e-05,1.0243654597979911e-05,8.793465368099884e-05,0.00011687110995649717,tokens/kWh,2190447.23794692,MB,4008.419328,15760.621568,0.0,15114.174464,14170.904576,s,10,927.2718203125,92.72718203125001,0.005797509915113206,92.7283046875,92.73256640625,92.73465820312501,92.736331640625,"[92.7307421875, 92.72909375, 92.73675, 92.7321015625, 92.7264921875, 92.7241015625, 92.7158671875, 92.7194609375, 92.7296953125, 92.727515625]",tokens/s,0.6794124292353493,kWh,0.0010946948910421795,0.0005999896856933628,0.005209015139431006,0.006903699716166547,tokens/kWh,9125.541751543959,,s,629,940.0627094726563,1.494535309177514,0.18825786848907494,1.47182177734375,1.4724240966796875,1.4726346923828124,3.055808037109375,"[1.4722620849609376, 1.4717921142578125, 1.47181982421875, 1.4719560546875, 1.4718125, 1.4717183837890624, 1.472183349609375, 1.47190576171875, 1.4715218505859375, 1.47171630859375, 1.47156787109375, 1.4714951171875, 1.471922119140625, 1.4721187744140625, 1.4715177001953126, 1.47153515625, 1.4718924560546875, 1.4718126220703125, 1.4714593505859375, 1.4722181396484375, 1.4722314453125, 1.4714234619140625, 1.471951904296875, 1.4719990234375, 1.471762451171875, 1.4720880126953124, 1.472605224609375, 1.471382568359375, 1.4716119384765625, 1.471868896484375, 1.4716876220703126, 1.4716446533203125, 1.472257080078125, 1.4723829345703126, 1.472047119140625, 1.4720819091796875, 1.47234716796875, 1.4716507568359376, 1.47162109375, 1.471951904296875, 1.472247802734375, 1.472111572265625, 1.471752197265625, 1.4720460205078125, 1.4718433837890625, 1.471847412109375, 1.473238037109375, 1.4716826171875, 1.4716129150390624, 1.471711181640625, 1.4720286865234375, 1.4715771484375, 1.47129443359375, 1.4723441162109374, 1.47237890625, 1.4720123291015625, 1.4720389404296874, 1.4725570068359375, 1.4715821533203124, 1.47163232421875, 1.472152587890625, 1.4719139404296875, 3.055659912109375, 1.4719190673828124, 1.4714122314453124, 1.4715750732421875, 1.4726441650390625, 1.4716497802734374, 1.4719395751953126, 1.4714327392578126, 1.4716334228515624, 1.4717982177734374, 1.4725570068359375, 1.472247802734375, 1.4715555419921875, 1.4713795166015624, 1.47167431640625, 1.4718515625, 1.471489990234375, 1.4721033935546874, 1.4721280517578126, 1.471662109375, 1.47139990234375, 1.4714696044921876, 1.471595458984375, 1.4714849853515626, 1.472489501953125, 1.4717716064453126, 1.471542236328125, 1.4713282470703124, 1.4715074462890625, 1.4714327392578126, 1.4716241455078125, 1.4727454833984375, 1.4718914794921876, 1.472322509765625, 1.4719334716796875, 1.47182177734375, 1.4713436279296874, 1.4722703857421875, 1.47228466796875, 1.471656982421875, 1.471455322265625, 1.4724454345703124, 1.4727833251953124, 1.472058349609375, 1.472762939453125, 1.4725816650390624, 1.47173583984375, 1.4722109375, 1.4722037353515625, 1.4719927978515626, 1.4716068115234375, 1.4723389892578125, 1.4720194091796874, 1.4716221923828126, 1.4717747802734376, 1.47186279296875, 1.4714490966796876, 1.471636474609375, 1.4723154296875, 1.471784912109375, 1.47171533203125, 1.4717327880859374, 1.472248779296875, 3.057259521484375, 1.47224267578125, 1.4718597412109375, 1.472489501953125, 1.4721064453125, 1.4717808837890625, 1.471899658203125, 1.4724228515625, 1.472541748046875, 1.47203173828125, 1.472416748046875, 1.47173583984375, 1.471767578125, 1.4718350830078124, 1.472779296875, 1.4719927978515626, 1.47137841796875, 1.4718525390625, 1.4718648681640625, 1.4717603759765625, 1.4714869384765625, 1.47251611328125, 1.4720552978515624, 1.47161083984375, 1.4713856201171875, 1.4714736328125, 1.4710916748046876, 1.471134765625, 1.4725887451171875, 1.4723441162109374, 1.4716630859375, 1.471782958984375, 1.4716395263671875, 1.4718515625, 1.4722734375, 1.472278564453125, 1.4714920654296875, 1.47167431640625, 1.47209423828125, 1.4719703369140624, 1.47245263671875, 1.4724505615234376, 1.47195703125, 1.47188525390625, 1.472077880859375, 1.4723031005859375, 1.4720552978515624, 1.4719139404296875, 1.4722252197265624, 1.4726502685546874, 1.4722242431640624, 1.471540283203125, 1.472048095703125, 1.4718955078125, 1.4713743896484375, 1.47283154296875, 1.4720828857421875, 1.472143310546875, 1.472288818359375, 1.4720460205078125, 1.4718065185546876, 1.471910888671875, 1.472711669921875, 3.055857666015625, 1.471562744140625, 1.4717071533203125, 1.471541259765625, 1.4722652587890626, 1.47290625, 1.4720972900390625, 1.4717244873046875, 1.4717379150390626, 1.47239111328125, 1.4715084228515625, 1.4723399658203125, 1.47213720703125, 1.47205224609375, 1.472205810546875, 1.4718515625, 1.471974365234375, 1.4717972412109375, 1.472838623046875, 1.472647216796875, 1.47232666015625, 1.47219970703125, 1.4716876220703126, 1.4716630859375, 1.4720552978515624, 1.4729554443359374, 1.471932373046875, 1.471942626953125, 1.471614990234375, 1.4719990234375, 1.4717265625, 1.4722620849609376, 1.47253857421875, 1.47146337890625, 1.4715965576171874, 1.4714061279296875, 1.471909912109375, 1.4716488037109374, 1.4721239013671874, 1.472101318359375, 1.4714869384765625, 1.471604736328125, 1.4719661865234375, 1.4716927490234375, 1.4718228759765626, 1.471889404296875, 1.4719180908203124, 1.4718177490234374, 1.4717174072265624, 1.471542236328125, 1.471983642578125, 1.4715238037109375, 1.4717327880859374, 1.472067626953125, 1.471873046875, 1.4716876220703126, 1.4719764404296876, 1.4723194580078125, 1.4719017333984374, 1.4723870849609375, 1.4717716064453126, 1.4715146484375, 1.4714757080078125, 3.056364501953125, 1.4723338623046875, 1.472585693359375, 1.4714593505859375, 1.471646728515625, 1.4715494384765626, 1.4717880859375, 1.472016357421875, 1.4726204833984375, 1.4721822509765625, 1.4717747802734376, 1.4717244873046875, 1.4717716064453126, 1.47205322265625, 1.4717276611328125, 1.472067626953125, 1.471805419921875, 1.4715555419921875, 1.471551513671875, 1.4714962158203124, 1.47133544921875, 1.4717747802734376, 1.471994873046875, 1.47158837890625, 1.471520751953125, 1.4713466796875, 1.4714747314453125, 1.4717276611328125, 1.4718135986328125, 1.4724290771484374, 1.4716488037109374, 1.4714132080078124, 1.4716231689453125, 1.4723389892578125, 1.4713077392578124, 1.47160888671875, 1.471899658203125, 1.4723778076171874, 1.471910888671875, 1.4719447021484375, 1.47195703125, 1.47152685546875, 1.472251953125, 1.471962158203125, 1.4716077880859375, 1.471457275390625, 1.4723092041015624, 1.4719969482421875, 1.4716549072265626, 1.4718648681640625, 1.47160986328125, 1.4718760986328125, 1.471826904296875, 1.4713251953125, 1.47182177734375, 1.4716077880859375, 1.472786376953125, 1.472522216796875, 1.4720809326171875, 1.4717982177734374, 1.4721248779296876, 1.471731689453125, 1.4721033935546874, 3.055680419921875, 1.4718280029296875, 1.4716129150390624, 1.4713046875, 1.4718914794921876, 1.4720511474609375, 1.4723931884765624, 1.471605712890625, 1.4720911865234374, 1.47203173828125, 1.4718822021484375, 1.4717869873046876, 1.4723829345703126, 1.4720809326171875, 1.471552490234375, 1.4721136474609375, 1.471494140625, 1.4717767333984375, 1.471177734375, 1.472689208984375, 1.4716497802734374, 1.4718802490234375, 1.4714306640625, 1.472184326171875, 1.4717860107421874, 1.47194677734375, 1.47276904296875, 1.4713814697265626, 1.4714398193359375, 1.471753173828125, 1.472689208984375, 1.472320556640625, 1.472069580078125, 1.47273828125, 1.4716497802734374, 1.4718289794921875, 1.4717060546875, 1.471951904296875, 1.4716866455078126, 1.47211669921875, 1.471942626953125, 1.4714388427734375, 1.471298583984375, 1.4713538818359375, 1.4712965087890626, 1.4712689208984375, 1.4717244873046875, 1.472357421875, 1.471731689453125, 1.4715218505859375, 1.471215576171875, 1.4711285400390626, 1.4713046875, 1.47230615234375, 1.4722723388671874, 1.4720819091796875, 1.471382568359375, 1.4713026123046875, 1.472006103515625, 1.47163232421875, 1.472415771484375, 1.471131591796875, 1.4713272705078124, 3.056773193359375, 1.4716077880859375, 1.4716282958984375, 1.471858642578125, 1.4712208251953125, 1.4718197021484376, 1.472443359375, 1.4715648193359374, 1.471594482421875, 1.472443359375, 1.4719036865234374, 1.47152587890625, 1.4711285400390626, 1.4714869384765625, 1.4713077392578124, 1.4713907470703125, 1.47195703125, 1.47201123046875, 1.4714542236328125, 1.4714757080078125, 1.471456298828125, 1.471595458984375, 1.47175732421875, 1.4725191650390625, 1.4716539306640626, 1.4716416015625, 1.47211474609375, 1.4713333740234376, 1.47162109375, 1.4716436767578125, 1.4722816162109376, 1.47161083984375, 1.471515625, 1.4715064697265625, 1.4715709228515625, 1.47129345703125, 1.4712586669921874, 1.4722181396484375, 1.471456298828125, 1.4713170166015626, 1.4715576171875, 1.47175732421875, 1.47146337890625, 1.472247802734375, 1.471603759765625, 1.4716273193359375, 1.4715709228515625, 1.472047119140625, 1.4721197509765624, 1.472300048828125, 1.4724617919921874, 1.472036865234375, 1.4715872802734375, 1.47150537109375, 1.47152685546875, 1.4712227783203125, 1.4709483642578125, 1.4714481201171874, 1.4717808837890625, 1.4714285888671874, 1.4712176513671875, 1.4715013427734376, 1.471331298828125, 3.058272216796875, 1.4714920654296875, 1.4712022705078125, 1.47119921875, 1.4717470703125, 1.471373291015625, 1.4719886474609376, 1.4716968994140625, 1.4716273193359375, 1.4718914794921876, 1.471751220703125, 1.4717174072265624, 1.471711181640625, 1.472184326171875, 1.472363525390625, 1.471656982421875, 1.4721873779296875, 1.4718863525390624, 1.4719764404296876, 1.4720511474609375, 1.4719754638671876, 1.4718924560546875, 1.4713037109375, 1.4712841796875, 1.47162109375, 1.4717725830078126, 1.472, 1.4716497802734374, 1.4716558837890625, 1.4713426513671874, 1.471215576171875, 1.4712484130859376, 1.47142041015625, 1.471537109375, 1.4719190673828124, 1.4712698974609375, 1.471478759765625, 1.47183203125, 1.4715013427734376, 1.4721925048828124, 1.47177978515625, 1.472447509765625, 1.4714500732421876, 1.4717501220703124, 1.47160888671875, 1.4718299560546875, 1.471974365234375, 1.4720081787109376, 1.472126953125, 1.4715023193359376, 1.4715084228515625, 1.47169482421875, 1.471330322265625, 1.471171630859375, 1.4719794921875, 1.4723297119140626, 1.471705078125, 1.4717818603515624, 1.4718740234375, 1.4721126708984376, 1.471266845703125, 1.472437255859375, 1.4715064697265625, 3.05955126953125, 1.4719764404296876, 1.47195703125, 1.47245361328125, 1.472227294921875, 1.4713221435546875, 1.4720296630859375, 1.4715545654296875, 1.4716138916015624, 1.4715606689453125, 1.47230517578125, 1.4725037841796875, 1.471837158203125, 1.47186376953125, 1.47192724609375, 1.4720911865234374, 1.47192626953125, 1.4723450927734374, 1.4718555908203126, 1.47135791015625, 1.4716026611328126, 1.471425537109375, 1.4714224853515625, 1.4716395263671875, 1.4727669677734374, 1.4724013671875, 1.4724403076171875, 1.47211669921875, 1.4722672119140625, 1.472236572265625, 1.47209423828125, 1.4720142822265625, 1.471340576171875, 1.4719610595703125, 1.471952880859375, 1.4716343994140626, 1.4717020263671876, 1.472510009765625, 1.4722958984375, 1.47205322265625, 1.471494140625, 1.471520751953125, 1.4711224365234374, 1.4714521484375, 1.471753173828125, 1.4722447509765626, 1.4713282470703124, 1.47150341796875, 1.472290771484375, 1.471889404296875, 1.4715074462890625, 1.4724771728515624, 1.4729246826171876, 1.4722078857421874, 1.4716180419921876, 1.471309814453125, 1.47177978515625, 1.47196923828125, 1.4722120361328126, 1.471774658203125, 1.4713466796875, 1.471520751953125, 1.4712811279296876, 3.058113525390625, 1.4730526123046874, 1.4717235107421875, 1.4721668701171875, 1.471916015625, 1.472654296875, 1.4716385498046876, 1.4719088134765625, 1.4720716552734374, 1.4713763427734374, 1.471236083984375, 1.471573974609375, 1.4717041015625, 1.471826904296875, 1.4721710205078125, 1.472248779296875, 1.471709228515625, 1.47167333984375, 1.4722354736328125, 1.47183203125, 1.4724495849609376, 1.47257861328125, 1.4722344970703125, 1.471520751953125, 1.4716630859375, 1.47169384765625, 1.472069580078125, 1.4725938720703124, 1.472268310546875, 1.471952880859375, 1.4720880126953124, 1.4720225830078124, 1.471952880859375, 1.4723450927734374, 1.472373779296875, 1.472194580078125, 1.4716927490234375, 1.471921142578125, 1.471922119140625, 1.472109619140625, 1.471762451171875, 1.4723779296875, 1.4719671630859374, 1.4716590576171875, 1.47093603515625, 1.4710968017578125, 1.4713907470703125, 1.47113671875, 1.471277099609375, 1.4721495361328125, 1.4713795166015624, 1.4710025634765624, 1.471087646484375, 1.47147265625, 1.4714593505859375, 1.4727730712890625, 1.472385986328125, 1.4715115966796875, 1.47182177734375, 1.471372314453125, 1.471321044921875, 1.4717603759765625, 1.47186181640625]",tokens/s,0.6691042987470994,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,t,t,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,B,B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -15580,7 +16346,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/t/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/B/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -15607,9 +16373,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669490db-788bfdd346c246970b272408;6726043a-18bf-4853-8e91-9bfb259d80f9) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669493e8-51bfdab147ee9dbc7c3e7f0b;cf706216-fc71-4510-b640-badeeeb2c377) -Repository Not Found for url: https://huggingface.co/t/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/B/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -15634,11 +16400,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: t is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: B is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-66b,facebook/opt-66b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-30b,huggyllama/llama-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -15658,29 +16424,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 162.00 MiB. GPU + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,.,.,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,2,2,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -15688,6 +16447,46 @@ torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 162.00 MiB. G File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/2/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694938c-72b9537548fba59f1bbe3a78;43e7f0b7-8cc4-4cf5-ad69-d17d58561d43) + +Repository Not Found for url: https://huggingface.co/2/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run @@ -15704,12 +16503,13 @@ ChildProcessError: Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 373, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: . does not appear to have a file named config.json. Checkout 'https://huggingface.co/./tree/None' for available files. +OSError: 2 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mixtral-8x7B-v0.1,mistralai/Mixtral-8x7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-350m,facebook/opt-350m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -15729,29 +16529,51 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-MoE-A2.7B,Qwen/Qwen1.5-MoE-A2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-72B,Qwen/Qwen2-beta-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-70B,meta-llama/Meta-Llama-3-70B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -15790,10 +16612,10 @@ ChildProcessError: Traceback (most recent call last): self._buffers[key] = fn(buf) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-180B,tiiuae/falcon-180B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/polyglot-ko-12.8b,EleutherAI/polyglot-ko-12.8b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -15801,74 +16623,34 @@ torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GP File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status - raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-6694992c-36991b736febcbd50013b9de;5294acfb-7118-4eae-870a-baae2b1481b2) - -403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json. -If you are trying to create or update content,make sure you have a token with the `write` role. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error - raise LocalEntryNotFoundError( -huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file - raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like tiiuae/falcon-180B is not the path to a directory containing a file named config.json. -Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-4B,Qwen/Qwen1.5-4B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-65b,huggyllama/llama-65b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -15878,56 +16660,39 @@ Checkout your internet connection or see how to run the library in offline mode ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1221, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1023, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 763, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 650, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 86.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm-20b,internlm/internlm-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-14B,Qwen/Qwen1.5-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -15945,22 +16710,24 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3710, in from_pretrained - model = cls(config, *model_args, **model_kwargs) - File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 906, in __init__ - self.model = InternLMModel(config) - File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 729, in __init__ - self.layers = nn.ModuleList([InternLMDecoderLayer(config) for _ in range(config.num_hidden_layers)]) - File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 729, in - self.layers = nn.ModuleList([InternLMDecoderLayer(config) for _ in range(config.num_hidden_layers)]) - File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 545, in __init__ - self.self_attn = INTERNLM_ATTENTION_CLASSES[config.attn_implementation](config=config) -KeyError: 'sdpa' + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-1_6b,stabilityai/stablelm-2-1_6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-12b,stabilityai/stablelm-2-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -15970,56 +16737,32 @@ KeyError: 'sdpa' ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 1268, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 1062, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 792, in forward - self_attn_output, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 441, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,1,1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,8,8,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -16031,7 +16774,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/1/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/8/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -16058,9 +16801,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669495ba-46bf15af50f6da881454533c;f514b970-f019-47a3-95ec-ce168f4a3757) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949280-774e9a271f4e3f6d30d489f8;468d8aa5-9113-437d-b245-36a7c38275d8) -Repository Not Found for url: https://huggingface.co/1/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/8/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -16085,11 +16828,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: 1 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: 8 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-1.8B,Qwen/Qwen1.5-1.8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-8B,meta-llama/Meta-Llama-3-8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -16099,56 +16842,32 @@ If this is a private repository, make sure to pass a token having permission to ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1221, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1023, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 763, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 650, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/rho-math-1b-v0.1,microsoft/rho-math-1b-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -16158,46 +16877,67 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) -TypeError: DeciCoderAttention.forward() got an unexpected keyword argument 'cache_position' + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,s,s,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-70m,EleutherAI/pythia-70m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,databricks/dbrx-base,databricks/dbrx-base,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -16209,21 +16949,11 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/s/resolve/main/config.json +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json The above exception was the direct cause of the following exception: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn @@ -16234,13 +16964,28 @@ Traceback (most recent call last): response = _request_wrapper( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948cee-5d3c281c356bac8654d3c923;e2f4e06c-196f-4500-b11c-ae1ca59aed45) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status + raise HfHubHTTPError(message, response=response) from e +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66947b4c-7972c43449da34fd19dbae7e;2050c297-b44e-4f80-b138-e260934b225e) -Repository Not Found for url: https://huggingface.co/s/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. +403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. +Cannot access content at: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json. +If you are trying to create or update content,make sure you have a token with the `write` role. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error + raise LocalEntryNotFoundError( +huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. The above exception was the direct cause of the following exception: @@ -16261,13 +17006,13 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file raise EnvironmentError( -OSError: s is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like databricks/dbrx-base is not the path to a directory containing a file named config.json. +Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,TencentARC/Mistral_Pro_8B_v0.1,TencentARC/Mistral_Pro_8B_v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-2.7B,EleutherAI/gpt-neo-2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -16277,117 +17022,26 @@ If this is a private repository, make sure to pass a token having permission to ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 1200, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 976, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 718, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 613, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-12b,EleutherAI/pythia-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward - outputs = self.gpt_neox( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward - outputs = layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward - attention_layer_outputs = self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 545, in forward - query, key, value, present = self._attn_projections_and_rope( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope - qkv = self.query_key_value(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: GPTNeoForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/polyglot-ko-12.8b,EleutherAI/polyglot-ko-12.8b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-2.7b,facebook/opt-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -16397,58 +17051,26 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward - outputs = self.gpt_neox( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward - outputs = layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward - attention_layer_outputs = self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 545, in forward - query, key, value, present = self._attn_projections_and_rope( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope - qkv = self.query_key_value(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-3b,stabilityai/stablelm-base-alpha-3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciLM-7B,Deci/DeciLM-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -16456,150 +17078,32 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward - outputs = self.gpt_neox( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward - outputs = layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward - attention_layer_outputs = self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 545, in forward - query, key, value, present = self._attn_projections_and_rope( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope - qkv = self.query_key_value(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code + answer = input( +EOFError: EOF when reading a line -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,/,/,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): +During handling of the above exception, another exception occurred: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 373, in cached_file - raise EnvironmentError( -OSError: / does not appear to have a file named config.json. Checkout 'https://huggingface.co///tree/None' for available files. - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-70m,EleutherAI/pythia-70m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward - outputs = self.gpt_neox( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward - outputs = layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward - attention_layer_outputs = self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 545, in forward - query, key, value, present = self._attn_projections_and_rope( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope - qkv = self.query_key_value(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights + self.create_no_weights_model() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model + meta_model = self.automodel_class.from_config(self.pretrained_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config + trust_remote_code = resolve_trust_remote_code( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code + raise ValueError( +ValueError: The repository for Deci/DeciLM-7B contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/Deci/DeciLM-7B. +Please pass the argument `trust_remote_code=True` to allow custom code to be run. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-2b,google/gemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-7b,google/recurrentgemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -16611,11 +17115,21 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/gemma-2b/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/google/recurrentgemma-7b/resolve/main/config.json The above exception was the direct cause of the following exception: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn @@ -16626,28 +17140,13 @@ Traceback (most recent call last): response = _request_wrapper( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status - raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66948114-7878a1aa3f47292c3e4ba3d6;46cb3dc6-cd4f-4876-afbd-0570eb64fd52) - -403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/google/gemma-2b/resolve/main/config.json. -If you are trying to create or update content,make sure you have a token with the `write` role. - -The above exception was the direct cause of the following exception: + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694825f-0c6c6b4663ef0bde734dbdaf;189cb5f0-98fe-4484-abb0-d243990bbd10) -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error - raise LocalEntryNotFoundError( -huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. +Repository Not Found for url: https://huggingface.co/google/recurrentgemma-7b/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. The above exception was the direct cause of the following exception: @@ -16668,13 +17167,13 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/gemma-2b is not the path to a directory containing a file named config.json. -Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. +OSError: google/recurrentgemma-7b is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciLM-7B,Deci/DeciLM-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -16692,7 +17191,7 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained config = cls._autoset_attn_implementation( @@ -16700,10 +17199,138 @@ ChildProcessError: Traceback (most recent call last): config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa raise ValueError( -ValueError: DeciLMForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` +ValueError: GPTNeoForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-4B,Qwen/Qwen1.5-4B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-4.5B,facebook/xglm-4.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: XGLMForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-3b-4e1t,stabilityai/stablelm-3b-4e1t,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-30b,facebook/opt-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,databricks/dbrx-base,databricks/dbrx-base,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-2b,google/recurrentgemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -16715,7 +17342,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -16732,10 +17359,10 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66947b3d-4aac973e3f3ff11b18e0c716;92390d91-62b7-4cb7-abc6-60f7d7e2567b) +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-669481e6-52fddd9b1de31b0076876073;8de1d97e-984b-47eb-9b56-8622c2efb6a7) 403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json. +Cannot access content at: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json. If you are trying to create or update content,make sure you have a token with the `write` role. The above exception was the direct cause of the following exception: @@ -16774,11 +17401,53 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like databricks/dbrx-base is not the path to a directory containing a file named config.json. +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/recurrentgemma-2b is not the path to a directory containing a file named config.json. Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-7.5B,facebook/xglm-7.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mixtral-8x7B-v0.1,mistralai/Mixtral-8x7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-125m,facebook/opt-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -16804,10 +17473,10 @@ ChildProcessError: Traceback (most recent call last): config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa raise ValueError( -ValueError: XGLMForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` +ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,B,B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm-20b,internlm/internlm-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -16815,69 +17484,32 @@ ValueError: XGLMForCausalLM does not support an attention implementation through File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/B/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669493d2-53e5d6e0771e6cca3e572585;3bd21c41-644c-4ec7-bc91-12e19074b5d8) - -Repository Not Found for url: https://huggingface.co/B/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code + answer = input( +EOFError: EOF when reading a line -The above exception was the direct cause of the following exception: +During handling of the above exception, another exception occurred: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file - raise EnvironmentError( -OSError: B is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights + self.create_no_weights_model() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model + meta_model = self.automodel_class.from_config(self.pretrained_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config + trust_remote_code = resolve_trust_remote_code( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code + raise ValueError( +ValueError: The repository for internlm/internlm-20b contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/internlm/internlm-20b. +Please pass the argument `trust_remote_code=True` to allow custom code to be run. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-14B,Qwen/Qwen1.5-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-7.5B,facebook/xglm-7.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -16887,56 +17519,26 @@ If this is a private repository, make sure to pass a token having permission to ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1221, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1023, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 763, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 650, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: XGLMForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-3B-v1,togethercomputer/RedPajama-INCITE-Base-3B-v1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -16946,56 +17548,32 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 614, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,v,v,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,M,M,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -17007,7 +17585,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/v/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/M/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -17034,9 +17612,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694948b-3a42593a022553ab6e8816a4;83b705e0-c1b2-4fd0-ab11-c897f8600238) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948fd1-68537388089658724ed940ac;a1dc2e5c-a7e6-4175-a53e-84310d994b43) -Repository Not Found for url: https://huggingface.co/v/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/M/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -17061,11 +17639,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: v is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: M is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.3b,EleutherAI/pythia-1.3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-3b,stabilityai/stablelm-base-alpha-3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -17075,58 +17653,32 @@ If this is a private repository, make sure to pass a token having permission to ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward - outputs = self.gpt_neox( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward - outputs = layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward - attention_layer_outputs = self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 545, in forward - query, key, value, present = self._attn_projections_and_rope( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope - qkv = self.query_key_value(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-40b,tiiuae/falcon-40b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-13b,huggyllama/llama-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -17144,18 +17696,24 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: FalconForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neox-20b,EleutherAI/gpt-neox-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-7b-hf,meta-llama/Llama-2-7b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -17165,58 +17723,32 @@ ValueError: FalconForCausalLM does not support an attention implementation throu ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward - outputs = self.gpt_neox( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward - outputs = layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward - attention_layer_outputs = self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 545, in forward - query, key, value, present = self._attn_projections_and_rope( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope - qkv = self.query_key_value(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-13b,facebook/opt-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,-,-,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -17224,29 +17756,39 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 106, in _inner_fn + validate_repo_id(arg_value) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 160, in validate_repo_id + raise HFValidationError( +huggingface_hub.errors.HFValidationError: Repo id must use alphanumeric chars or '-', '_', '.', '--' and '..' are forbidden, '-' and '.' cannot start or end the name, max length is 96: '-'. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 466, in cached_file + raise EnvironmentError( +OSError: Incorrect path_or_model_id: '-'. Please provide either the path to a local folder or the repo_id of a model on the Hub. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2-large,openai-community/gpt2-large,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.42.3,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,1249.247232,2645.03296,0.0,1998.585856,1692.386816,s,10,0.18110473632812502,0.018110473632812502,0.0005832169414279196,0.017981696128845214,0.01848877696990967,0.019090020084381102,0.01957101457595825,"[0.01969126319885254, 0.017800607681274415, 0.017747167587280274, 0.017933311462402343, 0.017479488372802734, 0.018030080795288086, 0.01773776054382324, 0.018034944534301756, 0.018294944763183593, 0.018355167388916016]",tokens/s,14135.466867977431,kWh,2.0449506301505892e-07,1.12053370853919e-07,6.15953972193862e-07,9.3250240606284e-07,tokens/kWh,274530122.74881846,MB,1250.115584,2645.03296,0.0,1998.585856,1714.454528,s,10,10.794084228515624,1.0794084228515626,0.016644320820693784,1.0746611938476562,1.0933045532226562,1.1081316467285156,1.1199933215332032,"[1.122958740234375, 1.0686610107421874, 1.0693388671875, 1.0852027587890625, 1.0651156005859375, 1.0635029296875, 1.0766837158203124, 1.072638671875, 1.0900096435546875, 1.0799722900390625]",tokens/s,58.365303314539354,kWh,1.2562686432810393e-05,6.8838655438497616e-06,2.551703915640865e-05,4.496359113306879e-05,tokens/kWh,1401133.6375146916,,s,629,10.936251413345326,0.01738672720722629,0.0022197024292994623,0.016885791778564453,0.017659904098510742,0.018658509063720703,0.034891817016601566,"[0.01904435157775879, 0.0187064323425293, 0.01863270378112793, 0.018726911544799805, 0.018726911544799805, 0.018873344421386717, 0.018765823364257812, 0.018811904907226562, 0.018739200592041014, 0.018676736831665038, 0.018762752532958983, 0.018803712844848632, 0.018678783416748047, 0.01875660705566406, 0.018675712585449217, 0.018868223190307617, 0.018815999984741212, 0.018736127853393555, 0.018751487731933594, 0.018682880401611326, 0.018691072463989256, 0.01845964813232422, 0.019186687469482423, 0.018593791961669923, 0.018990079879760743, 0.0188723201751709, 0.01862553596496582, 0.01846067237854004, 0.017209344863891602, 0.016954368591308593, 0.017811456680297853, 0.016908287048339844, 0.01696767997741699, 0.01758720016479492, 0.017490943908691405, 0.017522687911987304, 0.017477632522583008, 0.017419296264648436, 0.01743459129333496, 0.017391616821289063, 0.01677107238769531, 0.01680998420715332, 0.01681920051574707, 0.016915456771850586, 0.01683865547180176, 0.01681100845336914, 0.01679155158996582, 0.016780288696289062, 0.01678745651245117, 0.016950271606445313, 0.016879615783691407, 0.016874496459960937, 0.01683558464050293, 0.016773120880126953, 0.016753664016723634, 0.016665599822998048, 0.01686016082763672, 0.016930816650390625, 0.016816160202026368, 0.016822240829467774, 0.01683558464050293, 0.01679667282104492, 0.03492966461181641, 0.01683558464050293, 0.016866304397583007, 0.01678335952758789, 0.01679871940612793, 0.016550912857055664, 0.016587776184082033, 0.016528383255004882, 0.016562175750732423, 0.01659395217895508, 0.016603103637695314, 0.01661849594116211, 0.017155071258544922, 0.016927743911743166, 0.01680281639099121, 0.016898048400878905, 0.01679974365234375, 0.01720832061767578, 0.01759231948852539, 0.01741312026977539, 0.01738751983642578, 0.01700556755065918, 0.016825344085693358, 0.017289247512817383, 0.01739465522766113, 0.01723187255859375, 0.016772096633911132, 0.01683558464050293, 0.01681407928466797, 0.01676288032531738, 0.016736255645751954, 0.016784383773803712, 0.016827392578125, 0.016879615783691407, 0.01670867156982422, 0.01733932876586914, 0.01680793571472168, 0.01677414321899414, 0.016729087829589845, 0.016703487396240235, 0.016753664016723634, 0.016742399215698242, 0.01681100845336914, 0.01680486488342285, 0.016742399215698242, 0.017876991271972655, 0.017705984115600586, 0.017125375747680666, 0.016781312942504883, 0.0167956485748291, 0.016955392837524414, 0.01680281639099121, 0.016741376876831054, 0.016845823287963867, 0.01765888023376465, 0.017520639419555666, 0.017494016647338868, 0.017333248138427734, 0.01734758377075195, 0.01744588851928711, 0.016930816650390625, 0.01677926445007324, 0.01683660888671875, 0.03493273544311523, 0.016877567291259766, 0.016845823287963867, 0.016837631225585938, 0.0167956485748291, 0.01678233528137207, 0.01701068878173828, 0.018579456329345705, 0.017508352279663086, 0.01745305633544922, 0.017385471343994142, 0.017447935104370118, 0.017209344863891602, 0.01686835289001465, 0.016921600341796874, 0.016829439163208008, 0.01679871940612793, 0.017161216735839844, 0.017475584030151366, 0.017442815780639647, 0.016941055297851563, 0.016772096633911132, 0.016741376876831054, 0.017126399993896483, 0.01683251190185547, 0.016769023895263673, 0.0167587833404541, 0.016749568939208984, 0.01679871940612793, 0.016845823287963867, 0.01680281639099121, 0.016793600082397463, 0.016722944259643553, 0.01680691146850586, 0.016722944259643553, 0.016822303771972656, 0.016772096633911132, 0.016756704330444336, 0.016680959701538087, 0.0167956485748291, 0.016973823547363282, 0.01684787178039551, 0.0165928955078125, 0.016727039337158203, 0.016833536148071288, 0.016866304397583007, 0.016881664276123046, 0.01721651268005371, 0.016885759353637696, 0.016885759353637696, 0.016877567291259766, 0.01679974365234375, 0.01678643226623535, 0.016821247100830078, 0.01676288032531738, 0.01681510353088379, 0.016925695419311524, 0.016898080825805663, 0.01683247947692871, 0.016909311294555664, 0.017939456939697264, 0.017320959091186524, 0.017529855728149413, 0.035783679962158206, 0.017524736404418945, 0.017922048568725587, 0.017533952713012696, 0.017596416473388672, 0.017516544342041016, 0.01758415985107422, 0.017504224777221678, 0.01761587142944336, 0.01772035217285156, 0.01703318405151367, 0.01683967971801758, 0.017302528381347656, 0.017532928466796875, 0.017551359176635743, 0.017521663665771483, 0.0174335994720459, 0.017333248138427734, 0.017681407928466796, 0.01702809524536133, 0.016926719665527345, 0.016827392578125, 0.016739328384399413, 0.01679667282104492, 0.01683967971801758, 0.016821247100830078, 0.016755712509155272, 0.01680588722229004, 0.016742399215698242, 0.01681100845336914, 0.01683865547180176, 0.01679462432861328, 0.01680691146850586, 0.01680588722229004, 0.017383424758911133, 0.01756876754760742, 0.017504255294799806, 0.017168384552001953, 0.017187839508056642, 0.01743155288696289, 0.017506303787231444, 0.017521696090698244, 0.01765782356262207, 0.01742540740966797, 0.01803878402709961, 0.01743974494934082, 0.017356800079345702, 0.01720217514038086, 0.0174202880859375, 0.017399808883666993, 0.01712950325012207, 0.017301471710205078, 0.01706598472595215, 0.016917503356933594, 0.016837631225585938, 0.01700454330444336, 0.01720319938659668, 0.016863231658935548, 0.017084415435791016, 0.016883712768554687, 0.016911359786987306, 0.016948223114013672, 0.016947200775146484, 0.03465932846069336, 0.016855039596557618, 0.016886783599853517, 0.01677926445007324, 0.016875520706176757, 0.017054719924926756, 0.018347007751464844, 0.017502208709716797, 0.016885759353637696, 0.01677827262878418, 0.01684169578552246, 0.01680281639099121, 0.016855039596557618, 0.016882688522338866, 0.016919551849365236, 0.016873472213745116, 0.016904191970825197, 0.01702400016784668, 0.01683456039428711, 0.0168089599609375, 0.01681817626953125, 0.01678950309753418, 0.016825344085693358, 0.0168724479675293, 0.01741926383972168, 0.01754521560668945, 0.01702911949157715, 0.01677107238769531, 0.01682841682434082, 0.016863231658935548, 0.016890880584716796, 0.01681100845336914, 0.01683456039428711, 0.016755712509155272, 0.01681510353088379, 0.01676697540283203, 0.01680076789855957, 0.01677824020385742, 0.016638975143432617, 0.016635904312133788, 0.01660518455505371, 0.01659187126159668, 0.016564224243164064, 0.01677107238769531, 0.016738304138183592, 0.01681407928466797, 0.016753664016723634, 0.016854015350341797, 0.016908287048339844, 0.016905216217041014, 0.016857088088989256, 0.016907264709472656, 0.016872512817382813, 0.01691846466064453, 0.016712703704833985, 0.016891904830932617, 0.01698406410217285, 0.017449983596801756, 0.016718847274780273, 0.0166297607421875, 0.017092607498168946, 0.017095680236816405, 0.017131519317626954, 0.03580416107177734, 0.01741823959350586, 0.017531904220581054, 0.017286144256591796, 0.016875520706176757, 0.016792575836181642, 0.01678745651245117, 0.01683251190185547, 0.016887807846069337, 0.016873472213745116, 0.01686425590515137, 0.016894975662231446, 0.016882688522338866, 0.016870399475097657, 0.016746496200561522, 0.01676595115661621, 0.016723968505859374, 0.01664204788208008, 0.016663551330566406, 0.016582656860351562, 0.01677107238769531, 0.016749568939208984, 0.01679871940612793, 0.01680281639099121, 0.016901151657104492, 0.016837600708007813, 0.0168407039642334, 0.016712703704833985, 0.016760831832885743, 0.01677516746520996, 0.016748544692993163, 0.016825344085693358, 0.01679667282104492, 0.01682329559326172, 0.01675775909423828, 0.01678950309753418, 0.01677926445007324, 0.0168407039642334, 0.0173885440826416, 0.016639999389648438, 0.017270784378051757, 0.01745408058166504, 0.01702707290649414, 0.016867328643798828, 0.01680281639099121, 0.01678643226623535, 0.01683865547180176, 0.01683660888671875, 0.01681305694580078, 0.01685196876525879, 0.01686425590515137, 0.016905216217041014, 0.016862207412719727, 0.01678745651245117, 0.016662527084350585, 0.01660825538635254, 0.016852991104125976, 0.016821247100830078, 0.01678950309753418, 0.016772096633911132, 0.016773120880126953, 0.017385471343994142, 0.016871423721313478, 0.03479449462890625, 0.016877567291259766, 0.016845823287963867, 0.01698918342590332, 0.018563072204589845, 0.018008064270019532, 0.017552383422851564, 0.017528831481933595, 0.017434623718261717, 0.017492992401123047, 0.017391616821289063, 0.016911359786987306, 0.0168089599609375, 0.016854047775268555, 0.016837600708007813, 0.016928768157958983, 0.016761856079101564, 0.01681203269958496, 0.0168407039642334, 0.017082368850708008, 0.016893951416015626, 0.01683865547180176, 0.01681612777709961, 0.017269760131835937, 0.017571840286254883, 0.017605632781982423, 0.017517568588256836, 0.017464319229125978, 0.01724723243713379, 0.01680179214477539, 0.016780288696289062, 0.01679052734375, 0.017031167984008787, 0.017063936233520507, 0.01683558464050293, 0.016869375228881836, 0.016865280151367186, 0.016833536148071288, 0.017081344604492187, 0.01686016082763672, 0.016842752456665038, 0.017504255294799806, 0.017483776092529296, 0.017307647705078123, 0.01740595245361328, 0.01787596893310547, 0.017582080841064454, 0.017482751846313475, 0.016935935974121095, 0.016882688522338866, 0.016845823287963867, 0.0168724479675293, 0.01681715202331543, 0.016829439163208008, 0.01680793571472168, 0.016883712768554687, 0.01684787178039551, 0.01682841682434082, 0.01678233528137207, 0.01678745651245117, 0.01681510353088379, 0.016867328643798828, 0.01681612777709961, 0.03634995269775391, 0.017678335189819337, 0.01745305633544922, 0.01757900810241699, 0.01740287971496582, 0.01696767997741699, 0.01686425590515137, 0.016873472213745116, 0.01681203269958496, 0.016969728469848632, 0.01683558464050293, 0.01681100845336914, 0.01684889602661133, 0.01699942398071289, 0.016881664276123046, 0.017523712158203125, 0.017688575744628905, 0.01743052864074707, 0.01702604866027832, 0.01676697540283203, 0.016785408020019533, 0.01679871940612793, 0.016767999649047852, 0.01678643226623535, 0.016793600082397463, 0.016772096633911132, 0.016752639770507814, 0.01679871940612793, 0.016849920272827147, 0.0167956485748291, 0.01680793571472168, 0.01679462432861328, 0.016788480758666992, 0.01682636833190918, 0.016620576858520506, 0.01664201545715332, 0.016541696548461913, 0.01660620880126953, 0.01659699249267578, 0.016553983688354493, 0.016726015090942382, 0.01682022476196289, 0.016731136322021483, 0.016721920013427736, 0.016743423461914063, 0.01677926445007324, 0.016788480758666992, 0.01682636833190918, 0.016746496200561522, 0.016876544952392578, 0.01685606384277344, 0.017342464447021484, 0.018585599899291993, 0.017912832260131836, 0.017761280059814453, 0.017554431915283202, 0.01761894416809082, 0.017217536926269532, 0.016668672561645507, 0.016897024154663084, 0.01738444709777832, 0.017338367462158204, 0.017370111465454103, 0.03539251327514648, 0.016876544952392578, 0.017663999557495116, 0.017537023544311522, 0.017534975051879884, 0.017489952087402345, 0.01749603271484375, 0.017464319229125978, 0.017743871688842772, 0.017655807495117186, 0.017180671691894533, 0.016876544952392578, 0.016903167724609376, 0.016885791778564453, 0.016744415283203126, 0.017467391967773437, 0.017570816040039062, 0.017704959869384765, 0.017072128295898437, 0.016825344085693358, 0.016929792404174804, 0.01744895935058594, 0.017524736404418945, 0.017520639419555666, 0.017458175659179686, 0.017447935104370118, 0.01744076728820801, 0.017460224151611328, 0.017291263580322267, 0.01724415969848633, 0.01681817626953125, 0.016566272735595702, 0.016907264709472656, 0.01762611198425293, 0.01757798385620117, 0.01747865676879883, 0.0174653434753418, 0.017352703094482422, 0.017552383422851564, 0.017476608276367187, 0.017583103179931642, 0.017557504653930665, 0.017567743301391603, 0.01742848014831543, 0.017554431915283202, 0.01745715141296387, 0.017464319229125978, 0.017435647964477538, 0.017383424758911133, 0.01677004814147949, 0.01717350387573242, 0.01722163200378418, 0.017273855209350587, 0.017217536926269532, 0.01686016082763672, 0.017150976181030272, 0.01758720016479492, 0.017476608276367187, 0.01745510482788086, 0.01721036720275879, 0.01666662406921387, 0.016963584899902344, 0.01720012855529785, 0.03548262405395508, 0.016893951416015626, 0.017361919403076173, 0.017487871170043946, 0.016788480758666992, 0.016672767639160157, 0.01684377670288086, 0.01679462432861328, 0.016883712768554687, 0.017301504135131835, 0.017128448486328125, 0.016857088088989256, 0.01679871940612793, 0.01764659118652344, 0.017615936279296876, 0.017562559127807617, 0.017510400772094727, 0.017022975921630858, 0.01685606384277344, 0.016910335540771485, 0.0174653434753418, 0.017408000946044923, 0.01719808006286621, 0.01721651268005371, 0.01722777557373047, 0.01698508834838867, 0.017738752365112305, 0.01719808006286621, 0.016927743911743166, 0.016893951416015626, 0.01681920051574707, 0.01686425590515137, 0.017348608016967772, 0.01757900810241699, 0.017496063232421876, 0.017507328033447265, 0.0174704647064209, 0.017138687133789063, 0.01746227264404297, 0.017505279541015627, 0.01741721534729004, 0.017737728118896484, 0.017764352798461915, 0.017746944427490235, 0.018143232345581056, 0.017331199645996095, 0.016846847534179688, 0.01680384063720703, 0.01679155158996582, 0.01681612777709961, 0.01681715202331543, 0.01684377670288086, 0.01679462432861328, 0.01679769515991211, 0.01679769515991211, 0.016767999649047852, 0.01686016082763672, 0.01681100845336914, 0.017131519317626954, 0.01700249671936035, 0.01682022476196289, 0.016827392578125, 0.01680998420715332]",tokens/s,57.51513715498906,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-72B,Qwen/Qwen1.5-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-410m,EleutherAI/pythia-410m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -17266,29 +17808,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,M,M,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,/,/,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -17296,46 +17831,6 @@ torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GP File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/M/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948fc3-59bca28f3b130fdb7f28ad70;6ca362e5-613d-43e9-89fb-90090ff76b41) - -Repository Not Found for url: https://huggingface.co/M/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run @@ -17352,13 +17847,12 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 373, in cached_file raise EnvironmentError( -OSError: M is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` +OSError: / does not appear to have a file named config.json. Checkout 'https://huggingface.co///tree/None' for available files. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-7b,google/gemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-13b,facebook/opt-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -17366,31 +17860,163 @@ If this is a private repository, make sure to pass a token having permission to File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/gemma-7b/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.4b,EleutherAI/pythia-1.4b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-1_6b,stabilityai/stablelm-2-1_6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-rw-1b,tiiuae/falcon-rw-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code + answer = input( +EOFError: EOF when reading a line + +During handling of the above exception, another exception occurred: + +Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights + self.create_no_weights_model() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model + meta_model = self.automodel_class.from_config(self.pretrained_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config + trust_remote_code = resolve_trust_remote_code( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code + raise ValueError( +ValueError: The repository for tiiuae/falcon-rw-1b contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/tiiuae/falcon-rw-1b. +Please pass the argument `trust_remote_code=True` to allow custom code to be run. + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-2b,google/gemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/gemma-2b/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-6694816c-6ff1b14d48c00850208281c1;3413ef81-8cc1-4aa5-9667-1b9ab447b385) +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66948123-12ddcba264ebf794745fb4e4;bd785dea-81ac-4dc7-8166-5244943f2562) 403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/google/gemma-7b/resolve/main/config.json. +Cannot access content at: https://huggingface.co/google/gemma-2b/resolve/main/config.json. If you are trying to create or update content,make sure you have a token with the `write` role. The above exception was the direct cause of the following exception: @@ -17429,11 +18055,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/gemma-7b is not the path to a directory containing a file named config.json. +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/gemma-2b is not the path to a directory containing a file named config.json. Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-2.7b,EleutherAI/pythia-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-7b,tiiuae/falcon-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -17441,60 +18067,32 @@ Checkout your internet connection or see how to run the library in offline mode File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code + answer = input( +EOFError: EOF when reading a line + +During handling of the above exception, another exception occurred: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward - outputs = self.gpt_neox( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward - outputs = layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward - attention_layer_outputs = self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 545, in forward - query, key, value, present = self._attn_projections_and_rope( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope - qkv = self.query_key_value(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights + self.create_no_weights_model() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model + meta_model = self.automodel_class.from_config(self.pretrained_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config + trust_remote_code = resolve_trust_remote_code( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code + raise ValueError( +ValueError: The repository for tiiuae/falcon-7b contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/tiiuae/falcon-7b. +Please pass the argument `trust_remote_code=True` to allow custom code to be run. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-7B,Qwen/Qwen1.5-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-12b,EleutherAI/pythia-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -17504,56 +18102,32 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1221, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1023, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 763, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 650, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,-,-,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-180B,tiiuae/falcon-180B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -17561,13 +18135,47 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status + raise HfHubHTTPError(message, response=response) from e +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66949939-3096e9a55b8312ce20cef7c4;4e145226-4519-4501-b294-75923264eb8d) + +403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. +Cannot access content at: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json. +If you are trying to create or update content,make sure you have a token with the `write` role. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 106, in _inner_fn - validate_repo_id(arg_value) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 160, in validate_repo_id - raise HFValidationError( -huggingface_hub.errors.HFValidationError: Repo id must use alphanumeric chars or '-', '_', '.', '--' and '..' are forbidden, '-' and '.' cannot start or end the name, max length is 96: '-'. + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error + raise LocalEntryNotFoundError( +huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. The above exception was the direct cause of the following exception: @@ -17588,12 +18196,13 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 466, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file raise EnvironmentError( -OSError: Incorrect path_or_model_id: '-'. Please provide either the path to a local folder or the repo_id of a model on the Hub. +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like tiiuae/falcon-180B is not the path to a directory containing a file named config.json. +Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-125m,facebook/opt-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,TencentARC/Mistral_Pro_8B_v0.1,TencentARC/Mistral_Pro_8B_v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -17613,16 +18222,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-6.7b,EleutherAI/pythia-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,m,m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -17630,60 +18245,69 @@ ValueError: OPTForCausalLM does not support an attention implementation through File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/m/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948c59-0a9f5388510a358f7b3585c7;588c1abf-eccc-43d0-ae22-69da7dabd488) + +Repository Not Found for url: https://huggingface.co/m/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward - outputs = self.gpt_neox( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward - outputs = layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward - attention_layer_outputs = self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 545, in forward - query, key, value, present = self._attn_projections_and_rope( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope - qkv = self.query_key_value(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + raise EnvironmentError( +OSError: m is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-14B,Qwen/Qwen-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-72B,Qwen/Qwen1.5-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -17701,18 +18325,31 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained - model_class = get_class_from_dynamic_module( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module - final_module = get_cached_module_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file - modules_needed = check_imports(resolved_module_file) - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports - raise ImportError( -ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-12b,stabilityai/stablelm-2-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-70b-hf,meta-llama/Llama-2-70b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -17722,56 +18359,39 @@ ImportError: This modeling file requires the following packages that were not fo ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 1268, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 1062, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 792, in forward - self_attn_output, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 441, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 112.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-30b,huggyllama/llama-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-13b-hf,meta-llama/Llama-2-13b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -17781,56 +18401,32 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 614, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-7b,stabilityai/stablelm-base-alpha-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -17850,16 +18446,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: GPTNeoForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-8B,meta-llama/Meta-Llama-3-8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-72B,Qwen/Qwen-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -17867,58 +18469,32 @@ ValueError: GPTNeoForCausalLM does not support an attention implementation throu File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code + answer = input( +EOFError: EOF when reading a line + +During handling of the above exception, another exception occurred: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 614, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights + self.create_no_weights_model() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model + meta_model = self.automodel_class.from_config(self.pretrained_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config + trust_remote_code = resolve_trust_remote_code( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code + raise ValueError( +ValueError: The repository for Qwen/Qwen-72B contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/Qwen/Qwen-72B. +Please pass the argument `trust_remote_code=True` to allow custom code to be run. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,x,x,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,0,0,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -17930,7 +18506,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/x/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/0/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -17957,9 +18533,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669492c7-4cbb4c04048d833714ff54fd;c39c59af-d66a-4757-8f72-a5dde1a8815d) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669494f9-3448c0fa69d6c72831ab4d47;7a87d3d3-884b-45de-b104-74a2f51fe37a) -Repository Not Found for url: https://huggingface.co/x/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/0/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -17984,11 +18560,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: x is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: 0 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,i,i,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-7b,google/gemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -18000,7 +18576,82 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/i/resolve/main/config.json +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/gemma-7b/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status + raise HfHubHTTPError(message, response=response) from e +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66948181-6f9c36c47c1df2f34dc9a2d1;3d7672f1-94f8-4971-9c08-c3dc2a9e9ce6) + +403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. +Cannot access content at: https://huggingface.co/google/gemma-7b/resolve/main/config.json. +If you are trying to create or update content,make sure you have a token with the `write` role. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error + raise LocalEntryNotFoundError( +huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file + raise EnvironmentError( +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/gemma-7b is not the path to a directory containing a file named config.json. +Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,x,x,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/x/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -18027,9 +18678,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949019-36803f161ef2193064e775cd;9ffb7bff-aa8e-4217-ae14-7197afb3fb12) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669492d5-4c63eff13ee60a906843596b;f6e40f1f-80fc-4fae-bd4e-a4385b8b20e2) -Repository Not Found for url: https://huggingface.co/i/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/x/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -18054,11 +18705,44 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: i is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: x is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-72B,Qwen/Qwen-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm2-20b,internlm/internlm2-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code + answer = input( +EOFError: EOF when reading a line + +During handling of the above exception, another exception occurred: + +Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights + self.create_no_weights_model() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model + meta_model = self.automodel_class.from_config(self.pretrained_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config + trust_remote_code = resolve_trust_remote_code( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code + raise ValueError( +ValueError: The repository for internlm/internlm2-20b contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/internlm/internlm2-20b. +Please pass the argument `trust_remote_code=True` to allow custom code to be run. + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -18076,18 +18760,24 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained - model_class = get_class_from_dynamic_module( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module - final_module = get_cached_module_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file - modules_needed = check_imports(resolved_module_file) - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports - raise ImportError( -ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.4b,EleutherAI/pythia-1.4b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-6.7b,facebook/opt-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -18097,58 +18787,26 @@ ImportError: This modeling file requires the following packages that were not fo ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward - outputs = self.gpt_neox( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward - outputs = layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward - attention_layer_outputs = self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 545, in forward - query, key, value, present = self._attn_projections_and_rope( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope - qkv = self.query_key_value(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-3B-v1,togethercomputer/RedPajama-INCITE-Base-3B-v1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-14B,Qwen/Qwen2-beta-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -18158,117 +18816,32 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward - outputs = self.gpt_neox( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward - outputs = layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward - attention_layer_outputs = self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 545, in forward - query, key, value, present = self._attn_projections_and_rope( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope - qkv = self.query_key_value(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-0.5B,Qwen/Qwen1.5-0.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1221, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1023, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 763, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 650, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-7B,Qwen/Qwen-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-110B,Qwen/Qwen1.5-110B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -18286,18 +18859,31 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained - model_class = get_class_from_dynamic_module( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module - final_module = get_cached_module_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file - modules_needed = check_imports(resolved_module_file) - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports - raise ImportError( -ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 32.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-14B,Qwen/Qwen2-beta-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-564M,facebook/xglm-564M,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -18307,56 +18893,26 @@ ImportError: This modeling file requires the following packages that were not fo ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1221, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1023, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 763, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 650, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: XGLMForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-7b,google/recurrentgemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,t,t,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -18368,7 +18924,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/google/recurrentgemma-7b/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/t/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -18395,9 +18951,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948248-18d2409c7f4a20813d8e82a7;bc8c46ef-4899-4a2d-a8b2-cab0dd019f37) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669490d4-561b28403b9cb6f97c1f4a99;6be8f682-7bbe-4217-ab1f-18d9dcb77923) -Repository Not Found for url: https://huggingface.co/google/recurrentgemma-7b/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/t/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -18422,11 +18978,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: google/recurrentgemma-7b is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: t is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-rw-1b,tiiuae/falcon-rw-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neox-20b,EleutherAI/gpt-neox-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -18444,18 +19000,24 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: FalconForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-70B,meta-llama/Meta-Llama-3-70B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -18475,29 +19037,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-65b,huggyllama/llama-65b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-72B,Qwen/Qwen2-beta-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -18536,10 +19091,314 @@ ChildProcessError: Traceback (most recent call last): self._buffers[key] = fn(buf) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 86.00 MiB. GPU +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-7B,Qwen/Qwen1.5-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-32B,Qwen/Qwen1.5-32B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-40b,tiiuae/falcon-40b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code + answer = input( +EOFError: EOF when reading a line + +During handling of the above exception, another exception occurred: + +Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights + self.create_no_weights_model() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model + meta_model = self.automodel_class.from_config(self.pretrained_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config + trust_remote_code = resolve_trust_remote_code( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code + raise ValueError( +ValueError: The repository for tiiuae/falcon-40b contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/tiiuae/falcon-40b. +Please pass the argument `trust_remote_code=True` to allow custom code to be run. + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-160m,EleutherAI/pythia-160m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.3b,EleutherAI/pythia-1.3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-1.8B,Qwen/Qwen1.5-1.8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-6B-nl,Salesforce/codegen-6B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: CodeGenForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2,openai-community/gpt2,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.42.3,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,1228.386304,1002.962944,0.0,356.51584,319.013888,s,25,0.17499311971664427,0.006999724788665772,0.0002502547192134345,0.006900447845458985,0.007165145587921143,0.007245798397064208,0.007853303222656248,"[0.008038944244384765, 0.006923200130462647, 0.006900447845458985, 0.006933184146881104, 0.006880576133728027, 0.006815231800079345, 0.006844160079956055, 0.006788415908813477, 0.0067693119049072265, 0.006920479774475098, 0.006882304191589355, 0.0071567678451538086, 0.006879392147064209, 0.007167232036590576, 0.006890048027038574, 0.0068763837814331055, 0.007155519962310791, 0.007082911968231201, 0.0070314879417419434, 0.007011424064636231, 0.0068913278579711915, 0.007162015914916992, 0.006900288105010986, 0.006826623916625977, 0.007265439987182617]",tokens/s,36572.86646676812,kWh,8.150109774308188e-08,4.46547292366166e-08,1.7293998509524707e-07,2.9909581207494555e-07,tokens/kWh,855913020.7274622,MB,1228.386304,1002.962944,0.0,356.51584,319.016448,s,25,10.13888803100586,0.40555552124023436,0.006311312712275679,0.4059725341796875,0.41398695068359376,0.41548115234375,0.41856573608398434,"[0.41943405151367186, 0.4079971618652344, 0.39821878051757814, 0.39863568115234377, 0.39658810424804686, 0.39883779907226563, 0.39907968139648436, 0.39881124877929686, 0.41027752685546875, 0.3991168212890625, 0.39967874145507815, 0.4059725341796875, 0.4137551574707031, 0.4085873718261719, 0.39897418212890623, 0.4062608947753906, 0.40200985717773435, 0.40696990966796875, 0.41320684814453124, 0.4053135986328125, 0.40550439453125, 0.4070886535644531, 0.4086114807128906, 0.4141414794921875, 0.4158160705566406]",tokens/s,155.3424788974366,kWh,4.94671478769522e-06,2.710110287520569e-06,8.266001951238741e-06,1.5922827026454533e-05,tokens/kWh,3956583.833720634,,s,1574,10.298755065441126,0.006543046420229436,0.0009065478681006509,0.006355999946594238,0.0066198528289794925,0.006672076821327209,0.013541457796096801,"[0.007553023815155029, 0.007541759967803955, 0.007498752117156982, 0.007409664154052734, 0.007941120147705078, 0.0069253120422363285, 0.006652927875518798, 0.00662937593460083, 0.006646783828735352, 0.006633471965789795, 0.006604800224304199, 0.0067983360290527345, 0.006624256134033203, 0.006653952121734619, 0.006639616012573242, 0.0066406397819519045, 0.006626304149627686, 0.006649856090545654, 0.006614016056060791, 0.006621183872222901, 0.006628352165222168, 0.006662144184112549, 0.006616064071655273, 0.006665215969085693, 0.006718463897705078, 0.00659660816192627, 0.006651904106140137, 0.006834176063537598, 0.006624256134033203, 0.006623231887817383, 0.006614016056060791, 0.006594560146331787, 0.006635519981384277, 0.006584320068359375, 0.006608895778656006, 0.006612991809844971, 0.0066304001808166506, 0.006595583915710449, 0.0066078720092773435, 0.006628352165222168, 0.006616064071655273, 0.0066119680404663084, 0.006525951862335205, 0.006498303890228272, 0.006526976108551025, 0.006487040042877197, 0.006495232105255127, 0.006487040042877197, 0.006569983959197998, 0.006379519939422608, 0.006252543926239014, 0.006254591941833496, 0.006284287929534912, 0.00632422399520874, 0.006354944229125976, 0.0063211522102355954, 0.006364160060882569, 0.006338560104370118, 0.0063201279640197755, 0.006326272010803223, 0.006315008163452148, 0.006311935901641846, 0.013566975593566894, 0.006316031932830811, 0.006298624038696289, 0.0063201279640197755, 0.006344704151153564, 0.006319104194641113, 0.006331391811370849, 0.006323200225830078, 0.006335487842559814, 0.006322175979614258, 0.006358016014099121, 0.006372352123260498, 0.006303743839263916, 0.006379519939422608, 0.006315008163452148, 0.00636518383026123, 0.006347775936126709, 0.00662937593460083, 0.007802879810333252, 0.007903232097625732, 0.007887872219085693, 0.007824384212493896, 0.006624256134033203, 0.006551551818847656, 0.006576128005981445, 0.006462463855743408, 0.006359039783477783, 0.006407167911529541, 0.006405119895935059, 0.00643071985244751, 0.0064204797744750975, 0.006385663986206055, 0.006385663986206055, 0.006342656135559082, 0.006355967998504639, 0.006334464073181153, 0.006367231845855713, 0.006338560104370118, 0.006322175979614258, 0.006336512088775635, 0.006360064029693604, 0.0063272957801818845, 0.00633241605758667, 0.006339583873748779, 0.006359039783477783, 0.006326272010803223, 0.0064542717933654785, 0.006344704151153564, 0.006348800182342529, 0.006339583873748779, 0.006306816101074219, 0.006323200225830078, 0.006344704151153564, 0.006472703933715821, 0.006535168170928955, 0.006359039783477783, 0.006425600051879882, 0.006412288188934326, 0.006355967998504639, 0.006393856048583985, 0.006352896213531494, 0.0063836159706115725, 0.006378496170043945, 0.01365503978729248, 0.006351871967315674, 0.006328320026397705, 0.006339583873748779, 0.0063211522102355954, 0.006352896213531494, 0.006337535858154297, 0.006345727920532227, 0.006335487842559814, 0.006315008163452148, 0.006355967998504639, 0.0063508801460266115, 0.00633135986328125, 0.006347775936126709, 0.006371327877044678, 0.006358016014099121, 0.006330368041992188, 0.006339583873748779, 0.00633241605758667, 0.006341631889343262, 0.006363135814666748, 0.006351871967315674, 0.00637440013885498, 0.00643071985244751, 0.006362112045288086, 0.006343679904937744, 0.006339583873748779, 0.006322175979614258, 0.0062975997924804685, 0.00626585578918457, 0.006291456222534179, 0.006246399879455566, 0.006270976066589356, 0.006244351863861084, 0.006285312175750732, 0.006254591941833496, 0.006260735988616943, 0.006264832019805908, 0.006291456222534179, 0.006273024082183838, 0.006239232063293457, 0.00628223991394043, 0.006227968215942382, 0.006294528007507324, 0.0062740478515625, 0.006308864116668702, 0.006285312175750732, 0.006392831802368164, 0.006340608119964599, 0.006330368041992188, 0.006354944229125976, 0.006335487842559814, 0.006323200225830078, 0.006337535858154297, 0.006237184047698975, 0.00626585578918457, 0.006254591941833496, 0.006262784004211426, 0.006262784004211426, 0.006273024082183838, 0.006322175979614258, 0.006329343795776367, 0.0063498239517211915, 0.013574144363403321, 0.006351871967315674, 0.0063272957801818845, 0.006416384220123291, 0.006345727920532227, 0.006398975849151611, 0.006466559886932373, 0.006325247764587402, 0.006358016014099121, 0.006358016014099121, 0.006358016014099121, 0.006342656135559082, 0.006338560104370118, 0.006326272010803223, 0.006348800182342529, 0.006322175979614258, 0.006341631889343262, 0.0063170561790466305, 0.006346784114837647, 0.0063200960159301755, 0.006329343795776367, 0.006400000095367431, 0.006338560104370118, 0.0063569917678833006, 0.006446080207824707, 0.006358016014099121, 0.0063569917678833006, 0.006323200225830078, 0.006325247764587402, 0.006337535858154297, 0.006341631889343262, 0.006340608119964599, 0.00636518383026123, 0.006339583873748779, 0.006331391811370849, 0.0063498239517211915, 0.006315008163452148, 0.006341631889343262, 0.006371327877044678, 0.006300672054290772, 0.006342656135559082, 0.0063201279640197755, 0.006342656135559082, 0.006293504238128662, 0.006366208076477051, 0.006284287929534912, 0.006259712219238281, 0.0062740478515625, 0.006264832019805908, 0.006250495910644531, 0.006248447895050049, 0.006259712219238281, 0.0062679038047790524, 0.006238207817077636, 0.006242303848266601, 0.006231040000915527, 0.0062494721412658695, 0.006238207817077636, 0.006262784004211426, 0.00633241605758667, 0.0062576642036437985, 0.006259712219238281, 0.006255616188049316, 0.013544447898864746, 0.006300672054290772, 0.006345727920532227, 0.006344704151153564, 0.006329343795776367, 0.006352896213531494, 0.0063201279640197755, 0.006367231845855713, 0.006322175979614258, 0.006341631889343262, 0.006329343795776367, 0.00638976001739502, 0.006337535858154297, 0.006329343795776367, 0.006345727920532227, 0.0063498239517211915, 0.0063539199829101565, 0.006387712001800537, 0.006310912132263183, 0.006340608119964599, 0.006301695823669433, 0.0062576642036437985, 0.0062341117858886715, 0.006278143882751465, 0.006254591941833496, 0.006247424125671387, 0.0062975997924804685, 0.006230016231536865, 0.0062638077735900875, 0.006244351863861084, 0.0062679038047790524, 0.006277120113372803, 0.006237184047698975, 0.006244351863861084, 0.006210559844970703, 0.006259712219238281, 0.006266880035400391, 0.0063283839225769046, 0.006219711780548096, 0.006268928050994873, 0.0062566399574279785, 0.006260735988616943, 0.006245376110076905, 0.006250495910644531, 0.006285312175750732, 0.006333439826965332, 0.006364160060882569, 0.006348800182342529, 0.006300672054290772, 0.006351871967315674, 0.006240255832672119, 0.006242303848266601, 0.0062464637756347655, 0.006262720108032227, 0.006248447895050049, 0.0062228479385375976, 0.006261760234832763, 0.0063211522102355954, 0.0062576642036437985, 0.006209536075592041, 0.006245376110076905, 0.006276095867156982, 0.006243328094482422, 0.013425663948059082, 0.006345727920532227, 0.006366208076477051, 0.006371327877044678, 0.006328320026397705, 0.006311935901641846, 0.00632422399520874, 0.0063539199829101565, 0.006340608119964599, 0.006342656135559082, 0.006334464073181153, 0.006346752166748047, 0.006329343795776367, 0.006348800182342529, 0.006338560104370118, 0.006318079948425293, 0.006333439826965332, 0.006388735771179199, 0.0063272957801818845, 0.006350912094116211, 0.006325183868408203, 0.006355967998504639, 0.0063211522102355954, 0.006333439826965332, 0.006351871967315674, 0.006306816101074219, 0.006325247764587402, 0.006345727920532227, 0.0063805441856384275, 0.006335487842559814, 0.006355967998504639, 0.006302720069885254, 0.006245376110076905, 0.006280191898345947, 0.006252543926239014, 0.0063498239517211915, 0.006242303848266601, 0.006284287929534912, 0.006289408206939697, 0.006280191898345947, 0.006346752166748047, 0.0063498239517211915, 0.006347775936126709, 0.0063508481979370115, 0.006347775936126709, 0.006300672054290772, 0.0062197761535644535, 0.006250495910644531, 0.006247424125671387, 0.006277120113372803, 0.006301695823669433, 0.006284287929534912, 0.006262784004211426, 0.00626585578918457, 0.006363135814666748, 0.006362112045288086, 0.006379519939422608, 0.00636627197265625, 0.006358975887298584, 0.0064133119583129885, 0.006367231845855713, 0.006362112045288086, 0.00636518383026123, 0.013474847793579102, 0.006304736137390137, 0.006323232173919678, 0.006257631778717041, 0.00624128007888794, 0.006244351863861084, 0.006248447895050049, 0.006277120113372803, 0.006258687973022461, 0.006303743839263916, 0.0062740478515625, 0.0063272957801818845, 0.006352896213531494, 0.006315008163452148, 0.006352896213531494, 0.006358016014099121, 0.006330368041992188, 0.006330368041992188, 0.006344704151153564, 0.00636518383026123, 0.0063211522102355954, 0.006347775936126709, 0.0063294081687927245, 0.006420415878295898, 0.006358016014099121, 0.006328320026397705, 0.006343679904937744, 0.006364160060882569, 0.006335487842559814, 0.006344704151153564, 0.006355967998504639, 0.006371327877044678, 0.00636518383026123, 0.0063211522102355954, 0.006343679904937744, 0.006344704151153564, 0.0063201279640197755, 0.006239232063293457, 0.006293504238128662, 0.00632422399520874, 0.006340608119964599, 0.0063539199829101565, 0.006364160060882569, 0.006326272010803223, 0.006331391811370849, 0.006387712001800537, 0.006437888145446777, 0.00633241605758667, 0.006347775936126709, 0.006355967998504639, 0.006359039783477783, 0.006352896213531494, 0.006370304107666015, 0.006326272010803223, 0.006337535858154297, 0.006359072208404541, 0.006336480140686035, 0.0063272957801818845, 0.0063498239517211915, 0.006315040111541748, 0.0063200960159301755, 0.00628223991394043, 0.006285312175750732, 0.013402112007141113, 0.0063170561790466305, 0.006387712001800537, 0.00633241605758667, 0.006262784004211426, 0.00626585578918457, 0.006268928050994873, 0.00626585578918457, 0.006294528007507324, 0.006299647808074951, 0.006277120113372803, 0.006385663986206055, 0.006337567806243897, 0.006363103866577149, 0.006330431938171387, 0.006377439975738525, 0.006355936050415039, 0.006333439826965332, 0.006363135814666748, 0.006334496021270752, 0.006326240062713623, 0.0064542717933654785, 0.006329343795776367, 0.006344704151153564, 0.006341631889343262, 0.006333439826965332, 0.006271999835968017, 0.006259712219238281, 0.0062638077735900875, 0.006252543926239014, 0.006246399879455566, 0.0062576642036437985, 0.006258687973022461, 0.0062566399574279785, 0.006334464073181153, 0.0063498239517211915, 0.006312960147857666, 0.006330368041992188, 0.006300672054290772, 0.006333439826965332, 0.006349887847900391, 0.006418367862701416, 0.006323200225830078, 0.006313983917236328, 0.006328320026397705, 0.006315008163452148, 0.006339583873748779, 0.0063498239517211915, 0.006355967998504639, 0.0063539199829101565, 0.006322175979614258, 0.0063272957801818845, 0.006322175979614258, 0.006319104194641113, 0.006360064029693604, 0.006335487842559814, 0.006340608119964599, 0.0063201279640197755, 0.006338560104370118, 0.006394879817962646, 0.006402048110961914, 0.006336512088775635, 0.0063211522102355954, 0.013421567916870117, 0.006616064071655273, 0.006685696125030518, 0.006583295822143555, 0.006564864158630371, 0.0065771517753601075, 0.006532095909118653, 0.006549503803253174, 0.006567935943603515, 0.006543360233306885, 0.0065484800338745115, 0.00653004789352417, 0.006536191940307618, 0.006542335987091064, 0.0065710082054138185, 0.006550528049468994, 0.006557695865631104, 0.0066344962120056155, 0.00652185583114624, 0.006583295822143555, 0.006567935943603515, 0.006520832061767578, 0.006569983959197998, 0.006535168170928955, 0.006551551818847656, 0.0065474557876586915, 0.006527999877929688, 0.006554624080657959, 0.006463488101959228, 0.006458367824554443, 0.006569983959197998, 0.006790143966674805, 0.006398975849151611, 0.006395904064178467, 0.007122943878173828, 0.007017471790313721, 0.006656000137329102, 0.006595583915710449, 0.006564864158630371, 0.006590464115142822, 0.006599679946899414, 0.006574079990386963, 0.006592512130737305, 0.0067348480224609375, 0.006368256092071533, 0.006345727920532227, 0.006308864116668702, 0.006351871967315674, 0.006345727920532227, 0.006338560104370118, 0.006392831802368164, 0.0063498239517211915, 0.006330368041992188, 0.006302720069885254, 0.00633241605758667, 0.006333439826965332, 0.006315008163452148, 0.006326272010803223, 0.006310912132263183, 0.0063211522102355954, 0.006340672016143798, 0.00630675220489502, 0.006346752166748047, 0.013609984397888183, 0.006345727920532227, 0.006343679904937744, 0.0063272957801818845, 0.006323200225830078, 0.006330368041992188, 0.006333439826965332, 0.006354944229125976, 0.006346752166748047, 0.006335487842559814, 0.006337535858154297, 0.006348800182342529, 0.0063272957801818845, 0.006331391811370849, 0.006347775936126709, 0.006339583873748779, 0.006310912132263183, 0.006319104194641113, 0.006375423908233643, 0.006299647808074951, 0.006300735950469971, 0.006322112083435059, 0.006328320026397705, 0.006300672054290772, 0.006435840129852295, 0.006328320026397705, 0.006347775936126709, 0.006405119895935059, 0.006336512088775635, 0.006370304107666015, 0.0063508481979370115, 0.006328320026397705, 0.006347775936126709, 0.006347775936126709, 0.0063201279640197755, 0.006325247764587402, 0.0063170561790466305, 0.0063272957801818845, 0.006304768085479737, 0.006363135814666748, 0.006377471923828125, 0.006348800182342529, 0.006338592052459717, 0.006314976215362549, 0.006348800182342529, 0.0063170561790466305, 0.00628223991394043, 0.006262784004211426, 0.006254591941833496, 0.006262784004211426, 0.0062904319763183595, 0.0062904319763183595, 0.006266880035400391, 0.006288383960723877, 0.00630790376663208, 0.006268864154815674, 0.00628223991394043, 0.0062576642036437985, 0.006338560104370118, 0.0065218877792358396, 0.006366176128387451, 0.0063569917678833006, 0.006330368041992188, 0.013532159805297851, 0.006331391811370849, 0.006326272010803223, 0.006303743839263916, 0.006318079948425293, 0.006369279861450195, 0.006342656135559082, 0.006354944229125976, 0.006341631889343262, 0.0063569917678833006, 0.006308864116668702, 0.0063610877990722655, 0.006354944229125976, 0.006339583873748779, 0.006340608119964599, 0.00636518383026123, 0.006388735771179199, 0.0063508481979370115, 0.006334464073181153, 0.0063272957801818845, 0.006301695823669433, 0.006336512088775635, 0.006295551776885986, 0.006325247764587402, 0.0063272957801818845, 0.006309887886047363, 0.006323200225830078, 0.006300672054290772, 0.006334464073181153, 0.006348800182342529, 0.006479872226715088, 0.00636521577835083, 0.006327263832092285, 0.006336512088775635, 0.006636544227600098, 0.0063508481979370115, 0.006322175979614258, 0.006299647808074951, 0.0063498239517211915, 0.006301695823669433, 0.00633241605758667, 0.006334464073181153, 0.006330368041992188, 0.006387712001800537, 0.006308864116668702, 0.006339583873748779, 0.006313983917236328, 0.00632422399520874, 0.00633241605758667, 0.006369279861450195, 0.006307839870452881, 0.006307839870452881, 0.006362112045288086, 0.006336512088775635, 0.006307839870452881, 0.006328320026397705, 0.006291456222534179, 0.006311935901641846, 0.006340640068054199, 0.0062863039970397945, 0.006346752166748047, 0.006344704151153564, 0.006330368041992188, 0.01417625617980957, 0.006680575847625733, 0.007311359882354736, 0.00695091199874878, 0.0065710082054138185, 0.006619135856628418, 0.006626304149627686, 0.0066109437942504885, 0.006896639823913574, 0.007411712169647216, 0.00667852783203125, 0.006569983959197998, 0.006575104236602783, 0.006576128005981445, 0.006584320068359375, 0.006497280120849609, 0.006366208076477051, 0.006243328094482422, 0.006244351863861084, 0.006262784004211426, 0.00626585578918457, 0.006271999835968017, 0.006341631889343262, 0.006309887886047363, 0.006328320026397705, 0.0063272957801818845, 0.006322175979614258, 0.006492159843444824, 0.006329343795776367, 0.0063508481979370115, 0.0063170561790466305, 0.0063211522102355954, 0.006322175979614258, 0.006313983917236328, 0.006367231845855713, 0.00633241605758667, 0.006331391811370849, 0.006316031932830811, 0.006325247764587402, 0.006329343795776367, 0.006300672054290772, 0.006355967998504639, 0.006323200225830078, 0.006359039783477783, 0.0063610877990722655, 0.006348800182342529, 0.006340608119964599, 0.006331391811370849, 0.006360064029693604, 0.0063539199829101565, 0.006341631889343262, 0.0063272957801818845, 0.006293504238128662, 0.006461440086364746, 0.0063508481979370115, 0.006352896213531494, 0.0063272957801818845, 0.006330368041992188, 0.006352896213531494, 0.00638976001739502, 0.006411263942718506, 0.006364192008972168, 0.006347743988037109, 0.013545536041259765, 0.006293439865112304, 0.006326272010803223, 0.006346752166748047, 0.006339583873748779, 0.006386688232421875, 0.006369279861450195, 0.006340608119964599, 0.006345727920532227, 0.006348800182342529, 0.006553599834442139, 0.0074414081573486324, 0.007172095775604248, 0.008360960006713868, 0.007012351989746094, 0.0066938881874084475, 0.006558720111846924, 0.006568960189819336, 0.006591487884521485, 0.006663167953491211, 0.0065781760215759275, 0.006591519832611084, 0.006590432167053223, 0.006583295822143555, 0.006527999877929688, 0.006648831844329834, 0.00658841609954834, 0.006606847763061524, 0.006754303932189941, 0.006639616012573242, 0.006535168170928955, 0.006597631931304931, 0.006586368083953857, 0.00657919979095459, 0.00657203197479248, 0.006638591766357422, 0.006512639999389648, 0.006337535858154297, 0.0063272957801818845, 0.0063569917678833006, 0.0063539199829101565, 0.006335487842559814, 0.006384640216827392, 0.006345727920532227, 0.006359039783477783, 0.006347775936126709, 0.006338560104370118, 0.006344704151153564, 0.006316031932830811, 0.00638156795501709, 0.006494207859039307, 0.006662144184112549, 0.006584320068359375, 0.006542335987091064, 0.006576128005981445, 0.006589439868927002, 0.006760447978973389, 0.006642687797546387, 0.00658739185333252, 0.006532127857208252, 0.006598624229431152, 0.006594560146331787, 0.00657203197479248, 0.014103551864624024, 0.00659660816192627, 0.0065781760215759275, 0.006557695865631104, 0.006559743881225586, 0.00657919979095459, 0.00658739185333252, 0.006556672096252441, 0.006576128005981445, 0.006602752208709717, 0.00658841609954834, 0.006584320068359375, 0.0066007041931152345, 0.006558720111846924, 0.006586368083953857, 0.006576128005981445, 0.006555647850036621, 0.0065669121742248536, 0.006532095909118653, 0.006586368083953857, 0.006643712043762207, 0.0065710082054138185, 0.006590464115142822, 0.006565887928009034, 0.006562816143035889, 0.006546432018280029, 0.0065484800338745115, 0.006560768127441406, 0.006562816143035889, 0.006585343837738037, 0.0065710082054138185, 0.006556672096252441, 0.006556672096252441, 0.006586368083953857, 0.006822912216186523, 0.0065484800338745115, 0.006464511871337891, 0.00638976001739502, 0.006238207817077636, 0.006276095867156982, 0.0064245758056640625, 0.0063569917678833006, 0.00637337589263916, 0.006312960147857666, 0.006323200225830078, 0.006300672054290772, 0.006334464073181153, 0.006323200225830078, 0.006363135814666748, 0.006346752166748047, 0.006334464073181153, 0.006334464073181153, 0.006323200225830078, 0.0063508481979370115, 0.0063498239517211915, 0.006342656135559082, 0.006339583873748779, 0.006335487842559814, 0.006343679904937744, 0.006415359973907471, 0.0063610877990722655, 0.006379519939422608, 0.0063508481979370115, 0.013540351867675781, 0.006306816101074219, 0.006302720069885254, 0.006303743839263916, 0.006346752166748047, 0.006351871967315674, 0.006336512088775635, 0.006335487842559814, 0.006315040111541748, 0.0063835840225219724, 0.0063211522102355954, 0.0063539199829101565, 0.006347775936126709, 0.00632422399520874, 0.006372352123260498, 0.0063272957801818845, 0.006354944229125976, 0.006307839870452881, 0.006311935901641846, 0.006351871967315674, 0.0063272957801818845, 0.006333439826965332, 0.00632422399520874, 0.006336512088775635, 0.006343679904937744, 0.006391808032989502, 0.0064849920272827145, 0.0063272957801818845, 0.006334464073181153, 0.006308864116668702, 0.006337535858154297, 0.006375423908233643, 0.00632422399520874, 0.006312960147857666, 0.006348800182342529, 0.00633241605758667, 0.0063498239517211915, 0.006281216144561768, 0.006343679904937744, 0.0063201279640197755, 0.006323200225830078, 0.006322175979614258, 0.006307839870452881, 0.006308864116668702, 0.006297632217407227, 0.006309855937957764, 0.0062873601913452145, 0.006243328094482422, 0.006319104194641113, 0.006339583873748779, 0.006302720069885254, 0.006308864116668702, 0.00653004789352417, 0.006338560104370118, 0.006243328094482422, 0.006260735988616943, 0.006223872184753418, 0.0062740478515625, 0.0062873601913452145, 0.006325247764587402, 0.006342656135559082, 0.00633241605758667, 0.00633241605758667, 0.013538304328918458, 0.006305791854858398, 0.0063201279640197755, 0.006355967998504639, 0.0063272957801818845, 0.0071905279159545895, 0.006692863941192627, 0.006627327919006347, 0.006545407772064209, 0.006565887928009034, 0.0065669121742248536, 0.006585343837738037, 0.006595583915710449, 0.006563839912414551, 0.006583295822143555, 0.006498303890228272, 0.0066078720092773435, 0.006591487884521485, 0.006567935943603515, 0.006550528049468994, 0.006534143924713135, 0.0067010560035705566, 0.006738944053649902, 0.0066447358131408694, 0.006623231887817383, 0.0065484800338745115, 0.006585343837738037, 0.0066007041931152345, 0.0065669121742248536, 0.0063170561790466305, 0.006325247764587402, 0.006352896213531494, 0.0063508481979370115, 0.006322175979614258, 0.00633241605758667, 0.006326272010803223, 0.006341631889343262, 0.006310912132263183, 0.006316031932830811, 0.006348800182342529, 0.006289408206939697, 0.006318079948425293, 0.006301695823669433, 0.006330368041992188, 0.006312960147857666, 0.0063508481979370115, 0.006307839870452881, 0.006326335906982422, 0.006351808071136475, 0.006346752166748047, 0.006372384071350098, 0.006464479923248291, 0.0062975997924804685, 0.006333439826965332, 0.006339583873748779, 0.006326303958892822, 0.00633955192565918, 0.006329343795776367, 0.006329343795776367, 0.00638976001739502, 0.006347775936126709, 0.006343679904937744, 0.006351871967315674, 0.013858816146850587, 0.006318079948425293, 0.006269951820373535, 0.006247424125671387, 0.0062566399574279785, 0.006277120113372803, 0.0063201279640197755, 0.00633241605758667, 0.006351871967315674, 0.006341631889343262, 0.006334464073181153, 0.006367231845855713, 0.0063201279640197755, 0.006375423908233643, 0.006359039783477783, 0.006351871967315674, 0.006368256092071533, 0.006331391811370849, 0.006333439826965332, 0.006348800182342529, 0.006318079948425293, 0.006363135814666748, 0.006392831802368164, 0.006328320026397705, 0.006382656097412109, 0.006395840167999268, 0.0063508481979370115, 0.006355967998504639, 0.0063907837867736815, 0.0065382399559021, 0.006352896213531494, 0.006335487842559814, 0.006323200225830078, 0.006363135814666748, 0.0063201279640197755, 0.006360064029693604, 0.006364160060882569, 0.006319104194641113, 0.006338560104370118, 0.0063211522102355954, 0.006339583873748779, 0.0063610877990722655, 0.006337535858154297, 0.006345727920532227, 0.0063498239517211915, 0.006408192157745361, 0.006341631889343262, 0.0063498239517211915, 0.006362112045288086, 0.006359039783477783, 0.006348800182342529, 0.006322175979614258, 0.006319104194641113, 0.006351871967315674, 0.006311935901641846, 0.006342656135559082, 0.006316031932830811, 0.006887423992156983, 0.0067338237762451176, 0.006602752208709717, 0.006619135856628418, 0.006602752208709717, 0.006591487884521485, 0.01399500846862793, 0.006564864158630371, 0.00659660816192627, 0.006553599834442139, 0.00653926420211792, 0.006597631931304931, 0.0065781760215759275, 0.00653926420211792, 0.006567935943603515, 0.006497280120849609, 0.006352896213531494, 0.006359039783477783, 0.006344704151153564, 0.006344704151153564, 0.0063610877990722655, 0.0063539199829101565, 0.006341631889343262, 0.0063211522102355954, 0.006342656135559082, 0.006333439826965332, 0.006345727920532227, 0.006341631889343262, 0.00632422399520874, 0.006307839870452881, 0.006315008163452148, 0.006328320026397705, 0.006459392070770263, 0.006576128005981445, 0.006601727962493896, 0.0065484800338745115, 0.006592512130737305, 0.006593535900115967, 0.006565887928009034, 0.0066119680404663084, 0.006568960189819336, 0.006563839912414551, 0.006405119895935059, 0.006418432235717773, 0.006535168170928955, 0.006617087841033936, 0.006565887928009034, 0.006543360233306885, 0.006558720111846924, 0.006552639961242676, 0.0065985918045043945, 0.006584320068359375, 0.006687744140625, 0.006435840129852295, 0.006351871967315674, 0.0063272957801818845, 0.006329343795776367, 0.006331391811370849, 0.006339583873748779, 0.006336512088775635, 0.006336512088775635, 0.006397952079772949, 0.006358016014099121, 0.006367231845855713, 0.006323200225830078, 0.006620160102844238, 0.006355967998504639, 0.006335519790649414, 0.006356959819793701, 0.013624320030212403, 0.0063170561790466305, 0.00628223991394043, 0.0063201279640197755, 0.006336512088775635, 0.006379519939422608, 0.006331391811370849, 0.006304800033569336, 0.006493152141571045, 0.006665215969085693, 0.0066979842185974124, 0.006715392112731934, 0.006619135856628418, 0.006852608203887939, 0.007166975975036621, 0.006658048152923584, 0.006584320068359375, 0.006662144184112549, 0.00658739185333252, 0.006594560146331787, 0.006597631931304931, 0.006562816143035889, 0.0065484800338745115, 0.006445055961608887, 0.0063569917678833006, 0.006468607902526856, 0.006880256175994873, 0.006615039825439453, 0.006583295822143555, 0.006616064071655273, 0.006603775978088379, 0.006628352165222168, 0.006658048152923584, 0.006810624122619629, 0.006584320068359375, 0.006451200008392334, 0.006351871967315674, 0.006369344234466553, 0.006613952159881592, 0.006575104236602783, 0.0063508481979370115, 0.006345727920532227, 0.0064737281799316405, 0.0065812478065490725, 0.006590464115142822, 0.006584320068359375, 0.006568960189819336, 0.00658841609954834, 0.006594560146331787, 0.006601727962493896, 0.006545407772064209, 0.006574079990386963, 0.006575104236602783, 0.006573056221008301, 0.006582272052764892, 0.006558720111846924, 0.006612991809844971, 0.006558720111846924, 0.0065710082054138185, 0.006575104236602783, 0.006565887928009034, 0.006576128005981445, 0.006585343837738037, 0.013684736251831055, 0.006346752166748047, 0.006388735771179199, 0.006403071880340576, 0.006362112045288086, 0.0063272957801818845, 0.0064102401733398436, 0.006333439826965332, 0.006565887928009034, 0.006631423950195312, 0.006559743881225586, 0.006612991809844971, 0.00657203197479248, 0.006412288188934326, 0.006355967998504639, 0.006387712001800537, 0.00633241605758667, 0.006366208076477051, 0.006305823802947998, 0.0063794879913330075, 0.0063508481979370115, 0.006348800182342529, 0.0064225602149963375, 0.006326240062713623, 0.006553599834442139, 0.0065781760215759275, 0.0065146880149841305, 0.006550528049468994, 0.006556672096252441, 0.006688767910003662, 0.006586368083953857, 0.006553599834442139, 0.006549503803253174, 0.006561791896820069, 0.006567935943603515, 0.006459392070770263, 0.006468607902526856, 0.0064737281799316405, 0.00643993616104126, 0.006464511871337891, 0.0064471039772033695, 0.0064471039772033695, 0.006284287929534912, 0.006376448154449463, 0.00628326416015625, 0.0062904319763183595, 0.006239232063293457, 0.006311935901641846, 0.006388735771179199, 0.00626585578918457, 0.006298624038696289, 0.0062638077735900875, 0.006499328136444092, 0.006605823993682861, 0.006582335948944092, 0.006577087879180908, 0.006540319919586182, 0.00632316780090332, 0.006334464073181153, 0.006347775936126709, 0.0063211522102355954, 0.006299647808074951, 0.006298624038696289, 0.013540351867675781, 0.006284287929534912, 0.0063498239517211915, 0.006307839870452881, 0.006331391811370849, 0.006343679904937744, 0.006295551776885986, 0.006497280120849609, 0.006576128005981445, 0.006319104194641113, 0.006334464073181153, 0.006356031894683838, 0.006310848236083985, 0.00637443208694458, 0.006343647956848144, 0.0063569917678833006, 0.006362112045288086, 0.006288383960723877, 0.006318079948425293, 0.006367231845855713, 0.0063201279640197755, 0.006336512088775635, 0.006334464073181153, 0.006516736030578613, 0.0065177597999572755, 0.006330368041992188, 0.006339583873748779, 0.006331391811370849, 0.0063508481979370115, 0.006376448154449463, 0.006322175979614258, 0.006355967998504639, 0.006339583873748779, 0.0062873601913452145, 0.006277120113372803, 0.006306816101074219, 0.006441984176635742, 0.006354944229125976, 0.006400000095367431, 0.0064481601715087895, 0.006589407920837402, 0.006568960189819336, 0.006575104236602783, 0.006586368083953857, 0.00658841609954834, 0.0065669121742248536, 0.006593535900115967, 0.006583295822143555, 0.006557695865631104, 0.006591487884521485, 0.006527999877929688, 0.0065669121742248536, 0.006463488101959228, 0.006529024124145508, 0.006575104236602783, 0.006545407772064209, 0.0065382399559021, 0.00658022403717041, 0.006534143924713135, 0.006536191940307618, 0.006555647850036621, 0.00653926420211792, 0.00658022403717041, 0.01406668758392334, 0.006556672096252441, 0.006573056221008301, 0.006558720111846924, 0.006558720111846924, 0.006584320068359375, 0.006593535900115967, 0.006619135856628418, 0.006565919876098633, 0.006564864158630371, 0.006589407920837402, 0.0065443840026855465, 0.006532095909118653, 0.006386688232421875, 0.0063569917678833006, 0.006402048110961914, 0.006369279861450195, 0.006311935901641846, 0.006366208076477051, 0.006342656135559082, 0.006562816143035889, 0.006598656177520752, 0.006523903846740723, 0.006594560146331787, 0.006601727962493896, 0.006555647850036621, 0.006455296039581298, 0.006396927833557129, 0.006313983917236328, 0.006369279861450195, 0.006307839870452881, 0.006371327877044678, 0.0063836159706115725, 0.0065136637687683106, 0.0063836159706115725, 0.00638976001739502, 0.006556672096252441, 0.006590464115142822, 0.006540287971496582, 0.006481919765472412, 0.006435840129852295, 0.006292479991912842, 0.006289408206939697, 0.0062740478515625, 0.006262784004211426, 0.0062863359451293946, 0.0062679038047790524, 0.006250495910644531, 0.006398975849151611, 0.006347775936126709, 0.0065485119819641115, 0.006573023796081543, 0.006589439868927002, 0.006621183872222901, 0.006602752208709717, 0.006575104236602783, 0.006529024124145508, 0.0063610877990722655, 0.006348800182342529, 0.006418432235717773, 0.006340608119964599, 0.006368256092071533, 0.006372352123260498, 0.013567999839782715, 0.0064245758056640625, 0.006529024124145508, 0.006575104236602783, 0.006619135856628418, 0.006550528049468994, 0.006595583915710449, 0.006590464115142822, 0.006543360233306885, 0.006593535900115967, 0.006552576065063476, 0.006565887928009034, 0.006494207859039307, 0.006326303958892822, 0.00638153600692749, 0.006367231845855713, 0.006330368041992188, 0.006515711784362793, 0.006567935943603515, 0.006685696125030518, 0.006481919765472412, 0.006453248023986816, 0.006451200008392334, 0.006505472183227539, 0.006331391811370849, 0.006295551776885986, 0.006278143882751465, 0.0062638077735900875, 0.0062863359451293946, 0.006394879817962646, 0.00657919979095459, 0.00658841609954834, 0.006568960189819336, 0.006604800224304199, 0.00658739185333252, 0.0066109437942504885, 0.00658022403717041, 0.006546463966369629, 0.006536191940307618, 0.006556640148162842, 0.006592512130737305, 0.006557695865631104, 0.006593535900115967, 0.0065443840026855465, 0.006582272052764892, 0.006558720111846924, 0.0065382399559021, 0.006556672096252441, 0.006585343837738037, 0.006604832172393799, 0.006500319957733154, 0.006387712001800537, 0.006351935863494873, 0.006343616008758545, 0.006391808032989502, 0.006341631889343262, 0.006362112045288086, 0.006337535858154297, 0.006540287971496582, 0.006371327877044678, 0.006310912132263183, 0.006352896213531494, 0.006352896213531494, 0.01367347240447998, 0.006591487884521485, 0.0065484800338745115, 0.006677504062652588, 0.006626304149627686, 0.006788095951080322, 0.006605823993682861, 0.0065372161865234375, 0.006333439826965332, 0.006369279861450195, 0.006322175979614258, 0.00638156795501709, 0.006378496170043945, 0.006351871967315674, 0.00636518383026123, 0.006529024124145508, 0.0066119680404663084, 0.006621183872222901, 0.006585343837738037, 0.00656492805480957, 0.006626239776611328, 0.006565887928009034, 0.0065710082054138185, 0.00659660816192627, 0.0065669121742248536, 0.006598656177520752, 0.006589439868927002, 0.006546432018280029, 0.0066109437942504885, 0.006589439868927002, 0.006534143924713135, 0.006642687797546387, 0.0066007041931152345, 0.006549503803253174, 0.006639616012573242, 0.006569983959197998, 0.006773759841918945, 0.0066406397819519045, 0.0065771517753601075, 0.006616064071655273, 0.006615039825439453, 0.006546432018280029, 0.006608895778656006, 0.0066416640281677245, 0.006534175872802734, 0.006616032123565674, 0.0066375679969787596, 0.00658739185333252, 0.006638591766357422, 0.006621183872222901, 0.006582272052764892, 0.0066375679969787596, 0.0065812478065490725, 0.006542335987091064, 0.0065382399559021, 0.006474751949310303, 0.006479872226715088, 0.0065710082054138185, 0.00653004789352417, 0.006699007987976074, 0.006642687797546387, 0.006553599834442139, 0.0066406397819519045, 0.014166015625, 0.006624256134033203, 0.006648831844329834, 0.006559743881225586, 0.006635519981384277, 0.00667852783203125, 0.00657203197479248, 0.006632448196411133, 0.006670335769653321, 0.006561791896820069, 0.006660096168518067, 0.0066344962120056155, 0.006597631931304931, 0.006661119937896728, 0.006627327919006347, 0.006591487884521485, 0.006631423950195312, 0.006584320068359375, 0.0066007041931152345, 0.006633471965789795, 0.006520832061767578, 0.006591487884521485, 0.006525951862335205, 0.006432767868041992, 0.0065413122177124024, 0.00657203197479248, 0.006455296039581298, 0.006535168170928955, 0.006466559886932373, 0.0065781760215759275, 0.006616064071655273, 0.00652288007736206, 0.006623231887817383, 0.006817791938781738, 0.006590464115142822, 0.006673408031463623, 0.006645760059356689, 0.006555647850036621, 0.006639616012573242, 0.006662144184112549, 0.00658739185333252, 0.006666240215301514, 0.0066713600158691405, 0.006501376152038574, 0.006546432018280029, 0.006534143924713135, 0.006626304149627686, 0.006622208118438721, 0.00659660816192627, 0.006631423950195312, 0.006619135856628418, 0.006562816143035889, 0.006619135856628418, 0.0065382399559021, 0.0064287037849426265, 0.006519775867462158, 0.006512639999389648, 0.00657919979095459, 0.006752255916595459, 0.006648831844329834, 0.006575104236602783, 0.006623231887817383, 0.006612991809844971]",tokens/s,152.83400663462425,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-14B,Qwen/Qwen-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code + answer = input( +EOFError: EOF when reading a line + +During handling of the above exception, another exception occurred: + +Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights + self.create_no_weights_model() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model + meta_model = self.automodel_class.from_config(self.pretrained_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config + trust_remote_code = resolve_trust_remote_code( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code + raise ValueError( +ValueError: The repository for Qwen/Qwen-14B contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/Qwen/Qwen-14B. +Please pass the argument `trust_remote_code=True` to allow custom code to be run. + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-7B,Qwen/Qwen-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code + answer = input( +EOFError: EOF when reading a line + +During handling of the above exception, another exception occurred: + +Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights + self.create_no_weights_model() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model + meta_model = self.automodel_class.from_config(self.pretrained_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config + trust_remote_code = resolve_trust_remote_code( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code + raise ValueError( +ValueError: The repository for Qwen/Qwen-7B contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/Qwen/Qwen-7B. +Please pass the argument `trust_remote_code=True` to allow custom code to be run. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,l,l,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,v,v,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -18551,7 +19410,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/l/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/v/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -18578,9 +19437,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669491be-6be489d15777cf0d431fe6cc;22eeef10-eb0a-48d7-8393-55415d6f0ed8) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694949e-4f06a932749666442417e9eb;ea2fdd02-b854-44fe-87b5-e2dce99c9577) -Repository Not Found for url: https://huggingface.co/l/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/v/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -18605,11 +19464,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: l is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: v is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-4.5B,facebook/xglm-4.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-125m,EleutherAI/gpt-neo-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -18635,10 +19494,10 @@ ChildProcessError: Traceback (most recent call last): config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa raise ValueError( -ValueError: XGLMForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` +ValueError: GPTNeoForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-110B,Qwen/Qwen1.5-110B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,.,.,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -18646,88 +19505,6 @@ ValueError: XGLMForCausalLM does not support an attention implementation through File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 32.00 MiB. GPU - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,8,8,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/8/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949272-30fc1f382cb5d26b08532336;08adbcbe-7fb4-4822-a2c5-f98111028f67) - -Repository Not Found for url: https://huggingface.co/8/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run @@ -18744,249 +19521,12 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 373, in cached_file raise EnvironmentError( -OSError: 8 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/rho-math-1b-v0.1,microsoft/rho-math-1b-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 614, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-7b-hf,meta-llama/Llama-2-7b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 614, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-13b-hf,meta-llama/Llama-2-13b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 614, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mistral-7B-v0.1,mistralai/Mistral-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 1200, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 976, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 718, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 613, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels +OSError: . does not appear to have a file named config.json. Checkout 'https://huggingface.co/./tree/None' for available files. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-32B,Qwen/Qwen1.5-32B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/phi-1_5,microsoft/phi-1_5,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -18996,56 +19536,32 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1221, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1023, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 763, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 650, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,r,r,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,s,s,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -19057,7 +19573,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/r/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/s/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -19084,9 +19600,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949118-79007d023fd65816461713b3;8fdbdf07-c644-4548-b48b-e6085f36dc4a) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948d16-35fd6b2d61e9f87045c55932;d36d9f9e-ee85-417b-9445-b62706b71319) -Repository Not Found for url: https://huggingface.co/r/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/s/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -19111,11 +19627,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: r is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: s is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-564M,facebook/xglm-564M,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -19135,16 +19651,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: XGLMForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-2.7B,EleutherAI/gpt-neo-2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-66b,facebook/opt-66b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -19164,77 +19686,29 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: GPTNeoForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-410m,EleutherAI/pythia-410m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward - outputs = self.gpt_neox( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward - outputs = layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward - attention_layer_outputs = self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 545, in forward - query, key, value, present = self._attn_projections_and_rope( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope - qkv = self.query_key_value(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 162.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,0,0,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,i,i,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -19246,7 +19720,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/0/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/i/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -19273,9 +19747,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669494e8-0a566c5b19e6b2165a2bc06a;a878e53e-764f-4e93-bff1-470e428c5181) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949046-5d40a048084f7d2976b0e9c1;0d95bdcf-a14b-4cc3-a305-520fea4c1f87) -Repository Not Found for url: https://huggingface.co/0/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/i/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -19300,11 +19774,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: 0 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: i is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-6B-nl,Salesforce/codegen-6B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-6.7b,EleutherAI/pythia-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -19324,25 +19798,31 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: CodeGenForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-70b-hf,meta-llama/Llama-2-70b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-0.5B,Qwen/Qwen1.5-0.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ @@ -19353,29 +19833,155 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 112.00 MiB. GPU + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-16B-nl,Salesforce/codegen-16B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation + cls._check_and_enable_flash_attn_2( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 + raise ValueError( +ValueError: CodeGenForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpl1yd0u0y/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-j-6b,EleutherAI/gpt-j-6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2-large,openai-community/gpt2-large,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1273.511936,2645.03296,0.0,1998.585856,1692.285952,s,10,0.19512889289855956,0.019512889289855957,0.0006973531616019884,0.019118751525878906,0.02076168899536133,0.020845900917053222,0.020913270454406736,"[0.02074297523498535, 0.019069087982177733, 0.01902137565612793, 0.019066047668457032, 0.01907967948913574, 0.0189399356842041, 0.01915782356262207, 0.019729055404663087, 0.019392799377441407, 0.020930112838745116]",tokens/s,13119.533258105714,kWh,2.258438427837786e-07,1.2375136383443654e-07,6.813650022829518e-07,1.030960208901167e-06,tokens/kWh,248312202.3427593,MB,1273.806848,2645.03296,0.0,1998.585856,1740.085248,s,10,11.767407348632812,1.1767407348632815,0.01424671134639797,1.1756907958984375,1.1905447143554688,1.2001551696777344,1.2078435339355469,"[1.209765625, 1.1791375732421876, 1.183642578125, 1.159637939453125, 1.166791015625, 1.1595640869140624, 1.17467822265625, 1.169077880859375, 1.1884090576171875, 1.176703369140625]",tokens/s,53.537706423768526,kWh,1.3865471741266508e-05,7.59789077589712e-06,2.9375964599116e-05,5.083932711627962e-05,tokens/kWh,1239198.1478414636,,s,629,11.921181676864638,0.018952594080865855,0.002352548224385844,0.0184770565032959,0.01912931900024414,0.01946992607116699,0.03775201217651367,"[0.020113407135009767, 0.019819520950317384, 0.020000768661499024, 0.02002943992614746, 0.020170751571655272, 0.019966976165771484, 0.01986867141723633, 0.019780607223510743, 0.019711999893188475, 0.01991372871398926, 0.02002943992614746, 0.019809280395507813, 0.01985024070739746, 0.01979801559448242, 0.01944063949584961, 0.0192225284576416, 0.01923276710510254, 0.019565568923950196, 0.01946316719055176, 0.01927168083190918, 0.019129344940185547, 0.01903308868408203, 0.018916351318359375, 0.019993600845336915, 0.020050943374633787, 0.019573759078979493, 0.01898700714111328, 0.019013631820678712, 0.019124223709106446, 0.0190515193939209, 0.018741247177124023, 0.018388992309570314, 0.018288639068603514, 0.018325504302978517, 0.01842585563659668, 0.018329599380493163, 0.01836031913757324, 0.019708927154541016, 0.019175424575805664, 0.018696191787719727, 0.01881804847717285, 0.019137535095214844, 0.018902015686035157, 0.018919456481933595, 0.018997215270996095, 0.018655231475830078, 0.018349056243896485, 0.018293760299682618, 0.018259967803955078, 0.018803712844848632, 0.018983936309814452, 0.018994176864624023, 0.018919424057006837, 0.01900032043457031, 0.018935808181762694, 0.018883583068847656, 0.018942975997924806, 0.018905088424682616, 0.018944000244140623, 0.018937856674194335, 0.018896896362304686, 0.019002368927001953, 0.038024192810058595, 0.018856960296630858, 0.018953216552734374, 0.01899212837219238, 0.018933759689331055, 0.018946048736572265, 0.018918399810791017, 0.018514944076538087, 0.018379776000976563, 0.01847603225708008, 0.018405376434326173, 0.01839411163330078, 0.01844428825378418, 0.018465791702270508, 0.018507776260375978, 0.01843404769897461, 0.01840025520324707, 0.018305023193359374, 0.018584575653076172, 0.018944000244140623, 0.01904128074645996, 0.018902015686035157, 0.018913280487060546, 0.018897920608520507, 0.01900441551208496, 0.018922496795654296, 0.018920448303222655, 0.018958335876464845, 0.01924198341369629, 0.018942975997924806, 0.018929664611816405, 0.01883750343322754, 0.018920448303222655, 0.018919424057006837, 0.01887539291381836, 0.018379776000976563, 0.018397184371948243, 0.019178495407104493, 0.018910207748413087, 0.018939903259277344, 0.01884569549560547, 0.018928640365600585, 0.018945024490356444, 0.018886655807495118, 0.01885798454284668, 0.019137535095214844, 0.019356672286987304, 0.018903039932250978, 0.01864806365966797, 0.01850060844421387, 0.018481151580810547, 0.018380800247192384, 0.018301952362060548, 0.018478080749511717, 0.018493440628051756, 0.01842483139038086, 0.0183767032623291, 0.018386943817138672, 0.018413568496704103, 0.018397184371948243, 0.018351104736328124, 0.01844633674621582, 0.01836851119995117, 0.03775590515136719, 0.018353151321411132, 0.01845043182373047, 0.018341888427734376, 0.018726911544799805, 0.018123775482177733, 0.018150400161743165, 0.018366464614868162, 0.01886310386657715, 0.01907711982727051, 0.018974720001220705, 0.01900444793701172, 0.01890505599975586, 0.018916351318359375, 0.018966527938842775, 0.019076095581054688, 0.018861055374145508, 0.01881497573852539, 0.019140607833862306, 0.019045408248901368, 0.018921440124511718, 0.018963455200195312, 0.018877439498901367, 0.01926144027709961, 0.019165184020996092, 0.018880512237548826, 0.018881536483764647, 0.018955263137817382, 0.018960384368896483, 0.018936832427978514, 0.018729984283447267, 0.018342912673950194, 0.01841459274291992, 0.018329599380493163, 0.01839206314086914, 0.018340864181518556, 0.01840025520324707, 0.018534400939941405, 0.018990079879760743, 0.01900339126586914, 0.018896896362304686, 0.018963455200195312, 0.018910207748413087, 0.01887846374511719, 0.018913280487060546, 0.01883340835571289, 0.018333696365356447, 0.018703359603881836, 0.018351104736328124, 0.01845452880859375, 0.0182794246673584, 0.018318336486816408, 0.01838591957092285, 0.018298879623413086, 0.018270240783691407, 0.019394527435302733, 0.01943961524963379, 0.020576255798339844, 0.019310592651367187, 0.018993152618408202, 0.01903206443786621, 0.018950143814086915, 0.019017728805541992, 0.0377446403503418, 0.018357248306274415, 0.01839820861816406, 0.018373632431030275, 0.018353151321411132, 0.0184453125, 0.018336767196655272, 0.01846784019470215, 0.018374656677246092, 0.018431039810180665, 0.018341823577880858, 0.018308095932006836, 0.018556928634643553, 0.01840127944946289, 0.018554880142211915, 0.0184770565032959, 0.01844428825378418, 0.018405376434326173, 0.018333696365356447, 0.01840947151184082, 0.01842278480529785, 0.01840127944946289, 0.018413568496704103, 0.018343967437744142, 0.018638816833496094, 0.018471935272216796, 0.01844223976135254, 0.018472959518432617, 0.018349056243896485, 0.018336767196655272, 0.01837772750854492, 0.018337791442871093, 0.01840742492675781, 0.01838083267211914, 0.018362335205078125, 0.018448383331298827, 0.01839820861816406, 0.01841459274291992, 0.018397184371948243, 0.018324480056762696, 0.018363391876220703, 0.018415615081787108, 0.018408447265625, 0.018379776000976563, 0.018749439239501953, 0.01843404769897461, 0.018365440368652345, 0.018324480056762696, 0.018372608184814454, 0.018328575134277342, 0.01844223976135254, 0.018338815689086914, 0.018361343383789062, 0.01836031913757324, 0.01841152000427246, 0.018314239501953124, 0.018345983505249023, 0.01840332794189453, 0.018328575134277342, 0.018373632431030275, 0.01841663932800293, 0.018287616729736327, 0.018552831649780274, 0.037754878997802735, 0.018325504302978517, 0.01840025520324707, 0.018291711807250977, 0.018345983505249023, 0.018326528549194337, 0.01842995262145996, 0.018415615081787108, 0.01841971206665039, 0.01842278480529785, 0.018359296798706053, 0.01837772750854492, 0.018334720611572267, 0.018315263748168945, 0.01840947151184082, 0.018386943817138672, 0.0183767032623291, 0.018520063400268554, 0.018358272552490236, 0.018396160125732423, 0.018333696365356447, 0.01839206314086914, 0.018307071685791015, 0.018312192916870116, 0.018371583938598633, 0.018345983505249023, 0.01841663932800293, 0.018457599639892578, 0.01835212707519531, 0.018354175567626953, 0.01828659248352051, 0.018344959259033202, 0.018364416122436524, 0.018355199813842774, 0.018298879623413086, 0.01835212707519531, 0.018412544250488282, 0.018366464614868162, 0.018382848739624022, 0.018255872726440428, 0.018357248306274415, 0.01836953544616699, 0.01902284812927246, 0.020344831466674804, 0.01921331214904785, 0.018961408615112304, 0.018908159255981445, 0.018890752792358398, 0.018924543380737305, 0.019082239151000976, 0.01884364891052246, 0.018367488861083983, 0.019126272201538085, 0.018917375564575196, 0.018936832427978514, 0.01902284812927246, 0.0184268798828125, 0.018364416122436524, 0.018391040802001952, 0.01841049575805664, 0.018320383071899413, 0.018339839935302735, 0.018349056243896485, 0.0375838737487793, 0.018310144424438478, 0.01836031913757324, 0.018404352188110353, 0.018507776260375978, 0.018515968322753908, 0.018348031997680665, 0.018380800247192384, 0.01826201629638672, 0.018463775634765624, 0.018397151947021486, 0.018396160125732423, 0.018347007751464844, 0.018324480056762696, 0.01841459274291992, 0.018471935272216796, 0.018512895584106445, 0.01836031913757324, 0.018316287994384766, 0.018356224060058594, 0.018326528549194337, 0.01836953544616699, 0.018387968063354493, 0.018312192916870116, 0.018323455810546875, 0.018404352188110353, 0.01864806365966797, 0.018514944076538087, 0.018299903869628906, 0.018319360733032225, 0.018310144424438478, 0.018258943557739257, 0.018485248565673826, 0.018364416122436524, 0.018373632431030275, 0.018423807144165038, 0.018341888427734376, 0.018431999206542968, 0.018876415252685547, 0.018487295150756835, 0.01843302345275879, 0.018374656677246092, 0.0185743350982666, 0.01837772750854492, 0.018381824493408205, 0.018363391876220703, 0.01838387107849121, 0.01839923286437988, 0.018378751754760742, 0.01836031913757324, 0.01839411163330078, 0.018412544250488282, 0.018408447265625, 0.018473983764648438, 0.018364416122436524, 0.01840947151184082, 0.018310144424438478, 0.01839206314086914, 0.01851087951660156, 0.018360288619995117, 0.01839206314086914, 0.01836031913757324, 0.01843097686767578, 0.037787647247314454, 0.018329599380493163, 0.01837772750854492, 0.018396160125732423, 0.018449407577514648, 0.01841152000427246, 0.018397184371948243, 0.018374656677246092, 0.018320383071899413, 0.018408447265625, 0.018351104736328124, 0.01837772750854492, 0.018423807144165038, 0.018333696365356447, 0.01864908790588379, 0.018455551147460936, 0.018397184371948243, 0.018354175567626953, 0.018366464614868162, 0.018356224060058594, 0.018347007751464844, 0.01841152000427246, 0.019151872634887695, 0.019474431991577147, 0.019180543899536134, 0.018968576431274413, 0.01903923225402832, 0.018941951751708985, 0.018888704299926756, 0.0189040641784668, 0.018905088424682616, 0.018907136917114258, 0.019160064697265625, 0.01887027168273926, 0.018877439498901367, 0.01868185615539551, 0.018921472549438476, 0.01904025650024414, 0.018936832427978514, 0.018332672119140626, 0.018308095932006836, 0.01839411163330078, 0.018347007751464844, 0.018311168670654295, 0.0183767032623291, 0.01841459274291992, 0.018522111892700196, 0.018931711196899414, 0.019349504470825195, 0.01902284812927246, 0.018991104125976564, 0.018930688858032226, 0.018989055633544923, 0.019001344680786132, 0.018495487213134765, 0.018301952362060548, 0.01869004821777344, 0.01825484848022461, 0.01839206314086914, 0.01840230369567871, 0.01839820861816406, 0.018663423538208008, 0.019091455459594727, 0.038542335510253906, 0.018413568496704103, 0.018481151580810547, 0.018983936309814452, 0.01899519920349121, 0.018893823623657227, 0.018886655807495118, 0.01880575942993164, 0.018921472549438476, 0.018318336486816408, 0.018509855270385744, 0.018419679641723634, 0.018356224060058594, 0.01843404769897461, 0.018962432861328125, 0.01904435157775879, 0.01921843147277832, 0.018980863571166993, 0.01903923225402832, 0.018388992309570314, 0.01842790412902832, 0.01837772750854492, 0.018372608184814454, 0.018331647872924805, 0.01839411163330078, 0.018319360733032225, 0.018305023193359374, 0.018293760299682618, 0.018367488861083983, 0.01842483139038086, 0.018390016555786134, 0.018357280731201173, 0.018384864807128906, 0.01839411163330078, 0.018364416122436524, 0.018327552795410155, 0.01839308738708496, 0.018328575134277342, 0.01826918411254883, 0.0184268798828125, 0.018395135879516602, 0.018295808792114256, 0.018373632431030275, 0.018151424407958985, 0.018207744598388673, 0.01836031913757324, 0.018295808792114256, 0.018780160903930664, 0.018881536483764647, 0.018906112670898437, 0.018965503692626954, 0.018974752426147462, 0.018904031753540038, 0.018936832427978514, 0.018956287384033203, 0.018965503692626954, 0.01840332794189453, 0.018310144424438478, 0.018336767196655272, 0.018404352188110353, 0.018361343383789062, 0.01839923286437988, 0.018463743209838866, 0.038046718597412106, 0.01843507194519043, 0.018305023193359374, 0.018233343124389647, 0.018344959259033202, 0.018366464614868162, 0.018495487213134765, 0.018343967437744142, 0.018420703887939455, 0.01840230369567871, 0.018654207229614257, 0.020091903686523437, 0.019406848907470704, 0.01906073570251465, 0.0190515193939209, 0.018997247695922852, 0.018948095321655273, 0.019203071594238282, 0.01926655960083008, 0.01898700714111328, 0.018949119567871094, 0.01903104019165039, 0.01902079963684082, 0.018894847869873048, 0.018984960556030273, 0.018909183502197266, 0.018982912063598634, 0.019183616638183593, 0.019070976257324217, 0.01901875114440918, 0.018957311630249024, 0.018975744247436522, 0.018861055374145508, 0.018933759689331055, 0.01906073570251465, 0.018932735443115235, 0.018926591873168946, 0.018968576431274413, 0.01884671974182129, 0.018888704299926756, 0.018856960296630858, 0.018906112670898437, 0.018761728286743166, 0.019104768753051758, 0.019098623275756836, 0.01904844856262207, 0.018964479446411133, 0.018893823623657227, 0.018338815689086914, 0.018323455810546875, 0.01824563217163086, 0.018487295150756835, 0.018811904907226562, 0.01941200065612793, 0.01912931251525879, 0.01884364891052246, 0.01884569549560547, 0.018997247695922852, 0.018654207229614257, 0.018766847610473633, 0.01901875114440918, 0.018925567626953126, 0.018929664611816405, 0.04048076629638672, 0.019142656326293944, 0.018959360122680666, 0.018917375564575196, 0.019141632080078123, 0.018944000244140623, 0.01884876823425293, 0.018808832168579103, 0.018886655807495118, 0.018934783935546876, 0.01899929618835449, 0.018940927505493164, 0.018977792739868164, 0.018918399810791017, 0.01899929618835449, 0.018940927505493164, 0.018861055374145508, 0.018836511611938476, 0.018780128479003906, 0.018320383071899413, 0.01839308738708496, 0.01840127944946289, 0.01827737617492676, 0.018310144424438478, 0.01827840042114258, 0.018487295150756835, 0.018775039672851563, 0.018501632690429686, 0.01841663932800293, 0.018305023193359374, 0.019021823883056642, 0.018941951751708985, 0.018931711196899414, 0.01887027168273926, 0.018334720611572267, 0.018359296798706053, 0.018281471252441405, 0.018289663314819335, 0.018388992309570314, 0.018295808792114256, 0.01823539161682129, 0.01827020835876465, 0.018332672119140626, 0.01830297660827637, 0.01837264060974121, 0.018341888427734376, 0.018376672744750976, 0.01881292724609375, 0.0188221435546875, 0.01887948799133301, 0.018420736312866212, 0.018380800247192384, 0.018301952362060548, 0.018333696365356447, 0.018735103607177735, 0.019014656066894533, 0.01880985641479492, 0.018928640365600585, 0.018937856674194335, 0.018965503692626954, 0.018817024230957033, 0.01887027168273926, 0.018896896362304686]",tokens/s,52.763225748056264,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code + answer = input( +EOFError: EOF when reading a line + +During handling of the above exception, another exception occurred: + +Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights + self.create_no_weights_model() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model + meta_model = self.automodel_class.from_config(self.pretrained_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config + trust_remote_code = resolve_trust_remote_code( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code + raise ValueError( +ValueError: The repository for Deci/DeciCoder-1b contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/Deci/DeciCoder-1b. +Please pass the argument `trust_remote_code=True` to allow custom code to be run. + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mistral-7B-v0.1,mistralai/Mistral-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,2,2,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,r,r,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -19387,7 +19993,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/2/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/r/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -19414,9 +20020,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949371-407674857434fc174bd383a3;ec6ab7ea-adb7-435f-b82a-4272733aa337) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949140-6ae044bc7df6be9e12190c3b;383dee7a-6c62-4ae2-99a1-7878e5cfbe54) -Repository Not Found for url: https://huggingface.co/2/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/r/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -19441,11 +20047,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: 2 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: r is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,a,a,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,l,l,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -19457,7 +20063,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/a/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/l/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -19484,9 +20090,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694916b-5c81fcc12f4a975e21f2ee46;d6e973a0-f217-425f-aa51-7e20b8750b92) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669491e9-1b19c4010aafe9e57f7345d0;b70b3100-21e1-41b3-99df-a98dfad0a9c6) -Repository Not Found for url: https://huggingface.co/a/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/l/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -19511,11 +20117,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: a is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: l is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-350m,facebook/opt-350m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,a,a,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -19523,28 +20129,69 @@ If this is a private repository, make sure to pass a token having permission to File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/a/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949194-415dc2620a2075d5164260f2;7fb73872-7101-4af2-8b80-b131a0c919cb) + +Repository Not Found for url: https://huggingface.co/a/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + raise EnvironmentError( +OSError: a is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/phi-1_5,microsoft/phi-1_5,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,1,1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -19552,58 +20199,69 @@ ValueError: OPTForCausalLM does not support an attention implementation through File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/1/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669495e6-24c5fec26b2eb15737096d10;cc3c1055-4df3-49a1-9aee-62dd0699dcde) + +Repository Not Found for url: https://huggingface.co/1/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/phi/modeling_phi.py"", line 1268, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/phi/modeling_phi.py"", line 1064, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/phi/modeling_phi.py"", line 804, in forward - attn_outputs, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/phi/modeling_phi.py"", line 666, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + raise EnvironmentError( +OSError: 1 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-2.7b,facebook/opt-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-7b,huggyllama/llama-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -19623,75 +20281,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-13b,huggyllama/llama-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 614, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-7b,tiiuae/falcon-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-2.7b,EleutherAI/pythia-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -19709,18 +20314,24 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: FalconForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-MoE-A2.7B,Qwen/Qwen1.5-MoE-A2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,B,B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -19728,209 +20339,46 @@ ValueError: FalconForCausalLM does not support an attention implementation throu File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3724, in from_pretrained - hf_quantizer.preprocess_model( - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 182, in preprocess_model - return self._process_model_before_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 85, in _process_model_before_weight_loading - model, has_been_replaced = replace_with_awq_linear( - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear - _, has_been_replaced = replace_with_awq_linear( - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear - _, has_been_replaced = replace_with_awq_linear( - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear - _, has_been_replaced = replace_with_awq_linear( - [Previous line repeated 1 more time] - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 166, in replace_with_awq_linear - model._modules[name] = target_cls( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 46, in __init__ - assert out_features % (32 // self.w_bit) == 0 -AssertionError - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-7b,huggyllama/llama-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 614, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 614, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-2b,google/recurrentgemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status - raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-669481d5-7a8ff08d2b374de832affc38;7e8766eb-a2b6-4ae2-a3a5-1838dd20a502) - -403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json. -If you are trying to create or update content,make sure you have a token with the `write` role. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error - raise LocalEntryNotFoundError( -huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/B/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949404-66840ecf6171208760579ba3;b3c6d036-1a12-4792-95fa-669049080a88) + +Repository Not Found for url: https://huggingface.co/B/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run @@ -19947,13 +20395,13 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/recurrentgemma-2b is not the path to a directory containing a file named config.json. -Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. +OSError: B is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-30b,facebook/opt-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-30b,huggyllama/llama-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -19973,138 +20421,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-160m,EleutherAI/pythia-160m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward - outputs = self.gpt_neox( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward - outputs = layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward - attention_layer_outputs = self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 545, in forward - query, key, value, present = self._attn_projections_and_rope( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope - qkv = self.query_key_value(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-7b,stabilityai/stablelm-base-alpha-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward - outputs = self.gpt_neox( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward - outputs = layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward - attention_layer_outputs = self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 545, in forward - query, key, value, present = self._attn_projections_and_rope( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope - qkv = self.query_key_value(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,m,m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,2,2,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -20116,7 +20448,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/m/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/2/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -20143,9 +20475,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948c4b-56e9a1be339f2285213886dd;24438d7c-1431-4b02-af49-71e675c3fedd) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669493a7-189dd79b2f9f56bc4f380cc6;51481734-098e-4522-acd5-252a20c74930) -Repository Not Found for url: https://huggingface.co/m/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/2/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -20170,11 +20502,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: m is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: 2 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-3b-4e1t,stabilityai/stablelm-3b-4e1t,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-350m,facebook/opt-350m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -20184,56 +20516,32 @@ If this is a private repository, make sure to pass a token having permission to ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 1268, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 1062, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 792, in forward - self_attn_output, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 441, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-125m,EleutherAI/gpt-neo-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-MoE-A2.7B,Qwen/Qwen1.5-MoE-A2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -20253,17 +20561,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: GPTNeoForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2,openai-community/gpt2,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.42.3,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,1217.482752,1002.962944,0.0,356.51584,319.013888,s,25,0.17377513599395752,0.006951005439758301,0.00021285069119682677,0.006859776020050049,0.007271795177459717,0.007306099033355713,0.0075682175064086905,"[0.007650239944458008, 0.007234623908996582, 0.00704527997970581, 0.00680460786819458, 0.0068609600067138675, 0.00677836799621582, 0.00682473611831665, 0.0068039679527282714, 0.00680291223526001, 0.00730847978591919, 0.006837952136993408, 0.006873439788818359, 0.006928832054138184, 0.006819744110107422, 0.00691267204284668, 0.006827583789825439, 0.006859776020050049, 0.0067794880867004395, 0.007181856155395508, 0.006854944229125977, 0.006890560150146484, 0.007296576023101807, 0.006809375762939453, 0.0068458237648010255, 0.006942336082458496]",tokens/s,36829.20438181985,kWh,8.181268208831889e-08,4.482922321235986e-08,1.7226448838091112e-07,2.9890639368158985e-07,tokens/kWh,856455416.8510163,MB,1217.482752,1002.962944,0.0,356.51584,319.016448,s,25,10.10318005371094,0.4041272021484375,0.009041377880648377,0.4006143493652344,0.4117974182128906,0.42338720092773435,0.4344844934082031,"[0.4373000183105469, 0.40733187866210935, 0.398733154296875, 0.40750152587890626, 0.39825311279296877, 0.39877890014648437, 0.3988628234863281, 0.3992034606933594, 0.3991992492675781, 0.4000351257324219, 0.40367324829101564, 0.4066448059082031, 0.3984886474609375, 0.40342138671875, 0.398855224609375, 0.40221279907226565, 0.39863790893554685, 0.40269754028320315, 0.40168536376953123, 0.400095458984375, 0.41466134643554686, 0.42556866455078124, 0.4007449951171875, 0.4006143493652344, 0.3999790649414062]",tokens/s,155.89151055676734,kWh,4.884634116620386e-06,2.676530817879685e-06,8.197834800282627e-06,1.57589997347827e-05,tokens/kWh,3997715.6583706676,,s,1574,10.262640651226052,0.006520102065581985,0.0009050603008066671,0.006338560104370118,0.00674856972694397,0.006865920066833496,0.013484024801254272,"[0.007161856174468994, 0.007085055828094483, 0.007062528133392334, 0.007070720195770264, 0.007012351989746094, 0.007053311824798584, 0.007062528133392334, 0.0070563840866088865, 0.006840320110321045, 0.006719488143920899, 0.006717440128326416, 0.006799359798431396, 0.006890495777130127, 0.00695091199874878, 0.007017471790313721, 0.006897664070129395, 0.006813695907592773, 0.006865920066833496, 0.006972415924072266, 0.006919167995452881, 0.007156735897064209, 0.007051263809204102, 0.007244800090789795, 0.007097343921661377, 0.007085055828094483, 0.006964223861694336, 0.007008255958557129, 0.006976511955261231, 0.006994944095611572, 0.007102464199066162, 0.007038976192474365, 0.007131135940551757, 0.007008255958557129, 0.006998015880584717, 0.007203839778900147, 0.007073791980743408, 0.006860799789428711, 0.006910975933074951, 0.00684441614151001, 0.006865920066833496, 0.007029759883880615, 0.006725632190704346, 0.006808576107025147, 0.006915071964263916, 0.006789120197296142, 0.006917119979858399, 0.0069027838706970214, 0.006814720153808594, 0.006814720153808594, 0.006810624122619629, 0.006862847805023193, 0.006988800048828125, 0.006908927917480469, 0.006994944095611572, 0.006842368125915528, 0.006897664070129395, 0.006791168212890625, 0.006790143966674805, 0.00674508810043335, 0.006684703826904297, 0.006531040191650391, 0.006618112087249756, 0.014370880126953124, 0.0063681921958923336, 0.006546432018280029, 0.006509568214416504, 0.006533120155334473, 0.006860799789428711, 0.007010303974151612, 0.007018496036529541, 0.007047167778015137, 0.007074816226959229, 0.007166975975036621, 0.00690176010131836, 0.006707200050354004, 0.0066344962120056155, 0.006568960189819336, 0.006534143924713135, 0.006561791896820069, 0.006558720111846924, 0.006511616230010986, 0.0067010560035705566, 0.006788095951080322, 0.006545407772064209, 0.006509568214416504, 0.006351871967315674, 0.006299647808074951, 0.006319104194641113, 0.00628223991394043, 0.006306816101074219, 0.006300672054290772, 0.006300672054290772, 0.006296576023101807, 0.00628223991394043, 0.006319104194641113, 0.006301695823669433, 0.006296576023101807, 0.006310912132263183, 0.0062975997924804685, 0.006304768085479737, 0.006388735771179199, 0.006313983917236328, 0.006319104194641113, 0.006331391811370849, 0.0063211522102355954, 0.0063170561790466305, 0.0063170561790466305, 0.006303743839263916, 0.00638259220123291, 0.00636518383026123, 0.006313983917236328, 0.006325247764587402, 0.00628326416015625, 0.006310912132263183, 0.006277120113372803, 0.0063272957801818845, 0.006428671836853027, 0.006278143882751465, 0.0062791681289672855, 0.006275072097778321, 0.006331391811370849, 0.006308864116668702, 0.006355967998504639, 0.0063498239517211915, 0.006298624038696289, 0.013892607688903809, 0.006338560104370118, 0.00633241605758667, 0.006295551776885986, 0.006328320026397705, 0.006322175979614258, 0.0063272957801818845, 0.0063211522102355954, 0.006300672054290772, 0.006311935901641846, 0.006307839870452881, 0.006341631889343262, 0.006340608119964599, 0.006306816101074219, 0.006341631889343262, 0.006344704151153564, 0.006358016014099121, 0.006377471923828125, 0.006352896213531494, 0.006426623821258545, 0.0063201279640197755, 0.006329343795776367, 0.006344704151153564, 0.006325247764587402, 0.006337535858154297, 0.006296576023101807, 0.006323200225830078, 0.006301695823669433, 0.006308864116668702, 0.006310912132263183, 0.006325247764587402, 0.006304768085479737, 0.0062975997924804685, 0.006305791854858398, 0.006301695823669433, 0.006342656135559082, 0.006316031932830811, 0.006303743839263916, 0.006358016014099121, 0.006293504238128662, 0.006315008163452148, 0.006322175979614258, 0.006298624038696289, 0.00632422399520874, 0.0062975997924804685, 0.006325247764587402, 0.006288383960723877, 0.006312960147857666, 0.006315008163452148, 0.006295551776885986, 0.006311935901641846, 0.006301695823669433, 0.006325247764587402, 0.006293504238128662, 0.0063211522102355954, 0.006302720069885254, 0.0062904319763183595, 0.006305791854858398, 0.006285312175750732, 0.006319104194641113, 0.006338560104370118, 0.00633241605758667, 0.006375423908233643, 0.013460479736328124, 0.006305791854858398, 0.006343679904937744, 0.0064174079895019534, 0.006359039783477783, 0.006333439826965332, 0.0063170561790466305, 0.006281216144561768, 0.006622208118438721, 0.007672832012176513, 0.006605823993682861, 0.006567935943603515, 0.006624256134033203, 0.006543360233306885, 0.00667955207824707, 0.006597631931304931, 0.006343679904937744, 0.00688640022277832, 0.006688767910003662, 0.006556672096252441, 0.0065474557876586915, 0.0065372161865234375, 0.006567935943603515, 0.006726655960083008, 0.0066406397819519045, 0.0066109437942504885, 0.0065484800338745115, 0.0065413122177124024, 0.00652185583114624, 0.0065372161865234375, 0.006788095951080322, 0.006560768127441406, 0.006540287971496582, 0.0065136637687683106, 0.006331391811370849, 0.006393856048583985, 0.006346752166748047, 0.006338560104370118, 0.006342656135559082, 0.006304768085479737, 0.0063272957801818845, 0.006326272010803223, 0.006331391811370849, 0.006339583873748779, 0.0063569917678833006, 0.006328320026397705, 0.006371327877044678, 0.006300672054290772, 0.0063539199829101565, 0.006316031932830811, 0.006328320026397705, 0.006304768085479737, 0.006306816101074219, 0.006319104194641113, 0.006328320026397705, 0.006313983917236328, 0.006358016014099121, 0.006299647808074951, 0.006330368041992188, 0.006501376152038574, 0.006432767868041992, 0.006360064029693604, 0.006348832130432129, 0.013516799926757812, 0.006293471813201904, 0.006299647808074951, 0.006329343795776367, 0.006289408206939697, 0.00633241605758667, 0.006273024082183838, 0.0063201279640197755, 0.006305791854858398, 0.00638259220123291, 0.006294528007507324, 0.0063211522102355954, 0.006328320026397705, 0.0063272957801818845, 0.006346752166748047, 0.0063211522102355954, 0.006312960147857666, 0.006315008163452148, 0.006305791854858398, 0.0063272957801818845, 0.006289408206939697, 0.0063211522102355954, 0.00632422399520874, 0.006295551776885986, 0.006330368041992188, 0.0063498239517211915, 0.006306816101074219, 0.006306816101074219, 0.006326272010803223, 0.006323200225830078, 0.006312960147857666, 0.006309887886047363, 0.006310912132263183, 0.006360064029693604, 0.006258687973022461, 0.006284287929534912, 0.006301695823669433, 0.006298624038696289, 0.006306816101074219, 0.006318079948425293, 0.006322175979614258, 0.006351871967315674, 0.0062873601913452145, 0.006339583873748779, 0.006326272010803223, 0.006333439826965332, 0.006313983917236328, 0.006310912132263183, 0.006318079948425293, 0.006341631889343262, 0.006322175979614258, 0.006299647808074951, 0.00632422399520874, 0.00632422399520874, 0.006331391811370849, 0.0063170561790466305, 0.006294528007507324, 0.0063539199829101565, 0.006312960147857666, 0.006299647808074951, 0.0062975997924804685, 0.006338560104370118, 0.006319168090820312, 0.01340614414215088, 0.006311935901641846, 0.006323200225830078, 0.006355999946594238, 0.00633135986328125, 0.006343679904937744, 0.0063498239517211915, 0.006369279861450195, 0.006363135814666748, 0.006346752166748047, 0.00633241605758667, 0.006344704151153564, 0.006348800182342529, 0.006411263942718506, 0.006337535858154297, 0.006418432235717773, 0.006323200225830078, 0.006343679904937744, 0.006329343795776367, 0.006344704151153564, 0.006339583873748779, 0.006340608119964599, 0.006330368041992188, 0.006295551776885986, 0.006338560104370118, 0.006329343795776367, 0.0063201279640197755, 0.0062904319763183595, 0.006266880035400391, 0.006289408206939697, 0.006308864116668702, 0.006259712219238281, 0.006337535858154297, 0.006352896213531494, 0.006319104194641113, 0.0063211522102355954, 0.006328320026397705, 0.006312960147857666, 0.00636518383026123, 0.006388735771179199, 0.0063272957801818845, 0.00628326416015625, 0.006223872184753418, 0.006244351863861084, 0.006242303848266601, 0.006238207817077636, 0.006235136032104492, 0.0062566399574279785, 0.006309887886047363, 0.006315008163452148, 0.006336512088775635, 0.00639081621170044, 0.006297567844390869, 0.006319104194641113, 0.006313983917236328, 0.006340608119964599, 0.006328320026397705, 0.006330368041992188, 0.006351903915405273, 0.006374368190765381, 0.0063498239517211915, 0.006360064029693604, 0.00633241605758667, 0.013469696044921875, 0.006311935901641846, 0.006293504238128662, 0.006331391811370849, 0.006334464073181153, 0.006310912132263183, 0.006326272010803223, 0.0063272957801818845, 0.00638156795501709, 0.006342656135559082, 0.006334464073181153, 0.006344704151153564, 0.00636518383026123, 0.006340608119964599, 0.006334464073181153, 0.006351871967315674, 0.006343679904937744, 0.006312960147857666, 0.006351871967315674, 0.006352896213531494, 0.0063201279640197755, 0.006334464073181153, 0.006289408206939697, 0.006362112045288086, 0.006307839870452881, 0.006327328205108643, 0.006322144031524658, 0.006310912132263183, 0.0063508481979370115, 0.006309887886047363, 0.006326272010803223, 0.006333439826965332, 0.006322175979614258, 0.006336512088775635, 0.006384640216827392, 0.006313983917236328, 0.006315008163452148, 0.006278143882751465, 0.0062761597633361815, 0.006254528045654297, 0.006288383960723877, 0.006246399879455566, 0.006261760234832763, 0.006240287780761719, 0.006336480140686035, 0.006230016231536865, 0.006334464073181153, 0.006394879817962646, 0.006505472183227539, 0.00638976001739502, 0.006295551776885986, 0.0063201279640197755, 0.006348800182342529, 0.006309887886047363, 0.006375423908233643, 0.006319104194641113, 0.0063170561790466305, 0.006329343795776367, 0.006340608119964599, 0.006336512088775635, 0.006313983917236328, 0.006338592052459717, 0.006318048000335693, 0.013455360412597657, 0.006302720069885254, 0.006360064029693604, 0.006343679904937744, 0.006346752166748047, 0.006370304107666015, 0.006325247764587402, 0.006345727920532227, 0.006362112045288086, 0.006364160060882569, 0.0063569917678833006, 0.006355967998504639, 0.006345727920532227, 0.006354944229125976, 0.006330368041992188, 0.0063805441856384275, 0.0063836159706115725, 0.006315008163452148, 0.006299647808074951, 0.006347775936126709, 0.006311935901641846, 0.006330368041992188, 0.006341631889343262, 0.006298624038696289, 0.006344704151153564, 0.006330368041992188, 0.006343679904937744, 0.006323200225830078, 0.006336512088775635, 0.006328320026397705, 0.0063170561790466305, 0.0063170561790466305, 0.006330368041992188, 0.006330368041992188, 0.006394879817962646, 0.006308864116668702, 0.006305791854858398, 0.006295551776885986, 0.006309887886047363, 0.0063539199829101565, 0.006307839870452881, 0.006311935901641846, 0.006302720069885254, 0.006334464073181153, 0.006329343795776367, 0.006315008163452148, 0.006329343795776367, 0.006288383960723877, 0.006344704151153564, 0.006310912132263183, 0.00632422399520874, 0.006366208076477051, 0.00632422399520874, 0.006312960147857666, 0.006316031932830811, 0.006348800182342529, 0.006302752017974853, 0.006309855937957764, 0.006347775936126709, 0.0063591041564941405, 0.006312895774841309, 0.006313983917236328, 0.006325247764587402, 0.013421567916870117, 0.006292511940002441, 0.006318048000335693, 0.006284287929534912, 0.006250495910644531, 0.006252543926239014, 0.006280191898345947, 0.006240255832672119, 0.006270976066589356, 0.006243328094482422, 0.0062904319763183595, 0.006310912132263183, 0.006348800182342529, 0.006377471923828125, 0.006347775936126709, 0.00642252779006958, 0.006299647808074951, 0.006330368041992188, 0.006294528007507324, 0.006319104194641113, 0.006306816101074219, 0.006306816101074219, 0.006318079948425293, 0.006300672054290772, 0.0063621759414672855, 0.0063303041458129886, 0.006376448154449463, 0.006406144142150879, 0.0063170561790466305, 0.006346752166748047, 0.006323200225830078, 0.006330368041992188, 0.006340608119964599, 0.006315008163452148, 0.0063498239517211915, 0.006342656135559082, 0.0063211841583251955, 0.0063119039535522465, 0.006316031932830811, 0.00633241605758667, 0.006310912132263183, 0.006460415840148926, 0.006318079948425293, 0.006337535858154297, 0.006360064029693604, 0.0064430079460144046, 0.006536191940307618, 0.006398975849151611, 0.006340608119964599, 0.006355967998504639, 0.0063170561790466305, 0.006344704151153564, 0.00636518383026123, 0.006319104194641113, 0.006340608119964599, 0.006302752017974853, 0.006353888034820556, 0.006312960147857666, 0.006333439826965332, 0.006303743839263916, 0.006307839870452881, 0.0063211522102355954, 0.006323200225830078, 0.01428889560699463, 0.006546432018280029, 0.006489088058471679, 0.0063498239517211915, 0.006318079948425293, 0.006313983917236328, 0.0063805441856384275, 0.006336512088775635, 0.006339583873748779, 0.0063201279640197755, 0.006329376220703125, 0.006326240062713623, 0.006334464073181153, 0.006346752166748047, 0.006326272010803223, 0.0063201279640197755, 0.006313983917236328, 0.006366208076477051, 0.0063498239517211915, 0.006326272010803223, 0.006313983917236328, 0.006326272010803223, 0.00643891191482544, 0.006305791854858398, 0.0063498239517211915, 0.006306816101074219, 0.006340608119964599, 0.006342656135559082, 0.006311935901641846, 0.006330368041992188, 0.006341631889343262, 0.006312960147857666, 0.00637337589263916, 0.006372352123260498, 0.006325247764587402, 0.0063211522102355954, 0.006334464073181153, 0.006326272010803223, 0.006309887886047363, 0.006345727920532227, 0.006329343795776367, 0.0063201279640197755, 0.006338560104370118, 0.006288383960723877, 0.00633241605758667, 0.0062975997924804685, 0.00638976001739502, 0.006305791854858398, 0.006336512088775635, 0.006323232173919678, 0.006334432125091553, 0.006340608119964599, 0.006363135814666748, 0.006351871967315674, 0.0063569917678833006, 0.006334464073181153, 0.006330368041992188, 0.006323200225830078, 0.006329343795776367, 0.006364160060882569, 0.006340608119964599, 0.006334464073181153, 0.0063272957801818845, 0.013492223739624023, 0.006341631889343262, 0.006325247764587402, 0.006338560104370118, 0.006329343795776367, 0.006358016014099121, 0.006339583873748779, 0.006348800182342529, 0.006317088127136231, 0.0063385281562805176, 0.006312960147857666, 0.006460415840148926, 0.006345727920532227, 0.006306816101074219, 0.0063569917678833006, 0.006334464073181153, 0.006325247764587402, 0.006328320026397705, 0.006423552036285401, 0.0063211522102355954, 0.0062975997924804685, 0.0063211522102355954, 0.006293504238128662, 0.006333439826965332, 0.006340608119964599, 0.006329343795776367, 0.006336512088775635, 0.006751232147216797, 0.006744063854217529, 0.006584320068359375, 0.006546432018280029, 0.006568960189819336, 0.006556672096252441, 0.006502399921417237, 0.0065372161865234375, 0.0065484800338745115, 0.006604800224304199, 0.006407167911529541, 0.006342656135559082, 0.006358016014099121, 0.006330368041992188, 0.006316031932830811, 0.006340608119964599, 0.006311935901641846, 0.00633241605758667, 0.006843391895294189, 0.006594560146331787, 0.006560768127441406, 0.006575136184692383, 0.00657097578048706, 0.006406144142150879, 0.006315008163452148, 0.006339583873748779, 0.006425600051879882, 0.00631606388092041, 0.006355936050415039, 0.006302720069885254, 0.006333439826965332, 0.006330368041992188, 0.006310912132263183, 0.006344704151153564, 0.006304768085479737, 0.00632422399520874, 0.013517824172973633, 0.006319104194641113, 0.0063272957801818845, 0.006360064029693604, 0.006333439826965332, 0.006336512088775635, 0.006340608119964599, 0.006329376220703125, 0.0063190717697143555, 0.006325247764587402, 0.006354944229125976, 0.006652927875518798, 0.006550528049468994, 0.006894591808319092, 0.007411712169647216, 0.00676966381072998, 0.006558720111846924, 0.006564864158630371, 0.00657203197479248, 0.006564864158630371, 0.006553599834442139, 0.006526976108551025, 0.0065771517753601075, 0.006519807815551758, 0.006375487804412842, 0.0063640961647033695, 0.006352896213531494, 0.006599679946899414, 0.007201824188232422, 0.006801375865936279, 0.006573056221008301, 0.006560768127441406, 0.00657203197479248, 0.0065443840026855465, 0.006584320068359375, 0.006487040042877197, 0.00633241605758667, 0.006322175979614258, 0.006316031932830811, 0.006342656135559082, 0.006313983917236328, 0.006331391811370849, 0.006385663986206055, 0.006342656135559082, 0.0063272957801818845, 0.0063272957801818845, 0.006329343795776367, 0.006335487842559814, 0.006326272010803223, 0.006342656135559082, 0.006322175979614258, 0.006335487842559814, 0.006309887886047363, 0.006319104194641113, 0.0063498239517211915, 0.006487040042877197, 0.006425600051879882, 0.006259712219238281, 0.006260735988616943, 0.006341631889343262, 0.006240255832672119, 0.006289408206939697, 0.006339583873748779, 0.013595647811889648, 0.006301695823669433, 0.006333439826965332, 0.006332448005676269, 0.006330336093902588, 0.006393856048583985, 0.006316031932830811, 0.006339615821838379, 0.006336480140686035, 0.006328320026397705, 0.00632422399520874, 0.006351871967315674, 0.0063498239517211915, 0.00633241605758667, 0.006335487842559814, 0.0063539199829101565, 0.006325247764587402, 0.006341631889343262, 0.006333439826965332, 0.006296576023101807, 0.006244351863861084, 0.006275072097778321, 0.006264832019805908, 0.006278175830841065, 0.006272992134094238, 0.006284287929534912, 0.006363135814666748, 0.006260799884796143, 0.006269887924194336, 0.006291456222534179, 0.0062638077735900875, 0.006261760234832763, 0.006247424125671387, 0.006252543926239014, 0.006237184047698975, 0.006264832019805908, 0.006304768085479737, 0.006328320026397705, 0.006347775936126709, 0.0063170561790466305, 0.006343679904937744, 0.006329343795776367, 0.006323200225830078, 0.006340608119964599, 0.006342656135559082, 0.006339583873748779, 0.006310912132263183, 0.006434815883636475, 0.006296576023101807, 0.006354944229125976, 0.006343679904937744, 0.006335487842559814, 0.006327360153198242, 0.0063303041458129886, 0.006334464073181153, 0.006331391811370849, 0.0063569917678833006, 0.006370304107666015, 0.006347775936126709, 0.006333439826965332, 0.006337535858154297, 0.00637337589263916, 0.006334464073181153, 0.013480992317199706, 0.006344672203063965, 0.006305791854858398, 0.006325247764587402, 0.006315008163452148, 0.006780928134918213, 0.006604800224304199, 0.0064880638122558594, 0.006434815883636475, 0.00674508810043335, 0.006551551818847656, 0.006560768127441406, 0.006512639999389648, 0.006592512130737305, 0.0065484800338745115, 0.006518784046173095, 0.006519807815551758, 0.006523903846740723, 0.0066119680404663084, 0.006687744140625, 0.006440959930419922, 0.006462463855743408, 0.00636518383026123, 0.00632422399520874, 0.006336512088775635, 0.006351935863494873, 0.0063190398216247555, 0.006347775936126709, 0.006333439826965332, 0.006401023864746094, 0.00632422399520874, 0.0063539199829101565, 0.006335487842559814, 0.006344704151153564, 0.006339583873748779, 0.006370304107666015, 0.006326272010803223, 0.006358016014099121, 0.006305791854858398, 0.0063201279640197755, 0.006310912132263183, 0.006348800182342529, 0.006328320026397705, 0.006316031932830811, 0.00633241605758667, 0.006330368041992188, 0.006334464073181153, 0.006315008163452148, 0.006323200225830078, 0.006348800182342529, 0.006326272010803223, 0.006346752166748047, 0.006348800182342529, 0.006311935901641846, 0.006339583873748779, 0.006360064029693604, 0.006325247764587402, 0.0063211522102355954, 0.00636518383026123, 0.006392831802368164, 0.006339583873748779, 0.0063610877990722655, 0.00632422399520874, 0.013540351867675781, 0.006294528007507324, 0.006346784114837647, 0.0063190717697143555, 0.006322175979614258, 0.006318143844604492, 0.006336448192596436, 0.006330368041992188, 0.006304800033569336, 0.006304736137390137, 0.0063201279640197755, 0.0063211522102355954, 0.006341631889343262, 0.006293504238128662, 0.00632531213760376, 0.006310848236083985, 0.006334464073181153, 0.006269951820373535, 0.006328320026397705, 0.00633241605758667, 0.00628223991394043, 0.006334464073181153, 0.006303743839263916, 0.006250495910644531, 0.006364160060882569, 0.006275072097778321, 0.0062576642036437985, 0.006276095867156982, 0.006346752166748047, 0.006319104194641113, 0.006334464073181153, 0.0063170561790466305, 0.006335487842559814, 0.006313983917236328, 0.006299647808074951, 0.0063498239517211915, 0.006301695823669433, 0.006285312175750732, 0.006333439826965332, 0.0062863359451293946, 0.006316031932830811, 0.006321216106414795, 0.006377408027648926, 0.006296576023101807, 0.006331391811370849, 0.006308864116668702, 0.006268928050994873, 0.006316031932830811, 0.006401023864746094, 0.006326272010803223, 0.006296576023101807, 0.006296607971191406, 0.006377439975738525, 0.006331391811370849, 0.006369279861450195, 0.006347775936126709, 0.006293504238128662, 0.006319104194641113, 0.006311935901641846, 0.006312992095947266, 0.006487008094787598, 0.006515711784362793, 0.006510591983795166, 0.013452287673950195, 0.006305791854858398, 0.006318079948425293, 0.006391808032989502, 0.006322175979614258, 0.00636518383026123, 0.006310912132263183, 0.0063569917678833006, 0.0063201279640197755, 0.006331391811370849, 0.006322175979614258, 0.006305791854858398, 0.006565887928009034, 0.0065484800338745115, 0.006464511871337891, 0.006369279861450195, 0.006304768085479737, 0.006328320026397705, 0.006302720069885254, 0.00652288007736206, 0.007012351989746094, 0.0067010560035705566, 0.006529024124145508, 0.006529024124145508, 0.0065669121742248536, 0.0065146880149841305, 0.00653926420211792, 0.0065075201988220215, 0.006550591945648193, 0.006313920021057129, 0.006303743839263916, 0.006319104194641113, 0.006298624038696289, 0.006364160060882569, 0.006334464073181153, 0.006319104194641113, 0.00632422399520874, 0.0062975997924804685, 0.006300672054290772, 0.006318079948425293, 0.0063201279640197755, 0.0063201279640197755, 0.006302720069885254, 0.006309887886047363, 0.006307839870452881, 0.006312960147857666, 0.006323200225830078, 0.006401023864746094, 0.006326272010803223, 0.006338560104370118, 0.006336512088775635, 0.006387712001800537, 0.006303743839263916, 0.006336512088775635, 0.006313983917236328, 0.006333439826965332, 0.006329343795776367, 0.006337535858154297, 0.006342656135559082, 0.00638156795501709, 0.00633241605758667, 0.006315040111541748, 0.006309855937957764, 0.013497344017028809, 0.006302720069885254, 0.006315008163452148, 0.006342656135559082, 0.006315008163452148, 0.006334464073181153, 0.006326335906982422, 0.006322112083435059, 0.006367231845855713, 0.006358016014099121, 0.006346752166748047, 0.006345727920532227, 0.006331391811370849, 0.006331391811370849, 0.006337535858154297, 0.006345727920532227, 0.006319104194641113, 0.006386688232421875, 0.006334464073181153, 0.006318079948425293, 0.006345727920532227, 0.006341631889343262, 0.006328320026397705, 0.006334464073181153, 0.006312960147857666, 0.006343679904937744, 0.006319104194641113, 0.0063610877990722655, 0.0063508481979370115, 0.006362112045288086, 0.0063201279640197755, 0.006326272010803223, 0.0063211522102355954, 0.006331391811370849, 0.006364160060882569, 0.006342656135559082, 0.006310912132263183, 0.006311935901641846, 0.006280191898345947, 0.006360064029693604, 0.006337535858154297, 0.006312960147857666, 0.0063201279640197755, 0.006312960147857666, 0.006343679904937744, 0.006327328205108643, 0.006301663875579834, 0.006334464073181153, 0.006305791854858398, 0.0063539199829101565, 0.0064143362045288085, 0.006309887886047363, 0.006245376110076905, 0.006255616188049316, 0.006254591941833496, 0.006255616188049316, 0.006240255832672119, 0.0062638077735900875, 0.006262784004211426, 0.006278143882751465, 0.006312992095947266, 0.0063426241874694825, 0.006305856227874756, 0.01340614414215088, 0.006302720069885254, 0.006305791854858398, 0.0063211522102355954, 0.0063170561790466305, 0.006343679904937744, 0.0063508801460266115, 0.006350815773010254, 0.0063201279640197755, 0.006344704151153564, 0.00632422399520874, 0.0063508481979370115, 0.006339583873748779, 0.006406144142150879, 0.006337567806243897, 0.006387712001800537, 0.006362080097198486, 0.006352896213531494, 0.006338560104370118, 0.006344704151153564, 0.00632422399520874, 0.0063610877990722655, 0.006364160060882569, 0.006329376220703125, 0.006345695972442627, 0.006303743839263916, 0.006372352123260498, 0.006337567806243897, 0.006364128112792969, 0.006333439826965332, 0.006366208076477051, 0.006344704151153564, 0.006319104194641113, 0.006370304107666015, 0.006338560104370118, 0.0063201279640197755, 0.006329343795776367, 0.006341631889343262, 0.006319104194641113, 0.006330368041992188, 0.006354944229125976, 0.0063272957801818845, 0.006315008163452148, 0.0066007041931152345, 0.006546432018280029, 0.006738944053649902, 0.006557695865631104, 0.006524928092956543, 0.006536191940307618, 0.006527999877929688, 0.006543360233306885, 0.006398975849151611, 0.006448128223419189, 0.0064174079895019534, 0.0064440321922302245, 0.00642252779006958, 0.00674508810043335, 0.0064245758056640625, 0.006312960147857666, 0.00659660816192627, 0.006308864116668702, 0.006351871967315674, 0.006323200225830078, 0.01407487964630127, 0.006498303890228272, 0.006504447937011719, 0.006511616230010986, 0.006335487842559814, 0.006337535858154297, 0.00633241605758667, 0.006330368041992188, 0.006345727920532227, 0.006343679904937744, 0.006303743839263916, 0.006342656135559082, 0.006318079948425293, 0.006326272010803223, 0.0065372161865234375, 0.006330368041992188, 0.006326272010803223, 0.006296576023101807, 0.006329343795776367, 0.0063201279640197755, 0.00642252779006958, 0.006347775936126709, 0.0063170561790466305, 0.006331391811370849, 0.006313983917236328, 0.006509568214416504, 0.006408192157745361, 0.006396927833557129, 0.006461440086364746, 0.006453279972076416, 0.006560736179351807, 0.00658022403717041, 0.006363135814666748, 0.006343679904937744, 0.006319104194641113, 0.006352896213531494, 0.0063508481979370115, 0.006307839870452881, 0.006355967998504639, 0.006301695823669433, 0.006461440086364746, 0.006372352123260498, 0.0063272957801818845, 0.006330368041992188, 0.006311935901641846, 0.006353983879089356, 0.006327231884002685, 0.006333439826965332, 0.006345727920532227, 0.006343711853027343, 0.006314976215362549, 0.006315008163452148, 0.006340608119964599, 0.006330368041992188, 0.006329343795776367, 0.00633241605758667, 0.006293504238128662, 0.0064778242111206055, 0.006379519939422608, 0.0064143362045288085, 0.006352896213531494, 0.006323200225830078, 0.006345727920532227, 0.013510656356811524, 0.006329343795776367, 0.0063498239517211915, 0.006369279861450195, 0.006328320026397705, 0.006329343795776367, 0.006338560104370118, 0.006334464073181153, 0.00633241605758667, 0.006352896213531494, 0.006333439826965332, 0.006334464073181153, 0.006310912132263183, 0.006340608119964599, 0.006319104194641113, 0.006363135814666748, 0.006328320026397705, 0.006396927833557129, 0.006310976028442382, 0.006320064067840576, 0.006322175979614258, 0.006333439826965332, 0.0063569917678833006, 0.006348800182342529, 0.006336512088775635, 0.00636518383026123, 0.0063170561790466305, 0.006370304107666015, 0.006337535858154297, 0.006319104194641113, 0.006343679904937744, 0.006306816101074219, 0.006325247764587402, 0.006348800182342529, 0.006403071880340576, 0.006317088127136231, 0.0063088321685791015, 0.006296576023101807, 0.0062863359451293946, 0.006355967998504639, 0.006301695823669433, 0.006302720069885254, 0.006884352207183838, 0.006543360233306885, 0.006334464073181153, 0.006312960147857666, 0.006244351863861084, 0.006259712219238281, 0.006464511871337891, 0.006301695823669433, 0.006336512088775635, 0.006325247764587402, 0.0063170561790466305, 0.006323200225830078, 0.0063211522102355954, 0.006377471923828125, 0.006358016014099121, 0.0063201279640197755, 0.006338560104370118, 0.006419456005096436, 0.006295551776885986, 0.0063498239517211915, 0.006305791854858398, 0.01360588836669922, 0.006304768085479737, 0.006354944229125976, 0.006362112045288086, 0.006316031932830811, 0.006354944229125976, 0.006359039783477783, 0.006298624038696289, 0.006371327877044678, 0.0062975997924804685, 0.006362112045288086, 0.006355967998504639, 0.0063211522102355954, 0.0063539199829101565, 0.006401023864746094, 0.0063610877990722655, 0.006323200225830078, 0.006273024082183838, 0.00628223991394043, 0.006284287929534912, 0.006296576023101807, 0.0062638077735900875, 0.006296576023101807, 0.006262784004211426, 0.006427648067474365, 0.006280191898345947, 0.0066744318008422855, 0.006758399963378906, 0.006755328178405762, 0.006774784088134766, 0.006759424209594727, 0.006770688056945801, 0.00675328016281128, 0.006772736072540283, 0.006731776237487793, 0.006763519763946534, 0.006755328178405762, 0.006714367866516113, 0.006740992069244385, 0.006760447978973389, 0.006731776237487793, 0.006770688056945801, 0.0067573761940002445, 0.006760447978973389, 0.00674508810043335, 0.006729728221893311, 0.006708223819732666, 0.006865920066833496, 0.0067338237762451176, 0.006766592025756836, 0.006737919807434082, 0.006740992069244385, 0.00676255989074707, 0.006774720191955567, 0.00673689603805542, 0.006719520092010498, 0.0067563199996948245, 0.006774784088134766, 0.0067348480224609375, 0.006752255916595459, 0.006765567779541016, 0.006732800006866455, 0.006765567779541016, 0.014397439956665039, 0.006789120197296142, 0.006740992069244385, 0.0067276802062988285, 0.006724607944488525, 0.0067420158386230465, 0.006754303932189941, 0.006752255916595459, 0.006779903888702392, 0.006766592025756836, 0.006743040084838867, 0.0067573761940002445, 0.0067348480224609375, 0.006758399963378906, 0.006743040084838867, 0.0067123198509216305, 0.006767615795135498, 0.006750207901000976, 0.006730751991271973, 0.006774784088134766, 0.006812672138214112, 0.006665215969085693, 0.006649856090545654, 0.006617087841033936, 0.006638591766357422, 0.006654975891113281, 0.006780928134918213, 0.006782976150512696, 0.006779903888702392, 0.006785024166107178, 0.006751232147216797, 0.006788095951080322, 0.006807551860809326, 0.0067573761940002445, 0.006766592025756836, 0.006796319961547851, 0.00674505615234375, 0.006772736072540283, 0.0067645440101623535, 0.006721536159515381, 0.006851583957672119, 0.006762527942657471, 0.006697951793670654, 0.006729728221893311, 0.0067420158386230465, 0.006713344097137451, 0.006731776237487793, 0.006715392112731934, 0.006747136116027832, 0.006749184131622315, 0.006752255916595459, 0.006717440128326416, 0.006750207901000976, 0.006791168212890625, 0.006750207901000976, 0.006779903888702392, 0.0067645440101623535, 0.006738944053649902, 0.006758399963378906, 0.006912000179290771, 0.006724607944488525, 0.006773759841918945, 0.006763519763946534, 0.013530112266540528, 0.006345727920532227, 0.0063170561790466305, 0.006359039783477783, 0.006333439826965332, 0.006370304107666015, 0.006370304107666015, 0.006379519939422608, 0.006368256092071533, 0.0063805441856384275, 0.006341631889343262, 0.006358016014099121, 0.006344704151153564, 0.0063211522102355954, 0.00638156795501709, 0.006335487842559814, 0.006391808032989502, 0.00642252779006958, 0.006322175979614258, 0.006392831802368164, 0.006301695823669433, 0.006359039783477783, 0.006363135814666748, 0.006309887886047363, 0.006370304107666015, 0.00636518383026123, 0.006360064029693604, 0.006386688232421875, 0.006343679904937744, 0.006367231845855713, 0.006369279861450195, 0.006313983917236328, 0.006338560104370118, 0.006354944229125976, 0.00632422399520874, 0.0063508481979370115, 0.006384640216827392, 0.0063211522102355954, 0.006386688232421875, 0.006351871967315674, 0.006351871967315674, 0.006378496170043945, 0.006369279861450195, 0.006348800182342529, 0.00637337589263916, 0.006308864116668702, 0.0064839677810668945, 0.006396927833557129, 0.006362112045288086, 0.006402048110961914, 0.006303743839263916, 0.0063610877990722655, 0.0063508481979370115, 0.006330368041992188, 0.006325247764587402, 0.006348800182342529, 0.006334464073181153, 0.0063539199829101565, 0.006338560104370118, 0.006326272010803223, 0.006387712001800537, 0.006339583873748779, 0.006343679904937744, 0.013538304328918458, 0.006334496021270752, 0.006407135963439941, 0.006395904064178467, 0.006368256092071533, 0.0063498239517211915, 0.00637440013885498, 0.006375423908233643, 0.006309887886047363, 0.006363135814666748, 0.006335487842559814, 0.006386720180511475, 0.00638153600692749, 0.006355967998504639, 0.006352896213531494, 0.0063610877990722655, 0.0063498239517211915, 0.0063836159706115725, 0.006298624038696289, 0.006358016014099121, 0.006367231845855713, 0.006318079948425293, 0.006386688232421875, 0.006346752166748047, 0.006466559886932373, 0.006360064029693604, 0.006313983917236328, 0.0063211522102355954, 0.006377503871917724, 0.006327263832092285, 0.006360064029693604, 0.006348800182342529, 0.006319104194641113, 0.006355967998504639, 0.006342656135559082, 0.006358016014099121, 0.006360064029693604, 0.006295551776885986, 0.006362112045288086, 0.00637337589263916, 0.006303743839263916, 0.0063508481979370115, 0.006303743839263916, 0.006331391811370849, 0.006330368041992188, 0.006351871967315674, 0.006379519939422608, 0.006376448154449463, 0.006451200008392334, 0.006346752166748047, 0.0063170561790466305, 0.006354944229125976, 0.006319104194641113, 0.006318079948425293, 0.0063539199829101565, 0.006364160060882569, 0.006310912132263183, 0.00638259220123291, 0.006332448005676269, 0.006410208225250244, 0.006378496170043945, 0.006313983917236328, 0.006360064029693604, 0.01355673599243164, 0.00633241605758667, 0.006386688232421875, 0.006322175979614258, 0.0063569917678833006, 0.006319104194641113, 0.006343679904937744, 0.006360064029693604, 0.0063272957801818845, 0.006340608119964599, 0.006322175979614258, 0.00632422399520874, 0.006339583873748779, 0.006323200225830078, 0.006388735771179199, 0.006362112045288086, 0.0063170561790466305, 0.0063170561790466305, 0.006334464073181153, 0.006347775936126709, 0.006336512088775635, 0.006436863899230957, 0.006338592052459717, 0.006329311847686768, 0.006319104194641113, 0.006368319988250732, 0.006369215965270996, 0.006333439826965332, 0.0063805441856384275, 0.006359039783477783, 0.006359039783477783, 0.006351903915405273, 0.006307871818542481, 0.006354879856109619, 0.006315072059631347, 0.006333375930786133, 0.006370304107666015, 0.006306816101074219, 0.006340640068054199, 0.006353888034820556, 0.006315008163452148, 0.006436863899230957, 0.006376448154449463, 0.006310912132263183, 0.006344704151153564, 0.006329343795776367, 0.006336512088775635, 0.0063591041564941405, 0.006338496208190918, 0.006379519939422608, 0.006348800182342529, 0.006337535858154297, 0.006375423908233643, 0.006312960147857666, 0.006331391811370849, 0.006339583873748779, 0.0062975997924804685, 0.0063539199829101565, 0.006330368041992188, 0.006308864116668702, 0.006453248023986816, 0.00632422399520874, 0.006330368041992188]",tokens/s,153.3718322108413,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-j-6b,EleutherAI/gpt-j-6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-70B,meta-llama/Meta-Llama-3-70B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -20283,16 +20596,29 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: GPTJForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-16B-nl,Salesforce/codegen-16B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/polyglot-ko-12.8b,EleutherAI/polyglot-ko-12.8b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -20312,16 +20638,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: CodeGenForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-6.7b,facebook/opt-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-65b,huggyllama/llama-65b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -20341,16 +20673,29 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 86.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-14B,Qwen/Qwen1.5-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -20360,58 +20705,32 @@ ValueError: OPTForCausalLM does not support an attention implementation through ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward - outputs = self.gpt_neox( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward - outputs = layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward - attention_layer_outputs = self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 545, in forward - query, key, value, present = self._attn_projections_and_rope( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope - qkv = self.query_key_value(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm2-20b,internlm/internlm2-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-12b,stabilityai/stablelm-2-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -20421,56 +20740,32 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/dc0130882132de7cb2eb1fa54ba5294b8c922076/modeling_internlm2.py"", line 1204, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/dc0130882132de7cb2eb1fa54ba5294b8c922076/modeling_internlm2.py"", line 1004, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/dc0130882132de7cb2eb1fa54ba5294b8c922076/modeling_internlm2.py"", line 738, in forward - hidden_states, self_attn_weights, present_key_value = self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/dc0130882132de7cb2eb1fa54ba5294b8c922076/modeling_internlm2.py"", line 625, in forward - qkv_states = self.wqkv(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,t,t,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,8,8,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -20482,7 +20777,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/t/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/8/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -20509,9 +20804,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669490c6-227ed1d3643fef5743285def;b6987a35-3757-4f11-a09a-1c25c34296b6) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694929d-6304a28710de5a83725b7e52;34eab1af-aab7-43af-9579-36df82c8b663) -Repository Not Found for url: https://huggingface.co/t/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/8/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -20536,11 +20831,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: t is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: 8 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-66b,facebook/opt-66b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-8B,meta-llama/Meta-Llama-3-8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -20560,45 +20855,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,.,.,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 373, in cached_file - raise EnvironmentError( -OSError: . does not appear to have a file named config.json. Checkout 'https://huggingface.co/./tree/None' for available files. + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mixtral-8x7B-v0.1,mistralai/Mixtral-8x7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/rho-math-1b-v0.1,microsoft/rho-math-1b-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -20618,29 +20890,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-72B,Qwen/Qwen2-beta-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-70m,EleutherAI/pythia-70m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -20660,29 +20925,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-180B,tiiuae/falcon-180B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,databricks/dbrx-base,databricks/dbrx-base,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -20694,7 +20952,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -20711,10 +20969,10 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-6694990d-5035294a29e862db4134ff12;e3557df7-fe3c-4a82-9341-6e5d52ba71fd) +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66947b68-3a4fa94d278a651d52fcd067;77ecf3ab-74ef-418c-8af1-abfdac7d9dc5) 403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json. +Cannot access content at: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json. If you are trying to create or update content,make sure you have a token with the `write` role. The above exception was the direct cause of the following exception: @@ -20753,11 +21011,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like tiiuae/falcon-180B is not the path to a directory containing a file named config.json. +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like databricks/dbrx-base is not the path to a directory containing a file named config.json. Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-4B,Qwen/Qwen1.5-4B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-2.7B,EleutherAI/gpt-neo-2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -20767,56 +21025,32 @@ Checkout your internet connection or see how to run the library in offline mode ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1221, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1023, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 763, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 257, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm-20b,internlm/internlm-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-2.7b,facebook/opt-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -20826,56 +21060,32 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 976, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 866, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 583, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 339, in forward - query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-1_6b,stabilityai/stablelm-2-1_6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciLM-7B,Deci/DeciLM-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -20883,58 +21093,32 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code + answer = input( +EOFError: EOF when reading a line + +During handling of the above exception, another exception occurred: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 1268, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 1062, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 792, in forward - self_attn_output, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 325, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights + self.create_no_weights_model() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model + meta_model = self.automodel_class.from_config(self.pretrained_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config + trust_remote_code = resolve_trust_remote_code( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code + raise ValueError( +ValueError: The repository for Deci/DeciLM-7B contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/Deci/DeciLM-7B. +Please pass the argument `trust_remote_code=True` to allow custom code to be run. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,1,1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-7b,google/recurrentgemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -20946,7 +21130,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/1/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/google/recurrentgemma-7b/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -20973,9 +21157,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694959a-2d4f38f41e42b3ce4ddd3833;3fd20cf5-6e9d-43aa-8f5c-0d865dd92b88) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948283-12c28ab815608cd24acc7138;4d13d5a7-f26c-441e-9747-c37b3aadc7d1) -Repository Not Found for url: https://huggingface.co/1/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/google/recurrentgemma-7b/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -21000,11 +21184,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: 1 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: google/recurrentgemma-7b is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-1.8B,Qwen/Qwen1.5-1.8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -21014,56 +21198,32 @@ If this is a private repository, make sure to pass a token having permission to ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1221, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1023, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 763, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 257, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-4B,Qwen/Qwen1.5-4B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -21073,46 +21233,131 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) -TypeError: DeciCoderAttention.forward() got an unexpected keyword argument 'cache_position' + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-4.5B,facebook/xglm-4.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation + cls._check_and_enable_flash_attn_2( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 + raise ValueError( +ValueError: XGLMForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpteh0fdvz/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-3b-4e1t,stabilityai/stablelm-3b-4e1t,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-30b,facebook/opt-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,s,s,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-2b,google/recurrentgemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -21124,21 +21369,11 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/s/resolve/main/config.json +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json The above exception was the direct cause of the following exception: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn @@ -21149,13 +21384,28 @@ Traceback (most recent call last): response = _request_wrapper( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948cd2-4d6c6b664524e1e5746d86dd;e5c7161f-f625-4c7e-b538-0425a6e939d7) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status + raise HfHubHTTPError(message, response=response) from e +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-6694820f-6dfab0e854bcb2f92d82d8f0;ecfad464-772d-42ec-a5af-d26dbe85c88d) -Repository Not Found for url: https://huggingface.co/s/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. +403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. +Cannot access content at: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json. +If you are trying to create or update content,make sure you have a token with the `write` role. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error + raise LocalEntryNotFoundError( +huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. The above exception was the direct cause of the following exception: @@ -21176,13 +21426,13 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file raise EnvironmentError( -OSError: s is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/recurrentgemma-2b is not the path to a directory containing a file named config.json. +Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,TencentARC/Mistral_Pro_8B_v0.1,TencentARC/Mistral_Pro_8B_v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mixtral-8x7B-v0.1,mistralai/Mixtral-8x7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -21192,56 +21442,39 @@ If this is a private repository, make sure to pass a token having permission to ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 1200, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 976, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 718, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 242, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-12b,EleutherAI/pythia-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-125m,facebook/opt-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -21251,58 +21484,32 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward - outputs = self.gpt_neox( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward - outputs = layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward - attention_layer_outputs = self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 170, in forward - query, key, value, present = self._attn_projections_and_rope( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope - qkv = self.query_key_value(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/polyglot-ko-12.8b,EleutherAI/polyglot-ko-12.8b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm-20b,internlm/internlm-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -21310,121 +21517,32 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code + answer = input( +EOFError: EOF when reading a line + +During handling of the above exception, another exception occurred: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward - outputs = self.gpt_neox( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward - outputs = layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward - attention_layer_outputs = self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 170, in forward - query, key, value, present = self._attn_projections_and_rope( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope - qkv = self.query_key_value(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights + self.create_no_weights_model() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model + meta_model = self.automodel_class.from_config(self.pretrained_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config + trust_remote_code = resolve_trust_remote_code( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code + raise ValueError( +ValueError: The repository for internlm/internlm-20b contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/internlm/internlm-20b. +Please pass the argument `trust_remote_code=True` to allow custom code to be run. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-3b,stabilityai/stablelm-base-alpha-3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward - outputs = self.gpt_neox( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward - outputs = layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward - attention_layer_outputs = self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 170, in forward - query, key, value, present = self._attn_projections_and_rope( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope - qkv = self.query_key_value(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,/,/,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-7.5B,facebook/xglm-7.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -21436,24 +21554,24 @@ ChildProcessError: Traceback (most recent call last): report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 373, in cached_file - raise EnvironmentError( -OSError: / does not appear to have a file named config.json. Checkout 'https://huggingface.co///tree/None' for available files. + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation + cls._check_and_enable_flash_attn_2( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 + raise ValueError( +ValueError: XGLMForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpofhf0fwt/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-70m,EleutherAI/pythia-70m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-3B-v1,togethercomputer/RedPajama-INCITE-Base-3B-v1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -21463,58 +21581,32 @@ OSError: / does not appear to have a file named config.json. Checkout 'https://h ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward - outputs = self.gpt_neox( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward - outputs = layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward - attention_layer_outputs = self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 170, in forward - query, key, value, present = self._attn_projections_and_rope( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope - qkv = self.query_key_value(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-2b,google/gemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,M,M,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -21526,11 +21618,21 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/gemma-2b/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/M/resolve/main/config.json The above exception was the direct cause of the following exception: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn @@ -21541,28 +21643,13 @@ Traceback (most recent call last): response = _request_wrapper( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status - raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-669480f7-4b3307f05b6207322f5489e1;b8965509-315a-4f97-9989-40d61dfff628) - -403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/google/gemma-2b/resolve/main/config.json. -If you are trying to create or update content,make sure you have a token with the `write` role. - -The above exception was the direct cause of the following exception: + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948fed-0850d74b4401a0ae539cacb0;9ba5308e-6267-424e-8240-0ef43ceea49e) -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error - raise LocalEntryNotFoundError( -huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. +Repository Not Found for url: https://huggingface.co/M/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. The above exception was the direct cause of the following exception: @@ -21583,13 +21670,13 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/gemma-2b is not the path to a directory containing a file named config.json. -Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. +OSError: M is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciLM-7B,Deci/DeciLM-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-3b,stabilityai/stablelm-base-alpha-3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -21599,56 +21686,32 @@ Checkout your internet connection or see how to run the library in offline mode ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciLM-7B/c3c9f4226801dc0433f32aebffe0aac68ee2f051/transformers_v4_35_2__modeling_llama.py"", line 1034, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciLM-7B/c3c9f4226801dc0433f32aebffe0aac68ee2f051/modeling_decilm.py"", line 274, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciLM-7B/c3c9f4226801dc0433f32aebffe0aac68ee2f051/transformers_v4_35_2__modeling_llama.py"", line 672, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciLM-7B/c3c9f4226801dc0433f32aebffe0aac68ee2f051/modeling_decilm.py"", line 84, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,databricks/dbrx-base,databricks/dbrx-base,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-13b,huggyllama/llama-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -21656,47 +21719,83 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status - raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66947b1f-1afd41a335ddeba67849ea25;2e38c0ca-0386-414d-9c86-103e1a9f6c64) - -403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json. -If you are trying to create or update content,make sure you have a token with the `write` role. + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -The above exception was the direct cause of the following exception: +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-7b-hf,meta-llama/Llama-2-7b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,-,-,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error - raise LocalEntryNotFoundError( -huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 106, in _inner_fn + validate_repo_id(arg_value) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 160, in validate_repo_id + raise HFValidationError( +huggingface_hub.errors.HFValidationError: Repo id must use alphanumeric chars or '-', '_', '.', '--' and '..' are forbidden, '-' and '.' cannot start or end the name, max length is 96: '-'. The above exception was the direct cause of the following exception: @@ -21717,13 +21816,12 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 466, in cached_file raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like databricks/dbrx-base is not the path to a directory containing a file named config.json. -Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. +OSError: Incorrect path_or_model_id: '-'. Please provide either the path to a local folder or the repo_id of a model on the Hub. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-7.5B,facebook/xglm-7.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-410m,EleutherAI/pythia-410m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -21733,56 +21831,32 @@ Checkout your internet connection or see how to run the library in offline mode ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/xglm/modeling_xglm.py"", line 760, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/xglm/modeling_xglm.py"", line 646, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/xglm/modeling_xglm.py"", line 413, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/xglm/modeling_xglm.py"", line 243, in forward - query_states = self.q_proj(hidden_states) * self.scaling - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,B,B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,/,/,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -21790,46 +21864,6 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/B/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669493b5-372aadfd1c4a48c5729717bb;7f946987-14ca-4b71-b3f4-0991b37851e6) - -Repository Not Found for url: https://huggingface.co/B/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run @@ -21846,72 +21880,12 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 373, in cached_file raise EnvironmentError( -OSError: B is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-14B,Qwen/Qwen1.5-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1221, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1023, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 763, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 257, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels +OSError: / does not appear to have a file named config.json. Checkout 'https://huggingface.co///tree/None' for available files. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-13b,facebook/opt-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -21919,309 +21893,34 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 326, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,v,v,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/v/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694946b-22a890fe488c5642487892bb;ba366b92-4f46-44a6-8f4c-32484422f882) - -Repository Not Found for url: https://huggingface.co/v/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file - raise EnvironmentError( -OSError: v is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.3b,EleutherAI/pythia-1.3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward - outputs = self.gpt_neox( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward - outputs = layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward - attention_layer_outputs = self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 170, in forward - query, key, value, present = self._attn_projections_and_rope( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope - qkv = self.query_key_value(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-40b,tiiuae/falcon-40b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/root/.cache/huggingface/modules/transformers_modules/tiiuae/falcon-40b/4a70170c215b36a3cce4b4253f6d0612bb7d4146/modeling_falcon.py"", line 900, in forward - transformer_outputs = self.transformer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/root/.cache/huggingface/modules/transformers_modules/tiiuae/falcon-40b/4a70170c215b36a3cce4b4253f6d0612bb7d4146/modeling_falcon.py"", line 797, in forward - outputs = block( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/root/.cache/huggingface/modules/transformers_modules/tiiuae/falcon-40b/4a70170c215b36a3cce4b4253f6d0612bb7d4146/modeling_falcon.py"", line 453, in forward - attn_outputs = self.self_attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/root/.cache/huggingface/modules/transformers_modules/tiiuae/falcon-40b/4a70170c215b36a3cce4b4253f6d0612bb7d4146/modeling_falcon.py"", line 291, in forward - fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neox-20b,EleutherAI/gpt-neox-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward - outputs = self.gpt_neox( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward - outputs = layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward - attention_layer_outputs = self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 170, in forward - query, key, value, present = self._attn_projections_and_rope( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope - qkv = self.query_key_value(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-13b,facebook/opt-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.4b,EleutherAI/pythia-1.4b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -22231,57 +21930,32 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 1118, in forward - outputs = self.model.decoder( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 884, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 525, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 155, in forward - query_states = self.q_proj(hidden_states) * self.scaling - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2-large,openai-community/gpt2-large,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1255.817216,2645.03296,0.0,1998.585856,1692.285952,s,10,0.2421620788574219,0.02421620788574219,0.0007151447258735442,0.02405540752410889,0.025104490089416506,0.025451717281341553,0.02572949903488159,"[0.0257989444732666, 0.02358336067199707, 0.023982303619384766, 0.023516639709472657, 0.023505535125732422, 0.02412851142883301, 0.023632959365844728, 0.024505855560302735, 0.024480640411376955, 0.025027328491210938]",tokens/s,10571.432208043005,kWh,2.7753140546097755e-07,1.5207407634566343e-07,8.297378834037525e-07,1.2593433652103935e-06,tokens/kWh,203280540.5356871,MB,1257.193472,2645.03296,0.0,1998.585856,1740.091904,s,10,13.934907348632812,1.3934907348632812,0.025773039375764546,1.3917061157226562,1.4230255249023438,1.4235073303222656,1.423892774658203,"[1.4067874755859375, 1.374333740234375, 1.3706243896484376, 1.3586650390625, 1.362622314453125, 1.376624755859375, 1.4168704833984376, 1.42291845703125, 1.4239891357421874, 1.4214715576171875]",tokens/s,45.21020371633909,kWh,1.628260937647143e-05,8.921926230863981e-06,3.281937236919722e-05,5.802390797653265e-05,tokens/kWh,1085759.339503294,,s,629,14.127670267105099,0.02246052506693975,0.0029503195630523993,0.022187007904052734,0.02265027198791504,0.02293166084289551,0.04536406036376953,"[0.022769664764404295, 0.022405120849609376, 0.022578176498413087, 0.023195648193359376, 0.023209983825683594, 0.022948863983154297, 0.022355968475341798, 0.022914047241210937, 0.023353343963623048, 0.023217151641845703, 0.023201791763305665, 0.022947839736938477, 0.023254016876220703, 0.023146495819091797, 0.023326719284057617, 0.023176191329956054, 0.022323200225830078, 0.022245376586914063, 0.02193715286254883, 0.02272153663635254, 0.023012351989746094, 0.023163904190063478, 0.02294272041320801, 0.02234060859680176, 0.02215936088562012, 0.02208768081665039, 0.022123519897460937, 0.02208460807800293, 0.022091775894165038, 0.02206617546081543, 0.022107135772705077, 0.02208358383178711, 0.022021120071411132, 0.022038528442382813, 0.02208051109313965, 0.0220150089263916, 0.02190025520324707, 0.022139904022216796, 0.022179840087890625, 0.02205904006958008, 0.02192790412902832, 0.022039552688598633, 0.022223871231079103, 0.02220953559875488, 0.02188390350341797, 0.02201190376281738, 0.022675455093383787, 0.02223411178588867, 0.02206105613708496, 0.022090751647949217, 0.021857280731201172, 0.021324800491333007, 0.021366783142089844, 0.021997568130493163, 0.022114303588867186, 0.02204569625854492, 0.022026239395141603, 0.02142207908630371, 0.021380096435546874, 0.021425151824951173, 0.021315584182739256, 0.0213309440612793, 0.04596223831176758, 0.021974016189575195, 0.022114303588867186, 0.022154239654541014, 0.02209280014038086, 0.02191974449157715, 0.02253824043273926, 0.021955583572387697, 0.022146047592163084, 0.022205440521240235, 0.02226585578918457, 0.02211737632751465, 0.02268262481689453, 0.02250649642944336, 0.021916671752929686, 0.02152448081970215, 0.021397504806518555, 0.021328895568847657, 0.021774335861206053, 0.021780479431152345, 0.021586944580078125, 0.021465087890625, 0.022072320938110353, 0.021960704803466798, 0.022072320938110353, 0.022037504196166992, 0.022006784439086914, 0.022033407211303712, 0.021959680557250977, 0.022055936813354493, 0.022128639221191407, 0.022040576934814454, 0.0220948486328125, 0.022106111526489256, 0.02224742317199707, 0.02228531265258789, 0.02211327934265137, 0.021979135513305666, 0.022032384872436524, 0.0219289608001709, 0.021993471145629884, 0.02209791946411133, 0.022039552688598633, 0.0212992000579834, 0.021410816192626952, 0.021403648376464843, 0.02163609504699707, 0.02124595260620117, 0.021142528533935546, 0.021389312744140625, 0.021386240005493166, 0.0214466552734375, 0.021399551391601563, 0.021315584182739256, 0.021326847076416015, 0.021357568740844726, 0.021409791946411134, 0.021377023696899415, 0.021366783142089844, 0.021364736557006835, 0.021374975204467773, 0.021353471755981446, 0.021223424911499023, 0.04640563201904297, 0.02209791946411133, 0.022133760452270508, 0.02215936088562012, 0.022190080642700196, 0.02220953559875488, 0.022187007904052734, 0.022112255096435548, 0.022176767349243166, 0.022145023345947267, 0.022112255096435548, 0.022082559585571288, 0.022288383483886717, 0.02206211280822754, 0.022308832168579103, 0.02231091117858887, 0.02206924819946289, 0.022254592895507814, 0.02222489547729492, 0.022042623519897463, 0.0214835205078125, 0.021370880126953123, 0.021332992553710937, 0.021533695220947266, 0.021412864685058593, 0.02131455993652344, 0.021326847076416015, 0.021283840179443358, 0.021344255447387696, 0.02128895950317383, 0.0213309440612793, 0.021343231201171875, 0.02143027114868164, 0.021319679260253906, 0.021373952865600586, 0.0214783992767334, 0.021329919815063478, 0.021348352432250976, 0.021346303939819337, 0.021257247924804688, 0.021285856246948242, 0.02147225570678711, 0.021311487197875977, 0.02129817581176758, 0.021356544494628905, 0.021321727752685548, 0.021562368392944335, 0.021621759414672852, 0.02251571273803711, 0.022560768127441407, 0.02229555130004883, 0.022179840087890625, 0.02206003189086914, 0.022012928009033202, 0.021967872619628907, 0.02206105613708496, 0.02226688003540039, 0.021485567092895508, 0.021444608688354492, 0.021311487197875977, 0.02147532844543457, 0.02142617607116699, 0.02152448081970215, 0.04532940673828125, 0.021456960678100587, 0.0213636474609375, 0.021334016799926758, 0.021410816192626952, 0.02126540756225586, 0.021332992553710937, 0.021356544494628905, 0.021361663818359376, 0.021425151824951173, 0.021332992553710937, 0.021401599884033205, 0.02150297546386719, 0.021410816192626952, 0.02147635269165039, 0.021433343887329103, 0.021370880126953123, 0.021360639572143555, 0.021415935516357423, 0.02128179168701172, 0.02147225570678711, 0.02146611213684082, 0.021404672622680664, 0.021355520248413085, 0.021335039138793945, 0.02127052879333496, 0.02127462387084961, 0.021300224304199217, 0.02129408073425293, 0.02132275199890137, 0.021327871322631836, 0.021271551132202148, 0.02127462387084961, 0.021307392120361326, 0.02125312042236328, 0.021362688064575194, 0.02129817581176758, 0.0212674560546875, 0.02125721549987793, 0.021336063385009766, 0.021368831634521485, 0.021367807388305664, 0.022182912826538087, 0.02204364776611328, 0.022477823257446287, 0.022156288146972656, 0.022164480209350586, 0.022153215408325197, 0.02215116882324219, 0.022112255096435548, 0.02223308753967285, 0.021774335861206053, 0.021360639572143555, 0.021424127578735352, 0.02147430419921875, 0.021820415496826173, 0.022039552688598633, 0.021996543884277343, 0.021987327575683592, 0.021978111267089845, 0.022215679168701173, 0.021952512741088868, 0.021716991424560548, 0.045139968872070314, 0.02131865692138672, 0.02143337631225586, 0.021398496627807618, 0.021307392120361326, 0.021493759155273438, 0.021393407821655275, 0.021301248550415038, 0.021374975204467773, 0.02145280075073242, 0.021390335083007812, 0.02150297546386719, 0.021489664077758788, 0.021440511703491212, 0.02142720031738281, 0.021526527404785157, 0.021372928619384765, 0.021565439224243164, 0.02143129539489746, 0.02141798400878906, 0.021360639572143555, 0.021386240005493166, 0.02146303939819336, 0.021389312744140625, 0.021300224304199217, 0.021390335083007812, 0.02137500762939453, 0.02170979118347168, 0.021416959762573243, 0.02166169548034668, 0.021412864685058593, 0.02129100799560547, 0.021393407821655275, 0.021315584182739256, 0.02129817581176758, 0.021374975204467773, 0.02126540756225586, 0.021320703506469727, 0.021309440612792968, 0.021335039138793945, 0.02105958366394043, 0.021311487197875977, 0.021408767700195314, 0.02206208038330078, 0.021833728790283204, 0.021940223693847655, 0.022131711959838866, 0.022004735946655272, 0.022141952514648438, 0.022601728439331056, 0.022064128875732423, 0.022550527572631835, 0.022140928268432617, 0.022034431457519533, 0.022132736206054687, 0.022040576934814454, 0.02220134353637695, 0.022141952514648438, 0.02208563232421875, 0.02213478469848633, 0.022071296691894532, 0.022076416015625, 0.02202828788757324, 0.04676198577880859, 0.022076416015625, 0.022165504455566407, 0.022025215148925782, 0.022189056396484375, 0.022040576934814454, 0.022009855270385743, 0.02191155242919922, 0.021346303939819337, 0.021363712310791014, 0.021751808166503905, 0.022120447158813478, 0.022120447158813478, 0.022024192810058595, 0.022178815841674804, 0.022125568389892578, 0.0214466552734375, 0.021332992553710937, 0.021196832656860353, 0.021298143386840822, 0.02126131248474121, 0.021347328186035155, 0.021440511703491212, 0.021309440612792968, 0.02128998374938965, 0.02130636787414551, 0.02127462387084961, 0.021506048202514647, 0.021967872619628907, 0.02267852783203125, 0.022377471923828125, 0.022228992462158204, 0.021961727142333985, 0.02238057518005371, 0.022480863571166992, 0.022366207122802736, 0.022130687713623046, 0.022410240173339844, 0.022207487106323243, 0.02203647994995117, 0.02210406494140625, 0.022013952255249023, 0.022139904022216796, 0.02206208038330078, 0.022072320938110353, 0.022063104629516602, 0.022055936813354493, 0.022146047592163084, 0.021373952865600586, 0.021384191513061524, 0.0214517765045166, 0.021425151824951173, 0.021285888671875, 0.02165247917175293, 0.02213580894470215, 0.023093248367309572, 0.022350847244262697, 0.021918720245361328, 0.02126950454711914, 0.02141798400878906, 0.021342208862304687, 0.02129100799560547, 0.02127872085571289, 0.04537753677368164, 0.021362688064575194, 0.02168012809753418, 0.021445632934570313, 0.021562368392944335, 0.023380992889404296, 0.02294988822937012, 0.022619136810302733, 0.022610944747924806, 0.022618112564086915, 0.02253107261657715, 0.022600704193115235, 0.022537216186523438, 0.02262937545776367, 0.022548479080200197, 0.02261299133300781, 0.022598655700683593, 0.022401023864746093, 0.02266828727722168, 0.022421503067016603, 0.02246348762512207, 0.02240716743469238, 0.02251263999938965, 0.022780927658081054, 0.02266111946105957, 0.022450176239013672, 0.022542335510253905, 0.02250547218322754, 0.02253107261657715, 0.022403072357177735, 0.02250752067565918, 0.0224399356842041, 0.022510591506958007, 0.022391807556152343, 0.02243071937561035, 0.022434816360473633, 0.022566911697387695, 0.02246451187133789, 0.02249830436706543, 0.022501375198364256, 0.022556671142578123, 0.02242252731323242, 0.02248294448852539, 0.022494207382202147, 0.02264473533630371, 0.022535167694091796, 0.02271027183532715, 0.022768640518188478, 0.02254745674133301, 0.022559743881225586, 0.022617088317871094, 0.022611967086791994, 0.022586368560791017, 0.022608896255493165, 0.022517759323120116, 0.022565887451171874, 0.022566911697387695, 0.02251571273803711, 0.022542335510253905, 0.02262118339538574, 0.022635520935058592, 0.02247065544128418, 0.022392831802368163, 0.04779520034790039, 0.022597631454467772, 0.022558719635009765, 0.02245734405517578, 0.022569984436035157, 0.022467584609985353, 0.02248192024230957, 0.022486015319824217, 0.02246143913269043, 0.02248294448852539, 0.022742015838623047, 0.022492160797119142, 0.022527008056640624, 0.02257302474975586, 0.022579200744628908, 0.02274508857727051, 0.02345881652832031, 0.023000064849853515, 0.02261299133300781, 0.02246246337890625, 0.02247987174987793, 0.022460416793823244, 0.022501375198364256, 0.022377471923828125, 0.022587392807006838, 0.022579200744628908, 0.022409215927124023, 0.022552576065063477, 0.022545408248901368, 0.022526975631713866, 0.022583295822143554, 0.02240924835205078, 0.02254640007019043, 0.022492191314697266, 0.022502368927001953, 0.02255462455749512, 0.022578176498413087, 0.022533119201660155, 0.022567935943603516, 0.022429695129394533, 0.02269900894165039, 0.022544384002685547, 0.022562816619873048, 0.022451200485229493, 0.022467584609985353, 0.022537216186523438, 0.022425600051879883, 0.0225218563079834, 0.02251571273803711, 0.022526975631713866, 0.022443008422851563, 0.022509567260742186, 0.02247987174987793, 0.022441984176635742, 0.02262019157409668, 0.02277884864807129, 0.022132736206054687, 0.022345727920532226, 0.023601152420043944, 0.022863872528076173, 0.022647808074951172, 0.02253107261657715, 0.02285875129699707, 0.04789452743530274, 0.022619136810302733, 0.022617088317871094, 0.022478847503662108, 0.02246963119506836, 0.022590463638305663, 0.022616064071655274, 0.022584320068359375, 0.02249830436706543, 0.022614015579223632, 0.02253824043273926, 0.022575103759765625, 0.022889471054077147, 0.022776832580566408, 0.022552576065063477, 0.02266316795349121, 0.022708223342895507, 0.022755327224731444, 0.023163904190063478, 0.023447551727294923, 0.022767616271972657, 0.022598655700683593, 0.022563840866088865, 0.022608896255493165, 0.022380544662475587, 0.022608896255493165, 0.022518783569335937, 0.02244915199279785, 0.022536224365234375, 0.022473695755004883, 0.02252390480041504, 0.022567935943603516, 0.02270412826538086, 0.022590463638305663, 0.022618112564086915, 0.022537216186523438, 0.022511615753173828, 0.022529024124145508, 0.022445056915283205, 0.022580223083496095, 0.022503423690795898, 0.022542335510253905, 0.022564863204956053, 0.02249728012084961, 0.022584320068359375, 0.022634496688842775, 0.022619136810302733, 0.022861824035644532, 0.02261299133300781, 0.022543359756469726, 0.02264575958251953, 0.022572032928466795, 0.022399999618530272, 0.022557695388793944, 0.022495231628417968, 0.022634496688842775, 0.02253107261657715, 0.022536191940307617, 0.02249625587463379, 0.0224716796875, 0.022382591247558595, 0.022590463638305663, 0.02266012763977051, 0.0479508171081543, 0.022475776672363282, 0.02249625587463379, 0.02250547218322754, 0.02250547218322754, 0.022533119201660155, 0.02248089599609375, 0.022503423690795898, 0.022444032669067384, 0.022507551193237305, 0.022583263397216797, 0.02248089599609375, 0.022525951385498046, 0.022509567260742186, 0.022599679946899414, 0.022622207641601562, 0.022597631454467772, 0.022395904541015626, 0.022401023864746093, 0.02250547218322754, 0.022385663986206054, 0.022564863204956053, 0.02261299133300781, 0.02285260772705078, 0.022624256134033204, 0.0225167350769043, 0.022809600830078124, 0.022617088317871094, 0.022585344314575196, 0.022565887451171874, 0.022597631454467772, 0.022520832061767578, 0.022486015319824217, 0.022468608856201173, 0.022527999877929687, 0.022373376846313478, 0.02243891143798828, 0.022764575958251952, 0.022584287643432618, 0.022425600051879883, 0.02244607925415039, 0.022509567260742186, 0.02246451187133789, 0.0224532470703125, 0.022565887451171874, 0.02253926467895508, 0.02261299133300781, 0.022559743881225586, 0.022495264053344725, 0.022618080139160158, 0.022915071487426757, 0.02374553680419922, 0.022756351470947265, 0.02259660720825195, 0.022460416793823244, 0.022443008422851563, 0.02251571273803711, 0.022524927139282228, 0.022544384002685547, 0.022533119201660155, 0.022412288665771486, 0.022402048110961914, 0.02247987174987793]",tokens/s,44.522556664177316,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-72B,Qwen/Qwen1.5-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-1_6b,stabilityai/stablelm-2-1_6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -22301,29 +21975,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,M,M,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-rw-1b,tiiuae/falcon-rw-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -22331,69 +21998,32 @@ torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GP File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/M/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948fa8-613d450c2f712f3110dd5bbb;c460b950-a2e4-4a33-b773-1b675861d953) - -Repository Not Found for url: https://huggingface.co/M/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code + answer = input( +EOFError: EOF when reading a line -The above exception was the direct cause of the following exception: +During handling of the above exception, another exception occurred: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file - raise EnvironmentError( -OSError: M is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights + self.create_no_weights_model() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model + meta_model = self.automodel_class.from_config(self.pretrained_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config + trust_remote_code = resolve_trust_remote_code( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code + raise ValueError( +ValueError: The repository for tiiuae/falcon-rw-1b contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/tiiuae/falcon-rw-1b. +Please pass the argument `trust_remote_code=True` to allow custom code to be run. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-7b,google/gemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-2b,google/gemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -22405,7 +22035,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/gemma-7b/resolve/main/config.json +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/gemma-2b/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -22422,10 +22052,10 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-6694814e-5675fa9451fdcf132e3bcca0;cfb71b90-400f-470d-8819-592c449d1da7) +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-6694813f-54a5b0753305d8757cf57460;bee32b92-e86e-4d7e-a4fa-b8dbc2356f6a) 403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/google/gemma-7b/resolve/main/config.json. +Cannot access content at: https://huggingface.co/google/gemma-2b/resolve/main/config.json. If you are trying to create or update content,make sure you have a token with the `write` role. The above exception was the direct cause of the following exception: @@ -22464,11 +22094,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/gemma-7b is not the path to a directory containing a file named config.json. +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/gemma-2b is not the path to a directory containing a file named config.json. Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-2.7b,EleutherAI/pythia-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-7b,tiiuae/falcon-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -22476,60 +22106,32 @@ Checkout your internet connection or see how to run the library in offline mode File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code + answer = input( +EOFError: EOF when reading a line + +During handling of the above exception, another exception occurred: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward - outputs = self.gpt_neox( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward - outputs = layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward - attention_layer_outputs = self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 170, in forward - query, key, value, present = self._attn_projections_and_rope( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope - qkv = self.query_key_value(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights + self.create_no_weights_model() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model + meta_model = self.automodel_class.from_config(self.pretrained_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config + trust_remote_code = resolve_trust_remote_code( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code + raise ValueError( +ValueError: The repository for tiiuae/falcon-7b contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/tiiuae/falcon-7b. +Please pass the argument `trust_remote_code=True` to allow custom code to be run. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-7B,Qwen/Qwen1.5-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-12b,EleutherAI/pythia-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -22539,56 +22141,32 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1221, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1023, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 763, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 257, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,-,-,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-180B,tiiuae/falcon-180B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -22596,13 +22174,47 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status + raise HfHubHTTPError(message, response=response) from e +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66949957-036bce287e56b0fd0a500625;86efad4a-6dcc-416b-bfa4-fa4ce6b119a6) + +403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. +Cannot access content at: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json. +If you are trying to create or update content,make sure you have a token with the `write` role. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 106, in _inner_fn - validate_repo_id(arg_value) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 160, in validate_repo_id - raise HFValidationError( -huggingface_hub.errors.HFValidationError: Repo id must use alphanumeric chars or '-', '_', '.', '--' and '..' are forbidden, '-' and '.' cannot start or end the name, max length is 96: '-'. + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error + raise LocalEntryNotFoundError( +huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. The above exception was the direct cause of the following exception: @@ -22623,12 +22235,13 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 466, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file raise EnvironmentError( -OSError: Incorrect path_or_model_id: '-'. Please provide either the path to a local folder or the repo_id of a model on the Hub. +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like tiiuae/falcon-180B is not the path to a directory containing a file named config.json. +Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-125m,facebook/opt-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,TencentARC/Mistral_Pro_8B_v0.1,TencentARC/Mistral_Pro_8B_v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -22638,56 +22251,32 @@ OSError: Incorrect path_or_model_id: '-'. Please provide either the path to a lo ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 1118, in forward - outputs = self.model.decoder( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 884, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 525, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 155, in forward - query_states = self.q_proj(hidden_states) * self.scaling - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-6.7b,EleutherAI/pythia-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,m,m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -22695,60 +22284,69 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/m/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948c74-02b0fbca7e23d6547042e369;b3b8e0f4-923e-4889-ab00-5654001a7a3c) + +Repository Not Found for url: https://huggingface.co/m/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward - outputs = self.gpt_neox( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward - outputs = layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward - attention_layer_outputs = self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 170, in forward - query, key, value, present = self._attn_projections_and_rope( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope - qkv = self.query_key_value(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + raise EnvironmentError( +OSError: m is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-14B,Qwen/Qwen-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-72B,Qwen/Qwen1.5-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -22766,77 +22364,31 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained - model_class = get_class_from_dynamic_module( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module - final_module = get_cached_module_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file - modules_needed = check_imports(resolved_module_file) - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports - raise ImportError( -ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-12b,stabilityai/stablelm-2-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 1268, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 1062, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 792, in forward - self_attn_output, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 325, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-30b,huggyllama/llama-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-70b-hf,meta-llama/Llama-2-70b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -22846,56 +22398,39 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 326, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 112.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-13b-hf,meta-llama/Llama-2-13b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -22905,62 +22440,32 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 970, in forward - transformer_outputs = self.transformer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 838, in forward - outputs = block( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 565, in forward - attn_outputs = self.attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 517, in forward - return self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 259, in forward - query = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-8B,meta-llama/Meta-Llama-3-8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-7b,stabilityai/stablelm-base-alpha-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -22970,56 +22475,65 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 326, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-72B,Qwen/Qwen-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code + answer = input( +EOFError: EOF when reading a line + +During handling of the above exception, another exception occurred: + +Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights + self.create_no_weights_model() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model + meta_model = self.automodel_class.from_config(self.pretrained_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config + trust_remote_code = resolve_trust_remote_code( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code + raise ValueError( +ValueError: The repository for Qwen/Qwen-72B contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/Qwen/Qwen-72B. +Please pass the argument `trust_remote_code=True` to allow custom code to be run. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,x,x,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,0,0,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -23031,7 +22545,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/x/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/0/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -23058,9 +22572,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669492ab-36dbcf4433448b790be9062b;dcab6e1e-89c7-4ff5-b63a-e5b0dddd39a1) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694951a-2e63f503383e131173776bd3;a8610390-05ae-4e3e-bc7a-e7b44b00b464) -Repository Not Found for url: https://huggingface.co/x/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/0/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -23085,11 +22599,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: x is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: 0 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,i,i,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-7b,google/gemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -23101,7 +22615,82 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/i/resolve/main/config.json +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/gemma-7b/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status + raise HfHubHTTPError(message, response=response) from e +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-669481a0-1d7bbc244040e98c2208e2f4;457b3e47-21c5-496b-8048-d6b55a7ec029) + +403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. +Cannot access content at: https://huggingface.co/google/gemma-7b/resolve/main/config.json. +If you are trying to create or update content,make sure you have a token with the `write` role. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error + raise LocalEntryNotFoundError( +huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file + raise EnvironmentError( +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/gemma-7b is not the path to a directory containing a file named config.json. +Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,x,x,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/x/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -23128,9 +22717,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948ffb-4794033e6b24e05329510985;c8a6740e-2e2a-4d3d-87ba-6d0cf00b7a4d) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669492f3-6d830d51078b4a221e736b98;24108ea5-a9ba-4ee4-9e16-16d6447f0112) -Repository Not Found for url: https://huggingface.co/i/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/x/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -23155,11 +22744,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: i is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: x is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-72B,Qwen/Qwen-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm2-20b,internlm/internlm2-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -23167,28 +22756,32 @@ If this is a private repository, make sure to pass a token having permission to File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code + answer = input( +EOFError: EOF when reading a line + +During handling of the above exception, another exception occurred: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained - model_class = get_class_from_dynamic_module( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module - final_module = get_cached_module_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file - modules_needed = check_imports(resolved_module_file) - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports - raise ImportError( -ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights + self.create_no_weights_model() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model + meta_model = self.automodel_class.from_config(self.pretrained_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config + trust_remote_code = resolve_trust_remote_code( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code + raise ValueError( +ValueError: The repository for internlm/internlm2-20b contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/internlm/internlm2-20b. +Please pass the argument `trust_remote_code=True` to allow custom code to be run. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.4b,EleutherAI/pythia-1.4b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -23198,58 +22791,32 @@ ImportError: This modeling file requires the following packages that were not fo ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward - outputs = self.gpt_neox( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward - outputs = layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward - attention_layer_outputs = self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 170, in forward - query, key, value, present = self._attn_projections_and_rope( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope - qkv = self.query_key_value(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-3B-v1,togethercomputer/RedPajama-INCITE-Base-3B-v1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-6.7b,facebook/opt-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -23259,58 +22826,32 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward - outputs = self.gpt_neox( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward - outputs = layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward - attention_layer_outputs = self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 170, in forward - query, key, value, present = self._attn_projections_and_rope( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope - qkv = self.query_key_value(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-0.5B,Qwen/Qwen1.5-0.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-14B,Qwen/Qwen2-beta-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -23320,56 +22861,32 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1221, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1023, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 763, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 257, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-7B,Qwen/Qwen-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-110B,Qwen/Qwen1.5-110B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -23387,18 +22904,31 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained - model_class = get_class_from_dynamic_module( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module - final_module = get_cached_module_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file - modules_needed = check_imports(resolved_module_file) - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports - raise ImportError( -ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 32.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-14B,Qwen/Qwen2-beta-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-564M,facebook/xglm-564M,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -23408,56 +22938,26 @@ ImportError: This modeling file requires the following packages that were not fo ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1221, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1023, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 763, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 257, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation + cls._check_and_enable_flash_attn_2( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 + raise ValueError( +ValueError: XGLMForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmps7jy47cp/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-7b,google/recurrentgemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,t,t,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -23469,7 +22969,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/google/recurrentgemma-7b/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/t/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -23496,9 +22996,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948221-1bf0f7923d277e3521096580;412f76c7-1f76-41e9-8f60-855126f5a1e6) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669490ef-28040acc6c6c8292624420af;71727f08-ce16-4f96-bb4a-7b21966561ed) -Repository Not Found for url: https://huggingface.co/google/recurrentgemma-7b/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/t/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -23523,11 +23023,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: google/recurrentgemma-7b is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: t is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-rw-1b,tiiuae/falcon-rw-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neox-20b,EleutherAI/gpt-neox-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -23537,56 +23037,32 @@ If this is a private repository, make sure to pass a token having permission to ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/root/.cache/huggingface/modules/transformers_modules/tiiuae/falcon-rw-1b/e4b9872bb803165eb22f0a867d4e6a64d34fce19/modeling_falcon.py"", line 900, in forward - transformer_outputs = self.transformer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/root/.cache/huggingface/modules/transformers_modules/tiiuae/falcon-rw-1b/e4b9872bb803165eb22f0a867d4e6a64d34fce19/modeling_falcon.py"", line 797, in forward - outputs = block( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/root/.cache/huggingface/modules/transformers_modules/tiiuae/falcon-rw-1b/e4b9872bb803165eb22f0a867d4e6a64d34fce19/modeling_falcon.py"", line 453, in forward - attn_outputs = self.self_attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/root/.cache/huggingface/modules/transformers_modules/tiiuae/falcon-rw-1b/e4b9872bb803165eb22f0a867d4e6a64d34fce19/modeling_falcon.py"", line 291, in forward - fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-70B,meta-llama/Meta-Llama-3-70B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -23606,29 +23082,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-65b,huggyllama/llama-65b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-72B,Qwen/Qwen2-beta-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -23667,10 +23136,10 @@ ChildProcessError: Traceback (most recent call last): self._buffers[key] = fn(buf) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 86.00 MiB. GPU +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,l,l,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-7B,Qwen/Qwen1.5-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -23678,69 +23147,102 @@ torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 86.00 MiB. GP File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/l/resolve/main/config.json - -The above exception was the direct cause of the following exception: + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669491a2-32161b7622c1adf138eafd32;918e0598-ac81-4e21-8a78-e5a774418c9a) +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-32B,Qwen/Qwen1.5-32B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -Repository Not Found for url: https://huggingface.co/l/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-40b,tiiuae/falcon-40b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code + answer = input( +EOFError: EOF when reading a line -The above exception was the direct cause of the following exception: +During handling of the above exception, another exception occurred: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file - raise EnvironmentError( -OSError: l is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights + self.create_no_weights_model() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model + meta_model = self.automodel_class.from_config(self.pretrained_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config + trust_remote_code = resolve_trust_remote_code( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code + raise ValueError( +ValueError: The repository for tiiuae/falcon-40b contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/tiiuae/falcon-40b. +Please pass the argument `trust_remote_code=True` to allow custom code to be run. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-4.5B,facebook/xglm-4.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-160m,EleutherAI/pythia-160m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -23750,56 +23252,32 @@ If this is a private repository, make sure to pass a token having permission to ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/xglm/modeling_xglm.py"", line 760, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/xglm/modeling_xglm.py"", line 646, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/xglm/modeling_xglm.py"", line 413, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/xglm/modeling_xglm.py"", line 243, in forward - query_states = self.q_proj(hidden_states) * self.scaling - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-110B,Qwen/Qwen1.5-110B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.3b,EleutherAI/pythia-1.3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -23819,29 +23297,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 32.00 MiB. GPU + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,8,8,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-1.8B,Qwen/Qwen1.5-1.8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -23849,69 +23320,34 @@ torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 32.00 MiB. GP File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/8/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949256-054bc40c134a0df42d637844;3152bcb1-1075-4284-be44-b99c5b849ec7) - -Repository Not Found for url: https://huggingface.co/8/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file - raise EnvironmentError( -OSError: 8 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/rho-math-1b-v0.1,microsoft/rho-math-1b-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-6B-nl,Salesforce/codegen-6B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -23921,1536 +23357,27 @@ If this is a private repository, make sure to pass a token having permission to ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 326, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-7b-hf,meta-llama/Llama-2-7b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 326, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-13b-hf,meta-llama/Llama-2-13b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 326, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mistral-7B-v0.1,mistralai/Mistral-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 1200, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 976, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 718, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 242, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-32B,Qwen/Qwen1.5-32B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1221, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1023, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 763, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 257, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,r,r,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/r/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669490fd-3f2a747c7c64b2cc25b371b8;a3c05cd9-19aa-49de-a101-169897cabdb7) - -Repository Not Found for url: https://huggingface.co/r/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file - raise EnvironmentError( -OSError: r is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-564M,facebook/xglm-564M,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/xglm/modeling_xglm.py"", line 760, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/xglm/modeling_xglm.py"", line 646, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/xglm/modeling_xglm.py"", line 413, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/xglm/modeling_xglm.py"", line 243, in forward - query_states = self.q_proj(hidden_states) * self.scaling - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-2.7B,EleutherAI/gpt-neo-2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 970, in forward - transformer_outputs = self.transformer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 838, in forward - outputs = block( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 565, in forward - attn_outputs = self.attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 517, in forward - return self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 259, in forward - query = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-410m,EleutherAI/pythia-410m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward - outputs = self.gpt_neox( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward - outputs = layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward - attention_layer_outputs = self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 170, in forward - query, key, value, present = self._attn_projections_and_rope( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope - qkv = self.query_key_value(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,0,0,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/0/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669494cc-70275b937cc5b7317485c356;6524d7bd-443b-4276-ae45-e563395c40fa) - -Repository Not Found for url: https://huggingface.co/0/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file - raise EnvironmentError( -OSError: 0 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-6B-nl,Salesforce/codegen-6B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/codegen/modeling_codegen.py"", line 667, in forward - transformer_outputs = self.transformer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/codegen/modeling_codegen.py"", line 536, in forward - outputs = block( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/codegen/modeling_codegen.py"", line 272, in forward - attn_outputs = self.attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/codegen/modeling_codegen.py"", line 163, in forward - qkv = self.qkv_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-70b-hf,meta-llama/Llama-2-70b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 112.00 MiB. GPU - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,2,2,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/2/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949353-6dbed5c34f1fb2443b523cf0;50b4a2e8-f415-4f7f-a4f5-d7dd784d2130) - -Repository Not Found for url: https://huggingface.co/2/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file - raise EnvironmentError( -OSError: 2 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,a,a,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/a/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694914e-3c9d31e241d54aa821b5a02c;1d89675e-d458-4e6f-9eb2-3812b338cf89) - -Repository Not Found for url: https://huggingface.co/a/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file - raise EnvironmentError( -OSError: a is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-350m,facebook/opt-350m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 1118, in forward - outputs = self.model.decoder( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 836, in forward - inputs_embeds = self.project_in(inputs_embeds) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/phi-1_5,microsoft/phi-1_5,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/phi/modeling_phi.py"", line 1268, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/phi/modeling_phi.py"", line 1064, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/phi/modeling_phi.py"", line 804, in forward - attn_outputs, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/phi/modeling_phi.py"", line 313, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-2.7b,facebook/opt-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 1118, in forward - outputs = self.model.decoder( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 884, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 525, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 155, in forward - query_states = self.q_proj(hidden_states) * self.scaling - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-13b,huggyllama/llama-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 326, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-7b,tiiuae/falcon-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3724, in from_pretrained - hf_quantizer.preprocess_model( - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 182, in preprocess_model - return self._process_model_before_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 85, in _process_model_before_weight_loading - model, has_been_replaced = replace_with_awq_linear( - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear - _, has_been_replaced = replace_with_awq_linear( - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear - _, has_been_replaced = replace_with_awq_linear( - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear - _, has_been_replaced = replace_with_awq_linear( - [Previous line repeated 1 more time] - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 166, in replace_with_awq_linear - model._modules[name] = target_cls( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 45, in __init__ - assert self.in_features % self.group_size == 0 -AssertionError - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-MoE-A2.7B,Qwen/Qwen1.5-MoE-A2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3724, in from_pretrained - hf_quantizer.preprocess_model( - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 182, in preprocess_model - return self._process_model_before_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 85, in _process_model_before_weight_loading - model, has_been_replaced = replace_with_awq_linear( - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear - _, has_been_replaced = replace_with_awq_linear( - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear - _, has_been_replaced = replace_with_awq_linear( - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear - _, has_been_replaced = replace_with_awq_linear( - [Previous line repeated 1 more time] - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 166, in replace_with_awq_linear - model._modules[name] = target_cls( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 46, in __init__ - assert out_features % (32 // self.w_bit) == 0 -AssertionError - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-7b,huggyllama/llama-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 326, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 326, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-2b,google/recurrentgemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status - raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-669481b3-270490a33b4dcdad4ec189ca;d450b818-373e-4673-8006-318abea629fb) - -403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json. -If you are trying to create or update content,make sure you have a token with the `write` role. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error - raise LocalEntryNotFoundError( -huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file - raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/recurrentgemma-2b is not the path to a directory containing a file named config.json. -Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-30b,facebook/opt-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 1118, in forward - outputs = self.model.decoder( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 884, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 525, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 155, in forward - query_states = self.q_proj(hidden_states) * self.scaling - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-160m,EleutherAI/pythia-160m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward - outputs = self.gpt_neox( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward - outputs = layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward - attention_layer_outputs = self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 170, in forward - query, key, value, present = self._attn_projections_and_rope( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope - qkv = self.query_key_value(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-7b,stabilityai/stablelm-base-alpha-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward - outputs = self.gpt_neox( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward - outputs = layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward - attention_layer_outputs = self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 170, in forward - query, key, value, present = self._attn_projections_and_rope( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope - qkv = self.query_key_value(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation + cls._check_and_enable_flash_attn_2( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 + raise ValueError( +ValueError: CodeGenForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpufwpg6aa/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,m,m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2,openai-community/gpt2,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1224.593408,1005.060096,0.0,358.612992,318.913024,s,23,0.170830846786499,0.007427428121152131,0.00024413026802978468,0.007357215881347657,0.0075946943283081055,0.007852940797805786,0.008269951295852663,"[0.008380415916442872, 0.00787830400466919, 0.007307871818542481, 0.007413631916046143, 0.007416895866394043, 0.0072780799865722655, 0.007253759860992431, 0.007340799808502197, 0.00735097599029541, 0.0072897601127624514, 0.007357215881347657, 0.007351200103759766, 0.007452095985412598, 0.007375872135162354, 0.007336959838867187, 0.007404831886291504, 0.007378367900848388, 0.007350815773010254, 0.007241919994354248, 0.007624671936035156, 0.007474783897399902, 0.00736736011505127, 0.007204256057739258]",tokens/s,34466.843141968995,kWh,8.354114192041346e-08,4.5776604383460934e-08,1.7923360244695143e-07,3.0855134875082585e-07,tokens/kWh,829683620.0406166,MB,1224.593408,1005.060096,0.0,358.612992,328.804864,s,23,10.12951983642578,0.44041390593155577,0.009542742855595688,0.4373620910644531,0.4437781982421875,0.45109108581542967,0.474916849975586,"[0.4814091796875, 0.45189859008789063, 0.4373620910644531, 0.43599356079101564, 0.4377264404296875, 0.4396331787109375, 0.4402783508300781, 0.43823895263671875, 0.43630859375, 0.4375812683105469, 0.43703091430664065, 0.43696951293945313, 0.4364114990234375, 0.43596710205078126, 0.43623919677734374, 0.43678070068359376, 0.43731332397460937, 0.43723104858398437, 0.4438235473632812, 0.44186441040039065, 0.4435968017578125, 0.4382613220214844, 0.4316002502441406]",tokens/s,143.04725430216266,kWh,5.045933914928732e-06,2.7649476769741185e-06,8.713782771215293e-06,1.6524664363118138e-05,tokens/kWh,3812482.8810811713,,s,1448,10.284382205963144,0.007102473899145811,0.0009630348618537469,0.006931456089019775,0.00721827836036682,0.007574528217315674,0.014597724084854125,"[0.007964672088623047, 0.00796569585800171, 0.007897088050842285, 0.00785203218460083, 0.007930880069732665, 0.007737343788146973, 0.007622655868530274, 0.00760422420501709, 0.007505919933319092, 0.0074967041015625, 0.0075335679054260255, 0.007648255825042725, 0.007678976058959961, 0.007658495903015137, 0.007508992195129394, 0.007552000045776367, 0.007705599784851074, 0.00764415979385376, 0.007676928043365478, 0.007573503971099854, 0.007642111778259277, 0.007664639949798584, 0.00765337610244751, 0.0074629120826721195, 0.007479296207427978, 0.007540736198425293, 0.007504896163940429, 0.007546879768371582, 0.007592959880828858, 0.007724031925201416, 0.007574528217315674, 0.007631872177124023, 0.007477248191833496, 0.007482367992401123, 0.007755775928497314, 0.0074967041015625, 0.007511040210723877, 0.007269375801086426, 0.007320576190948487, 0.007468031883239746, 0.007742464065551758, 0.00800051212310791, 0.007601151943206787, 0.007601151943206787, 0.008147968292236327, 0.008087552070617676, 0.007609344005584716, 0.007886847972869874, 0.007772160053253174, 0.007862271785736084, 0.0077844481468200685, 0.00765235185623169, 0.007622655868530274, 0.007872511863708496, 0.007607295989990235, 0.007804927825927735, 0.007388160228729248, 0.007648255825042725, 0.007409664154052734, 0.007129087924957276, 0.007120895862579346, 0.007165952205657959, 0.01587097644805908, 0.007638016223907471, 0.007574528217315674, 0.007745535850524903, 0.007613440036773681, 0.007448575973510742, 0.00725708818435669, 0.00749567985534668, 0.007291903972625732, 0.007451648235321045, 0.007557119846343994, 0.007046144008636474, 0.007103487968444824, 0.006964223861694336, 0.007108607769012451, 0.007080959796905518, 0.007032832145690918, 0.006998047828674316, 0.007235551834106445, 0.006897664070129395, 0.007023615837097168, 0.007216127872467041, 0.007019552230834961, 0.006999008178710938, 0.007031807899475098, 0.007042079925537109, 0.006928351879119873, 0.007155712127685547, 0.006977536201477051, 0.007123968124389648, 0.006990848064422607, 0.007591936111450195, 0.007071743965148926, 0.006994944095611572, 0.006910975933074951, 0.0069928960800170895, 0.007258111953735351, 0.006973440170288086, 0.007234591960906983, 0.0069836478233337405, 0.007014400005340577, 0.006899712085723877, 0.007013376235961914, 0.007256063938140869, 0.006994944095611572, 0.007252992153167725, 0.007035903930664063, 0.007158783912658692, 0.006909952163696289, 0.006960127830505371, 0.0070594558715820314, 0.007104512214660645, 0.006937600135803222, 0.0069632000923156735, 0.0069324798583984375, 0.007048192024230957, 0.00692633581161499, 0.00800153636932373, 0.007895040035247802, 0.007285759925842285, 0.007116799831390381, 0.00709119987487793, 0.007049215793609619, 0.01459609603881836, 0.00693555212020874, 0.006933504104614257, 0.006979584217071533, 0.006875135898590088, 0.00694271993637085, 0.006948863983154297, 0.006976511955261231, 0.006959104061126709, 0.0069283838272094726, 0.00693452787399292, 0.006937600135803222, 0.006903808116912841, 0.006919167995452881, 0.0069283838272094726, 0.006905856132507324, 0.007003136157989502, 0.007137279987335205, 0.006895616054534912, 0.006892543792724609, 0.0068986878395080565, 0.006917119979858399, 0.00692633581161499, 0.006939648151397705, 0.00692633581161499, 0.006933504104614257, 0.00690176010131836, 0.006895616054534912, 0.006918144226074219, 0.00692633581161499, 0.0068986878395080565, 0.006986752033233643, 0.006941696166992187, 0.00695091199874878, 0.0068853759765625, 0.0069324798583984375, 0.006906879901885986, 0.006952960014343262, 0.006914048194885254, 0.00693555212020874, 0.00689356803894043, 0.006964223861694336, 0.006908927917480469, 0.006937600135803222, 0.00693555212020874, 0.007006207942962647, 0.006982656002044678, 0.007010303974151612, 0.006971392154693603, 0.006910975933074951, 0.006913023948669434, 0.006918144226074219, 0.006919167995452881, 0.006913023948669434, 0.006947840213775635, 0.006929408073425293, 0.006910975933074951, 0.0069027838706970214, 0.006880256175994873, 0.006883327960968018, 0.0069283838272094726, 0.007147520065307617, 0.006989823818206787, 0.014668800354003907, 0.006913023948669434, 0.00693452787399292, 0.006882304191589355, 0.00694374418258667, 0.006876160144805908, 0.006906879901885986, 0.006904831886291504, 0.0068884482383728025, 0.006895616054534912, 0.006920191764831543, 0.006875135898590088, 0.006978559970855713, 0.006938623905181885, 0.006918144226074219, 0.007023615837097168, 0.006938623905181885, 0.006894591808319092, 0.006882304191589355, 0.006928415775299073, 0.006888415813446045, 0.006894591808319092, 0.006958079814910889, 0.006945792198181152, 0.006919167995452881, 0.006920191764831543, 0.006819839954376221, 0.006814720153808594, 0.006752255916595459, 0.006714367866516113, 0.006791168212890625, 0.00672870397567749, 0.0067870721817016606, 0.006815743923187256, 0.006841343879699707, 0.006661119937896728, 0.00682700777053833, 0.0067348480224609375, 0.006766592025756836, 0.0067870721817016606, 0.006717440128326416, 0.006973440170288086, 0.007019519805908203, 0.006986752033233643, 0.007194623947143554, 0.006993919849395752, 0.0069632000923156735, 0.006990848064422607, 0.007023615837097168, 0.006989823818206787, 0.006961152076721191, 0.007007232189178467, 0.006951935768127441, 0.007015423774719238, 0.006973440170288086, 0.006993919849395752, 0.006976511955261231, 0.0072765440940856935, 0.006922239780426025, 0.007046144008636474, 0.006909952163696289, 0.007103487968444824, 0.006964223861694336, 0.014816287994384766, 0.0069242558479309085, 0.007008255958557129, 0.006899712085723877, 0.006957056045532227, 0.006952960014343262, 0.006903808116912841, 0.007002111911773682, 0.007018496036529541, 0.0069847040176391605, 0.007208960056304932, 0.006906879901885986, 0.007000127792358399, 0.006973375797271728, 0.006986783981323242, 0.007034848213195801, 0.006924287796020508, 0.006998015880584717, 0.006948863983154297, 0.00688640022277832, 0.00694374418258667, 0.006968319892883301, 0.006874112129211426, 0.006914048194885254, 0.00687718391418457, 0.006922239780426025, 0.00687820816040039, 0.0068986878395080565, 0.006887423992156983, 0.006941696166992187, 0.006927360057830811, 0.006922239780426025, 0.006933504104614257, 0.006924287796020508, 0.006929408073425293, 0.00690176010131836, 0.006960127830505371, 0.006919167995452881, 0.006922239780426025, 0.006909952163696289, 0.006914048194885254, 0.006906879901885986, 0.00694374418258667, 0.006897664070129395, 0.007015423774719238, 0.006918144226074219, 0.006923264026641846, 0.006927360057830811, 0.00693555212020874, 0.006977536201477051, 0.006917119979858399, 0.006937600135803222, 0.0069212160110473635, 0.00692633581161499, 0.006949888229370117, 0.006940671920776367, 0.006956031799316406, 0.006988800048828125, 0.0069283838272094726, 0.006905856132507324, 0.006929408073425293, 0.006905888080596924, 0.006922207832336426, 0.014533632278442383, 0.006973440170288086, 0.006919167995452881, 0.006920191764831543, 0.006881279945373535, 0.006919167995452881, 0.006936575889587402, 0.006895616054534912, 0.006916096210479736, 0.006924287796020508, 0.006922239780426025, 0.006907904148101806, 0.006941696166992187, 0.006944767951965332, 0.007005184173583984, 0.006919167995452881, 0.00692633581161499, 0.00687820816040039, 0.0069324798583984375, 0.006889472007751465, 0.006889472007751465, 0.007050240039825439, 0.00713318395614624, 0.007243775844573975, 0.007284736156463623, 0.0071905279159545895, 0.007258111953735351, 0.007041024208068848, 0.006989823818206787, 0.007035903930664063, 0.007030784130096435, 0.0069918718338012695, 0.006993919849395752, 0.006941696166992187, 0.0069253120422363285, 0.006946815967559815, 0.006966271877288818, 0.006931456089019775, 0.007050240039825439, 0.006999040126800537, 0.006977536201477051, 0.006973440170288086, 0.006953983783721924, 0.006923264026641846, 0.006951935768127441, 0.006907904148101806, 0.007014431953430176, 0.006917088031768799, 0.006968319892883301, 0.006927360057830811, 0.006930431842803955, 0.00694271993637085, 0.006913023948669434, 0.007008255958557129, 0.006936575889587402, 0.00692633581161499, 0.006958079814910889, 0.007015423774719238, 0.006990848064422607, 0.006922239780426025, 0.00692633581161499, 0.00693452787399292, 0.007012351989746094, 0.014345215797424317, 0.00676966381072998, 0.006661119937896728, 0.0067717118263244626, 0.006789120197296142, 0.006773759841918945, 0.00672051191329956, 0.006830080032348633, 0.006714367866516113, 0.006793216228485107, 0.006797311782836914, 0.00676358413696289, 0.0067491202354431155, 0.006756351947784424, 0.006776832103729248, 0.006715392112731934, 0.006752255916595459, 0.007037951946258545, 0.0069959678649902345, 0.006970367908477783, 0.00693555212020874, 0.006985727787017822, 0.0073062400817871095, 0.006953983783721924, 0.00690176010131836, 0.007269375801086426, 0.006917119979858399, 0.006968319892883301, 0.007024640083312988, 0.007193600177764893, 0.007230463981628418, 0.006991936206817627, 0.007226304054260254, 0.006900735855102539, 0.007223296165466309, 0.0069970240592956544, 0.006896607875823975, 0.007322624206542969, 0.007062528133392334, 0.006974463939666748, 0.00688640022277832, 0.007178239822387696, 0.0069621758460998535, 0.007023615837097168, 0.0069212160110473635, 0.007299071788787842, 0.0071833600997924804, 0.007261184215545655, 0.007209983825683594, 0.007198719978332519, 0.007049215793609619, 0.0069959678649902345, 0.007003136157989502, 0.007105535984039306, 0.007074816226959229, 0.006998015880584717, 0.0069918718338012695, 0.00690176010131836, 0.006965248107910156, 0.007762944221496582, 0.006952960014343262, 0.006976511955261231, 0.0069202561378479, 0.01471072006225586, 0.0072724480628967286, 0.006916096210479736, 0.006939648151397705, 0.006899712085723877, 0.007030784130096435, 0.006989823818206787, 0.006977536201477051, 0.007060480117797851, 0.0072120318412780765, 0.006953983783721924, 0.006909952163696289, 0.006884352207183838, 0.006938623905181885, 0.006926400184631348, 0.00695084810256958, 0.006960127830505371, 0.006939648151397705, 0.0068853759765625, 0.006904831886291504, 0.006896639823913574, 0.006917119979858399, 0.006908959865570068, 0.006914015769958496, 0.006940671920776367, 0.006941696166992187, 0.006894591808319092, 0.006892543792724609, 0.007236608028411865, 0.007029759883880615, 0.006912000179290771, 0.006895679950714112, 0.006928319931030273, 0.006906879901885986, 0.006958079814910889, 0.006897664070129395, 0.006916096210479736, 0.006875167846679688, 0.006910943984985351, 0.00690176010131836, 0.00689356803894043, 0.0069027838706970214, 0.007012351989746094, 0.006970367908477783, 0.006946879863739014, 0.006910912036895752, 0.006938623905181885, 0.006899712085723877, 0.0069028158187866215, 0.006964191913604736, 0.006917119979858399, 0.006930431842803955, 0.006939648151397705, 0.0070594558715820314, 0.006999040126800537, 0.006949888229370117, 0.00695091199874878, 0.007007232189178467, 0.006937600135803222, 0.006905856132507324, 0.006920191764831543, 0.006880256175994873, 0.00692633581161499, 0.014599167823791503, 0.0069253120422363285, 0.006918144226074219, 0.006918144226074219, 0.006866943836212158, 0.006870016098022461, 0.00694374418258667, 0.0069816322326660156, 0.006914048194885254, 0.006931456089019775, 0.006946815967559815, 0.006905856132507324, 0.006940671920776367, 0.006916096210479736, 0.007143424034118652, 0.006927360057830811, 0.006937600135803222, 0.006957056045532227, 0.006896639823913574, 0.006907904148101806, 0.006887423992156983, 0.006913023948669434, 0.006900735855102539, 0.006895616054534912, 0.006890495777130127, 0.0068915200233459475, 0.006884352207183838, 0.0069324798583984375, 0.006916096210479736, 0.006897664070129395, 0.006910975933074951, 0.006903808116912841, 0.00693452787399292, 0.007013376235961914, 0.00692633581161499, 0.006889472007751465, 0.006912000179290771, 0.0068986878395080565, 0.006977536201477051, 0.006904895782470703, 0.006909887790679931, 0.006899712085723877, 0.006912000179290771, 0.006887423992156983, 0.006910975933074951, 0.006879231929779053, 0.006884352207183838, 0.0068915200233459475, 0.006903808116912841, 0.006946815967559815, 0.006875135898590088, 0.006924287796020508, 0.006918144226074219, 0.006905856132507324, 0.006973440170288086, 0.006930431842803955, 0.006915071964263916, 0.00691206407546997, 0.007011263847351074, 0.0069212160110473635, 0.006913023948669434, 0.006920191764831543, 0.006917119979858399, 0.014561280250549317, 0.006904831886291504, 0.0069283838272094726, 0.006930431842803955, 0.006904831886291504, 0.006907904148101806, 0.006908927917480469, 0.006931456089019775, 0.0069283838272094726, 0.006903808116912841, 0.006924287796020508, 0.006895616054534912, 0.006883327960968018, 0.007070720195770264, 0.006931456089019775, 0.006934559822082519, 0.006951903820037842, 0.007005184173583984, 0.0070225920677185055, 0.006919167995452881, 0.006883327960968018, 0.006973440170288086, 0.006927360057830811, 0.006957056045532227, 0.006895616054534912, 0.006903808116912841, 0.007022624015808106, 0.007080927848815918, 0.006919167995452881, 0.006929408073425293, 0.006917119979858399, 0.006916096210479736, 0.006899712085723877, 0.006899712085723877, 0.006895616054534912, 0.006917119979858399, 0.006946815967559815, 0.006915071964263916, 0.006927360057830811, 0.006884352207183838, 0.006908927917480469, 0.00687820816040039, 0.006930431842803955, 0.006919167995452881, 0.006918144226074219, 0.007233535766601563, 0.007015423774719238, 0.006924287796020508, 0.006957056045532227, 0.0069253120422363285, 0.006894591808319092, 0.006938623905181885, 0.006927360057830811, 0.006912000179290771, 0.006912000179290771, 0.006947840213775635, 0.007037951946258545, 0.006979584217071533, 0.006904831886291504, 0.006974463939666748, 0.006968319892883301, 0.006972415924072266, 0.006949888229370117, 0.014623744010925293, 0.006917119979858399, 0.006960127830505371, 0.006922239780426025, 0.0069283838272094726, 0.00698367977142334, 0.0068986878395080565, 0.006946815967559815, 0.006912000179290771, 0.0069027838706970214, 0.00688640022277832, 0.0069324798583984375, 0.006915071964263916, 0.00689356803894043, 0.006929408073425293, 0.006899712085723877, 0.006931456089019775, 0.006884352207183838, 0.006897664070129395, 0.006930431842803955, 0.006949888229370117, 0.006898752212524414, 0.006896575927734375, 0.006960127830505371, 0.006882304191589355, 0.006930431842803955, 0.006897664070129395, 0.006989823818206787, 0.006908927917480469, 0.006970367908477783, 0.007172095775604248, 0.007028736114501953, 0.006956031799316406, 0.00694374418258667, 0.006889472007751465, 0.0068915200233459475, 0.006998015880584717, 0.006939648151397705, 0.0069283838272094726, 0.006924352169036865, 0.006933440208435058, 0.0069253120422363285, 0.006907904148101806, 0.007010303974151612, 0.006948863983154297, 0.006965248107910156, 0.0069324798583984375, 0.006885407924652099, 0.006927328109741211, 0.006943808078765869, 0.006981567859649658, 0.006958079814910889, 0.006923295974731445, 0.006906847953796386, 0.00693452787399292, 0.0068986878395080565, 0.006922239780426025, 0.006908927917480469, 0.006931456089019775, 0.006900735855102539, 0.006931456089019775, 0.006889472007751465, 0.006872096061706543, 0.01465238380432129, 0.006907904148101806, 0.006927360057830811, 0.006946815967559815, 0.006900735855102539, 0.006948863983154297, 0.006927360057830811, 0.006892543792724609, 0.006960127830505371, 0.006889503955841064, 0.00689353609085083, 0.0069621758460998535, 0.006900735855102539, 0.006875135898590088, 0.006910975933074951, 0.006908927917480469, 0.006912000179290771, 0.006855679988861084, 0.006907904148101806, 0.007006207942962647, 0.006874112129211426, 0.006908927917480469, 0.006940671920776367, 0.006881279945373535, 0.00693452787399292, 0.0068986878395080565, 0.006946815967559815, 0.006880256175994873, 0.00688640022277832, 0.006918144226074219, 0.0069283838272094726, 0.0068915200233459475, 0.00698367977142334, 0.0069283838272094726, 0.006909952163696289, 0.007021567821502686, 0.006881279945373535, 0.0070522880554199216, 0.0069324798583984375, 0.00693555212020874, 0.006896639823913574, 0.006949920177459717, 0.006969312191009522, 0.006952960014343262, 0.006909952163696289, 0.006976511955261231, 0.0068853759765625, 0.006871039867401123, 0.006940671920776367, 0.006964223861694336, 0.006941696166992187, 0.006859776020050049, 0.006858751773834228, 0.006897664070129395, 0.00692633581161499, 0.006903808116912841, 0.006887423992156983, 0.006958079814910889, 0.006865920066833496, 0.006944767951965332, 0.007127039909362793, 0.00709119987487793, 0.007139328002929687, 0.014806015968322754, 0.006964223861694336, 0.00694271993637085, 0.006897664070129395, 0.00694271993637085, 0.006931456089019775, 0.0069110398292541505, 0.006891456127166748, 0.006899712085723877, 0.006905856132507324, 0.0069027838706970214, 0.006922239780426025, 0.006948863983154297, 0.00690176010131836, 0.006965248107910156, 0.00694271993637085, 0.006922304153442383, 0.006911935806274414, 0.006879231929779053, 0.007000063896179199, 0.007001088142395019, 0.006974463939666748, 0.006907904148101806, 0.006933504104614257, 0.00693452787399292, 0.006912000179290771, 0.006887423992156983, 0.00692633581161499, 0.006903808116912841, 0.006927360057830811, 0.006933504104614257, 0.006930431842803955, 0.006933504104614257, 0.0069253120422363285, 0.006906879901885986, 0.00693452787399292, 0.007009280204772949, 0.0068915200233459475, 0.006912000179290771, 0.006920191764831543, 0.006969344139099121, 0.006940671920776367, 0.006894591808319092, 0.006872064113616944, 0.006859776020050049, 0.0069253120422363285, 0.006975488185882568, 0.007011328220367432, 0.006889472007751465, 0.006876160144805908, 0.00688643217086792, 0.006930399894714356, 0.006944767951965332, 0.006916096210479736, 0.006895616054534912, 0.006900735855102539, 0.006912000179290771, 0.0068986878395080565, 0.006919167995452881, 0.00687718391418457, 0.006874112129211426, 0.0068915200233459475, 0.006866943836212158, 0.014652416229248047, 0.0069212160110473635, 0.006944767951965332, 0.00687718391418457, 0.0069642882347106935, 0.006937535762786865, 0.006914048194885254, 0.0069212160110473635, 0.006927360057830811, 0.0069253120422363285, 0.006930431842803955, 0.006933504104614257, 0.006915103912353515, 0.0069283838272094726, 0.006927328109741211, 0.006971392154693603, 0.006904831886291504, 0.006937600135803222, 0.006914048194885254, 0.006896639823913574, 0.00689356803894043, 0.006919167995452881, 0.006933504104614257, 0.006907904148101806, 0.0068689918518066405, 0.006903808116912841, 0.007013376235961914, 0.006936575889587402, 0.006941696166992187, 0.006883359909057617, 0.006904799938201905, 0.00687718391418457, 0.00688643217086792, 0.006876128196716309, 0.006919167995452881, 0.006908927917480469, 0.0068925762176513675, 0.0069201598167419436, 0.006894591808319092, 0.0068689918518066405, 0.006906879901885986, 0.006959104061126709, 0.006904831886291504, 0.006931488037109375, 0.0068873920440673825, 0.006906879901885986, 0.006896671772003174, 0.006886367797851563, 0.006938623905181885, 0.00687820816040039, 0.00687718391418457, 0.006907904148101806, 0.006998015880584717, 0.0069027838706970214, 0.006923264026641846, 0.006890495777130127, 0.0068986878395080565, 0.006960127830505371, 0.0069027838706970214, 0.0069212160110473635, 0.0068884482383728025, 0.006894591808319092, 0.006938623905181885, 0.014593024253845215, 0.006933504104614257, 0.006898719787597657, 0.0069242558479309085, 0.006897664070129395, 0.006896639823913574, 0.0069253120422363285, 0.006961152076721191, 0.006929408073425293, 0.006920191764831543, 0.006914048194885254, 0.0069283838272094726, 0.0068915200233459475, 0.006884352207183838, 0.006931456089019775, 0.006946815967559815, 0.0069027838706970214, 0.006856704235076904, 0.0069253120422363285, 0.0069212160110473635, 0.006968319892883301, 0.006905856132507324, 0.006894591808319092, 0.006916096210479736, 0.006867968082427979, 0.0069324798583984375, 0.006917119979858399, 0.006860799789428711, 0.007000063896179199, 0.007016448020935059, 0.007054336071014404, 0.006895679950714112, 0.006895552158355713, 0.006907904148101806, 0.0069283838272094726, 0.006920191764831543, 0.006859776020050049, 0.007019519805908203, 0.006895616054534912, 0.006855679988861084, 0.006979584217071533, 0.006900735855102539, 0.006946815967559815, 0.006892543792724609, 0.006904831886291504, 0.006873087882995605, 0.006938623905181885, 0.006903808116912841, 0.006917119979858399, 0.006920191764831543, 0.006860799789428711, 0.006915071964263916, 0.006945792198181152, 0.006906879901885986, 0.006913023948669434, 0.0068884482383728025, 0.006949888229370117, 0.006906879901885986, 0.007002111911773682, 0.006951935768127441, 0.006909952163696289, 0.0069027838706970214, 0.006880256175994873, 0.014742527961730957, 0.006971392154693603, 0.006909952163696289, 0.006938623905181885, 0.0068884482383728025, 0.006948863983154297, 0.006922239780426025, 0.006908927917480469, 0.0069283838272094726, 0.006914048194885254, 0.00687820816040039, 0.006920191764831543, 0.0068884482383728025, 0.006875135898590088, 0.006957056045532227, 0.0069212160110473635, 0.00693452787399292, 0.006905856132507324, 0.006978559970855713, 0.006904831886291504, 0.0069253120422363285, 0.006929408073425293, 0.006948863983154297, 0.006897664070129395, 0.006883327960968018, 0.00692633581161499, 0.006916096210479736, 0.006927360057830811, 0.007006207942962647, 0.006929408073425293, 0.0069212160110473635, 0.006900735855102539, 0.0069253120422363285, 0.006931456089019775, 0.006907904148101806, 0.00709939193725586, 0.006915071964263916, 0.00694374418258667, 0.006969344139099121, 0.006910975933074951, 0.006994944095611572, 0.006936575889587402, 0.0069069118499755855, 0.006930399894714356, 0.006910975933074951, 0.0069253120422363285, 0.00690176010131836, 0.00689356803894043, 0.006899712085723877, 0.0068853759765625, 0.006951935768127441, 0.006900735855102539, 0.006927360057830811, 0.006890495777130127, 0.0068915200233459475, 0.0069027838706970214, 0.006995999813079834, 0.006994912147521973, 0.006920191764831543, 0.0069324798583984375, 0.006895616054534912, 0.0069550080299377445, 0.006908927917480469, 0.014665727615356445, 0.006914048194885254, 0.006918144226074219, 0.006918144226074219, 0.006912000179290771, 0.00694374418258667, 0.00690176010131836, 0.006952960014343262, 0.006883327960968018, 0.006876160144805908, 0.006899712085723877, 0.006956031799316406, 0.006949888229370117, 0.006945792198181152, 0.0069253120422363285, 0.006944767951965332, 0.006945792198181152, 0.006855679988861084, 0.006905856132507324, 0.006890495777130127, 0.006905856132507324, 0.0069027838706970214, 0.006953983783721924, 0.006895616054534912, 0.007087103843688965, 0.007011328220367432, 0.006944767951965332, 0.0069253120422363285, 0.007228415966033935, 0.006970367908477783, 0.00694271993637085, 0.006924287796020508, 0.0069959678649902345, 0.007029759883880615, 0.006946815967559815, 0.006916096210479736, 0.0068915200233459475, 0.006931456089019775, 0.0068915200233459475, 0.006907904148101806, 0.006862847805023193, 0.006905856132507324, 0.006903808116912841, 0.006897664070129395, 0.006985727787017822, 0.0068986878395080565, 0.006974463939666748, 0.007048192024230957, 0.006961152076721191, 0.00692633581161499, 0.006879231929779053, 0.0068853759765625, 0.006927360057830811, 0.0069283838272094726, 0.006991936206817627, 0.006887360095977783, 0.006966271877288818, 0.006919167995452881, 0.006979584217071533, 0.006908927917480469, 0.006952960014343262, 0.006882304191589355, 0.006916096210479736, 0.014645248413085938, 0.006903808116912841, 0.0069550080299377445, 0.006904831886291504, 0.006919167995452881, 0.006909952163696289, 0.00693452787399292, 0.006914048194885254, 0.006996992111206054, 0.006957056045532227, 0.006909952163696289, 0.006961152076721191, 0.006930431842803955, 0.00694374418258667, 0.006899712085723877, 0.007104512214660645, 0.006967296123504638, 0.0068915200233459475, 0.006910975933074951, 0.006908927917480469, 0.007009280204772949, 0.006941696166992187, 0.006906879901885986, 0.006910975933074951, 0.006908927917480469, 0.006881279945373535, 0.006944767951965332, 0.0070225920677185055, 0.007060480117797851, 0.006876160144805908, 0.006990848064422607, 0.006943808078765869, 0.006904767990112305, 0.006899712085723877, 0.006931456089019775, 0.006919167995452881, 0.006939648151397705, 0.006909952163696289, 0.0069325118064880375, 0.006895584106445312, 0.006896639823913574, 0.006879231929779053, 0.00690176010131836, 0.006894591808319092, 0.0068884482383728025, 0.006903808116912841, 0.006913087844848633, 0.006928319931030273, 0.006899712085723877, 0.006903840065002441, 0.0069242558479309085, 0.0068915200233459475, 0.006914048194885254, 0.006912000179290771, 0.006933504104614257, 0.006919167995452881, 0.006971392154693603, 0.007261184215545655, 0.006969344139099121, 0.006930431842803955, 0.006971392154693603, 0.006887423992156983, 0.006945792198181152, 0.014636063575744629, 0.007252960205078125, 0.007076863765716553, 0.007001088142395019, 0.006970367908477783, 0.006974463939666748, 0.006895616054534912, 0.0069847040176391605, 0.006874112129211426, 0.0070522880554199216, 0.0069263682365417484, 0.007037919998168945, 0.006966271877288818, 0.007018496036529541, 0.007205887794494629, 0.006953983783721924, 0.0069959678649902345, 0.00704307222366333, 0.00689356803894043, 0.006999040126800537, 0.006931456089019775, 0.0070225920677185055, 0.006976511955261231, 0.00693452787399292, 0.007004159927368164, 0.007181312084197998, 0.006958079814910889, 0.006990848064422607, 0.006975488185882568, 0.006904831886291504, 0.007112703800201416, 0.007269375801086426, 0.0069632000923156735, 0.006927360057830811, 0.00698473596572876, 0.006968287944793701, 0.006958079814910889, 0.007260159969329834, 0.007002111911773682, 0.006919167995452881, 0.006956031799316406, 0.007010303974151612, 0.006985727787017822, 0.007192575931549072, 0.006986752033233643, 0.007312384128570557, 0.007241727828979493, 0.007263232231140137, 0.007411712169647216, 0.007120895862579346, 0.007129087924957276, 0.007027711868286133, 0.007016448020935059, 0.00725708818435669, 0.006986752033233643, 0.007013376235961914, 0.006919167995452881, 0.007062528133392334, 0.007166975975036621, 0.007005184173583984, 0.007010303974151612, 0.007048192024230957, 0.00693452787399292, 0.015050751686096191, 0.006931456089019775, 0.007106560230255127, 0.007230463981628418, 0.007049215793609619, 0.006980607986450196, 0.006979584217071533, 0.0069621758460998535, 0.006921279907226563, 0.007070655822753906, 0.007021567821502686, 0.006990880012512207, 0.0069836478233337405, 0.007192575931549072, 0.007269375801086426, 0.006907904148101806, 0.007000063896179199, 0.006956031799316406, 0.0068915200233459475, 0.006993919849395752, 0.006939648151397705, 0.0068915200233459475, 0.006939648151397705, 0.006964223861694336, 0.006922239780426025, 0.007088128089904785, 0.006985727787017822, 0.00687820816040039, 0.006965248107910156, 0.006884352207183838, 0.007039999961853028, 0.00694271993637085, 0.007050240039825439, 0.006924287796020508, 0.006986752033233643, 0.007234560012817383, 0.007004159927368164, 0.007000063896179199, 0.006998015880584717, 0.0069550080299377445, 0.006915071964263916, 0.007016448020935059, 0.006907904148101806, 0.006964223861694336, 0.0069918718338012695, 0.006897664070129395, 0.00707583999633789, 0.006890495777130127, 0.007128064155578613, 0.007211040019989014, 0.006999008178710938, 0.006974463939666748, 0.006976511955261231, 0.006882304191589355, 0.006985727787017822, 0.00693555212020874, 0.00790015983581543, 0.007143424034118652, 0.006940671920776367, 0.0069632000923156735, 0.006894591808319092, 0.0069816322326660156, 0.0068915200233459475, 0.014715904235839844, 0.00690176010131836, 0.006988800048828125, 0.006951935768127441, 0.006908927917480469, 0.006919167995452881, 0.00688640022277832, 0.0069212160110473635, 0.0068884482383728025, 0.006951935768127441, 0.006890495777130127, 0.0068689918518066405, 0.006906879901885986, 0.007001120090484619, 0.006945759773254395, 0.006952960014343262, 0.0069918718338012695, 0.006864895820617676, 0.006909952163696289, 0.006866943836212158, 0.006892543792724609, 0.006919167995452881, 0.0070348801612854, 0.0070563840866088865, 0.0070052480697631835, 0.006940608024597168, 0.006910975933074951, 0.006906879901885986, 0.007321599960327148, 0.007094272136688232, 0.007371776103973389, 0.007673855781555176, 0.007137279987335205, 0.006964223861694336, 0.006982656002044678, 0.007284736156463623, 0.006924287796020508, 0.007064576148986816, 0.007103487968444824, 0.006976511955261231, 0.006929408073425293, 0.006939648151397705, 0.0069816322326660156, 0.006917119979858399, 0.006888480186462403, 0.007059423923492431, 0.006910975933074951, 0.006922239780426025, 0.006870016098022461, 0.006909952163696289, 0.006894591808319092, 0.007114751815795899, 0.007982079982757568, 0.007064576148986816, 0.007649280071258545, 0.0077281279563903805, 0.00708403205871582, 0.0070225920677185055, 0.007300096035003662, 0.007173120021820068, 0.007039999961853028, 0.006969344139099121, 0.006939648151397705, 0.014486528396606446, 0.006723584175109864, 0.006748159885406494, 0.006717440128326416, 0.0067758078575134275, 0.0067573761940002445, 0.006811647891998291, 0.0067983360290527345, 0.006649856090545654, 0.006770688056945801, 0.006931456089019775, 0.0067983360290527345, 0.0067348480224609375, 0.006781951904296875, 0.006737919807434082, 0.0067573761940002445, 0.006744063854217529, 0.006760447978973389, 0.006822912216186523, 0.006897664070129395, 0.007024640083312988, 0.006904831886291504, 0.007005184173583984, 0.00687820816040039, 0.0070266880989074704, 0.007021567821502686, 0.006913023948669434, 0.006964223861694336, 0.007012351989746094, 0.006915071964263916, 0.007185408115386963, 0.007006207942962647, 0.006979584217071533, 0.00723967981338501, 0.007209983825683594, 0.006987775802612305, 0.0069212160110473635, 0.0069621758460998535, 0.006931456089019775, 0.007063551902770996, 0.0069847040176391605, 0.00698367977142334, 0.007051263809204102, 0.007016448020935059, 0.007003136157989502, 0.007104512214660645, 0.007120895862579346, 0.007079936027526855, 0.007358463764190673, 0.00728166389465332, 0.006987775802612305, 0.0068915200233459475, 0.006978559970855713, 0.007234560012817383, 0.007006207942962647, 0.0069283838272094726, 0.007095295906066895, 0.007061503887176514, 0.007015423774719238, 0.007035903930664063, 0.007011328220367432, 0.007107615947723389, 0.006958047866821289, 0.014362624168395996, 0.006820864200592041, 0.006730751991271973, 0.00682700777053833, 0.00679423999786377, 0.0068280320167541505, 0.006766592025756836, 0.0067276802062988285, 0.006837247848510742, 0.006752255916595459, 0.006815807819366455, 0.006806464195251465, 0.006740992069244385, 0.006767615795135498, 0.006711296081542969, 0.006871039867401123, 0.006770688056945801, 0.006800384044647217, 0.0068393278121948245, 0.00679318380355835, 0.006830080032348633, 0.006724607944488525, 0.00673689603805542, 0.006818816184997558, 0.00675328016281128, 0.006808576107025147, 0.006770688056945801, 0.006814720153808594, 0.006792191982269287, 0.006724607944488525, 0.00677785587310791, 0.006762495994567871, 0.0067041277885437015, 0.006730751991271973, 0.006803455829620361, 0.00672160005569458, 0.006800320148468018, 0.006797376155853271, 0.006750144004821777, 0.006681600093841553, 0.0067348480224609375, 0.0067358717918396, 0.006731776237487793, 0.006802432060241699, 0.006825984001159668, 0.006759424209594727, 0.006781951904296875, 0.007107583999633789, 0.007262207984924316, 0.006866943836212158, 0.006956031799316406, 0.00722431993484497, 0.006994944095611572, 0.007202847957611084, 0.007022560119628906, 0.006889472007751465, 0.007014400005340577, 0.006987775802612305, 0.007175168037414551, 0.0074291200637817386, 0.0069550080299377445, 0.006973440170288086, 0.0067645440101623535]",tokens/s,140.7960119529994,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-14B,Qwen/Qwen-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -25458,491 +23385,65 @@ AssertionError: AWQ kernels could not be loaded. Please install them from https: File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/m/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948c31-56d5ad366ee7254e2b0990c4;f19ecd97-032a-4c76-86d9-0ee7aa2c3620) - -Repository Not Found for url: https://huggingface.co/m/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code + answer = input( +EOFError: EOF when reading a line -The above exception was the direct cause of the following exception: +During handling of the above exception, another exception occurred: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file - raise EnvironmentError( -OSError: m is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-3b-4e1t,stabilityai/stablelm-3b-4e1t,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 1268, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 1062, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 792, in forward - self_attn_output, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 325, in forward - query_states = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-125m,EleutherAI/gpt-neo-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 970, in forward - transformer_outputs = self.transformer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 838, in forward - outputs = block( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 565, in forward - attn_outputs = self.attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 517, in forward - return self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 259, in forward - query = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2,openai-community/gpt2,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1234.579456,1005.060096,0.0,358.612992,318.913024,s,21,0.18631392097473143,0.008872091474987211,0.000924222773129299,0.008636768341064454,0.008913311958312988,0.009082719802856446,0.012191328048706058,"[0.012968480110168457, 0.008715680122375488, 0.008649439811706542, 0.008653440475463868, 0.008547360420227051, 0.008636223793029784, 0.00852006435394287, 0.008628000259399414, 0.008578911781311035, 0.008601471900939942, 0.008556415557861328, 0.00872332763671875, 0.008607872009277344, 0.008735967636108398, 0.008636768341064454, 0.008690496444702149, 0.008913311958312988, 0.00862070369720459, 0.008642592430114747, 0.009082719802856446, 0.008604672431945801]",tokens/s,28854.526660566135,kWh,1.0560125751725471e-07,5.786425132276262e-08,2.2601994052193067e-07,3.89485449361948e-07,tokens/kWh,657277442.3778274,MB,1234.579456,1005.060096,0.0,358.612992,328.809472,s,21,10.324910400390625,0.4916624000186012,0.00544805281141677,0.49037628173828124,0.4947781066894531,0.5050043334960937,0.5079629760742188,"[0.50870263671875, 0.4930988159179687, 0.48819091796875, 0.4877738342285156, 0.4884733581542969, 0.48753598022460937, 0.488943115234375, 0.48698284912109374, 0.48965280151367185, 0.4866800231933594, 0.49037628173828124, 0.4889322509765625, 0.4905810546875, 0.48850283813476564, 0.4947781066894531, 0.49458047485351564, 0.4923774108886719, 0.4912550964355469, 0.49059906005859377, 0.49188916015625, 0.5050043334960937]",tokens/s,128.13670518147515,kWh,5.982969098851764e-06,3.278237305428838e-06,1.0177446715578437e-05,1.9438653119859037e-05,tokens/kWh,3240965.287643183,,s,1322,10.486766648292543,0.007932501246817355,0.0011072131495569327,0.007730175971984863,0.008002457332611084,0.008157030057907104,0.016623786373138428,"[0.011603967666625976, 0.010896384239196777, 0.009056256294250489, 0.008364031791687012, 0.007814144134521485, 0.007742464065551758, 0.0078919677734375, 0.007983104228973388, 0.007925759792327881, 0.007923711776733398, 0.007890944004058837, 0.00773529577255249, 0.00810598373413086, 0.007941120147705078, 0.007896063804626464, 0.00778547191619873, 0.0077209601402282715, 0.007713791847229004, 0.00801689624786377, 0.007914495944976807, 0.00795750379562378, 0.007947264194488525, 0.007755775928497314, 0.007707647800445557, 0.007718912124633789, 0.0077281279563903805, 0.007827455997467042, 0.0077281279563903805, 0.007740416049957275, 0.00769536018371582, 0.007731200218200684, 0.0077281279563903805, 0.0077578239440917966, 0.007866432189941406, 0.007905216217041015, 0.007806975841522217, 0.007733280181884765, 0.007848959922790527, 0.007939040184020996, 0.007905280113220215, 0.007763967990875244, 0.007702527999877929, 0.007729152202606201, 0.0076871681213378906, 0.007738368034362793, 0.007699456214904785, 0.00774451208114624, 0.007715839862823487, 0.007705599784851074, 0.007665664196014404, 0.007705599784851074, 0.007772160053253174, 0.00832307243347168, 0.008374272346496582, 0.008364031791687012, 0.008137727737426758, 0.008676351547241211, 0.008647680282592773, 0.008061951637268066, 0.007941120147705078, 0.007804927825927735, 0.007699456214904785, 0.016753664016723634, 0.007749631881713868, 0.007865344047546387, 0.007974912166595459, 0.008176639556884765, 0.008267775535583496, 0.008225791931152344, 0.008252415657043457, 0.008347647666931152, 0.008347647666931152, 0.008121343612670898, 0.00808140754699707, 0.00795750379562378, 0.007962624073028564, 0.007906303882598878, 0.00773529577255249, 0.007738368034362793, 0.007763967990875244, 0.007729152202606201, 0.0077506561279296875, 0.0077281279563903805, 0.007724031925201416, 0.007824384212493896, 0.007721983909606934, 0.007715839862823487, 0.007718912124633789, 0.007739391803741455, 0.00787660789489746, 0.007906303882598878, 0.0078919677734375, 0.007863296031951903, 0.0077281279563903805, 0.007847936153411865, 0.007693312168121338, 0.007734272003173828, 0.007749631881713868, 0.007703551769256592, 0.007707680225372314, 0.007713791847229004, 0.00769532823562622, 0.007730175971984863, 0.007704576015472412, 0.007762944221496582, 0.007703551769256592, 0.007713791847229004, 0.007731200218200684, 0.0077209601402282715, 0.007721983909606934, 0.0076912641525268555, 0.007723008155822754, 0.007797760009765625, 0.007732223987579345, 0.007863296031951903, 0.007836671829223632, 0.007715839862823487, 0.007715839862823487, 0.0076984319686889645, 0.007693312168121338, 0.007702527999877929, 0.007692287921905518, 0.007733248233795166, 0.007749631881713868, 0.007714816093444824, 0.016701440811157226, 0.007828479766845703, 0.0077547521591186525, 0.007716864109039307, 0.007701504230499268, 0.007740416049957275, 0.007717887878417969, 0.007721983909606934, 0.007828479766845703, 0.007741471767425537, 0.007738336086273194, 0.007726079940795898, 0.00785100793838501, 0.007770112037658691, 0.007825407981872558, 0.0077506561279296875, 0.0077506561279296875, 0.007702527999877929, 0.007725056171417236, 0.007788544178009033, 0.007708672046661377, 0.007740416049957275, 0.00773529577255249, 0.0077209601402282715, 0.007741439819335938, 0.007802879810333252, 0.00779366397857666, 0.007837696075439453, 0.007726079940795898, 0.007718912124633789, 0.007726079940795898, 0.007703584194183349, 0.007741407871246338, 0.007717887878417969, 0.007705599784851074, 0.007717887878417969, 0.007699456214904785, 0.007767039775848389, 0.007716864109039307, 0.007705599784851074, 0.007756800174713135, 0.007726079940795898, 0.007723008155822754, 0.00773632001876831, 0.0077333121299743655, 0.007885759830474853, 0.00774348783493042, 0.007778304100036621, 0.007740416049957275, 0.007734335899353027, 0.0077424001693725585, 0.007721983909606934, 0.007734272003173828, 0.007772160053253174, 0.007711743831634522, 0.007724031925201416, 0.007748608112335205, 0.007730175971984863, 0.0077281279563903805, 0.007767039775848389, 0.007715839862823487, 0.007709695816040039, 0.007712768077850342, 0.016694271087646484, 0.007724031925201416, 0.00775270414352417, 0.007763967990875244, 0.0077578239440917966, 0.007700479984283447, 0.0077281279563903805, 0.007669760227203369, 0.007833600044250488, 0.007715839862823487, 0.007715839862823487, 0.007729152202606201, 0.007787519931793213, 0.00773529577255249, 0.007711743831634522, 0.00774451208114624, 0.007697408199310303, 0.007684095859527588, 0.007714816093444824, 0.0076984319686889645, 0.007693312168121338, 0.007684095859527588, 0.007703551769256592, 0.007802879810333252, 0.007802879810333252, 0.007792640209197998, 0.00774348783493042, 0.007737343788146973, 0.007920639991760254, 0.007919616222381591, 0.007796735763549805, 0.007738431930541992, 0.007714752197265625, 0.0077209601402282715, 0.007729152202606201, 0.007764992237091065, 0.007960576057434082, 0.007717887878417969, 0.007692287921905518, 0.007679999828338623, 0.007699456214904785, 0.007741471767425537, 0.007738336086273194, 0.007733248233795166, 0.007748608112335205, 0.007697408199310303, 0.007705599784851074, 0.007739391803741455, 0.007689216136932373, 0.007723008155822754, 0.007702527999877929, 0.007710720062255859, 0.007726079940795898, 0.007693312168121338, 0.007741439819335938, 0.007713791847229004, 0.00773529577255249, 0.0076943359375, 0.007782400131225586, 0.007725056171417236, 0.007685120105743408, 0.007715839862823487, 0.007738368034362793, 0.016563199996948243, 0.0077547521591186525, 0.007727104187011719, 0.007756800174713135, 0.0076984319686889645, 0.00783564805984497, 0.007682047843933106, 0.00773632001876831, 0.0076984319686889645, 0.007762944221496582, 0.007725056171417236, 0.007751679897308349, 0.007710720062255859, 0.007872511863708496, 0.007729152202606201, 0.00774451208114624, 0.007726079940795898, 0.007779327869415284, 0.00779366397857666, 0.007710720062255859, 0.007713791847229004, 0.007693312168121338, 0.007716864109039307, 0.007709695816040039, 0.007707647800445557, 0.007715839862823487, 0.007712768077850342, 0.0076871681213378906, 0.00773529577255249, 0.007710720062255859, 0.007712768077850342, 0.007706624031066894, 0.0076902399063110355, 0.007711743831634522, 0.007706624031066894, 0.007689216136932373, 0.007766016006469726, 0.0076912641525268555, 0.007726079940795898, 0.007915520191192627, 0.00795750379562378, 0.007804927825927735, 0.007710720062255859, 0.007705599784851074, 0.007717887878417969, 0.007700479984283447, 0.0076943359375, 0.008194047927856446, 0.008091648101806641, 0.007954432010650634, 0.00774451208114624, 0.007711743831634522, 0.007692319869995117, 0.007700448036193848, 0.007789567947387695, 0.007700479984283447, 0.007714816093444824, 0.007712768077850342, 0.007706624031066894, 0.007718912124633789, 0.007716864109039307, 0.0077292160987854006, 0.007698368072509765, 0.016657407760620118, 0.007730175971984863, 0.007724031925201416, 0.0078438401222229, 0.00769536018371582, 0.007745535850524903, 0.007696383953094482, 0.007697408199310303, 0.007726079940795898, 0.00785203218460083, 0.00775270414352417, 0.007676928043365478, 0.007704576015472412, 0.00774348783493042, 0.007731200218200684, 0.007701504230499268, 0.007804927825927735, 0.007708672046661377, 0.007710720062255859, 0.007707647800445557, 0.007711743831634522, 0.007700479984283447, 0.007700479984283447, 0.007699456214904785, 0.007712768077850342, 0.007697472095489502, 0.007697343826293945, 0.0076871681213378906, 0.007741471767425537, 0.007927775859832764, 0.00779366397857666, 0.00778547191619873, 0.007738368034362793, 0.00773529577255249, 0.007708672046661377, 0.007841792106628418, 0.007705599784851074, 0.007713791847229004, 0.007704576015472412, 0.007732223987579345, 0.007716928005218506, 0.007747519969940186, 0.007733248233795166, 0.007702527999877929, 0.007742464065551758, 0.007692287921905518, 0.007708672046661377, 0.007714848041534424, 0.007716832160949707, 0.007709695816040039, 0.007716864109039307, 0.0077209601402282715, 0.007709695816040039, 0.0077506561279296875, 0.0077578239440917966, 0.007712768077850342, 0.007811071872711181, 0.007751679897308349, 0.007782400131225586, 0.007685120105743408, 0.007799808025360107, 0.007716864109039307, 0.007768064022064209, 0.016578559875488282, 0.0077199358940124516, 0.007724031925201416, 0.007730175971984863, 0.007751679897308349, 0.007838719844818116, 0.007721983909606934, 0.007738368034362793, 0.007946239948272706, 0.007903232097625732, 0.007706624031066894, 0.007726079940795898, 0.007748608112335205, 0.007771135807037354, 0.007941120147705078, 0.00794220781326294, 0.007843776226043701, 0.007714816093444824, 0.007815167903900147, 0.007742464065551758, 0.007722015857696533, 0.007703519821166992, 0.007739391803741455, 0.007772160053253174, 0.007702527999877929, 0.007701504230499268, 0.007732223987579345, 0.007699456214904785, 0.008051775932312011, 0.008126399993896484, 0.007746560096740723, 0.0077281279563903805, 0.007717887878417969, 0.0076943359375, 0.0076871681213378906, 0.007692287921905518, 0.007706624031066894, 0.007808000087738037, 0.0077209601402282715, 0.007701504230499268, 0.007711743831634522, 0.0078438401222229, 0.007739391803741455, 0.007706624031066894, 0.007716864109039307, 0.007707647800445557, 0.007768064022064209, 0.007886847972869874, 0.007692287921905518, 0.007712768077850342, 0.007726079940795898, 0.007709695816040039, 0.007706624031066894, 0.00773529577255249, 0.007704576015472412, 0.00773529577255249, 0.007718912124633789, 0.007711743831634522, 0.007676928043365478, 0.0076871681213378906, 0.007708703994750977, 0.007705567836761474, 0.007707647800445557, 0.016647167205810547, 0.007724031925201416, 0.007713791847229004, 0.007688191890716553, 0.007745600223541259, 0.007724991798400879, 0.007704576015472412, 0.007768064022064209, 0.007717887878417969, 0.007707647800445557, 0.007766016006469726, 0.007725056171417236, 0.00769536018371582, 0.00769536018371582, 0.007714816093444824, 0.007707647800445557, 0.007798783779144287, 0.00790118408203125, 0.00781004810333252, 0.0076574721336364745, 0.007778304100036621, 0.007678976058959961, 0.007707647800445557, 0.0077209601402282715, 0.007697408199310303, 0.007703551769256592, 0.0076902399063110355, 0.007699456214904785, 0.007769087791442871, 0.0077844481468200685, 0.007714816093444824, 0.007693312168121338, 0.0077209601402282715, 0.007701504230499268, 0.0077578239440917966, 0.007845888137817383, 0.007723008155822754, 0.007715839862823487, 0.007715839862823487, 0.007713791847229004, 0.0076943359375, 0.007692287921905518, 0.007703551769256592, 0.0076943359375, 0.007688191890716553, 0.007770112037658691, 0.0076912641525268555, 0.007683072090148926, 0.007733248233795166, 0.0076984319686889645, 0.007782400131225586, 0.007789567947387695, 0.007717919826507568, 0.007701471805572509, 0.007716864109039307, 0.007721983909606934, 0.007721983909606934, 0.007702527999877929, 0.0077547521591186525, 0.007731200218200684, 0.0076943359375, 0.007699456214904785, 0.007689216136932373, 0.016616479873657226, 0.007721951961517334, 0.0076984319686889645, 0.007682079792022705, 0.0077536959648132325, 0.007910399913787843, 0.0077199358940124516, 0.007729152202606201, 0.007723008155822754, 0.007775231838226319, 0.007875584125518798, 0.007718912124633789, 0.007697408199310303, 0.007702527999877929, 0.007699456214904785, 0.007777279853820801, 0.008135680198669434, 0.007952383995056152, 0.007699456214904785, 0.007688191890716553, 0.0076912641525268555, 0.007688191890716553, 0.007723008155822754, 0.007730175971984863, 0.007710720062255859, 0.00773529577255249, 0.007718912124633789, 0.0076912641525268555, 0.007692319869995117, 0.0076973757743835445, 0.007742464065551758, 0.007873536109924317, 0.007718912124633789, 0.008615936279296875, 0.007956480026245117, 0.007966720104217529, 0.007947264194488525, 0.007872511863708496, 0.0077608962059021, 0.007699456214904785, 0.007715839862823487, 0.00769536018371582, 0.007725056171417236, 0.007732223987579345, 0.007871488094329833, 0.007798783779144287, 0.0077209601402282715, 0.007711743831634522, 0.007717887878417969, 0.0077281279563903805, 0.007717887878417969, 0.007701504230499268, 0.007701504230499268, 0.007703551769256592, 0.007751679897308349, 0.007730175971984863, 0.007711743831634522, 0.0076984319686889645, 0.007762944221496582, 0.007710720062255859, 0.00773632001876831, 0.007712800025939942, 0.007716832160949707, 0.01661030387878418, 0.007712768077850342, 0.007726079940795898, 0.007716864109039307, 0.007732223987579345, 0.007729152202606201, 0.007705599784851074, 0.007732223987579345, 0.007708672046661377, 0.007714816093444824, 0.007675903797149658, 0.007910399913787843, 0.007725056171417236, 0.007729152202606201, 0.007730175971984863, 0.007763967990875244, 0.007731200218200684, 0.007730175971984863, 0.0076871681213378906, 0.007688191890716553, 0.007684095859527588, 0.007711743831634522, 0.0076687359809875484, 0.007706624031066894, 0.007774208068847656, 0.007678976058959961, 0.007700479984283447, 0.0076902399063110355, 0.007696447849273681, 0.007699391841888428, 0.007823359966278077, 0.007854080200195313, 0.007693312168121338, 0.007725056171417236, 0.007701504230499268, 0.00783564805984497, 0.007677951812744141, 0.007689216136932373, 0.007685120105743408, 0.007682047843933106, 0.007734272003173828, 0.007696383953094482, 0.007682047843933106, 0.007710720062255859, 0.007696383953094482, 0.007702527999877929, 0.0076984319686889645, 0.00775270414352417, 0.007681024074554443, 0.007682047843933106, 0.007686143875122071, 0.007697408199310303, 0.0077199358940124516, 0.007731200218200684, 0.007727104187011719, 0.007754784107208252, 0.0077209281921386715, 0.007737343788146973, 0.007764992237091065, 0.007710720062255859, 0.007709695816040039, 0.007701504230499268, 0.007770112037658691, 0.016547840118408205, 0.007730175971984863, 0.007739391803741455, 0.007730175971984863, 0.007729152202606201, 0.00789299201965332, 0.0077619199752807615, 0.007703551769256592, 0.007711743831634522, 0.007745535850524903, 0.007731200218200684, 0.0078438401222229, 0.007710720062255859, 0.0077619199752807615, 0.007710720062255859, 0.007699456214904785, 0.0077281279563903805, 0.008186944007873535, 0.008094655990600585, 0.007806975841522217, 0.007730175971984863, 0.00773529577255249, 0.007699456214904785, 0.0077199358940124516, 0.007721983909606934, 0.007737343788146973, 0.007670783996582031, 0.007726079940795898, 0.007745535850524903, 0.007716864109039307, 0.007806975841522217, 0.007882751941680909, 0.007704576015472412, 0.007703551769256592, 0.0077209601402282715, 0.007707647800445557, 0.007676928043365478, 0.008251456260681153, 0.008133567810058594, 0.007824384212493896, 0.007700479984283447, 0.0076984319686889645, 0.0077209601402282715, 0.007747583866119385, 0.007709695816040039, 0.007673855781555176, 0.007715839862823487, 0.007702527999877929, 0.007711743831634522, 0.008233983993530274, 0.007969791889190675, 0.007902207851409913, 0.00793497610092163, 0.007878655910491944, 0.007746560096740723, 0.007704576015472412, 0.007705599784851074, 0.007717887878417969, 0.007718912124633789, 0.007718944072723389, 0.0077291841506958005, 0.00770246410369873, 0.007727104187011719, 0.01676288032531738, 0.007725056171417236, 0.007721983909606934, 0.007742464065551758, 0.00769536018371582, 0.007717887878417969, 0.007709760189056397, 0.007786431789398193, 0.007712768077850342, 0.007718912124633789, 0.007725056171417236, 0.007823359966278077, 0.007729152202606201, 0.007708672046661377, 0.007699456214904785, 0.007780352115631104, 0.007726079940795898, 0.007726079940795898, 0.007740416049957275, 0.007729152202606201, 0.007700479984283447, 0.007715839862823487, 0.007773183822631836, 0.007751679897308349, 0.0077199358940124516, 0.007716864109039307, 0.007704576015472412, 0.007727104187011719, 0.007710720062255859, 0.007731200218200684, 0.007723008155822754, 0.007889920234680176, 0.00790937614440918, 0.008008735656738281, 0.00790012788772583, 0.007946239948272706, 0.00785100793838501, 0.007679999828338623, 0.007686143875122071, 0.007853055953979492, 0.00769536018371582, 0.007714816093444824, 0.007721983909606934, 0.007976960182189942, 0.007935999870300293, 0.007832575798034667, 0.007708672046661377, 0.007726079940795898, 0.007707647800445557, 0.007676928043365478, 0.007708672046661377, 0.00773632001876831, 0.007734272003173828, 0.007734272003173828, 0.007725056171417236, 0.007711743831634522, 0.00774451208114624, 0.007724031925201416, 0.00780185604095459, 0.007727104187011719, 0.0077281279563903805, 0.007778304100036621, 0.007770112037658691, 0.01660211181640625, 0.007740416049957275, 0.007758848190307617, 0.007717887878417969, 0.0076984319686889645, 0.007717887878417969, 0.007723008155822754, 0.007696383953094482, 0.00782643222808838, 0.0076902399063110355, 0.007689216136932373, 0.007712768077850342, 0.00794316816329956, 0.007795711994171142, 0.007724031925201416, 0.007756800174713135, 0.007738368034362793, 0.007890944004058837, 0.007928832054138184, 0.007711743831634522, 0.007721983909606934, 0.007827455997467042, 0.007703551769256592, 0.007713791847229004, 0.007709695816040039, 0.007723008155822754, 0.007705599784851074, 0.007701504230499268, 0.00779366397857666, 0.007730175971984863, 0.007710720062255859, 0.007721983909606934, 0.00773632001876831, 0.007712768077850342, 0.007732223987579345, 0.007749695777893067, 0.007699391841888428, 0.007712768077850342, 0.00769536018371582, 0.007714816093444824, 0.007675903797149658, 0.007679999828338623, 0.007706624031066894, 0.007713791847229004, 0.007707647800445557, 0.007725056171417236, 0.0077199358940124516, 0.0077199358940124516, 0.007711743831634522, 0.007701504230499268, 0.008041472434997558, 0.007925759792327881, 0.007964672088623047, 0.008812543869018554, 0.00818892765045166, 0.007971839904785156, 0.007931903839111328, 0.00797388792037964, 0.007821311950683594, 0.00773632001876831, 0.007737343788146973, 0.0076984319686889645, 0.0077506561279296875, 0.016773120880126953, 0.007713791847229004, 0.007703551769256592, 0.007712768077850342, 0.0077199358940124516, 0.007724031925201416, 0.007887872219085693, 0.007883776187896728, 0.007776256084442139, 0.0076943359375, 0.007706655979156494, 0.007736288070678711, 0.007830527782440186, 0.0077619199752807615, 0.0077281279563903805, 0.007740416049957275, 0.007749631881713868, 0.007731200218200684, 0.007759871959686279, 0.007758848190307617, 0.007709695816040039, 0.0077209601402282715, 0.007706624031066894, 0.007707647800445557, 0.007697408199310303, 0.007702527999877929, 0.0077209601402282715, 0.00769536018371582, 0.007708672046661377, 0.007721983909606934, 0.008154111862182617, 0.008143872261047362, 0.007910399913787843, 0.007795711994171142, 0.007726079940795898, 0.007689280033111572, 0.007698368072509765, 0.007763967990875244, 0.007821311950683594, 0.007713791847229004, 0.007711743831634522, 0.007733248233795166, 0.007748608112335205, 0.007656447887420655, 0.00775270414352417, 0.007725056171417236, 0.0077281279563903805, 0.007710720062255859, 0.007682047843933106, 0.007711743831634522, 0.007732223987579345, 0.007700479984283447, 0.007749631881713868, 0.00773632001876831, 0.007706624031066894, 0.007697408199310303, 0.00774348783493042, 0.00773632001876831, 0.007778304100036621, 0.00773632001876831, 0.007763967990875244, 0.007724031925201416, 0.007725056171417236, 0.01663488006591797, 0.0077281279563903805, 0.0077292160987854006, 0.00771782398223877, 0.007703551769256592, 0.007724031925201416, 0.007721983909606934, 0.007717887878417969, 0.007869440078735352, 0.007717887878417969, 0.007703551769256592, 0.007697408199310303, 0.00781824016571045, 0.007864319801330566, 0.007912447929382324, 0.007799808025360107, 0.007717887878417969, 0.007748608112335205, 0.007753727912902832, 0.007782400131225586, 0.007894015789031983, 0.007772160053253174, 0.007773183822631836, 0.007839744091033935, 0.007825407981872558, 0.007860223770141601, 0.007705599784851074, 0.007798783779144287, 0.007741439819335938, 0.007748608112335205, 0.007869440078735352, 0.0077209601402282715, 0.007725056171417236, 0.007706624031066894, 0.0076984319686889645, 0.007726079940795898, 0.007718912124633789, 0.007711743831634522, 0.0077547521591186525, 0.0077281279563903805, 0.007716864109039307, 0.0076943359375, 0.007706624031066894, 0.007708735942840576, 0.008207296371459961, 0.00828006362915039, 0.008375295639038086, 0.008964159965515136, 0.008193984031677246, 0.008244223594665527, 0.008076288223266602, 0.008083456039428711, 0.008111104011535645, 0.008119296073913575, 0.007963647842407226, 0.007763967990875244, 0.007849984169006348, 0.007905344009399413, 0.00797382402420044, 0.007958528041839599, 0.007767039775848389, 0.007678976058959961, 0.007705599784851074, 0.016735231399536133, 0.007749631881713868, 0.007739391803741455, 0.007732223987579345, 0.007741439819335938, 0.007729152202606201, 0.007734272003173828, 0.007770112037658691, 0.007745535850524903, 0.007739391803741455, 0.0076912641525268555, 0.007707680225372314, 0.0077803201675415035, 0.007710720062255859, 0.007718912124633789, 0.00785920000076294, 0.007742464065551758, 0.007711743831634522, 0.007757855892181397, 0.007923679828643799, 0.00797388792037964, 0.007967743873596191, 0.007703551769256592, 0.007781375885009765, 0.007738368034362793, 0.0077199358940124516, 0.0077199358940124516, 0.00773632001876831, 0.007770112037658691, 0.007689216136932373, 0.007716864109039307, 0.00784281587600708, 0.007911424160003662, 0.007947264194488525, 0.007904255867004394, 0.00787766408920288, 0.007705567836761474, 0.007828479766845703, 0.007711743831634522, 0.007731200218200684, 0.007724031925201416, 0.007885824203491211, 0.0077281279563903805, 0.007792640209197998, 0.00790937614440918, 0.007910399913787843, 0.00787660789489746, 0.007709695816040039, 0.007669760227203369, 0.007706655979156494, 0.007722976207733154, 0.007747583866119385, 0.009075712203979493, 0.0091146240234375, 0.008141823768615723, 0.007981056213378907, 0.007968768119812012, 0.007946239948272706, 0.008045568466186523, 0.007699456214904785, 0.00791756820678711, 0.00808243179321289, 0.007932928085327149, 0.01699430465698242, 0.007724031925201416, 0.007711743831634522, 0.007674880027770996, 0.007733248233795166, 0.007865344047546387, 0.008018943786621094, 0.007984127998352051, 0.007921664237976075, 0.0078919677734375, 0.007894015789031983, 0.007947264194488525, 0.0077209601402282715, 0.007711743831634522, 0.007716864109039307, 0.007726079940795898, 0.008037376403808593, 0.008160256385803222, 0.008114175796508789, 0.007946239948272706, 0.007955455780029297, 0.007880703926086426, 0.007709695816040039, 0.0076902399063110355, 0.007707647800445557, 0.007819263935089112, 0.0077066879272460935, 0.0077127041816711425, 0.007713791847229004, 0.007715839862823487, 0.007741439819335938, 0.007872511863708496, 0.008002559661865234, 0.007911424160003662, 0.007808000087738037, 0.007950335979461669, 0.007971839904785156, 0.007889920234680176, 0.007895040035247802, 0.007922688007354736, 0.007844863891601562, 0.007697408199310303, 0.007679999828338623, 0.007716864109039307, 0.007702527999877929, 0.0077547521591186525, 0.007723008155822754, 0.007700479984283447, 0.0076943359375, 0.007708672046661377, 0.00769536018371582, 0.007707647800445557, 0.0076902399063110355, 0.0076943359375, 0.007699456214904785, 0.007935999870300293, 0.007902207851409913, 0.007918591976165772, 0.00793398380279541, 0.007732192039489746, 0.007676928043365478, 0.007679999828338623, 0.007780352115631104, 0.016642080307006837, 0.007711711883544922, 0.007697408199310303, 0.007676928043365478, 0.007706624031066894, 0.007731200218200684, 0.007718976020812988, 0.00803116798400879, 0.007894015789031983, 0.007731200218200684, 0.007890944004058837, 0.008027135848999023, 0.008517631530761719, 0.007713791847229004, 0.007714816093444824, 0.00786947202682495, 0.007754720211029052, 0.007733248233795166, 0.007702527999877929, 0.007700479984283447, 0.007743519783020019, 0.007692255973815918, 0.007667712211608887, 0.007686143875122071, 0.007748608112335205, 0.007677951812744141, 0.007717887878417969, 0.007771135807037354, 0.007829504013061523, 0.007766016006469726, 0.00800153636932373, 0.007898111820220948, 0.007880703926086426, 0.007862271785736084, 0.007678016185760498, 0.007819200038909912, 0.007671840190887451, 0.007682015895843506, 0.007673855781555176, 0.007704576015472412, 0.0076871681213378906, 0.007699456214904785, 0.007682047843933106, 0.007710720062255859, 0.007718944072723389, 0.0076902079582214355, 0.007753727912902832, 0.007715839862823487, 0.007767039775848389, 0.007705599784851074, 0.007976960182189942, 0.007907328128814697, 0.007895040035247802, 0.007870463848114014, 0.008042495727539062, 0.007890975952148438, 0.007929823875427245, 0.007815167903900147, 0.008281087875366211, 0.007686143875122071, 0.007705599784851074, 0.007724031925201416, 0.00773632001876831, 0.01665023994445801, 0.0076984319686889645, 0.007708672046661377, 0.007708672046661377, 0.007717887878417969, 0.007837696075439453, 0.007702527999877929, 0.00774451208114624, 0.007753727912902832, 0.007738368034362793, 0.007723008155822754, 0.007798783779144287, 0.007696383953094482, 0.007700479984283447, 0.007701504230499268, 0.007718912124633789, 0.007715839862823487, 0.007762944221496582, 0.00785203218460083, 0.007715839862823487, 0.007769087791442871, 0.007730175971984863, 0.007700479984283447, 0.0077199358940124516, 0.007688191890716553, 0.007705599784851074, 0.0076943359375, 0.007681024074554443, 0.0076984319686889645, 0.007692287921905518, 0.007710720062255859, 0.007753727912902832, 0.00773529577255249, 0.007738368034362793, 0.007740416049957275, 0.007705599784851074, 0.0077281279563903805, 0.007871488094329833, 0.007733248233795166, 0.007703551769256592, 0.007703551769256592, 0.007701504230499268, 0.007677951812744141, 0.007689216136932373, 0.007725056171417236, 0.007723008155822754, 0.007781375885009765, 0.007701504230499268, 0.007701504230499268, 0.00852684783935547, 0.0082227201461792, 0.007988224029541016, 0.00809881591796875, 0.007950335979461669, 0.007958528041839599, 0.007836671829223632, 0.007874559879302979, 0.007763967990875244, 0.007967743873596191, 0.0078438401222229, 0.007737343788146973, 0.007927807807922363, 0.00799948787689209, 0.017304576873779298, 0.0077199358940124516, 0.007718912124633789, 0.007681024074554443, 0.0076871681213378906, 0.007727104187011719, 0.0076984319686889645, 0.007781375885009765, 0.007724031925201416, 0.007789567947387695, 0.007988224029541016, 0.008054783821105957, 0.007925759792327881, 0.00790937614440918, 0.00774348783493042, 0.007699456214904785, 0.00774348783493042, 0.007709695816040039, 0.007708672046661377, 0.007677951812744141, 0.00774348783493042, 0.007771135807037354, 0.007776256084442139, 0.007746560096740723, 0.00773529577255249, 0.007714816093444824, 0.007729152202606201, 0.00793497610092163, 0.007860223770141601, 0.007898111820220948, 0.007904255867004394, 0.007738368034362793, 0.00795244789123535, 0.007912415981292725, 0.0076861119270324706, 0.00797388792037964, 0.007954432010650634, 0.007786496162414551, 0.007844863891601562, 0.007825407981872558, 0.007705599784851074, 0.007705599784851074, 0.007717887878417969, 0.00774451208114624, 0.007718912124633789, 0.0076912641525268555, 0.00773632001876831, 0.007782400131225586, 0.007776256084442139, 0.007937024116516114, 0.007910399913787843, 0.007729152202606201, 0.00830668830871582, 0.00813158416748047, 0.007849984169006348, 0.007703551769256592, 0.007739391803741455, 0.007732223987579345, 0.008006655693054199, 0.007778304100036621, 0.00773632001876831, 0.0076984319686889645, 0.007703551769256592, 0.016625728607177735, 0.007673791885375977, 0.00773529577255249, 0.0076912641525268555, 0.007684095859527588, 0.007864319801330566, 0.007684095859527588, 0.007782400131225586, 0.008040448188781739, 0.007699456214904785, 0.007816192150115966, 0.00787660789489746, 0.007726079940795898, 0.0076912641525268555, 0.007709695816040039, 0.007703551769256592, 0.007727104187011719, 0.007713791847229004, 0.007734272003173828, 0.007740416049957275, 0.007954432010650634, 0.008110079765319824, 0.008164352416992187, 0.008158207893371582, 0.008134655952453614, 0.008079360008239746, 0.008034303665161132, 0.008069120407104492, 0.008080384254455567, 0.008045568466186523, 0.008086527824401855, 0.008064000129699708, 0.008039423942565918, 0.008177663803100586, 0.008115232467651367, 0.008054752349853516, 0.008057855606079101, 0.00807423973083496, 0.008069120407104492, 0.00808243179321289, 0.008110079765319824, 0.008058879852294922, 0.008219648361206054, 0.008138751983642578, 0.008049663543701171, 0.008075263977050781, 0.008070143699645996, 0.008043519973754883, 0.008030207633972167, 0.008031231880187988, 0.008062975883483887, 0.008071167945861817, 0.008064000129699708, 0.008061951637268066, 0.00809881591796875, 0.008316927909851075, 0.008250368118286134, 0.00838963222503662, 0.008570879936218261, 0.008749055862426757, 0.008308735847473145, 0.008157183647155761, 0.0081080961227417]",tokens/s,126.06364233490866,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-j-6b,EleutherAI/gpt-j-6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gptj/modeling_gptj.py"", line 1124, in forward - transformer_outputs = self.transformer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gptj/modeling_gptj.py"", line 950, in forward - outputs = block( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gptj/modeling_gptj.py"", line 578, in forward - attn_outputs = self.attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gptj/modeling_gptj.py"", line 224, in forward - query = self.q_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-16B-nl,Salesforce/codegen-16B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/codegen/modeling_codegen.py"", line 667, in forward - transformer_outputs = self.transformer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/codegen/modeling_codegen.py"", line 536, in forward - outputs = block( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/codegen/modeling_codegen.py"", line 272, in forward - attn_outputs = self.attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/codegen/modeling_codegen.py"", line 163, in forward - qkv = self.qkv_proj(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-6.7b,facebook/opt-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 1118, in forward - outputs = self.model.decoder( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 884, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 525, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 155, in forward - query_states = self.q_proj(hidden_states) * self.scaling - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward - outputs = self.gpt_neox( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward - outputs = layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward - attention_layer_outputs = self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 170, in forward - query, key, value, present = self._attn_projections_and_rope( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope - qkv = self.query_key_value(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm2-20b,internlm/internlm2-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/dc0130882132de7cb2eb1fa54ba5294b8c922076/modeling_internlm2.py"", line 1204, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/dc0130882132de7cb2eb1fa54ba5294b8c922076/modeling_internlm2.py"", line 1004, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/dc0130882132de7cb2eb1fa54ba5294b8c922076/modeling_internlm2.py"", line 738, in forward - hidden_states, self_attn_weights, present_key_value = self.attention( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/dc0130882132de7cb2eb1fa54ba5294b8c922076/modeling_internlm2.py"", line 308, in forward - qkv_states = self.wqkv(hidden_states) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward - assert AWQ_INSTALLED, ( -AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights + self.create_no_weights_model() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model + meta_model = self.automodel_class.from_config(self.pretrained_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config + trust_remote_code = resolve_trust_remote_code( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code + raise ValueError( +ValueError: The repository for Qwen/Qwen-14B contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/Qwen/Qwen-14B. +Please pass the argument `trust_remote_code=True` to allow custom code to be run. + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-7B,Qwen/Qwen-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code + answer = input( +EOFError: EOF when reading a line + +During handling of the above exception, another exception occurred: + +Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights + self.create_no_weights_model() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model + meta_model = self.automodel_class.from_config(self.pretrained_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config + trust_remote_code = resolve_trust_remote_code( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code + raise ValueError( +ValueError: The repository for Qwen/Qwen-7B contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/Qwen/Qwen-7B. +Please pass the argument `trust_remote_code=True` to allow custom code to be run. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,t,t,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,v,v,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -25954,7 +23455,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/t/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/v/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -25981,9 +23482,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669490ac-350d4b3736bdc7876956a189;ab2f9c35-cdab-4c0c-ab62-30f03550ed69) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669494bc-4de33cdc25217cc662222955;4e389c31-d2f2-4d24-ad1d-227234d0b6cf) -Repository Not Found for url: https://huggingface.co/t/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/v/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -26008,11 +23509,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: t is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: v is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-66b,facebook/opt-66b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-125m,EleutherAI/gpt-neo-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -26032,29 +23533,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 162.00 MiB. GPU + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,.,.,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,.,.,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -26082,8 +23576,9 @@ ChildProcessError: Traceback (most recent call last): raise EnvironmentError( OSError: . does not appear to have a file named config.json. Checkout 'https://huggingface.co/./tree/None' for available files. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mixtral-8x7B-v0.1,mistralai/Mixtral-8x7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/phi-1_5,microsoft/phi-1_5,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1485.733888,2103.967744,0.0,1457.52064,1272.750592,s,10,1.3342720336914062,0.13342720336914063,0.0017667378558565091,0.1333674545288086,0.13440001983642577,0.13625353012084962,0.13773633834838866,"[0.13810704040527344, 0.13359715270996095, 0.13159478759765625, 0.13398812866210938, 0.13163987731933594, 0.132114013671875, 0.13270646667480468, 0.1334988098144531, 0.13378965759277345, 0.13323609924316407]",tokens/s,1918.6492224658912,kWh,1.5465521064155546e-06,8.474274160367454e-07,6.439467633532405e-06,8.833447155984705e-06,tokens/kWh,28980758.641495775,MB,1485.733888,2103.967744,0.0,1457.52064,1369.423872,s,10,77.59171484375001,7.759171484375001,0.021550685509445954,7.750958740234375,7.78698193359375,7.79351220703125,7.798736425781249,"[7.7519140625, 7.7428955078125, 7.78553076171875, 7.781552734375, 7.80004248046875, 7.76520556640625, 7.75000341796875, 7.7375029296875, 7.73547216796875, 7.74159521484375]",tokens/s,8.119423591406116,kWh,9.154879443379708e-05,5.017541917467626e-05,0.00037131786234986455,0.0005130420759583379,tokens/kWh,122796.94581057319,,s,629,78.66502353668211,0.12506363042397795,0.0158250884711649,0.12294553375244141,0.1240623077392578,0.1244600341796875,0.2556754669189453,"[0.12330188751220703, 0.12316671752929688, 0.12365106964111328, 0.12313600158691407, 0.12294246673583985, 0.12248063659667968, 0.12371660614013671, 0.12260147094726563, 0.12286566162109375, 0.12282879638671874, 0.12315750122070312, 0.12320972442626953, 0.12280012512207031, 0.12268236541748047, 0.122640380859375, 0.12257997131347656, 0.12299161529541015, 0.1229834213256836, 0.12259737396240235, 0.12290866851806641, 0.12273561859130859, 0.12333164978027343, 0.12384864044189453, 0.12324454498291015, 0.12292301177978515, 0.12274278259277344, 0.1227489242553711, 0.12272640228271485, 0.12298239898681641, 0.12477235412597656, 0.12357427215576172, 0.12362035369873046, 0.12306233978271484, 0.12299974060058594, 0.12285030364990235, 0.12300287628173828, 0.12316060638427734, 0.1231595230102539, 0.12301516723632812, 0.12314726257324218, 0.12401152038574219, 0.12320358276367188, 0.12276121520996094, 0.12288307189941407, 0.12321382141113281, 0.12264653015136719, 0.12301721954345703, 0.12259737396240235, 0.12273664093017578, 0.122893310546875, 0.12342066955566407, 0.1232015380859375, 0.12298239898681641, 0.12279090881347657, 0.1230448989868164, 0.12328444671630859, 0.12287181091308594, 0.12288511657714844, 0.12308684539794922, 0.1227540512084961, 0.12283084869384765, 0.12267212677001953, 0.25649664306640624, 0.1227540512084961, 0.12280220794677735, 0.12263113403320312, 0.12264345550537109, 0.12267417907714843, 0.1228400650024414, 0.12283596801757812, 0.12282470703125, 0.12279603576660156, 0.12281446075439453, 0.12269875335693359, 0.12270694732666015, 0.12278681945800782, 0.12276121520996094, 0.12260044860839844, 0.12260659027099609, 0.12257791900634765, 0.12294041442871094, 0.1228779525756836, 0.12287999725341797, 0.12280831909179687, 0.12294451141357422, 0.12248985290527344, 0.12257484436035156, 0.1226055679321289, 0.12298137664794923, 0.12271308898925781, 0.12264447784423828, 0.12263935852050781, 0.12252365112304688, 0.12261990356445313, 0.12269977569580078, 0.12264345550537109, 0.12255129241943359, 0.12263833618164062, 0.12267212677001953, 0.12288102722167969, 0.12292915344238281, 0.12263935852050781, 0.12389888000488282, 0.12297216033935547, 0.12294553375244141, 0.12293427276611328, 0.12263526153564454, 0.12274585723876953, 0.12553011322021485, 0.12401561737060547, 0.12355072021484376, 0.12335718536376954, 0.12291584014892579, 0.12288819122314452, 0.12369510650634766, 0.12324147033691406, 0.12273667144775391, 0.12291478729248047, 0.12294758605957032, 0.12287385559082031, 0.12286669158935547, 0.12300697326660157, 0.12317391967773438, 0.12299874877929687, 0.1229271011352539, 0.25462066650390625, 0.12265164947509766, 0.1226270751953125, 0.12303667449951172, 0.12276227569580078, 0.12365821075439454, 0.12293939208984375, 0.12266496276855468, 0.12368895721435547, 0.12677529907226562, 0.12441395568847656, 0.12445696258544922, 0.12463513946533203, 0.12443033599853516, 0.12438224029541016, 0.12425520324707032, 0.12467916870117188, 0.12446310424804688, 0.12442931365966797, 0.12455731201171875, 0.12458188629150391, 0.12372480010986328, 0.12267417907714843, 0.12398899078369141, 0.12292813110351562, 0.12310527801513672, 0.12295891571044922, 0.12267308807373047, 0.12258099365234375, 0.12275609588623047, 0.12290764617919922, 0.12266086578369141, 0.12255948638916016, 0.12306329345703125, 0.12263116455078125, 0.12326604461669922, 0.12354764556884766, 0.12335718536376954, 0.12372691345214844, 0.12280210876464843, 0.12289638519287109, 0.12269055938720703, 0.12372787475585938, 0.124010498046875, 0.12365824127197265, 0.12331314849853516, 0.12313497924804688, 0.12537753295898438, 0.12376166534423828, 0.12374527740478515, 0.12372582244873047, 0.1231278076171875, 0.12385382080078125, 0.12404633331298828, 0.12378214263916015, 0.12360908508300782, 0.12295782470703125, 0.12494950103759765, 0.12373811340332032, 0.12298035430908204, 0.12348416137695313, 0.12417740631103516, 0.12380774688720703, 0.2588282775878906, 0.12419481658935547, 0.12356505584716797, 0.12310323333740235, 0.12305203247070312, 0.12337971496582031, 0.12367977905273438, 0.12359062194824219, 0.12260147094726563, 0.12353740692138672, 0.12354354858398438, 0.1232701416015625, 0.12446720123291016, 0.12432588958740234, 0.1239582748413086, 0.12362137603759765, 0.12360499572753907, 0.12407295989990234, 0.12389170837402344, 0.12347392272949219, 0.1235968017578125, 0.12413645172119141, 0.12480512237548828, 0.12312678527832031, 0.12333670043945312, 0.12412928009033203, 0.12416000366210937, 0.12297113800048828, 0.12327529907226563, 0.12358857727050782, 0.12392755126953126, 0.1234176025390625, 0.12362649536132812, 0.12375859069824219, 0.12381183624267578, 0.12392758178710937, 0.12367868804931641, 0.12318924713134766, 0.12382310485839844, 0.12388658905029297, 0.12348006439208985, 0.12391423797607422, 0.12419583892822265, 0.12329676818847657, 0.12479590606689453, 0.12373197174072266, 0.12389478302001954, 0.12393472290039062, 0.12317702484130859, 0.12292499542236328, 0.12298649597167968, 0.12279808044433593, 0.12290457916259766, 0.1228584976196289, 0.12289842987060547, 0.1226424331665039, 0.12311244964599609, 0.12252780914306641, 0.12262598419189454, 0.12282470703125, 0.12261888122558594, 0.12280217742919922, 0.12272025299072266, 0.25568666076660157, 0.1239900131225586, 0.12271616363525391, 0.12272128295898438, 0.1237401580810547, 0.12348108673095703, 0.12270182037353515, 0.12281241607666016, 0.12259839630126954, 0.12345139312744141, 0.12484710693359374, 0.123040771484375, 0.12316671752929688, 0.12355583953857421, 0.12351078033447266, 0.12384358215332031, 0.12355174255371094, 0.12602265930175782, 0.12446208190917969, 0.12428800201416015, 0.12392345428466797, 0.12333055877685548, 0.12432588958740234, 0.12359986877441406, 0.12368793487548828, 0.12390502166748046, 0.12386921691894531, 0.1236797103881836, 0.12345037078857422, 0.12340735626220703, 0.12414361572265625, 0.12356301116943359, 0.12358767700195313, 0.12459613037109375, 0.12439347076416016, 0.12301107025146485, 0.12367359924316407, 0.12390092468261718, 0.12395724487304688, 0.12516966247558595, 0.12354662322998047, 0.12346470642089843, 0.123863037109375, 0.12409139251708984, 0.12322509002685547, 0.12475084686279297, 0.12426445007324219, 0.12396953582763671, 0.12330086517333984, 0.12360908508300782, 0.12444057464599609, 0.12403609466552734, 0.12382208251953125, 0.1240606689453125, 0.12347494506835938, 0.12344012451171875, 0.12362751770019531, 0.1256468505859375, 0.12401663970947266, 0.12414873504638672, 0.12401868438720703, 0.12380364990234374, 0.12371561431884766, 0.25564668273925784, 0.12369203186035156, 0.12362137603759765, 0.12392345428466797, 0.12388044738769531, 0.12370022583007813, 0.12369715118408203, 0.12311347198486328, 0.12364492797851563, 0.123863037109375, 0.12393574523925781, 0.12324249267578125, 0.12262403106689453, 0.12281238555908203, 0.12295372772216796, 0.12290764617919922, 0.12269363403320313, 0.12262297821044922, 0.1231677474975586, 0.12281446075439453, 0.12263526153564454, 0.122714111328125, 0.12280524444580078, 0.12276838684082031, 0.1227110366821289, 0.12276735687255859, 0.12391014099121093, 0.12351795196533204, 0.12277555084228516, 0.12253388977050782, 0.12272025299072266, 0.12271622467041016, 0.12318611145019531, 0.12313190460205078, 0.12436070251464844, 0.12357734680175782, 0.12378726196289062, 0.12353024291992187, 0.12572364807128905, 0.12379545593261719, 0.12325888061523438, 0.12332441711425782, 0.12372991943359375, 0.12286566162109375, 0.1225134048461914, 0.12262400054931641, 0.12326297760009766, 0.12308582305908203, 0.12292403411865234, 0.1229148178100586, 0.12318924713134766, 0.12364492797851563, 0.12364291381835937, 0.12278781127929687, 0.12316159820556641, 0.12317593383789062, 0.12396851348876953, 0.12279193878173827, 0.12260761260986328, 0.12462694549560546, 0.12346470642089843, 0.12266598510742187, 0.1229148178100586, 0.2559385528564453, 0.12347289276123047, 0.12349951934814453, 0.12279500579833984, 0.12253695678710938, 0.1227325439453125, 0.12260454559326171, 0.12274380493164062, 0.12233113861083984, 0.12244992065429687, 0.12274790191650391, 0.12282572937011718, 0.12250214385986329, 0.12254208374023437, 0.12273458862304687, 0.12241919708251953, 0.12272844696044923, 0.1226250228881836, 0.12303974151611329, 0.1227663345336914, 0.12259839630126954, 0.12243353271484375, 0.12274380493164062, 0.12401561737060547, 0.12277452850341797, 0.1226844482421875, 0.12271612548828124, 0.12248268890380859, 0.12263935852050781, 0.12302540588378906, 0.12259327697753906, 0.1225697250366211, 0.12243456268310547, 0.12261273956298828, 0.12260352325439453, 0.12275507354736329, 0.12261068725585937, 0.12276428985595703, 0.12263942718505859, 0.12258604431152344, 0.12272230529785157, 0.12245708465576172, 0.12246527862548828, 0.12284928131103516, 0.12406886291503906, 0.12364492797851563, 0.12372889709472656, 0.12372480010986328, 0.1236131820678711, 0.12349132537841796, 0.12373094177246094, 0.12433715057373047, 0.12420198059082031, 0.12350566101074219, 0.12349030303955078, 0.12351795196533204, 0.1237022705078125, 0.12365004730224609, 0.12362035369873046, 0.12419891357421875, 0.12375347137451172, 0.12319641876220704, 0.12275917053222657, 0.2567250061035156, 0.1229854736328125, 0.12295680236816406, 0.1226270751953125, 0.12288614654541016, 0.12259225463867188, 0.12339711761474609, 0.1230387191772461, 0.12344627380371094, 0.12426547241210938, 0.12386918640136718, 0.12261785888671875, 0.12307660675048829, 0.1229639663696289, 0.12252467346191406, 0.12267314910888671, 0.12372172546386719, 0.12260659027099609, 0.12311961364746093, 0.1224427490234375, 0.12306841278076172, 0.12283699035644531, 0.12256665802001954, 0.12251955413818359, 0.12265580749511719, 0.12248262023925781, 0.12276019287109376, 0.12253388977050782, 0.12335411071777344, 0.12312371063232422, 0.12290866851806641, 0.12254515075683593, 0.12248780822753906, 0.122534912109375, 0.12261682891845703, 0.12288716888427734, 0.12256460571289063, 0.12276838684082031, 0.12297830200195313, 0.1227694091796875, 0.12250418853759766, 0.12257279968261718, 0.1226977310180664, 0.12254617309570312, 0.12250009918212891, 0.122787841796875, 0.122461181640625, 0.12268748474121094, 0.12251545715332031, 0.12266802978515624, 0.1225871353149414, 0.1227623062133789, 0.12271507263183594, 0.12253900909423829, 0.12249292755126953, 0.12263219451904298, 0.12244684600830077, 0.12256870269775391, 0.12278272247314453, 0.12261170959472656, 0.1223895034790039, 0.12428390502929687, 0.12278988647460938, 0.2565724182128906, 0.12282470703125, 0.12249190521240234, 0.12308480072021484, 0.12364595031738282, 0.1230540771484375, 0.12276640319824218, 0.12278163146972657, 0.12248473358154296, 0.12251136016845703, 0.12247654724121093, 0.12248678588867187, 0.12250009918212891, 0.12251955413818359, 0.12259839630126954, 0.12254617309570312, 0.12253593444824219, 0.1236684799194336, 0.12317388916015624, 0.12310221099853516, 0.12281139373779297, 0.12291379547119141, 0.12274483489990234, 0.12282572937011718, 0.12260765075683594, 0.12258812713623046, 0.12272946929931641, 0.12461772918701172, 0.12312989044189453, 0.12266185760498047, 0.12315033721923828, 0.12284620666503906, 0.1230540771484375, 0.122640380859375, 0.12250624084472657, 0.12265676879882813, 0.12255538940429687, 0.12278272247314453, 0.12277555084228516, 0.12254003143310546, 0.12262400054931641, 0.12318208312988281, 0.12256050872802735, 0.12256153869628907, 0.1224816665649414, 0.12287999725341797, 0.12276326751708984, 0.12258406066894531, 0.12270182037353515, 0.12269465637207032, 0.12290150451660156, 0.12344525146484375, 0.12252265930175782, 0.12313801574707031, 0.12258406066894531, 0.12265471649169922, 0.12261888122558594, 0.12246323394775391, 0.12254924774169922, 0.12281753540039063, 0.12254617309570312, 0.12263526153564454, 0.12243353271484375, 0.2562088928222656, 0.12256050872802735, 0.12245913696289062, 0.12246221160888672, 0.122461181640625, 0.12328652954101563, 0.12252774047851563, 0.12238028717041016, 0.12253183746337891, 0.12281037139892578, 0.12281651306152344, 0.12248678588867187, 0.12256358337402344, 0.1226792984008789, 0.12369407653808594, 0.12281958770751954, 0.12281549072265625, 0.12272742462158204, 0.12273356628417968, 0.12324864196777344, 0.12265676879882813, 0.12252365112304688, 0.12428800201416015, 0.12306227111816406, 0.12254208374023437, 0.12252979278564453, 0.12400844573974609, 0.12299775695800781, 0.12261376190185547, 0.12311654663085937, 0.12299980926513672, 0.12294143676757813, 0.12260044860839844, 0.12261682891845703, 0.12266700744628906, 0.1231677474975586, 0.12294656372070313, 0.12281651306152344, 0.12273766326904297, 0.12263731384277343, 0.12283084869384765, 0.12253900909423829, 0.12256768035888672, 0.12280937957763671, 0.12265058898925782, 0.12437811279296875, 0.12318822479248047, 0.12397875213623047, 0.12310733032226563, 0.12303462219238281, 0.12267314910888671, 0.12365312194824218, 0.12290662384033203, 0.12257689666748046, 0.12280012512207031, 0.12264447784423828, 0.12267110443115234, 0.1226455078125, 0.12263731384277343, 0.12309503936767578, 0.12316057586669922, 0.12300800323486329, 0.12256265258789062]",tokens/s,7.995929724812099,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,s,s,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -26091,41 +23586,70 @@ OSError: . does not appear to have a file named config.json. Checkout 'https://h File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/s/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948ce7-7540ffbc4c32cf5c23cc57ca;da49da9d-686c-4114-897b-61c7820ec048) + +Repository Not Found for url: https://huggingface.co/s/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + raise EnvironmentError( +OSError: s is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-72B,Qwen/Qwen2-beta-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-34B,,cuda,0,42,,,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,MB,1721.061376,22129.672192,0.0,21483.225088,20799.036928,s,10,27.921223388671876,2.7921223388671876,0.002873024218980136,2.791891357421875,2.7956688476562497,2.7963155029296876,2.7968328271484375,"[2.793120361328125, 2.796962158203125, 2.790662353515625, 2.790180419921875, 2.7901220703125, 2.787002685546875, 2.79004345703125, 2.793321533203125, 2.795525146484375, 2.794283203125]",tokens/s,91.68652692484228,kWh,3.2928969429598913e-05,1.8046407099463975e-05,0.00015823184880759956,0.00020920722533666246,tokens/kWh,1223667.1060860218,MB,1726.52544,22129.672192,0.0,21483.225088,20902.142976,s,10,1662.0463125,166.20463124999998,0.013890741352160448,166.199171875,166.2239140625,166.22626953125,166.22815390625,"[166.211921875, 166.223390625, 166.191390625, 166.191359375, 166.191640625, 166.203515625, 166.194828125, 166.2176875, 166.191953125, 166.228625]",tokens/s,0.3790508093919315,kWh,0.0019620591764814327,0.001075380349219922,0.009375421333664404,0.012412860859365755,tokens/kWh,5075.381148131151,,s,629,1684.5351452636726,2.678116288177539,0.33164961442268687,2.637888427734375,2.63990244140625,2.640667578125,5.42840712890625,"[2.638138427734375, 2.638636962890625, 2.638865478515625, 2.6390283203125, 2.6389248046875, 2.63697509765625, 2.6374482421875, 2.637588623046875, 2.6383994140625, 2.637781982421875, 2.63811181640625, 2.639296630859375, 2.6380380859375, 2.637068359375, 2.638099365234375, 2.637255615234375, 2.637476806640625, 2.63743798828125, 2.637467529296875, 2.63781787109375, 2.637115478515625, 2.637315185546875, 2.63943896484375, 2.639993896484375, 2.6398291015625, 2.63933349609375, 2.63897802734375, 2.639859619140625, 2.63980126953125, 2.639171630859375, 2.637111328125, 2.63720556640625, 2.636434326171875, 2.63687158203125, 2.63707958984375, 2.639266845703125, 2.63845263671875, 2.637464599609375, 2.638060546875, 2.64020263671875, 2.638950439453125, 2.63784033203125, 2.63769091796875, 2.6381884765625, 2.639057861328125, 2.637621337890625, 2.638141357421875, 2.63823876953125, 2.639244384765625, 2.63790283203125, 2.6387138671875, 2.6390537109375, 2.638361572265625, 2.637244384765625, 2.639206298828125, 2.638740478515625, 2.639088623046875, 2.638509033203125, 2.637013916015625, 2.637980712890625, 2.637846435546875, 2.638864501953125, 5.43535302734375, 2.63853662109375, 2.63802978515625, 2.63697607421875, 2.637854736328125, 2.638664794921875, 2.63739794921875, 2.637233154296875, 2.637539306640625, 2.637358154296875, 2.637158447265625, 2.637360107421875, 2.63921875, 2.63846923828125, 2.638044189453125, 2.639015869140625, 2.636918701171875, 2.637613037109375, 2.637201416015625, 2.63785888671875, 2.6367763671875, 2.637592529296875, 2.63693310546875, 2.6386318359375, 2.63771337890625, 2.638298095703125, 2.637001708984375, 2.6378701171875, 2.6421064453125, 2.6414111328125, 2.641197021484375, 2.64100146484375, 2.63889111328125, 2.6406533203125, 2.6406552734375, 2.637020263671875, 2.637322265625, 2.63722900390625, 2.63769091796875, 2.6369853515625, 2.63765185546875, 2.63745751953125, 2.638650390625, 2.638825439453125, 2.637306884765625, 2.64330859375, 2.641152099609375, 2.6409931640625, 2.63775244140625, 2.639099853515625, 2.638685302734375, 2.6388388671875, 2.637993896484375, 2.639129638671875, 2.638023681640625, 2.638602294921875, 2.63790283203125, 2.63815380859375, 2.637550537109375, 2.63849169921875, 2.639201171875, 2.6400400390625, 2.638790771484375, 5.4299453125, 2.63796826171875, 2.638594970703125, 2.637592529296875, 2.6385439453125, 2.637388916015625, 2.638464111328125, 2.637737060546875, 2.63819775390625, 2.63681005859375, 2.637154296875, 2.63805224609375, 2.638739501953125, 2.63828173828125, 2.638024658203125, 2.637736083984375, 2.637816650390625, 2.63781884765625, 2.63653466796875, 2.637263916015625, 2.637474853515625, 2.63747998046875, 2.636569580078125, 2.64140478515625, 2.637125732421875, 2.638499755859375, 2.6369833984375, 2.637737060546875, 2.636338134765625, 2.63744921875, 2.637201416015625, 2.638740478515625, 2.638299072265625, 2.63929150390625, 2.637087646484375, 2.637667236328125, 2.6377021484375, 2.636683349609375, 2.637559814453125, 2.637581298828125, 2.6383564453125, 2.636505126953125, 2.63706005859375, 2.636032958984375, 2.6379765625, 2.637094970703125, 2.63819775390625, 2.64007568359375, 2.6376611328125, 2.6375966796875, 2.6389228515625, 2.63778515625, 2.639754150390625, 2.6381884765625, 2.63853466796875, 2.63933642578125, 2.639509521484375, 2.639793212890625, 2.640154541015625, 2.63959033203125, 2.636541015625, 2.6371533203125, 2.63670068359375, 5.43085791015625, 2.64038818359375, 2.640405517578125, 2.63921875, 2.638604248046875, 2.638392333984375, 2.63703857421875, 2.638612548828125, 2.638138427734375, 2.637631591796875, 2.637518798828125, 2.636412841796875, 2.639814697265625, 2.63709912109375, 2.638194580078125, 2.636851318359375, 2.637906982421875, 2.636904541015625, 2.63757421875, 2.637557861328125, 2.637801513671875, 2.637253662109375, 2.638193603515625, 2.63731396484375, 2.63754345703125, 2.637656005859375, 2.638063720703125, 2.6375537109375, 2.63655517578125, 2.636990478515625, 2.6373427734375, 2.638109619140625, 2.637427734375, 2.637330322265625, 2.63708154296875, 2.63813232421875, 2.636632080078125, 2.638185546875, 2.636789794921875, 2.6382294921875, 2.636559326171875, 2.63756494140625, 2.6364814453125, 2.637990966796875, 2.64270947265625, 2.63874755859375, 2.640064453125, 2.638127197265625, 2.637509521484375, 2.637388916015625, 2.637737060546875, 2.63737353515625, 2.639585205078125, 2.637530029296875, 2.638297119140625, 2.63809423828125, 2.637974609375, 2.63773583984375, 2.637834228515625, 2.63741552734375, 2.637762451171875, 2.637958251953125, 2.63785791015625, 5.428443359375, 2.63807275390625, 2.6370693359375, 2.638107666015625, 2.637665283203125, 2.63819677734375, 2.6379326171875, 2.63821923828125, 2.6370078125, 2.63802685546875, 2.638180419921875, 2.63954443359375, 2.6387373046875, 2.638023681640625, 2.636853271484375, 2.637129638671875, 2.637197265625, 2.636950439453125, 2.63758544921875, 2.638212158203125, 2.63828076171875, 2.6365849609375, 2.6370908203125, 2.638017578125, 2.63769384765625, 2.636833740234375, 2.638193603515625, 2.638341064453125, 2.640734130859375, 2.63990576171875, 2.639550537109375, 2.638340087890625, 2.63885107421875, 2.63923095703125, 2.6383955078125, 2.636854248046875, 2.636768310546875, 2.6369443359375, 2.637570068359375, 2.637836181640625, 2.63730078125, 2.63779541015625, 2.63750244140625, 2.637592529296875, 2.6366474609375, 2.638162841796875, 2.636866455078125, 2.6375146484375, 2.636231689453125, 2.6370693359375, 2.637305908203125, 2.63849169921875, 2.636894287109375, 2.636900390625, 2.637894775390625, 2.637490234375, 2.6377666015625, 2.64785107421875, 2.6376591796875, 2.637158447265625, 2.637832275390625, 2.63720849609375, 2.639467529296875, 5.425724609375, 2.637199462890625, 2.63809130859375, 2.638032958984375, 2.637854736328125, 2.638718017578125, 2.63857861328125, 2.637035400390625, 2.63773583984375, 2.638855224609375, 2.63739892578125, 2.638341064453125, 2.63885205078125, 2.639034423828125, 2.63807177734375, 2.637761474609375, 2.639326171875, 2.639801513671875, 2.639014892578125, 2.639296630859375, 2.637675537109375, 2.63769287109375, 2.637137939453125, 2.637119384765625, 2.6383955078125, 2.63736328125, 2.637094970703125, 2.637177734375, 2.6371953125, 2.637066162109375, 2.637592529296875, 2.639177734375, 2.637533203125, 2.6364169921875, 2.636937255859375, 2.6390283203125, 2.63927294921875, 2.63655126953125, 2.64357373046875, 2.637197265625, 2.637576171875, 2.638668701171875, 2.639214599609375, 2.639289306640625, 2.639532958984375, 2.638011474609375, 2.63690234375, 2.63817626953125, 2.636898193359375, 2.637287353515625, 2.637656982421875, 2.637981689453125, 2.636938232421875, 2.63751171875, 2.6373232421875, 2.63774609375, 2.637768798828125, 2.63883056640625, 2.639134765625, 2.641203125, 2.639278076171875, 2.638201904296875, 2.637488037109375, 5.42831396484375, 2.637304931640625, 2.638138427734375, 2.636865478515625, 2.639958984375, 2.63714404296875, 2.638241943359375, 2.63680810546875, 2.638630859375, 2.638310302734375, 2.640628662109375, 2.639406982421875, 2.63910302734375, 2.6390712890625, 2.640678955078125, 2.640310302734375, 2.63718701171875, 2.637646728515625, 2.637350830078125, 2.638884765625, 2.6375947265625, 2.637400146484375, 2.6368818359375, 2.642212890625, 2.637052978515625, 2.637252685546875, 2.636802001953125, 2.64029296875, 2.6377216796875, 2.6375556640625, 2.6366923828125, 2.63757421875, 2.638635009765625, 2.637696044921875, 2.637308837890625, 2.637477783203125, 2.637402099609375, 2.6365869140625, 2.637488037109375, 2.638253173828125, 2.6386328125, 2.637402099609375, 2.63834716796875, 2.6377451171875, 2.637392822265625, 2.636634033203125, 2.637593505859375, 2.637182861328125, 2.637476806640625, 2.6378896484375, 2.637464599609375, 2.639731689453125, 2.637717529296875, 2.63756591796875, 2.638674072265625, 2.63798974609375, 2.638200927734375, 2.63733251953125, 2.63752197265625, 2.63793359375, 2.636739501953125, 2.63832470703125, 2.637581298828125, 5.43222705078125, 2.638201904296875, 2.63801025390625, 2.639353759765625, 2.63851513671875, 2.637308837890625, 2.637641845703125, 2.6370263671875, 2.636823486328125, 2.638310302734375, 2.637739990234375, 2.636812255859375, 2.637005859375, 2.63739794921875, 2.637341796875, 2.636630126953125, 2.64057861328125, 2.638487548828125, 2.6377880859375, 2.63784033203125, 2.637433837890625, 2.638781494140625, 2.638268310546875, 2.63773486328125, 2.63734375, 2.64085302734375, 2.637772705078125, 2.63678369140625, 2.636781494140625, 2.637518798828125, 2.637106201171875, 2.636708984375, 2.63695166015625, 2.63906103515625, 2.6390087890625, 2.639414306640625, 2.63884912109375, 2.638530517578125, 2.639602783203125, 2.639301513671875, 2.638671875, 2.6394306640625, 2.640407470703125, 2.63750244140625, 2.640359375, 2.640257080078125, 2.641056884765625, 2.639901611328125, 2.64020263671875, 2.640825439453125, 2.637892578125, 2.63866357421875, 2.63870166015625, 2.638103515625, 2.641052734375, 2.639697998046875, 2.639138916015625, 2.63690234375, 2.63733447265625, 2.637642822265625, 2.63709912109375, 2.6370068359375, 2.638327880859375, 5.4337607421875, 2.63835546875, 2.638138427734375, 2.637888427734375, 2.63785986328125, 2.63816796875, 2.637724609375, 2.63817431640625, 2.63734375, 2.637358154296875, 2.637413330078125, 2.63850390625, 2.63788134765625, 2.638455810546875, 2.63848046875, 2.637498291015625, 2.637077392578125, 2.640005126953125, 2.638171142578125, 2.63721875, 2.638088134765625, 2.637340576171875, 2.637073486328125, 2.637824951171875, 2.63834619140625, 2.63819580078125, 2.63836474609375, 2.63822021484375, 2.637216796875, 2.63757421875, 2.63648046875, 2.6365439453125, 2.63712255859375, 2.63768994140625, 2.636919921875, 2.637600830078125, 2.637790283203125, 2.63785986328125, 2.636936279296875, 2.637821044921875, 2.637937744140625, 2.638752685546875, 2.63861767578125, 2.637978515625, 2.63923291015625, 2.639403076171875, 2.63928515625, 2.63895751953125, 2.63758447265625, 2.637350830078125, 2.63724853515625, 2.6378095703125, 2.638350341796875, 2.637401123046875, 2.636908447265625, 2.63790478515625, 2.638477294921875, 2.638087158203125, 2.639475830078125, 2.639469482421875, 2.640037841796875, 2.637907958984375, 2.636857421875, 5.4322666015625, 2.640575439453125, 2.641816650390625, 2.640384033203125, 2.639365234375, 2.639097900390625, 2.6402724609375, 2.638215087890625, 2.638160888671875, 2.637603759765625, 2.637083740234375, 2.6377421875, 2.637223876953125, 2.6389013671875, 2.638928955078125, 2.637473876953125, 2.637214599609375, 2.636859375, 2.637595703125, 2.63667822265625, 2.6370498046875, 2.638342041015625, 2.63901904296875, 2.637927490234375, 2.63882958984375, 2.640554931640625, 2.64306884765625, 2.639297607421875, 2.6393896484375, 2.64045166015625, 2.63986376953125, 2.639677490234375, 2.64067578125, 2.64060009765625, 2.640331787109375, 2.640183349609375, 2.639626220703125, 2.640194580078125, 2.63760498046875, 2.639280029296875, 2.6397255859375, 2.641039306640625, 2.6397880859375, 2.6377646484375, 2.639326171875, 2.63863916015625, 2.636462158203125, 2.637134765625, 2.6374892578125, 2.637487060546875, 2.63678466796875, 2.63695361328125, 2.636927978515625, 2.636856201171875, 2.63660546875, 2.637761474609375, 2.637675537109375, 2.6367119140625, 2.637622314453125, 2.6384404296875, 2.637370361328125, 2.63602880859375, 2.636900390625]",tokens/s,0.37339678057090686,,,main,False,False +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-66b,facebook/opt-66b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -26145,29 +23669,16 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-180B,tiiuae/falcon-180B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,i,i,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -26179,11 +23690,21 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/i/resolve/main/config.json The above exception was the direct cause of the following exception: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn @@ -26194,28 +23715,13 @@ Traceback (most recent call last): response = _request_wrapper( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status - raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66949914-19bd13bd77fc0356180fdfa7;cbcd402d-5497-4d3b-95ac-74a99c35ada3) - -403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json. -If you are trying to create or update content,make sure you have a token with the `write` role. - -The above exception was the direct cause of the following exception: + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949012-71fdb0513e56e188783c67f0;b428a105-cecc-4e0c-8b16-5d7a038347de) -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error - raise LocalEntryNotFoundError( -huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. +Repository Not Found for url: https://huggingface.co/i/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. The above exception was the direct cause of the following exception: @@ -26236,13 +23742,15 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like tiiuae/falcon-180B is not the path to a directory containing a file named config.json. -Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. +OSError: i is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-4B,Qwen/Qwen1.5-4B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-6.7b,EleutherAI/pythia-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.42.3,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,1333.67808,6189.21984,0.0,5542.772736,5293.671424,s,10,5.586684448242187,0.5586684448242187,0.0019338580518860281,0.557967041015625,0.5590516418457031,0.5617419464111328,0.5638941900634765,"[0.5644322509765625, 0.5579137573242188, 0.5582323608398437, 0.5579798583984374, 0.5582894897460937, 0.5578035888671875, 0.557934814453125, 0.5584537963867188, 0.5579542236328126, 0.5576903076171875]",tokens/s,458.2324317253119,kWh,6.598755781665261e-06,3.6146258023682546e-06,3.063834241189155e-05,4.0851723995925066e-05,tokens/kWh,6266565.396983879,MB,1333.67808,6189.21984,0.0,5542.772736,5479.282176,s,10,326.859033203125,32.685903320312505,0.005888375643590895,32.6845341796875,32.69453828125,32.6956421875,32.6965253125,"[32.69429296875, 32.679224609375, 32.67916015625, 32.6882421875, 32.69674609375, 32.680171875, 32.68275, 32.683013671875, 32.689376953125, 32.6860546875]",tokens/s,1.9274364053095923,kWh,0.0003859057358256829,0.0002115092267264069,0.0017882986127365009,0.0023857135752885904,tokens/kWh,26407.19349236177,,s,629,331.3625651855466,0.5268085297067517,0.06627334687586009,0.518781982421875,0.519246826171875,0.5193795776367187,1.0766735449218752,"[0.5185361938476563, 0.5187901611328125, 0.518645751953125, 0.5193123779296875, 0.5184696044921875, 0.5191024780273438, 0.518635498046875, 0.5193840942382812, 0.5187215576171875, 0.5188474731445313, 0.518709228515625, 0.519257080078125, 0.5185044555664062, 0.5190707397460937, 0.5185781860351563, 0.5189417114257813, 0.5188659057617188, 0.5192376098632813, 0.5188485107421875, 0.5194188842773437, 0.519056396484375, 0.518424560546875, 0.518950927734375, 0.5194536743164062, 0.5195530395507812, 0.5194168090820312, 0.5195950317382813, 0.5193717651367188, 0.519319580078125, 0.5192949829101563, 0.5195980834960937, 0.5190328369140625, 0.5191741333007812, 0.5190369262695312, 0.5188321533203125, 0.5186027221679688, 0.5188935546875, 0.5191608276367188, 0.5192755126953125, 0.519130126953125, 0.5184635009765625, 0.519088134765625, 0.5189284057617187, 0.5190697021484375, 0.5194506225585938, 0.5187174682617187, 0.5190379638671875, 0.5189365844726562, 0.5185945434570313, 0.519277587890625, 0.51884033203125, 0.518724609375, 0.5184901123046874, 0.5186467895507813, 0.5185494995117188, 0.5188372192382813, 0.5189785766601562, 0.5190338745117188, 0.5186253051757812, 0.5187225341796875, 0.5185259399414063, 0.5186826171875, 1.0767308349609375, 0.518603759765625, 0.5190625, 0.5183805541992188, 0.5184440307617187, 0.5186907958984375, 0.5187993774414063, 0.5184624633789062, 0.5187317504882812, 0.5186785278320313, 0.5184757690429688, 0.518877197265625, 0.518561767578125, 0.5186365356445313, 0.5187368774414063, 0.5185228881835937, 0.518455322265625, 0.5188290405273438, 0.5190287475585937, 0.5186846923828125, 0.5185863647460938, 0.5187174682617187, 0.5186549682617188, 0.5183989868164063, 0.5184993286132813, 0.5187389526367188, 0.5186990356445312, 0.5186856689453125, 0.5186365356445313, 0.518687744140625, 0.5187051391601563, 0.5185955810546875, 0.5186806030273438, 0.5186826171875, 0.518709228515625, 0.5183426513671875, 0.51865087890625, 0.5188116455078124, 0.5186478271484375, 0.5184890747070312, 0.5186887817382813, 0.5187451171875, 0.518697998046875, 0.5185700073242188, 0.5188802490234375, 0.518781982421875, 0.5189662475585938, 0.5188433837890625, 0.5189642333984374, 0.5188710327148438, 0.5188710327148438, 0.5186898193359375, 0.5191925659179687, 0.5188259887695312, 0.5187809448242188, 0.5187225341796875, 0.5192509155273437, 0.5187993774414063, 0.5188997192382813, 0.5185228881835937, 0.5187072143554687, 0.5188116455078124, 0.5190584106445313, 1.07681689453125, 0.518445068359375, 0.5185474853515625, 0.5183795166015625, 0.5183733520507813, 0.5183323974609375, 0.5183467407226563, 0.5184655151367188, 0.5187625122070313, 0.5183334350585938, 0.5183016967773437, 0.5186815795898437, 0.5184327392578125, 0.5188362426757812, 0.5188045043945313, 0.5185730590820312, 0.5185095825195313, 0.5186785278320313, 0.51854541015625, 0.5186232299804687, 0.5184225463867187, 0.5185321044921875, 0.5186078491210937, 0.51862939453125, 0.5188853759765625, 0.5187942504882812, 0.5186447143554688, 0.5191956176757813, 0.5188433837890625, 0.518813720703125, 0.5189417114257813, 0.5186007080078125, 0.5189970092773437, 0.5184686279296875, 0.5187051391601563, 0.5187737426757812, 0.5187123413085938, 0.5185546264648437, 0.518793212890625, 0.5184378662109375, 0.51846142578125, 0.518530029296875, 0.5188843383789062, 0.5189683227539063, 0.5190963134765625, 0.5188731079101563, 0.5191423950195313, 0.5188699951171875, 0.518888427734375, 0.5187901611328125, 0.5192191772460938, 0.5189222412109376, 0.519203857421875, 0.5190103149414063, 0.5189519653320313, 0.5185955810546875, 0.5187174682617187, 0.5186375732421875, 0.5187215576171875, 0.5186795654296875, 0.5185198364257813, 0.5191956176757813, 0.5194281005859375, 1.076896728515625, 0.5189867553710937, 0.5189898071289063, 0.5190768432617188, 0.5188546752929688, 0.5190164184570313, 0.5189293823242187, 0.5191588134765625, 0.5189990234375, 0.5190471801757812, 0.5190215454101562, 0.518962158203125, 0.5189324951171875, 0.51877783203125, 0.5185863647460938, 0.5187440795898437, 0.5187747802734375, 0.5186703491210938, 0.518961181640625, 0.5189631958007812, 0.5189263305664062, 0.5191065673828125, 0.5191270141601563, 0.5187266845703125, 0.5191536865234375, 0.519077880859375, 0.5192693481445313, 0.5188792114257812, 0.5185464477539062, 0.5187072143554687, 0.5185413208007813, 0.5187113037109375, 0.5186324462890625, 0.518445068359375, 0.5185331420898438, 0.5186416625976562, 0.5187133178710938, 0.5184675903320313, 0.5186703491210938, 0.5187870483398438, 0.5187645263671875, 0.518656005859375, 0.5186129760742187, 0.5190205688476562, 0.5188474731445313, 0.5192632446289063, 0.5188905029296875, 0.5194403686523438, 0.518930419921875, 0.518666259765625, 0.518709228515625, 0.51875634765625, 0.5189447631835937, 0.5187727661132813, 0.5188259887695312, 0.518593505859375, 0.518830078125, 0.5188218994140625, 0.5188679809570312, 0.51879833984375, 0.5195130615234375, 0.5187696533203126, 0.5189273681640625, 1.07702783203125, 0.5185310668945312, 0.5188526000976562, 0.5185443725585938, 0.5186529541015625, 0.518382568359375, 0.519151611328125, 0.5186047973632812, 0.5189119873046875, 0.5184778442382812, 0.5184440307617187, 0.5187522583007812, 0.5190369262695312, 0.5186365356445313, 0.5191597900390625, 0.5186221923828125, 0.518540283203125, 0.518592529296875, 0.5189119873046875, 0.5189498901367188, 0.519520263671875, 0.5188690185546875, 0.51934619140625, 0.51949462890625, 0.5199288330078125, 0.5197547607421875, 0.5190215454101562, 0.519573486328125, 0.51902978515625, 0.5193554077148438, 0.5189078979492188, 0.519035888671875, 0.5191505737304688, 0.5188290405273438, 0.5192693481445313, 0.51888330078125, 0.5190390014648437, 0.519245849609375, 0.5186898193359375, 0.518709228515625, 0.5188157348632813, 0.519352294921875, 0.5192120361328125, 0.5192796020507813, 0.5196503295898437, 0.5190942993164063, 0.5189181518554687, 0.5189027709960937, 0.5193912353515625, 0.518920166015625, 0.5193021240234375, 0.5193011474609375, 0.5194506225585938, 0.519583740234375, 0.5188864135742187, 0.51835595703125, 0.5188598022460937, 0.51863037109375, 0.519320556640625, 0.5186631469726563, 0.51905126953125, 0.51867236328125, 0.5190215454101562, 1.07663671875, 0.5183795166015625, 0.5187102661132813, 0.5184112548828125, 0.51833447265625, 0.518308837890625, 0.5185689697265625, 0.5185751342773437, 0.5183692626953125, 0.5185904541015625, 0.5186160888671875, 0.51839794921875, 0.5187020874023438, 0.5187880859375, 0.5187522583007812, 0.5184368896484375, 0.5183836059570313, 0.5184163818359375, 0.5189284057617187, 0.5189427490234375, 0.51874609375, 0.5188782348632812, 0.5188167724609375, 0.5184901123046874, 0.518456298828125, 0.518635498046875, 0.5184102172851562, 0.5184757690429688, 0.5186948852539063, 0.5186232299804687, 0.5188280029296874, 0.5191874389648438, 0.5189837036132813, 0.5192386474609375, 0.5191004028320313, 0.5192028198242188, 0.5189232788085938, 0.5189160766601563, 0.5194721069335938, 0.5189151000976563, 0.5193482055664063, 0.5185126342773437, 0.5188956298828125, 0.5184440307617187, 0.5189990234375, 0.5186549682617188, 0.5188690185546875, 0.5187522583007812, 0.5186150512695312, 0.5184461059570312, 0.518830078125, 0.5186386108398438, 0.5191874389648438, 0.5188556518554688, 0.518888427734375, 0.51888330078125, 0.5187235717773437, 0.5187593994140625, 0.5187850341796875, 0.518666259765625, 0.518687744140625, 0.5185423583984375, 0.5187799072265625, 1.0766878662109376, 0.5186375732421875, 0.51905126953125, 0.5188710327148438, 0.5187266845703125, 0.5190973510742187, 0.518908935546875, 0.519141357421875, 0.518550537109375, 0.51863037109375, 0.5190062255859375, 0.5185525512695313, 0.51875634765625, 0.5187799072265625, 0.5186754760742187, 0.5188382568359375, 0.5187758178710937, 0.5184686279296875, 0.5186815795898437, 0.5187430419921875, 0.5186959228515625, 0.5186918334960937, 0.518940673828125, 0.5187666015625, 0.5187389526367188, 0.5188382568359375, 0.5186969604492188, 0.519372802734375, 0.518697998046875, 0.5186570434570312, 0.518687744140625, 0.5187123413085938, 0.5190942993164063, 0.5186478271484375, 0.5185515747070313, 0.5185474853515625, 0.5187676391601562, 0.5185812377929687, 0.5186754760742187, 0.5185700073242188, 0.5187891235351563, 0.5189447631835937, 0.5187184448242188, 0.5186047973632812, 0.519151611328125, 0.5186170654296876, 0.519161865234375, 0.5193031616210938, 0.51903076171875, 0.5185638427734375, 0.518667236328125, 0.5188187866210937, 0.5187286987304688, 0.5185003662109375, 0.5187952880859374, 0.518740966796875, 0.5187061767578125, 0.51859765625, 0.5187737426757812, 0.518634521484375, 0.5188270263671875, 0.5187686157226562, 0.5187706909179688, 1.077518310546875, 0.519056396484375, 0.5192898559570313, 0.518782958984375, 0.5186785278320313, 0.5184204711914062, 0.518846435546875, 0.5187430419921875, 0.5183098754882812, 0.5186918334960937, 0.5189222412109376, 0.5187593994140625, 0.5184962768554687, 0.5186631469726563, 0.5185730590820312, 0.5183323974609375, 0.5187102661132813, 0.518709228515625, 0.5189539794921875, 0.5187809448242188, 0.5188690185546875, 0.51852392578125, 0.5184266357421875, 0.5183641357421875, 0.5185474853515625, 0.5188229370117188, 0.5187440795898437, 0.518898681640625, 0.5188075561523438, 0.51873486328125, 0.5186150512695312, 0.5191997680664062, 0.5190574340820312, 0.5186181030273438, 0.5190830078125, 0.5190287475585937, 0.5187225341796875, 0.5189335327148438, 0.5190482177734375, 0.5184522094726562, 0.5187962646484375, 0.51858740234375, 0.518666259765625, 0.5187286987304688, 0.518603759765625, 0.51892431640625, 0.51871435546875, 0.5185014038085938, 0.5187501831054687, 0.5184440307617187, 0.5187451171875, 0.5186990356445312, 0.5186201782226563, 0.5188607788085937, 0.518729736328125, 0.5189560546875, 0.51917822265625, 0.5189519653320313, 0.5190205688476562, 0.5188720703125, 0.51892431640625, 0.51957861328125, 0.5188966674804687, 1.076885498046875, 0.5183836059570313, 0.5186785278320313, 0.5183488159179688, 0.5187010498046875, 0.5182863159179687, 0.5183037719726562, 0.51867138671875, 0.518687744140625, 0.5185167236328125, 0.5187676391601562, 0.5192069091796875, 0.5190737915039062, 0.5186611328125, 0.5192294311523438, 0.51938818359375, 0.5191044921875, 0.5192960205078125, 0.5188782348632812, 0.519246826171875, 0.5190031127929687, 0.51922021484375, 0.5191762084960938, 0.5192765502929687, 0.519278564453125, 0.519098388671875, 0.5190123291015625, 0.5186641845703125, 0.518856689453125, 0.5190707397460937, 0.5187973022460938, 0.518856689453125, 0.5186119384765625, 0.5186283569335938, 0.5187225341796875, 0.5189908447265625, 0.518697998046875, 0.5184389038085937, 0.5185259399414063, 0.51919873046875, 0.5189703979492187, 0.519035888671875, 0.5190819702148437, 0.5187225341796875, 0.519246826171875, 0.5188905029296875, 0.518962158203125, 0.5187327880859375, 0.5190523071289063, 0.5186856689453125, 0.5186232299804687, 0.5190911865234376, 0.5190225830078125, 0.5187317504882812, 0.5193215942382813, 0.5191966552734375, 0.5187368774414063, 0.5185955810546875, 0.5188178100585937, 0.5188208618164063, 0.518950927734375, 0.5186027221679688, 0.5190328369140625, 1.076612060546875, 0.5185167236328125, 0.5186959228515625, 0.5188966674804687, 0.5188515625, 0.5189232788085938, 0.5192007446289062, 0.5189017333984375, 0.5191997680664062, 0.5190430908203125, 0.5188444213867187, 0.5187010498046875, 0.5188218994140625, 0.51884033203125, 0.5189693603515625, 0.5187215576171875, 0.5187696533203126, 0.5189519653320313, 0.5188106079101562, 0.5188607788085937, 0.5188280029296874, 0.5186395874023437, 0.5188167724609375, 0.519056396484375, 0.5189109497070312, 0.5193502807617187, 0.5190021362304688, 0.5187338256835937, 0.5190707397460937, 0.5186467895507813, 0.5187655639648437, 0.51856689453125, 0.519203857421875, 0.5186898193359375, 0.5186150512695312, 0.51852392578125, 0.5187666015625, 0.5183876953125, 0.5183733520507813, 0.5182986450195313, 0.518972412109375, 0.5184624633789062, 0.5188782348632812, 0.5185863647460938, 0.5192232666015625, 0.51877685546875, 0.519309326171875, 0.5186734008789062, 0.5190625, 0.5192662963867187, 0.5189734497070313, 0.5185115966796875, 0.5190062255859375, 0.5187492065429687, 0.51869287109375, 0.5187256469726562, 0.518729736328125, 0.5186365356445313, 0.5189970092773437, 0.5185853271484375, 0.5187051391601563, 0.5185106201171875, 0.5193687133789062]",tokens/s,1.898222871517761,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-0.5B,Qwen/Qwen1.5-0.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1441.677312,1709.703168,0.0,1063.256064,942.605312,s,10,0.8730960388183594,0.08730960388183594,0.002035304872210584,0.08713673782348633,0.08910322875976563,0.09054942092895508,0.09170637466430664,"[0.09199561309814454, 0.0843604507446289, 0.08696444702148437, 0.08719612884521484, 0.08721517181396485, 0.08707734680175781, 0.08465267181396484, 0.0866138916015625, 0.08823846435546875, 0.08878185272216797]",tokens/s,2932.0943930345643,kWh,1.0099359104323139e-06,5.533989598310048e-07,2.5805410008034e-06,4.143875871066718e-06,tokens/kWh,61777912.265045814,MB,1441.677312,1709.703168,0.0,1063.256064,942.607872,s,10,53.98236181640625,5.398236181640624,0.0409841937132303,5.390563720703125,5.449904833984375,5.452959252929687,5.455402788085937,"[5.38043359375, 5.40069384765625, 5.41887353515625, 5.44691552734375, 5.456013671875, 5.44922607421875, 5.37513134765625, 5.35530859375, 5.36842431640625, 5.33134130859375]",tokens/s,11.670478630457612,kWh,6.202919682701882e-05,3.3993588802392576e-05,0.00015045469253839705,0.00024647747816780845,tokens/kWh,255601.4467054386,,s,629,54.67969024658198,0.08693114506610816,0.010438416792585154,0.08622489929199219,0.08683417816162109,0.08736747589111328,0.17189485961914075,"[0.08353689575195312, 0.08669286346435547, 0.08684236907958984, 0.08664883422851563, 0.08732160186767578, 0.0871107177734375, 0.08675321960449218, 0.08646348571777343, 0.08578867340087891, 0.08561151885986328, 0.08533920288085937, 0.08318355560302734, 0.08327986907958984, 0.08331366729736328, 0.08347750091552734, 0.08323891448974609, 0.08337407684326172, 0.08320102691650391, 0.08308223724365234, 0.08320921325683593, 0.08336589050292968, 0.08362290954589843, 0.08334028625488281, 0.08379084777832031, 0.08326246643066407, 0.08351641845703126, 0.08637849426269531, 0.0860948486328125, 0.08636211395263672, 0.0862208023071289, 0.0863825912475586, 0.08643379211425781, 0.08343961334228515, 0.08492339324951172, 0.08729497528076172, 0.08630579376220703, 0.08625049591064453, 0.08637340545654297, 0.08612451171875, 0.08631295776367187, 0.0867215347290039, 0.08637235260009765, 0.08630169677734376, 0.08631193542480468, 0.08447795104980468, 0.08495410919189453, 0.08645938873291016, 0.08668978881835937, 0.08635699462890625, 0.08412057495117188, 0.0861143035888672, 0.08629350280761719, 0.08610099029541016, 0.0859535369873047, 0.086508544921875, 0.08645426940917969, 0.0861286392211914, 0.08638976287841797, 0.08641228485107422, 0.08600883483886719, 0.08566067504882813, 0.08624947357177734, 0.16856166076660156, 0.08411341094970703, 0.0832890853881836, 0.08320819091796874, 0.08320409393310547, 0.08308633422851562, 0.08329011535644532, 0.08373766326904297, 0.08319993591308594, 0.08375193786621093, 0.08421683502197265, 0.08632524871826172, 0.0862371826171875, 0.08634674835205078, 0.08365670776367187, 0.0833986587524414, 0.08349798583984375, 0.08350003051757812, 0.08335769653320313, 0.08395059204101563, 0.0839208984375, 0.08677375793457032, 0.0867154541015625, 0.08665900421142578, 0.0864194564819336, 0.08657305908203125, 0.08616550445556641, 0.08598429107666015, 0.08726729583740235, 0.08673792266845703, 0.08624230194091796, 0.0869222412109375, 0.08644096374511719, 0.0866344985961914, 0.08689356994628906, 0.08668672180175781, 0.08644608306884766, 0.08659046173095702, 0.08682291412353516, 0.08598323059082032, 0.08748851013183594, 0.08676249694824219, 0.08683213043212891, 0.08647679901123047, 0.08678195190429687, 0.08769843292236328, 0.08739942169189453, 0.08640614318847656, 0.08639897918701171, 0.08644403076171875, 0.08633344268798829, 0.08639488220214844, 0.08622694396972656, 0.0867215347290039, 0.0865638427734375, 0.08646451568603515, 0.08639078521728516, 0.08660889434814453, 0.08628224182128906, 0.08633753967285156, 0.08671437072753906, 0.08621875, 0.08635084533691406, 0.17366220092773438, 0.08666828918457031, 0.08657817840576172, 0.08662118530273437, 0.08642969512939454, 0.08634265899658203, 0.0862525405883789, 0.08606208038330078, 0.08631501007080078, 0.08632012939453125, 0.08620851135253907, 0.08628530883789062, 0.08648499298095703, 0.08680038452148438, 0.08667135620117188, 0.08662732696533203, 0.08640409851074218, 0.08657817840576172, 0.08667033386230469, 0.08634060668945312, 0.08654131317138672, 0.08610816192626954, 0.08561766052246093, 0.08718950653076171, 0.08702668762207032, 0.08669388580322265, 0.08728883361816406, 0.08666214752197265, 0.08715264129638672, 0.08645017242431641, 0.08640409851074218, 0.08617984008789062, 0.08535756683349609, 0.0866324462890625, 0.08659967803955078, 0.08661299133300782, 0.08663346862792969, 0.08641843414306641, 0.08643379211425781, 0.08636006164550782, 0.08653209686279296, 0.0865771484375, 0.08655257415771485, 0.08642047882080078, 0.08629657745361329, 0.08657100677490234, 0.0862955551147461, 0.08327884674072265, 0.08376831817626954, 0.08357273864746094, 0.08349286651611328, 0.08337715148925781, 0.0860549087524414, 0.08430796813964844, 0.08347443389892578, 0.08344064331054687, 0.08356454467773437, 0.08309248352050781, 0.08637235260009765, 0.08680242919921875, 0.0863078384399414, 0.08653311920166015, 0.08646041870117188, 0.1741107177734375, 0.08636214447021484, 0.08619312286376953, 0.08634162902832031, 0.08638976287841797, 0.08647885131835938, 0.08649215698242188, 0.08664064025878906, 0.08642771148681641, 0.08624428558349609, 0.08617369842529297, 0.08573542022705079, 0.08636109161376954, 0.08620134735107422, 0.086329345703125, 0.08637644958496093, 0.08652902221679687, 0.08682086181640625, 0.08738508605957031, 0.0865249252319336, 0.0863815689086914, 0.0862894058227539, 0.08674918365478515, 0.08637337493896484, 0.08735027313232421, 0.08632422637939453, 0.08617984008789062, 0.08628428649902344, 0.08778956604003907, 0.08680754852294922, 0.08660582733154297, 0.08646348571777343, 0.08672358703613281, 0.0874486083984375, 0.08708297729492187, 0.08639078521728516, 0.08637337493896484, 0.08624742126464843, 0.08626278686523438, 0.08637651062011718, 0.08677881622314453, 0.08631501007080078, 0.08682803344726563, 0.0861112289428711, 0.08643583679199218, 0.08626380920410157, 0.08634572601318359, 0.086181884765625, 0.08633036804199219, 0.08633856201171874, 0.08504627227783203, 0.08628121948242187, 0.08638771057128906, 0.08684748840332031, 0.0863825912475586, 0.08656588745117187, 0.08662528228759765, 0.08654131317138672, 0.08605388641357421, 0.08622694396972656, 0.0862955551147461, 0.08632524871826172, 0.08606412506103515, 0.1738434600830078, 0.0866170883178711, 0.08668978881835937, 0.0868823013305664, 0.08633548736572266, 0.08676761627197266, 0.08665599822998046, 0.08651468658447266, 0.08632012939453125, 0.08640306854248046, 0.08641433715820312, 0.0875315170288086, 0.08692838287353516, 0.0863477783203125, 0.0873861083984375, 0.08702054595947266, 0.08652390289306641, 0.08673382568359375, 0.08648191833496094, 0.0868485107421875, 0.08659967803955078, 0.0865249252319336, 0.08798515319824218, 0.08668672180175781, 0.0869713897705078, 0.08641024017333984, 0.08619417572021484, 0.08626278686523438, 0.08664371490478516, 0.0865577621459961, 0.08645420837402344, 0.08650342559814453, 0.08614502716064452, 0.0860057601928711, 0.08658636474609376, 0.08687513732910156, 0.08634572601318359, 0.08673484802246094, 0.086614013671875, 0.08654745483398438, 0.08647782135009766, 0.08652288055419922, 0.08698777770996094, 0.08646348571777343, 0.08669286346435547, 0.08713728332519531, 0.08633344268798829, 0.08693965148925781, 0.0867000961303711, 0.08665286254882812, 0.08626483154296875, 0.0867430419921875, 0.08634982299804687, 0.08623616027832032, 0.0861685791015625, 0.08641228485107422, 0.08606719970703125, 0.08660889434814453, 0.08628736114501953, 0.08668057250976563, 0.08639794921875, 0.08680242919921875, 0.08641741180419922, 0.1737769012451172, 0.08605696105957031, 0.08600371551513672, 0.08643071746826173, 0.08781107330322266, 0.0866519012451172, 0.08646246337890626, 0.08642668914794922, 0.08613164520263672, 0.08653823852539062, 0.08642047882080078, 0.0866324462890625, 0.08596377563476562, 0.0863815689086914, 0.08631398773193359, 0.08695295715332031, 0.08793907165527344, 0.08786227416992187, 0.08662630462646484, 0.08779571533203125, 0.08724275207519532, 0.08729190063476562, 0.0877844467163086, 0.08636006164550782, 0.0858818588256836, 0.08638771057128906, 0.086949951171875, 0.08719251251220703, 0.08616550445556641, 0.08660377502441406, 0.08642457580566407, 0.08629452514648438, 0.0865054702758789, 0.08606105804443359, 0.08653311920166015, 0.08622796630859375, 0.0860200958251953, 0.08642253112792969, 0.08642355346679688, 0.0863641586303711, 0.08620851135253907, 0.0867583999633789, 0.08634880065917969, 0.08620851135253907, 0.08670003509521484, 0.08732057952880859, 0.08644608306884766, 0.08616960144042969, 0.08388813018798828, 0.08584806060791016, 0.08618905639648437, 0.0861788787841797, 0.0874474868774414, 0.08617574310302735, 0.08607027435302735, 0.0862064666748047, 0.08648703765869141, 0.08633241271972657, 0.08608153533935547, 0.08628838348388672, 0.08599142456054687, 0.08555622100830078, 0.08707379150390625, 0.1688248291015625, 0.08354815673828125, 0.08360345458984375, 0.08642150115966797, 0.08649830627441406, 0.0861808624267578, 0.08627609252929687, 0.08619622039794922, 0.0862033920288086, 0.08743424224853516, 0.08643276977539062, 0.08662425231933593, 0.08616754913330078, 0.08617164611816407, 0.0859135971069336, 0.08686489868164063, 0.08547532653808594, 0.08608972930908203, 0.08635596466064453, 0.08650649261474609, 0.08669593811035156, 0.0856258544921875, 0.08557164764404297, 0.08602413177490234, 0.08610304260253906, 0.08613478088378906, 0.0858818588256836, 0.08467046356201172, 0.08328396606445312, 0.08320614624023437, 0.08348467254638672, 0.0833433609008789, 0.08343142700195312, 0.08517120361328125, 0.08331775665283203, 0.0835225601196289, 0.08325939178466797, 0.0829675521850586, 0.08333618927001953, 0.0835962905883789, 0.08292864227294922, 0.08303923034667969, 0.0840273895263672, 0.08592588806152343, 0.08553369903564453, 0.08563097381591797, 0.08609180450439453, 0.08550192260742187, 0.08622489929199219, 0.08613069152832031, 0.08599961853027344, 0.08535244750976563, 0.0853544921875, 0.08618495941162109, 0.08482406616210937, 0.08524288177490234, 0.08417894744873047, 0.08835072326660157, 0.08645426940917969, 0.08594847869873047, 0.08594425964355469, 0.08639794921875, 0.0862003173828125, 0.17308876037597656, 0.0861470718383789, 0.08535763549804687, 0.08573228454589844, 0.08777318572998047, 0.0860579833984375, 0.08572621154785157, 0.086181884765625, 0.08619213104248047, 0.08773222351074218, 0.08648397064208985, 0.08551526641845703, 0.08338022613525391, 0.08344371032714844, 0.08378880310058594, 0.08320511627197266, 0.08437350463867188, 0.08477490997314453, 0.08600780487060547, 0.08639385223388672, 0.08647065734863281, 0.08623411560058594, 0.08597503662109375, 0.08415744018554687, 0.08344166564941406, 0.08589516448974609, 0.08594534301757813, 0.08557977294921874, 0.08637545776367188, 0.08613065338134765, 0.08599756622314453, 0.08644300842285156, 0.08653823852539062, 0.08349593353271484, 0.08332083129882813, 0.08336589050292968, 0.08353075408935547, 0.08340172576904296, 0.08323072052001954, 0.08343756866455078, 0.08349286651611328, 0.0832890853881836, 0.0835041275024414, 0.08353897857666015, 0.08367203521728515, 0.08369664001464844, 0.08330963134765625, 0.08333510589599609, 0.08366182708740234, 0.08354617309570313, 0.08324396514892578, 0.08303308868408203, 0.08764422607421875, 0.084233154296875, 0.08548761749267578, 0.08656588745117187, 0.08594841766357422, 0.08611126708984375, 0.08648700714111328, 0.08606719970703125, 0.08635289764404297, 0.08466329956054687, 0.08477286529541016, 0.17457868957519532, 0.08449132537841797, 0.08596371459960937, 0.08606515502929687, 0.08642355346679688, 0.08605696105957031, 0.08621673583984375, 0.08608969879150391, 0.08441241455078125, 0.08336179351806641, 0.08336179351806641, 0.08567501068115234, 0.08582860565185547, 0.083346435546875, 0.08477388763427735, 0.0841707534790039, 0.08664268493652344, 0.08617881774902343, 0.0860057601928711, 0.08586239624023438, 0.08551219177246094, 0.08600678253173828, 0.08574361419677734, 0.08587980651855469, 0.0835389404296875, 0.08575692749023438, 0.08598118591308594, 0.085970947265625, 0.08765235137939453, 0.08452095794677734, 0.08327577972412109, 0.08366387176513672, 0.08551423645019532, 0.08583475494384765, 0.08568831634521484, 0.08532889556884765, 0.0860057601928711, 0.08593408203125, 0.08623308563232422, 0.08616754913330078, 0.08630989074707031, 0.08582454681396484, 0.08615420532226563, 0.08506265258789063, 0.08292249298095702, 0.08326246643066407, 0.08425062561035156, 0.08737894439697266, 0.08324813079833984, 0.08346521759033203, 0.08319385528564453, 0.08310169219970703, 0.08324198150634765, 0.08323072052001954, 0.08317030334472657, 0.08586962890625, 0.08609273529052734, 0.08769741058349609, 0.08657305908203125, 0.08599244689941406, 0.08583679962158203, 0.08583782196044921, 0.08327680206298828, 0.17533644104003906, 0.08587776184082031, 0.08605081939697265, 0.0857548828125, 0.08574873352050781, 0.0859535369873047, 0.08613581085205078, 0.08587161254882812, 0.08592998504638671, 0.08673795318603515, 0.08629654693603515, 0.08595455932617188, 0.08510157012939454, 0.08576204681396485, 0.08615424346923828, 0.08628736114501953, 0.08378880310058594, 0.08452607727050782, 0.08607129669189453, 0.0862586898803711, 0.08617062377929688, 0.08422502136230468, 0.08376422119140625, 0.0832890853881836, 0.08342630767822265, 0.0846397476196289, 0.08346630096435546, 0.08343545532226562, 0.08319590759277344, 0.08344371032714844, 0.08367001342773438, 0.0833259506225586, 0.0832511978149414, 0.08327372741699218, 0.0835389404296875, 0.0833966064453125, 0.08333004760742188, 0.0835758056640625, 0.08591462707519532, 0.08338739013671875, 0.08385945892333985, 0.08679219055175781, 0.0835594253540039, 0.08360345458984375, 0.08362598419189453, 0.08332288360595703, 0.08334137725830078, 0.08309037017822266, 0.08337209320068359, 0.08316102600097657, 0.08313855743408204, 0.08323993682861328, 0.08327168273925781, 0.08664064025878906, 0.08615526580810547, 0.08606719970703125, 0.08610099029541016, 0.08608665466308593, 0.08620543670654297, 0.0832573471069336, 0.08329011535644532, 0.08356147003173828, 0.08407449340820312]",tokens/s,11.50335704469939,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-16B-nl,Salesforce/codegen-16B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -26262,22 +23770,16 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: CodeGenForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm-20b,internlm/internlm-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-j-6b,EleutherAI/gpt-j-6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -26295,24 +23797,69 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: GPTJForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2-large,openai-community/gpt2-large,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.42.3,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,1263.828992,2645.03296,0.0,1998.585856,1692.386816,s,10,0.1855360298156738,0.018553602981567382,0.00043875123267479884,0.018496671676635743,0.018861865425109862,0.019271300983428954,0.019598849430084227,"[0.019680736541748046, 0.018462047576904297, 0.018017887115478515, 0.018770879745483398, 0.01853129577636719, 0.018288383483886717, 0.018085119247436523, 0.018451072692871093, 0.018648672103881835, 0.01859993553161621]",tokens/s,13797.859114174787,kWh,2.114928848604586e-07,1.1588762332417353e-07,6.19279465806741e-07,9.46659973991373e-07,tokens/kWh,270424447.03839666,MB,1264.156672,2645.03296,0.0,1998.585856,1714.454528,s,10,11.12458154296875,1.1124581542968752,0.01406764968643287,1.1127079467773437,1.1250791748046873,1.1330105346679686,1.1393556225585937,"[1.14094189453125, 1.0845853271484376, 1.10562890625, 1.1158067626953125, 1.1171712646484375, 1.101681884765625, 1.123316650390625, 1.1187562255859376, 1.109609130859375, 1.10708349609375]",tokens/s,56.63134362102716,kWh,1.3564222330478142e-05,7.43279469964388e-06,2.677221466959136e-05,4.776923169971338e-05,tokens/kWh,1318840.5540208428,,s,629,11.272059902191153,0.017920603978046363,0.0022541365398613443,0.01777663993835449,0.018067455291748045,0.018251570892333986,0.03606495193481445,"[0.01827123260498047, 0.018265087127685545, 0.01800396728515625, 0.0180633602142334, 0.018020351409912108, 0.017958911895751953, 0.017951744079589844, 0.018018304824829103, 0.01802342414855957, 0.017916927337646483, 0.01800601577758789, 0.018231296539306642, 0.017929216384887696, 0.01817804718017578, 0.01799782371520996, 0.018084863662719726, 0.01784832000732422, 0.01869824028015137, 0.019519487380981446, 0.019140607833862306, 0.018869247436523438, 0.018712575912475587, 0.018748416900634765, 0.018544639587402344, 0.018654207229614257, 0.019080192565917968, 0.018343936920166014, 0.018095104217529297, 0.018095104217529297, 0.018199552536010744, 0.018050048828125, 0.01787494468688965, 0.017922048568725587, 0.017927167892456054, 0.017872896194458008, 0.017913856506347657, 0.017844224929809572, 0.017917951583862304, 0.017910783767700195, 0.017952768325805665, 0.017810432434082032, 0.018069503784179687, 0.01785139274597168, 0.017900543212890627, 0.01786675262451172, 0.01785139274597168, 0.017785856246948242, 0.017811456680297853, 0.017880064010620117, 0.01778483200073242, 0.01782374382019043, 0.017967103958129883, 0.017938432693481447, 0.017829887390136717, 0.017932287216186525, 0.018110464096069336, 0.0179814395904541, 0.01801625633239746, 0.018017280578613282, 0.017952768325805665, 0.018096128463745118, 0.017328128814697266, 0.03599564743041992, 0.017175552368164062, 0.01725132751464844, 0.017185792922973633, 0.017250303268432618, 0.01722060775756836, 0.01719193649291992, 0.017125375747680666, 0.017138687133789063, 0.01719705581665039, 0.01806438446044922, 0.01765990447998047, 0.01723084831237793, 0.017154048919677735, 0.017120256423950195, 0.01719398307800293, 0.017345535278320313, 0.017192960739135742, 0.017192960739135742, 0.017153024673461914, 0.017183744430541992, 0.017127424240112304, 0.017128448486328125, 0.017132543563842775, 0.017188863754272463, 0.017141759872436522, 0.017131519317626954, 0.017175552368164062, 0.017119232177734374, 0.01718988800048828, 0.01719705581665039, 0.01716223907470703, 0.017142784118652343, 0.017192960739135742, 0.01719808006286621, 0.017147903442382813, 0.017124351501464845, 0.017116159439086915, 0.017127424240112304, 0.017111040115356444, 0.017142784118652343, 0.01779302406311035, 0.01723904037475586, 0.017245183944702147, 0.017126399993896483, 0.01740185546875, 0.01724928092956543, 0.017155071258544922, 0.01721036720275879, 0.017176576614379883, 0.01716223907470703, 0.017187839508056642, 0.017137664794921875, 0.017185792922973633, 0.017144832611083984, 0.01717862319946289, 0.01720217514038086, 0.017183744430541992, 0.017167360305786132, 0.01720729637145996, 0.017152000427246093, 0.01714995193481445, 0.017188863754272463, 0.035544063568115236, 0.01720729637145996, 0.017348608016967772, 0.017148960113525392, 0.01784623908996582, 0.017950719833374023, 0.018066432952880858, 0.017897472381591797, 0.01788313674926758, 0.017346559524536134, 0.01720217514038086, 0.017344512939453126, 0.018008064270019532, 0.01804287910461426, 0.018095104217529297, 0.017966079711914062, 0.017930240631103517, 0.017811456680297853, 0.01784217643737793, 0.01785241508483887, 0.01826918411254883, 0.017861631393432616, 0.017954816818237306, 0.017864704132080078, 0.017854463577270507, 0.01786777687072754, 0.017949695587158202, 0.017916927337646483, 0.017961984634399415, 0.018075647354125975, 0.017930240631103517, 0.01799782371520996, 0.01720012855529785, 0.01722163200378418, 0.017177600860595704, 0.017258495330810548, 0.01720217514038086, 0.01723187255859375, 0.017426431655883787, 0.01724415969848633, 0.017171455383300782, 0.0171428165435791, 0.01711510467529297, 0.017171455383300782, 0.017632255554199217, 0.017307647705078123, 0.01725132751464844, 0.017209344863891602, 0.01720012855529785, 0.01724928092956543, 0.017460224151611328, 0.017337343215942384, 0.01716739273071289, 0.017188863754272463, 0.0171048641204834, 0.017150976181030272, 0.017136640548706054, 0.01721343994140625, 0.017156095504760743, 0.017252351760864256, 0.01720729637145996, 0.017108991622924806, 0.018921472549438476, 0.03711283111572266, 0.017960960388183594, 0.01794047927856445, 0.017308671951293944, 0.0172677116394043, 0.01714995193481445, 0.01721548843383789, 0.01720729637145996, 0.01716531181335449, 0.017163263320922852, 0.017517568588256836, 0.017304576873779298, 0.018160640716552736, 0.018274303436279296, 0.017976320266723633, 0.017821695327758787, 0.01784012794494629, 0.017701887130737306, 0.017527807235717775, 0.017163263320922852, 0.01739571189880371, 0.017712127685546874, 0.017694719314575197, 0.01780838394165039, 0.017533952713012696, 0.01719603157043457, 0.017132543563842775, 0.01741004753112793, 0.017710079193115236, 0.017952768325805665, 0.01789952087402344, 0.017967103958129883, 0.018033664703369142, 0.017896448135375977, 0.017869823455810546, 0.017712127685546874, 0.017709056854248048, 0.01777561569213867, 0.017909759521484374, 0.017778688430786133, 0.017898496627807618, 0.017753087997436523, 0.01782067108154297, 0.017892351150512697, 0.017910783767700195, 0.01777663993835449, 0.017760255813598632, 0.017971200942993162, 0.017833984375, 0.017648639678955077, 0.017754112243652344, 0.017796096801757814, 0.017781759262084963, 0.017777664184570312, 0.017855487823486327, 0.01795686340332031, 0.01784832000732422, 0.017781759262084963, 0.017789951324462892, 0.017721343994140625, 0.01779302406311035, 0.017879039764404296, 0.017757183074951173, 0.03669913482666016, 0.017513471603393553, 0.01776742362976074, 0.01776639938354492, 0.017827840805053712, 0.01779097557067871, 0.01787494468688965, 0.01782579231262207, 0.017917951583862304, 0.017985536575317384, 0.017950719833374023, 0.017716224670410157, 0.017673215866088866, 0.01776639938354492, 0.017821695327758787, 0.017810432434082032, 0.01782579231262207, 0.018156543731689453, 0.01783305549621582, 0.017725343704223632, 0.017736703872680663, 0.017726463317871095, 0.017276927947998046, 0.017566719055175782, 0.017895423889160156, 0.017763328552246094, 0.01784217643737793, 0.017838079452514647, 0.01784524726867676, 0.017864704132080078, 0.017789951324462892, 0.01780531120300293, 0.017785856246948242, 0.017544191360473634, 0.01722572708129883, 0.01796505546569824, 0.017736703872680663, 0.017722368240356445, 0.018108415603637695, 0.017870847702026366, 0.01782579231262207, 0.01781760025024414, 0.017765375137329103, 0.01779916763305664, 0.017942527770996093, 0.01783705520629883, 0.017838079452514647, 0.017971200942993162, 0.017773567199707033, 0.017757183074951173, 0.017721343994140625, 0.017209344863891602, 0.017476640701293945, 0.017805280685424803, 0.01741414451599121, 0.017085439682006837, 0.01697177505493164, 0.01739263916015625, 0.017143808364868163, 0.01762099266052246, 0.017771520614624024, 0.017876991271972655, 0.017740800857543947, 0.036397056579589845, 0.017701887130737306, 0.017744895935058593, 0.017725439071655275, 0.017699840545654297, 0.01720012855529785, 0.019172351837158205, 0.01902387237548828, 0.018176000595092775, 0.017833984375, 0.01785036849975586, 0.017771520614624024, 0.0178606071472168, 0.017293312072753905, 0.017302528381347656, 0.01785651206970215, 0.01821388816833496, 0.017930240631103517, 0.01722675132751465, 0.017116159439086915, 0.01722060775756836, 0.017083391189575196, 0.017130495071411133, 0.017120256423950195, 0.017187839508056642, 0.01747148895263672, 0.017762304306030274, 0.017780736923217775, 0.017702911376953127, 0.01777459144592285, 0.017750015258789064, 0.01780633544921875, 0.017605632781982423, 0.017183744430541992, 0.017228799819946287, 0.01721855926513672, 0.017169408798217774, 0.01724723243713379, 0.017786880493164063, 0.01722470474243164, 0.017300479888916014, 0.01742438316345215, 0.017140735626220704, 0.01724006462097168, 0.01720627212524414, 0.017283071517944337, 0.017316864013671874, 0.01748684883117676, 0.01722060775756836, 0.01726361656188965, 0.01724006462097168, 0.01721855926513672, 0.01725644874572754, 0.017179647445678712, 0.0171909122467041, 0.01718272018432617, 0.01720012855529785, 0.01717350387573242, 0.017169408798217774, 0.01717043113708496, 0.017176576614379883, 0.01721036720275879, 0.01722777557373047, 0.03609190368652344, 0.018330623626708984, 0.01841971206665039, 0.01794047927856445, 0.017928192138671875, 0.017904640197753906, 0.017781759262084963, 0.01782067108154297, 0.017748992919921876, 0.01779097557067871, 0.0178155517578125, 0.01762713623046875, 0.01741004753112793, 0.0172359676361084, 0.01724928092956543, 0.017926143646240233, 0.01780531120300293, 0.017581056594848633, 0.01721446418762207, 0.017269760131835937, 0.01724825668334961, 0.017524768829345703, 0.017801183700561524, 0.018189311981201172, 0.01789132881164551, 0.017922048568725587, 0.01785139274597168, 0.017810432434082032, 0.01783296012878418, 0.01780019187927246, 0.017740800857543947, 0.017821695327758787, 0.01780735969543457, 0.017889280319213868, 0.017743871688842772, 0.017833984375, 0.017904640197753906, 0.01785036849975586, 0.017888256072998047, 0.018562047958374024, 0.018885631561279297, 0.018080799102783204, 0.017959903717041016, 0.01780940818786621, 0.01804595184326172, 0.017960960388183594, 0.01778179168701172, 0.017766368865966796, 0.01782374382019043, 0.017957887649536132, 0.01789132881164551, 0.017932287216186525, 0.01779916763305664, 0.01784012794494629, 0.017949695587158202, 0.018008064270019532, 0.017871871948242187, 0.017836032867431642, 0.01779916763305664, 0.0178606071472168, 0.01785036849975586, 0.01765376091003418, 0.017263647079467773, 0.03623728179931641, 0.01822412872314453, 0.018000896453857423, 0.017853439331054686, 0.01784832000732422, 0.017847295761108398, 0.017924095153808595, 0.01782681655883789, 0.017847295761108398, 0.017869823455810546, 0.017503231048583985, 0.017280000686645508, 0.017565696716308594, 0.017952768325805665, 0.017887231826782226, 0.017903615951538086, 0.018059263229370116, 0.017936384201049805, 0.017829887390136717, 0.017869823455810546, 0.017743871688842772, 0.017771520614624024, 0.017746944427490235, 0.01781657600402832, 0.017921024322509766, 0.017885183334350584, 0.01783705520629883, 0.01779097557067871, 0.017946624755859376, 0.017881120681762695, 0.017975263595581055, 0.01784320068359375, 0.017888256072998047, 0.01746329689025879, 0.017374208450317383, 0.0176312313079834, 0.01767731285095215, 0.01780531120300293, 0.017738752365112305, 0.017762304306030274, 0.017156095504760743, 0.01746227264404297, 0.017780736923217775, 0.017772544860839845, 0.017268735885620116, 0.01719910430908203, 0.017176576614379883, 0.017605632781982423, 0.01780531120300293, 0.017844224929809572, 0.017950719833374023, 0.017886207580566405, 0.017855487823486327, 0.017879039764404296, 0.01777459144592285, 0.017949695587158202, 0.01784012794494629, 0.017901567459106444, 0.017992704391479493, 0.017946624755859376, 0.017821695327758787, 0.017325056076049804, 0.01728102493286133, 0.036772865295410156, 0.01763020706176758, 0.017847295761108398, 0.017917951583862304, 0.017923072814941408, 0.017935359954833984, 0.01785241508483887, 0.017862655639648437, 0.017925119400024413, 0.01788313674926758, 0.017318912506103516, 0.017284095764160155, 0.01722572708129883, 0.017179647445678712, 0.01747865676879883, 0.017236991882324217, 0.017275903701782228, 0.01717350387573242, 0.017317888259887695, 0.017160192489624023, 0.01720729637145996, 0.017201152801513672, 0.017261568069458007, 0.01717452812194824, 0.017154048919677735, 0.01721651268005371, 0.017131519317626954, 0.017114112854003907, 0.017138687133789063, 0.01740083122253418, 0.01738444709777832, 0.017150976181030272, 0.017217567443847656, 0.01723798370361328, 0.01720524787902832, 0.017177600860595704, 0.017168384552001953, 0.01715814399719238, 0.017143808364868163, 0.018020351409912108, 0.018546688079833985, 0.019092479705810548, 0.018093055725097656, 0.017953792572021485, 0.01799065589904785, 0.017950719833374023, 0.017655839920043947, 0.017588191986083985, 0.01784524726867676, 0.017939456939697264, 0.017925119400024413, 0.01807155227661133, 0.017925119400024413, 0.01785958480834961, 0.017993728637695314, 0.017932287216186525, 0.017968128204345703, 0.017968128204345703, 0.017861631393432616, 0.017893375396728514, 0.017958911895751953, 0.017920000076293945, 0.017286144256591796, 0.036160511016845705, 0.017304576873779298, 0.017262592315673828, 0.01722470474243164, 0.01724928092956543, 0.01740287971496582, 0.017313823699951172, 0.0172205753326416, 0.017254400253295898, 0.0172728328704834, 0.01722470474243164, 0.017352703094482422, 0.017209344863891602, 0.017320959091186524, 0.0172728328704834, 0.017324031829833983, 0.017306623458862306, 0.017386495590209963, 0.01739571189880371, 0.01725542449951172, 0.017260543823242186, 0.017144832611083984, 0.01720627212524414, 0.017313791275024415, 0.0172359676361084, 0.0172677116394043, 0.018152448654174806, 0.018092031478881835, 0.01797324752807617, 0.01804595184326172, 0.018120704650878908, 0.018067455291748045, 0.018136064529418947, 0.01801113510131836, 0.017984512329101563, 0.01804287910461426, 0.017991680145263672, 0.01822003173828125, 0.01803264045715332, 0.018051071166992186, 0.018081792831420897, 0.017947647094726564, 0.01801420783996582, 0.018067455291748045, 0.018125823974609375, 0.01804083251953125, 0.017975296020507812, 0.01802137565612793, 0.018163711547851562, 0.018093055725097656, 0.017265663146972657, 0.01704140853881836, 0.017209344863891602, 0.01724723243713379, 0.01724415969848633, 0.01721139144897461, 0.017262592315673828, 0.017277952194213866, 0.017246208190917968, 0.017375232696533204, 0.017257471084594727, 0.017229824066162108, 0.017253376007080077]",tokens/s,55.80169068102002,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) +TypeError: DeciCoderAttention.forward() got an unexpected keyword argument 'cache_position' -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-1_6b,stabilityai/stablelm-2-1_6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mistral-7B-v0.1,mistralai/Mistral-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2055.856128,6201.802752,0.0,5555.355648,5273.986048,s,10,6.166099914550782,0.6166099914550782,0.001805187295356428,0.6164970397949219,0.6192070678710938,0.619502490234375,0.619738828125,"[0.6174358520507812, 0.6152646484375, 0.6157444458007812, 0.6149035034179687, 0.615364013671875, 0.6138878173828125, 0.6173106689453125, 0.6197979125976563, 0.6172496337890625, 0.6191414184570313]",tokens/s,415.1732919472978,kWh,7.25516759687e-06,3.97553441218727e-06,3.4973328632232774e-05,4.6204030641290036e-05,tokens/kWh,5540642.157120091,MB,2055.856128,6201.802752,0.0,5555.355648,5324.908032,s,10,365.7995859375,36.57995859374999,0.035939708288129694,36.562037109375,36.625498828125,36.6277962890625,36.6296342578125,"[36.623765625, 36.5703828125, 36.55220703125, 36.541484375, 36.54166015625, 36.54937890625, 36.62498828125, 36.55369140625, 36.61193359375, 36.63009375]",tokens/s,1.7222545465309549,kWh,0.0004313527007732127,0.00023641881037992466,0.002030578407141164,0.002698349918294301,tokens/kWh,23347.602018875292,,s,629,370.76827941894544,0.5894567240364791,0.07322585165475656,0.5803335571289062,0.5820514404296875,0.5823793212890626,1.195406015625,"[0.5803048706054688, 0.5797140502929687, 0.5794703369140625, 0.5797222290039062, 0.57939453125, 0.5800867919921875, 0.5797529296875, 0.5800857543945312, 0.5802291259765625, 0.5800048828125, 0.5795665893554688, 0.5795399780273438, 0.580042724609375, 0.5822300415039062, 0.5817169799804688, 0.5822146606445312, 0.5819473876953125, 0.5820886840820313, 0.5811210327148437, 0.582023193359375, 0.5814353637695312, 0.581949462890625, 0.580401123046875, 0.5816944580078125, 0.5808414916992187, 0.5820006103515625, 0.5810022583007812, 0.5814302978515625, 0.581444580078125, 0.5812797241210937, 0.5823364868164063, 0.5824470825195313, 0.5824716796875, 0.5824655151367187, 0.581918701171875, 0.5819730224609375, 0.58178662109375, 0.5807022094726563, 0.5815429077148437, 0.5823539428710938, 0.5825064697265625, 0.5821757202148438, 0.5818603515625, 0.5820498046875, 0.582350830078125, 0.5819617919921874, 0.5816124877929687, 0.5811609497070312, 0.5808312377929687, 0.582739990234375, 0.5819484252929688, 0.5809541015625, 0.5825567016601563, 0.5805885620117187, 0.5814404907226562, 0.581485595703125, 0.581022705078125, 0.5828966674804688, 0.5815776977539062, 0.5818429565429688, 0.5819647827148438, 0.5811875610351562, 1.1957647705078125, 0.5814425659179687, 0.5816586303710938, 0.5816115112304687, 0.5822146606445312, 0.5820579833984375, 0.5818347778320313, 0.5802680053710938, 0.5797498779296875, 0.5799751586914063, 0.5797396240234375, 0.5802352905273438, 0.5802066040039062, 0.580453369140625, 0.5803786010742188, 0.5806100463867188, 0.5803131103515625, 0.5797007446289062, 0.5798512573242187, 0.5799127197265626, 0.5799597778320312, 0.5807144775390625, 0.5798113403320313, 0.579999755859375, 0.5794037475585937, 0.5798748168945312, 0.5804503173828125, 0.5799270629882812, 0.5803120727539063, 0.5800960083007812, 0.5797396240234375, 0.5799884643554688, 0.5807646484375, 0.5804298095703125, 0.5802833862304687, 0.5804861450195312, 0.5813104858398438, 0.5805506591796875, 0.581159912109375, 0.5806080932617188, 0.5819862670898438, 0.5803499755859375, 0.5799393310546875, 0.5800376586914062, 0.5834240112304687, 0.5802772216796875, 0.5810247802734375, 0.5808568115234375, 0.58094287109375, 0.5806510009765625, 0.580552734375, 0.580220947265625, 0.5798553466796875, 0.5802045288085937, 0.5803714599609375, 0.5809602661132812, 0.5803591918945312, 0.5802659912109375, 0.5799219360351563, 0.5800376586914062, 0.57982568359375, 0.5798696899414062, 0.579905517578125, 1.19632080078125, 0.5800499267578125, 0.5804564208984375, 0.5798563842773438, 0.5799393310546875, 0.57995263671875, 0.5803939819335937, 0.5799925537109375, 0.5806735229492187, 0.5805301513671876, 0.5799966430664063, 0.5798082275390625, 0.5798707275390625, 0.5796608276367188, 0.579547119140625, 0.5798369140625, 0.5801513061523438, 0.57986767578125, 0.5802199096679688, 0.5796167602539063, 0.5794580688476563, 0.5797939453125, 0.5794334716796875, 0.5804932861328125, 0.5801594848632813, 0.5801451416015625, 0.5808414916992187, 0.5797929077148437, 0.5807810668945312, 0.5800017700195312, 0.5802393798828125, 0.5800509643554688, 0.5801564331054687, 0.5809776611328125, 0.579979248046875, 0.580262939453125, 0.5801871337890625, 0.58008984375, 0.58040625, 0.5803786010742188, 0.5804656372070313, 0.5801768798828125, 0.5805813598632813, 0.5812029418945313, 0.5800724487304687, 0.5806858520507813, 0.5798379516601563, 0.580527099609375, 0.5803837280273437, 0.5800488891601563, 0.5802803344726563, 0.5804451904296875, 0.5802803344726563, 0.58022607421875, 0.580389892578125, 0.5802311401367187, 0.580168701171875, 0.5799096069335937, 0.580010986328125, 0.5800120239257812, 0.5806653442382812, 0.5806591796875, 0.5803489379882812, 1.1951103515625, 0.5797929077148437, 0.579947509765625, 0.579768310546875, 0.5811712036132812, 0.5812357177734375, 0.58012060546875, 0.5796597900390625, 0.5797007446289062, 0.5796484985351562, 0.5794017333984375, 0.580021240234375, 0.5799884643554688, 0.5799659423828125, 0.5805444946289062, 0.5804830932617188, 0.5801144409179687, 0.5799618530273437, 0.5795880737304687, 0.579757080078125, 0.579483642578125, 0.5798082275390625, 0.5797939453125, 0.5796690063476563, 0.5802239990234375, 0.57957275390625, 0.5796597900390625, 0.5793659057617188, 0.5799301147460938, 0.579904541015625, 0.5796874389648438, 0.580485107421875, 0.5801973876953125, 0.5806879272460937, 0.5800631713867187, 0.579857421875, 0.5803335571289062, 0.5799208984375, 0.5803970336914063, 0.5798604736328125, 0.5801195678710938, 0.5799127197265626, 0.5803151245117187, 0.5800714111328125, 0.5800929565429688, 0.5801134033203125, 0.579852294921875, 0.580485107421875, 0.5806182250976563, 0.5799198608398437, 0.5808701171875, 0.5802598266601563, 0.5800806274414062, 0.5799147338867188, 0.5800150756835938, 0.5798461303710938, 0.5798594360351562, 0.5798338623046875, 0.5796372680664063, 0.5799874267578125, 0.5799168090820312, 0.57957373046875, 0.580232177734375, 1.19552099609375, 0.5814528198242187, 0.5798369140625, 0.5804021606445312, 0.579589111328125, 0.5795419921875, 0.5797027587890625, 0.5801830444335937, 0.5802567749023437, 0.5800621948242187, 0.57980517578125, 0.5795338134765625, 0.5802721557617188, 0.5796618041992188, 0.5800499267578125, 0.57969970703125, 0.5798021240234374, 0.58012158203125, 0.581080078125, 0.5802280883789063, 0.5805322265625, 0.5801748657226562, 0.57978369140625, 0.5796332397460937, 0.57942626953125, 0.5793402709960938, 0.5803540649414063, 0.5799547119140624, 0.579684326171875, 0.5799802856445313, 0.5798615112304687, 0.5798123779296875, 0.579684326171875, 0.5798983764648438, 0.5798276977539063, 0.579751953125, 0.58046875, 0.5798799438476563, 0.5800233154296875, 0.5798615112304687, 0.5794273071289062, 0.5798963012695313, 0.5797560424804687, 0.5802567749023437, 0.5799588012695313, 0.5798819580078125, 0.5800070190429687, 0.5797190551757813, 0.5804554443359375, 0.5799905395507813, 0.58028955078125, 0.5803919067382812, 0.5802905883789062, 0.5805660400390625, 0.579968994140625, 0.5803079833984375, 0.5797980346679688, 0.580832275390625, 0.580274169921875, 0.5802926025390625, 0.58039501953125, 0.57959423828125, 0.5799966430664063, 1.19406689453125, 0.579810302734375, 0.5797396240234375, 0.5796720581054687, 0.5796259765625, 0.5796741333007812, 0.5809397583007813, 0.5795031127929687, 0.5802731323242187, 0.5795594482421875, 0.5797140502929687, 0.579177490234375, 0.5797734375, 0.5801287841796875, 0.5797498779296875, 0.5798656005859375, 0.5796587524414063, 0.5798328247070312, 0.5797969970703125, 0.5797437744140626, 0.5796495361328124, 0.5797191772460938, 0.5803560791015625, 0.5800233154296875, 0.5815418701171875, 0.5802926025390625, 0.5799188232421875, 0.5799495849609375, 0.5795277099609375, 0.5796403198242187, 0.5796351928710938, 0.5801963500976562, 0.5797037963867188, 0.5795000610351563, 0.5798338623046875, 0.5798881225585938, 0.5797590942382812, 0.5800130615234375, 0.58073193359375, 0.5800908813476563, 0.5806469116210937, 0.5811783447265625, 0.5802403564453125, 0.5803519897460937, 0.58052197265625, 0.5798973388671875, 0.5800233154296875, 0.5798533325195312, 0.5805916137695313, 0.5798184814453125, 0.5794979858398438, 0.579715087890625, 0.5797007446289062, 0.5794171142578125, 0.5801093139648438, 0.58170166015625, 0.5814415283203125, 0.5815838623046875, 0.5820006103515625, 0.57984716796875, 0.5823866577148438, 0.5812367553710938, 0.5812715454101562, 1.19872412109375, 0.5820743408203125, 0.5816565551757813, 0.582371337890625, 0.5821552734375, 0.5816156005859375, 0.5810933837890625, 0.5808988037109375, 0.5822463989257812, 0.5805066528320313, 0.5815418701171875, 0.5819443359375, 0.5820221557617188, 0.5824573364257812, 0.58057421875, 0.5815746459960938, 0.5819218139648438, 0.581970947265625, 0.5814149169921875, 0.58176513671875, 0.5813401489257812, 0.5796444091796875, 0.5797304077148437, 0.57986767578125, 0.57969970703125, 0.5803519897460937, 0.581917724609375, 0.5818121948242188, 0.5813934326171875, 0.5819647827148438, 0.5817763671875, 0.5821880493164062, 0.5812572021484375, 0.5817692260742188, 0.58166064453125, 0.5815797729492187, 0.5820784912109375, 0.5817958374023438, 0.5818296508789063, 0.581411865234375, 0.58090087890625, 0.5812305908203125, 0.5817753295898438, 0.581781494140625, 0.5817088012695313, 0.5801287841796875, 0.5828178100585938, 0.5812131958007812, 0.5801339111328125, 0.5819945068359375, 0.5805414428710938, 0.5801564331054687, 0.58094384765625, 0.5817108764648438, 0.5819852905273437, 0.5817589721679688, 0.5808824462890625, 0.580969482421875, 0.5814876098632813, 0.5799014282226562, 0.5799772338867187, 0.5808035888671875, 0.5819320068359375, 1.200752685546875, 0.5804697875976562, 0.5798113403320313, 0.5795338134765625, 0.57959423828125, 0.5793955688476562, 0.5800294189453125, 0.579673095703125, 0.5795379028320312, 0.5792747802734375, 0.57942529296875, 0.5792655639648437, 0.579324951171875, 0.5791590576171874, 0.579515380859375, 0.5797427368164062, 0.5802495727539062, 0.5797744750976562, 0.58040625, 0.5798430786132812, 0.5793853149414062, 0.5796864013671875, 0.5795184936523438, 0.5801082763671875, 0.5802659912109375, 0.5800826416015625, 0.5807779541015625, 0.5820303344726563, 0.5817589721679688, 0.5796484985351562, 0.5796925659179688, 0.580094970703125, 0.5802587890625, 0.5804124145507813, 0.5822156982421876, 0.5799669799804688, 0.5799188232421875, 0.5803817138671875, 0.5797427368164062, 0.5796126708984375, 0.5807124633789063, 0.5810831298828125, 0.5797539672851563, 0.579541015625, 0.5795164184570313, 0.5796055297851562, 0.5795983276367187, 0.5792973022460938, 0.5793689575195312, 0.5794713745117187, 0.5795768432617188, 0.5799382934570313, 0.5819227905273437, 0.5818388671875, 0.581307373046875, 0.5798348999023437, 0.5799434204101562, 0.5802772216796875, 0.5826939086914062, 0.5821061401367188, 0.582097900390625, 0.5818736572265625, 0.5818245239257812, 1.197048828125, 0.5797693481445313, 0.5795419921875, 0.579435546875, 0.5806448364257812, 0.580769775390625, 0.5797642211914062, 0.5793648681640625, 0.5799239501953125, 0.579820556640625, 0.5798553466796875, 0.5799976806640625, 0.5800867919921875, 0.5793955688476562, 0.579800048828125, 0.5796505737304688, 0.5797386474609375, 0.5797744750976562, 0.5809653930664063, 0.58010009765625, 0.5795747680664063, 0.5806735229492187, 0.5816740112304688, 0.5815050048828125, 0.5816995849609375, 0.581855224609375, 0.5821460571289062, 0.5816473388671874, 0.5822300415039062, 0.5816422119140625, 0.5811865844726563, 0.58155517578125, 0.5818736572265625, 0.5809817504882813, 0.5813842163085937, 0.5811926879882813, 0.5820927734375, 0.5812623291015625, 0.5827706909179687, 0.582930419921875, 0.5829867553710938, 0.58191259765625, 0.5821531982421875, 0.5811548461914062, 0.5818746948242187, 0.5817907104492187, 0.5817804565429687, 0.5819412231445312, 0.5816668090820313, 0.5811885986328125, 0.5814149169921875, 0.5814466552734375, 0.5809336547851562, 0.581085205078125, 0.5813053588867187, 0.581718017578125, 0.5829119873046875, 0.582118408203125, 0.5821614379882812, 0.5819883422851563, 0.5823518676757813, 0.5817088012695313, 0.5822545776367187, 1.201244140625, 0.580126708984375, 0.5799127197265626, 0.5811712036132812, 0.5819514770507812, 0.5811456298828125, 0.5812008666992188, 0.5814640502929688, 0.5819463500976563, 0.5820886840820313, 0.5823846435546876, 0.580305908203125, 0.5809714965820313, 0.5801236572265625, 0.5817006225585938, 0.5822177124023438, 0.5816535034179687, 0.5801830444335937, 0.58051171875, 0.5805444946289062, 0.5798604736328125, 0.5808660278320312, 0.5804462280273438, 0.5811814575195312, 0.5804677124023437, 0.581433349609375, 0.5835038452148438, 0.5813534545898438, 0.5819402465820313, 0.5816535034179687, 0.58176513671875, 0.5820324096679688, 0.5815357666015625, 0.5827686157226563, 0.582540283203125, 0.5820057373046875, 0.5823068237304687, 0.58144970703125, 0.5820303344726563, 0.5807462158203125, 0.5822003173828125, 0.5823150024414062, 0.5814906616210938, 0.5829560546875, 0.5828761596679688, 0.5815275268554687, 0.5806663818359376, 0.5816873168945312, 0.5818255615234375, 0.58170166015625, 0.5825853271484375, 0.5802014770507813, 0.5799505615234375, 0.5799178466796875, 0.581676025390625, 0.5818982543945312, 0.5817825317382812, 0.5805660400390625, 0.581728271484375, 0.581496826171875, 0.5820068359375, 0.5809755859375, 0.5805465087890626]",tokens/s,1.6964773820072907,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,r,r,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -26320,34 +23867,209 @@ NameError: name 'exl_ext' is not defined File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/r/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949111-525794a369858c23485e6ee4;e7a63d89-e585-4e10-9bbe-707be6547645) + +Repository Not Found for url: https://huggingface.co/r/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + raise EnvironmentError( +OSError: r is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,l,l,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/l/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669491b7-2bf1ab347b750d2438fd14f1;18e55136-c679-4eb8-bde6-b738d756fd72) + +Repository Not Found for url: https://huggingface.co/l/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + raise EnvironmentError( +OSError: l is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,a,a,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/a/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949163-5d9eaf703842b2f37ec12ad1;d45172c5-9d7a-47f4-bd58-7ca59a85dbc5) + +Repository Not Found for url: https://huggingface.co/a/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + raise EnvironmentError( +OSError: a is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,1,1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,1,1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -26386,7 +24108,7 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669495a3-42ea630c2d33350a7418178a;234132d0-87ad-4257-8d61-0454a01b01c7) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669495b3-2dbd359a484a8b0753338cd2;6ef125c4-ed05-4db1-8b9e-6083dc65104f) Repository Not Found for url: https://huggingface.co/1/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. @@ -26416,8 +24138,10 @@ Traceback (most recent call last): OSError: 1 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-1.8B,Qwen/Qwen1.5-1.8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-7b,huggyllama/llama-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2013.822976,5480.382464,0.0,4833.93536,4503.282688,s,10,5.711301574707031,0.5711301574707031,0.0015604684158887843,0.5710088500976562,0.5724867248535156,0.573356430053711,0.5740521942138671,"[0.5715228271484375, 0.5742261352539062, 0.5684718017578125, 0.5703966064453125, 0.570494873046875, 0.5693699340820313, 0.5704375610351563, 0.5720609130859375, 0.57229345703125, 0.5720274658203125]",tokens/s,448.2340787846278,kWh,6.721677934681928e-06,3.683185084507083e-06,3.147118258432934e-05,4.187604560351835e-05,tokens/kWh,6113280.189438215,MB,2014.928896,5480.382464,0.0,4833.93536,4688.699392,s,10,334.74296874999993,33.474296875,0.0037315247196552594,33.473017578124995,33.479158984375,33.4801732421875,33.4809846484375,"[33.47309765625, 33.47263671875, 33.4715390625, 33.4729375, 33.47534765625, 33.47058984375, 33.47893359375, 33.4811875, 33.4778203125, 33.46887890625]",tokens/s,1.8820410249468458,kWh,0.00039524016447641235,0.00021662581418956808,0.0018242358853134645,0.002436101863979445,tokens/kWh,25860.987560301615,,s,629,339.3508396606445,0.5395084891266209,0.06790528508400501,0.531294189453125,0.5317521484375,0.5319190551757812,1.1017576318359374,"[0.5316085815429688, 0.5315625, 0.5310873413085937, 0.5312276611328125, 0.5310341186523437, 0.5311795043945312, 0.5312860107421875, 0.53180517578125, 0.5313863525390625, 0.5315205078125, 0.5309071655273437, 0.5309808349609375, 0.5307955322265625, 0.5312429809570313, 0.530924560546875, 0.5313556518554687, 0.5308876953125, 0.531230712890625, 0.5310802001953125, 0.5317345581054688, 0.5312921752929688, 0.5313382568359375, 0.5308221435546875, 0.5310607299804687, 0.5308549194335938, 0.5315635375976563, 0.5311006469726562, 0.5312788696289062, 0.5312388916015625, 0.5312849731445313, 0.5308907470703125, 0.5311416015625, 0.5308528442382813, 0.5311743774414063, 0.531367919921875, 0.5315932006835937, 0.5311682739257813, 0.5317539672851562, 0.5317908325195313, 0.531473388671875, 0.53108837890625, 0.53146728515625, 0.531220458984375, 0.5315338134765625, 0.5310525512695312, 0.531900390625, 0.5317529296875, 0.5317069091796875, 0.53103515625, 0.53153076171875, 0.5311344604492187, 0.5311918334960938, 0.5308630981445313, 0.5311641845703124, 0.5309531860351563, 0.531577880859375, 0.5316065063476563, 0.5314017333984375, 0.5316864013671875, 0.5318963012695312, 0.5315604248046875, 0.53161279296875, 1.1062353515625, 0.5315419921875, 0.5316771850585937, 0.5312737426757812, 0.5311528930664062, 0.5314109497070313, 0.5312112426757812, 0.5310986328125, 0.5311057739257813, 0.53089892578125, 0.5317980346679687, 0.531167236328125, 0.53102490234375, 0.5308078002929687, 0.5314508666992187, 0.5309224853515625, 0.5310689086914062, 0.5308067626953125, 0.5315430297851562, 0.5309972534179688, 0.5317294311523437, 0.5312696533203125, 0.5314498291015625, 0.5310535888671875, 0.5314406127929687, 0.5309706420898438, 0.5315850219726562, 0.5310156860351563, 0.5313699951171875, 0.5310637817382813, 0.5316474609375, 0.5311948852539062, 0.53110888671875, 0.53115185546875, 0.531330078125, 0.5310965576171875, 0.5311754150390625, 0.5309706420898438, 0.5319178466796874, 0.532337646484375, 0.5315972900390625, 0.531103759765625, 0.5311692504882812, 0.5309296875, 0.5313453979492188, 0.53089794921875, 0.532917236328125, 0.5309666137695312, 0.5310463256835938, 0.5309081420898437, 0.5315809326171875, 0.5311968994140625, 0.5312440185546875, 0.5310320434570313, 0.5312368774414062, 0.5308692626953125, 0.5317509155273438, 0.5314529418945313, 0.5314232177734375, 0.5311610717773437, 0.531356689453125, 0.5314232177734375, 0.5313045043945313, 1.1011102294921875, 0.5311477661132813, 0.5314263305664062, 0.531145751953125, 0.5313720092773437, 0.5311477661132813, 0.5315952758789062, 0.5309235229492187, 0.5311928100585938, 0.531162109375, 0.5311211547851562, 0.53140478515625, 0.5317939453125, 0.53121435546875, 0.5318656005859375, 0.531483642578125, 0.5315000610351562, 0.5312716674804687, 0.5315645141601563, 0.531324951171875, 0.5316557006835938, 0.5313607788085938, 0.5315901489257813, 0.5309573364257812, 0.5312061157226563, 0.5308528442382813, 0.5311078491210938, 0.5310279541015624, 0.5312245483398438, 0.5308385009765625, 0.5313310546875, 0.53131982421875, 0.5318225708007812, 0.5312051391601562, 0.5311702880859375, 0.5310709838867187, 0.5313167114257813, 0.5311600341796875, 0.5312184448242188, 0.531252197265625, 0.5313607788085938, 0.5311314086914063, 0.5312163696289063, 0.5310596923828125, 0.531451904296875, 0.5310115966796874, 0.5313280029296875, 0.53153076171875, 0.5314334716796875, 0.5314508666992187, 0.5315317993164063, 0.5316935424804687, 0.5310279541015624, 0.5312266235351563, 0.5312102661132813, 0.531051513671875, 0.5313505249023438, 0.5309439697265625, 0.53108837890625, 0.5311426391601562, 0.5314908447265625, 0.5311590576171875, 0.5316188354492187, 1.1020093994140625, 0.5310126342773438, 0.5312286987304687, 0.5310289916992188, 0.531694580078125, 0.5315460815429688, 0.5315625, 0.5309337768554687, 0.5313526000976563, 0.5313218383789062, 0.5313914794921875, 0.53136279296875, 0.5317498779296875, 0.5313587036132813, 0.5314078979492187, 0.531162109375, 0.5312286987304687, 0.531251220703125, 0.5314600830078124, 0.5311160278320313, 0.53119384765625, 0.5310310668945313, 0.5316546630859375, 0.531409912109375, 0.531567626953125, 0.5313894653320312, 0.5315020751953125, 0.531135498046875, 0.5310525512695312, 0.5308528442382813, 0.5313935546875, 0.5313812255859375, 0.5312890625, 0.530966552734375, 0.531019775390625, 0.5310494995117188, 0.5313024291992188, 0.5313894653320312, 0.531294189453125, 0.5311016845703125, 0.5310525512695312, 0.5311856689453125, 0.531736572265625, 0.531641357421875, 0.5321881713867187, 0.5313126220703125, 0.5313751220703125, 0.5310965576171875, 0.531794921875, 0.5309716186523438, 0.5311610717773437, 0.5310167236328125, 0.5313290405273438, 0.5308538818359375, 0.5310453491210938, 0.5313873901367188, 0.5312819213867187, 0.5309849853515625, 0.531398681640625, 0.5310084838867187, 0.5321144409179688, 0.531578857421875, 0.5316700439453125, 1.10214453125, 0.530830322265625, 0.5315020751953125, 0.5308692626953125, 0.5310894165039063, 0.5316024169921875, 0.5316566772460938, 0.5311129760742187, 0.5313003540039063, 0.5309224853515625, 0.5312870483398437, 0.5310771484375, 0.5316566772460938, 0.5308528442382813, 0.5312696533203125, 0.5311334228515625, 0.5315010375976562, 0.5314529418945313, 0.5316433715820312, 0.5310289916992188, 0.5314703369140625, 0.5313914794921875, 0.5314805908203125, 0.5312102661132813, 0.5313157348632812, 0.5312808837890625, 0.5316044921875, 0.5312051391601562, 0.5314078979492187, 0.5316720581054688, 0.5313822631835937, 0.5311006469726562, 0.53110888671875, 0.5308703002929688, 0.5316167602539063, 0.5314221801757812, 0.531800048828125, 0.5311160278320313, 0.5314561157226563, 0.531411865234375, 0.5317734375, 0.5317805786132812, 0.5310750732421875, 0.5310975952148438, 0.53131982421875, 0.53121435546875, 0.531240966796875, 0.530924560546875, 0.5315112915039063, 0.5309634399414063, 0.53119384765625, 0.5311242065429688, 0.5314119873046875, 0.5314744262695312, 0.5316505737304688, 0.5320745239257813, 0.531435546875, 0.53260595703125, 0.5313802490234375, 0.5314990234375, 0.531493896484375, 0.531061767578125, 0.5313065185546875, 1.1010294189453125, 0.5310013427734375, 0.53124609375, 0.5309849853515625, 0.5314959106445313, 0.5311447143554687, 0.531198974609375, 0.531135498046875, 0.5317611694335938, 0.5310453491210938, 0.5312368774414062, 0.5310105590820312, 0.5315205688476563, 0.5312000122070313, 0.531442626953125, 0.5309010009765625, 0.53104638671875, 0.5309081420898437, 0.5313760986328125, 0.5308211059570312, 0.5312214965820312, 0.5310167236328125, 0.5315963134765626, 0.531188720703125, 0.5312471313476562, 0.5308661499023437, 0.5318123779296875, 0.5314027709960938, 0.5315277099609375, 0.5311959228515625, 0.5315491943359375, 0.5311867065429687, 0.5311385498046876, 0.5308538818359375, 0.5313402709960937, 0.5308897094726562, 0.53110888671875, 0.5310873413085937, 0.532853759765625, 0.5313351440429688, 0.531751953125, 0.5309685668945312, 0.5313668823242188, 0.5309788208007813, 0.5314406127929687, 0.5319198608398438, 0.5315972900390625, 0.5316341552734375, 0.531399658203125, 0.5313290405273438, 0.5312604370117188, 0.531052490234375, 0.5311856689453125, 0.5311262817382812, 0.5311273193359375, 0.5309450073242188, 0.5313003540039063, 0.5310310668945313, 0.531162109375, 0.5316484985351563, 0.5313546142578125, 0.531051513671875, 0.5314641723632813, 1.10335595703125, 0.5312788696289062, 0.5317376098632812, 0.5317816162109374, 0.5310443725585937, 0.5310945434570312, 0.531515380859375, 0.5312010498046875, 0.5312890625, 0.5315604248046875, 0.5310709838867187, 0.5312757568359375, 0.5313177490234375, 0.5313668823242188, 0.5315430297851562, 0.5313382568359375, 0.531462158203125, 0.5310822143554688, 0.5318031616210938, 0.5317324829101563, 0.5316137084960938, 0.5309522094726562, 0.5314713745117188, 0.531346435546875, 0.5311826171875, 0.5308856201171875, 0.5316904907226563, 0.5310525512695312, 0.5313648681640625, 0.5309481201171875, 0.5315020751953125, 0.5309798583984375, 0.5310975952148438, 0.5311068115234375, 0.53123583984375, 0.5308887329101563, 0.5311610717773437, 0.5312593994140625, 0.5315113525390625, 0.5320181274414062, 0.53134130859375, 0.5311498413085938, 0.5313812255859375, 0.5318276977539063, 0.5313341674804688, 0.5315061645507813, 0.5313771362304688, 0.5312665405273438, 0.53157373046875, 0.5311734008789063, 0.5318348999023438, 0.5309931640625, 0.5319618530273438, 0.5310545654296875, 0.531431396484375, 0.5314805908203125, 0.5322670288085938, 0.5313526000976563, 0.5318143920898437, 0.5314058227539062, 0.5316392822265625, 0.5314242553710937, 0.5316956176757812, 1.1039549560546875, 0.5310596923828125, 0.531430419921875, 0.5309603881835937, 0.5313013916015625, 0.5310545654296875, 0.5314334716796875, 0.5311129760742187, 0.5314866943359375, 0.5309327392578125, 0.5313535766601563, 0.5317621459960937, 0.5320017700195312, 0.5313474731445312, 0.5321390380859375, 0.5313034057617188, 0.5315491943359375, 0.5315614624023437, 0.5321195678710937, 0.5317386474609375, 0.531430419921875, 0.53125732421875, 0.5315266723632812, 0.5314437255859376, 0.5318656005859375, 0.5314652099609375, 0.5318246459960938, 0.5309419555664062, 0.5313320922851562, 0.5310873413085937, 0.5319567260742187, 0.5315020751953125, 0.5317171020507813, 0.5314866943359375, 0.531135498046875, 0.5316986694335938, 0.5315419921875, 0.531198974609375, 0.5315286865234375, 0.5312481079101562, 0.53157373046875, 0.5313710327148438, 0.531556396484375, 0.5311170043945312, 0.5320908813476563, 0.5312860107421875, 0.5311273193359375, 0.53108837890625, 0.5317069091796875, 0.5314140014648437, 0.5318666381835937, 0.5313013916015625, 0.5315419921875, 0.5312225341796875, 0.531567626953125, 0.5311692504882812, 0.53146728515625, 0.5312901000976562, 0.5316116333007812, 0.5311057739257813, 0.5314898071289063, 0.5310587158203125, 0.5314539794921875, 1.1042969970703125, 0.5312860107421875, 0.5315072021484375, 0.5316034545898437, 0.5322137451171876, 0.5317847290039063, 0.5316690063476562, 0.5311959228515625, 0.531631103515625, 0.5317171020507813, 0.531820556640625, 0.5314273071289063, 0.5316249389648438, 0.5310904541015625, 0.531863525390625, 0.5312501831054688, 0.53151025390625, 0.531252197265625, 0.5320970458984375, 0.5310699462890625, 0.5312184448242188, 0.5309183959960937, 0.5319987182617187, 0.531577880859375, 0.5319649047851562, 0.5313546142578125, 0.53127783203125, 0.5312000122070313, 0.5314058227539062, 0.5309552612304688, 0.5314765014648437, 0.5311477661132813, 0.5315399780273438, 0.5311395874023438, 0.5313935546875, 0.5317590942382813, 0.531430419921875, 0.5314949340820313, 0.53096240234375, 0.5309450073242188, 0.5312819213867187, 0.5316137084960938, 0.5311641845703124, 0.5311508178710938, 0.5317099609375, 0.531009521484375, 0.5310576782226563, 0.530977783203125, 0.5313966064453125, 0.531272705078125, 0.531178466796875, 0.53085693359375, 0.5311764526367188, 0.5310115966796874, 0.531294189453125, 0.5309757690429687, 0.5316322021484375, 0.5310668334960937, 0.531282958984375, 0.531072021484375, 0.5319813232421875, 0.5315072021484375, 0.5314345092773437, 1.1038515625, 0.5315747680664062, 0.5315563354492188, 0.5314283447265625, 0.5311314086914063, 0.5308887329101563, 0.5313218383789062, 0.5309593505859375, 0.5309398803710937, 0.5308262329101563, 0.5310136108398438, 0.5309296875, 0.5314590454101562, 0.5310699462890625, 0.5316587524414063, 0.5311928100585938, 0.5312696533203125, 0.5310955810546875, 0.5310802001953125, 0.5312481079101562, 0.5316751098632813, 0.5312921752929688, 0.5321625366210937, 0.531294189453125, 0.5315594482421875, 0.5310873413085937, 0.5322465209960937, 0.5310218505859375, 0.5312512817382813, 0.5308609619140625, 0.531178466796875, 0.5309429931640625, 0.5310105590820312, 0.5310392456054688, 0.5313372192382813, 0.5314283447265625, 0.5313710327148438, 0.5309235229492187, 0.5312706298828125, 0.5308815307617187, 0.5310955810546875, 0.5310003051757812, 0.5311764526367188, 0.5315164184570312, 0.53134130859375, 0.5313402709960937, 0.5311385498046876, 0.5311682739257813, 0.53187890625, 0.5310679321289062, 0.5314652099609375, 0.5309286499023438, 0.5317437744140625, 0.5314334716796875, 0.5315911865234375, 0.5309706420898438, 0.5311815795898438, 0.5312235717773437, 0.5312030639648437, 0.5309204711914063, 0.5312102661132813, 0.5308764038085938, 0.5311703491210937]",tokens/s,1.853538952869569,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-2.7b,EleutherAI/pythia-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.42.3,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,2265.694208,3330.801664,0.0,2684.35456,2448.256,s,10,2.319208984375,0.2319208984375,0.0009696989948218854,0.2316784973144531,0.23303465728759767,0.23331750717163086,0.23354378707885742,"[0.23360035705566407, 0.23106300354003906, 0.23155523681640625, 0.23113821411132812, 0.23119439697265626, 0.23046585083007812, 0.2318017578125, 0.2329718017578125, 0.23292591857910155, 0.23249244689941406]",tokens/s,1103.824630400822,kWh,2.7226702056147833e-06,1.491899283576025e-06,1.2428040245455892e-05,1.66426097346467e-05,tokens/kWh,15382202.916592907,MB,2265.694208,3330.801664,0.0,2684.35456,2572.686848,s,10,135.717251953125,13.571725195312501,0.01175719247352948,13.5685810546875,13.5886708984375,13.58988818359375,13.59086201171875,"[13.588400390625, 13.583669921875, 13.59110546875, 13.5705322265625, 13.5677392578125, 13.5600986328125, 13.5679013671875, 13.5521083984375, 13.5692607421875, 13.566435546875]",tokens/s,4.642003805216995,kWh,0.000160095536988793,8.774532296239601e-05,0.0007202301292139377,0.0009680709891651268,tokens/kWh,65077.872082843605,,s,629,137.58601713562004,0.21873770609796522,0.027557412902918375,0.21539942932128905,0.2159298553466797,0.2160373779296875,0.4467827087402344,"[0.21633331298828126, 0.21582643127441406, 0.21582028198242187, 0.21581414794921874, 0.21571174621582032, 0.21592576599121094, 0.21572607421875, 0.2158233642578125, 0.2159646759033203, 0.21584690856933594, 0.21583155822753905, 0.2158192596435547, 0.21583155822753905, 0.2157424621582031, 0.21579161071777345, 0.2158305206298828, 0.2159831085205078, 0.2154168395996094, 0.2150440979003906, 0.21582949829101564, 0.2148853759765625, 0.21520895385742186, 0.21547520446777343, 0.21552435302734374, 0.2149591064453125, 0.21545164489746094, 0.21503077697753906, 0.21568716430664062, 0.21583769226074218, 0.21579776000976564, 0.21587968444824218, 0.21599845886230468, 0.21593702697753905, 0.21590733337402343, 0.215088134765625, 0.21520077514648436, 0.21582847595214844, 0.21543833923339845, 0.21507891845703125, 0.21532672119140625, 0.2152755126953125, 0.21532365417480467, 0.21506355285644532, 0.2150564422607422, 0.21531129455566406, 0.21545164489746094, 0.21539430236816406, 0.21608857727050781, 0.21539021301269531, 0.21621043395996092, 0.21590322875976561, 0.21593087768554686, 0.21835877990722657, 0.21600668334960937, 0.21558575439453126, 0.2158970947265625, 0.21553152465820313, 0.21525401306152345, 0.21598208618164064, 0.21550387573242188, 0.2158039093017578, 0.21546188354492188, 0.446887939453125, 0.21535130310058595, 0.21620838928222658, 0.21549568176269532, 0.21547007751464844, 0.21541375732421875, 0.21529087829589844, 0.2152929229736328, 0.2151884765625, 0.2157445068359375, 0.21559091186523438, 0.2155878448486328, 0.21526937866210938, 0.21540966796875, 0.21536972045898437, 0.2159861755371094, 0.21592576599121094, 0.21588890075683595, 0.21573939514160156, 0.21593702697753905, 0.215689208984375, 0.21498162841796875, 0.21494374084472656, 0.21587353515625, 0.21586944580078124, 0.21577932739257813, 0.2158233642578125, 0.21595135498046875, 0.21583973693847655, 0.2160025634765625, 0.2159482879638672, 0.2154659881591797, 0.2158223419189453, 0.2156021728515625, 0.21595545959472656, 0.21571891784667968, 0.215193603515625, 0.21557760620117186, 0.21547520446777343, 0.21582643127441406, 0.21502873229980468, 0.21543014526367188, 0.21531135559082032, 0.2156943359375, 0.21508607482910155, 0.21500416564941408, 0.21636607360839843, 0.21551615905761717, 0.21563497924804687, 0.21572502136230468, 0.21526629638671874, 0.21593600463867188, 0.21595852661132814, 0.21549465942382812, 0.21517926025390624, 0.21620530700683593, 0.21590428161621095, 0.21612130737304688, 0.2151557159423828, 0.21511474609375, 0.21573631286621095, 0.21598719787597656, 0.21551206970214845, 0.44768972778320315, 0.2158203125, 0.21590115356445314, 0.21540249633789063, 0.21497549438476563, 0.21565235900878907, 0.21590118408203124, 0.21540045166015626, 0.21506661987304687, 0.21498982238769532, 0.21571481323242186, 0.21585101318359376, 0.21577728271484375, 0.21612850952148438, 0.2159298553466797, 0.21592268371582032, 0.21620121765136718, 0.2161960906982422, 0.2159800262451172, 0.21565951538085937, 0.21559500122070313, 0.2160394287109375, 0.21583769226074218, 0.21571174621582032, 0.21562162780761718, 0.21567897033691405, 0.2152356414794922, 0.21511981201171876, 0.21545062255859376, 0.21512191772460937, 0.21599845886230468, 0.2161397705078125, 0.21597698974609375, 0.2159718017578125, 0.21596365356445313, 0.2159298553466797, 0.21534310913085938, 0.2151700439453125, 0.21528985595703126, 0.21561856079101563, 0.2161786804199219, 0.2158970947265625, 0.21545062255859376, 0.21527655029296874, 0.21559706115722657, 0.21529702758789063, 0.21561138916015626, 0.21627903747558594, 0.21585714721679689, 0.21586842346191407, 0.21587251281738282, 0.21545574951171875, 0.2160875549316406, 0.2159861755371094, 0.21609368896484374, 0.21604556274414063, 0.21556019592285156, 0.21616026306152344, 0.21599948120117188, 0.21599436950683593, 0.2158745574951172, 0.21579263305664062, 0.21546290588378905, 0.44716851806640623, 0.21555917358398438, 0.2155397186279297, 0.2155018310546875, 0.2152489013671875, 0.21502362060546876, 0.2149601287841797, 0.21482188415527342, 0.2149959716796875, 0.2149283905029297, 0.2150338592529297, 0.2149365692138672, 0.21536358642578124, 0.21536460876464844, 0.21503488159179687, 0.21504512023925781, 0.21507481384277344, 0.21493145751953124, 0.21513523864746092, 0.21498880004882812, 0.21514239501953125, 0.2149949493408203, 0.21579986572265625, 0.2155232696533203, 0.21519258117675782, 0.2149427185058594, 0.21537689208984376, 0.21551615905761717, 0.21563288879394532, 0.21554585266113283, 0.2156093444824219, 0.21598719787597656, 0.2151751708984375, 0.2150102996826172, 0.2150768585205078, 0.21530624389648437, 0.2157660217285156, 0.2154649658203125, 0.21526016235351564, 0.2152314910888672, 0.21540045166015626, 0.21582028198242187, 0.21547520446777343, 0.21540045166015626, 0.2159267883300781, 0.2155018310546875, 0.21591448974609376, 0.2159093780517578, 0.21571484375, 0.21552432250976564, 0.21575372314453126, 0.21584077453613282, 0.21572096252441406, 0.21551615905761717, 0.21536665344238282, 0.2152294464111328, 0.21520384216308594, 0.21572402954101563, 0.21532261657714843, 0.2156615753173828, 0.2162319641113281, 0.21567280578613282, 0.21569638061523438, 0.4465121154785156, 0.21505946350097657, 0.21545677185058593, 0.21541990661621094, 0.2153912353515625, 0.21536665344238282, 0.21509735107421876, 0.2148976593017578, 0.2151024627685547, 0.21509120178222657, 0.215077880859375, 0.2149539794921875, 0.21517312622070311, 0.21521408081054688, 0.21557862854003906, 0.21550079345703124, 0.21530419921875, 0.21543629455566407, 0.21542095947265624, 0.21531336975097656, 0.21564927673339843, 0.21517926025390624, 0.21539840698242188, 0.21542501831054686, 0.2159093780517578, 0.21566566467285156, 0.21548236083984376, 0.21582131958007814, 0.21588275146484376, 0.21536563110351561, 0.21543014526367188, 0.21510450744628906, 0.21565338134765624, 0.21574758911132813, 0.21577317810058594, 0.21563186645507812, 0.21567079162597655, 0.21509017944335937, 0.21550079345703124, 0.2151557159423828, 0.2153717803955078, 0.2156748809814453, 0.21599845886230468, 0.21545677185058593, 0.21524684143066405, 0.21534104919433594, 0.21523968505859375, 0.2151628875732422, 0.21509837341308594, 0.21517208862304688, 0.21517208862304688, 0.21549465942382812, 0.21532159423828126, 0.2152069091796875, 0.215046142578125, 0.21507276916503906, 0.21522125244140625, 0.21588172912597656, 0.21516390991210937, 0.2150471649169922, 0.21543632507324217, 0.2151259765625, 0.2151065673828125, 0.44579736328125, 0.21483929443359376, 0.2148730926513672, 0.2152079315185547, 0.21503077697753906, 0.21551309204101562, 0.2150502471923828, 0.2148833312988281, 0.21498265075683592, 0.21487103271484376, 0.21547007751464844, 0.2154659881591797, 0.21506661987304687, 0.21501849365234374, 0.2155335693359375, 0.2150645751953125, 0.21493760681152344, 0.2147799072265625, 0.21493247985839845, 0.2154977264404297, 0.21500723266601562, 0.21548748779296875, 0.21595852661132814, 0.21516493225097658, 0.21515469360351563, 0.21548133850097656, 0.21518438720703126, 0.21511885070800782, 0.21515058898925782, 0.21548236083984376, 0.21548851013183593, 0.2151690216064453, 0.21543218994140625, 0.2160343017578125, 0.2168115234375, 0.2152611846923828, 0.21511576843261718, 0.21507891845703125, 0.21598104858398437, 0.21516595458984375, 0.21504512023925781, 0.21502464294433593, 0.21505126953125, 0.21498573303222657, 0.2150328369140625, 0.21487411499023437, 0.21494476318359376, 0.21496730041503906, 0.2148341827392578, 0.2150154266357422, 0.21492735290527343, 0.2149713897705078, 0.21527346801757813, 0.21523046875, 0.21507994079589843, 0.2151321563720703, 0.2151208953857422, 0.2154649658203125, 0.2155888671875, 0.21542912292480468, 0.21538406372070312, 0.21596774291992188, 0.21570252990722658, 0.44732620239257814, 0.21537075805664063, 0.21517721557617187, 0.21511065673828125, 0.215103515625, 0.21524374389648437, 0.21536972045898437, 0.21551615905761717, 0.21560012817382812, 0.21542912292480468, 0.21540658569335938, 0.21546394348144532, 0.21541990661621094, 0.21530213928222655, 0.21526629638671874, 0.21543218994140625, 0.21605477905273437, 0.21546086120605468, 0.2154659881591797, 0.21551206970214845, 0.21547212219238282, 0.215625732421875, 0.2154967041015625, 0.216195068359375, 0.21548646545410155, 0.21552333068847657, 0.2154967041015625, 0.2153861083984375, 0.21542604064941406, 0.21543321228027343, 0.21539532470703124, 0.21550592041015626, 0.21550694274902343, 0.21522431945800782, 0.21558067321777344, 0.2154598388671875, 0.21512406921386718, 0.215048095703125, 0.21526220703125, 0.21552024841308592, 0.2155284423828125, 0.21525299072265625, 0.21515058898925782, 0.21556224060058593, 0.21533798217773437, 0.21522023010253907, 0.21514137268066405, 0.21528985595703126, 0.2151065673828125, 0.21532774353027342, 0.21517312622070311, 0.2152191925048828, 0.21511885070800782, 0.21542604064941406, 0.2152048645019531, 0.21541171264648437, 0.21514649963378907, 0.21522738647460937, 0.2151372833251953, 0.2150758361816406, 0.21504103088378906, 0.21516390991210937, 0.21526527404785156, 0.44842291259765626, 0.21500210571289063, 0.21490789794921875, 0.21482496643066407, 0.21479629516601562, 0.21486489868164063, 0.21486489868164063, 0.2146826171875, 0.21485977172851561, 0.2147430419921875, 0.21485055541992187, 0.21492941284179687, 0.21493043518066407, 0.21505229187011718, 0.2149775390625, 0.21499699401855468, 0.21503897094726562, 0.21547929382324219, 0.2150185546875, 0.21497132873535157, 0.21505545043945312, 0.21503683471679688, 0.21546394348144532, 0.2150584259033203, 0.21507891845703125, 0.215046142578125, 0.21530015563964844, 0.2150174102783203, 0.2149171142578125, 0.21496319580078124, 0.21530009460449218, 0.21537689208984376, 0.215151611328125, 0.21528370666503907, 0.21522329711914062, 0.21498367309570313, 0.215446533203125, 0.2151331787109375, 0.21521817016601563, 0.21534413146972656, 0.21516493225097658, 0.21511167907714843, 0.21506048583984375, 0.21544038391113282, 0.215046142578125, 0.21523353576660156, 0.21546394348144532, 0.21502975463867188, 0.21504920959472656, 0.21524479675292968, 0.2151137237548828, 0.2151761932373047, 0.21516082763671876, 0.21502053833007811, 0.21518130493164062, 0.2151751708984375, 0.21505740356445313, 0.21551309204101562, 0.21542501831054686, 0.21525196838378907, 0.21533183288574217, 0.21515776062011718, 0.21511270141601563, 0.4488437805175781, 0.2157373504638672, 0.2151874542236328, 0.21487820434570312, 0.21577113342285156, 0.21489152526855468, 0.21497445678710939, 0.21525605773925782, 0.21551820373535155, 0.2153973693847656, 0.21515776062011718, 0.21496421813964844, 0.21516390991210937, 0.21532159423828126, 0.21534002685546874, 0.21517312622070311, 0.21535845947265625, 0.21573324584960937, 0.21572813415527345, 0.2155530242919922, 0.21528985595703126, 0.21548133850097656, 0.21529087829589844, 0.2149427185058594, 0.2152611846923828, 0.21510552978515626, 0.21537791442871093, 0.21573017883300782, 0.21560525512695314, 0.21562879943847657, 0.21569024658203126, 0.21543014526367188, 0.21560421752929687, 0.21551820373535155, 0.2155847625732422, 0.21509120178222657, 0.21532261657714843, 0.21509939575195314, 0.21506866455078125, 0.2148659210205078, 0.21519667053222657, 0.21552639770507812, 0.21548442077636717, 0.21555097961425781, 0.21562982177734374, 0.21557656860351562, 0.21573529052734375, 0.21503488159179687, 0.21537901306152343, 0.21511468505859374, 0.21543122863769532, 0.21568914794921876, 0.2155816955566406, 0.2152079315185547, 0.21553152465820313, 0.21579571533203126, 0.21550387573242188, 0.21552537536621094, 0.21557554626464845, 0.21545779418945313, 0.21514854431152344, 0.215267333984375, 0.21534104919433594, 0.4483246154785156, 0.21480960083007813, 0.21498265075683592, 0.21514035034179688, 0.2153871307373047, 0.21542604064941406, 0.21523558044433594, 0.21539942932128905, 0.21512602233886718, 0.21509529113769532, 0.21506866455078125, 0.21571994018554688, 0.2154219512939453, 0.21556941223144532, 0.2156195831298828, 0.21523968505859375, 0.21513523864746092, 0.21531033325195312, 0.21538099670410157, 0.21558988952636718, 0.21519667053222657, 0.21521408081054688, 0.21537382507324218, 0.2153605194091797, 0.21499699401855468, 0.21518438720703126, 0.21542912292480468, 0.21530316162109375, 0.21570661926269533, 0.21574143981933594, 0.21519052124023438, 0.21519769287109375, 0.21536058044433593, 0.21544338989257814, 0.21525503540039062, 0.2153164825439453, 0.21523762512207031, 0.2154691162109375, 0.2154884490966797, 0.21557862854003906, 0.215119873046875, 0.21551615905761717, 0.21561447143554688, 0.21519769287109375, 0.21527142333984375, 0.2151526336669922, 0.21513420104980469, 0.21525196838378907, 0.21509120178222657, 0.21508607482910155, 0.21538201904296875, 0.21560012817382812, 0.2152427520751953, 0.21532467651367188, 0.2155294647216797, 0.21564006042480469, 0.21551309204101562, 0.21564723205566405, 0.21547314453125, 0.21527244567871093, 0.21549568176269532, 0.21515673828125, 0.21521612548828126]",tokens/s,4.571685503331254,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,B,B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -26425,69 +24149,70 @@ If this is a private repository, make sure to pass a token having permission to File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/B/resolve/main/config.json -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669493ca-33a0f5b720e70cf7333a0e93;3193f618-aee8-4b60-a74d-5a6f8b0af6dd) + +Repository Not Found for url: https://huggingface.co/B/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + raise EnvironmentError( +OSError: B is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,s,s,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-30b,huggyllama/llama-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,6397.865984,20902.838272,0.0,20256.391168,19273.711616,s,10,26.880439941406248,2.6880439941406253,0.0033477874655363365,2.6871883544921875,2.692009619140625,2.6933998291015624,2.6945119970703124,"[2.685803955078125, 2.6947900390625, 2.683811767578125, 2.686383544921875, 2.68633642578125, 2.68401416015625, 2.6879931640625, 2.68876318359375, 2.69170068359375, 2.690843017578125]",tokens/s,95.23653651429312,kWh,3.17124683658282e-05,1.7378374240543054e-05,0.0001501383978884052,0.00019922924049477648,tokens/kWh,1284951.9446253772,MB,6401.134592,20902.838272,0.0,20256.391168,19862.692352,s,10,1586.032109375,158.60321093750002,0.015321928299545614,158.5981796875,158.6242765625,158.62938828125,158.63347765625,"[158.6345, 158.613953125, 158.592734375, 158.623140625, 158.5865, 158.597484375, 158.605109375, 158.59528125, 158.598875, 158.58453125]",tokens/s,0.3972176832209664,kWh,0.0018724184694555073,0.0010262522225316024,0.008901508065645191,0.0118001787576323,tokens/kWh,5338.902172075308,,s,629,1607.7030268554693,2.555966656367995,0.3193652798169538,2.51726953125,2.51903720703125,2.519619970703125,5.2035773632812505,"[2.5194208984375, 2.518276123046875, 2.516651123046875, 2.517525390625, 2.51843896484375, 2.517624755859375, 2.52004150390625, 2.52022265625, 2.521489501953125, 2.5164267578125, 2.5175634765625, 2.517775390625, 2.519953369140625, 2.51852197265625, 2.5173544921875, 2.519920654296875, 2.52021044921875, 2.516950927734375, 2.5166611328125, 2.518200439453125, 2.52010693359375, 2.518486083984375, 2.519525390625, 2.516905029296875, 2.517927001953125, 2.5164677734375, 2.517693359375, 2.518721435546875, 2.518928466796875, 2.51907470703125, 2.519510986328125, 2.518275146484375, 2.517242919921875, 2.516676513671875, 2.5165732421875, 2.5177783203125, 2.517148681640625, 2.51657421875, 2.516912109375, 2.518000732421875, 2.517034912109375, 2.516802490234375, 2.51715185546875, 2.51765966796875, 2.517441650390625, 2.51902783203125, 2.518970458984375, 2.5190830078125, 2.518890380859375, 2.51803857421875, 2.518179931640625, 2.51873486328125, 2.517571533203125, 2.517244873046875, 2.516959228515625, 2.516928466796875, 2.5168681640625, 2.5169306640625, 2.517191650390625, 2.517224365234375, 2.517115966796875, 2.516737060546875, 5.213111328125, 2.516869140625, 2.517271484375, 2.516408203125, 2.51673486328125, 2.51637255859375, 2.5162373046875, 2.516429931640625, 2.5193134765625, 2.518941650390625, 2.519627685546875, 2.5193779296875, 2.51966064453125, 2.51765966796875, 2.51892333984375, 2.516537353515625, 2.517127197265625, 2.519396240234375, 2.5196083984375, 2.518447021484375, 2.51694091796875, 2.517104736328125, 2.516771728515625, 2.51951318359375, 2.519360595703125, 2.519175048828125, 2.5198193359375, 2.5188720703125, 2.516715576171875, 2.51652001953125, 2.516981689453125, 2.51901025390625, 2.517675048828125, 2.516708251953125, 2.51647998046875, 2.51678515625, 2.517172119140625, 2.516953125, 2.51710986328125, 2.517333984375, 2.5174814453125, 2.517621826171875, 2.5172724609375, 2.517373046875, 2.5174833984375, 2.517396484375, 2.51939111328125, 2.517060546875, 2.5173310546875, 2.517473388671875, 2.51749169921875, 2.517325927734375, 2.517126220703125, 2.517371826171875, 2.517205078125, 2.51726953125, 2.51808056640625, 2.517114990234375, 2.51685986328125, 2.516756591796875, 2.517073974609375, 2.51732275390625, 2.51730224609375, 5.20315478515625, 2.5170166015625, 2.517244873046875, 2.517020751953125, 2.517108642578125, 2.51638671875, 2.51642578125, 2.517214111328125, 2.516769775390625, 2.51730029296875, 2.51892529296875, 2.519654296875, 2.518119384765625, 2.5167421875, 2.51654150390625, 2.5173125, 2.51736669921875, 2.51793310546875, 2.5171240234375, 2.51818603515625, 2.51892431640625, 2.5187666015625, 2.51812353515625, 2.51782763671875, 2.5180478515625, 2.517296142578125, 2.516853759765625, 2.517425048828125, 2.5174833984375, 2.5169951171875, 2.516545654296875, 2.517794921875, 2.5171640625, 2.51698388671875, 2.51639501953125, 2.51702685546875, 2.516306884765625, 2.5166806640625, 2.51652001953125, 2.517170166015625, 2.516893798828125, 2.516665283203125, 2.516609130859375, 2.516989013671875, 2.51647998046875, 2.516822021484375, 2.51631201171875, 2.51747216796875, 2.517741455078125, 2.518084716796875, 2.517223388671875, 2.51799951171875, 2.51795654296875, 2.518109130859375, 2.51673388671875, 2.517454833984375, 2.51732177734375, 2.51715283203125, 2.516638671875, 2.517203857421875, 2.516884521484375, 2.51759912109375, 2.519858154296875, 5.20646044921875, 2.519667724609375, 2.520236083984375, 2.519354248046875, 2.519604248046875, 2.51765771484375, 2.518856689453125, 2.5197373046875, 2.51866015625, 2.51622802734375, 2.517433349609375, 2.517887939453125, 2.517296142578125, 2.519244873046875, 2.51947509765625, 2.51691015625, 2.517485595703125, 2.51801708984375, 2.51822998046875, 2.518202392578125, 2.518054931640625, 2.517960693359375, 2.518828125, 2.517103515625, 2.516676513671875, 2.51656494140625, 2.5168916015625, 2.516701171875, 2.51679541015625, 2.516830322265625, 2.517245849609375, 2.51702685546875, 2.517789794921875, 2.5177548828125, 2.517986328125, 2.519099365234375, 2.51782666015625, 2.517256103515625, 2.51816845703125, 2.5177353515625, 2.517129150390625, 2.517339111328125, 2.51709130859375, 2.517085205078125, 2.51757568359375, 2.517266357421875, 2.51751123046875, 2.518306884765625, 2.518222900390625, 2.51692236328125, 2.517740478515625, 2.517210205078125, 2.5171865234375, 2.51708935546875, 2.517200927734375, 2.51718359375, 2.51808349609375, 2.517579833984375, 2.517981201171875, 2.518381591796875, 2.517424072265625, 2.517716064453125, 2.517458984375, 5.20374169921875, 2.517011474609375, 2.51717333984375, 2.51589111328125, 2.516104248046875, 2.51622705078125, 2.51666748046875, 2.51635400390625, 2.516790283203125, 2.516591552734375, 2.517108642578125, 2.5161943359375, 2.516461669921875, 2.515986328125, 2.516514892578125, 2.51587890625, 2.516221923828125, 2.516361328125, 2.517339111328125, 2.51677490234375, 2.517726318359375, 2.519022705078125, 2.518340576171875, 2.516381591796875, 2.5166611328125, 2.5175654296875, 2.51858544921875, 2.518182861328125, 2.519140380859375, 2.516368408203125, 2.5173974609375, 2.516633544921875, 2.51689990234375, 2.516451416015625, 2.51803759765625, 2.519834716796875, 2.518279052734375, 2.516961181640625, 2.5182822265625, 2.51641748046875, 2.51694482421875, 2.5169111328125, 2.51719580078125, 2.5168271484375, 2.516947998046875, 2.5164697265625, 2.5166357421875, 2.51717724609375, 2.516738037109375, 2.5174794921875, 2.5177138671875, 2.51707080078125, 2.517907470703125, 2.51693359375, 2.518024169921875, 2.51669921875, 2.517652587890625, 2.51960009765625, 2.51852294921875, 2.5182841796875, 2.517738525390625, 2.518305908203125, 2.51839794921875, 5.20286328125, 2.518064208984375, 2.5179228515625, 2.51654052734375, 2.517392333984375, 2.517768310546875, 2.517991455078125, 2.516991943359375, 2.51664697265625, 2.516994140625, 2.516967529296875, 2.51681689453125, 2.516999267578125, 2.517242919921875, 2.51738427734375, 2.5165751953125, 2.516220947265625, 2.516633544921875, 2.516949951171875, 2.517053466796875, 2.5165966796875, 2.51759716796875, 2.516681640625, 2.516168701171875, 2.5164677734375, 2.51702978515625, 2.5176904296875, 2.5161298828125, 2.51717333984375, 2.518159423828125, 2.51761962890625, 2.5179013671875, 2.517589111328125, 2.5173984375, 2.516906005859375, 2.516503662109375, 2.516475830078125, 2.51711279296875, 2.519480224609375, 2.5183896484375, 2.5181982421875, 2.518749267578125, 2.518531005859375, 2.518134765625, 2.51865087890625, 2.518466552734375, 2.5166396484375, 2.516759521484375, 2.516642822265625, 2.518162353515625, 2.517697509765625, 2.516461669921875, 2.516862060546875, 2.5173310546875, 2.517142578125, 2.516802490234375, 2.51664599609375, 2.51910546875, 2.520224853515625, 2.518654052734375, 2.517782470703125, 2.517315673828125, 2.517593017578125, 5.2058564453125, 2.517256103515625, 2.516883544921875, 2.516770751953125, 2.517991455078125, 2.51818505859375, 2.517248046875, 2.517381103515625, 2.517410888671875, 2.518013916015625, 2.51770263671875, 2.517663818359375, 2.51745068359375, 2.5174189453125, 2.5167841796875, 2.51723779296875, 2.5164462890625, 2.517445556640625, 2.516367431640625, 2.5164462890625, 2.51627734375, 2.51877685546875, 2.517401611328125, 2.51765771484375, 2.516915283203125, 2.517138427734375, 2.516568115234375, 2.516221923828125, 2.516367431640625, 2.517359619140625, 2.519510986328125, 2.51938720703125, 2.518856689453125, 2.519548828125, 2.51677392578125, 2.5177978515625, 2.517477294921875, 2.518878173828125, 2.5189775390625, 2.518950927734375, 2.518413330078125, 2.5166806640625, 2.516497314453125, 2.517235595703125, 2.518279052734375, 2.5198427734375, 2.51673486328125, 2.516912109375, 2.516906005859375, 2.51755517578125, 2.517419921875, 2.517097412109375, 2.516971435546875, 2.51842138671875, 2.517538818359375, 2.5178203125, 2.5180068359375, 2.517959716796875, 2.517367919921875, 2.517199951171875, 2.5175673828125, 2.517475341796875, 2.51647998046875, 5.206263671875, 2.51768212890625, 2.518013916015625, 2.51671240234375, 2.516947021484375, 2.51635302734375, 2.5160029296875, 2.516082763671875, 2.5166357421875, 2.519185302734375, 2.520660888671875, 2.520238037109375, 2.518698974609375, 2.5163837890625, 2.516863037109375, 2.51846142578125, 2.518802490234375, 2.518381591796875, 2.516673583984375, 2.516651123046875, 2.517413818359375, 2.51720703125, 2.516526123046875, 2.516347900390625, 2.516926513671875, 2.51696630859375, 2.516371337890625, 2.51662548828125, 2.517037109375, 2.518067138671875, 2.51704833984375, 2.517189697265625, 2.516686767578125, 2.516638671875, 2.516578369140625, 2.51708935546875, 2.517098388671875, 2.5169755859375, 2.5169140625, 2.51700830078125, 2.517178466796875, 2.51765771484375, 2.517274658203125, 2.516906982421875, 2.51740576171875, 2.51774462890625, 2.51700830078125, 2.517297119140625, 2.51739453125, 2.518012939453125, 2.516905029296875, 2.51756640625, 2.51799853515625, 2.51736669921875, 2.517075927734375, 2.51706982421875, 2.517170166015625, 2.51795556640625, 2.516641845703125, 2.5179892578125, 2.519339111328125, 2.519236572265625, 2.517425048828125, 5.20979345703125, 2.516677734375, 2.51662939453125, 2.516441162109375, 2.51880029296875, 2.516022216796875, 2.51607763671875, 2.516926513671875, 2.5178603515625, 2.516306884765625, 2.5163828125, 2.51637353515625, 2.517161865234375, 2.516613037109375, 2.516834228515625, 2.51662548828125, 2.517593994140625, 2.515980224609375, 2.5162177734375, 2.516642822265625, 2.517887939453125, 2.51702587890625, 2.517031005859375, 2.517222412109375, 2.517981201171875, 2.517895263671875, 2.51740576171875, 2.517854248046875, 2.5180498046875, 2.51757373046875, 2.518212646484375, 2.517984375, 2.518205322265625, 2.51793408203125, 2.51681689453125, 2.5167216796875, 2.517544921875, 2.516486083984375, 2.5170185546875, 2.517210205078125, 2.517508056640625, 2.51639697265625, 2.516465576171875, 2.517015625, 2.5180283203125, 2.51659375, 2.516681640625, 2.51827099609375, 2.518345703125, 2.5169111328125, 2.51719580078125, 2.51778759765625, 2.520734619140625, 2.519320556640625, 2.5171875, 2.517358642578125, 2.51997900390625, 2.518500244140625, 2.516546630859375, 2.517432373046875, 2.5194833984375, 2.519772216796875, 2.519079833984375, 5.2087294921875, 2.517329833984375, 2.5174794921875, 2.516798583984375, 2.51810302734375, 2.5172890625, 2.51738818359375, 2.5166357421875, 2.51726953125, 2.516717529296875, 2.5166181640625, 2.517689453125, 2.51707177734375, 2.516453369140625, 2.516779052734375, 2.516828125, 2.516937744140625, 2.517130126953125, 2.516748291015625, 2.516958251953125, 2.517098388671875, 2.517117919921875, 2.516738037109375, 2.51713330078125, 2.516843505859375, 2.516346923828125, 2.516989013671875, 2.517284912109375, 2.516630615234375, 2.516404296875, 2.516778076171875, 2.51865185546875, 2.518513671875, 2.51744677734375, 2.517791748046875, 2.51757470703125, 2.516971435546875, 2.51658740234375, 2.51664794921875, 2.5177119140625, 2.517885986328125, 2.51691015625, 2.51734326171875, 2.516971435546875, 2.517379150390625, 2.5163837890625, 2.516974609375, 2.516904052734375, 2.517392333984375, 2.51668798828125, 2.517559326171875, 2.51702587890625, 2.517056396484375, 2.5166611328125, 2.517138427734375, 2.517266357421875, 2.517547119140625, 2.51685693359375, 2.517096435546875, 2.5175234375, 2.51769140625, 2.51662744140625, 2.51719580078125]",tokens/s,0.3912414105671436,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,2,2,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -26499,7 +24224,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/s/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/2/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -26526,9 +24251,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948cd9-239d09731d5c160c64cbd31a;6d714113-4cf7-4041-9e7d-d7dc44ebb53d) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694936a-288a55e40de5c44b1da06344;1cede1ef-bb3c-4e10-9a2c-3a5a69e45696) -Repository Not Found for url: https://huggingface.co/s/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/2/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -26553,11 +24278,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: s is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: 2 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,TencentARC/Mistral_Pro_8B_v0.1,TencentARC/Mistral_Pro_8B_v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-350m,facebook/opt-350m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -26577,22 +24302,16 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-12b,EleutherAI/pythia-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-MoE-A2.7B,Qwen/Qwen1.5-MoE-A2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -26612,22 +24331,27 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3724, in from_pretrained + hf_quantizer.preprocess_model( + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 182, in preprocess_model + return self._process_model_before_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 85, in _process_model_before_weight_loading + model, has_been_replaced = replace_with_awq_linear( + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear + _, has_been_replaced = replace_with_awq_linear( + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear + _, has_been_replaced = replace_with_awq_linear( + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear + _, has_been_replaced = replace_with_awq_linear( + [Previous line repeated 1 more time] + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 166, in replace_with_awq_linear + model._modules[name] = target_cls( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemm.py"", line 102, in __init__ + assert out_features % (32 // self.w_bit) == 0 +AssertionError -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/polyglot-ko-12.8b,EleutherAI/polyglot-ko-12.8b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-70B,meta-llama/Meta-Llama-3-70B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -26647,22 +24371,30 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-3b,stabilityai/stablelm-base-alpha-3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/polyglot-ko-12.8b,EleutherAI/polyglot-ko-12.8b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.42.3,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,1719.15264,9941.024768,0.0,9294.577664,8911.746048,s,10,10.544145263671874,1.0544145263671874,0.0010263685969407418,1.0538491821289062,1.0558189086914063,1.056022979736328,1.0561862365722656,"[1.0548157958984374, 1.055557861328125, 1.0534412841796874, 1.0533297119140625, 1.0538177490234375, 1.05368359375, 1.0536180419921874, 1.05622705078125, 1.053880615234375, 1.0557735595703126]",tokens/s,242.7887643790399,kWh,1.2439715911944707e-05,6.81644635683667e-06,5.731321251720156e-05,7.656937478598295e-05,tokens/kWh,3343373.2574614706,MB,1719.15264,9941.024768,0.0,9294.577664,9207.169536,s,10,625.9803984374998,62.598039843749994,0.0064857424668782184,62.597361328125,62.608881640625,62.6090521484375,62.6091885546875,"[62.5915, 62.5971171875, 62.60001171875, 62.5950546875, 62.60922265625, 62.59760546875, 62.5876328125, 62.59442578125, 62.60884375, 62.598984375]",tokens/s,1.0064212898239837,kWh,0.0007390174119340049,0.000405046892581094,0.0033900267953525963,0.004534091099867695,tokens/kWh,13894.736257469185,,s,629,634.4764850463862,1.0087066534918707,0.1252696003233685,0.9935564575195313,0.9942255615234376,0.994458203125,2.047124262695313,"[0.9932533569335937, 0.993554443359375, 0.9934541015625, 0.9934970703125, 0.993522705078125, 0.9933742065429687, 0.9931765747070312, 0.9935513305664062, 0.9936742553710938, 0.9934131469726563, 0.99338134765625, 0.9935011596679687, 0.9932554321289062, 0.9931090087890625, 0.9931304931640625, 0.9932892456054687, 0.9933352661132813, 0.9934735107421875, 0.9935462646484375, 0.993201171875, 0.9934755859375, 0.9933844604492188, 0.99399169921875, 0.9942271728515625, 0.9945016479492188, 0.9934305419921875, 0.9931151123046875, 0.9933302001953125, 0.9932943115234375, 0.993154052734375, 0.9932830810546875, 0.9939834594726562, 0.9932789916992187, 0.9933536987304687, 0.9933199462890625, 0.9932779541015625, 0.9934039306640625, 0.993575927734375, 0.9934479370117187, 0.9935789794921875, 0.9932236938476563, 0.9937623291015625, 0.9932841186523438, 0.9933956909179688, 0.9934428100585937, 0.9935053100585938, 0.9933148193359375, 0.9936640014648438, 0.9938964233398437, 0.993997802734375, 0.993818603515625, 0.9943306274414062, 0.9934089965820313, 0.9936957397460937, 0.9934878540039063, 0.993517578125, 0.993406982421875, 0.9937264404296875, 0.9937561645507812, 0.9935595703125, 0.993470458984375, 0.994150390625, 2.049156005859375, 0.9941790771484375, 0.9928366088867188, 0.9927720947265625, 0.992954345703125, 0.9932196044921875, 0.992901123046875, 0.9929287719726563, 0.9937110595703125, 0.9937469482421875, 0.99350732421875, 0.993523681640625, 0.9935032348632813, 0.9931919555664063, 0.9934089965820313, 0.993375244140625, 0.9931519775390625, 0.9932297973632812, 0.99370703125, 0.9943889770507812, 0.9939599609375, 0.9944320068359375, 0.9945589599609375, 0.9943388061523437, 0.9938411865234374, 0.9933147583007812, 0.9931079711914063, 0.993070068359375, 0.993491943359375, 0.9930404052734375, 0.9930618896484374, 0.9932410888671875, 0.9931898803710938, 0.9932615966796875, 0.99338134765625, 0.9934192504882813, 0.9932717895507812, 0.9932431640625, 0.9937141723632813, 0.9942671508789063, 0.994344970703125, 0.9942804565429687, 0.9934131469726563, 0.993133544921875, 0.9934315795898437, 0.9938145141601562, 0.99424560546875, 0.9943848876953125, 0.99461328125, 0.9945005493164063, 0.9941248168945312, 0.9932974243164062, 0.993386474609375, 0.9932850952148438, 0.9934642944335937, 0.9933834228515624, 0.9939906616210937, 0.9948251953125, 0.9943306274414062, 0.9936486206054688, 0.9934315795898437, 0.9933772583007813, 0.9934315795898437, 2.0469842529296876, 0.99340185546875, 0.9938616333007813, 0.993259521484375, 0.9934468994140625, 0.9933701171875, 0.9933557739257812, 0.9932922973632813, 0.993364990234375, 0.993280029296875, 0.9933721313476562, 0.993448974609375, 0.99376025390625, 0.993455078125, 0.9935195922851563, 0.9930925903320312, 0.993028076171875, 0.992974853515625, 0.9931939697265625, 0.9932113647460937, 0.993269775390625, 0.9935667114257812, 0.9935780029296875, 0.9939630126953125, 0.9940654296875, 0.9936220092773438, 0.993196044921875, 0.9931427612304687, 0.99349609375, 0.9934161987304687, 0.9942200317382812, 0.9941903076171875, 0.9942251586914063, 0.9941360473632812, 0.9942907104492188, 0.99439208984375, 0.9937581787109375, 0.993448974609375, 0.993428466796875, 0.9934581909179687, 0.9935697631835938, 0.9937991943359376, 0.9938134765625, 0.9933875122070313, 0.9936414794921875, 0.9939404907226562, 0.993712158203125, 0.9935503540039062, 0.9940111083984375, 0.9935881958007813, 0.9936742553710938, 0.9938831176757813, 0.9940234375, 0.9937172241210938, 0.9938462524414062, 0.9939876098632813, 0.9938677978515625, 0.9941268310546875, 0.9940326538085937, 0.9937705078125, 0.9937592163085938, 0.9941647338867188, 0.9940643920898438, 2.0465888671875, 0.993291259765625, 0.9930659790039063, 0.9929953002929688, 0.9930301513671875, 0.9929625854492188, 0.9931141357421875, 0.9938667602539063, 0.9938483276367187, 0.9934500122070312, 0.9932410888671875, 0.9937684326171875, 0.9930966796875, 0.9929779663085937, 0.9930065307617187, 0.9930025024414062, 0.99308544921875, 0.9939855346679688, 0.9937489624023438, 0.993122314453125, 0.9932236938476563, 0.9935472412109375, 0.9931898803710938, 0.9932113647460937, 0.9934725341796875, 0.9931591796875, 0.9933363037109375, 0.9935697631835938, 0.9940367431640625, 0.9934243774414062, 0.993396728515625, 0.9935011596679687, 0.9935503540039062, 0.9933609008789063, 0.9936404418945313, 0.993280029296875, 0.9932615966796875, 0.993560546875, 0.993607666015625, 0.9932369995117187, 0.9933373413085937, 0.9933363037109375, 0.9936138305664063, 0.9941299438476563, 0.9947095336914062, 0.9946358032226562, 0.9948703002929687, 0.9945211181640625, 0.9942548217773437, 0.9943377685546875, 0.994208740234375, 0.9939722290039062, 0.9937797241210937, 0.9933690795898438, 0.9936834716796875, 0.9937991943359376, 0.9935728759765625, 0.9937192993164062, 0.993850341796875, 0.9936292114257812, 0.993522705078125, 0.9938278198242188, 0.9938964233398437, 2.047667236328125, 0.9933219604492187, 0.993249267578125, 0.9937152099609375, 0.993607666015625, 0.9934929809570312, 0.9934458618164063, 0.9934561157226562, 0.9934202880859375, 0.9931448364257812, 0.9932482299804688, 0.993133544921875, 0.9932185668945313, 0.9933486328125, 0.9932113647460937, 0.9930239868164062, 0.9931499633789063, 0.993385498046875, 0.993623046875, 0.9931847534179687, 0.9931407470703125, 0.9933311767578125, 0.9933025512695313, 0.9935738525390625, 0.9934878540039063, 0.9931028442382812, 0.993291259765625, 0.9935390625, 0.9940121459960938, 0.9939404907226562, 0.9939844970703124, 0.99399169921875, 0.9939630126953125, 0.99418212890625, 0.9944033203125, 0.99441357421875, 0.9945497436523437, 0.9946542358398438, 0.994677734375, 0.9946644287109375, 0.9946214599609375, 0.9943961791992187, 0.9941852416992187, 0.9934417724609375, 0.993924072265625, 0.9936271362304687, 0.9935360107421874, 0.99349609375, 0.9938565063476562, 0.9935574951171875, 0.9935206298828125, 0.9936732177734375, 0.9935462646484375, 0.9937049560546874, 0.9939435424804688, 0.9951979370117188, 0.9946101684570312, 0.9944935302734375, 0.9945128173828125, 0.9944463500976563, 0.994735107421875, 0.9944514770507813, 0.9943807983398437, 2.048078857421875, 0.993028076171875, 0.9930137329101563, 0.993206298828125, 0.9933762817382813, 0.9939036254882813, 0.9938851928710938, 0.993755126953125, 0.9937858276367187, 0.9940326538085937, 0.9939876098632813, 0.9934868774414063, 0.9936414794921875, 0.9939988403320312, 0.9935923461914062, 0.9933240356445312, 0.9931847534179687, 0.9932779541015625, 0.9934714965820313, 0.9930844116210937, 0.9936578369140625, 0.9938052978515625, 0.993322998046875, 0.9932216186523437, 0.9935308837890625, 0.99378076171875, 0.993306640625, 0.9932584838867188, 0.9932144775390624, 0.9931376342773437, 0.993728515625, 0.993671142578125, 0.9932789916992187, 0.99370703125, 0.9934725341796875, 0.9934192504882813, 0.9932841186523438, 0.9932666625976563, 0.9934161987304687, 0.9933086547851563, 0.994081787109375, 0.9937469482421875, 0.9935452270507813, 0.9935267944335937, 0.9936803588867188, 0.9936640014648438, 0.9933844604492188, 0.993386474609375, 0.9936271362304687, 0.9933690795898438, 0.9941544799804688, 0.9938729248046875, 0.9938770141601563, 0.9938646850585937, 0.9941729125976563, 0.9941309204101563, 0.9941688232421875, 0.9943121948242187, 0.9938104248046875, 0.99384326171875, 0.9937837524414063, 0.9938462524414062, 0.9935820922851563, 2.0471787109375, 0.9933516845703125, 0.993239013671875, 0.9932574462890625, 0.9932349243164063, 0.9929584350585937, 0.9934888916015625, 0.9937141723632813, 0.9931510009765625, 0.9934397583007812, 0.9934541015625, 0.993349609375, 0.9931478881835938, 0.9930997924804688, 0.9930321655273437, 0.9929564208984375, 0.99333837890625, 0.9933394165039062, 0.9931058959960938, 0.9935267944335937, 0.9934131469726563, 0.993406982421875, 0.9932113647460937, 0.9931427612304687, 0.9933762817382813, 0.99306494140625, 0.9933988037109375, 0.9935216674804688, 0.9931868286132812, 0.9932021484375, 0.9934817504882812, 0.993249267578125, 0.9933035278320312, 0.9930823974609375, 0.993165283203125, 0.9931611938476562, 0.9935851440429687, 0.9936312255859375, 0.9937080078125, 0.9935677490234375, 0.993924072265625, 0.9938779907226563, 0.9935370483398438, 0.9933721313476562, 0.9934315795898437, 0.9933414306640626, 0.9936466064453126, 0.9936640014648438, 0.9939773559570313, 0.9937377319335937, 0.9939671020507812, 0.9938831176757813, 0.9938268432617188, 0.9936035766601562, 0.99350732421875, 0.9936937255859375, 0.9939087524414062, 0.9935697631835938, 0.9935523681640624, 0.9934110717773438, 0.99375, 0.9941063842773438, 0.9937572021484375, 2.049478759765625, 0.9928888549804687, 0.9935093994140625, 0.9934356689453125, 0.99312744140625, 0.9929881591796875, 0.9932820434570313, 0.9932564697265625, 0.99310693359375, 0.9931765747070312, 0.9931530151367187, 0.9932451782226562, 0.9936434936523437, 0.993344482421875, 0.9931212768554688, 0.99290625, 0.9931212768554688, 0.9929718017578125, 0.9932113647460937, 0.9932083129882813, 0.9932031860351562, 0.9932339477539063, 0.9936619873046875, 0.9933270263671875, 0.9931744995117188, 0.9932288208007812, 0.993723388671875, 0.9935257568359375, 0.9934970703125, 0.993238037109375, 0.9932687377929688, 0.9936260986328125, 0.9937100830078125, 0.9936373901367187, 0.9935585327148437, 0.9932482299804688, 0.99365380859375, 0.9933915405273438, 0.9938831176757813, 0.9936926879882813, 0.9938933715820313, 0.9934356689453125, 0.9937561645507812, 0.9936506958007812, 0.9939199829101563, 0.9936773071289062, 0.9938401489257812, 0.99349609375, 0.994255859375, 0.994904052734375, 0.99376953125, 0.9936199340820312, 0.9937572021484375, 0.9941176147460937, 0.9938462524414062, 0.9936619262695312, 0.9941596069335937, 0.9936865234375, 0.99378173828125, 0.9937141723632813, 0.9936803588867188, 0.9935554809570313, 0.9938104248046875, 2.051559326171875, 0.9941268310546875, 0.9940828247070312, 0.994271240234375, 0.9940510864257812, 0.9941145629882813, 0.9936506958007812, 0.9942886352539062, 0.9940695190429687, 0.9944586181640624, 0.9935769653320312, 0.9936854858398437, 0.9932533569335937, 0.99340185546875, 0.9937705078125, 0.9931049194335938, 0.9933690795898438, 0.9936537475585937, 0.9935462646484375, 0.993891357421875, 0.99378173828125, 0.993122314453125, 0.9931417846679688, 0.993490966796875, 0.9935994873046875, 0.9932892456054687, 0.9932687377929688, 0.9935841064453125, 0.9936168823242187, 0.9935554809570313, 0.9935769653320312, 0.993480712890625, 0.993385498046875, 0.99350732421875, 0.9935564575195313, 0.99364453125, 0.9936558227539063, 0.9939107666015625, 0.9939158935546875, 0.9941985473632813, 0.9941432495117187, 0.9936455688476562, 0.9938226928710937, 0.9939691772460938, 0.9941217041015625, 0.9938595581054688, 0.9940776977539062, 0.993892333984375, 0.9935165405273437, 0.994145263671875, 0.9943971557617187, 0.9939005737304687, 0.9939691772460938, 0.9940899658203125, 0.9944524536132813, 0.9939476318359375, 0.994008056640625, 0.9935984497070313, 0.9936322631835938, 0.9937469482421875, 0.9941473388671875, 0.993839111328125, 0.9936773071289062, 2.049173583984375, 0.9932349243164063, 0.9930895385742188, 0.9929584350585937, 0.993112060546875, 0.9935626220703125, 0.9935841674804687, 0.9931212768554688, 0.9931560668945313, 0.9936353149414062, 0.9933639526367187, 0.993328125, 0.9930321655273437, 0.993048583984375, 0.9930782470703124, 0.9932236938476563, 0.9934100341796875, 0.9942405395507813, 0.9938800659179687, 0.9939517211914063, 0.9939046630859375, 0.9933926391601563, 0.9930547485351563, 0.9930239868164062, 0.99312841796875, 0.9933936767578125, 0.9935728759765625, 0.9934264526367188, 0.9932861328125, 0.9937889404296875, 0.9936240844726563, 0.9943818359375, 0.9941749877929688, 0.9940623168945313, 0.9940439453125, 0.9943009033203125, 0.9939138793945312, 0.9936312255859375, 0.9932615966796875, 0.9934940185546876, 0.99378173828125, 0.9934970703125, 0.9934868774414063, 0.9932533569335937, 0.9932605590820313, 0.9939199829101563, 0.994492431640625, 0.9941585693359375, 0.9941483764648438, 0.9944913940429687, 0.9944575805664062, 0.9941248168945312, 0.9935923461914062, 0.9933486328125, 0.9937080078125, 0.9940858764648437, 0.9940858764648437, 0.9938626708984375, 0.9938104248046875, 0.99388623046875, 0.9936803588867188, 0.9938411254882813, 0.993755126953125]",tokens/s,0.9913684980051132,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-65b,huggyllama/llama-65b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -26682,22 +24414,31 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 86.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,/,/,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-14B,Qwen/Qwen1.5-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,3984.965632,12732.33408,0.0,12085.886976,11337.364992,s,10,10.92237109375,1.092237109375,0.0021117743883837157,1.0918812255859374,1.0945805541992188,1.0956890197753906,1.0965757922363282,"[1.0967974853515625, 1.094334228515625, 1.0893026123046874, 1.090765625, 1.0907347412109376, 1.09039990234375, 1.0912408447265625, 1.09275048828125, 1.0935235595703126, 1.0925216064453125]",tokens/s,234.38134247836382,kWh,1.2875690162181854e-05,7.054504655134223e-06,6.32269116926043e-05,8.315710650992037e-05,tokens/kWh,3078510.1928655975,MB,3984.965632,12732.33408,0.0,12085.886976,11686.79936,s,10,637.5050507812499,63.75050507812499,0.0049395574759148195,63.749460937500004,63.757564453125,63.759594726562504,63.7612189453125,"[63.74835546875, 63.7478046875, 63.75041796875, 63.7437265625, 63.75711328125, 63.74664453125, 63.761625, 63.75044140625, 63.74853515625, 63.75038671875]",tokens/s,0.9882274645949038,kWh,0.0007525312550531495,0.00041245463154615205,0.0037184816692274027,0.004883467555826704,tokens/kWh,12900.669305119396,,s,629,646.3186791381836,1.027533671125888,0.12973576665422035,1.0118389892578126,1.012325793457031,1.0126516357421875,2.103177431640625,"[1.0117550048828126, 1.0119987182617187, 1.0120816650390625, 1.0120765991210938, 1.0125403442382812, 1.011704833984375, 1.0115768432617187, 1.0117868041992188, 1.01175390625, 1.0114559936523437, 1.0114959106445311, 1.0115798950195312, 1.0117611694335937, 1.01186865234375, 1.0123243408203124, 1.0116085815429687, 1.01121435546875, 1.0115245971679687, 1.0116761474609375, 1.011673095703125, 1.0115952758789062, 1.0115348510742188, 1.011820556640625, 1.0118010864257811, 1.0121104125976563, 1.0117160034179689, 1.0116536254882813, 1.0114908447265625, 1.0122445068359376, 1.0119515991210937, 1.0117140502929687, 1.011957763671875, 1.0116392822265625, 1.0119588012695313, 1.0129981689453125, 1.011984375, 1.0124021606445313, 1.01186865234375, 1.0122096557617188, 1.0120274047851563, 1.0117069091796875, 1.0121103515625, 1.0121615600585938, 1.0125332641601563, 1.0121226196289062, 1.01194140625, 1.0114242553710937, 1.0118287353515625, 1.011631103515625, 1.0119935913085938, 1.0117672729492186, 1.0120878295898437, 1.0116167602539063, 1.0122476196289063, 1.0120057983398438, 1.0121021728515625, 1.011689453125, 1.0124891967773437, 1.0117969970703125, 1.0116424560546875, 1.0114559326171875, 1.0116290283203124, 2.106623046875, 1.0121912841796874, 1.012216796875, 1.0120878295898437, 1.01224755859375, 1.0123724365234374, 1.0121103515625, 1.011904541015625, 1.0120908813476563, 1.0119536743164061, 1.0122240600585937, 1.0117017211914063, 1.0118287353515625, 1.0117017822265626, 1.0116792602539062, 1.0114119873046874, 1.0114088745117187, 1.01127783203125, 1.011852294921875, 1.01174169921875, 1.011968994140625, 1.0117713623046876, 1.0116188354492188, 1.0120038452148437, 1.011915771484375, 1.0112901000976562, 1.0112747802734374, 1.0113668823242188, 1.01144677734375, 1.0113177490234375, 1.0119198608398436, 1.0120233154296876, 1.0116013793945313, 1.0115082397460937, 1.0116761474609375, 1.0115245971679687, 1.0114263305664062, 1.0112634887695313, 1.011557373046875, 1.0114109497070312, 1.0121984252929688, 1.0121513061523437, 1.01176318359375, 1.0114232177734375, 1.011726318359375, 1.011304443359375, 1.0149703979492188, 1.0115143432617189, 1.012031494140625, 1.0119803466796875, 1.0133125, 1.0118717651367188, 1.0115481567382814, 1.0116792602539062, 1.0120653076171875, 1.0115502319335938, 1.0118072509765625, 1.0117089233398437, 1.0117550048828126, 1.0120355834960937, 1.0122034912109374, 1.011757080078125, 1.0119905395507813, 2.102846435546875, 1.0113546142578125, 1.0115645141601564, 1.011766357421875, 1.0118368530273438, 1.011746826171875, 1.0118656005859374, 1.0115020751953125, 1.0114826049804688, 1.0119618530273438, 1.01157373046875, 1.0117109985351562, 1.0118194580078126, 1.0120345458984374, 1.0119188232421874, 1.0118768920898438, 1.0121174926757812, 1.0112481079101563, 1.011708984375, 1.011843017578125, 1.011999755859375, 1.0120202026367187, 1.0120222778320314, 1.0137774047851562, 1.011525634765625, 1.0120479125976563, 1.011984375, 1.0118092651367188, 1.0117805786132812, 1.0120990600585937, 1.0119854125976562, 1.01212158203125, 1.0122670288085938, 1.0120601806640626, 1.0118174438476562, 1.0118410034179688, 1.0115552978515625, 1.011240966796875, 1.011661865234375, 1.0114876708984375, 1.011441650390625, 1.01127783203125, 1.0116198120117188, 1.0113597412109374, 1.0116414184570313, 1.0120242309570313, 1.0122291259765626, 1.013486572265625, 1.0116536254882813, 1.0121564331054687, 1.0123980712890626, 1.0119321899414062, 1.012010009765625, 1.0122987670898438, 1.0121973876953125, 1.0126295166015624, 1.0126663818359376, 1.0119352416992187, 1.0116690063476563, 1.0120150756835937, 1.0120540771484374, 1.01182666015625, 1.0116351928710938, 2.10330615234375, 1.0118348999023437, 1.0117386474609376, 1.0117161254882812, 1.01167822265625, 1.0121646118164063, 1.0119137573242187, 1.01201611328125, 1.0119761962890625, 1.0122608032226563, 1.0121830444335937, 1.0119669799804687, 1.0134896850585937, 1.0120386352539064, 1.0123622436523438, 1.0113034057617187, 1.0113535766601562, 1.011219482421875, 1.0112798461914063, 1.0111006469726562, 1.0113710327148437, 1.0122311401367188, 1.0115225830078125, 1.0115430297851562, 1.0117457885742187, 1.0114498291015626, 1.0119761962890625, 1.0120970458984375, 1.0119505615234374, 1.0119619140625, 1.0121400146484374, 1.0117672729492186, 1.0114600830078124, 1.0114866943359375, 1.011557373046875, 1.011900390625, 1.0118594360351563, 1.01203662109375, 1.0116956176757812, 1.0115460815429687, 1.0117755126953125, 1.0116608276367187, 1.01161474609375, 1.0111918334960937, 1.0146948852539062, 1.01151953125, 1.011521484375, 1.0112010498046875, 1.01165771484375, 1.0114376220703125, 1.01186865234375, 1.0118800048828125, 1.0115624389648437, 1.0114273071289062, 1.011641357421875, 1.0113966064453126, 1.0116741333007813, 1.011451904296875, 1.0115655517578126, 1.011557373046875, 1.012046875, 1.0120038452148437, 1.011968017578125, 2.10362060546875, 1.0117232666015625, 1.0121318359375, 1.0118696899414064, 1.0120601806640626, 1.0119393310546876, 1.012031494140625, 1.0123212890625, 1.0119556884765626, 1.01214208984375, 1.0124891967773437, 1.0119710693359374, 1.0119178466796874, 1.0113935546875, 1.0116761474609375, 1.0115359497070313, 1.011611572265625, 1.01361767578125, 1.0116761474609375, 1.0114703369140625, 1.0116137084960937, 1.011589111328125, 1.0115932006835937, 1.0114774780273437, 1.0115348510742188, 1.0114713745117188, 1.0118184814453124, 1.0116055297851563, 1.01148876953125, 1.0116792602539062, 1.0118379516601563, 1.0119649047851562, 1.0117376708984376, 1.011568603515625, 1.0120294189453125, 1.01218505859375, 1.0119823608398437, 1.0122332153320313, 1.011926025390625, 1.0118748168945313, 1.0124400634765625, 1.01216357421875, 1.011631103515625, 1.0115266723632812, 1.0125834350585938, 1.0121605224609376, 1.0119229736328126, 1.0119270629882813, 1.01148876953125, 1.0118287353515625, 1.011999755859375, 1.011862548828125, 1.0116915283203125, 1.0118143920898437, 1.011768310546875, 1.0122393798828124, 1.0125045776367188, 1.0162032470703124, 1.0122127075195313, 1.0123765869140624, 1.0122915649414062, 1.012389892578125, 1.0124400634765625, 2.102681640625, 1.0123212280273437, 1.0120990600585937, 1.0122465209960938, 1.0117007446289064, 1.012094970703125, 1.0112553100585937, 1.0112625122070313, 1.0114201049804687, 1.0113854370117188, 1.01134228515625, 1.0119854125976562, 1.0117590942382813, 1.0113126220703126, 1.0112696533203125, 1.011483642578125, 1.0116823120117187, 1.0114539794921875, 1.0115082397460937, 1.0114959106445311, 1.0115481567382814, 1.0120242919921876, 1.0115635375976562, 1.0115850219726563, 1.0117254028320313, 1.0121840209960937, 1.0118276977539062, 1.0116751098632812, 1.0118184814453124, 1.0114385986328125, 1.0118215942382813, 1.0118092651367188, 1.0117406616210938, 1.011473388671875, 1.0117386474609376, 1.0118164672851562, 1.01148876953125, 1.0114867553710938, 1.0149037475585938, 1.0118359375, 1.0122781982421876, 1.0117642211914062, 1.0119249877929688, 1.011294189453125, 1.0117027587890626, 1.0116690063476563, 1.0123939819335936, 1.0120908813476563, 1.0122567749023437, 1.0120653076171875, 1.0122485961914063, 1.012369384765625, 1.012421630859375, 1.0119987182617187, 1.0126663818359376, 1.0115481567382814, 1.0117089233398437, 1.0119823608398437, 1.0117867431640626, 1.0115614624023437, 1.0122546997070312, 1.0117652587890624, 1.012073486328125, 2.104281005859375, 1.011789794921875, 1.0118133544921875, 1.0122199096679687, 1.01174169921875, 1.0117130126953124, 1.0126079711914062, 1.0127093505859375, 1.0125383911132813, 1.0122393798828124, 1.01216357421875, 1.0123182373046875, 1.0122199096679687, 1.0121246948242189, 1.0119669799804687, 1.0121113891601563, 1.0128097534179688, 1.01222705078125, 1.012335693359375, 1.0115757446289062, 1.0118441162109375, 1.0118328247070312, 1.011631103515625, 1.0136719360351563, 1.0121174926757812, 1.01250048828125, 1.012552734375, 1.0127390747070313, 1.0122342529296875, 1.0118225708007813, 1.0121768798828126, 1.0121298217773438, 1.0121860961914062, 1.0118389892578126, 1.012316162109375, 1.0120714111328124, 1.0119198608398436, 1.0119669799804687, 1.0115543823242188, 1.0116760864257812, 1.0120601806640626, 1.0119342041015624, 1.0120653076171875, 1.0115552978515625, 1.0121380004882812, 1.0123212890625, 1.0120806274414063, 1.0117672729492186, 1.0117805786132812, 1.0118287353515625, 1.0118615112304687, 1.0117703857421876, 1.0114365234375, 1.0116065063476563, 1.0118512573242187, 1.0121676635742187, 1.0124697875976563, 1.0122608642578126, 1.0120376586914062, 1.0119403686523438, 1.0120181884765624, 1.0120386352539064, 1.01167822265625, 2.1052109375, 1.0120621948242188, 1.01188916015625, 1.0118225708007813, 1.01174169921875, 1.012010009765625, 1.0117171020507814, 1.0117847290039061, 1.0114641723632813, 1.01161474609375, 1.0114928588867187, 1.0118482055664062, 1.0115112915039062, 1.0117078857421875, 1.0117007446289064, 1.011862548828125, 1.0131630249023438, 1.0117345581054686, 1.0117489013671874, 1.0116443481445312, 1.0115972900390624, 1.0121307983398438, 1.01167822265625, 1.0120202026367187, 1.0114754638671875, 1.012262939453125, 1.0119618530273438, 1.0120448608398438, 1.01155224609375, 1.0120181884765624, 1.0120068969726563, 1.0124298095703126, 1.0118533325195314, 1.0121185302734375, 1.0118779296875, 1.0119566650390626, 1.0118379516601563, 1.0119434204101563, 1.0118062133789063, 1.0120775756835938, 1.0119024658203124, 1.0125721435546875, 1.0118563842773438, 1.0118348999023437, 1.0117273559570312, 1.01222705078125, 1.011905517578125, 1.0115379028320313, 1.0121062622070311, 1.0116116333007812, 1.011979248046875, 1.012168701171875, 1.0120171508789062, 1.01224658203125, 1.0122731323242187, 1.0115819091796876, 1.0118994140625, 1.0117642211914062, 1.0116351928710938, 1.011962890625, 1.0119782104492188, 1.01182568359375, 1.012173828125, 2.105998291015625, 1.0114345092773438, 1.0115174560546876, 1.0114590454101562, 1.0117990112304687, 1.011937255859375, 1.0119331665039062, 1.011800048828125, 1.0117058715820313, 1.0113648681640626, 1.0117181396484376, 1.0116608276367187, 1.0114611206054687, 1.0114600830078124, 1.0114508666992188, 1.0114754638671875, 1.0120274047851563, 1.0133237915039062, 1.0123274536132814, 1.0115994262695311, 1.0119392700195313, 1.011694580078125, 1.0119700317382812, 1.0124237060546875, 1.0117488403320312, 1.0116751098632812, 1.0119721069335939, 1.011651611328125, 1.01169970703125, 1.0113812255859376, 1.0121625366210938, 1.0115175170898438, 1.0117620849609374, 1.011493896484375, 1.0118062133789063, 1.0119086303710938, 1.01222607421875, 1.0115870971679688, 1.0119854125976562, 1.0115471801757812, 1.0122720336914062, 1.0117857055664063, 1.0124462280273439, 1.0115880737304688, 1.0122782592773438, 1.0121298217773438, 1.0129663696289062, 1.011736572265625, 1.0120570678710938, 1.0118963623046875, 1.0122628784179688, 1.0121093139648438, 1.0120888061523436, 1.011789794921875, 1.0123253784179687, 1.0119198608398436, 1.0131046142578124, 1.0120990600585937, 1.0116629028320312, 1.0112337646484375, 1.0118236083984375, 1.0113085327148437, 1.0116392822265625, 2.104349609375, 1.0117294311523437, 1.0120775756835938, 1.0116546630859375, 1.01159423828125, 1.0118696899414064, 1.0115491943359376, 1.0113505249023438, 1.0112051391601562, 1.0120068969726563, 1.0118911743164063, 1.011857421875, 1.01180419921875, 1.0114385375976562, 1.011646484375, 1.011788818359375, 1.0118615112304687, 1.0118656005859374, 1.0119014282226562, 1.0118348999023437, 1.011794921875, 1.011900390625, 1.0119556884765626, 1.0122608642578126, 1.0124257202148437, 1.0121984252929688, 1.0144102172851563, 1.011820556640625, 1.0118195190429689, 1.0117386474609376, 1.0117069091796875, 1.0122393798828124, 1.011646484375, 1.0119147338867187, 1.011462158203125, 1.012073486328125, 1.0115911865234375, 1.011684326171875, 1.0119321899414062, 1.0118062133789063, 1.0121994018554688, 1.0123673706054688, 1.0117744750976563, 1.011873779296875, 1.0116044921875, 1.011989501953125, 1.0118911743164063, 1.01174169921875, 1.011662841796875, 1.0115194702148438, 1.0117089233398437, 1.0126878662109375, 1.0129653930664062, 1.0122413940429686, 1.0118389892578126, 1.0119505615234374, 1.0117611694335937, 1.01174169921875, 1.0118338623046874, 1.0117755126953125, 1.0121144409179688, 1.0123131103515626, 1.0117294311523437]",tokens/s,0.973204117879934,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-12b,stabilityai/stablelm-2-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2286.108672,9584.508928,0.0,8938.061824,8628.937728,s,10,10.131530883789061,1.0131530883789062,0.001088448228780468,1.0127930908203124,1.0144804138183594,1.0150706817626953,1.015542896118164,"[1.0156609497070312, 1.0116715698242187, 1.0127140502929688, 1.012624267578125, 1.0126713256835937, 1.0143492431640626, 1.0128721313476563, 1.0132860717773438, 1.013524658203125, 1.0121566162109374]",tokens/s,252.6765233570105,kWh,1.1963782442940607e-05,6.5549710930463335e-06,5.5387488754404804e-05,7.390624229039174e-05,tokens/kWh,3463848.1414618148,MB,2286.108672,9584.508928,0.0,8938.061824,8715.664896,s,10,592.3277656249999,59.232776562499986,0.006289011500180114,59.23276171875,59.24203125,59.24248828125,59.24285390625,"[59.23234765625, 59.22259375, 59.2419296875, 59.22881640625, 59.23756640625, 59.22535546875, 59.22958984375, 59.23317578125, 59.2429453125, 59.2334453125]",tokens/s,1.0636003182043137,kWh,0.0006992366234295897,0.00038324170626838165,0.0032439279284735946,0.004326406258171565,tokens/kWh,14561.739291359381,,s,629,600.5023488159183,0.9546937183082955,0.12033659124895162,0.9401558837890625,0.9410275512695312,0.9412470825195313,1.95283546875,"[0.94150146484375, 0.940000244140625, 0.9400443115234375, 0.9407887573242187, 0.9415792846679687, 0.9401016235351562, 0.9407989501953125, 0.939236328125, 0.939652099609375, 0.9404119262695313, 0.9412341918945313, 0.9400452880859375, 0.940031982421875, 0.9407703247070313, 0.9399039916992188, 0.9399715576171875, 0.9395128173828124, 0.9409924926757812, 0.9403135986328125, 0.939736083984375, 0.9405081787109375, 0.940558349609375, 0.9399757080078125, 0.9390223388671874, 0.9397933959960938, 0.9407989501953125, 0.9399931030273437, 0.9401292724609375, 0.9413304443359375, 0.9404334106445312, 0.9403258666992188, 0.9405870361328125, 0.9406074829101563, 0.9403986206054687, 0.9400125732421875, 0.941048828125, 0.9410816040039063, 0.9399193725585937, 0.94055322265625, 0.9405183715820312, 0.9404334106445312, 0.9397545166015625, 0.940400634765625, 0.9393602294921874, 0.94025830078125, 0.94036376953125, 0.9395015869140625, 0.9403494262695312, 0.9393715209960938, 0.9401753540039063, 0.939345947265625, 0.9394923706054688, 0.9394974975585938, 0.940368896484375, 0.9394483032226563, 0.939377685546875, 0.9410477905273438, 0.9396592407226563, 0.9396121826171875, 0.9394268188476562, 0.940126220703125, 0.939109375, 1.9525693359375, 0.9394636840820313, 0.9393213500976563, 0.9392977905273437, 0.9397432250976563, 0.940037109375, 0.9395179443359375, 0.9403463745117188, 0.9393008422851562, 0.93964697265625, 0.9392588500976562, 0.9400934448242187, 0.9392957153320313, 0.9392506713867188, 0.9399244995117187, 0.9402685546875, 0.9394237670898438, 0.9390971069335937, 0.940157958984375, 0.9403064575195312, 0.9402173461914063, 0.939841552734375, 0.9407047729492187, 0.939747314453125, 0.9393909912109375, 0.9412290649414062, 0.940248046875, 0.9398323364257812, 0.9403709716796875, 0.9403074340820312, 0.9406505126953125, 0.940516357421875, 0.9410795288085938, 0.9408665771484375, 0.94008935546875, 0.940015625, 0.940010498046875, 0.9404405517578125, 0.94000537109375, 0.9402777709960938, 0.9398855590820312, 0.9399234619140625, 0.9397626953125, 0.9402910766601562, 0.9401549072265625, 0.940037109375, 0.9408952026367188, 0.9404805297851563, 0.9399664916992188, 0.9401907348632812, 0.94055322265625, 0.9397831420898437, 0.93945751953125, 0.9397196655273438, 0.9400934448242187, 0.9397329711914062, 0.9398640747070313, 0.94013232421875, 0.9406156616210938, 0.9400360717773437, 0.9403074340820312, 0.9402255249023438, 0.9400115356445312, 1.95331689453125, 0.9401005859375, 0.93952099609375, 0.939863037109375, 0.9400064086914063, 0.9403811645507812, 0.9397329711914062, 0.9406719970703125, 0.94033203125, 0.9403596801757812, 0.9412177734375, 0.9406023559570312, 0.9398558959960938, 0.94081640625, 0.9405286254882812, 0.9401968383789062, 0.9398538208007813, 0.9395271606445312, 0.940263427734375, 0.9397442626953125, 0.9402941284179688, 0.941149169921875, 0.9406617431640625, 0.9412741088867187, 0.940669921875, 0.9410816040039063, 0.9408839721679687, 0.939631591796875, 0.9415341796875, 0.9398968505859375, 0.9399746704101563, 0.940179443359375, 0.9405819091796875, 0.9400064086914063, 0.9398374633789063, 0.9410344848632812, 0.9401630859375, 0.9402439575195313, 0.9399183349609375, 0.9410057983398438, 0.9402869873046875, 0.9402777709960938, 0.9403402099609375, 0.941686767578125, 0.9396182861328125, 0.9397001953125, 0.9402654418945312, 0.9400330200195313, 0.940537841796875, 0.9406842651367188, 0.9406279907226562, 0.9398609619140625, 0.9404866333007813, 0.9411369018554687, 0.9399429321289062, 0.939873291015625, 0.9398394775390625, 0.9408798828125, 0.9406709594726562, 0.94021630859375, 0.9408256225585937, 0.940242919921875, 0.9397821655273437, 1.95401318359375, 0.9401282348632812, 0.9397453002929688, 0.9401876220703125, 0.9404436645507812, 0.9402992553710937, 0.9395773315429687, 0.9403228149414062, 0.939809814453125, 0.939509765625, 0.9397462768554687, 0.9422510375976563, 0.9400678100585937, 0.9396019287109375, 0.9398917236328125, 0.9403330688476562, 0.9396807861328125, 0.9395588989257813, 0.9399459838867188, 0.9394462890625, 0.939831298828125, 0.9402726440429687, 0.9402921142578125, 0.9396920166015625, 0.939767822265625, 0.9400340576171875, 0.9404702758789063, 0.9402992553710937, 0.9400657958984375, 0.93994189453125, 0.9394892578125, 0.9398200073242188, 0.9408123168945313, 0.9402921142578125, 0.9403504638671875, 0.940864501953125, 0.9403279418945313, 0.9399326782226562, 0.940169189453125, 0.9409740600585937, 0.9400985717773438, 0.9403341064453125, 0.9408727416992188, 0.9405614013671875, 0.940031005859375, 0.9394452514648437, 0.9399480590820313, 0.9405870361328125, 0.9398425903320312, 0.9403135986328125, 0.9397453002929688, 0.939378662109375, 0.9397616577148438, 0.9410897827148438, 0.9408286743164063, 0.9397012329101563, 0.9395425415039063, 0.9402388305664062, 0.9399132080078125, 0.94078564453125, 0.9406279907226562, 0.9397565307617187, 0.9397637329101562, 1.9536650390625, 0.9407723388671875, 0.939578369140625, 0.9401507568359375, 0.940353515625, 0.9400514526367187, 0.9401712646484375, 0.9398651123046875, 0.9396582641601563, 0.9398251342773437, 0.9404794921875, 0.9411246337890625, 0.9405941772460937, 0.940052490234375, 0.9404395751953125, 0.941676513671875, 0.9395343627929688, 0.9395845336914063, 0.939747314453125, 0.9404139404296875, 0.9399725952148438, 0.9405081787109375, 0.940210205078125, 0.9395486450195313, 0.9399818115234375, 0.94059521484375, 0.9396868896484375, 0.9403258666992188, 0.9402019653320313, 0.93954150390625, 0.9396776733398438, 0.9398087768554687, 0.9410938720703125, 0.9401641235351562, 0.939953125, 0.9407017211914063, 0.940769287109375, 0.9399070434570312, 0.9406832885742188, 0.9408511962890626, 0.93992041015625, 0.93991015625, 0.9406443481445312, 0.9401129150390625, 0.9394769897460937, 0.9398220825195313, 0.940062744140625, 0.9406146850585938, 0.9397760009765626, 0.94078466796875, 0.9406842651367188, 0.9410416870117188, 0.9400278930664062, 0.9406760864257813, 0.9400023193359375, 0.9400360717773437, 0.9401005859375, 0.9414287109375, 0.9405501708984375, 0.940611572265625, 0.9412608032226563, 0.9403648071289062, 0.94048974609375, 1.9550003662109374, 0.9402306518554687, 0.9403934936523437, 0.9403607177734375, 0.9412402954101563, 0.9396428833007813, 0.9399511108398437, 0.939725830078125, 0.939884521484375, 0.9398927612304687, 0.940263427734375, 0.9413529663085938, 0.940885986328125, 0.9410529174804687, 0.9415485229492188, 0.9412464599609375, 0.940295166015625, 0.939989013671875, 0.9397749633789062, 0.9401620483398437, 0.9402521362304688, 0.940422119140625, 0.9397033081054688, 0.9398681640625, 0.94054296875, 0.9411123046875, 0.9401774291992188, 0.9401016235351562, 0.9397852172851563, 0.9397985229492187, 0.9396900024414062, 0.939810791015625, 0.93952001953125, 0.9393899536132813, 0.9396654052734374, 0.941065185546875, 0.9407026977539062, 0.9396029663085937, 0.9407150268554687, 0.9401466674804687, 0.9398435668945313, 0.9395322875976563, 0.9403463745117188, 0.9394933471679687, 0.9393858642578125, 0.939447265625, 0.9401026611328125, 0.9395661010742188, 0.939377685546875, 0.9397606201171875, 0.939526123046875, 0.9393858642578125, 0.9394186401367187, 0.9398968505859375, 0.9392496337890625, 0.9398272094726563, 0.9395732421875, 0.9405542602539062, 0.93991015625, 0.940548095703125, 0.9398589477539062, 0.9403648071289062, 0.939809814453125, 1.95293896484375, 0.93994189453125, 0.9393387451171875, 0.9408471069335937, 0.9404620971679688, 0.9404794921875, 0.9408706665039063, 0.9407283325195313, 0.9402695922851563, 0.940379150390625, 0.9420646362304688, 0.9404036865234375, 0.9405603637695312, 0.9400238037109375, 0.94124853515625, 0.9406914672851563, 0.9400872802734375, 0.9396541137695312, 0.9395056762695313, 0.9401641235351562, 0.94051123046875, 0.9398302612304688, 0.9397872924804688, 0.939341796875, 0.9398619995117188, 0.9404784545898438, 0.9394800415039063, 0.9401866455078125, 0.93954150390625, 0.9394053344726563, 0.940663818359375, 0.941427734375, 0.9398405151367187, 0.9396613159179688, 0.939568115234375, 0.94137548828125, 0.9404170532226562, 0.93991015625, 0.9405634765625, 0.9408040771484375, 0.9399254760742187, 0.9397933959960938, 0.9401558837890625, 0.9402664794921874, 0.9399244995117187, 0.9395875854492187, 0.9407119140625, 0.9401763916015625, 0.9404497680664062, 0.9396480712890625, 0.939274169921875, 0.9396900024414062, 0.9406156616210938, 0.9394974975585938, 0.9394503784179687, 0.9392230224609375, 0.939916259765625, 0.9409976196289063, 0.939694091796875, 0.9403258666992188, 0.9398446044921875, 0.9401170043945313, 0.9398978271484375, 1.9538472900390624, 0.9399326782226562, 0.9398046875, 0.9415096435546875, 0.9401118774414062, 0.9396039428710937, 0.9404282836914063, 0.9398599853515625, 0.9395968017578125, 0.9396162719726563, 0.9403279418945313, 0.9400186767578125, 0.9399378051757813, 0.939483154296875, 0.9413427124023438, 0.939953125, 0.9398405151367187, 0.9391646728515625, 0.9401661376953125, 0.9404569702148438, 0.9409935302734375, 0.9405778198242187, 0.9403176879882813, 0.9402091674804688, 0.9410509033203125, 0.9403566284179687, 0.9398660888671875, 0.9406289672851562, 0.9398743286132812, 0.9399254760742187, 0.9395353393554687, 0.9404968872070313, 0.9400115966796875, 0.93969091796875, 0.940168212890625, 0.9411409912109375, 0.940242919921875, 0.9399797973632813, 0.9398435668945313, 0.9398876342773438, 0.939953125, 0.94072216796875, 0.940315673828125, 0.9397380981445312, 0.9401937866210938, 0.9397545166015625, 0.9420257568359375, 0.9404149780273438, 0.94042626953125, 0.94061669921875, 0.9402767333984375, 0.9410713500976563, 0.9403862915039063, 0.9398855590820312, 0.9397760009765626, 0.940189697265625, 0.9404805297851563, 0.9394237670898438, 0.9399490356445312, 0.9412474975585937, 0.93998388671875, 0.939931640625, 0.9399439086914062, 1.9538431396484375, 0.940669921875, 0.939863037109375, 0.9412310791015625, 0.939705322265625, 0.9403146362304687, 0.9399193725585937, 0.9399849243164062, 0.940326904296875, 0.9404139404296875, 0.9400852661132812, 0.9402255249023438, 0.9408552856445312, 0.940031005859375, 0.9410283813476562, 0.940389404296875, 0.940705810546875, 0.9393633422851563, 0.9402235107421875, 0.9409392700195313, 0.941180908203125, 0.9399746704101563, 0.9405009765625, 0.9404282836914063, 0.940821533203125, 0.9403033447265625, 0.9397268676757813, 0.94030029296875, 0.9399244995117187, 0.9394667358398437, 0.9398067016601562, 0.941180908203125, 0.9402276000976563, 0.9401077880859375, 0.940368896484375, 0.9423933715820313, 0.940284912109375, 0.9403238525390625, 0.9398333740234375, 0.9402501220703126, 0.9403607177734375, 0.9407989501953125, 0.9403515014648437, 0.9402286376953125, 0.9402235107421875, 0.9409075317382812, 0.940410888671875, 0.9398958129882813, 0.9406812133789062, 0.940147705078125, 0.9399982299804688, 0.9407620849609375, 0.9411195068359375, 0.940062744140625, 0.9402501220703126, 0.9403064575195312, 0.9409515380859375, 0.939799560546875, 0.9402296142578125, 0.940310546875, 0.9400381469726562, 0.94015283203125, 0.9409638671875, 1.952026611328125, 0.9399254760742187, 0.9394933471679687, 0.9416345825195312, 0.9399859008789062, 0.9406945190429687, 0.9396664428710938, 0.940632080078125, 0.9401558837890625, 0.940590087890625, 0.94102734375, 0.940400634765625, 0.940221435546875, 0.9404784545898438, 0.940031982421875, 0.9396961059570312, 0.9399644165039063, 0.9391165161132813, 0.9401170043945313, 0.9396141967773437, 0.9402808227539062, 0.9396408081054688, 0.94097509765625, 0.9396275024414062, 0.9407098999023438, 0.939484130859375, 0.9403135986328125, 0.940037109375, 0.9396387939453125, 0.9410057983398438, 0.940732421875, 0.9403883666992188, 0.9400033569335937, 0.9398814697265625, 0.9403955078125, 0.9411707153320312, 0.940169189453125, 0.9412464599609375, 0.939968505859375, 0.9397186279296875, 0.9395138549804688, 0.9404170532226562, 0.94005859375, 0.940073974609375, 0.940353515625, 0.9408685913085938, 0.9408317260742187, 0.9399654541015625, 0.9402081298828125, 0.9396746215820313, 0.9398169555664062, 0.939715576171875, 0.9401446533203125, 0.9400780639648437, 0.9395189819335937, 0.9397626953125, 0.9406863403320312, 0.9393438720703124, 0.9411901245117188, 0.941717529296875, 0.9408173828125, 0.9400023193359375, 0.94002685546875]",tokens/s,1.0474563525692686,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,8,8,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -26705,6 +24446,46 @@ NameError: name 'exl_ext' is not defined File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/8/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694926b-61c0edd86fea58b017c2a7b0;691613a5-611a-4574-b8a7-5493f400792d) + +Repository Not Found for url: https://huggingface.co/8/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run @@ -26721,47 +24502,16 @@ ChildProcessError: Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 373, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: / does not appear to have a file named config.json. Checkout 'https://huggingface.co///tree/None' for available files. - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-70m,EleutherAI/pythia-70m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined +OSError: 8 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-2b,google/gemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-8B,meta-llama/Meta-Llama-3-8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1618.886656,7600.603136,0.0,6954.156032,6314.17344,s,10,6.225003845214843,0.6225003845214843,0.0013149278084200315,0.6224861450195311,0.623799609375,0.6241176086425781,0.6243720080566406,"[0.6244356079101563, 0.620072998046875, 0.6223452758789062, 0.620931640625, 0.6226270141601562, 0.6217324829101563, 0.6218421630859375, 0.6236920776367187, 0.6237289428710937, 0.6235956420898437]",tokens/s,411.2447258916749,kWh,7.3330029845237736e-06,4.018192916897961e-06,3.395321343706048e-05,4.530440933848221e-05,tokens/kWh,5650664.112787582,MB,1618.886656,7600.603136,0.0,6954.156032,6464.046592,s,10,368.56716015625,36.856716015625,0.026041797027344372,36.850578125,36.898916796875,36.9004232421875,36.9016283984375,"[36.86497265625, 36.8430390625, 36.9019296875, 36.8581171875, 36.89858203125, 36.87110546875, 36.828984375, 36.82765625, 36.830046875, 36.8427265625]",tokens/s,1.7093221211920195,kWh,0.0004354530184467634,0.00023866611181760483,0.001976968700854742,0.00265108783111911,tokens/kWh,23763.829798655013,,s,629,373.5824957885741,0.5939308359118828,0.07397669449852429,0.58480126953125,0.5863296997070312,0.586693212890625,1.20664294921875,"[0.5845360717773438, 0.585296875, 0.5849774169921875, 0.5846087646484375, 0.5850286254882813, 0.584748046875, 0.584322021484375, 0.5847828369140625, 0.584279052734375, 0.58402099609375, 0.584068115234375, 0.5846630249023438, 0.584384521484375, 0.5846179809570312, 0.584816650390625, 0.584005615234375, 0.58421142578125, 0.5841326293945313, 0.584958984375, 0.5861488647460937, 0.584427490234375, 0.5843035888671875, 0.5846282348632813, 0.5846927490234375, 0.5846661376953125, 0.5845155639648437, 0.5843814697265625, 0.5843046264648437, 0.5848248291015625, 0.5849682006835938, 0.5866096801757813, 0.5847296142578124, 0.5858385620117188, 0.5855538940429688, 0.58547607421875, 0.5869332275390625, 0.5866168212890625, 0.584468505859375, 0.5869219970703125, 0.5864007568359375, 0.5853429565429688, 0.5859860229492188, 0.5848975219726562, 0.5843538208007812, 0.584753173828125, 0.5861519165039063, 0.585596923828125, 0.5861099243164063, 0.5845759887695312, 0.5846599731445312, 0.5848914184570313, 0.584426513671875, 0.5851033325195313, 0.5860843505859376, 0.5848597412109375, 0.5849896240234375, 0.5867396850585938, 0.586756103515625, 0.5865123901367187, 0.586208251953125, 0.5867110595703126, 0.585744384765625, 1.206224853515625, 0.5858980102539062, 0.5855364990234375, 0.5844613037109375, 0.584605712890625, 0.5844961547851563, 0.5850460205078125, 0.58532861328125, 0.5840045776367188, 0.5837639770507812, 0.5838192749023438, 0.5844100952148438, 0.585660400390625, 0.5845892944335938, 0.5847992553710938, 0.5843865356445312, 0.585439208984375, 0.5858754272460938, 0.5853839111328125, 0.5851627807617188, 0.5849927978515626, 0.5848330078125, 0.58598193359375, 0.58480126953125, 0.5861355590820313, 0.5848627319335937, 0.5850623779296875, 0.5845616455078125, 0.584658935546875, 0.5841868896484375, 0.5848627319335937, 0.5841438598632812, 0.584394775390625, 0.5841991577148438, 0.5862697143554687, 0.5853613891601562, 0.584890380859375, 0.584838134765625, 0.5842606201171875, 0.5844306030273437, 0.5846517944335937, 0.5859328002929688, 0.5848330078125, 0.5846046752929688, 0.58459033203125, 0.5843906860351562, 0.5847449340820312, 0.5849129028320312, 0.58431591796875, 0.5842001953125, 0.58471728515625, 0.5849159545898438, 0.5853143310546876, 0.584321044921875, 0.5845770263671874, 0.58439990234375, 0.584537109375, 0.5842237548828125, 0.5845657348632812, 0.5844357299804688, 0.5841551513671875, 0.5848032836914062, 0.584511474609375, 1.20827490234375, 0.5846036376953125, 0.5843558349609375, 0.5847777099609375, 0.585406494140625, 0.5854955444335938, 0.5848872680664062, 0.58439990234375, 0.5842575073242188, 0.5842974853515625, 0.5841448974609375, 0.5848606567382812, 0.5855733642578125, 0.5853153076171875, 0.5855313720703125, 0.5857454223632812, 0.58644482421875, 0.586587158203125, 0.5863075561523438, 0.5864365844726562, 0.586102783203125, 0.5866045532226563, 0.5849364624023438, 0.587236328125, 0.586629150390625, 0.5864550170898437, 0.5869383544921875, 0.5851351318359375, 0.5868165283203125, 0.5862113037109375, 0.586013671875, 0.5854505004882813, 0.5856593627929687, 0.5856215209960938, 0.5870980834960937, 0.5859666137695313, 0.5857300415039063, 0.585511962890625, 0.5861007080078126, 0.586576904296875, 0.5868328857421875, 0.5858846435546875, 0.5864171752929688, 0.585228271484375, 0.58509521484375, 0.5863771362304687, 0.5851309814453125, 0.5850357666015625, 0.5855375366210938, 0.5851135864257813, 0.585407470703125, 0.5852764282226562, 0.5863362426757812, 0.5863567504882813, 0.5862123413085938, 0.5860802612304687, 0.5851658325195312, 0.5870366821289063, 0.5865308227539062, 0.5864335327148438, 0.5844910278320312, 0.58482275390625, 0.5869608764648437, 1.205981201171875, 0.58442138671875, 0.5845964965820313, 0.58412646484375, 0.5846712036132813, 0.584859619140625, 0.584500244140625, 0.5844193115234375, 0.5846005859375, 0.584226806640625, 0.5847767333984375, 0.5847193603515625, 0.5840773315429687, 0.5841602783203125, 0.5838458862304687, 0.5849825439453125, 0.5842872314453125, 0.5852507934570312, 0.58406298828125, 0.5844735717773437, 0.5843538208007812, 0.5846784057617187, 0.5847019653320312, 0.5851156616210937, 0.5848043823242187, 0.5851064453125, 0.5846159057617187, 0.5852262573242187, 0.5848002319335938, 0.5843343505859375, 0.5843394775390625, 0.5842994995117188, 0.584975341796875, 0.5844992065429687, 0.58461083984375, 0.5840097045898438, 0.5850368041992188, 0.5848576049804688, 0.5844039916992188, 0.5848340454101563, 0.5848616943359375, 0.584585205078125, 0.585101318359375, 0.5855078125, 0.5868196411132812, 0.5852261962890625, 0.5863843994140625, 0.586692626953125, 0.5863259887695312, 0.5871114501953125, 0.5859533081054688, 0.5858959350585937, 0.585849853515625, 0.5871841430664062, 0.5864273681640625, 0.5860311279296875, 0.586377197265625, 0.5844725952148437, 0.5856563720703125, 0.5858579711914063, 0.5854105834960938, 0.5857003784179687, 0.5850337524414062, 1.2078602294921874, 0.5852139282226563, 0.585723876953125, 0.586250244140625, 0.586271728515625, 0.5863413696289063, 0.586808349609375, 0.5861898193359375, 0.5845196533203125, 0.5865604858398438, 0.5842206420898437, 0.58428515625, 0.5850715942382813, 0.5856091918945312, 0.5868994750976563, 0.5851893920898438, 0.585296875, 0.5864417114257813, 0.5843292236328125, 0.5858539428710937, 0.5862738037109375, 0.5860853881835938, 0.5861775512695313, 0.5855631103515625, 0.5856204833984375, 0.5868216552734375, 0.5872056274414063, 0.584875, 0.5847664794921875, 0.5854320678710937, 0.5869844360351563, 0.5866485595703125, 0.5866680297851562, 0.5851105346679687, 0.5844152221679687, 0.5853849487304688, 0.5857136840820313, 0.5857628173828126, 0.5850736694335937, 0.5865482177734375, 0.5847275390625, 0.5847992553710938, 0.5843517456054688, 0.586081298828125, 0.5863280639648437, 0.5844951171875, 0.5858427124023438, 0.5852047119140625, 0.585734130859375, 0.586134521484375, 0.5850726318359375, 0.585660400390625, 0.584953857421875, 0.5860597534179688, 0.586693603515625, 0.5868861694335937, 0.5861458129882813, 0.5863157958984375, 0.5857095947265625, 0.5846128540039063, 0.5858980102539062, 0.5863372802734375, 0.5851473999023438, 1.208574951171875, 0.5858948974609375, 0.5860034790039063, 0.5858488159179688, 0.5846507568359375, 0.5853051147460937, 0.5856901245117188, 0.585691162109375, 0.584543212890625, 0.5852897338867188, 0.5849733276367187, 0.5857167358398437, 0.5865441284179688, 0.585660400390625, 0.5851954956054688, 0.586119140625, 0.58567578125, 0.5863833618164063, 0.5861325073242187, 0.5857044677734375, 0.585565185546875, 0.5863946533203125, 0.585654296875, 0.5863167724609375, 0.5854157104492187, 0.5853399047851563, 0.5847070922851563, 0.5861939086914062, 0.58540234375, 0.5899376831054688, 0.5855396118164062, 0.5845524291992188, 0.5847060546875, 0.584268798828125, 0.5851054077148438, 0.5849722900390625, 0.5850357666015625, 0.5842964477539062, 0.5849876708984375, 0.5849682006835938, 0.5848822021484374, 0.585654296875, 0.584900634765625, 0.5849497680664062, 0.5853214721679687, 0.5848350830078125, 0.5849169921875, 0.5852866821289062, 0.58450537109375, 0.58450537109375, 0.5844418334960938, 0.5846466674804688, 0.584453125, 0.5847265014648437, 0.5847725830078125, 0.5843486938476562, 0.5844705200195313, 0.5843916625976563, 0.5847930908203125, 0.5845043334960938, 0.5840936889648437, 0.5843517456054688, 0.58418994140625, 1.2068055419921875, 0.5848176879882813, 0.5846128540039063, 0.5843087158203125, 0.5846333618164062, 0.5844971313476562, 0.5846210327148438, 0.58439990234375, 0.5845780639648438, 0.585080810546875, 0.5844469604492187, 0.58540234375, 0.5848923950195313, 0.5850890502929688, 0.5851924438476562, 0.5849088134765625, 0.5848033447265625, 0.5851453247070313, 0.5851412353515625, 0.5849180297851563, 0.5844786987304688, 0.5851146240234375, 0.5842401123046875, 0.5852006225585937, 0.5848944702148438, 0.5846077270507812, 0.5847623901367187, 0.5846937866210937, 0.5855672607421875, 0.5844490356445312, 0.584658935546875, 0.584933349609375, 0.5843896484375, 0.5846292724609375, 0.5843240966796875, 0.5845176391601562, 0.5844623413085938, 0.5843394775390625, 0.584595458984375, 0.58416845703125, 0.5841622924804688, 0.5841520385742187, 0.5843251342773438, 0.58414697265625, 0.5844735717773437, 0.5843404541015625, 0.5842247924804688, 0.5839093627929688, 0.5843087158203125, 0.5839298706054687, 0.5844920043945312, 0.5843517456054688, 0.5847521362304687, 0.5843599243164063, 0.5843937377929688, 0.584721435546875, 0.58444287109375, 0.5844132080078125, 0.5843599243164063, 0.58385205078125, 0.5841694946289062, 0.5840465698242188, 0.5851791381835938, 1.2095078125, 0.5847941284179687, 0.5849180297851563, 0.5843486938476562, 0.5844295654296875, 0.5849845581054688, 0.5841305541992188, 0.5846712036132813, 0.58494873046875, 0.584680419921875, 0.585617431640625, 0.5844520874023438, 0.5843486938476562, 0.5840803833007813, 0.5843619995117187, 0.5847122192382812, 0.5845555419921875, 0.5846507568359375, 0.5844510498046875, 0.584573974609375, 0.5840926513671875, 0.5843978271484375, 0.584416259765625, 0.584521728515625, 0.5843097534179688, 0.5844971313476562, 0.5846302490234375, 0.5850009765625, 0.5847193603515625, 0.58450537109375, 0.5842810668945313, 0.5842012329101562, 0.5845913696289062, 0.5843363647460937, 0.5843660888671875, 0.584268798828125, 0.5849375, 0.5842759399414063, 0.5846517944335937, 0.5850183715820313, 0.58439990234375, 0.5842298583984376, 0.5847930908203125, 0.5849313354492187, 0.5852579956054688, 0.58459033203125, 0.5851351318359375, 0.5841787109375, 0.5843189697265625, 0.5841643676757813, 0.5844838256835938, 0.5843446044921875, 0.5842411499023438, 0.5844346923828125, 0.584469482421875, 0.5841571655273438, 0.5850153198242187, 0.5845196533203125, 0.5843230590820313, 0.5843446044921875, 0.5848402099609376, 0.584669189453125, 0.584326171875, 1.2087510986328125, 0.5850153198242187, 0.5850787963867188, 0.5847817993164063, 0.5849047241210937, 0.5845442504882813, 0.5847285766601562, 0.5845186767578125, 0.5842227172851563, 0.5838796997070312, 0.5849476928710937, 0.584469482421875, 0.584501220703125, 0.5847080688476562, 0.5847900390625, 0.5847060546875, 0.5841131591796875, 0.5844295654296875, 0.5843087158203125, 0.5849825439453125, 0.584447998046875, 0.5852078247070313, 0.5841234130859375, 0.5847500610351563, 0.5847091064453125, 0.584690673828125, 0.58425244140625, 0.5844613037109375, 0.584374267578125, 0.5843394775390625, 0.5849129028320312, 0.584479736328125, 0.5842227172851563, 0.5842257690429687, 0.5848576049804688, 0.5845330200195312, 0.5844653930664062, 0.58503271484375, 0.584975341796875, 0.5848627319335937, 0.5849794311523437, 0.5842933959960938, 0.58421044921875, 0.5843302612304687, 0.584958984375, 0.5844111328125, 0.58435888671875, 0.5848289184570312, 0.584627197265625, 0.5843753051757813, 0.5846619873046875, 0.584248291015625, 0.5846046752929688, 0.5841663818359375, 0.5857310791015625, 0.58428515625, 0.5845514526367187, 0.584437744140625, 0.5845524291992188, 0.5843087158203125, 0.584700927734375, 0.5854146728515625, 0.5844777221679688, 1.2091043701171875, 0.5852241821289063, 0.5847367553710937, 0.5846507568359375, 0.5843937377929688, 0.5844100952148438, 0.584079345703125, 0.5851975708007813, 0.5844152221679687, 0.5847306518554688, 0.5847654418945313, 0.5844561767578125, 0.584437744140625, 0.5841787109375, 0.5849343872070313, 0.5845084228515625, 0.5842759399414063, 0.58461181640625, 0.5846661376953125, 0.5853173828125, 0.5845933837890624, 0.5847725830078125, 0.5848923950195313, 0.5846435546875, 0.5854658813476562, 0.5842360229492187, 0.5851566162109375, 0.5853972778320312, 0.5851463623046875, 0.5845339965820312, 0.5844100952148438, 0.5846067504882813, 0.584648681640625, 0.5843169555664063, 0.5846702270507812, 0.5859276733398437, 0.5848790893554687, 0.5843026123046875, 0.584543212890625, 0.5850736694335937, 0.5842780151367187, 0.5850654907226562, 0.5847388305664063, 0.5847439575195312, 0.5851463623046875, 0.5845985107421875, 0.5845514526367187, 0.584332275390625, 0.58463232421875, 0.5850685424804688, 0.5847633666992188, 0.5853829345703125, 0.5849159545898438, 0.585486328125, 0.5849415893554688, 0.584775634765625, 0.5854443359375, 0.5850316772460937, 0.5853870239257812, 0.5852672119140625, 0.5847562255859375, 0.5845729370117188, 0.5851094970703125]",tokens/s,1.6836977296601632,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/rho-math-1b-v0.1,microsoft/rho-math-1b-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1416.183808,1705.508864,0.0,1059.06176,901.251072,s,10,1.2556827774047852,0.12556827774047852,0.0020066947239277956,0.12461985778808593,0.12691755523681642,0.12903935165405273,0.13073678878784178,"[0.13116114807128906, 0.1245798110961914, 0.12455474853515625, 0.12628569793701172, 0.126446044921875, 0.12463142395019532, 0.12460829162597656, 0.12491244506835937, 0.12422150421142578, 0.12428166198730468]",tokens/s,2038.731474274853,kWh,1.4767323517137103e-06,8.091788095589435e-07,5.457882838524886e-06,7.74379399979754e-06,tokens/kWh,33058730.64375074,MB,1416.47872,1705.508864,0.0,1059.06176,931.976704,s,10,75.24034423828124,7.524034423828125,0.018117587645973928,7.51759228515625,7.546301123046875,7.555124682617188,7.562183530273438,"[7.5639482421875, 7.54434033203125, 7.51252392578125, 7.5294287109375, 7.5317822265625, 7.49836865234375, 7.51694482421875, 7.50782275390625, 7.51704736328125, 7.51813720703125]",tokens/s,8.373167432685198,kWh,8.920738770729968e-05,4.889187051034242e-05,0.00032243887947867866,0.0004605381376963208,tokens/kWh,136796.48837582752,,s,629,76.24045568847656,0.12120899155560659,0.014857766034498806,0.119236572265625,0.12046213073730469,0.121122216796875,0.24360714599609376,"[0.12457164764404297, 0.12292813110351562, 0.12142694091796875, 0.12034457397460938, 0.12029849243164062, 0.12040806579589844, 0.12176793670654297, 0.12074700927734375, 0.11929190063476562, 0.11991244506835938, 0.11920486450195313, 0.12124877166748046, 0.12120063781738281, 0.120416259765625, 0.12205363464355469, 0.1201418228149414, 0.11985100555419922, 0.1191731185913086, 0.12010905456542968, 0.12073577880859375, 0.11977008056640626, 0.1192069091796875, 0.11915058898925782, 0.11936870574951172, 0.11920281219482422, 0.11884953308105468, 0.11897650909423828, 0.11890380859375, 0.11936460876464844, 0.11948953247070312, 0.11988787078857421, 0.11970662689208984, 0.11927040100097656, 0.11931136322021485, 0.11918540954589844, 0.11902054595947266, 0.11925606536865234, 0.11928268432617188, 0.1189775390625, 0.12040608215332031, 0.12145555114746094, 0.12119859313964844, 0.11934515380859376, 0.11921715545654298, 0.11957453155517578, 0.11955404663085938, 0.12047564697265625, 0.1195704345703125, 0.11987558746337891, 0.11963187408447265, 0.12172492980957031, 0.12081664276123047, 0.1199636459350586, 0.11969638061523437, 0.119478271484375, 0.11919974517822265, 0.11901952362060547, 0.11969843292236328, 0.11932466888427734, 0.11939430236816406, 0.11932160186767578, 0.11914035034179687, 0.2437795867919922, 0.11910451507568359, 0.11929497528076172, 0.11924992370605468, 0.11924582672119141, 0.1191229476928711, 0.1206702117919922, 0.12058009338378907, 0.11906559753417968, 0.11979878234863281, 0.1204142074584961, 0.120774658203125, 0.12038349151611329, 0.12099174499511718, 0.12017356872558593, 0.12051148986816407, 0.11986022186279296, 0.11982848358154297, 0.12144435119628906, 0.1197875213623047, 0.12066099548339844, 0.11986022186279296, 0.11963085174560546, 0.12066918182373047, 0.12106034851074218, 0.11989606475830078, 0.11947724914550781, 0.12219084930419923, 0.12116684722900391, 0.1208616943359375, 0.12017459106445312, 0.1197844467163086, 0.11975885009765624, 0.11948544311523437, 0.1193359375, 0.11977318572998047, 0.11921920013427735, 0.11890995025634765, 0.11913420867919922, 0.11896729278564454, 0.11922943878173828, 0.11928575897216796, 0.11888127899169922, 0.11916902160644531, 0.11918438720703126, 0.11927756500244141, 0.11924889373779297, 0.11915980529785156, 0.11925708770751953, 0.1192959976196289, 0.11954688262939453, 0.11891097259521484, 0.11927654266357422, 0.11913215637207031, 0.11925504302978515, 0.1196943359375, 0.11949980926513672, 0.11920687866210937, 0.11947622680664062, 0.11929190063476562, 0.11921920013427735, 0.12117094421386719, 0.11926937866210938, 0.24365055847167968, 0.1189969940185547, 0.11894374084472656, 0.11909529876708984, 0.11894271850585937, 0.11864473724365235, 0.11887718200683593, 0.11882701110839844, 0.11909324645996094, 0.11965235137939453, 0.11938406372070312, 0.11919974517822265, 0.11909120178222657, 0.11923046112060547, 0.11929708862304687, 0.11920992279052735, 0.11922946929931641, 0.11920687866210937, 0.11895603179931641, 0.11921510314941407, 0.11924070739746094, 0.11940147399902344, 0.11908505249023438, 0.11927961730957032, 0.11908505249023438, 0.11922227478027343, 0.11948748779296875, 0.11879219055175781, 0.11928473663330078, 0.11918438720703126, 0.11904819488525391, 0.1194260482788086, 0.11940147399902344, 0.11873382568359375, 0.11902361297607422, 0.12077056121826171, 0.11962060546875, 0.11954380798339843, 0.11931648254394531, 0.11892121887207031, 0.11890585327148437, 0.11919769287109375, 0.11923865509033203, 0.11895500946044922, 0.11905228424072266, 0.11905433654785157, 0.11923967742919922, 0.12057087707519532, 0.11927552032470704, 0.11903180694580077, 0.11901952362060547, 0.11904819488525391, 0.11917005157470703, 0.11913728332519531, 0.119225341796875, 0.12148429107666016, 0.11932569885253906, 0.11935846710205078, 0.1191720962524414, 0.1192273941040039, 0.11932876586914062, 0.11924992370605468, 0.11925606536865234, 0.24569036865234375, 0.11900313568115234, 0.11910758209228516, 0.1191229476928711, 0.11929503631591797, 0.11934611511230468, 0.11907071685791015, 0.11920281219482422, 0.11885465240478515, 0.11900006103515624, 0.11911885070800782, 0.1191546859741211, 0.11912806701660156, 0.11937484741210938, 0.1194434585571289, 0.11925606536865234, 0.12019712066650391, 0.12117810821533204, 0.12110336303710938, 0.11963801574707031, 0.11959193420410157, 0.11896627044677735, 0.11922329711914062, 0.11913420867919922, 0.11982438659667968, 0.11933491516113282, 0.11925094604492187, 0.1192959976196289, 0.11907071685791015, 0.1207193603515625, 0.12125491333007812, 0.11938508605957031, 0.1194076156616211, 0.1193338851928711, 0.11934719848632812, 0.11946189117431641, 0.1193482208251953, 0.11920492553710937, 0.11926624298095703, 0.11927142333984375, 0.11934207916259766, 0.11924992370605468, 0.11892121887207031, 0.11940863800048829, 0.119046142578125, 0.12049715423583984, 0.11979878234863281, 0.11931954956054687, 0.11911270141601563, 0.11936768341064453, 0.11907891082763672, 0.11921715545654298, 0.11925094604492187, 0.11922124481201171, 0.11953971099853515, 0.12125491333007812, 0.12110749053955078, 0.1192232666015625, 0.11931136322021485, 0.11899903869628906, 0.12022374725341797, 0.11995238494873046, 0.12026982116699218, 0.247546875, 0.11950592041015624, 0.12091497802734374, 0.12060975646972656, 0.12113203430175781, 0.12091596984863281, 0.12082688140869141, 0.12083404541015624, 0.1219061737060547, 0.12209458923339844, 0.12265574645996094, 0.12046131134033203, 0.11928371429443359, 0.11902365112304687, 0.11975062561035156, 0.11916390228271484, 0.11981926727294921, 0.11897856140136719, 0.11971686553955078, 0.11893145751953126, 0.11913318634033203, 0.11891302490234375, 0.11906358337402344, 0.11885667419433593, 0.11948134613037109, 0.11907788848876953, 0.11915366363525391, 0.1191884765625, 0.11917619323730469, 0.11935641479492187, 0.11914035034179687, 0.11885260772705078, 0.11923353576660156, 0.11925504302978515, 0.11878912353515625, 0.11872665405273437, 0.11999334716796875, 0.11964211273193359, 0.11909737396240234, 0.11932262420654297, 0.119236572265625, 0.11907481384277344, 0.1190799331665039, 0.1189908447265625, 0.11900211334228515, 0.1191956787109375, 0.1193440933227539, 0.1192652816772461, 0.11916185760498046, 0.1206671371459961, 0.11945881652832031, 0.11904307556152344, 0.11939942169189453, 0.11916287994384765, 0.119119873046875, 0.11886386871337891, 0.11886386871337891, 0.11877785491943359, 0.11952845001220704, 0.11905228424072266, 0.11897344207763672, 0.11872563171386719, 0.11880754852294922, 0.24371711730957032, 0.11878604888916015, 0.11898675537109375, 0.11895603179931641, 0.1188629150390625, 0.11867436981201172, 0.11919667053222656, 0.11875635528564453, 0.11883110046386719, 0.11889871978759765, 0.1191341781616211, 0.11897241973876953, 0.11877581024169923, 0.11888025665283203, 0.11885772705078125, 0.11877273559570313, 0.11894477081298828, 0.11868057250976563, 0.11871231842041016, 0.11883929443359376, 0.11886080169677735, 0.11869900512695312, 0.12047666931152344, 0.11934515380859376, 0.11869798278808594, 0.11880044555664063, 0.11878803253173828, 0.1189969940185547, 0.11894886779785156, 0.11878399658203125, 0.12051967620849609, 0.11952333068847656, 0.11878399658203125, 0.11913420867919922, 0.11862118530273437, 0.118830078125, 0.11917721557617188, 0.11974451446533203, 0.11991756439208984, 0.119119873046875, 0.118866943359375, 0.11871743774414062, 0.11889663696289063, 0.11874201965332032, 0.11896115112304688, 0.11909734344482421, 0.11934003448486329, 0.11873280334472656, 0.11927859497070313, 0.1189017562866211, 0.1192652816772461, 0.11888742065429687, 0.11881472015380859, 0.11897138977050781, 0.11900927734375, 0.11879116821289062, 0.11915366363525391, 0.11920281219482422, 0.11915058898925782, 0.1191178207397461, 0.11896422576904297, 0.1189959716796875, 0.1191546859741211, 0.24360858154296874, 0.1190860824584961, 0.11949056243896485, 0.11932466888427734, 0.11897856140136719, 0.12082278442382813, 0.11958783721923828, 0.11911065673828125, 0.11961862182617188, 0.11913311767578125, 0.11897548675537109, 0.11908403015136719, 0.11890585327148437, 0.11893145751953126, 0.11908403015136719, 0.11909324645996094, 0.1192959976196289, 0.119299072265625, 0.11905023956298828, 0.11916390228271484, 0.1194229736328125, 0.11900006103515624, 0.11926016235351562, 0.11916902160644531, 0.1189027862548828, 0.11916185760498046, 0.11893452453613282, 0.11966259002685548, 0.11899494171142579, 0.1189570541381836, 0.11962777709960938, 0.1197875213623047, 0.11925196838378906, 0.11938201904296875, 0.1193338851928711, 0.11967692565917969, 0.11944652557373046, 0.11901542663574219, 0.11911577606201172, 0.11922022247314454, 0.11908710479736329, 0.1187583999633789, 0.12030668640136719, 0.11964620971679688, 0.11896729278564454, 0.1190860824584961, 0.11880140686035157, 0.1189969940185547, 0.11937484741210938, 0.11919155120849609, 0.12108595275878906, 0.12014591979980468, 0.11927244567871094, 0.11913113403320312, 0.11914857482910156, 0.11933999633789062, 0.11990835571289063, 0.11933081817626953, 0.12017356872558593, 0.11968000030517578, 0.11910553741455078, 0.11916902160644531, 0.11892530822753906, 0.24451583862304688, 0.11914854431152344, 0.1193175048828125, 0.11939225769042969, 0.11916492462158203, 0.11957759857177734, 0.1194229736328125, 0.11930931091308594, 0.11903488159179687, 0.11910451507568359, 0.11907584381103516, 0.1191751708984375, 0.12042444610595703, 0.11948851013183594, 0.11933491516113282, 0.11932364654541015, 0.118940673828125, 0.11926220703125, 0.11912397003173827, 0.11893862152099609, 0.1188116455078125, 0.11887615966796874, 0.119299072265625, 0.1189591064453125, 0.11873792266845704, 0.12033638763427734, 0.11966361236572266, 0.11939635467529297, 0.11916799926757812, 0.11972914886474609, 0.11923046112060547, 0.11913420867919922, 0.11927347564697266, 0.11905843353271485, 0.11928371429443359, 0.11918950653076171, 0.11906867218017578, 0.11889049530029297, 0.11908403015136719, 0.11913011169433593, 0.11903385925292968, 0.11906150054931641, 0.11886386871337891, 0.11895807647705078, 0.11882189178466797, 0.11912908935546875, 0.11897856140136719, 0.11894477081298828, 0.11876557159423828, 0.11893965148925781, 0.11924172973632813, 0.11886386871337891, 0.11928883361816406, 0.11904307556152344, 0.11900723266601562, 0.11878195190429687, 0.11875635528564453, 0.11862322998046874, 0.11873996734619141, 0.11917005157470703, 0.1189570541381836, 0.11894579315185547, 0.12027187347412109, 0.24360345458984375, 0.11901952362060547, 0.1191014404296875, 0.11927244567871094, 0.11907481384277344, 0.11987353515625, 0.12033126068115234, 0.11920384216308594, 0.1190287322998047, 0.11961650848388672, 0.11970867156982422, 0.11927961730957032, 0.11992371368408203, 0.1196933135986328, 0.11933695983886719, 0.1192959976196289, 0.11914444732666016, 0.11929804992675781, 0.11933286285400391, 0.11891404724121094, 0.11937894439697265, 0.11968409729003907, 0.11939020538330078, 0.11924992370605468, 0.11931136322021485, 0.11917005157470703, 0.11934207916259766, 0.11891814422607422, 0.11906559753417968, 0.11898982238769532, 0.1191352310180664, 0.1193543701171875, 0.12004045104980468, 0.11920496368408204, 0.11923343658447266, 0.11935132598876953, 0.11902460479736328, 0.1189222412109375, 0.11926732635498047, 0.11971788787841797, 0.11941683197021484, 0.11968409729003907, 0.1194424285888672, 0.11935743713378906, 0.11975987243652343, 0.120447998046875, 0.11971788787841797, 0.11959603118896485, 0.12046540832519531, 0.11941375732421874, 0.11895500946044922, 0.11876659393310547, 0.11868262481689452, 0.1189222412109375, 0.11881267547607421, 0.11860889434814453, 0.1187430419921875, 0.11915058898925782, 0.11882086181640625, 0.11895603179931641, 0.11968102264404297, 0.11917721557617188, 0.11907686614990234, 0.24344166564941405, 0.11888742065429687, 0.1188853759765625, 0.11914854431152344, 0.11891506958007812, 0.11891404724121094, 0.11905023956298828, 0.1190113296508789, 0.11885772705078125, 0.11911065673828125, 0.11948134613037109, 0.11934617614746093, 0.11914956665039063, 0.11941273498535156, 0.11947315216064452, 0.1198571548461914, 0.11957350158691406, 0.12054937744140624, 0.12015001678466797, 0.11967180633544922, 0.1200865249633789, 0.1194434585571289, 0.11917005157470703, 0.11993395233154297, 0.11950182342529297, 0.12140646362304687, 0.1204111328125, 0.11936262512207031, 0.11944236755371093, 0.11988172912597657, 0.11939839935302735, 0.1193912353515625, 0.11940249633789063, 0.1190297622680664, 0.11965542602539063, 0.11903897857666015, 0.11946701049804688, 0.11888540649414063, 0.1192386245727539, 0.1189591064453125, 0.11945471954345703, 0.11889868927001954, 0.1190287322998047, 0.11890380859375, 0.11901644897460938, 0.11902259063720703, 0.11903794860839843, 0.11907481384277344, 0.11954585266113281, 0.11895097351074219, 0.11885465240478515, 0.1198826904296875, 0.11971379089355469, 0.11895398712158203, 0.11973734283447265, 0.11900313568115234, 0.11912397003173827, 0.11940966033935548, 0.11896524810791016, 0.11901952362060547, 0.11930623626708985, 0.118687744140625, 0.11891506958007812]",tokens/s,8.250213017746573,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-70m,EleutherAI/pythia-70m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.42.3,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,1263.857664,872.93952,0.0,226.492416,184.528384,s,12,0.17770700836181638,0.014808917363484699,0.0007458121254662319,0.014730735778808594,0.015585615634918212,0.016198500156402586,0.016727724933624268,"[0.01686003112792969, 0.014940928459167481, 0.014185312271118165, 0.014250240325927734, 0.014782591819763184, 0.01479747200012207, 0.014225376129150391, 0.01565724754333496, 0.014866304397583009, 0.014252096176147462, 0.014678879737854004, 0.014210528373718261]",tokens/s,17286.881526615558,kWh,1.717408794130004e-07,9.410611709969618e-08,3.064682684303119e-07,5.723152649430085e-07,tokens/kWh,447305909.3146723,MB,1263.857664,872.93952,0.0,226.492416,184.530944,s,12,10.442449340820314,0.8702041117350262,0.008126167996174669,0.869532958984375,0.87863642578125,0.8844940338134766,0.8896149688720703,"[0.8908952026367187, 0.8730538330078125, 0.8646798095703125, 0.8587084350585937, 0.870618896484375, 0.8792567138671875, 0.8648596801757813, 0.8676231079101563, 0.8708908081054687, 0.868447021484375, 0.8618011474609375, 0.8716146850585937]",tokens/s,72.39680800219347,kWh,1.0212165763734822e-05,5.594490671040206e-06,1.7625837744070347e-05,3.3432494178845375e-05,tokens/kWh,1884394.2561684093,,s,755,10.587394044876108,0.014023038470034567,0.0018357835916675285,0.013768704414367675,0.014138367652893067,0.01426595821380615,0.028149206199645997,"[0.01590272045135498, 0.015169535636901856, 0.013799424171447755, 0.013592576026916504, 0.013566975593566894, 0.013568032264709472, 0.013549535751342774, 0.013544447898864746, 0.013549568176269532, 0.01500057601928711, 0.014542847633361817, 0.015096832275390625, 0.014296064376831055, 0.014089216232299804, 0.014114815711975098, 0.014088191986083985, 0.014008319854736329, 0.014020607948303223, 0.01397862434387207, 0.013996031761169434, 0.013991935729980469, 0.014033920288085937, 0.014502911567687989, 0.014139391899108887, 0.014253055572509766, 0.01410972785949707, 0.014130144119262696, 0.01405951976776123, 0.014032896041870118, 0.014044159889221192, 0.014107647895812989, 0.01409331226348877, 0.014196736335754395, 0.014124032020568847, 0.01380352020263672, 0.013652992248535157, 0.014197759628295899, 0.014205951690673829, 0.014385215759277344, 0.014391231536865234, 0.01419264030456543, 0.014195712089538574, 0.014110719680786133, 0.014142463684082032, 0.014052351951599122, 0.014109696388244629, 0.014038016319274902, 0.013868032455444336, 0.013783040046691895, 0.014055423736572266, 0.014000127792358399, 0.014098464012145996, 0.014048224449157714, 0.014029824256896972, 0.013983743667602539, 0.014000127792358399, 0.014010368347167968, 0.01409945583343506, 0.01408512020111084, 0.014088191986083985, 0.013898752212524413, 0.013739007949829102, 0.029507583618164062, 0.014137344360351562, 0.014060544013977052, 0.014026752471923828, 0.014106623649597168, 0.014073856353759765, 0.013790207862854004, 0.013739007949829102, 0.013693951606750488, 0.013793279647827148, 0.013578240394592284, 0.013528063774108886, 0.013835264205932616, 0.014154751777648926, 0.013549568176269532, 0.013612031936645508, 0.01356492805480957, 0.013528063774108886, 0.013546496391296388, 0.013410304069519043, 0.01346457576751709, 0.013619199752807617, 0.014065664291381836, 0.014048255920410157, 0.01399500846862793, 0.014000127792358399, 0.014065664291381836, 0.013827072143554688, 0.013361151695251466, 0.013429759979248047, 0.013656064033508301, 0.0135731201171875, 0.013530112266540528, 0.013545472145080567, 0.013538304328918458, 0.013493247985839844, 0.013543423652648925, 0.01358950424194336, 0.013771776199340821, 0.01408614444732666, 0.01386393642425537, 0.01419878387451172, 0.014858240127563477, 0.014154784202575684, 0.014159839630126953, 0.014034943580627441, 0.014146559715270996, 0.014025728225708007, 0.014043135643005371, 0.014113792419433594, 0.014020607948303223, 0.014134271621704102, 0.014055423736572266, 0.01397862434387207, 0.013842432022094727, 0.013796352386474609, 0.013836288452148437, 0.014095359802246094, 0.014161919593811035, 0.014041088104248046, 0.013948927879333496, 0.013541376113891602, 0.013576191902160644, 0.02812518310546875, 0.013533184051513672, 0.013554688453674316, 0.01355571174621582, 0.01355571174621582, 0.013507583618164062, 0.01354751968383789, 0.013560832023620606, 0.01354751968383789, 0.013593600273132325, 0.01355571174621582, 0.013528063774108886, 0.013491231918334961, 0.014089183807373047, 0.01396224021911621, 0.014020607948303223, 0.014097408294677734, 0.014039039611816406, 0.014054400444030762, 0.014026752471923828, 0.014045215606689454, 0.014015487670898438, 0.014002143859863281, 0.01407795238494873, 0.014055423736572266, 0.014014464378356933, 0.014206975936889648, 0.014147583961486816, 0.014009344100952148, 0.014095359802246094, 0.014009344100952148, 0.01458796787261963, 0.013855680465698243, 0.013546496391296388, 0.013480959892272949, 0.01354854393005371, 0.013485055923461914, 0.013527039527893067, 0.01358950424194336, 0.013511712074279786, 0.013557727813720704, 0.013578240394592284, 0.013524991989135742, 0.013562879562377929, 0.01353932762145996, 0.013575167655944824, 0.013516799926757812, 0.013549568176269532, 0.013531135559082032, 0.013541376113891602, 0.01349120044708252, 0.013478912353515626, 0.013517824172973633, 0.013557760238647461, 0.013520895957946777, 0.013494272232055664, 0.013519871711730956, 0.013518848419189454, 0.013554688453674316, 0.013521984100341796, 0.013955007553100586, 0.014013440132141113, 0.013520895957946777, 0.02814566421508789, 0.013528063774108886, 0.013505536079406738, 0.013579263687133789, 0.014011391639709473, 0.01377894401550293, 0.013514752388000489, 0.0134717435836792, 0.013480959892272949, 0.013486080169677735, 0.013496319770812988, 0.013534208297729493, 0.013576191902160644, 0.013510656356811524, 0.013544447898864746, 0.01370419216156006, 0.01357209587097168, 0.013484031677246093, 0.01358233642578125, 0.013533184051513672, 0.013503487586975099, 0.013554688453674316, 0.013522944450378417, 0.013522944450378417, 0.013629440307617188, 0.01337446403503418, 0.013472767829895019, 0.01358233642578125, 0.013496319770812988, 0.013522944450378417, 0.013493247985839844, 0.013541376113891602, 0.013524991989135742, 0.01356390380859375, 0.013475839614868163, 0.013526016235351563, 0.013596672058105469, 0.013507583618164062, 0.01349120044708252, 0.013430815696716308, 0.013491168022155761, 0.01347481632232666, 0.013444095611572266, 0.013515775680541992, 0.013492223739624023, 0.013515775680541992, 0.013526016235351563, 0.0134901762008667, 0.013553664207458497, 0.013494272232055664, 0.013554688453674316, 0.01418239974975586, 0.014006272315979004, 0.013982720375061035, 0.013683712005615235, 0.014056447982788087, 0.013996031761169434, 0.014000160217285156, 0.013957088470458984, 0.014022656440734863, 0.014030847549438476, 0.014040063858032227, 0.014070783615112305, 0.029281280517578126, 0.014043135643005371, 0.013820927619934082, 0.013874176025390626, 0.013810688018798829, 0.014020607948303223, 0.014101504325866699, 0.014052351951599122, 0.014024703979492188, 0.014104576110839843, 0.014031871795654297, 0.014309375762939454, 0.014042143821716308, 0.014036959648132324, 0.014081024169921874, 0.013678591728210449, 0.013590527534484862, 0.013532159805297851, 0.013518848419189454, 0.013528063774108886, 0.013536255836486816, 0.01349836826324463, 0.01350656032562256, 0.013479935646057128, 0.013532159805297851, 0.013505536079406738, 0.01360588836669922, 0.013565952301025391, 0.013524031639099121, 0.013553600311279296, 0.01353932762145996, 0.014235648155212402, 0.014135295867919923, 0.014071807861328126, 0.014183423995971679, 0.013936639785766602, 0.013384703636169434, 0.013356032371520997, 0.013511679649353027, 0.013528063774108886, 0.013531135559082032, 0.013515775680541992, 0.013584383964538574, 0.013509632110595703, 0.013478912353515626, 0.01356390380859375, 0.013512703895568847, 0.013569024085998535, 0.013583359718322753, 0.014160896301269531, 0.014122048377990722, 0.014047167778015136, 0.014003199577331543, 0.014025728225708007, 0.014043135643005371, 0.014055423736572266, 0.014096384048461913, 0.014112768173217773, 0.014035967826843262, 0.014054400444030762, 0.014088224411010743, 0.01405129623413086, 0.014038016319274902, 0.029211648941040037, 0.014095359802246094, 0.014023679733276367, 0.014079999923706055, 0.014004223823547364, 0.014013440132141113, 0.014130175590515137, 0.014094335556030273, 0.014038016319274902, 0.014025728225708007, 0.014000127792358399, 0.014019583702087402, 0.014023679733276367, 0.014055423736572266, 0.014143487930297852, 0.01405951976776123, 0.014072832107543945, 0.014009344100952148, 0.014002176284790039, 0.014034943580627441, 0.014028800010681153, 0.01406771183013916, 0.014094335556030273, 0.014021632194519042, 0.014028800010681153, 0.014054400444030762, 0.01419264030456543, 0.014105600357055664, 0.01405951976776123, 0.014128128051757812, 0.01420902442932129, 0.014044159889221192, 0.014138367652893067, 0.013905920028686524, 0.013549568176269532, 0.014351360321044922, 0.013802495956420899, 0.0140697603225708, 0.014033920288085937, 0.014023679733276367, 0.014018560409545898, 0.01395199966430664, 0.014052351951599122, 0.014125056266784668, 0.013990912437438965, 0.01408409595489502, 0.014056447982788087, 0.014020607948303223, 0.014041088104248046, 0.014120960235595703, 0.013915200233459473, 0.013513664245605468, 0.013510656356811524, 0.013613056182861329, 0.013559807777404785, 0.01358233642578125, 0.013644800186157227, 0.01355059242248535, 0.013569024085998535, 0.013546496391296388, 0.013520895957946777, 0.013541376113891602, 0.013530112266540528, 0.02814975929260254, 0.01353932762145996, 0.013537280082702637, 0.01354751968383789, 0.013501503944396972, 0.013505472183227538, 0.013517824172973633, 0.013566975593566894, 0.013507583618164062, 0.01358233642578125, 0.013467647552490235, 0.013643775939941406, 0.013494272232055664, 0.013504511833190918, 0.01354854393005371, 0.013565952301025391, 0.01353932762145996, 0.013536255836486816, 0.013529088020324707, 0.013622271537780761, 0.013521920204162598, 0.013693951606750488, 0.014116864204406738, 0.01409126377105713, 0.01376255989074707, 0.013542400360107423, 0.013549568176269532, 0.013579263687133789, 0.013540351867675781, 0.013524991989135742, 0.013511679649353027, 0.01353932762145996, 0.013500415802001953, 0.01354751968383789, 0.013590527534484862, 0.013543423652648925, 0.013552639961242676, 0.013552639961242676, 0.013570048332214356, 0.013590527534484862, 0.013536288261413574, 0.01353212833404541, 0.013485055923461914, 0.013488127708435058, 0.013817855834960938, 0.014138367652893067, 0.014079999923706055, 0.014411775588989258, 0.014155839920043945, 0.014061504364013672, 0.014072832107543945, 0.014124032020568847, 0.014048255920410157, 0.013993984222412109, 0.014065664291381836, 0.013975584030151367, 0.013948896408081054, 0.014000127792358399, 0.014117888450622559, 0.013784064292907714, 0.013839360237121581, 0.01419878387451172, 0.01437491226196289, 0.030264320373535155, 0.014108672142028808, 0.01397862434387207, 0.014050304412841797, 0.013996031761169434, 0.014062591552734375, 0.013642751693725585, 0.013524031639099121, 0.0135730562210083, 0.01356601619720459, 0.013521856307983398, 0.013789183616638183, 0.013531135559082032, 0.013470720291137696, 0.013502464294433594, 0.013459456443786622, 0.013676544189453126, 0.013512703895568847, 0.013513728141784668, 0.013510656356811524, 0.013524991989135742, 0.0134717435836792, 0.013549599647521973, 0.013559807777404785, 0.013570015907287597, 0.013513728141784668, 0.013535231590270995, 0.013509632110595703, 0.013495295524597169, 0.013510656356811524, 0.013502464294433594, 0.013839360237121581, 0.01392851161956787, 0.013561792373657226, 0.013512703895568847, 0.013534208297729493, 0.013538304328918458, 0.01350656032562256, 0.01354854393005371, 0.01351478385925293, 0.013458399772644044, 0.013501440048217773, 0.013503520011901856, 0.013499360084533691, 0.013486080169677735, 0.013538304328918458, 0.01348300838470459, 0.013515775680541992, 0.014631936073303223, 0.015512576103210449, 0.014542847633361817, 0.01419059181213379, 0.014310400009155273, 0.014002176284790039, 0.014158847808837891, 0.014009344100952148, 0.013933631896972656, 0.01369593620300293, 0.014564352035522461, 0.014092288017272948, 0.014072832107543945, 0.014104576110839843, 0.014041088104248046, 0.029276159286499022, 0.014034943580627441, 0.013997056007385255, 0.014071807861328126, 0.013996031761169434, 0.013958144187927245, 0.01397862434387207, 0.015081472396850586, 0.014701567649841308, 0.014668800354003907, 0.013993984222412109, 0.01417728042602539, 0.014112768173217773, 0.01437388801574707, 0.014112768173217773, 0.014028800010681153, 0.014118911743164063, 0.014029824256896972, 0.014139391899108887, 0.014566399574279786, 0.014102527618408203, 0.014079999923706055, 0.014047231674194336, 0.014014464378356933, 0.014028800010681153, 0.013956095695495606, 0.014009344100952148, 0.014114815711975098, 0.014044159889221192, 0.01359769630432129, 0.013529088020324707, 0.013566975593566894, 0.013596672058105469, 0.013494272232055664, 0.01353932762145996, 0.01356390380859375, 0.013559807777404785, 0.013463552474975587, 0.013546496391296388, 0.013578240394592284, 0.013587455749511718, 0.013480959892272949, 0.013545472145080567, 0.013477888107299805, 0.013524991989135742, 0.013486080169677735, 0.013546496391296388, 0.013487104415893555, 0.013461503982543945, 0.013484031677246093, 0.013544511795043946, 0.013510592460632324, 0.013520895957946777, 0.013590527534484862, 0.013477888107299805, 0.013493247985839844, 0.013519871711730956, 0.013566975593566894, 0.01355571174621582, 0.013488127708435058, 0.01353932762145996, 0.013544447898864746, 0.013489151954650879, 0.028542015075683595, 0.01350444793701172, 0.01350656032562256, 0.013545503616333008, 0.013851615905761719, 0.013469696044921875, 0.013505536079406738, 0.013469696044921875, 0.013545472145080567, 0.01398476791381836, 0.014100480079650878, 0.014065664291381836, 0.013980671882629395, 0.014014464378356933, 0.014029824256896972, 0.01397657585144043, 0.014020607948303223, 0.013973504066467286, 0.013846528053283692, 0.013362175941467285, 0.013513728141784668, 0.013600768089294434, 0.013557760238647461, 0.0134901762008667, 0.013462528228759766, 0.013511679649353027, 0.013615103721618652, 0.013508607864379883, 0.013500415802001953, 0.013559807777404785, 0.013534208297729493, 0.013486080169677735, 0.01354854393005371, 0.013780991554260253, 0.014002176284790039, 0.013959168434143066, 0.014021632194519042, 0.014008319854736329, 0.013988863945007325, 0.013999103546142578, 0.01400115203857422, 0.013963264465332031, 0.014003199577331543, 0.013998080253601074, 0.014146559715270996, 0.01407590389251709, 0.014002176284790039, 0.014013440132141113, 0.014163968086242675, 0.014083104133605957, 0.013996000289916993, 0.013991935729980469, 0.014025728225708007, 0.013792256355285644, 0.01354854393005371, 0.013505536079406738, 0.013533184051513672, 0.01348198413848877, 0.013488127708435058, 0.013557760238647461, 0.013664256095886231, 0.013599743843078613, 0.014167039871215821, 0.029051904678344728, 0.014051327705383301, 0.014191616058349609, 0.014185471534729004, 0.014052351951599122, 0.014104576110839843, 0.014022720336914063, 0.014039999961853027, 0.013798399925231934, 0.013768704414367675, 0.013875200271606445, 0.013957119941711426, 0.014002176284790039, 0.014022656440734863, 0.013963264465332031, 0.01395206356048584, 0.013903807640075684, 0.013497344017028809, 0.013495295524597169, 0.0134717435836792, 0.0135731201171875, 0.013503487586975099, 0.013528063774108886, 0.0134901762008667, 0.013510656356811524, 0.013513728141784668, 0.013542400360107423, 0.013566975593566894, 0.013360128402709961, 0.013392895698547362, 0.013500415802001953, 0.013462528228759766, 0.013599743843078613, 0.013531135559082032, 0.013561856269836426, 0.013949952125549316, 0.014019583702087402, 0.014110719680786133, 0.013762623786926269, 0.013502400398254394, 0.013551615715026855, 0.013466624259948731, 0.013542400360107423, 0.013495295524597169, 0.013476863861083984, 0.013543423652648925, 0.013522944450378417, 0.013475839614868163, 0.013612031936645508, 0.01353321647644043, 0.013546463966369628, 0.013493247985839844, 0.013521920204162598, 0.01353932762145996, 0.013508607864379883, 0.01353932762145996, 0.013549568176269532, 0.013532159805297851, 0.013557760238647461, 0.013508607864379883, 0.013493247985839844, 0.013567999839782715, 0.013578240394592284, 0.02814873504638672, 0.013509632110595703, 0.01349836826324463, 0.013489151954650879, 0.013528063774108886, 0.013495295524597169, 0.013513824462890626, 0.013567904472351074, 0.013513728141784668, 0.013622271537780761, 0.013479935646057128, 0.013486080169677735, 0.013485055923461914, 0.013629440307617188, 0.013565952301025391, 0.013479935646057128, 0.013392895698547362, 0.01337446403503418, 0.014511103630065919, 0.014114815711975098, 0.014020607948303223, 0.014053376197814941, 0.014180352210998535, 0.014109696388244629, 0.013961215972900391, 0.014033920288085937, 0.014102527618408203, 0.013990912437438965, 0.014018560409545898, 0.014072832107543945, 0.01418239974975586, 0.014221311569213867, 0.014842880249023438, 0.014110719680786133, 0.014094335556030273, 0.014072832107543945, 0.014045184135437011, 0.013964287757873535, 0.013947903633117676, 0.013545472145080567, 0.013396991729736327, 0.013604864120483399, 0.01397043228149414, 0.014063615798950196, 0.014005248069763183, 0.014004223823547364, 0.014024703979492188, 0.013560832023620606, 0.013507583618164062, 0.013520895957946777, 0.013496383666992188, 0.013994943618774415, 0.013971455574035644, 0.014010368347167968, 0.013985792160034179, 0.014003199577331543, 0.014017536163330077, 0.014043135643005371, 0.014005248069763183, 0.013945856094360352, 0.01354854393005371, 0.013531135559082032, 0.013667327880859375]",tokens/s,71.31122132602515,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,databricks/dbrx-base,databricks/dbrx-base,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -26773,7 +24523,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/gemma-2b/resolve/main/config.json +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -26790,10 +24540,10 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-669480ff-6c65b85b439f9c476f1d69e8;83ed4b0a-083f-438d-916d-9a7838613487) +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66947b36-46ef82bf569cfee26bd6c651;20ba95d5-dae9-4b7a-b2bb-e5c1b69baff7) 403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/google/gemma-2b/resolve/main/config.json. +Cannot access content at: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json. If you are trying to create or update content,make sure you have a token with the `write` role. The above exception was the direct cause of the following exception: @@ -26832,11 +24582,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/gemma-2b is not the path to a directory containing a file named config.json. +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like databricks/dbrx-base is not the path to a directory containing a file named config.json. Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciLM-7B,Deci/DeciLM-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-2.7B,EleutherAI/gpt-neo-2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -26854,24 +24604,18 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: GPTNeoForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,databricks/dbrx-base,databricks/dbrx-base,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-2.7b,facebook/opt-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -26879,74 +24623,28 @@ NameError: name 'exl_ext' is not defined File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status - raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66947b27-2f11209560e5e59808fcd139;2cdc5181-f4ba-4dac-967f-6415cd5a6ecf) - -403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json. -If you are trying to create or update content,make sure you have a token with the `write` role. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error - raise LocalEntryNotFoundError( -huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file - raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like databricks/dbrx-base is not the path to a directory containing a file named config.json. -Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-7.5B,facebook/xglm-7.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciLM-7B,Deci/DeciLM-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -26964,24 +24662,18 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: DeciLMForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,B,B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-7b,google/recurrentgemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -26993,7 +24685,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/B/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/google/recurrentgemma-7b/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -27020,9 +24712,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669493bc-3ee307762ecae6cf22723ec7;4f7372f1-7bff-440c-8066-9015ee974461) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694823c-4a01c9f6502a3b8f674a2972;1e80b430-396a-45fa-abde-c723cebba1ac) -Repository Not Found for url: https://huggingface.co/B/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/google/recurrentgemma-7b/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -27047,11 +24739,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: B is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: google/recurrentgemma-7b is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-14B,Qwen/Qwen1.5-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -27071,22 +24763,47 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: GPTNeoForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-4B,Qwen/Qwen1.5-4B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,3149.217792,5128.060928,0.0,4481.613824,4276.256768,s,10,3.149311706542969,0.3149311706542969,0.0015717060185626956,0.31493319702148437,0.3165461700439453,0.3169147476196289,0.31720960968017575,"[0.3172833251953125, 0.3164642639160156, 0.3132740478515625, 0.3144434814453125, 0.31399490356445314, 0.3119559020996094, 0.3140972900390625, 0.31542291259765626, 0.3162637023925781, 0.31611187744140623]",tokens/s,812.8760308741042,kWh,3.694201881686847e-06,2.024221956560268e-06,1.6665230346062446e-05,2.238365418430956e-05,tokens/kWh,11436917.220578322,MB,3149.217792,5128.060928,0.0,4481.613824,4465.661952,s,10,184.204947265625,18.420494726562502,0.008042192397515377,18.4165078125,18.4298185546875,18.432060644531248,18.433854316406247,"[18.41758203125, 18.4293203125, 18.415013671875, 18.434302734375, 18.41543359375, 18.427755859375, 18.427966796875, 18.41258203125, 18.409763671875, 18.4152265625]",tokens/s,3.420103582188457,kWh,0.0002180770655886995,0.00011952181134027568,0.0009648250270677349,0.00130242390399671,tokens/kWh,48371.3480739057,,s,629,186.7401061401367,0.2968841115105512,0.03741416455160097,0.29225473022460935,0.29295676879882815,0.29340855712890623,0.6063264038085938,"[0.29236837768554685, 0.29334426879882813, 0.29221682739257815, 0.29205914306640623, 0.2920222778320313, 0.2922946472167969, 0.2924492797851562, 0.2926929931640625, 0.29193624877929686, 0.2920509338378906, 0.29204376220703127, 0.2921123962402344, 0.291873779296875, 0.2915205078125, 0.29172222900390626, 0.29199871826171875, 0.2923089904785156, 0.2930401306152344, 0.2921902160644531, 0.29266842651367186, 0.29187994384765625, 0.2924564514160156, 0.2924277648925781, 0.2920263671875, 0.29210009765625, 0.2922608642578125, 0.2919096374511719, 0.29193624877929686, 0.29192294311523437, 0.29198541259765626, 0.29212261962890623, 0.29261724853515625, 0.2921973571777344, 0.29344256591796875, 0.2920785827636719, 0.2922250366210937, 0.29242059326171876, 0.2925332336425781, 0.2925537414550781, 0.29240524291992187, 0.2921902160644531, 0.2919741516113281, 0.29227825927734374, 0.2922506103515625, 0.2918768615722656, 0.29220248413085936, 0.29238067626953124, 0.29187481689453126, 0.29204788208007815, 0.2923376770019531, 0.2920396728515625, 0.29325619506835937, 0.2925700988769531, 0.29266226196289064, 0.29220452880859377, 0.2922823791503906, 0.2919710693359375, 0.29259878540039064, 0.2924472351074219, 0.29214208984375, 0.2923765869140625, 0.2920519714355469, 0.6092022705078125, 0.29223724365234377, 0.2937958374023438, 0.29247589111328126, 0.29319781494140623, 0.2925875244140625, 0.2924288024902344, 0.29230181884765627, 0.29243902587890624, 0.2923919372558594, 0.2927564697265625, 0.29259161376953124, 0.29243084716796874, 0.29296743774414064, 0.2923427734375, 0.29186456298828123, 0.2922250366210937, 0.29213082885742186, 0.29205810546875, 0.2923417663574219, 0.2929213562011719, 0.2921850891113281, 0.2936012878417969, 0.29257931518554686, 0.29359002685546876, 0.29242059326171876, 0.2921574401855469, 0.2920642700195312, 0.2926080017089844, 0.29214617919921876, 0.2923816833496094, 0.29216973876953123, 0.29204684448242185, 0.2921922607421875, 0.2923284606933594, 0.2922137451171875, 0.2923929748535156, 0.292546630859375, 0.2926417236328125, 0.2925137939453125, 0.2924062805175781, 0.2922659912109375, 0.29193319702148435, 0.29348370361328124, 0.29205792236328126, 0.2921850891113281, 0.2963548278808594, 0.292305908203125, 0.2925137939453125, 0.2923642883300781, 0.2921707458496094, 0.2921430969238281, 0.2926448669433594, 0.2927411193847656, 0.29220761108398435, 0.292232177734375, 0.29215130615234375, 0.2934067077636719, 0.29257626342773435, 0.29231924438476564, 0.2922465209960938, 0.2922557373046875, 0.2923213195800781, 0.6058434448242187, 0.2923243408203125, 0.29236737060546875, 0.2920919189453125, 0.2922966918945312, 0.2922536926269531, 0.2924298095703125, 0.29252813720703125, 0.29234893798828127, 0.2925455322265625, 0.2922403869628906, 0.29219635009765627, 0.2920130615234375, 0.29205810546875, 0.2921932678222656, 0.2922680358886719, 0.2919772033691406, 0.29201919555664063, 0.29235302734375, 0.2921318359375, 0.29199154663085936, 0.2918656005859375, 0.29201611328125, 0.294361083984375, 0.2921062316894531, 0.29225473022460935, 0.2920929260253906, 0.2933616638183594, 0.29293466186523437, 0.29222708129882813, 0.292073486328125, 0.29259878540039064, 0.2922178649902344, 0.29183078002929685, 0.29233355712890624, 0.2924349365234375, 0.291989501953125, 0.29248818969726564, 0.29223526000976563, 0.29176217651367187, 0.2918082580566406, 0.2931097717285156, 0.29253836059570315, 0.29301043701171875, 0.2920130615234375, 0.2920407409667969, 0.2919710388183594, 0.29457406616210935, 0.2923519897460938, 0.2923028564453125, 0.2920929260253906, 0.2918901672363281, 0.29224755859375, 0.2919526672363281, 0.291937255859375, 0.29211032104492185, 0.29193011474609376, 0.29155224609375, 0.2918410339355469, 0.2920980529785156, 0.292168701171875, 0.29260595703125, 0.292453369140625, 0.6075504760742187, 0.2925127563476563, 0.2923765869140625, 0.29210931396484374, 0.29227825927734374, 0.2921656188964844, 0.29187890625, 0.29214105224609377, 0.29254144287109374, 0.29202023315429687, 0.29206732177734374, 0.293718017578125, 0.2936227722167969, 0.29316915893554685, 0.29292236328125, 0.29260595703125, 0.292431884765625, 0.2927585144042969, 0.2929725341796875, 0.29310772705078125, 0.29271142578125, 0.2924615783691406, 0.29305242919921876, 0.29276776123046877, 0.2925915832519531, 0.29245440673828127, 0.29250765991210936, 0.2925107116699219, 0.29247589111328126, 0.29257830810546875, 0.29249331665039063, 0.2926243896484375, 0.2935541687011719, 0.2926243896484375, 0.29202532958984373, 0.2919198608398437, 0.292021240234375, 0.29210418701171875, 0.2919884948730469, 0.2921758728027344, 0.2921983947753906, 0.292052978515625, 0.2918523254394531, 0.2925229797363281, 0.2951219177246094, 0.2927698059082031, 0.2923653259277344, 0.29271551513671873, 0.2925813903808594, 0.29277389526367187, 0.2923816833496094, 0.2925250549316406, 0.2931272277832031, 0.2930205993652344, 0.29253631591796875, 0.2923786315917969, 0.2930882568359375, 0.2928087158203125, 0.29209906005859376, 0.2928845520019531, 0.29307998657226564, 0.2928609313964844, 0.2925823974609375, 0.6065142211914063, 0.2926080322265625, 0.29234066772460937, 0.29249432373046874, 0.2920980529785156, 0.2918707275390625, 0.2923858032226562, 0.2918133850097656, 0.2919024963378906, 0.2923048706054687, 0.29231924438476564, 0.29207757568359377, 0.29218612670898436, 0.29211032104492185, 0.29206936645507814, 0.29310873413085936, 0.2925721740722656, 0.2921850891113281, 0.292738037109375, 0.2921891784667969, 0.2920550537109375, 0.2918143920898438, 0.2921983947753906, 0.29208370971679687, 0.29210214233398435, 0.29210214233398435, 0.2925189208984375, 0.2919208984375, 0.29203353881835936, 0.2927615966796875, 0.291736572265625, 0.29209701538085936, 0.2920550537109375, 0.2918656005859375, 0.2918370056152344, 0.2924051818847656, 0.2920263671875, 0.2931199951171875, 0.29166488647460936, 0.29208370971679687, 0.2922158203125, 0.2921277465820312, 0.2917294006347656, 0.29210012817382813, 0.29211541748046876, 0.29188607788085935, 0.29205810546875, 0.29206732177734374, 0.29190142822265625, 0.2926776428222656, 0.29242471313476565, 0.2921656188964844, 0.29246054077148437, 0.2923315124511719, 0.29213287353515627, 0.2920325012207031, 0.2924195861816406, 0.29780581665039063, 0.29234072875976563, 0.2921574401855469, 0.29292031860351564, 0.2927329406738281, 0.2922823791503906, 0.6048440551757812, 0.29242266845703124, 0.29194342041015625, 0.2922823791503906, 0.29246875, 0.2921922607421875, 0.2924472351074219, 0.2927779846191406, 0.29216461181640624, 0.29211953735351565, 0.29237759399414065, 0.29223526000976563, 0.2919372863769531, 0.2918973388671875, 0.2923294982910156, 0.2918020935058594, 0.29216152954101565, 0.2923212890625, 0.29266021728515623, 0.2927503356933594, 0.2927216491699219, 0.29210418701171875, 0.2921973876953125, 0.29242471313476565, 0.29217279052734374, 0.29210931396484374, 0.2921912231445313, 0.292021240234375, 0.29214617919921876, 0.29203866577148435, 0.29192190551757813, 0.2918973388671875, 0.29224346923828126, 0.291884033203125, 0.291857421875, 0.29202532958984373, 0.2921379699707031, 0.2925025329589844, 0.2959308776855469, 0.2924974060058594, 0.2935582580566406, 0.2933534851074219, 0.2929541015625, 0.29257931518554686, 0.2927984619140625, 0.29274725341796876, 0.29252197265625, 0.29275750732421874, 0.2934097900390625, 0.29243289184570315, 0.2923284606933594, 0.2925189208984375, 0.2929377136230469, 0.29240524291992187, 0.2938306579589844, 0.29293670654296877, 0.29282302856445314, 0.29310772705078125, 0.2923100280761719, 0.2923991088867188, 0.29276568603515624, 0.2923294677734375, 0.2927698059082031, 0.6069278564453126, 0.2922486267089844, 0.29226181030273435, 0.29200384521484374, 0.29218099975585937, 0.2922465209960938, 0.29204376220703127, 0.2927329406738281, 0.2925977478027344, 0.292210693359375, 0.29327462768554685, 0.2930093994140625, 0.29313638305664064, 0.29303192138671874, 0.292389892578125, 0.29288653564453127, 0.29291519165039065, 0.29289266967773436, 0.2928721923828125, 0.292701171875, 0.29249331665039063, 0.29188607788085935, 0.29253631591796875, 0.29483929443359375, 0.2933084106445312, 0.29292849731445314, 0.2923530883789062, 0.29386029052734375, 0.29232742309570314, 0.2925465698242187, 0.29262130737304687, 0.292274169921875, 0.2924564514160156, 0.292242431640625, 0.2929407958984375, 0.2920704040527344, 0.2924810791015625, 0.292454345703125, 0.2922188720703125, 0.29238885498046874, 0.29204888916015626, 0.2919598083496094, 0.2920232849121094, 0.2920048522949219, 0.29257220458984373, 0.29197512817382815, 0.2930882568359375, 0.29200384521484374, 0.292384765625, 0.2927626342773437, 0.2920519714355469, 0.2919045104980469, 0.2923561096191406, 0.29254348754882814, 0.2925537414550781, 0.2922148132324219, 0.292211669921875, 0.2919024658203125, 0.29274008178710936, 0.29211032104492185, 0.29219430541992186, 0.2925619201660156, 0.2921574401855469, 0.6078638305664062, 0.2920642700195312, 0.29204171752929686, 0.29206219482421875, 0.2920550537109375, 0.2921185302734375, 0.29250149536132813, 0.29204888916015626, 0.29186456298828123, 0.2920867919921875, 0.29199871826171875, 0.29200689697265625, 0.29195059204101564, 0.2919956359863281, 0.2926612548828125, 0.291999755859375, 0.29500723266601564, 0.2922413940429687, 0.2919342041015625, 0.2922650146484375, 0.2921286926269531, 0.29177548217773436, 0.2920263671875, 0.29223629760742187, 0.2919342041015625, 0.2920151062011719, 0.29193624877929686, 0.29171505737304687, 0.29255679321289063, 0.29226290893554685, 0.29204888916015626, 0.29261932373046873, 0.2921389465332031, 0.2924472351074219, 0.292569091796875, 0.29272988891601565, 0.2924666442871094, 0.29255474853515623, 0.2924288024902344, 0.29235711669921877, 0.29266842651367186, 0.2926305236816406, 0.292279296875, 0.29281585693359374, 0.29269195556640626, 0.2922127380371094, 0.2923765869140625, 0.29226190185546874, 0.29332275390625, 0.29225677490234375, 0.2925455322265625, 0.29204684448242185, 0.2919465026855469, 0.29239501953125, 0.292094970703125, 0.2916546630859375, 0.29185330200195314, 0.2919178161621094, 0.29201202392578124, 0.2919045104980469, 0.2917683715820312, 0.29191879272460936, 0.29268173217773436, 0.609132568359375, 0.2924984436035156, 0.2927001647949219, 0.29203353881835936, 0.2919598083496094, 0.29245440673828127, 0.29231411743164065, 0.2920304565429688, 0.29216973876953123, 0.2918604736328125, 0.2920816650390625, 0.29198541259765626, 0.29182769775390627, 0.29221478271484375, 0.29226290893554685, 0.29183078002929685, 0.2922137451171875, 0.2939207763671875, 0.29266226196289064, 0.292632568359375, 0.2929541015625, 0.29197210693359377, 0.2920867919921875, 0.29224346923828126, 0.2920704040527344, 0.292126708984375, 0.2921769104003906, 0.2920243225097656, 0.292173828125, 0.2919126892089844, 0.2919823303222656, 0.2920867919921875, 0.2925608825683594, 0.29213287353515627, 0.29228546142578127, 0.29201608276367186, 0.2929305725097656, 0.2924963989257813, 0.2920181884765625, 0.2923519897460938, 0.29213082885742186, 0.2921359252929687, 0.29183795166015625, 0.29199258422851565, 0.2920724487304687, 0.29192807006835936, 0.292031494140625, 0.2920294494628906, 0.292173828125, 0.2920765380859375, 0.29200689697265625, 0.2918758544921875, 0.2921349182128906, 0.29268896484375, 0.2934025573730469, 0.292505615234375, 0.2919270324707031, 0.29225164794921876, 0.292105224609375, 0.29204071044921875, 0.2915840148925781, 0.2917908630371094, 0.2920570983886719, 0.6085621948242188, 0.2921451416015625, 0.29239706420898437, 0.29239501953125, 0.29228955078125, 0.2920243225097656, 0.2924892272949219, 0.2920345458984375, 0.2921123962402344, 0.291962890625, 0.2920796203613281, 0.29241549682617185, 0.29221682739257815, 0.2918553466796875, 0.291915771484375, 0.29186663818359376, 0.2920427551269531, 0.2920980529785156, 0.29218817138671876, 0.29189529418945315, 0.29189837646484373, 0.29198028564453127, 0.29211953735351565, 0.29269195556640626, 0.2930841674804687, 0.2925148010253906, 0.29509222412109376, 0.29249127197265623, 0.2924369812011719, 0.29232537841796874, 0.2920162048339844, 0.29203448486328126, 0.29213900756835937, 0.2920243225097656, 0.29217279052734374, 0.2922342529296875, 0.2917130126953125, 0.2923991088867188, 0.29214718627929687, 0.2926458740234375, 0.2934947814941406, 0.2932357177734375, 0.2925066223144531, 0.2929162292480469, 0.29218817138671876, 0.2923735046386719, 0.2922332153320312, 0.2920325012207031, 0.2919761962890625, 0.29228543090820314, 0.29216461181640624, 0.29214718627929687, 0.29235302734375, 0.292274169921875, 0.2920376281738281, 0.29199154663085936, 0.2923724670410156, 0.2924646301269531, 0.29217279052734374, 0.29284454345703126, 0.29187277221679686, 0.2919321594238281, 0.29226495361328125]",tokens/s,3.368317674233167,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-4.5B,facebook/xglm-4.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: XGLMForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-3b-4e1t,stabilityai/stablelm-3b-4e1t,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2104.19712,2911.371264,0.0,2264.92416,2140.72832,s,10,2.4884028778076175,0.2488402877807617,0.0017336823043823078,0.2489057083129883,0.25072755279541015,0.2508263542175293,0.2509053953552246,"[0.2507055969238281, 0.25092515563964846, 0.24757785034179688, 0.24682144165039063, 0.24747581481933595, 0.24631741333007812, 0.24757225036621094, 0.25036245727539064, 0.2504113311767578, 0.2502335662841797]",tokens/s,1028.7723193181093,kWh,2.9072395831265747e-06,1.5930372833037567e-06,1.325819488838971e-05,1.775847175482004e-05,tokens/kWh,14415654.879227767,MB,2104.19712,2911.371264,0.0,2264.92416,2246.907904,s,10,145.7403466796875,14.57403466796875,0.01212453290098591,14.5695126953125,14.590745703125,14.591192187499999,14.591549375,"[14.590646484375, 14.591638671875, 14.582625, 14.5875322265625, 14.570828125, 14.568197265625, 14.5662099609375, 14.56188671875, 14.5592158203125, 14.56156640625]",tokens/s,4.3227562878290176,kWh,0.00017210086691347241,9.432530317883612e-05,0.0007748077688972132,0.001041233938989522,tokens/kWh,60505.13495664491,,s,629,147.744148284912,0.23488735816361225,0.029563076186171044,0.23116493225097656,0.23200419921874998,0.2323472412109375,0.47893525024414063,"[0.23276133728027343, 0.23156428527832032, 0.23250534057617187, 0.23177215576171875, 0.23175167846679687, 0.2316636199951172, 0.23166464233398437, 0.23181925964355468, 0.2317864990234375, 0.2317178955078125, 0.23165542602539063, 0.23199948120117186, 0.2319114227294922, 0.23230770874023438, 0.2314403839111328, 0.23090074157714843, 0.2311679992675781, 0.23108505249023437, 0.23182847595214845, 0.23120793151855468, 0.2317506561279297, 0.23156838989257814, 0.23112498474121093, 0.23156224060058594, 0.23118540954589845, 0.23118438720703124, 0.230614013671875, 0.23102362060546874, 0.2310082550048828, 0.23108607482910157, 0.230908935546875, 0.23087001037597657, 0.23108709716796874, 0.2310952911376953, 0.23200051879882813, 0.2310277099609375, 0.23204249572753907, 0.2310840301513672, 0.230835205078125, 0.23095603942871093, 0.23102668762207032, 0.23113728332519531, 0.23130213928222657, 0.23161343383789063, 0.2317076416015625, 0.23303167724609375, 0.23183871459960936, 0.2320199737548828, 0.23191552734375, 0.23193702697753907, 0.23194009399414062, 0.23124581909179687, 0.23149977111816405, 0.23219200134277343, 0.2310451202392578, 0.23188479614257812, 0.23178752136230468, 0.23196159362792967, 0.23144857788085937, 0.23166770935058595, 0.23165029907226561, 0.23200358581542968, 0.48229580688476564, 0.2318663635253906, 0.23166464233398437, 0.23162367248535157, 0.23172402954101562, 0.23182745361328125, 0.23196876525878907, 0.2318561248779297, 0.23200358581542968, 0.23229849243164064, 0.23214796447753908, 0.2318919677734375, 0.23183360290527344, 0.23185714721679687, 0.23202919006347655, 0.231910400390625, 0.23255039978027345, 0.23172607421875, 0.23201484680175782, 0.23192678833007813, 0.23147724914550782, 0.23117721557617188, 0.23114137268066406, 0.2309345245361328, 0.2317998046875, 0.23216639709472656, 0.23188581848144532, 0.2317004852294922, 0.23109426879882813, 0.23139736938476563, 0.23195648193359375, 0.23148544311523436, 0.23106661987304689, 0.23104920959472655, 0.23114137268066406, 0.23106048583984376, 0.2310031433105469, 0.23155711364746093, 0.2323671112060547, 0.23183564758300781, 0.23187660217285155, 0.2323937225341797, 0.23180697631835936, 0.23087820434570314, 0.2311065673828125, 0.2314956817626953, 0.2341201934814453, 0.23121510314941407, 0.23109735107421875, 0.23107379150390625, 0.23113011169433595, 0.2308290557861328, 0.2309160919189453, 0.2308720703125, 0.23094578552246095, 0.2308229064941406, 0.2311014404296875, 0.23225958251953124, 0.23146803283691406, 0.232700927734375, 0.23182234191894532, 0.23120179748535155, 0.2311956481933594, 0.47941940307617187, 0.231984130859375, 0.23158067321777343, 0.23134104919433593, 0.23164210510253908, 0.23269786071777343, 0.2318868408203125, 0.23200665283203126, 0.23196467590332032, 0.23198822021484375, 0.23132159423828125, 0.23144960021972658, 0.23234970092773438, 0.23229849243164064, 0.2326097869873047, 0.23209368896484375, 0.23207942199707032, 0.23165023803710938, 0.2314403839111328, 0.23190937805175782, 0.23209164428710938, 0.23215309143066407, 0.23194931030273438, 0.23258828735351564, 0.23188890075683594, 0.231699462890625, 0.23152946472167968, 0.23133287048339843, 0.23157452392578126, 0.23149261474609376, 0.23182847595214845, 0.23126322937011717, 0.23139430236816405, 0.23153561401367187, 0.23187046813964843, 0.23149977111816405, 0.23232000732421876, 0.2311393280029297, 0.2319052734375, 0.23080345153808593, 0.23089459228515624, 0.23061196899414063, 0.23088230895996092, 0.23082701110839843, 0.23086898803710937, 0.23073382568359374, 0.23112396240234376, 0.2319974365234375, 0.2311065673828125, 0.23078912353515624, 0.23073587036132812, 0.2308495330810547, 0.23100108337402345, 0.23077580261230468, 0.23094578552246095, 0.23075942993164061, 0.23081983947753906, 0.23078399658203125, 0.23087615966796876, 0.23072665405273438, 0.23087615966796876, 0.2308290557861328, 0.23087615966796876, 0.4795392150878906, 0.23177830505371094, 0.2310133819580078, 0.23141786193847655, 0.23111372375488282, 0.23092633056640624, 0.23101951599121093, 0.23092633056640624, 0.23117619323730468, 0.2310963134765625, 0.23151104736328126, 0.23107174682617188, 0.23176499938964842, 0.23153663635253907, 0.2313123779296875, 0.23081983947753906, 0.23273677062988282, 0.23198104858398438, 0.23182540893554687, 0.2313287658691406, 0.23094989013671874, 0.23091506958007812, 0.23098880004882813, 0.23076454162597657, 0.230761474609375, 0.23085772705078125, 0.23132159423828125, 0.23243980407714843, 0.23207936096191406, 0.23211520385742188, 0.23186534118652344, 0.2317998046875, 0.2313912353515625, 0.23109324645996093, 0.23126527404785155, 0.23119667053222656, 0.23178956604003906, 0.2312058868408203, 0.23166157531738282, 0.23158784484863282, 0.23162060546875, 0.23184281921386718, 0.23122227478027343, 0.2323435516357422, 0.2337822723388672, 0.23145062255859375, 0.2319605712890625, 0.2309754943847656, 0.23164108276367187, 0.23121817016601562, 0.23156736755371093, 0.2316451873779297, 0.2317619171142578, 0.23206605529785157, 0.2315130920410156, 0.23114854431152343, 0.2315274200439453, 0.2312376251220703, 0.23179263305664063, 0.23200358581542968, 0.23266099548339844, 0.23178752136230468, 0.2316636199951172, 0.4785776672363281, 0.23102053833007813, 0.2308526153564453, 0.23079936218261718, 0.230835205078125, 0.2308177947998047, 0.2319779815673828, 0.23094578552246095, 0.23088333129882813, 0.23176089477539064, 0.2309969940185547, 0.23143936157226563, 0.23160627746582033, 0.231478271484375, 0.2311690216064453, 0.2314639434814453, 0.23161958312988282, 0.23254835510253907, 0.23204966735839844, 0.2317864990234375, 0.23187455749511718, 0.23142707824707032, 0.232457275390625, 0.2311648712158203, 0.2321274871826172, 0.23180799865722657, 0.2312376251220703, 0.2311690216064453, 0.23100621032714844, 0.23096115112304688, 0.23099392700195312, 0.23096217346191406, 0.23088742065429688, 0.2309969940185547, 0.23093043518066406, 0.23100210571289062, 0.23089971923828126, 0.23066213989257814, 0.23169740295410157, 0.23114239501953124, 0.23260263061523437, 0.23084646606445314, 0.23156736755371093, 0.23112498474121093, 0.23072972106933592, 0.23080447387695313, 0.23094992065429687, 0.23107376098632812, 0.23089260864257813, 0.23205165100097655, 0.23145266723632812, 0.23087309265136718, 0.23119052124023437, 0.2307184600830078, 0.2308362274169922, 0.23087513732910156, 0.23102566528320312, 0.2333665313720703, 0.23122125244140626, 0.2310635528564453, 0.230940673828125, 0.23090483093261718, 0.23118336486816407, 0.47746356201171875, 0.2322493438720703, 0.2315694122314453, 0.23091404724121095, 0.2314844207763672, 0.231510009765625, 0.23128985595703125, 0.2311628875732422, 0.231077880859375, 0.23118438720703124, 0.23118028259277343, 0.23097445678710937, 0.23111167907714844, 0.23096627807617187, 0.23094784545898436, 0.23088230895996092, 0.23102668762207032, 0.23121714782714844, 0.2314086456298828, 0.23167794799804686, 0.23117721557617188, 0.23124172973632812, 0.2311014404296875, 0.23113113403320312, 0.23106661987304689, 0.23094578552246095, 0.2310102996826172, 0.2310451202392578, 0.23154483032226564, 0.23112704467773437, 0.23111372375488282, 0.2310451202392578, 0.23104716491699218, 0.23118336486816407, 0.2313881530761719, 0.23125094604492188, 0.2312130584716797, 0.23101644897460938, 0.2333429718017578, 0.23087820434570314, 0.2312447967529297, 0.23098573303222655, 0.23105126953125, 0.2310522918701172, 0.23171685791015625, 0.2312447967529297, 0.23110041809082033, 0.23101849365234375, 0.2310399932861328, 0.231014404296875, 0.23103385925292969, 0.23098471069335938, 0.23129804992675781, 0.23095091247558594, 0.23119769287109376, 0.2312857666015625, 0.23109939575195312, 0.2308915252685547, 0.2313236541748047, 0.23161138916015625, 0.23103897094726564, 0.23182643127441407, 0.23234150695800782, 0.4790743103027344, 0.23154176330566406, 0.23141477966308593, 0.23161036682128905, 0.23167897033691406, 0.23150694274902345, 0.2312376251220703, 0.231583740234375, 0.2312970275878906, 0.2310840301513672, 0.23138304138183594, 0.2310635528564453, 0.23118336486816407, 0.23100006103515625, 0.23120793151855468, 0.23087615966796876, 0.2310133819580078, 0.230898681640625, 0.23100723266601564, 0.23108096313476562, 0.23136668395996093, 0.23115977478027344, 0.2310768585205078, 0.231046142578125, 0.23245619201660156, 0.23092428588867187, 0.2311414337158203, 0.2312303924560547, 0.2311260223388672, 0.2310102996826172, 0.2311925811767578, 0.23104920959472655, 0.23100933837890625, 0.2310194549560547, 0.23117926025390625, 0.2311075897216797, 0.23118540954589845, 0.23110348510742187, 0.23108096313476562, 0.23085977172851563, 0.23155711364746093, 0.23233740234375, 0.23105946350097656, 0.2312796173095703, 0.2310062713623047, 0.23090272521972657, 0.23148646545410156, 0.23091098022460937, 0.2309878387451172, 0.23087312316894532, 0.23152015686035157, 0.2321797180175781, 0.23130316162109374, 0.230898681640625, 0.23095295715332032, 0.23084236145019532, 0.2311014404296875, 0.2311331787109375, 0.23123052978515626, 0.2309252471923828, 0.23105740356445312, 0.23117619323730468, 0.23105740356445312, 0.48152984619140626, 0.2311157684326172, 0.23090380859375, 0.23155302429199218, 0.23127449035644532, 0.23103897094726564, 0.23097958374023436, 0.2311710662841797, 0.23115980529785157, 0.23104103088378905, 0.23108198547363282, 0.23097036743164062, 0.23084544372558594, 0.2313185272216797, 0.23110552978515625, 0.23093862915039062, 0.23098060607910156, 0.23100621032714844, 0.23143014526367187, 0.2317823944091797, 0.23226675415039064, 0.2317117462158203, 0.23127757263183593, 0.23153868103027345, 0.2311751708984375, 0.23130726623535156, 0.23114341735839844, 0.23096524047851563, 0.23087103271484374, 0.23130419921875, 0.2320271301269531, 0.23118643188476562, 0.23128370666503906, 0.2312806396484375, 0.23114854431152343, 0.2313799743652344, 0.23123968505859374, 0.23101542663574218, 0.2314403839111328, 0.23084031677246095, 0.23116184997558595, 0.23074099731445313, 0.23112396240234376, 0.23095706176757813, 0.23086592102050782, 0.2307573699951172, 0.23168409729003905, 0.23131033325195313, 0.2311393280029297, 0.2310215606689453, 0.23085977172851563, 0.23086285400390624, 0.2309519348144531, 0.2308239288330078, 0.23091813659667967, 0.23077786254882812, 0.2309222412109375, 0.2310697021484375, 0.2309160919189453, 0.23086592102050782, 0.23115367126464845, 0.2308720703125, 0.23090789794921876, 0.48265728759765625, 0.23116595458984374, 0.23137178039550782, 0.2312478790283203, 0.23101849365234375, 0.23090687561035156, 0.23088333129882813, 0.23087309265136718, 0.23085466003417968, 0.23150079345703126, 0.231151611328125, 0.23109120178222656, 0.231077880859375, 0.23160421752929689, 0.23117926025390625, 0.23098675537109375, 0.23116493225097656, 0.2308157501220703, 0.231014404296875, 0.231046142578125, 0.2309580841064453, 0.23116697692871094, 0.23099903869628907, 0.23071437072753906, 0.23106150817871093, 0.23102566528320312, 0.23100422668457032, 0.23102662658691406, 0.23118028259277343, 0.23100518798828126, 0.23101951599121093, 0.2309969940185547, 0.23098880004882813, 0.23096115112304688, 0.23098162841796874, 0.23114035034179686, 0.23111065673828124, 0.23085157775878906, 0.23094886779785156, 0.23084031677246095, 0.23096832275390625, 0.2307747802734375, 0.23147724914550782, 0.23169024658203125, 0.23177731323242187, 0.23133180236816406, 0.23098675537109375, 0.2309550018310547, 0.23120077514648438, 0.23074815368652343, 0.23088742065429688, 0.23084031677246095, 0.23159091186523437, 0.23110963439941407, 0.2308495330810547, 0.23108096313476562, 0.23082188415527344, 0.23110041809082033, 0.23168614196777343, 0.23109939575195312, 0.23103077697753907, 0.2309160919189453, 0.23111378479003905, 0.481429443359375, 0.2311956481933594, 0.2310645751953125, 0.23094989013671874, 0.23127655029296876, 0.23099186706542968, 0.2309416961669922, 0.23101747131347655, 0.23098880004882813, 0.23092941284179688, 0.23106661987304689, 0.23098060607910156, 0.231046142578125, 0.23074508666992188, 0.23084442138671876, 0.2313000946044922, 0.23091404724121095, 0.23080551147460937, 0.23100416564941406, 0.23077171325683593, 0.23084031677246095, 0.23112908935546875, 0.23205580139160156, 0.231077880859375, 0.23106048583984376, 0.2309580841064453, 0.23238552856445313, 0.23106764221191406, 0.2311690216064453, 0.23111065673828124, 0.23110041809082033, 0.23188890075683594, 0.2314956817626953, 0.23113113403320312, 0.23112908935546875, 0.23114341735839844, 0.23109735107421875, 0.23145062255859375, 0.23099288940429688, 0.231088134765625, 0.2312130584716797, 0.2308526153564453, 0.2309345245361328, 0.23095706176757813, 0.23097138977050782, 0.23116082763671875, 0.23089765930175782, 0.23111167907714844, 0.23134310913085937, 0.23081062316894532, 0.23087411499023439, 0.2307010498046875, 0.2309171142578125, 0.23114547729492188, 0.23143423461914062, 0.2308792266845703, 0.23096934509277345, 0.23170559692382814, 0.2311894989013672, 0.2319667205810547, 0.23111680603027343, 0.23170559692382814, 0.23135232543945314]",tokens/s,4.257359816288809,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-30b,facebook/opt-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -27106,22 +24823,16 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,v,v,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-2b,google/recurrentgemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -27133,21 +24844,11 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/v/resolve/main/config.json +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json The above exception was the direct cause of the following exception: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn @@ -27158,13 +24859,28 @@ Traceback (most recent call last): response = _request_wrapper( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949473-61e860600dac1c367dd02b0b;f6f0dede-edd1-4196-ac94-bcff2355b84c) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status + raise HfHubHTTPError(message, response=response) from e +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-669481ce-544eb32470307c7c2118975a;f8b13f50-216d-4c20-873f-b5e2fce96257) -Repository Not Found for url: https://huggingface.co/v/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. +403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. +Cannot access content at: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json. +If you are trying to create or update content,make sure you have a token with the `write` role. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error + raise LocalEntryNotFoundError( +huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. The above exception was the direct cause of the following exception: @@ -27185,13 +24901,13 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file raise EnvironmentError( -OSError: v is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/recurrentgemma-2b is not the path to a directory containing a file named config.json. +Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.3b,EleutherAI/pythia-1.3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mixtral-8x7B-v0.1,mistralai/Mixtral-8x7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -27211,57 +24927,29 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-40b,tiiuae/falcon-40b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neox-20b,EleutherAI/gpt-neox-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-125m,facebook/opt-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -27281,22 +24969,16 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-13b,facebook/opt-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm-20b,internlm/internlm-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -27314,25 +24996,22 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3710, in from_pretrained + model = cls(config, *model_args, **model_kwargs) + File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 906, in __init__ + self.model = InternLMModel(config) + File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 729, in __init__ + self.layers = nn.ModuleList([InternLMDecoderLayer(config) for _ in range(config.num_hidden_layers)]) + File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 729, in + self.layers = nn.ModuleList([InternLMDecoderLayer(config) for _ in range(config.num_hidden_layers)]) + File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 545, in __init__ + self.self_attn = INTERNLM_ATTENTION_CLASSES[config.attn_implementation](config=config) +KeyError: 'sdpa' -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2-large,openai-community/gpt2-large,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1254.875136,2645.03296,0.0,1998.585856,1692.285952,s,10,0.24200246238708498,0.0242002462387085,0.000612125689531125,0.024116847991943358,0.02477244110107422,0.025168700790405275,0.025485708541870117,"[0.025564960479736328, 0.023542015075683594, 0.024684383392333985, 0.023764448165893556, 0.024505792617797853, 0.02447939109802246, 0.023851680755615234, 0.024382015228271485, 0.02353171157836914, 0.023696063995361328]",tokens/s,10578.40475980471,kWh,2.807038850191559e-07,1.537483499955637e-07,8.364053933254355e-07,1.270857628340155e-06,tokens/kWh,201438771.9687823,MB,1255.440384,2645.03296,0.0,1998.585856,1740.091904,s,10,13.98928271484375,1.398928271484375,0.009250422421391818,1.3987031860351564,1.4114088623046874,1.4117007690429688,1.4119342944335938,"[1.4011539306640626, 1.41199267578125, 1.4039649658203126, 1.3913382568359376, 1.411343994140625, 1.4078441162109374, 1.3920347900390626, 1.39625244140625, 1.3845965576171875, 1.388760986328125]",tokens/s,45.034474807741184,kWh,1.6551164256870412e-05,9.07002460188642e-06,3.349914985287281e-05,5.912033871162965e-05,tokens/kWh,1065623.1234955217,,s,629,14.182389726638794,0.022547519438217475,0.0029122915922720257,0.022378463745117188,0.022657024002075195,0.02286632957458496,0.04563361907958984,"[0.02266111946105957, 0.022467584609985353, 0.022542335510253905, 0.02246451187133789, 0.022589439392089843, 0.022599679946899414, 0.022360063552856444, 0.02248806381225586, 0.02263039970397949, 0.022633472442626954, 0.02250547218322754, 0.02248294448852539, 0.022863872528076173, 0.023409664154052736, 0.023657472610473632, 0.023362560272216795, 0.023547903060913086, 0.023163904190063478, 0.02222591972351074, 0.02307379150390625, 0.02348646354675293, 0.022845439910888672, 0.02269491195678711, 0.022561792373657227, 0.02246451187133789, 0.022376447677612304, 0.022429695129394533, 0.02270207977294922, 0.022359039306640623, 0.02206208038330078, 0.021753856658935547, 0.021375999450683594, 0.02146406364440918, 0.021550079345703126, 0.0216944637298584, 0.021514240264892577, 0.021566463470458985, 0.02152448081970215, 0.021552127838134767, 0.021534719467163087, 0.021593088150024413, 0.02186649513244629, 0.022435840606689454, 0.02308095932006836, 0.02249113655090332, 0.021839872360229492, 0.021519359588623048, 0.021755903244018555, 0.02161667251586914, 0.021600223541259764, 0.02187264060974121, 0.022023168563842774, 0.021592063903808592, 0.021515264511108398, 0.021596160888671875, 0.021569536209106444, 0.021582847595214845, 0.021592063903808592, 0.02168422317504883, 0.022158336639404298, 0.02163609504699707, 0.02167193603515625, 0.04547686386108398, 0.021605375289916993, 0.021596160888671875, 0.021605375289916993, 0.021635072708129883, 0.022408191680908202, 0.022987775802612305, 0.022617088317871094, 0.022552576065063477, 0.02248089599609375, 0.022358015060424806, 0.0216627197265625, 0.02272768020629883, 0.022161407470703123, 0.021736448287963867, 0.021808128356933593, 0.021787647247314454, 0.021617664337158202, 0.022231039047241212, 0.02268876838684082, 0.022399999618530272, 0.022468608856201173, 0.02253004837036133, 0.02234982490539551, 0.022375423431396483, 0.022451200485229493, 0.02247270393371582, 0.022508544921875, 0.025584640502929686, 0.023030784606933592, 0.023574527740478517, 0.022610944747924806, 0.02266726493835449, 0.02264473533630371, 0.022552576065063477, 0.022425600051879883, 0.022433792114257813, 0.022609920501708985, 0.022460447311401368, 0.022352863311767578, 0.02246963119506836, 0.022428672790527345, 0.022574079513549804, 0.022376447677612304, 0.02248908805847168, 0.0224849910736084, 0.02279734420776367, 0.02256585693359375, 0.022495231628417968, 0.02246246337890625, 0.02231091117858887, 0.021749759674072267, 0.02169036865234375, 0.021618688583374023, 0.0221214714050293, 0.022444032669067384, 0.022716415405273437, 0.022600704193115235, 0.02253824043273926, 0.022766592025756836, 0.022545408248901368, 0.022372352600097657, 0.02264678382873535, 0.04748287963867188, 0.02241535949707031, 0.02246553611755371, 0.022574079513549804, 0.022425600051879883, 0.02245529556274414, 0.02246963119506836, 0.022468608856201173, 0.022520832061767578, 0.0224901123046875, 0.022559743881225586, 0.022330368041992187, 0.022426624298095704, 0.0227194881439209, 0.022578176498413087, 0.02250649642944336, 0.02247372817993164, 0.022339584350585938, 0.022377504348754882, 0.022376415252685546, 0.022382591247558595, 0.022501375198364256, 0.02234060859680176, 0.022625280380249024, 0.022508544921875, 0.022467584609985353, 0.022540288925170897, 0.022409215927124023, 0.022548479080200197, 0.022412288665771486, 0.022406143188476564, 0.02249830436706543, 0.022558719635009765, 0.02249318313598633, 0.022424575805664062, 0.022597631454467772, 0.022608896255493165, 0.022436864852905275, 0.02167091178894043, 0.02172211265563965, 0.02166374397277832, 0.021729280471801758, 0.02165247917175293, 0.021629951477050782, 0.02152448081970215, 0.021518335342407227, 0.021576704025268553, 0.022010879516601564, 0.02165657615661621, 0.02165247917175293, 0.021729280471801758, 0.021611520767211914, 0.02169139289855957, 0.02255564880371094, 0.02243891143798828, 0.022483968734741212, 0.0224849910736084, 0.022394880294799805, 0.02249932861328125, 0.022280191421508787, 0.022421503067016603, 0.022451200485229493, 0.02246143913269043, 0.045770751953125, 0.021746688842773438, 0.021728256225585937, 0.021703680038452147, 0.021639167785644533, 0.021617664337158202, 0.02170163154602051, 0.02166067123413086, 0.021626880645751953, 0.02168422317504883, 0.02163711929321289, 0.021738496780395508, 0.02183475112915039, 0.021724159240722657, 0.021720064163208007, 0.021741567611694337, 0.02190540885925293, 0.022610944747924806, 0.02248089599609375, 0.021700607299804688, 0.02162073516845703, 0.02164735984802246, 0.02163609504699707, 0.02162483215332031, 0.021567487716674806, 0.02170675277709961, 0.021619712829589844, 0.021646335601806642, 0.021635072708129883, 0.02166988754272461, 0.021695487976074217, 0.021622783660888673, 0.02164121627807617, 0.02167398452758789, 0.02165043258666992, 0.02211123275756836, 0.023779327392578126, 0.022837247848510742, 0.022750207901000977, 0.022556671142578123, 0.022378496170043945, 0.022426624298095704, 0.022381568908691408, 0.02231500816345215, 0.02289254379272461, 0.022403072357177735, 0.022542335510253905, 0.022353919982910156, 0.022362112045288086, 0.022404096603393556, 0.022500352859497072, 0.02253107261657715, 0.02250444793701172, 0.022428672790527345, 0.022418432235717774, 0.02233241653442383, 0.022389759063720704, 0.022434816360473633, 0.022420480728149415, 0.022503423690795898, 0.02242355155944824, 0.022587392807006838, 0.02253004837036133, 0.04750950241088867, 0.02255462455749512, 0.02245529556274414, 0.02269388771057129, 0.022742015838623047, 0.02252390480041504, 0.022503423690795898, 0.02253107261657715, 0.022559743881225586, 0.022559743881225586, 0.02245734405517578, 0.02246963119506836, 0.022397951126098634, 0.02254643249511719, 0.022470687866210936, 0.022647775650024415, 0.02243891143798828, 0.02228326416015625, 0.022187007904052734, 0.02170982360839844, 0.02269388771057129, 0.022635520935058592, 0.022399007797241213, 0.022482912063598634, 0.022408191680908202, 0.022483968734741212, 0.0225167350769043, 0.02253004837036133, 0.02247372817993164, 0.0224849910736084, 0.02231808090209961, 0.0224532470703125, 0.02246246337890625, 0.02240716743469238, 0.022417407989501953, 0.022451200485229493, 0.02234163284301758, 0.022402048110961914, 0.022230016708374024, 0.022042623519897463, 0.0220579833984375, 0.022452255249023438, 0.022406112670898436, 0.022346752166748047, 0.022376447677612304, 0.02267852783203125, 0.02265088081359863, 0.0224768009185791, 0.022940671920776368, 0.022603776931762694, 0.0219238395690918, 0.021757951736450197, 0.0216944637298584, 0.02168217658996582, 0.021613567352294923, 0.022289407730102538, 0.02246963119506836, 0.02243174362182617, 0.022377471923828125, 0.0224399356842041, 0.022323200225830078, 0.02244915199279785, 0.022559743881225586, 0.047440895080566405, 0.022466560363769532, 0.022579200744628908, 0.022544384002685547, 0.022822912216186524, 0.023026687622070312, 0.022591487884521484, 0.02247372817993164, 0.022510623931884764, 0.022584287643432618, 0.022615039825439453, 0.02259660720825195, 0.022487039566040038, 0.022495231628417968, 0.022602752685546876, 0.0225218563079834, 0.02249728012084961, 0.022600704193115235, 0.02282700729370117, 0.022567935943603516, 0.02230271911621094, 0.02247270393371582, 0.022608896255493165, 0.022347776412963868, 0.022796287536621093, 0.02242767906188965, 0.02233852767944336, 0.022391807556152343, 0.022312959671020507, 0.02224844741821289, 0.02244710350036621, 0.022391807556152343, 0.02162892723083496, 0.022434816360473633, 0.022419456481933595, 0.023061504364013673, 0.023794687271118165, 0.02291814422607422, 0.02275328063964844, 0.0224737606048584, 0.022846431732177735, 0.022739967346191405, 0.0224399356842041, 0.022252544403076172, 0.02245529556274414, 0.022370304107666016, 0.022350847244262697, 0.022475776672363282, 0.021917695999145507, 0.021703680038452147, 0.0216494083404541, 0.021736448287963867, 0.021687295913696288, 0.02165452766418457, 0.02166374397277832, 0.02164735984802246, 0.021622783660888673, 0.021659648895263672, 0.02165350341796875, 0.021634048461914062, 0.021605375289916993, 0.021601280212402343, 0.021582847595214845, 0.04577996826171875, 0.021742591857910155, 0.02168012809753418, 0.022021120071411132, 0.02241535949707031, 0.022448160171508788, 0.022464479446411133, 0.022429695129394533, 0.02190540885925293, 0.02169139289855957, 0.02166169548034668, 0.021618688583374023, 0.02166988754272461, 0.021708799362182618, 0.02167705535888672, 0.021703680038452147, 0.02170675277709961, 0.021603328704833984, 0.022540288925170897, 0.022359039306640623, 0.022375455856323244, 0.022378463745117188, 0.022406143188476564, 0.02274508857727051, 0.022146047592163084, 0.021757951736450197, 0.022359039306640623, 0.022399999618530272, 0.022748159408569335, 0.022377471923828125, 0.022382591247558595, 0.022356000900268555, 0.022352863311767578, 0.022393856048583984, 0.021725183486938478, 0.021651456832885742, 0.021613567352294923, 0.021739519119262696, 0.021606399536132814, 0.021602304458618164, 0.021587968826293946, 0.021557247161865235, 0.021554176330566405, 0.021601280212402343, 0.021581823348999024, 0.021748735427856446, 0.02166476821899414, 0.021607423782348634, 0.021644287109375, 0.022733823776245117, 0.02239897537231445, 0.022427648544311524, 0.02243174362182617, 0.022390783309936522, 0.02250444793701172, 0.02248908805847168, 0.022656000137329102, 0.02255462455749512, 0.02251571273803711, 0.02247372817993164, 0.02249932861328125, 0.022417407989501953, 0.02246143913269043, 0.04679884719848633, 0.021774335861206053, 0.0216944637298584, 0.022240255355834963, 0.022406143188476564, 0.02237238311767578, 0.022376415252685546, 0.022520832061767578, 0.022566911697387695, 0.022358015060424806, 0.02244915199279785, 0.02204876708984375, 0.02246348762512207, 0.02243071937561035, 0.022529024124145508, 0.02246553611755371, 0.022758399963378906, 0.022568960189819336, 0.02242355155944824, 0.02242252731323242, 0.022395904541015626, 0.022386688232421875, 0.022372352600097657, 0.022389759063720704, 0.02205695915222168, 0.02208563232421875, 0.02240716743469238, 0.022379520416259766, 0.02263039970397949, 0.02286796760559082, 0.022436864852905275, 0.022495231628417968, 0.02264473533630371, 0.0224768009185791, 0.02244915199279785, 0.022459392547607423, 0.02164735984802246, 0.021584896087646483, 0.02171494483947754, 0.02163199996948242, 0.021613567352294923, 0.02165452766418457, 0.021562368392944335, 0.02166374397277832, 0.021953535079956055, 0.022040576934814454, 0.021609472274780273, 0.021794815063476563, 0.021734432220458986, 0.022769632339477538, 0.02245631980895996, 0.021619712829589844, 0.022328319549560546, 0.02252390480041504, 0.02247987174987793, 0.02167296028137207, 0.02163711929321289, 0.021740543365478517, 0.021622783660888673, 0.022252544403076172, 0.021740543365478517, 0.021704704284667968, 0.021771263122558594, 0.04554956817626953, 0.021817344665527344, 0.021734399795532225, 0.021558271408081055, 0.021544960021972655, 0.021627904891967774, 0.021627904891967774, 0.02165555191040039, 0.021766143798828123, 0.021760000228881835, 0.021741567611694337, 0.02191974449157715, 0.02168627166748047, 0.021700607299804688, 0.021734399795532225, 0.021758975982666014, 0.021625856399536132, 0.02186444854736328, 0.021780479431152345, 0.02165247917175293, 0.02168217658996582, 0.021432319641113282, 0.02170675277709961, 0.021590015411376954, 0.021515264511108398, 0.021569536209106444, 0.021545984268188476, 0.021519359588623048, 0.021651456832885742, 0.021586944580078125, 0.022597631454467772, 0.023916543960571288, 0.022725664138793945, 0.022460384368896483, 0.022580223083496095, 0.022452224731445314, 0.02228121566772461, 0.02166886329650879, 0.021551103591918946, 0.021612543106079102, 0.02163711929321289, 0.021565439224243164, 0.021635072708129883, 0.021566463470458985, 0.022394912719726563, 0.022438880920410156, 0.022375423431396483, 0.022433792114257813, 0.022394880294799805, 0.022401023864746093, 0.02226380729675293, 0.02230886459350586, 0.02188697624206543, 0.021750783920288085, 0.02182963180541992, 0.023613439559936524, 0.02305843162536621, 0.022502399444580077, 0.022609920501708985, 0.0224768009185791, 0.02185932731628418, 0.02165452766418457, 0.021748735427856446, 0.045666305541992185, 0.0216494083404541, 0.0216944637298584, 0.02168217658996582, 0.02166886329650879, 0.021585920333862304, 0.02225971221923828, 0.022445056915283205, 0.022372352600097657, 0.02244812774658203, 0.02245631980895996, 0.022335487365722655, 0.022558719635009765, 0.022304767608642577, 0.0224532470703125, 0.0224849910736084, 0.02243071937561035, 0.021595136642456055, 0.021551103591918946, 0.0217262077331543, 0.021611520767211914, 0.021566463470458985, 0.021792768478393554, 0.021699583053588867, 0.021734399795532225, 0.02164838409423828, 0.02206515121459961, 0.02191564750671387, 0.021738496780395508, 0.02163609504699707, 0.02168524742126465, 0.021646335601806642, 0.021615615844726564, 0.02164019203186035, 0.02167705535888672, 0.021550079345703126, 0.02182963180541992, 0.02245529556274414, 0.02269388771057129, 0.0224901123046875, 0.022406143188476564, 0.022425600051879883, 0.02234880065917969, 0.022487039566040038, 0.022495231628417968, 0.022410240173339844, 0.022487039566040038, 0.022525951385498046, 0.02243174362182617, 0.022336511611938475, 0.02234060859680176, 0.022337535858154296, 0.02232524871826172, 0.022363136291503907, 0.021784576416015625, 0.021576704025268553, 0.0216760311126709, 0.02170675277709961, 0.021560319900512694, 0.0216627197265625, 0.02201907157897949, 0.02225868797302246, 0.022460416793823244]",tokens/s,44.35077671138517,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-72B,Qwen/Qwen1.5-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-7.5B,facebook/xglm-7.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -27352,29 +25031,17 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: XGLMForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,M,M,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-3B-v1,togethercomputer/RedPajama-INCITE-Base-3B-v1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.42.3,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,2296.311808,3364.356096,0.0,2717.908992,2483.907584,s,10,2.330847946166992,0.23308479461669923,0.0010429138193785155,0.2329587631225586,0.23404432983398438,0.23490374908447265,0.2355912844848633,"[0.23576316833496094, 0.23205392456054688, 0.23257113647460936, 0.2332529296875, 0.2331095733642578, 0.23302418518066406, 0.2328933410644531, 0.23385334777832031, 0.23206883239746093, 0.23225750732421874]",tokens/s,1098.3127424548827,kWh,2.741206621732375e-06,1.5020620704274751e-06,1.2330117187320244e-05,1.6573385879480095e-05,tokens/kWh,15446451.428911682,MB,2296.311808,3364.356096,0.0,2717.908992,2606.770688,s,10,135.49141015625,13.549141015625,0.005470597609210756,13.5478662109375,13.555178515625,13.558332910156249,13.56085642578125,"[13.5614873046875, 13.552251953125, 13.5473681640625, 13.545138671875, 13.5483642578125, 13.5429267578125, 13.5468681640625, 13.5424833984375, 13.5544775390625, 13.5500439453125]",tokens/s,4.649741258678155,kWh,0.00015991536231278774,8.764646752289069e-05,0.0007088255708478708,0.0009563874006835494,tokens/kWh,65872.8878642406,,s,629,137.37170133972162,0.21839698146219663,0.027667917542091323,0.21500723266601562,0.2154588165283203,0.21557268676757813,0.4473833142089844,"[0.21505740356445313, 0.21482188415527342, 0.21486285400390626, 0.2151321563720703, 0.21520384216308594, 0.21484442138671875, 0.21472972106933594, 0.21478707885742188, 0.21523762512207031, 0.21543218994140625, 0.21555404663085936, 0.21550694274902343, 0.21547418212890626, 0.21545574951171875, 0.2153861083984375, 0.21541888427734374, 0.21541786193847656, 0.21550694274902343, 0.21546803283691407, 0.2156584930419922, 0.2156134338378906, 0.21551411437988283, 0.215841796875, 0.2154475555419922, 0.21554278564453125, 0.2155478973388672, 0.21656781005859374, 0.21537075805664063, 0.21570559692382812, 0.2151690216064453, 0.21536972045898437, 0.21519155883789062, 0.21519155883789062, 0.21512191772460937, 0.2151700439453125, 0.21511680603027344, 0.21506355285644532, 0.2149959716796875, 0.21488128662109374, 0.21483724975585938, 0.21492735290527343, 0.21484646606445312, 0.21488946533203124, 0.21494989013671875, 0.21493145751953124, 0.21494989013671875, 0.21496934509277343, 0.21540966796875, 0.21525914001464844, 0.21563699340820314, 0.21598924255371094, 0.21502156066894532, 0.214908935546875, 0.2154967041015625, 0.2151526336669922, 0.21541375732421875, 0.21517312622070311, 0.21497549438476563, 0.2161397705078125, 0.21507891845703125, 0.215046142578125, 0.21498880004882812, 0.44725146484375, 0.2148833312988281, 0.21473587036132813, 0.2147010498046875, 0.21467135620117186, 0.21518130493164062, 0.21532159423828126, 0.2151383056640625, 0.21513420104980469, 0.21499699401855468, 0.21491506958007814, 0.21502259826660156, 0.21509529113769532, 0.21496524047851562, 0.21494886779785155, 0.21502464294433593, 0.21508709716796875, 0.21516697692871095, 0.21509426879882812, 0.21518949890136718, 0.21508403015136718, 0.2151690216064453, 0.21495706176757812, 0.21509529113769532, 0.21498162841796875, 0.21510450744628906, 0.21498675537109374, 0.215088134765625, 0.21520999145507813, 0.21500518798828125, 0.2154455108642578, 0.21509222412109374, 0.21493760681152344, 0.21534208679199218, 0.21548851013183593, 0.21525811767578126, 0.2152263641357422, 0.21541171264648437, 0.21565644836425782, 0.21525401306152345, 0.21511885070800782, 0.21525709533691406, 0.2151137237548828, 0.2153912353515625, 0.215267333984375, 0.21513011169433593, 0.21617152404785156, 0.21516697692871095, 0.21517721557617187, 0.21505740356445313, 0.21518643188476563, 0.21504818725585936, 0.21551309204101562, 0.21518336486816406, 0.21493145751953124, 0.21510861206054688, 0.21479629516601562, 0.21501235961914061, 0.2149160919189453, 0.21480447387695312, 0.21480242919921874, 0.214935546875, 0.2149222412109375, 0.4477112426757813, 0.21476658630371093, 0.21471026611328126, 0.21476658630371093, 0.21468569946289062, 0.21475942993164063, 0.2149099578857422, 0.21478604125976564, 0.2147553253173828, 0.21471641540527345, 0.2147993621826172, 0.21482290649414063, 0.21487615966796875, 0.21483724975585938, 0.2148311004638672, 0.2148546600341797, 0.2154239959716797, 0.2151372833251953, 0.21490278625488282, 0.214866943359375, 0.21509426879882812, 0.21517318725585938, 0.21492115783691407, 0.21483314514160157, 0.21508607482910155, 0.2149591064453125, 0.2149160919189453, 0.21490278625488282, 0.21483212280273437, 0.21489254760742188, 0.21492428588867188, 0.2148863983154297, 0.21489971923828124, 0.21498162841796875, 0.21520895385742186, 0.21496524047851562, 0.21491302490234376, 0.21487615966796875, 0.2147921905517578, 0.2149601287841797, 0.2154270782470703, 0.21498573303222657, 0.21499699401855468, 0.2154915771484375, 0.21557760620117186, 0.21522329711914062, 0.21523968505859375, 0.2152806396484375, 0.2152929229736328, 0.21521612548828126, 0.2151874542236328, 0.21568409729003907, 0.21566566467285156, 0.21509120178222657, 0.21514035034179688, 0.21538508605957032, 0.21533900451660157, 0.21524581909179688, 0.21518130493164062, 0.21530111694335938, 0.2149529571533203, 0.21484646606445312, 0.215267333984375, 0.44860928344726564, 0.21496835327148436, 0.21504917907714843, 0.21519564819335937, 0.2147788848876953, 0.21473075866699218, 0.214687744140625, 0.21470924377441405, 0.21483622741699218, 0.21488230895996094, 0.21480551147460938, 0.21480447387695312, 0.21488230895996094, 0.2148167724609375, 0.2148423614501953, 0.21475840759277343, 0.21480755615234376, 0.21527244567871093, 0.21494374084472656, 0.2148546600341797, 0.21478604125976564, 0.21492735290527343, 0.21485977172851561, 0.21493452453613282, 0.2148853759765625, 0.21484442138671875, 0.2148116455078125, 0.21499699401855468, 0.21483827209472656, 0.21479731750488282, 0.21485772705078124, 0.21503590393066407, 0.21506048583984375, 0.2151700439453125, 0.21510552978515626, 0.2148853759765625, 0.21489459228515626, 0.21496115112304687, 0.21505229187011718, 0.214935546875, 0.21529087829589844, 0.21523558044433594, 0.21490687561035157, 0.21502873229980468, 0.2155325469970703, 0.21607321166992188, 0.21525914001464844, 0.21513420104980469, 0.21531852722167968, 0.21525914001464844, 0.21559706115722657, 0.21499699401855468, 0.21491302490234376, 0.21523968505859375, 0.21506661987304687, 0.21505946350097657, 0.21485772705078124, 0.21504205322265624, 0.21495603942871094, 0.21500927734375, 0.21486898803710938, 0.21491917419433593, 0.21499699401855468, 0.44823040771484374, 0.2147502136230469, 0.2149713897705078, 0.21477682495117187, 0.21464883422851563, 0.21478604125976564, 0.2148853759765625, 0.21474610900878907, 0.21475430297851564, 0.21482905578613282, 0.21484544372558595, 0.21471641540527345, 0.21488742065429686, 0.21481266784667968, 0.21496524047851562, 0.21491200256347656, 0.21484339904785157, 0.21479014587402342, 0.21488844299316406, 0.2148730926513672, 0.21482598876953124, 0.21536563110351561, 0.2149959716796875, 0.2149160919189453, 0.21479525756835938, 0.214793212890625, 0.21489561462402343, 0.215225341796875, 0.215546875, 0.214830078125, 0.214908935546875, 0.21495808410644532, 0.21555917358398438, 0.21512602233886718, 0.21494682312011718, 0.21519564819335937, 0.2150645751953125, 0.21502975463867188, 0.215077880859375, 0.2150707244873047, 0.21511167907714843, 0.21507994079589843, 0.21511065673828125, 0.2151004180908203, 0.21502566528320313, 0.215046142578125, 0.2153052215576172, 0.2151751708984375, 0.2151628875732422, 0.21534002685546874, 0.21526220703125, 0.21523968505859375, 0.21514239501953125, 0.2150768585205078, 0.21670297241210937, 0.21517414855957032, 0.215046142578125, 0.21518028259277344, 0.21528883361816406, 0.21511270141601563, 0.21514854431152344, 0.21511576843261718, 0.21554585266113283, 0.4488406982421875, 0.21551922607421875, 0.2154485778808594, 0.21546290588378905, 0.21549363708496094, 0.2155397186279297, 0.21553868103027343, 0.2150266876220703, 0.21493760681152344, 0.21507379150390624, 0.21545779418945313, 0.2150645751953125, 0.21477171325683594, 0.21473587036132813, 0.214866943359375, 0.21483827209472656, 0.21489152526855468, 0.2148239288330078, 0.21499903869628906, 0.21492019653320313, 0.2147758026123047, 0.2147368927001953, 0.21461094665527344, 0.21467546081542968, 0.2146693115234375, 0.21468467712402345, 0.21476966857910157, 0.21510552978515626, 0.21500210571289063, 0.21482803344726562, 0.2148116455078125, 0.2148341827392578, 0.21464678955078126, 0.21472154235839844, 0.21472767639160156, 0.21471334838867187, 0.21464781188964843, 0.21483929443359376, 0.21563084411621095, 0.21475634765625, 0.21471026611328126, 0.2149529571533203, 0.21496934509277343, 0.21485261535644531, 0.21489356994628905, 0.21480447387695312, 0.21493145751953124, 0.2149160919189453, 0.21494682312011718, 0.21486285400390626, 0.21494374084472656, 0.21482496643066407, 0.21480140686035157, 0.21474919128417969, 0.21488844299316406, 0.21515058898925782, 0.21508505249023438, 0.21536972045898437, 0.2150338592529297, 0.21493145751953124, 0.21476966857910157, 0.2151946258544922, 0.21496627807617188, 0.44795391845703125, 0.21470413208007813, 0.21475942993164063, 0.21475123596191406, 0.21471334838867187, 0.21477171325683594, 0.21476864624023437, 0.21473893737792968, 0.21490074157714845, 0.21492019653320313, 0.2151065673828125, 0.2153482208251953, 0.21520179748535156, 0.21504920959472656, 0.21515367126464843, 0.21496421813964844, 0.21530726623535157, 0.21506866455078125, 0.21519973754882812, 0.2150830078125, 0.2149283905029297, 0.2150697021484375, 0.2151321563720703, 0.21533798217773437, 0.21507891845703125, 0.21498367309570313, 0.2149591064453125, 0.21478707885742188, 0.2149222412109375, 0.2149959716796875, 0.21502156066894532, 0.21526835632324218, 0.21528985595703126, 0.2153482208251953, 0.21506253051757812, 0.2151014404296875, 0.21500927734375, 0.21537075805664063, 0.21537689208984376, 0.21548851013183593, 0.21524172973632813, 0.2149713897705078, 0.2150440979003906, 0.21492633056640625, 0.21498675537109374, 0.2149396514892578, 0.2149591064453125, 0.21508607482910155, 0.21496730041503906, 0.2149048309326172, 0.21501235961914061, 0.21492326354980468, 0.21479833984375, 0.21476966857910157, 0.2149181365966797, 0.2150502471923828, 0.21507994079589843, 0.2152632293701172, 0.21494682312011718, 0.21491506958007814, 0.21495808410644532, 0.2151751708984375, 0.21494886779785155, 0.4489482116699219, 0.2149918670654297, 0.2148720703125, 0.21471128845214843, 0.21480242919921874, 0.21478092956542968, 0.214908935546875, 0.21469798278808594, 0.21487513732910157, 0.21486285400390626, 0.21475942993164063, 0.2147799072265625, 0.21480140686035157, 0.214972412109375, 0.21482701110839844, 0.21487718200683595, 0.21489254760742188, 0.21487411499023437, 0.21485874938964844, 0.2148536376953125, 0.21483622741699218, 0.21512498474121095, 0.21538201904296875, 0.21494578552246094, 0.21469081115722657, 0.21478297424316406, 0.215546875, 0.21490789794921875, 0.21481369018554688, 0.21466828918457032, 0.21494169616699219, 0.21496217346191407, 0.21491200256347656, 0.21501132202148437, 0.21527757263183595, 0.21506150817871095, 0.2150697021484375, 0.21487001037597656, 0.21500210571289063, 0.2153052215576172, 0.21515980529785156, 0.21500723266601562, 0.21494989013671875, 0.215119873046875, 0.21500006103515626, 0.2150963134765625, 0.21494169616699219, 0.2148720703125, 0.21486079406738282, 0.2149365692138672, 0.21491200256347656, 0.21484646606445312, 0.2148802490234375, 0.21486898803710938, 0.214835205078125, 0.21502156066894532, 0.21651455688476562, 0.214908935546875, 0.21484544372558595, 0.21495706176757812, 0.214898681640625, 0.21494784545898438, 0.21494886779785155, 0.4472668151855469, 0.21480345153808594, 0.21471437072753907, 0.21508403015136718, 0.21481575012207033, 0.2151884765625, 0.21496730041503906, 0.21489663696289063, 0.21552230834960937, 0.2148239288330078, 0.2148863983154297, 0.21482188415527342, 0.215014404296875, 0.21478501892089844, 0.21531852722167968, 0.21555097961425781, 0.21537689208984376, 0.21539430236816406, 0.21550592041015626, 0.2155653076171875, 0.21540045166015626, 0.21561036682128906, 0.21547929382324219, 0.21502156066894532, 0.21487922668457032, 0.21480960083007813, 0.21484133911132813, 0.21497549438476563, 0.21494682312011718, 0.21494989013671875, 0.21501849365234374, 0.2149949493408203, 0.21500825500488283, 0.21494374084472656, 0.21490278625488282, 0.21512294006347657, 0.21492941284179687, 0.21512294006347657, 0.21499699401855468, 0.214972412109375, 0.21519258117675782, 0.21501849365234374, 0.21505126953125, 0.21520384216308594, 0.21509324645996095, 0.21525811767578126, 0.21514035034179688, 0.21502259826660156, 0.2150819854736328, 0.2148536376953125, 0.21539942932128905, 0.21545164489746094, 0.21515980529785156, 0.215193603515625, 0.21507994079589843, 0.2156083221435547, 0.21530726623535157, 0.21668658447265626, 0.2153543701171875, 0.21537791442871093, 0.21531954956054689, 0.21511270141601563, 0.21529702758789063, 0.44742861938476564, 0.21477786254882814, 0.21499903869628906, 0.21493145751953124, 0.21511782836914062, 0.21525299072265625, 0.2149396514892578, 0.21481881713867187, 0.2147573699951172, 0.2147440643310547, 0.21501132202148437, 0.2149396514892578, 0.21487411499023437, 0.21493145751953124, 0.21482598876953124, 0.21519667053222657, 0.21500927734375, 0.21553765869140626, 0.21521714782714843, 0.21505126953125, 0.2152499237060547, 0.21514035034179688, 0.2150440979003906, 0.21515776062011718, 0.21496421813964844, 0.21498880004882812, 0.2155284423828125, 0.21523558044433594, 0.2150697021484375, 0.21503488159179687, 0.21502464294433593, 0.215119873046875, 0.21567385864257813, 0.21532569885253905, 0.2156134338378906, 0.21530624389648437, 0.215046142578125, 0.215510009765625, 0.21509324645996095, 0.21478912353515625, 0.2147440643310547, 0.21493350219726562, 0.21496524047851562, 0.21494374084472656, 0.21493043518066407, 0.21487820434570312, 0.21496319580078124, 0.215119873046875, 0.21509324645996095, 0.21507994079589843, 0.21511474609375, 0.21518028259277344, 0.2149365692138672, 0.2149918670654297, 0.21517721557617187, 0.21499801635742188, 0.2149918670654297, 0.21517721557617187, 0.2150645751953125, 0.21535334777832033, 0.21510552978515626, 0.21535130310058595, 0.21503794860839845]",tokens/s,4.578817863254647,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,M,M,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -27413,7 +25080,7 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948faf-59dd5cc513544b7d10041dee;286a7608-1bce-4738-8491-75c34ff23312) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948fbc-5279434b0e6d0b71590daf18;8565f670-b3dc-4f33-a208-f0c718e5b7f6) Repository Not Found for url: https://huggingface.co/M/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. @@ -27443,8 +25110,11 @@ Traceback (most recent call last): OSError: M is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-7b,google/gemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-3b,stabilityai/stablelm-base-alpha-3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.42.3,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,1368.358912,4467.458048,0.0,3821.010944,3588.539392,s,10,2.8067558593750004,0.2806755859375,0.0006520085456073243,0.28042581176757814,0.28102059326171874,0.2818000457763672,0.28242360778808595,"[0.28257949829101564, 0.2808473815917969, 0.2804600830078125, 0.28033602905273436, 0.28030355834960935, 0.2803615417480469, 0.280387939453125, 0.2803915405273438, 0.2805464172363281, 0.2805418701171875]",tokens/s,912.0850292159193,kWh,3.3146340721919215e-06,1.8157278611973394e-06,1.546479632244524e-05,2.05951582558345e-05,tokens/kWh,12430105.989958903,MB,1368.358912,4467.458048,0.0,3821.010944,3673.094656,s,10,163.922755859375,16.3922755859375,0.0036930693849752424,16.39014453125,16.397535546874998,16.3983634765625,16.399025820312502,"[16.39692578125, 16.3973515625, 16.3902265625, 16.3898671875, 16.389916015625, 16.38983203125, 16.388861328125, 16.390521484375, 16.3900625, 16.39919140625]",tokens/s,3.8432735997951397,kWh,0.00019353930944461886,0.00010607578792378326,0.0008956917659355523,0.0011953068633039545,tokens/kWh,52706.1308975181,,s,629,166.186866668701,0.26420805511717194,0.03331598698154965,0.2601615295410156,0.260431884765625,0.26055332641601564,0.5405375170898438,"[0.2604738464355469, 0.2601553955078125, 0.2602137451171875, 0.2602014770507812, 0.26009906005859373, 0.2600960083007812, 0.2601891784667969, 0.260052978515625, 0.26007244873046875, 0.26023117065429685, 0.26028134155273436, 0.2602239990234375, 0.260178955078125, 0.2603960266113281, 0.26044927978515625, 0.26019122314453125, 0.2603632507324219, 0.2602874755859375, 0.2603694152832031, 0.26010931396484377, 0.2601082763671875, 0.2601553955078125, 0.26012261962890626, 0.26017691040039065, 0.260384765625, 0.26000897216796875, 0.26050048828125, 0.2604451904296875, 0.2605189208984375, 0.2606510009765625, 0.26038885498046876, 0.26014208984375, 0.26037350463867187, 0.26012875366210936, 0.26038168334960937, 0.26016256713867186, 0.26014309692382814, 0.2602557373046875, 0.26028338623046876, 0.26035711669921874, 0.260173828125, 0.260274169921875, 0.26040423583984373, 0.2602352600097656, 0.2601103210449219, 0.26028646850585935, 0.26021273803710937, 0.2600837097167969, 0.2600867919921875, 0.26013287353515624, 0.26008062744140625, 0.2601809997558594, 0.26045849609375, 0.26033767700195315, 0.2603550720214844, 0.26027316284179686, 0.260358154296875, 0.26017791748046876, 0.26013287353515624, 0.26070016479492186, 0.2606714782714844, 0.2604800109863281, 0.5413314819335937, 0.26024755859375, 0.260279296875, 0.26044723510742185, 0.2606909484863281, 0.2603417663574219, 0.2602362976074219, 0.2602874755859375, 0.26026904296875, 0.26027825927734377, 0.2603980712890625, 0.2603550720214844, 0.26029876708984373, 0.2603970642089844, 0.2604031982421875, 0.2602977294921875, 0.2602874755859375, 0.2606069641113281, 0.2604349365234375, 0.2605721740722656, 0.26039398193359375, 0.2601553955078125, 0.26009088134765623, 0.26001202392578127, 0.26004583740234377, 0.2601062316894531, 0.2600140686035156, 0.26019122314453125, 0.2603263854980469, 0.26014822387695313, 0.26062744140625, 0.2606827392578125, 0.260453369140625, 0.2604513244628906, 0.2603345947265625, 0.260274169921875, 0.2604247131347656, 0.2603755493164063, 0.260379638671875, 0.26031512451171873, 0.26023834228515624, 0.260242431640625, 0.26064486694335937, 0.260105224609375, 0.26019839477539064, 0.2601584777832031, 0.26008779907226565, 0.2601379699707031, 0.26007858276367185, 0.26006427001953125, 0.2601451416015625, 0.26012261962890626, 0.2601871337890625, 0.260168701171875, 0.26012875366210936, 0.26016357421875, 0.260094970703125, 0.26018508911132815, 0.2601615295410156, 0.26018405151367185, 0.2601185302734375, 0.2602147827148438, 0.2601390075683594, 0.5406546020507812, 0.26011239624023436, 0.2602711181640625, 0.2600499267578125, 0.2601041870117187, 0.2603049011230469, 0.2602168273925781, 0.26013388061523435, 0.26018405151367185, 0.26004376220703124, 0.2601246643066406, 0.2600919189453125, 0.260063232421875, 0.260063232421875, 0.26024551391601564, 0.26033050537109376, 0.2602772521972656, 0.26050970458984374, 0.26012057495117186, 0.26016973876953126, 0.26012979125976565, 0.260068359375, 0.2601308288574219, 0.26012875366210936, 0.2602158203125, 0.26017279052734377, 0.26003558349609374, 0.26014822387695313, 0.26015640258789063, 0.2601134033203125, 0.26012774658203125, 0.26010726928710937, 0.2601185302734375, 0.2603263854980469, 0.260105224609375, 0.26043597412109376, 0.26021273803710937, 0.26012979125976565, 0.2602721252441406, 0.26023117065429685, 0.2602301330566406, 0.2601082763671875, 0.26006732177734376, 0.2601082763671875, 0.2602874755859375, 0.26014208984375, 0.2600263671875, 0.2604247131347656, 0.26013592529296875, 0.26005401611328127, 0.2600181884765625, 0.260031494140625, 0.26013491821289064, 0.26009088134765623, 0.2600028076171875, 0.26041241455078123, 0.26015640258789063, 0.2601062316894531, 0.260031494140625, 0.2600693664550781, 0.26033151245117186, 0.2602291259765625, 0.2600919189453125, 0.5405234985351562, 0.25998745727539063, 0.260173828125, 0.26001202392578127, 0.26014105224609374, 0.2600028076171875, 0.26002944946289064, 0.2601031799316406, 0.26008984375, 0.26006527709960936, 0.26004583740234377, 0.26007757568359374, 0.2599424133300781, 0.25997927856445313, 0.26033355712890627, 0.26021170043945313, 0.2601973876953125, 0.26019839477539064, 0.2602711181640625, 0.260389892578125, 0.2600560607910156, 0.2602014770507812, 0.26017279052734377, 0.26028237915039065, 0.26020965576171873, 0.2603263854980469, 0.26026803588867187, 0.26026803588867187, 0.2602158203125, 0.2604656677246094, 0.2606540832519531, 0.26019021606445314, 0.2601605224609375, 0.260173828125, 0.2600714111328125, 0.260063232421875, 0.26014617919921873, 0.26014105224609374, 0.26012261962890626, 0.2600744934082031, 0.2600284118652344, 0.2600663146972656, 0.2600960083007812, 0.26000897216796875, 0.26003762817382814, 0.2601021423339844, 0.26015640258789063, 0.2602014770507812, 0.2601257019042969, 0.26007757568359374, 0.26020352172851563, 0.2601605224609375, 0.26020965576171873, 0.260463623046875, 0.26010009765625, 0.2601164855957031, 0.26010113525390627, 0.26030081176757813, 0.2601236572265625, 0.2600980529785156, 0.2600284118652344, 0.2602229614257813, 0.26016461181640627, 0.54054296875, 0.2599915466308594, 0.2600621948242188, 0.2600335388183594, 0.26055374145507815, 0.26001715087890626, 0.25995367431640626, 0.2599915466308594, 0.25993215942382814, 0.2599864196777344, 0.260073486328125, 0.2600755310058594, 0.2600130615234375, 0.26003250122070315, 0.25998233032226564, 0.26010726928710937, 0.26006427001953125, 0.2600693664550781, 0.2599362487792969, 0.26019021606445314, 0.2601021423339844, 0.26002432250976565, 0.25996697998046875, 0.26015640258789063, 0.26016256713867186, 0.2601584777832031, 0.26004376220703124, 0.2603673706054688, 0.2601922607421875, 0.26005401611328127, 0.26012774658203125, 0.26035711669921874, 0.260073486328125, 0.26015640258789063, 0.2600867919921875, 0.26006427001953125, 0.2600867919921875, 0.26011544799804687, 0.26028646850585935, 0.2602239990234375, 0.26033355712890627, 0.2601922607421875, 0.2602926025390625, 0.2606766052246094, 0.2603632507324219, 0.2603049011230469, 0.2601574401855469, 0.260431884765625, 0.26024038696289065, 0.2603397216796875, 0.260284423828125, 0.2601809997558594, 0.26024551391601564, 0.2603182067871094, 0.26009088134765623, 0.26022503662109375, 0.2602547302246094, 0.2602168273925781, 0.2601441345214844, 0.260168701171875, 0.26013491821289064, 0.2601379699707031, 0.2601062316894531, 0.54051123046875, 0.2601390075683594, 0.2601922607421875, 0.25996697998046875, 0.260052978515625, 0.260136962890625, 0.260094970703125, 0.2600407104492187, 0.2599987182617188, 0.2599987182617188, 0.26010009765625, 0.26005914306640626, 0.26003558349609374, 0.2600110168457031, 0.26003045654296875, 0.26005401611328127, 0.26007858276367185, 0.2603427734375, 0.26014208984375, 0.2601748352050781, 0.2600499267578125, 0.26007757568359374, 0.2600714111328125, 0.26015435791015623, 0.26024856567382815, 0.26022503662109375, 0.26021990966796876, 0.26020452880859374, 0.260316162109375, 0.26029876708984373, 0.26020556640625, 0.260210693359375, 0.26008575439453124, 0.2604656677246094, 0.2604400634765625, 0.2601594848632813, 0.26012774658203125, 0.2602557373046875, 0.260242431640625, 0.26018405151367185, 0.2602342529296875, 0.26016769409179685, 0.260094970703125, 0.26014004516601563, 0.2603407287597656, 0.26011749267578127, 0.26007244873046875, 0.26017074584960936, 0.2601666564941406, 0.2601195373535156, 0.2601523132324219, 0.26002432250976565, 0.26015640258789063, 0.2602721252441406, 0.2601236572265625, 0.2602659912109375, 0.2604195861816406, 0.26026904296875, 0.260105224609375, 0.26010009765625, 0.26001715087890626, 0.26015435791015623, 0.26013592529296875, 0.5406597290039062, 0.25996798706054686, 0.26000384521484377, 0.25998233032226564, 0.26013388061523435, 0.26001611328125, 0.2601871337890625, 0.2602270812988281, 0.2600140686035156, 0.25994854736328127, 0.26010931396484377, 0.2600417175292969, 0.26012161254882815, 0.26007858276367185, 0.2603612060546875, 0.26019021606445314, 0.2600335388183594, 0.2600048522949219, 0.26028851318359375, 0.26029568481445314, 0.2600263671875, 0.2601584777832031, 0.26007244873046875, 0.26013287353515624, 0.26012161254882815, 0.2601451416015625, 0.25998849487304687, 0.2601113586425781, 0.26011444091796876, 0.26016256713867186, 0.26076263427734375, 0.2601973876953125, 0.26007962036132815, 0.26019122314453125, 0.2599557189941406, 0.26013388061523435, 0.26014822387695313, 0.2600744934082031, 0.26005709838867186, 0.2601041870117187, 0.2599925842285156, 0.2600140686035156, 0.260052978515625, 0.26012261962890626, 0.26014309692382814, 0.26016769409179685, 0.26023117065429685, 0.26024551391601564, 0.2600980529785156, 0.260031494140625, 0.26009088134765623, 0.2600816650390625, 0.2601891784667969, 0.26030694580078123, 0.26020660400390627, 0.2601471862792969, 0.26018405151367185, 0.26039398193359375, 0.2601134033203125, 0.2601236572265625, 0.26024551391601564, 0.2604605407714844, 0.2602229614257813, 0.54063818359375, 0.26014309692382814, 0.2600407104492187, 0.26005914306640626, 0.26034481811523436, 0.26052197265625, 0.26023321533203125, 0.26015435791015623, 0.26017691040039065, 0.2602239990234375, 0.26020660400390627, 0.260242431640625, 0.2601533508300781, 0.26014208984375, 0.2602905578613281, 0.26014309692382814, 0.260068359375, 0.2601471862792969, 0.2600407104492187, 0.2601021423339844, 0.2601871337890625, 0.2600888366699219, 0.26002227783203125, 0.25998541259765623, 0.2601748352050781, 0.2601195373535156, 0.26006732177734376, 0.2601502685546875, 0.26017691040039065, 0.2601451416015625, 0.2601615295410156, 0.26021170043945313, 0.26003250122070315, 0.26021786499023436, 0.2601871337890625, 0.2601533508300781, 0.2600130615234375, 0.2600744934082031, 0.260063232421875, 0.26030899047851563, 0.26002944946289064, 0.26009292602539064, 0.26021990966796876, 0.2603765869140625, 0.26019534301757813, 0.26014004516601563, 0.26009088134765623, 0.26026190185546877, 0.26006527709960936, 0.26020452880859374, 0.2601113586425781, 0.2602567749023437, 0.26019021606445314, 0.2602219543457031, 0.2601748352050781, 0.2601943054199219, 0.26019534301757813, 0.26018508911132815, 0.2603212890625, 0.26023934936523435, 0.2601021423339844, 0.2602352600097656, 0.26024856567382815, 0.5407201538085937, 0.260105224609375, 0.260252685546875, 0.2601451416015625, 0.26007858276367185, 0.2602147827148438, 0.26014309692382814, 0.2600284118652344, 0.26005197143554687, 0.25995162963867186, 0.2601553955078125, 0.26008062744140625, 0.2599710693359375, 0.26005914306640626, 0.26005197143554687, 0.2600980529785156, 0.26014822387695313, 0.26045849609375, 0.2603468933105469, 0.26027621459960937, 0.2603212890625, 0.2601441345214844, 0.2602076110839844, 0.2600888366699219, 0.26023934936523435, 0.2602362976074219, 0.2600765380859375, 0.2601891784667969, 0.26019635009765624, 0.26020452880859374, 0.2600396728515625, 0.2601318359375, 0.2600939636230469, 0.26023321533203125, 0.26005810546875, 0.26002328491210935, 0.26006427001953125, 0.260068359375, 0.2600181884765625, 0.2600980529785156, 0.26037042236328123, 0.260126708984375, 0.26012261962890626, 0.2602014770507812, 0.26039910888671874, 0.2602444763183594, 0.2600447998046875, 0.2602997741699219, 0.260210693359375, 0.2601021423339844, 0.2600488891601562, 0.2600816650390625, 0.2602577819824219, 0.2600980529785156, 0.2601891784667969, 0.26029568481445314, 0.26044723510742185, 0.26029464721679685, 0.26002944946289064, 0.2600939636230469, 0.26015435791015623, 0.26023321533203125, 0.26021170043945313, 0.5409474487304687, 0.25998745727539063, 0.2600058898925781, 0.26006427001953125, 0.26001715087890626, 0.25991986083984375, 0.2600611877441406, 0.2601082763671875, 0.26007962036132815, 0.260021240234375, 0.2601134033203125, 0.2601533508300781, 0.2600079345703125, 0.26007858276367185, 0.2602997741699219, 0.26022604370117186, 0.2600488891601562, 0.260200439453125, 0.26017791748046876, 0.26030694580078123, 0.26000897216796875, 0.260173828125, 0.2601164855957031, 0.260173828125, 0.2601441345214844, 0.26056805419921875, 0.2605014953613281, 0.2605014953613281, 0.2604789733886719, 0.2605363159179688, 0.2607964172363281, 0.2606684265136719, 0.2602915954589844, 0.2604461975097656, 0.2603263854980469, 0.26024652099609374, 0.26027825927734377, 0.260305908203125, 0.2603970642089844, 0.26023834228515624, 0.26024856567382815, 0.26026904296875, 0.26051275634765625, 0.26044110107421875, 0.2605823974609375, 0.260569091796875, 0.2605455322265625, 0.26085888671875, 0.26055270385742185, 0.26060595703125, 0.26059674072265626, 0.2604236755371094, 0.2606295166015625, 0.26085479736328127, 0.26018304443359375, 0.26017279052734377, 0.2602342529296875, 0.260431884765625, 0.26019839477539064, 0.26014208984375, 0.2601103210449219, 0.2603325500488281, 0.2602669982910156]",tokens/s,3.7848959584389523,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-13b,huggyllama/llama-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2981.855232,9259.450368,0.0,8613.003264,8211.364864,s,10,10.951241455078126,1.0951241455078125,0.002069112877122291,1.0949886474609376,1.0979957763671875,1.0981948486328124,1.0983541064453124,"[1.0979515380859375, 1.0983939208984375, 1.0932901611328125, 1.0924078369140624, 1.0937889404296874, 1.092544677734375, 1.0941727294921875, 1.0958045654296875, 1.096221435546875, 1.0966656494140625]",tokens/s,233.76345143161097,kWh,1.2900002946456276e-05,7.068370924207557e-06,5.9710658879597037e-05,7.967903275026086e-05,tokens/kWh,3212890.4074724964,MB,2986.262528,9330.753536,0.0,8684.306432,8503.627264,s,10,640.8562343749999,64.0856234375,0.007507663361876726,64.08716796875,64.093946875,64.09397148437499,64.09399117187499,"[64.08627734375, 64.0873125, 64.09369921875, 64.09394140625, 64.0870234375, 64.09399609375, 64.08822265625, 64.078796875, 64.0717890625, 64.07517578125]",tokens/s,0.9830597975135754,kWh,0.000756652800159322,0.0004147102533278666,0.0034761336142379974,0.004647496667725186,tokens/kWh,13555.684813613145,,s,629,649.691616149902,1.0328960511127223,0.130104123840355,1.0171883544921876,1.0177021728515625,1.01789716796875,2.1117173046874997,"[1.0174935302734376, 1.0171514892578124, 1.0171883544921876, 1.017997314453125, 1.0175242309570312, 1.0175477905273438, 1.0175784912109376, 1.017881591796875, 1.0172057495117188, 1.0168115234375, 1.0167367553710938, 1.0173132934570313, 1.0168719482421875, 1.0171760864257813, 1.0166824951171876, 1.0168237915039062, 1.0169927978515625, 1.0175252685546874, 1.0170921020507813, 1.0169978637695312, 1.0169354248046876, 1.0170029907226563, 1.0173900756835939, 1.017280517578125, 1.016859619140625, 1.0172426147460938, 1.016791015625, 1.0168565673828125, 1.0172825317382812, 1.01675927734375, 1.0171392211914063, 1.0170572509765625, 1.0173419799804688, 1.0176777954101563, 1.0177576904296874, 1.0170183715820313, 1.0177105712890624, 1.0174996337890625, 1.0173941650390625, 1.0173890380859374, 1.017080810546875, 1.0169651489257812, 1.0173880615234374, 1.0172467041015625, 1.0171791381835937, 1.016754150390625, 1.0172498168945312, 1.0174290161132813, 1.0169159545898439, 1.0170194091796876, 1.016964111328125, 1.0168411865234375, 1.0170531616210938, 1.0171678466796874, 1.0177003784179688, 1.0177116088867189, 1.0175713500976562, 1.0176112670898438, 1.01741259765625, 1.01737060546875, 1.0172507934570312, 1.0171494140625, 2.116391845703125, 1.01690673828125, 1.0169548950195313, 1.0181068725585938, 1.0178170776367188, 1.0172692260742187, 1.0174985961914063, 1.017291748046875, 1.0175293579101563, 1.0175150146484375, 1.016748046875, 1.0170767211914062, 1.0172333984375, 1.0175641479492188, 1.0175477905273438, 1.0169292602539062, 1.016869873046875, 1.0169712524414063, 1.0170634155273437, 1.0173245239257813, 1.0168094482421874, 1.016943603515625, 1.0171064453125, 1.0171781005859375, 1.017275390625, 1.0166548461914062, 1.017407470703125, 1.0169978637695312, 1.016574951171875, 1.0173306884765625, 1.0168370971679688, 1.016875, 1.0170009765625, 1.0174505004882812, 1.0167992553710938, 1.0171494140625, 1.0171607055664063, 1.0168944702148437, 1.0170101928710937, 1.017059326171875, 1.017080810546875, 1.0172037353515626, 1.0174771118164063, 1.0174095458984376, 1.0170245361328125, 1.019852783203125, 1.0168125610351562, 1.0170029907226563, 1.0175538940429687, 1.0178017578125, 1.0176777954101563, 1.016995849609375, 1.0182564086914063, 1.0176224975585937, 1.0173235473632813, 1.01770751953125, 1.0170552368164063, 1.01711669921875, 1.0171351318359374, 1.0170449829101562, 1.016859619140625, 1.0170890502929688, 1.0175088500976563, 2.11154345703125, 1.0170613403320312, 1.0173931274414063, 1.0170582885742188, 1.01701123046875, 1.01686474609375, 1.0172272338867188, 1.0170921020507813, 1.0172078247070313, 1.0167490844726563, 1.0166835327148438, 1.0169088134765625, 1.0174351196289062, 1.0175641479492188, 1.017354248046875, 1.0168699340820313, 1.0168974609375, 1.0171945190429688, 1.0176737670898437, 1.0177105102539064, 1.017945068359375, 1.0175324096679688, 1.0171945190429688, 1.0176880493164062, 1.0172406005859376, 1.0171146240234374, 1.0182410278320313, 1.0179573974609375, 1.0179983520507812, 1.0176327514648438, 1.0174893798828124, 1.0176010131835938, 1.0182543334960938, 1.0177720336914062, 1.0173716430664062, 1.017248779296875, 1.016859619140625, 1.0170859375, 1.0173767700195313, 1.0172733154296876, 1.0168115234375, 1.0170787963867187, 1.0168923950195312, 1.0172713012695314, 1.0172866821289062, 1.0175477905273438, 1.0167623901367187, 1.0171729736328126, 1.0170921020507813, 1.0174443359375, 1.0174791870117188, 1.017380859375, 1.0176481323242188, 1.0177054443359375, 1.0170101928710937, 1.01709619140625, 1.0171812133789062, 1.0176399536132812, 1.0173388671875, 1.017680908203125, 1.0173245239257813, 1.0175344848632812, 1.016958984375, 2.111784912109375, 1.0173778076171875, 1.0168678588867188, 1.0177362060546875, 1.01760205078125, 1.0175693359375, 1.0170152587890624, 1.0167971801757814, 1.0172047119140626, 1.0175958862304688, 1.016896484375, 1.0167449340820311, 1.017417724609375, 1.0172200927734374, 1.016796142578125, 1.0171340942382812, 1.016943603515625, 1.01682177734375, 1.0168862915039063, 1.0173562622070313, 1.017080810546875, 1.0174678955078125, 1.0173972778320313, 1.0175897827148437, 1.017354248046875, 1.0172293090820312, 1.0175057983398437, 1.0172456665039062, 1.0170859375, 1.0177197875976562, 1.017154541015625, 1.0173880615234374, 1.0175590209960939, 1.01743408203125, 1.016933349609375, 1.0172835693359374, 1.017112548828125, 1.0172262573242188, 1.0170572509765625, 1.017354248046875, 1.01725390625, 1.0173184204101562, 1.018461181640625, 1.0179942626953125, 1.0194544677734374, 1.0179215087890625, 1.0178590698242187, 1.0177402954101562, 1.017133056640625, 1.0170347290039063, 1.0172620849609375, 1.0173992919921875, 1.0176665649414063, 1.01707470703125, 1.0167613525390624, 1.0173092041015626, 1.0173604125976563, 1.0174525146484374, 1.017565185546875, 1.0170890502929688, 1.01747509765625, 1.017607177734375, 1.0175682373046875, 2.112203857421875, 1.017459716796875, 1.0166384887695312, 1.0169661865234374, 1.0174985961914063, 1.0174044189453124, 1.016933349609375, 1.0176819458007813, 1.0176041259765625, 1.0174843139648437, 1.017217041015625, 1.0171586303710938, 1.01719140625, 1.017375732421875, 1.0171525268554686, 1.0169210815429688, 1.017154541015625, 1.0176266479492186, 1.0178191528320313, 1.0170921020507813, 1.0168934326171875, 1.0171627807617187, 1.0176942138671874, 1.017333740234375, 1.0175324096679688, 1.0170572509765625, 1.0169077758789062, 1.017111572265625, 1.0173767700195313, 1.0171566162109376, 1.0170460205078125, 1.0172252197265625, 1.0173870239257812, 1.0172252197265625, 1.0171300048828125, 1.0168084716796875, 1.017064453125, 1.0177720336914062, 1.016975341796875, 1.0169774169921875, 1.0169395141601563, 1.0170787963867187, 1.0171217651367188, 1.0177638549804688, 1.0169712524414063, 1.016958984375, 1.01680126953125, 1.0175764770507814, 1.0173480834960937, 1.0168197021484375, 1.017017333984375, 1.0169978637695312, 1.0169896850585938, 1.0174003295898437, 1.0170214233398438, 1.01707568359375, 1.0175559692382812, 1.01893017578125, 1.0172241821289063, 1.0170316772460937, 1.01722216796875, 1.0172119140625, 1.0173163452148437, 2.1100595703125, 1.0167705688476563, 1.0177894287109375, 1.0171873168945313, 1.0167449340820311, 1.0167142333984376, 1.016875, 1.0168862915039063, 1.0167982177734376, 1.0173235473632813, 1.0169313354492187, 1.0169343872070313, 1.0175621337890626, 1.017955322265625, 1.0172938232421875, 1.0173009643554687, 1.017554931640625, 1.0171617431640625, 1.0173388671875, 1.0177402954101562, 1.0175774536132813, 1.0175682373046875, 1.0177136840820313, 1.0181427001953125, 1.0177576904296874, 1.0176788330078126, 1.017692138671875, 1.017617431640625, 1.0178262939453124, 1.0180515747070313, 1.0169354248046876, 1.0168514404296876, 1.0176296997070313, 1.0172395629882813, 1.0167859497070313, 1.0172784423828125, 1.0170859375, 1.0170224609375, 1.0186465454101563, 1.0175170288085937, 1.0169405517578125, 1.0179154052734376, 1.0179379272460938, 1.01726318359375, 1.0171544799804688, 1.0171340942382812, 1.0169609985351562, 1.0169047241210938, 1.017776123046875, 1.017396240234375, 1.0173921508789063, 1.0171002807617187, 1.0185277709960938, 1.017439208984375, 1.017312255859375, 1.017007080078125, 1.0172160034179687, 1.0172160034179687, 1.017218017578125, 1.0172958984375, 1.0172764282226563, 1.0170203857421876, 1.017691162109375, 2.111909912109375, 1.0176123046875, 1.0175139770507813, 1.0174228515625, 1.0174617309570313, 1.0175221557617187, 1.0169579467773437, 1.0177576904296874, 1.0171986083984375, 1.0168289184570312, 1.0170685424804689, 1.0173532104492187, 1.0175938720703126, 1.017185302734375, 1.01743408203125, 1.0171443481445313, 1.016764404296875, 1.0172661743164062, 1.0177013549804688, 1.0171986083984375, 1.017049072265625, 1.0170828857421874, 1.0174166870117187, 1.0170664672851562, 1.0174453735351563, 1.0168790893554687, 1.0178897705078125, 1.0175170288085937, 1.0171791381835937, 1.0170726928710938, 1.0169456176757812, 1.0167869262695313, 1.0170419311523438, 1.0173788452148438, 1.017333740234375, 1.0175242309570312, 1.018076171875, 1.01758056640625, 1.0170736694335938, 1.0170521850585938, 1.0168186645507813, 1.0173572998046876, 1.0176532592773437, 1.01709619140625, 1.0169476928710937, 1.0168115844726562, 1.0169046630859375, 1.0173613891601563, 1.0177177734375, 1.0168975219726561, 1.016826904296875, 1.0167296142578126, 1.017049072265625, 1.0175293579101563, 1.0174402465820314, 1.0174054565429687, 1.0173552856445311, 1.017469970703125, 1.0172620849609375, 1.0167603149414062, 1.0176635131835938, 1.0175570068359374, 1.0175396118164062, 2.113271728515625, 1.0164520874023437, 1.0175570068359374, 1.0175221557617187, 1.0169467163085937, 1.01684326171875, 1.01673779296875, 1.0166527709960937, 1.016406005859375, 1.01699072265625, 1.0166343383789063, 1.0166343383789063, 1.016573974609375, 1.0167418823242187, 1.0167675170898438, 1.0167920532226562, 1.0167357177734375, 1.0169302978515624, 1.0171954956054687, 1.0174054565429687, 1.0170368041992188, 1.0171791381835937, 1.0176737060546874, 1.0177310791015626, 1.0174033813476562, 1.0174044189453124, 1.017459716796875, 1.0175098876953126, 1.0173675537109375, 1.0176378784179687, 1.017259033203125, 1.0173460693359375, 1.0176511840820313, 1.0174822387695313, 1.0173767700195313, 1.0175150146484375, 1.0174218139648437, 1.0178508911132813, 1.0178406372070312, 1.0176204833984375, 1.0173767700195313, 1.0178017578125, 1.0179000244140626, 1.0172119140625, 1.0165678100585938, 1.0165330200195313, 1.0163292236328125, 1.0167285766601561, 1.0169968872070312, 1.0166988525390626, 1.0169210815429688, 1.0170480346679687, 1.0171238403320313, 1.0167817993164063, 1.0167633666992189, 1.0170337524414061, 1.0168043823242188, 1.0171392211914063, 1.017153564453125, 1.0167838745117188, 1.0169251708984375, 1.0174423217773438, 1.01701220703125, 2.113585205078125, 1.0164449462890626, 1.016585205078125, 1.0164551391601562, 1.01684326171875, 1.016680419921875, 1.016753173828125, 1.0173470458984375, 1.0173030395507812, 1.0169528198242188, 1.0168330078125, 1.0170194091796876, 1.01732763671875, 1.0167736206054687, 1.0168514404296876, 1.0169835815429686, 1.0166835327148438, 1.01719140625, 1.0171043701171876, 1.0166845703125, 1.017260009765625, 1.0176849975585938, 1.0174935302734376, 1.017529296875, 1.0172733154296876, 1.0169231567382813, 1.0173982543945312, 1.0170020141601563, 1.016616943359375, 1.0167767333984374, 1.0169467163085937, 1.0172088623046875, 1.01715966796875, 1.016932373046875, 1.0170357666015626, 1.0171320190429687, 1.01718017578125, 1.0174566650390624, 1.0167255249023437, 1.0167971801757814, 1.0167633666992189, 1.0170337524414061, 1.0170050659179688, 1.0170439453125, 1.01673779296875, 1.0168330078125, 1.0170828857421874, 1.017059326171875, 1.0168739624023437, 1.0171300048828125, 1.0171238403320313, 1.016974365234375, 1.0169026489257813, 1.0171504516601562, 1.0168207397460938, 1.0168319702148438, 1.0172692260742187, 1.0173624877929688, 1.016796142578125, 1.0168391723632813, 1.0171893920898438, 1.017365478515625, 1.016943603515625, 2.1139599609375, 1.0168893432617188, 1.0171945190429688, 1.016859619140625, 1.0165811157226563, 1.0167500610351563, 1.01697021484375, 1.016826904296875, 1.0168453369140624, 1.0170132446289062, 1.0168053588867187, 1.0173511962890625, 1.01734912109375, 1.0167859497070313, 1.0169036865234375, 1.0171238403320313, 1.0169866333007813, 1.0171996459960937, 1.0168934326171875, 1.0169763793945312, 1.0167183227539063, 1.0170234985351563, 1.0178928833007812, 1.0167654418945313, 1.0169620361328124, 1.0170040283203126, 1.0167449340820311, 1.0173562622070313, 1.016680419921875, 1.0172979125976562, 1.0165924072265624, 1.017101318359375, 1.0172999877929687, 1.0170224609375, 1.0172262573242188, 1.0168402099609375, 1.0170101928710937, 1.0167879638671875, 1.01705419921875, 1.0175529174804687, 1.0173265991210938, 1.01718017578125, 1.0174719848632812, 1.0170245361328125, 1.0174248657226563, 1.016958984375, 1.0166087646484374, 1.0166466674804688, 1.0171975708007812, 1.01707470703125, 1.0169210815429688, 1.0175795288085938, 1.0173245239257813, 1.0168084716796875, 1.0169722900390625, 1.0170470581054687, 1.0169948120117187, 1.0169896850585938, 1.0172006225585937, 1.0173716430664062, 1.0176337890625, 1.0176676025390625, 1.0172323608398437]",tokens/s,0.9681516343515072,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-7b-hf,meta-llama/Llama-2-7b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1984.512,5480.382464,0.0,4833.93536,4503.282688,s,10,5.704772033691406,0.5704772033691407,0.0012601125399919193,0.5702384033203125,0.5718997436523438,0.5722093933105469,0.5724571130371093,"[0.5703561401367188, 0.57251904296875, 0.5679871215820312, 0.569779052734375, 0.569513427734375, 0.5698793334960938, 0.5701206665039062, 0.571189208984375, 0.5718309326171875, 0.5715971069335938]",tokens/s,448.7471164283303,kWh,6.715062223834757e-06,3.6795454622733808e-06,3.136956213266472e-05,4.1764169818772856e-05,tokens/kWh,6129656.140918401,MB,1986.158592,5480.382464,0.0,4833.93536,4688.699392,s,10,334.56283984375,33.456283984375,0.0052644785154184115,33.45499609375,33.46062109375,33.46519140625,33.46884765625,"[33.4560859375, 33.4513203125, 33.45960546875, 33.45390625, 33.45316015625, 33.46976171875, 33.4577109375, 33.45030078125, 33.45712109375, 33.4538671875]",tokens/s,1.883054317371969,kWh,0.0003949493847824173,0.00021646648750867824,0.0018252696453997421,0.0024366855176908373,tokens/kWh,25854.793137073728,,s,629,339.16590026855516,0.5392144678355401,0.06782032837407061,0.5309541625976563,0.5315696655273437,0.5319477294921875,1.101242978515625,"[0.5305211181640626, 0.5310648193359375, 0.5307863159179688, 0.53155224609375, 0.5311129760742187, 0.5313126220703125, 0.5308641357421875, 0.5310208129882813, 0.530787353515625, 0.5312348022460938, 0.5306480712890626, 0.5307863159179688, 0.5306419067382813, 0.5310637817382813, 0.530830322265625, 0.5309419555664062, 0.5309429931640625, 0.531325927734375, 0.5308753662109374, 0.5309122314453125, 0.5310187377929687, 0.5310218505859375, 0.5317243041992188, 0.5311610717773437, 0.5310167236328125, 0.5312348022460938, 0.530935791015625, 0.5312266235351563, 0.53100439453125, 0.5311580200195313, 0.5308682250976563, 0.5309685668945312, 0.5309716186523438, 0.5314590454101562, 0.5310986328125, 0.53151025390625, 0.5308231811523437, 0.5309214477539063, 0.5307422485351563, 0.5312634887695312, 0.5309501342773437, 0.5314273071289063, 0.530819091796875, 0.53110986328125, 0.5307781372070313, 0.53089892578125, 0.5306757202148438, 0.53097265625, 0.5308671875, 0.530881591796875, 0.5306766967773437, 0.53083544921875, 0.5309061279296875, 0.5309368286132813, 0.531083251953125, 0.5310986328125, 0.531441650390625, 0.531240966796875, 0.5315379028320313, 0.5314641723632813, 0.5310187377929687, 0.5314037475585938, 1.103942626953125, 0.5305426025390625, 0.5309706420898438, 0.530461669921875, 0.5309747314453125, 0.530756591796875, 0.5311068115234375, 0.5308692626953125, 0.5308150024414062, 0.5308845825195313, 0.5310484619140625, 0.5306859741210938, 0.5307606811523438, 0.5305077514648437, 0.5314058227539062, 0.53094091796875, 0.5307955322265625, 0.5311867065429687, 0.53100341796875, 0.5308580322265625, 0.5310903930664063, 0.5308118896484375, 0.5307975463867187, 0.5306583251953125, 0.5308969116210938, 0.530861083984375, 0.5308999633789062, 0.5306531982421875, 0.5309398803710937, 0.5309183959960937, 0.5308845825195313, 0.530808837890625, 0.5309910888671875, 0.5313074951171874, 0.5310607299804687, 0.530740234375, 0.5311702880859375, 0.53077197265625, 0.5312318115234375, 0.5309869384765625, 0.5307576293945313, 0.5307412719726563, 0.5308344116210938, 0.5307822265625, 0.5309531860351563, 0.5305784301757812, 0.5323253784179688, 0.5312071533203125, 0.5312880859375, 0.5308795166015625, 0.5310740356445313, 0.5312593994140625, 0.5309235229492187, 0.531114990234375, 0.5311170654296875, 0.5312634887695312, 0.5309481201171875, 0.5309020385742188, 0.5311262817382812, 0.5310023803710937, 0.5309122924804688, 0.5308917236328125, 0.5311027221679687, 1.100294189453125, 0.5306101684570312, 0.530904052734375, 0.5310392456054688, 0.5307822265625, 0.530640869140625, 0.5311344604492187, 0.5307207641601562, 0.531220458984375, 0.5305763549804687, 0.530935791015625, 0.5307678833007813, 0.5314918212890625, 0.5320335083007812, 0.5323519897460938, 0.5317181396484375, 0.5310802001953125, 0.5309747314453125, 0.5312337646484375, 0.5312235717773437, 0.5314109497070313, 0.5310474243164063, 0.5315625, 0.5313208618164063, 0.5311416015625, 0.531430419921875, 0.5316690063476562, 0.5314365234375, 0.531483642578125, 0.530713623046875, 0.5309296875, 0.5309389038085938, 0.5307412719726563, 0.5305579223632813, 0.530681884765625, 0.5306705932617187, 0.5307053833007812, 0.5305855712890625, 0.5307422485351563, 0.53066650390625, 0.5308958740234375, 0.532068359375, 0.532295654296875, 0.5322301635742187, 0.5322598266601563, 0.5318870849609375, 0.5309050903320313, 0.5312890625, 0.5309685668945312, 0.5306531982421875, 0.5310576782226563, 0.530798583984375, 0.5307260131835938, 0.5306234130859375, 0.5307207641601562, 0.5306265869140625, 0.5307678833007813, 0.530714599609375, 0.5308375244140625, 0.53097265625, 0.5309849853515625, 0.5310422973632812, 0.5310628051757813, 1.1018045654296875, 0.5307658081054687, 0.5312337646484375, 0.5306675415039063, 0.5308784790039063, 0.5308600463867188, 0.5310167236328125, 0.531009521484375, 0.5312532348632812, 0.5308733520507812, 0.5311190795898437, 0.5311856689453125, 0.5314058227539062, 0.5310842895507812, 0.5315277099609375, 0.5310382080078125, 0.5311743774414063, 0.5315983276367188, 0.5321942749023437, 0.5316853637695312, 0.5308467407226563, 0.5309767456054687, 0.530850830078125, 0.5307125854492187, 0.5308641357421875, 0.5307555541992187, 0.5308436279296875, 0.5307218017578125, 0.5308006591796876, 0.5305630493164063, 0.5307371215820312, 0.530661376953125, 0.5308436889648438, 0.5309583129882812, 0.5307883911132812, 0.5307330322265625, 0.5312798461914062, 0.5310320434570313, 0.5316075439453125, 0.5309869995117188, 0.5313341674804688, 0.5305620727539062, 0.5311702880859375, 0.5308067626953125, 0.5318553466796875, 0.5307586669921875, 0.5308836059570312, 0.5307012939453125, 0.5307760620117188, 0.5307177124023438, 0.5308969116210938, 0.530735107421875, 0.5311006469726562, 0.5306951904296875, 0.5307473754882812, 0.5309122314453125, 0.5312890625, 0.5314263305664062, 0.530976806640625, 0.530935791015625, 0.530862060546875, 0.530808837890625, 0.5308170166015626, 1.100686279296875, 0.5305743408203125, 0.5307484130859375, 0.53056103515625, 0.5306112060546875, 0.5306911010742188, 0.5307637939453125, 0.5306419067382813, 0.5308395385742187, 0.530756591796875, 0.5308426513671874, 0.5308016357421875, 0.5311057739257813, 0.5309327392578125, 0.5313269653320313, 0.5308795166015625, 0.531177490234375, 0.5310422973632812, 0.53136279296875, 0.5311201171875, 0.5312051391601562, 0.53100439453125, 0.5311467895507812, 0.5310556030273438, 0.531061767578125, 0.5310576782226563, 0.5312481079101562, 0.5311692504882812, 0.5314559936523438, 0.5308375244140625, 0.5311375122070312, 0.5306767578125, 0.530946044921875, 0.53065625, 0.5307238159179688, 0.5309081420898437, 0.5308159790039062, 0.5306972045898437, 0.53074951171875, 0.5306746215820313, 0.5307698974609375, 0.5306572875976563, 0.530976806640625, 0.5309541625976563, 0.5310791625976562, 0.531009521484375, 0.5310802001953125, 0.5311498413085938, 0.5309020385742188, 0.5308917846679687, 0.5309102172851563, 0.5309030151367188, 0.5314529418945313, 0.5309439697265625, 0.5307105102539063, 0.5309010009765625, 0.5310361328125, 0.5321871337890625, 0.5309573364257812, 0.5309470825195313, 0.5312696533203125, 0.5320478515625, 0.5322874755859375, 1.10145947265625, 0.5313740844726562, 0.5319639282226563, 0.53125732421875, 0.5318215942382812, 0.5319761962890625, 0.5323817138671875, 0.5318543090820312, 0.5324503173828125, 0.53193115234375, 0.53076171875, 0.5305753784179688, 0.5308323974609375, 0.530567138671875, 0.5308436279296875, 0.5306286010742187, 0.5307053833007812, 0.5305753784179688, 0.53100341796875, 0.5306358032226562, 0.5310361328125, 0.5309552612304688, 0.5309389038085938, 0.53064501953125, 0.53108837890625, 0.5308590087890624, 0.5309389038085938, 0.5310259399414062, 0.5312952270507812, 0.5310709838867187, 0.5311764526367188, 0.5312491455078125, 0.5314150390625, 0.5312532348632812, 0.531252197265625, 0.5313546142578125, 0.531367919921875, 0.5319331665039062, 0.5335838623046875, 0.5311641845703124, 0.531441650390625, 0.5313925170898437, 0.5322434692382813, 0.5322864379882812, 0.5321441040039062, 0.532115478515625, 0.531388427734375, 0.5306961669921875, 0.53096240234375, 0.5312880859375, 0.53085693359375, 0.5306890869140625, 0.5307586059570313, 0.53071875, 0.5307207641601562, 0.53096240234375, 0.5315604248046875, 0.5309337768554687, 0.5310587158203125, 0.5309173583984375, 0.53144677734375, 0.530819091796875, 0.5310504760742187, 1.1015126953125, 0.5308446655273438, 0.53172021484375, 0.5307381591796875, 0.5307678833007813, 0.5306972045898437, 0.5308292846679687, 0.5307166748046875, 0.530808837890625, 0.5306388549804687, 0.5306736450195313, 0.5309235229492187, 0.5309235229492187, 0.53070849609375, 0.5309276123046875, 0.5306429443359375, 0.5307852783203125, 0.5307914428710937, 0.5309736938476562, 0.5309429931640625, 0.5308538818359375, 0.530862060546875, 0.530893798828125, 0.5308037109375, 0.530777099609375, 0.5308395385742187, 0.5308600463867188, 0.5307258911132813, 0.5308436279296875, 0.530629638671875, 0.531146728515625, 0.5308661499023437, 0.531294189453125, 0.5314826049804687, 0.5312481079101562, 0.53166796875, 0.5312839965820313, 0.53075048828125, 0.530819091796875, 0.5311170654296875, 0.5316137084960938, 0.5317027587890625, 0.5319608154296875, 0.5318799438476562, 0.5317857055664063, 0.531937255859375, 0.5316761474609375, 0.5316976928710937, 0.5317744750976563, 0.5308323974609375, 0.531051513671875, 0.5311907958984375, 0.5314478149414062, 0.531346435546875, 0.5310218505859375, 0.5310238647460938, 0.5312337646484375, 0.5313167114257813, 0.5308651733398437, 0.530703369140625, 0.5307924194335938, 0.5308026733398438, 0.5309132690429688, 1.1025264892578126, 0.53065625, 0.5309061279296875, 0.5318810424804687, 0.5307862548828125, 0.530639892578125, 0.53081396484375, 0.5309368286132813, 0.53110888671875, 0.5308538818359375, 0.5307095336914063, 0.5305200805664062, 0.5307893676757812, 0.5306808471679687, 0.530820068359375, 0.5304883422851563, 0.5308170166015626, 0.5304985961914063, 0.5307473754882812, 0.5305302734375, 0.5306531982421875, 0.530513916015625, 0.5310648193359375, 0.5307095336914063, 0.5307955322265625, 0.5309153442382812, 0.5314549560546875, 0.5309439697265625, 0.5312911376953126, 0.5316034545898437, 0.5309531860351563, 0.5309869995117188, 0.5310361328125, 0.5308016357421875, 0.5307443237304688, 0.5306705932617187, 0.5307801513671875, 0.530608154296875, 0.530639892578125, 0.5306634521484375, 0.5308221435546875, 0.5308283081054688, 0.5309696044921876, 0.5313065185546875, 0.5313300170898437, 0.5313269653320313, 0.5309522094726562, 0.531056640625, 0.5314488525390625, 0.5310975952148438, 0.5314590454101562, 0.53098291015625, 0.5310863647460937, 0.5309696044921876, 0.53103515625, 0.5311734008789063, 0.530808837890625, 0.530746337890625, 0.53139453125, 0.5307208251953125, 0.5316126708984374, 0.5313197631835938, 0.5314866943359375, 1.1037603759765624, 0.531114013671875, 0.5313157348632812, 0.5316669311523438, 0.5312061157226563, 0.5314129638671875, 0.5316454467773437, 0.531177490234375, 0.5316536865234375, 0.530905029296875, 0.5309481201171875, 0.5308477172851562, 0.5310320434570313, 0.5309378662109375, 0.5309757690429687, 0.5313228759765625, 0.5311948852539062, 0.5310637817382813, 0.5309552612304688, 0.5314559936523438, 0.5309481201171875, 0.5310003051757812, 0.5309910888671875, 0.5306224365234375, 0.5306593017578125, 0.5306255493164063, 0.5308753662109374, 0.5307627563476562, 0.5307576293945313, 0.530713623046875, 0.53089892578125, 0.530850830078125, 0.5307238159179688, 0.5306982421875, 0.5311590576171875, 0.530724853515625, 0.5312921752929688, 0.5312542724609375, 0.5312317504882812, 0.5316403198242188, 0.5309900512695312, 0.5310330810546875, 0.5311273193359375, 0.5309204711914063, 0.53094091796875, 0.5306009521484375, 0.530967529296875, 0.5310392456054688, 0.5308815307617187, 0.5307689208984375, 0.5308272705078125, 0.5306911010742188, 0.5308804931640625, 0.5311528930664062, 0.5310679321289062, 0.5312716674804687, 0.531794921875, 0.531114013671875, 0.5313935546875, 0.5312348022460938, 0.5312020263671875, 0.5310812377929688, 0.5309931640625, 1.102993408203125, 0.5305927124023437, 0.53087744140625, 0.530703369140625, 0.5310504760742187, 0.5310187377929687, 0.5312553100585937, 0.5311918334960938, 0.5312839965820313, 0.5307781372070313, 0.5309859619140626, 0.5311580200195313, 0.5308999633789062, 0.5308969116210938, 0.5311795043945312, 0.5306071166992188, 0.5307647705078125, 0.5309890747070313, 0.5307586669921875, 0.5306500854492188, 0.530893798828125, 0.530766845703125, 0.5308999633789062, 0.5307760620117188, 0.5306542358398437, 0.530555908203125, 0.5319547119140625, 0.53079345703125, 0.5315061645507813, 0.5311846313476563, 0.5316218872070313, 0.5312348022460938, 0.5321912231445313, 0.5312000122070313, 0.531431396484375, 0.5311488037109375, 0.5308743896484375, 0.530819091796875, 0.5310812377929688, 0.5307105102539063, 0.53081396484375, 0.5309736938476562, 0.53100439453125, 0.5308211059570312, 0.5308876953125, 0.5309081420898437, 0.5309849853515625, 0.5307340698242188, 0.53097265625, 0.5311795043945312, 0.5309010009765625, 0.5311529541015625, 0.5311456909179687, 0.5306522216796875, 0.5312962036132812, 0.5308641357421875, 0.5309163818359375, 0.5308590087890624, 0.5311928100585938, 0.5311190795898437, 0.5309706420898438, 0.530935791015625, 0.531294189453125]",tokens/s,1.8545496451794004,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,-,-,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -27452,47 +25122,13 @@ If this is a private repository, make sure to pass a token having permission to File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/gemma-7b/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status - raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66948155-7fe862463b36ae76360f388e;fe492e76-e99d-488e-a31f-db34d4326761) - -403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/google/gemma-7b/resolve/main/config.json. -If you are trying to create or update content,make sure you have a token with the `write` role. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error - raise LocalEntryNotFoundError( -huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 106, in _inner_fn + validate_repo_id(arg_value) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 160, in validate_repo_id + raise HFValidationError( +huggingface_hub.errors.HFValidationError: Repo id must use alphanumeric chars or '-', '_', '.', '--' and '..' are forbidden, '-' and '.' cannot start or end the name, max length is 96: '-'. The above exception was the direct cause of the following exception: @@ -27513,13 +25149,42 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 466, in cached_file raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/gemma-7b is not the path to a directory containing a file named config.json. -Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. +OSError: Incorrect path_or_model_id: '-'. Please provide either the path to a local folder or the repo_id of a model on the Hub. + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-410m,EleutherAI/pythia-410m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.42.3,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,1357.860864,1315.438592,0.0,668.991488,598.701056,s,10,0.5735699539184571,0.0573569953918457,0.002323365932403844,0.05641374397277832,0.058685475921630856,0.06142336158752441,0.06361367012023926,"[0.06416124725341797, 0.05632092666625976, 0.05633155059814453, 0.05636393737792969, 0.056450401306152344, 0.056666881561279296, 0.058077056884765624, 0.05637046432495117, 0.05638243103027344, 0.056445056915283204]",tokens/s,4463.274239717147,kWh,6.797899288692694e-07,3.7245412829627415e-07,1.967943783804529e-06,3.0201878409700728e-06,tokens/kWh,84762939.75071888,MB,1357.860864,1315.438592,0.0,668.991488,634.11968,s,10,35.55266552734375,3.5552665527343748,0.02725806586268354,3.5483658447265625,3.5879743408203124,3.6048503295898437,3.618351120605469,"[3.621726318359375, 3.58422412109375, 3.529068603515625, 3.540139892578125, 3.558736572265625, 3.5575546875, 3.537781982421875, 3.52670166015625, 3.551919189453125, 3.5448125]",tokens/s,17.720190333280737,kWh,4.28260003378565e-05,2.3470953370349246e-05,0.00011588945605759889,0.00018218640976580466,tokens/kWh,345799.66793892405,,s,629,36.002755603790305,0.05723808522065227,0.006780702818673421,0.05590220642089844,0.05774848175048828,0.0580835319519043,0.11218710388183593,"[0.05981695938110351, 0.059014144897460936, 0.05988351821899414, 0.05948825454711914, 0.060007423400878904, 0.05807923126220703, 0.05880831909179687, 0.057845760345458984, 0.0577259521484375, 0.057599998474121096, 0.05738905715942383, 0.0576255989074707, 0.058726398468017575, 0.05784064102172851, 0.05770240020751953, 0.05808639907836914, 0.05745971298217773, 0.05741670227050781, 0.05756415939331055, 0.05732454299926758, 0.057987071990966796, 0.057485313415527345, 0.05737472152709961, 0.05715967941284179, 0.05847347259521484, 0.057591808319091796, 0.05679206466674805, 0.055755775451660154, 0.057815040588378906, 0.05788467025756836, 0.05797785568237305, 0.0564029426574707, 0.05548031997680664, 0.05780889511108398, 0.05739724731445312, 0.05749657440185547, 0.0573306884765625, 0.05792768096923828, 0.05750271987915039, 0.057316352844238284, 0.05745459365844727, 0.05743212890625, 0.057356224060058594, 0.05757440185546875, 0.05759692764282227, 0.05739110565185547, 0.05764198303222656, 0.057611263275146485, 0.05741363143920898, 0.057322494506835936, 0.05822566223144531, 0.05762047958374023, 0.057299968719482425, 0.056842239379882815, 0.05561244964599609, 0.05575369644165039, 0.05556838226318359, 0.05557759857177735, 0.05566566467285156, 0.055512065887451174, 0.055686145782470706, 0.05557145690917969, 0.11211571502685547, 0.055414783477783204, 0.05548953628540039, 0.05547315216064453, 0.05559296035766602, 0.057166847229003906, 0.057384960174560545, 0.05738905715942383, 0.057421886444091796, 0.05794604873657227, 0.058033153533935546, 0.05751910400390625, 0.05744128036499024, 0.05772697448730469, 0.057409534454345705, 0.057847808837890625, 0.05756108856201172, 0.05777407836914063, 0.05831167984008789, 0.05800960159301758, 0.05741875076293945, 0.058001407623291014, 0.05816524887084961, 0.057565185546875, 0.05741875076293945, 0.057442302703857424, 0.057466880798339844, 0.05788671875, 0.05794508743286133, 0.0575283203125, 0.05696921539306641, 0.0558919677734375, 0.055634944915771485, 0.055400447845458986, 0.055548927307128904, 0.055624702453613284, 0.055608318328857424, 0.05552742385864258, 0.055711742401123046, 0.05558169555664062, 0.05681459045410156, 0.05732147216796875, 0.057388031005859375, 0.056796161651611325, 0.05560627365112305, 0.056886272430419924, 0.057524223327636716, 0.05738393783569336, 0.058218494415283206, 0.05722009658813477, 0.05792051315307617, 0.057490432739257816, 0.057455615997314455, 0.05738700866699219, 0.0573941764831543, 0.05738598251342773, 0.05712793731689453, 0.05570560073852539, 0.055634944915771485, 0.05566566467285156, 0.05554073715209961, 0.0556492805480957, 0.05571072006225586, 0.11216793823242187, 0.0556124153137207, 0.055382015228271485, 0.05562572860717773, 0.05556531143188476, 0.05569232177734375, 0.05575062561035156, 0.055859233856201174, 0.05676950454711914, 0.05582950210571289, 0.05629542541503906, 0.055761985778808594, 0.055734207153320316, 0.05566361618041992, 0.055640064239501956, 0.055725055694580077, 0.0556308479309082, 0.05583363342285156, 0.05553353500366211, 0.05562777709960937, 0.05568307113647461, 0.05573222351074219, 0.05753241729736328, 0.05677260971069336, 0.055640064239501956, 0.05561548614501953, 0.056256511688232425, 0.05657395172119141, 0.05638662338256836, 0.05741254425048828, 0.05741881561279297, 0.056707008361816406, 0.05665075302124024, 0.055992321014404295, 0.05728665542602539, 0.05752524948120117, 0.05733171081542969, 0.055621631622314455, 0.05572403335571289, 0.05564723205566406, 0.05570150375366211, 0.055398399353027344, 0.055771137237548826, 0.055638015747070314, 0.05562572860717773, 0.055556095123291016, 0.05568102264404297, 0.055702529907226565, 0.05575987243652344, 0.05575680160522461, 0.055605247497558595, 0.05553664016723633, 0.05570560073852539, 0.055798782348632815, 0.05559910583496094, 0.05567180633544922, 0.05573222351074219, 0.05629337692260742, 0.05749555206298828, 0.0559370231628418, 0.055578624725341794, 0.05670809555053711, 0.055962623596191405, 0.11224575805664062, 0.05556224060058594, 0.05563904190063477, 0.055656448364257816, 0.0557127685546875, 0.05569228744506836, 0.05559910583496094, 0.05550592041015625, 0.05555302429199219, 0.055739391326904295, 0.055537662506103515, 0.05554995346069336, 0.057543678283691405, 0.057662464141845705, 0.05759692764282227, 0.05869772720336914, 0.058270721435546874, 0.057540607452392575, 0.05582131195068359, 0.055779327392578126, 0.055809024810791016, 0.05575987243652344, 0.0556492805480957, 0.055632896423339843, 0.05597491073608398, 0.055795711517333986, 0.05575065612792969, 0.05567488098144531, 0.05572710418701172, 0.05697843170166016, 0.057621505737304686, 0.05626777648925781, 0.05568716812133789, 0.05771468734741211, 0.05757747268676758, 0.057265151977539064, 0.05681151962280274, 0.05754982376098633, 0.057534465789794924, 0.057024513244628906, 0.05558169555664062, 0.05570457458496094, 0.055833694458007815, 0.05585500717163086, 0.05577011108398437, 0.05586739349365234, 0.05599129486083984, 0.05690777587890625, 0.05552025604248047, 0.055673854827880856, 0.05572915267944336, 0.05587865447998047, 0.05573529434204102, 0.05586841583251953, 0.05573017501831055, 0.055760894775390625, 0.055874561309814455, 0.05571891021728516, 0.05576499176025391, 0.05579264068603516, 0.05576192092895508, 0.05572198486328125, 0.055793663024902344, 0.11247821044921875, 0.055947265625, 0.055580673217773435, 0.05587353515625, 0.05770240020751953, 0.057093120574951174, 0.0557762565612793, 0.05583564758300781, 0.055890945434570315, 0.05565542221069336, 0.05675110244750976, 0.05625753784179687, 0.05588479995727539, 0.0562718734741211, 0.05585100936889648, 0.05575884628295898, 0.05576499176025391, 0.05688934326171875, 0.05688422393798828, 0.05730924987792969, 0.05688927841186524, 0.05672345733642578, 0.05574758529663086, 0.0558919677734375, 0.05698358535766602, 0.05571683120727539, 0.05599846267700195, 0.05756825637817383, 0.057455615997314455, 0.05779865646362305, 0.05597491073608398, 0.05708697509765625, 0.056840190887451174, 0.055809024810791016, 0.055806976318359375, 0.05576192092895508, 0.05717708969116211, 0.056443904876708986, 0.05544857788085938, 0.05571686553955078, 0.055669761657714846, 0.05571686553955078, 0.05590425491333008, 0.05589100646972656, 0.05568508911132813, 0.05578953552246094, 0.055803905487060546, 0.056334400177001955, 0.055878593444824216, 0.055670783996582034, 0.05734195327758789, 0.05783039855957031, 0.05769420623779297, 0.057328704833984376, 0.057484222412109376, 0.057388031005859375, 0.05765836715698242, 0.05777920150756836, 0.057540607452392575, 0.05716889572143555, 0.05852671813964844, 0.056840190887451174, 0.05597695922851562, 0.11283148956298829, 0.05591756820678711, 0.056292350769042966, 0.05755392074584961, 0.057414657592773435, 0.056551422119140625, 0.05571583938598633, 0.055984127044677735, 0.05593907165527344, 0.05541580963134766, 0.05567897415161133, 0.05571379089355469, 0.05580083084106445, 0.055672832489013675, 0.05564211273193359, 0.055809024810791016, 0.055736320495605465, 0.055839744567871094, 0.05565235137939453, 0.05571583938598633, 0.05600153732299805, 0.055823360443115234, 0.055818241119384764, 0.05570457458496094, 0.056213504791259764, 0.055795711517333986, 0.055673854827880856, 0.055744510650634765, 0.05580492782592773, 0.05590323257446289, 0.05576396942138672, 0.055449600219726565, 0.055818241119384764, 0.055979007720947264, 0.05598310470581055, 0.055825439453125, 0.05578236770629883, 0.05567795181274414, 0.056638465881347654, 0.05652070236206055, 0.0575098876953125, 0.057299968719482425, 0.0576808967590332, 0.05792563247680664, 0.057729022979736325, 0.05774848175048828, 0.058654720306396485, 0.058905601501464844, 0.05799935913085937, 0.0573941764831543, 0.05648793411254883, 0.056785919189453124, 0.05599027252197265, 0.057333759307861325, 0.05748121643066406, 0.057452545166015626, 0.057862144470214844, 0.056509441375732425, 0.055695358276367186, 0.05770240020751953, 0.056632320404052736, 0.057633857727050784, 0.05701318359375, 0.11698483276367187, 0.058790912628173826, 0.0565667839050293, 0.056400894165039066, 0.05603839874267578, 0.055823360443115234, 0.056051712036132816, 0.055597057342529295, 0.05556121444702149, 0.057240577697753904, 0.05742489624023438, 0.05738700866699219, 0.057365505218505856, 0.057353214263916014, 0.05783039855957031, 0.05734400177001953, 0.056095745086669924, 0.05565951919555664, 0.055653377532958986, 0.05596979141235352, 0.05557555389404297, 0.055583744049072265, 0.05551923370361328, 0.05565951919555664, 0.05549977493286133, 0.05557350540161133, 0.055498752593994144, 0.05578342437744141, 0.0557127685546875, 0.05554380798339844, 0.055572479248046876, 0.05547212982177734, 0.05575884628295898, 0.055569408416748046, 0.05546700668334961, 0.055634944915771485, 0.05568415832519531, 0.0554956169128418, 0.05561139297485351, 0.05549465560913086, 0.0555417594909668, 0.0557916145324707, 0.055653377532958986, 0.05557452774047852, 0.05553561782836914, 0.05562265777587891, 0.05569843292236328, 0.05557145690917969, 0.0568268814086914, 0.05713510513305664, 0.0576993293762207, 0.057264129638671876, 0.05562268829345703, 0.058207199096679686, 0.057929729461669924, 0.05596672058105469, 0.05567692947387695, 0.0556124153137207, 0.05563187026977539, 0.055662593841552734, 0.055618560791015625, 0.05551411056518555, 0.05571993637084961, 0.11230207824707031, 0.05556531143188476, 0.055583744049072265, 0.05559603118896484, 0.055820289611816405, 0.05559603118896484, 0.05586127853393555, 0.055710689544677734, 0.05566054534912109, 0.05534515380859375, 0.055344127655029295, 0.05557555389404297, 0.055825408935546876, 0.05577830505371094, 0.055521278381347655, 0.0557916145324707, 0.05571379089355469, 0.055702529907226565, 0.05556838226318359, 0.05560115051269531, 0.05558272171020508, 0.05557555389404297, 0.05774848175048828, 0.057299968719482425, 0.05733785629272461, 0.05655865478515625, 0.055502784729003905, 0.05562265777587891, 0.05769420623779297, 0.05662412643432617, 0.05678694534301758, 0.05764505767822266, 0.05634355163574219, 0.05650841522216797, 0.05620121765136719, 0.055725055694580077, 0.055766014099121096, 0.055537662506103515, 0.05568819046020508, 0.05545062255859375, 0.05575065612792969, 0.055580673217773435, 0.05566873550415039, 0.05554073715209961, 0.05567795181274414, 0.05562060928344727, 0.05770444869995117, 0.056671230316162106, 0.055934974670410156, 0.05575065612792969, 0.055629825592041014, 0.05556224060058594, 0.05587046432495117, 0.05570867156982422, 0.0557209587097168, 0.05575065612792969, 0.05553561782836914, 0.05629030227661133, 0.05745356750488281, 0.05623295974731445, 0.05563596725463867, 0.055613441467285155, 0.05556633758544922, 0.11219455718994141, 0.05558272171020508, 0.055465023040771486, 0.055540672302246095, 0.05531955337524414, 0.05546393585205078, 0.055548927307128904, 0.05548441696166992, 0.055616512298583984, 0.056395774841308595, 0.05721395111083984, 0.05674905776977539, 0.05730508804321289, 0.05730201721191406, 0.05641113662719727, 0.0557209587097168, 0.055585792541503906, 0.05566566467285156, 0.05559091186523438, 0.05565951919555664, 0.05544963073730469, 0.05593494415283203, 0.05556224060058594, 0.05557145690917969, 0.056120319366455076, 0.057458686828613284, 0.05740236663818359, 0.05729894256591797, 0.057373695373535157, 0.057766910552978515, 0.05665075302124024, 0.05573324966430664, 0.05637017440795898, 0.05809971237182617, 0.05586943817138672, 0.05620019149780273, 0.05695590209960937, 0.0555643196105957, 0.056606689453125, 0.057219070434570314, 0.05642649459838867, 0.05731020736694336, 0.05765119934082031, 0.05748121643066406, 0.056667137145996097, 0.05717708969116211, 0.057823230743408206, 0.05779046249389649, 0.05644291305541992, 0.056858592987060544, 0.056856575012207033, 0.058813438415527344, 0.05755289459228516, 0.05608345413208008, 0.05555302429199219, 0.05563907241821289, 0.05571273422241211, 0.05554278564453125, 0.05552537536621094, 0.05555507278442383, 0.0555233268737793, 0.05571072006225586, 0.0556124153137207, 0.11335577392578125, 0.0570880012512207, 0.05586636734008789, 0.055672832489013675, 0.056136798858642575, 0.0563342399597168, 0.05568511962890625, 0.056820735931396485, 0.05746278381347656, 0.05724262237548828, 0.05761228942871094, 0.05586431884765625, 0.05590220642089844, 0.05682995223999023, 0.057353214263916014, 0.05627699279785156, 0.055877632141113284, 0.05574655914306641, 0.057248767852783204, 0.05563391876220703, 0.05559500885009765, 0.05561859130859375, 0.055626720428466794, 0.055660575866699216, 0.055686111450195315, 0.056011775970458984, 0.05731737518310547, 0.05745459365844727, 0.057132064819335936, 0.05569123077392578, 0.056584190368652344, 0.056736766815185545, 0.05771366500854492, 0.05775974273681641, 0.05750579071044922, 0.05729075241088867, 0.05755187225341797, 0.05558476638793945, 0.05566054534912109, 0.05850931167602539, 0.05686476898193359, 0.05549363327026367, 0.05560422515869141, 0.055569408416748046, 0.05578649520874023, 0.05595852661132812, 0.05572403335571289, 0.05566054534912109, 0.055621631622314455, 0.055591934204101565, 0.05563699340820313, 0.05550899124145508, 0.05629132843017578, 0.05575065612792969, 0.05558476638793945, 0.05610086441040039, 0.05598003387451172, 0.05551308822631836, 0.05563904190063477, 0.05569945526123047, 0.05555302429199219, 0.05561446380615234, 0.05581107330322266]",tokens/s,17.470884921202547,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,/,/,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 373, in cached_file + raise EnvironmentError( +OSError: / does not appear to have a file named config.json. Checkout 'https://huggingface.co///tree/None' for available files. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-2.7b,EleutherAI/pythia-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-13b,facebook/opt-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -27539,22 +25204,18 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-7B,Qwen/Qwen1.5-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.4b,EleutherAI/pythia-1.4b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.42.3,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,1610.30144,2204.63104,0.0,1558.183936,1460.94592,s,10,1.21095556640625,0.12109555664062499,0.0010641547634299327,0.12088590621948242,0.12162080078125001,0.1228196014404297,0.12377864196777344,"[0.12401840209960938, 0.12120333099365234, 0.120457763671875, 0.12045849609375, 0.12041088104248047, 0.12001967620849609, 0.12061344146728516, 0.12115837097167968, 0.12126080322265625, 0.12135440063476563]",tokens/s,2114.032976120921,kWh,1.4179196839452421e-06,7.768791417479628e-07,6.063890433118708e-06,8.258689258811912e-06,tokens/kWh,30997654.951946687,MB,1610.30144,2204.63104,0.0,1558.183936,1532.626432,s,10,69.89488818359375,6.989488818359375,0.004243103217668666,6.988570068359375,6.994356689453125,6.996513305664062,6.998238598632812,"[6.9874970703125, 6.99032666015625, 6.998669921875, 6.98964306640625, 6.98713720703125, 6.99221142578125, 6.99387744140625, 6.98657861328125, 6.9846640625, 6.98428271484375]",tokens/s,9.01353470006521,kWh,8.264319939233324e-05,4.5294450197869364e-05,0.00034850786544628274,0.0004764455150364854,tokens/kWh,132229.18048703967,,s,629,70.86934743499755,0.11266986873608516,0.014351668547378101,0.11087564849853515,0.11130736846923828,0.11157073669433594,0.2314320635986328,"[0.11316531372070313, 0.11251097869873047, 0.11209014129638672, 0.1110199966430664, 0.11069747161865234, 0.11074562835693359, 0.11080188751220703, 0.11064524841308594, 0.11066162872314453, 0.11064832305908204, 0.11070259094238281, 0.11060224151611328, 0.11069235229492187, 0.11098521423339844, 0.11078963470458984, 0.11066470336914062, 0.11059200286865234, 0.1106851806640625, 0.11073945617675782, 0.11071590423583984, 0.11070976257324219, 0.11080191802978516, 0.11061965179443359, 0.11073126220703125, 0.1108305892944336, 0.11098111724853515, 0.11077222442626954, 0.11084595489501953, 0.1107240982055664, 0.11080294036865235, 0.11078144073486328, 0.1107988510131836, 0.11058589172363281, 0.1108244171142578, 0.11086029052734375, 0.11067801666259766, 0.11069136047363282, 0.11075682830810547, 0.11072306823730468, 0.11083468627929688, 0.11062067413330078, 0.1107927017211914, 0.11077324676513672, 0.1107435531616211, 0.11105484771728516, 0.11073535919189453, 0.11071078491210938, 0.11087257385253907, 0.1108848648071289, 0.11094322967529296, 0.11104768371582031, 0.11100262451171874, 0.11098623657226563, 0.11090943908691406, 0.11087564849853515, 0.110814208984375, 0.11086438751220704, 0.11091763305664062, 0.11087155151367188, 0.11090636444091796, 0.11095859527587891, 0.11091661071777344, 0.232015869140625, 0.1105264663696289, 0.11075379180908203, 0.11073433685302735, 0.11063603210449219, 0.11060736083984375, 0.1107957763671875, 0.11059814453125, 0.1106513900756836, 0.1106165771484375, 0.11049267578125, 0.11155967712402344, 0.11085414123535156, 0.11077120208740235, 0.11081728363037109, 0.11089510345458985, 0.11144294738769531, 0.11074559783935548, 0.11073126220703125, 0.11089100646972656, 0.11055308532714844, 0.11082546997070312, 0.11138662719726562, 0.11091353607177734, 0.11087462615966796, 0.11142348480224609, 0.11084697723388671, 0.11085517120361328, 0.11074253082275391, 0.11189965057373047, 0.11119615936279297, 0.11109990692138672, 0.11119411468505859, 0.11075379180908203, 0.11090431976318359, 0.11084697723388671, 0.1111357421875, 0.11090739440917968, 0.11068109130859374, 0.11095552062988281, 0.11090841674804687, 0.11090636444091796, 0.11058073425292969, 0.11056639862060547, 0.11075788879394531, 0.1106534423828125, 0.11183309173583984, 0.11085107421875, 0.11081318664550781, 0.11086335754394532, 0.11153305816650391, 0.11171635437011719, 0.11179724884033203, 0.11118284606933594, 0.11113676452636718, 0.11101900482177735, 0.11095142364501953, 0.1110282211303711, 0.11115731048583985, 0.11110700988769531, 0.11107020568847656, 0.11094425964355469, 0.11104051208496094, 0.23170252990722656, 0.11086438751220704, 0.11075379180908203, 0.11077324676513672, 0.11128524780273437, 0.11143679809570313, 0.11095244598388672, 0.11065650939941406, 0.11109990692138672, 0.1110149154663086, 0.1110282211303711, 0.11082240295410156, 0.11086847686767579, 0.11093196868896485, 0.11128832244873046, 0.11095040130615234, 0.11104972839355469, 0.11132723236083984, 0.11132621002197265, 0.11095244598388672, 0.11086233520507813, 0.11052748870849609, 0.11109990692138672, 0.11152793884277344, 0.11081523132324218, 0.11071488189697265, 0.11085209655761719, 0.1112074203491211, 0.11076710510253907, 0.11094220733642578, 0.11125657653808593, 0.11104153442382812, 0.11101593780517578, 0.1107589111328125, 0.1108828125, 0.11091865539550781, 0.11094118499755859, 0.11155353546142578, 0.11141836547851562, 0.11086131286621094, 0.11138457489013671, 0.11153817749023437, 0.11202867126464844, 0.11150035095214844, 0.11127289581298828, 0.110814208984375, 0.11091455841064453, 0.11140914916992188, 0.11102617645263672, 0.11109072113037109, 0.11095037078857421, 0.1117276153564453, 0.11129241943359375, 0.11085517120361328, 0.11174604797363281, 0.11111321258544922, 0.11094118499755859, 0.11088076782226562, 0.11153305816650391, 0.11111219024658203, 0.11100364685058593, 0.11089612579345703, 0.11108659362792969, 0.23120793151855468, 0.11064934539794923, 0.11062374114990234, 0.11083673858642579, 0.11067494201660157, 0.11077836608886718, 0.11070771026611329, 0.11060428619384766, 0.11080601501464844, 0.11074969482421874, 0.11075379180908203, 0.11072819519042969, 0.11140505981445313, 0.11159654235839844, 0.11136716461181641, 0.11071282958984376, 0.1108705291748047, 0.11113164520263671, 0.11083161926269532, 0.11081830596923828, 0.11085721588134766, 0.1109719009399414, 0.1109401626586914, 0.11103539276123046, 0.1110149154663086, 0.11100057220458984, 0.11097395324707031, 0.11096781158447265, 0.110993408203125, 0.11080806732177734, 0.11181362915039063, 0.11124121856689453, 0.11092582702636719, 0.11085517120361328, 0.11085311889648437, 0.11080294036865235, 0.11073638153076172, 0.11090431976318359, 0.110919677734375, 0.11091558074951172, 0.11097395324707031, 0.11094528198242187, 0.11098316955566406, 0.11123609924316406, 0.11135488128662109, 0.11103846740722656, 0.11125350189208984, 0.11107635498046875, 0.11111219024658203, 0.11118284606933594, 0.11092479705810547, 0.11090431976318359, 0.11093401336669922, 0.1108111343383789, 0.11092070770263672, 0.11098214721679688, 0.11090943908691406, 0.11086847686767579, 0.11084595489501953, 0.11083980560302735, 0.1109381103515625, 0.11087462615966796, 0.11084185791015624, 0.23191654968261718, 0.11074253082275391, 0.1107558364868164, 0.11099954986572266, 0.11119821166992187, 0.11085721588134766, 0.11090022277832032, 0.1106175994873047, 0.11069951629638672, 0.11075174713134765, 0.11111014556884766, 0.11087564849853515, 0.11088384246826172, 0.11175116729736329, 0.11096575927734376, 0.11088896179199219, 0.11072512054443359, 0.1114224624633789, 0.11089100646972656, 0.11084390258789062, 0.11089408111572266, 0.11085004425048828, 0.1106012191772461, 0.11063295745849609, 0.11075276947021484, 0.11079065704345703, 0.11080397033691407, 0.11073945617675782, 0.11084902191162109, 0.11068621063232421, 0.11091661071777344, 0.11076300811767578, 0.11077638244628907, 0.11071379089355468, 0.11078246307373046, 0.11075276947021484, 0.11077120208740235, 0.11068621063232421, 0.11095654296875, 0.11124121856689453, 0.11106816101074218, 0.11082854461669922, 0.11157810974121093, 0.11099852752685548, 0.11090943908691406, 0.11087564849853515, 0.11085926055908203, 0.11091251373291015, 0.11085823822021484, 0.11085517120361328, 0.11084390258789062, 0.11089920043945313, 0.110887939453125, 0.1107927017211914, 0.11096883392333984, 0.11088697814941406, 0.11091756439208984, 0.11122278594970703, 0.11093606567382812, 0.1109227523803711, 0.11093094635009766, 0.1110118408203125, 0.11085721588134766, 0.23100518798828126, 0.11085721588134766, 0.11103437042236328, 0.11103846740722656, 0.11079373168945313, 0.11100672149658203, 0.11120025634765625, 0.11079373168945313, 0.11077632141113282, 0.11078246307373046, 0.11091251373291015, 0.111067138671875, 0.11082035064697265, 0.11113983917236328, 0.11079167938232422, 0.11095449829101563, 0.11072921752929688, 0.11073945617675782, 0.111098876953125, 0.11083161926269532, 0.11117874908447266, 0.1109964828491211, 0.11097702026367187, 0.11084185791015624, 0.11079475402832031, 0.11084902191162109, 0.11168972778320313, 0.11109683227539062, 0.111351806640625, 0.11110707092285156, 0.11155865478515625, 0.11136409759521484, 0.11103641510009765, 0.1109381103515625, 0.11078348541259765, 0.11093299102783204, 0.11105177307128906, 0.11092684936523438, 0.11187814331054688, 0.11165286254882813, 0.11094220733642578, 0.11094630432128906, 0.11073843383789063, 0.11088690948486328, 0.110993408203125, 0.11093299102783204, 0.11133235168457031, 0.11102003479003907, 0.1108674545288086, 0.11093196868896485, 0.11087974548339843, 0.11092377471923828, 0.11084390258789062, 0.11086029052734375, 0.11091865539550781, 0.11089202880859375, 0.11088384246826172, 0.11085619354248047, 0.1107988510131836, 0.1108674545288086, 0.11078041839599609, 0.11094834899902344, 0.11084390258789062, 0.23151922607421874, 0.11238092803955078, 0.11110195159912109, 0.11081215667724609, 0.11071180725097657, 0.11068927764892578, 0.11093196868896485, 0.1107957763671875, 0.11103743743896484, 0.11083062744140625, 0.11077935791015625, 0.11092377471923828, 0.1107988510131836, 0.11103437042236328, 0.11119308471679687, 0.11070873260498047, 0.11073433685302735, 0.11069439697265625, 0.11098623657226563, 0.11105382537841797, 0.11100466918945312, 0.11083468627929688, 0.11070259094238281, 0.1114286117553711, 0.11100672149658203, 0.11114701080322266, 0.11124531555175782, 0.11091558074951172, 0.11108659362792969, 0.11109785461425781, 0.11102003479003907, 0.11099033355712891, 0.11115113830566406, 0.11081520080566407, 0.11091558074951172, 0.1108695068359375, 0.11087974548339843, 0.11102719879150391, 0.11108147430419922, 0.11098009490966797, 0.11090227508544923, 0.11093094635009766, 0.11104467010498047, 0.11085004425048828, 0.11133433532714844, 0.11109785461425781, 0.11109273529052735, 0.1115494384765625, 0.11117158508300781, 0.11097395324707031, 0.11107430267333984, 0.11089510345458985, 0.11159347534179688, 0.11095654296875, 0.11123916625976563, 0.11102003479003907, 0.11120950317382812, 0.11099440002441406, 0.1108479995727539, 0.11085107421875, 0.11095040130615234, 0.11082444763183594, 0.1111900177001953, 0.23210704040527344, 0.11165692901611328, 0.11079167938232422, 0.11076812744140625, 0.11082649230957031, 0.11084902191162109, 0.11091149139404297, 0.11082137298583984, 0.11113267517089843, 0.11084697723388671, 0.11103641510009765, 0.11080089569091797, 0.1109227523803711, 0.11097087860107421, 0.11118284606933594, 0.11100569915771484, 0.11142144012451172, 0.11084902191162109, 0.11086233520507813, 0.11098419189453125, 0.11085517120361328, 0.11071590423583984, 0.11084595489501953, 0.11079065704345703, 0.11075788879394531, 0.11074969482421874, 0.11114905548095703, 0.11111116790771484, 0.11128524780273437, 0.11088896179199219, 0.11084185791015624, 0.11085414123535156, 0.11084083557128906, 0.11082649230957031, 0.11088076782226562, 0.11086847686767579, 0.11084902191162109, 0.11075379180908203, 0.11080703735351563, 0.1108326416015625, 0.11081625366210937, 0.11082854461669922, 0.1107988510131836, 0.11076300811767578, 0.11106098937988282, 0.11079065704345703, 0.11085107421875, 0.11082752227783203, 0.11089715576171875, 0.11078041839599609, 0.11082240295410156, 0.11080294036865235, 0.11087462615966796, 0.11081625366210937, 0.11089202880859375, 0.11096883392333984, 0.11079475402832031, 0.11079167938232422, 0.1108695068359375, 0.11085517120361328, 0.1108848648071289, 0.11083878326416016, 0.1109012451171875, 0.23219711303710938, 0.11054796600341797, 0.11063091278076172, 0.11097907257080078, 0.1107220458984375, 0.11073228454589844, 0.11069644927978516, 0.11064835357666016, 0.1108274917602539, 0.11064934539794923, 0.11062783813476562, 0.11064729309082032, 0.11074867248535156, 0.11066880035400391, 0.11075686645507812, 0.11128934478759765, 0.11109171295166016, 0.1118392333984375, 0.11117874908447266, 0.11070054626464844, 0.11073843383789063, 0.11083673858642579, 0.11082240295410156, 0.11079475402832031, 0.11125965118408203, 0.11074662780761718, 0.11078041839599609, 0.11130265808105469, 0.11090227508544923, 0.11071590423583984, 0.11079065704345703, 0.1107589111328125, 0.1107589111328125, 0.11080908966064452, 0.11087974548339843, 0.11083366394042969, 0.11086847686767579, 0.11106816101074218, 0.11083673858642579, 0.11082444763183594, 0.11081932830810547, 0.11074559783935548, 0.11097805023193359, 0.11082854461669922, 0.11081830596923828, 0.11076403045654297, 0.11080191802978516, 0.1108111343383789, 0.1107619857788086, 0.11075379180908203, 0.11113471984863281, 0.11089510345458985, 0.1109964828491211, 0.1112616958618164, 0.11135692596435547, 0.11087667083740234, 0.11085209655761719, 0.11084902191162109, 0.11087564849853515, 0.11095756530761719, 0.11090022277832032, 0.11075174713134765, 0.11066777801513672, 0.23221554565429686, 0.11071282958984376, 0.11071078491210938, 0.11081011199951171, 0.11064627075195313, 0.11077938842773437, 0.11075587463378907, 0.11070563507080078, 0.11075174713134765, 0.11071692657470703, 0.11072819519042969, 0.11062989044189453, 0.11059712219238281, 0.11076300811767578, 0.11081932830810547, 0.11082035064697265, 0.11069747161865234, 0.11060018920898437, 0.11116134643554687, 0.11085107421875, 0.1106175994873047, 0.11080191802978516, 0.11060838317871094, 0.11082956695556641, 0.1108674545288086, 0.1106851806640625, 0.11128422546386718, 0.11070361328125, 0.11062579345703125, 0.11066880035400391, 0.11061248016357422, 0.11078656005859375, 0.11088902282714844, 0.11059398651123047, 0.11090943908691406, 0.11082956695556641, 0.11072614288330078, 0.11071488189697265, 0.11071180725097657, 0.11069747161865234, 0.11098419189453125, 0.1116354522705078, 0.11094118499755859, 0.11096781158447265, 0.11192729949951172, 0.11095654296875, 0.11084390258789062, 0.11088384246826172, 0.1108326416015625, 0.11087155151367188, 0.11092070770263672, 0.11140300750732422, 0.11090022277832032, 0.11150950622558593, 0.11123712158203125, 0.11087872314453125, 0.11086438751220704, 0.11093094635009766, 0.11086029052734375, 0.11086438751220704, 0.11089817810058594, 0.1110292510986328, 0.11088896179199219]",tokens/s,8.875487397099688,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-1_6b,stabilityai/stablelm-2-1_6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1448.177664,2449.997824,0.0,1803.55072,1664.521216,s,10,1.3644380798339844,0.13644380798339845,0.0014011159264243525,0.13627196502685546,0.13786112670898437,0.13869882049560547,0.13936897552490235,"[0.13953651428222658, 0.13767497253417968, 0.1349912567138672, 0.13507321166992187, 0.13563778686523437, 0.13482015991210938, 0.13582060241699218, 0.13672332763671874, 0.13708172607421876, 0.13707852172851562]",tokens/s,1876.2302502664566,kWh,1.5975721627921314e-06,8.753909460972716e-07,6.686964809027082e-06,9.159927917916485e-06,tokens/kWh,27947818.180891287,MB,1448.472576,2449.997824,0.0,1803.55072,1763.593728,s,10,81.3460283203125,8.13460283203125,0.011946610722273996,8.1315908203125,8.150488769531249,8.15235205078125,8.153842675781249,"[8.13529541015625, 8.1396748046875, 8.11939111328125, 8.1203115234375, 8.14693603515625, 8.12648193359375, 8.12576123046875, 8.15007470703125, 8.15421533203125, 8.12788623046875]",tokens/s,7.744692801955592,kWh,9.601664840011627e-05,5.262418258723866e-05,0.0003946831618423715,0.0005433239928297265,tokens/kWh,115952.91360479954,,s,629,82.4390829467774,0.13106372487563966,0.01624326295714781,0.1289318389892578,0.12986593322753906,0.13038284606933595,0.2649074096679688,"[0.13380709838867189, 0.1322936248779297, 0.13054360961914063, 0.1302783966064453, 0.12868301391601564, 0.12876185607910157, 0.12865126037597657, 0.12903424072265626, 0.12871475219726564, 0.12893490600585938, 0.1289205780029297, 0.12972032165527345, 0.1293711395263672, 0.12937216186523437, 0.1286614990234375, 0.12999168395996094, 0.12912229919433593, 0.1288099822998047, 0.12900044250488282, 0.12889395141601562, 0.12870246887207032, 0.12895744323730468, 0.12921856689453126, 0.128795654296875, 0.12864614868164062, 0.12892466735839844, 0.1287782440185547, 0.1288970184326172, 0.12859596252441408, 0.13040333557128905, 0.1292042236328125, 0.12866867065429688, 0.12910386657714842, 0.12879667663574218, 0.12910797119140624, 0.12875161743164062, 0.12865228271484375, 0.12910182189941405, 0.12855398559570314, 0.12869017028808594, 0.1285877685546875, 0.12864717102050782, 0.12905984497070314, 0.12876800537109376, 0.1286492156982422, 0.128606201171875, 0.12849868774414064, 0.12877619934082032, 0.12863282775878906, 0.1288140869140625, 0.12869119262695314, 0.12871987915039063, 0.1286246337890625, 0.12838092041015625, 0.12851097106933593, 0.12944383239746093, 0.1286277160644531, 0.1287710723876953, 0.12888677978515625, 0.12879052734375, 0.12854885864257812, 0.1299640350341797, 0.2665809936523437, 0.12871066284179689, 0.12894105529785158, 0.1295984649658203, 0.12898304748535155, 0.12851507568359374, 0.12878950500488281, 0.12854783630371094, 0.12850688171386718, 0.12838911437988282, 0.12960768127441405, 0.12967936706542968, 0.1298472900390625, 0.1296302032470703, 0.13025894165039062, 0.13039308166503907, 0.1289871368408203, 0.1294192657470703, 0.1304954833984375, 0.12884991455078126, 0.12983807373046874, 0.1289390106201172, 0.12923085021972655, 0.1289871368408203, 0.12885401916503905, 0.12969369506835937, 0.12940800476074218, 0.12860415649414061, 0.12912844848632812, 0.12885093688964844, 0.12888882446289063, 0.1289707489013672, 0.12897279357910157, 0.12949708557128906, 0.1289758758544922, 0.12905471801757812, 0.12891751098632812, 0.1290301513671875, 0.1288406982421875, 0.1292779541015625, 0.12873216247558594, 0.1292216339111328, 0.12959539794921876, 0.12929945373535157, 0.12899020385742188, 0.1289697265625, 0.13126144409179688, 0.12883660888671875, 0.12922367858886719, 0.12980940246582032, 0.12895846557617188, 0.12943463134765626, 0.12903321838378906, 0.1292216339111328, 0.1292656707763672, 0.12897279357910157, 0.1300193328857422, 0.12942233276367188, 0.12876185607910157, 0.12872601318359375, 0.1286103057861328, 0.12886732482910157, 0.128753662109375, 0.2649610290527344, 0.1289195556640625, 0.12843621826171875, 0.12883558654785157, 0.12871475219726564, 0.12869529724121093, 0.12869325256347655, 0.12878950500488281, 0.1287209014892578, 0.12903117370605469, 0.12896153259277343, 0.1297407989501953, 0.12884378051757814, 0.12859085083007812, 0.12871270751953126, 0.1286604766845703, 0.12877926635742187, 0.12865126037597657, 0.12881817626953124, 0.12926361083984375, 0.12863999938964843, 0.1286297607421875, 0.1285550079345703, 0.12893798828125, 0.128932861328125, 0.12907008361816405, 0.12877516174316406, 0.12867584228515624, 0.12991897583007814, 0.1287045135498047, 0.12865843200683594, 0.12990669250488282, 0.1296609344482422, 0.12844236755371094, 0.12855091857910156, 0.12866867065429688, 0.12861337280273438, 0.1286871032714844, 0.12876185607910157, 0.12873420715332032, 0.1288775634765625, 0.12874342346191406, 0.1287720947265625, 0.12879257202148436, 0.1287915496826172, 0.1290198974609375, 0.12967730712890624, 0.129797119140625, 0.12876390075683594, 0.128795654296875, 0.12886834716796874, 0.128932861328125, 0.12865437316894532, 0.12863279724121093, 0.1286420440673828, 0.12882432556152343, 0.12872703552246093, 0.12905267333984374, 0.12885299682617188, 0.1287772216796875, 0.1287188415527344, 0.12861439514160156, 0.1287772216796875, 0.26476953125, 0.12873829650878907, 0.12883148193359376, 0.12851199340820313, 0.12869631958007813, 0.12847923278808593, 0.12853042602539064, 0.12893798828125, 0.12854988098144532, 0.12875263977050783, 0.128505859375, 0.12852224731445314, 0.12876800537109376, 0.12872909545898437, 0.12887347412109376, 0.12867584228515624, 0.12863282775878906, 0.1286860809326172, 0.1286614990234375, 0.12861952209472657, 0.12875570678710938, 0.12855398559570314, 0.12889599609375, 0.12875263977050783, 0.12984013366699218, 0.1295626220703125, 0.12891545104980467, 0.1287720947265625, 0.12863282775878906, 0.12864717102050782, 0.12877311706542968, 0.12869529724121093, 0.12856422424316405, 0.1285201873779297, 0.1286625213623047, 0.1287720947265625, 0.12851199340820313, 0.1287403564453125, 0.1289318389892578, 0.12899635314941407, 0.12849664306640626, 0.12876902770996093, 0.13012684631347657, 0.12892160034179687, 0.1313116149902344, 0.13377740478515626, 0.12898611450195313, 0.12884889221191406, 0.12867481994628907, 0.1287475128173828, 0.1288089599609375, 0.12871168518066406, 0.12876390075683594, 0.12973362731933594, 0.12869223022460938, 0.12912229919433593, 0.12858781433105468, 0.12859286499023437, 0.128395263671875, 0.12851199340820313, 0.12858982849121095, 0.1285191650390625, 0.12845773315429687, 0.26590206909179687, 0.13000090026855468, 0.1293588409423828, 0.1295380554199219, 0.12994560241699218, 0.12998042297363283, 0.12985958862304686, 0.13036749267578124, 0.12995071411132814, 0.1288765411376953, 0.12879974365234376, 0.12941722106933592, 0.12930047607421874, 0.12891136169433592, 0.12978790283203126, 0.12877619934082032, 0.12878746032714844, 0.12919500732421876, 0.12896255493164063, 0.1289134063720703, 0.1290373077392578, 0.12975308227539062, 0.12882841491699218, 0.1290198974609375, 0.12901478576660155, 0.12898918151855468, 0.12967628479003906, 0.12916940307617186, 0.12887449645996094, 0.12921139526367187, 0.12869631958007813, 0.12922880554199218, 0.12872909545898437, 0.12871168518066406, 0.12892979431152343, 0.129185791015625, 0.12892672729492188, 0.1294254150390625, 0.13041868591308595, 0.12922265625, 0.12881613159179686, 0.12874342346191406, 0.12914994812011718, 0.12993023681640625, 0.12914892578125, 0.12977766418457032, 0.1297592315673828, 0.12924826049804689, 0.12885197448730468, 0.12885606384277343, 0.12906803894042967, 0.12960665893554688, 0.12895333862304686, 0.1296312255859375, 0.12864512634277345, 0.13046885681152343, 0.12909056091308593, 0.13064703369140626, 0.12966400146484375, 0.13024972534179688, 0.12901683044433593, 0.12863385009765624, 0.1289738311767578, 0.2638612365722656, 0.1288478698730469, 0.1288151092529297, 0.12867584228515624, 0.1286604766845703, 0.12864102172851563, 0.12869223022460938, 0.12870553588867187, 0.1286871032714844, 0.12933427429199218, 0.12895846557617188, 0.1287362518310547, 0.12880487060546875, 0.12846080017089845, 0.12952064514160155, 0.12865740966796874, 0.12858982849121095, 0.1286840362548828, 0.128827392578125, 0.12865228271484375, 0.13033267211914062, 0.1298913269042969, 0.12930662536621093, 0.12879769897460938, 0.12924006652832032, 0.12911514282226563, 0.12893696594238283, 0.12896563720703125, 0.1286840362548828, 0.12859596252441408, 0.1286553649902344, 0.12849356079101562, 0.12909567260742189, 0.129185791015625, 0.12871168518066406, 0.12875161743164062, 0.12851199340820313, 0.12922265625, 0.1306798095703125, 0.12952780151367188, 0.129396728515625, 0.12962509155273438, 0.12861952209472657, 0.12871168518066406, 0.1286543426513672, 0.12885708618164063, 0.12871475219726564, 0.12898918151855468, 0.12887551879882814, 0.12875263977050783, 0.1291130828857422, 0.12952268981933593, 0.13002137756347656, 0.12975410461425782, 0.12933427429199218, 0.12950425720214845, 0.1291673583984375, 0.12911001586914062, 0.12872294616699217, 0.12854170227050782, 0.12845362854003906, 0.12869223022460938, 0.12868812561035156, 0.26576177978515625, 0.12924826049804689, 0.12867788696289062, 0.1287782440185547, 0.12968960571289062, 0.12889497375488282, 0.12866969299316405, 0.1288099822998047, 0.12962098693847657, 0.12901580810546875, 0.12879359436035157, 0.12876390075683594, 0.1289564208984375, 0.12874240112304688, 0.1286871032714844, 0.12908851623535156, 0.1289134063720703, 0.12863591003417968, 0.1290577850341797, 0.1289635772705078, 0.12908441162109374, 0.12881715393066406, 0.12893798828125, 0.1303019561767578, 0.12936192321777343, 0.12894105529785158, 0.1289318389892578, 0.129227783203125, 0.12891136169433592, 0.12872294616699217, 0.1287587890625, 0.1295083465576172, 0.1288826904296875, 0.1295636444091797, 0.1291714630126953, 0.12932505798339844, 0.1291663360595703, 0.12864614868164062, 0.12883148193359376, 0.12890419006347656, 0.12887962341308593, 0.12895846557617188, 0.12895333862304686, 0.12924826049804689, 0.12880793762207032, 0.12882330322265625, 0.12863282775878906, 0.12880076599121093, 0.12866764831542968, 0.1288140869140625, 0.12918885803222657, 0.12923085021972655, 0.12873216247558594, 0.12884378051757814, 0.128822265625, 0.12880793762207032, 0.12889190673828124, 0.12862361145019532, 0.12879872131347656, 0.12901785278320313, 0.12870655822753907, 0.12871168518066406, 0.1288826904296875, 0.26630654907226564, 0.1309654998779297, 0.1296506805419922, 0.1291356201171875, 0.128932861328125, 0.12939263916015625, 0.12916326904296874, 0.1299814453125, 0.1290997772216797, 0.12907008361816405, 0.12940390014648437, 0.12927078247070312, 0.12884991455078126, 0.12983091735839844, 0.13016986083984375, 0.1290373077392578, 0.12927999877929688, 0.129438720703125, 0.13061734008789064, 0.12889190673828124, 0.12984831237792968, 0.13007769775390626, 0.13092965698242187, 0.12898611450195313, 0.1293158416748047, 0.12955955505371095, 0.12935475158691406, 0.1288478698730469, 0.1289697265625, 0.12932403564453124, 0.12959744262695314, 0.12883763122558595, 0.1288212432861328, 0.12967628479003906, 0.12876287841796874, 0.12947251892089845, 0.12944998168945313, 0.12905574035644532, 0.12925234985351564, 0.12954010009765626, 0.12926771545410157, 0.12993536376953124, 0.12876185607910157, 0.12890725708007814, 0.12937216186523437, 0.12992716979980468, 0.13034597778320312, 0.12930764770507813, 0.12888064575195313, 0.12883865356445312, 0.12890316772460939, 0.12986265563964844, 0.12991384887695312, 0.1290188751220703, 0.1290076141357422, 0.12887962341308593, 0.1289758758544922, 0.12898611450195313, 0.1288642578125, 0.12870758056640624, 0.12963226318359375, 0.1289932861328125, 0.12938035583496094, 0.26711550903320314, 0.12889395141601562, 0.12987904357910157, 0.12996607971191407, 0.12963941955566408, 0.12896461486816407, 0.12874444580078126, 0.12914175415039061, 0.129512451171875, 0.12889804077148437, 0.12933938598632813, 0.12918885803222657, 0.1291653137207031, 0.12967526245117186, 0.13058149719238282, 0.12971212768554688, 0.12983705139160157, 0.1312491455078125, 0.12968960571289062, 0.1296855010986328, 0.12951449584960936, 0.12930458068847656, 0.12980633544921874, 0.12941004943847656, 0.12944691467285158, 0.12926669311523437, 0.12979507446289062, 0.12961485290527344, 0.1289553985595703, 0.12896563720703125, 0.12977459716796874, 0.13095936584472656, 0.13045452880859376, 0.13097267150878905, 0.12978483581542968, 0.13107609558105468, 0.13026611328125, 0.1297100830078125, 0.12907212829589843, 0.1287209014892578, 0.12875468444824217, 0.12891647338867188, 0.1297838134765625, 0.1291980743408203, 0.1292410888671875, 0.12913253784179687, 0.12873420715332032, 0.12888986206054687, 0.12877516174316406, 0.12898611450195313, 0.1289144287109375, 0.12875059509277345, 0.12870040893554688, 0.12886015319824218, 0.12891647338867188, 0.12871270751953126, 0.12871372985839843, 0.12924620056152344, 0.12940083312988282, 0.12916120910644532, 0.129939453125, 0.12903526306152344, 0.128827392578125, 0.2668564453125, 0.1297244110107422, 0.129291259765625, 0.12891647338867188, 0.1289871368408203, 0.12860211181640624, 0.1287884826660156, 0.12873420715332032, 0.12900863647460936, 0.12901683044433593, 0.1291663360595703, 0.1291724853515625, 0.12918885803222657, 0.12881715393066406, 0.12899122619628905, 0.1286604766845703, 0.1290997772216797, 0.12963839721679687, 0.12860415649414061, 0.12885299682617188, 0.1286973419189453, 0.128901123046875, 0.12870758056640624, 0.12876185607910157, 0.12874855041503908, 0.1287393341064453, 0.12990669250488282, 0.13078732299804688, 0.1296609344482422, 0.12924006652832032, 0.12881715393066406, 0.12901580810546875, 0.1292769317626953, 0.1289758758544922, 0.12890316772460939, 0.12894514465332033, 0.12875672912597655, 0.12894720458984374, 0.12874137878417968, 0.12878437805175783, 0.12906803894042967, 0.12887347412109376, 0.12873829650878907, 0.1290496063232422, 0.1295636444091797, 0.12900044250488282, 0.12882432556152343, 0.12890931701660155, 0.12891853332519532, 0.1297643585205078, 0.1288028106689453, 0.12875570678710938, 0.12874137878417968, 0.12874444580078126, 0.12869017028808594, 0.12901274108886718, 0.12943257141113282, 0.12871270751953126, 0.12867071533203125, 0.12885708618164063, 0.12893594360351562, 0.1285867462158203, 0.12889292907714844]",tokens/s,7.629876237294903,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-rw-1b,tiiuae/falcon-rw-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -27572,24 +25233,18 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: FalconForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,-,-,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-2b,google/gemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -27597,13 +25252,47 @@ NameError: name 'exl_ext' is not defined File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/gemma-2b/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status + raise HfHubHTTPError(message, response=response) from e +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-6694810d-01e8adbd1d9d990f66604f76;e02ab593-2d28-465f-bce4-90aefffa5f9c) + +403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. +Cannot access content at: https://huggingface.co/google/gemma-2b/resolve/main/config.json. +If you are trying to create or update content,make sure you have a token with the `write` role. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 106, in _inner_fn - validate_repo_id(arg_value) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 160, in validate_repo_id - raise HFValidationError( -huggingface_hub.errors.HFValidationError: Repo id must use alphanumeric chars or '-', '_', '.', '--' and '..' are forbidden, '-' and '.' cannot start or end the name, max length is 96: '-'. + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error + raise LocalEntryNotFoundError( +huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. The above exception was the direct cause of the following exception: @@ -27624,12 +25313,13 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 466, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file raise EnvironmentError( -OSError: Incorrect path_or_model_id: '-'. Please provide either the path to a local folder or the repo_id of a model on the Hub. +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/gemma-2b is not the path to a directory containing a file named config.json. +Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-125m,facebook/opt-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-7b,tiiuae/falcon-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -27647,24 +25337,19 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: FalconForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-6.7b,EleutherAI/pythia-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-12b,EleutherAI/pythia-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.42.3,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,1542.070272,9574.023168,0.0,8927.576064,8585.053184,s,10,9.482604919433594,0.9482604919433595,0.0008260811719636861,0.9479547424316406,0.94941376953125,0.9494473327636719,0.9494741833496094,"[0.9490130004882813, 0.94773095703125, 0.947888427734375, 0.9473400268554687, 0.9480210571289063, 0.9470042114257813, 0.94784326171875, 0.9488767700195313, 0.9494063110351563, 0.9494808959960938]",tokens/s,269.9680121391065,kWh,1.1186615084156847e-05,6.129816613698998e-06,5.138228858054715e-05,6.8698720278403e-05,tokens/kWh,3726415.848250952,MB,1542.070272,9574.023168,0.0,8927.576064,8848.595456,s,10,563.8236953125,56.382369531250006,0.006341033853176846,56.382623046875,56.388686328125,56.3898587890625,56.390796757812495,"[56.388078125, 56.37173828125, 56.37409375, 56.38842578125, 56.3804140625, 56.38051171875, 56.384734375, 56.39103125, 56.376703125, 56.38796484375]",tokens/s,1.1173705632410884,kWh,0.0006656233578544073,0.00036482027414217567,0.0030422669085590557,0.0040727105405556395,tokens/kWh,15468.813551233847,,s,629,571.4626268310548,0.9085256388411044,0.1125877667908229,0.8949237670898438,0.8955600952148438,0.8957106079101562,1.8423289111328125,"[0.8947117919921875, 0.8944906005859375, 0.894487548828125, 0.8946493530273437, 0.8944937133789063, 0.8946043701171875, 0.8949923095703125, 0.8949176025390625, 0.89470361328125, 0.8947046508789063, 0.8949002075195313, 0.8946964721679688, 0.894624755859375, 0.8946841430664062, 0.8946831665039062, 0.8945592041015625, 0.8946094360351563, 0.8955238647460938, 0.8949595947265625, 0.8950548706054687, 0.8953436279296875, 0.8954111938476562, 0.8952739868164062, 0.8949595947265625, 0.89497802734375, 0.895678466796875, 0.89542041015625, 0.8951244506835937, 0.8955187377929688, 0.8954183959960937, 0.8956139526367187, 0.895541259765625, 0.8952381591796875, 0.8951981811523437, 0.894613525390625, 0.8951449584960938, 0.89522998046875, 0.8949349975585937, 0.8950794067382812, 0.8955852661132813, 0.8955136108398437, 0.8957040405273438, 0.89653759765625, 0.895425537109375, 0.8957429809570312, 0.8955657958984375, 0.8946759643554687, 0.8947702026367188, 0.8948060302734375, 0.8948029174804687, 0.8947312622070313, 0.8949166259765625, 0.894961669921875, 0.894698486328125, 0.8946677856445312, 0.8949760131835938, 0.8948101196289062, 0.8951265258789063, 0.8949155883789063, 0.8949125366210937, 0.8952319946289062, 0.8952125244140625, 1.84270849609375, 0.8942510375976562, 0.8942520141601562, 0.8943861694335937, 0.8943790283203125, 0.89421826171875, 0.8942530517578124, 0.8943472900390625, 0.8943073120117188, 0.8942039184570313, 0.8943523559570312, 0.8947466430664063, 0.8944496459960938, 0.8944578857421875, 0.8946176147460938, 0.8945325927734376, 0.8944998168945313, 0.8944578857421875, 0.8943411254882813, 0.8944066772460938, 0.8947333374023437, 0.8947742919921875, 0.8952371215820313, 0.8951920776367187, 0.8950742797851563, 0.8953036499023438, 0.8958607177734375, 0.8951480102539062, 0.894561279296875, 0.8945745849609374, 0.89464013671875, 0.89449267578125, 0.8947291870117188, 0.8946995239257812, 0.8953272094726562, 0.8949248046875, 0.8945797119140625, 0.894581787109375, 0.8946227416992187, 0.89453466796875, 0.8946360473632813, 0.8944865112304687, 0.894972900390625, 0.8946022338867188, 0.8948131713867188, 0.89630615234375, 0.8950855712890625, 0.8945735473632812, 0.89509375, 0.894877685546875, 0.8948623657226562, 0.8948592529296875, 0.8950701904296875, 0.8948326416015625, 0.8948951416015625, 0.8951039428710937, 0.8956979370117187, 0.8953681640625, 0.8951326904296875, 0.895341552734375, 0.8950026245117187, 0.89509375, 0.89504052734375, 1.842423828125, 0.8941260986328124, 0.8945520629882813, 0.8947220458984375, 0.894656494140625, 0.8945305786132812, 0.89499853515625, 0.8945592041015625, 0.8945950927734375, 0.8945172729492188, 0.8946370849609375, 0.8945059814453125, 0.8944046630859375, 0.8946636352539062, 0.8949012451171875, 0.8946749267578125, 0.8944148559570313, 0.8946463012695313, 0.8946493530273437, 0.8948449096679687, 0.8946841430664062, 0.89457666015625, 0.8946165771484375, 0.8945653686523437, 0.8947998657226562, 0.8951336669921875, 0.89472509765625, 0.8945254516601563, 0.8946647338867187, 0.8947496948242187, 0.8945458984375, 0.8946483154296875, 0.8947752685546875, 0.8946513671875, 0.89472412109375, 0.8949534912109375, 0.89493505859375, 0.8949319458007813, 0.8946903076171875, 0.8946851806640626, 0.8947425537109375, 0.8946165771484375, 0.8947568359375, 0.8950374145507812, 0.8954019775390625, 0.8953005981445312, 0.8949186401367187, 0.895477783203125, 0.8955760498046875, 0.8952893676757813, 0.8947711791992188, 0.8951603393554688, 0.8951644287109375, 0.8949258422851563, 0.8947702026367188, 0.895045654296875, 0.894966796875, 0.8951286010742188, 0.8954326782226563, 0.8955955200195312, 0.8950845336914063, 0.89493505859375, 0.8953036499023438, 1.8420848388671875, 0.8943739013671875, 0.8944742431640625, 0.8944588623046875, 0.8943021850585937, 0.8945551147460937, 0.8949002075195313, 0.8946370849609375, 0.894671875, 0.8950026245117187, 0.8946104125976563, 0.8944783325195312, 0.8946043090820313, 0.894730224609375, 0.8949268188476562, 0.8950210571289062, 0.8947999267578125, 0.8947742309570312, 0.894740478515625, 0.8947445678710938, 0.8951439208984375, 0.8945285034179687, 0.894718994140625, 0.8944946899414062, 0.8946565551757812, 0.8951868896484375, 0.895405029296875, 0.8954634399414062, 0.8955699462890625, 0.89556591796875, 0.8955718994140625, 0.8953794555664063, 0.8954337158203125, 0.8954337158203125, 0.8955197143554687, 0.895415283203125, 0.8947374267578125, 0.8948316040039063, 0.8948848876953125, 0.89493603515625, 0.89607373046875, 0.8953927612304687, 0.8954030151367187, 0.8950763549804688, 0.8948746337890625, 0.8950906982421875, 0.8951173706054687, 0.8950875244140625, 0.8950517578125, 0.895193115234375, 0.8957860107421876, 0.8957142944335937, 0.89510400390625, 0.8949442749023437, 0.8955504760742188, 0.8954183959960937, 0.8954265747070312, 0.8953282470703126, 0.8952658081054687, 0.8953344116210937, 0.8951910400390625, 0.8952115478515625, 0.895372314453125, 1.842798583984375, 0.894867431640625, 0.8944486694335938, 0.8947363891601563, 0.8945643310546875, 0.894624755859375, 0.8943779907226562, 0.8944629516601562, 0.894593017578125, 0.8946360473632813, 0.8946360473632813, 0.8945499877929688, 0.8949258422851563, 0.8945899658203125, 0.8943206176757813, 0.8943810424804688, 0.8943441772460937, 0.8944210205078125, 0.8943964233398437, 0.8946442260742188, 0.8948121337890625, 0.8950394897460937, 0.894508056640625, 0.8946288452148438, 0.894761962890625, 0.894445556640625, 0.894666748046875, 0.8947322998046875, 0.8947803955078125, 0.8947783813476563, 0.8950272216796875, 0.8951142578125, 0.8951838989257812, 0.895194091796875, 0.8952688598632812, 0.8949923706054688, 0.894941162109375, 0.8948592529296875, 0.895120361328125, 0.89495654296875, 0.894834716796875, 0.8950067138671876, 0.8949268188476562, 0.8954276123046875, 0.895098876953125, 0.8948489990234375, 0.89508251953125, 0.8947149047851563, 0.8947844848632812, 0.8949176025390625, 0.8951572265625, 0.8954265747070312, 0.8949329833984375, 0.8952186889648438, 0.89586279296875, 0.8956856079101563, 0.8956375732421875, 0.8958504028320312, 0.8958607177734375, 0.8957890625, 0.896090087890625, 0.8952207641601563, 0.8950046997070312, 1.8418104248046876, 0.894635009765625, 0.8949862670898437, 0.8942847900390625, 0.8947527465820313, 0.89474560546875, 0.8949237670898438, 0.895009765625, 0.8947005615234375, 0.894540771484375, 0.8944691162109375, 0.8947548217773438, 0.8950394897460937, 0.8950814819335937, 0.8949442749023437, 0.8952811279296875, 0.8954982299804688, 0.8953876342773438, 0.8947916870117187, 0.894793701171875, 0.894424072265625, 0.8944189453125, 0.8946421508789062, 0.8948480224609375, 0.8949166259765625, 0.8948336791992187, 0.8950661010742188, 0.894693359375, 0.8947220458984375, 0.8945428466796875, 0.8945264892578125, 0.8946483154296875, 0.8945428466796875, 0.8949534912109375, 0.8950947875976563, 0.8949801025390625, 0.894793701171875, 0.8944804077148437, 0.8948326416015625, 0.8947886352539063, 0.8946463012695313, 0.8950374145507812, 0.8950548706054687, 0.8947046508789063, 0.8948521118164062, 0.8947947387695312, 0.8950343627929688, 0.896016357421875, 0.89537841796875, 0.8949534912109375, 0.8948264770507812, 0.8947291870117188, 0.8948469848632813, 0.8950374145507812, 0.8955863037109375, 0.895625244140625, 0.8950077514648438, 0.8963041381835938, 0.8954111938476562, 0.8953671875, 0.8954623413085937, 0.894798828125, 0.894887939453125, 1.8426265869140626, 0.8947097778320312, 0.8943308715820313, 0.8946094360351563, 0.89487255859375, 0.8948531494140625, 0.8943810424804688, 0.8948029174804687, 0.8945305786132812, 0.894403564453125, 0.8944967651367187, 0.8945111083984375, 0.894256103515625, 0.8942643432617188, 0.8944465942382812, 0.8944373779296875, 0.8948449096679687, 0.8945623168945313, 0.8946790161132813, 0.8952760620117187, 0.8952442626953125, 0.8954480590820313, 0.895604736328125, 0.8951316528320312, 0.895373291015625, 0.8952965087890625, 0.8952135620117188, 0.8954982299804688, 0.89461962890625, 0.894635009765625, 0.89516748046875, 0.8950435791015625, 0.895288330078125, 0.8951705322265625, 0.8953231201171875, 0.8952504272460937, 0.8954859619140625, 0.8955873413085937, 0.8957020874023438, 0.8951807250976562, 0.8950128784179687, 0.8955391845703125, 0.8951060180664062, 0.8948285522460937, 0.8950609741210938, 0.8948336791992187, 0.895288330078125, 0.8960173950195313, 0.8961146850585937, 0.8949033203125, 0.8948756713867188, 0.8947322998046875, 0.8947599487304687, 0.8946739501953125, 0.8947794189453125, 0.89483056640625, 0.8950394897460937, 0.8949503784179688, 0.8951633911132812, 0.895013916015625, 0.8956754150390625, 0.89516748046875, 0.8950999145507812, 1.8436168212890625, 0.8943912963867188, 0.8948367309570312, 0.8948541259765626, 0.8944517211914063, 0.8943073120117188, 0.8948643798828125, 0.8947589111328125, 0.8948408203125, 0.8943790283203125, 0.8945469360351562, 0.8947906494140625, 0.8946472778320312, 0.89457763671875, 0.8946227416992187, 0.8944599609375, 0.8943308715820313, 0.8947947387695312, 0.89451416015625, 0.8946759643554687, 0.8953764038085937, 0.8954818725585938, 0.8954224853515625, 0.8949595947265625, 0.894798828125, 0.89508251953125, 0.89493603515625, 0.8948899536132813, 0.8954071044921875, 0.8956600341796875, 0.8955228271484375, 0.8945531005859375, 0.895091796875, 0.894426025390625, 0.8945940551757813, 0.8949483642578125, 0.8954695434570312, 0.8954337158203125, 0.8955617065429687, 0.895705078125, 0.8956774291992188, 0.8955668334960938, 0.8957470703125, 0.895783935546875, 0.8958381958007813, 0.8955484008789063, 0.8957245483398437, 0.8957757568359375, 0.8956160278320312, 0.8955596923828125, 0.8956641235351562, 0.894929931640625, 0.8956354370117188, 0.8957890625, 0.895720458984375, 0.8952330322265625, 0.8950875854492187, 0.8949013061523438, 0.8949912719726563, 0.8950056762695312, 0.8950292358398437, 0.8950947875976563, 0.895425537109375, 1.844294677734375, 0.8944813842773438, 0.8946903076171875, 0.8944793701171875, 0.8943154907226563, 0.8944281616210937, 0.8947394409179688, 0.8945684204101563, 0.89459814453125, 0.8946411743164062, 0.8946442260742188, 0.8948531494140625, 0.8943698120117187, 0.89447216796875, 0.8945315551757812, 0.894613525390625, 0.8944015502929688, 0.894519287109375, 0.8946494140625, 0.8943318481445313, 0.894856201171875, 0.8947066650390625, 0.8946043090820313, 0.8954736938476563, 0.894951416015625, 0.8945725708007812, 0.8944384155273437, 0.8945336303710938, 0.894424072265625, 0.89456640625, 0.8948255615234375, 0.8949267578125, 0.8951398315429687, 0.8949749755859375, 0.8952821655273437, 0.8951060180664062, 0.8951029663085938, 0.89509375, 0.8948869018554687, 0.89470361328125, 0.8949053344726563, 0.8949002075195313, 0.8952289428710938, 0.8951848754882813, 0.8950517578125, 0.8951705322265625, 0.89493505859375, 0.895046630859375, 0.8949483642578125, 0.895025146484375, 0.8951019287109375, 0.895046630859375, 0.8949944458007812, 0.8952371215820313, 0.8952401733398437, 0.8950508422851563, 0.8953936767578125, 0.8952227783203125, 0.8954398803710938, 0.8953220825195313, 0.8954224853515625, 0.8953753662109375, 0.8951367797851563, 1.844548583984375, 0.8944896240234375, 0.8949319458007813, 0.89477734375, 0.8948880004882812, 0.8951592407226563, 0.8949964599609375, 0.8950630493164062, 0.8949033203125, 0.8947374267578125, 0.8947835083007812, 0.8947149047851563, 0.8950487060546874, 0.8947804565429688, 0.8947496337890625, 0.8945151977539062, 0.89474560546875, 0.894519287109375, 0.894666748046875, 0.8947998657226562, 0.89482958984375, 0.8946575317382812, 0.89470361328125, 0.89495654296875, 0.8948951416015625, 0.8947322387695312, 0.8947548217773438, 0.89498828125, 0.8947803955078125, 0.894624755859375, 0.8946534423828125, 0.8946217041015625, 0.8947435302734374, 0.8945428466796875, 0.8952791137695313, 0.8954193725585937, 0.8954695434570312, 0.8955166625976563, 0.89563134765625, 0.8954306640625, 0.8954142456054688, 0.89560986328125, 0.8953190307617187, 0.8954153442382813, 0.8953906860351563, 0.8954869995117187, 0.8954685668945312, 0.8954306640625, 0.8956671752929688, 0.8955023193359375, 0.8956805419921875, 0.8953036499023438, 0.895129638671875, 0.8948295288085938, 0.8949370727539062, 0.8949995727539063, 0.8952125244140625, 0.8953599853515625, 0.8954337158203125, 0.8954173583984375, 0.8950763549804688, 0.895267822265625, 0.8950804443359375]",tokens/s,1.1006844025619116,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-180B,tiiuae/falcon-180B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -27672,63 +25357,75 @@ NameError: name 'exl_ext' is not defined File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-14B,Qwen/Qwen-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status + raise HfHubHTTPError(message, response=response) from e +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66949924-4e03e7531ba0feba6dc8a9ed;57175d6d-b9ff-4445-9bdc-e97db273007e) + +403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. +Cannot access content at: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json. +If you are trying to create or update content,make sure you have a token with the `write` role. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error + raise LocalEntryNotFoundError( +huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained - model_class = get_class_from_dynamic_module( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module - final_module = get_cached_module_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file - modules_needed = check_imports(resolved_module_file) - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports - raise ImportError( -ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file + raise EnvironmentError( +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like tiiuae/falcon-180B is not the path to a directory containing a file named config.json. +Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-12b,stabilityai/stablelm-2-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,TencentARC/Mistral_Pro_8B_v0.1,TencentARC/Mistral_Pro_8B_v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2452.258816,7298.613248,0.0,6652.166144,6323.221504,s,10,7.6798339843750005,0.7679833984375,0.0025974055850476797,0.7679208068847656,0.7711121887207032,0.7721169158935547,0.772920697631836,"[0.7685753173828125, 0.7731216430664063, 0.7647974853515624, 0.7675167846679688, 0.76627783203125, 0.7641251220703125, 0.7666953735351563, 0.7683248291015625, 0.770888916015625, 0.7695106811523438]",tokens/s,333.34053902837564,kWh,9.039419593792114e-06,4.95321018510627e-06,4.32610068310048e-05,5.725363660990319e-05,tokens/kWh,4471331.694513176,MB,2452.258816,7298.613248,0.0,6652.166144,6382.564864,s,10,455.74574609375,45.57457460937499,0.015546779743152406,45.57488671875,45.595179296874996,45.5973923828125,45.5991628515625,"[45.5867109375, 45.5946875, 45.59960546875, 45.58337109375, 45.55990625, 45.5529375, 45.558640625, 45.56011328125, 45.5776015625, 45.572171875]",tokens/s,1.3823497101175461,kWh,0.000537889561981909,0.0002948106017116671,0.0025152069288305857,0.0033479070925241613,tokens/kWh,18817.726495660016,,s,629,461.93301361083974,0.7343927084433065,0.09125959398126374,0.7233239135742188,0.7243169799804687,0.7247333496093751,1.4901356689453125,"[0.7238604736328125, 0.7241830444335937, 0.7225497436523437, 0.7234365234375, 0.7223142700195313, 0.7223203735351562, 0.7245137939453125, 0.7236771850585938, 0.7226992797851562, 0.723535888671875, 0.7234600830078125, 0.7246929931640625, 0.7229706420898437, 0.7237723999023438, 0.7233392944335938, 0.7235133666992187, 0.7225231323242187, 0.7234631958007812, 0.723367919921875, 0.7226572875976562, 0.7243929443359375, 0.7232921752929687, 0.7236546630859375, 0.7240488891601562, 0.7235286865234375, 0.7245383911132812, 0.7233167114257812, 0.7230576782226562, 0.7237959594726563, 0.7243140869140625, 0.722629638671875, 0.7226122436523438, 0.7224381713867187, 0.7233873901367187, 0.7249028930664062, 0.7240294189453125, 0.723904541015625, 0.7241912231445312, 0.7243069458007813, 0.7245864868164062, 0.7234006958007813, 0.723114990234375, 0.7231324462890625, 0.7226593017578125, 0.7241062622070312, 0.7237662963867187, 0.7239597778320312, 0.724094970703125, 0.7240611572265625, 0.7237017822265625, 0.7238123779296874, 0.72437451171875, 0.7245363159179687, 0.7248076782226562, 0.7224637451171875, 0.7232000122070312, 0.7239700317382812, 0.7240325317382813, 0.7229603881835938, 0.7228866577148437, 0.7229910888671875, 0.7245496215820313, 1.497416748046875, 0.7238062133789063, 0.7237662963867187, 0.7238911743164063, 0.7240550537109375, 0.7237857055664062, 0.7238358764648437, 0.7228784790039062, 0.72378369140625, 0.7233925170898438, 0.7229235229492188, 0.722534423828125, 0.7236341552734376, 0.723399658203125, 0.7241830444335937, 0.7228897094726563, 0.7232071533203125, 0.7245209350585937, 0.7240325317382813, 0.7224688720703125, 0.7228262329101562, 0.7225323486328125, 0.7236700439453125, 0.7239026489257813, 0.72288037109375, 0.7225128784179687, 0.7245783081054687, 0.7235983276367187, 0.7235532836914063, 0.725017578125, 0.724094970703125, 0.7250708618164062, 0.7244400634765625, 0.7243571166992188, 0.7240745239257812, 0.7232041015625, 0.7236218872070312, 0.7237877807617188, 0.7239588012695313, 0.7241809692382812, 0.7240929565429688, 0.7230279541015625, 0.7229634399414062, 0.7229419555664063, 0.72318359375, 0.7240601806640625, 0.7232184448242187, 0.7226746826171875, 0.7235880737304687, 0.724453369140625, 0.7243407592773438, 0.7238184814453125, 0.7240242919921875, 0.7247308959960937, 0.7247349853515626, 0.7235543212890625, 0.7233402709960938, 0.7242977294921875, 0.7243202514648438, 0.723862548828125, 0.724084716796875, 0.723768310546875, 0.7227473754882813, 1.490913330078125, 0.7229655151367187, 0.7226480712890625, 0.7240775756835938, 0.7235686645507813, 0.7231815795898437, 0.72302490234375, 0.7227381591796875, 0.7236761474609374, 0.724653076171875, 0.724200439453125, 0.7239618530273437, 0.7246776123046875, 0.7250585327148438, 0.7243140869140625, 0.7238225708007813, 0.7248977661132813, 0.725359619140625, 0.7238379516601563, 0.7237171020507812, 0.724158447265625, 0.7239188232421875, 0.7248445434570312, 0.7251189575195313, 0.7247544555664063, 0.7250022583007812, 0.7248936767578125, 0.7236198120117188, 0.7234979858398437, 0.723462158203125, 0.7234559936523437, 0.724263916015625, 0.7227955322265625, 0.7225702514648438, 0.7241932983398438, 0.7234805908203125, 0.7234949340820312, 0.72275146484375, 0.7225385131835937, 0.7228804931640626, 0.7242403564453125, 0.7236218872070312, 0.7236986694335937, 0.723472412109375, 0.724126708984375, 0.7239505615234375, 0.7238901977539063, 0.7237283935546875, 0.7242025146484375, 0.724116455078125, 0.7241031494140625, 0.72374169921875, 0.7228671875, 0.7233228759765625, 0.7237857055664062, 0.7240171508789063, 0.72399462890625, 0.7229276123046875, 0.7241410522460937, 0.7236751098632812, 0.7226521606445313, 0.7233648681640625, 0.7235952758789063, 1.49184814453125, 0.7231047973632813, 0.7224780883789063, 0.7224258422851563, 0.72266650390625, 0.7234283447265625, 0.72353076171875, 0.7227269287109375, 0.7243991088867188, 0.7234119873046875, 0.72285595703125, 0.7229951782226562, 0.7234692993164062, 0.7242373046875, 0.7239915771484375, 0.7242465209960938, 0.7243253784179687, 0.7225200805664063, 0.7226972045898438, 0.7227289428710938, 0.7236956176757813, 0.7238881225585938, 0.7240274047851563, 0.7241492309570312, 0.7236741333007812, 0.7231661987304687, 0.723114990234375, 0.7243571166992188, 0.7238656005859375, 0.723240966796875, 0.7226122436523438, 0.7238615112304687, 0.7242168579101562, 0.7235440673828125, 0.7236239624023437, 0.723926025390625, 0.7243919067382812, 0.7229173583984375, 0.7226542358398438, 0.7227238159179687, 0.7229859619140625, 0.7234990234375, 0.7239567260742188, 0.7231416015625, 0.7239454956054687, 0.7230084838867188, 0.7233607788085937, 0.7238359375, 0.7240099487304688, 0.7241431274414063, 0.7246141357421875, 0.7241359252929688, 0.7245772705078125, 0.7245137939453125, 0.725411865234375, 0.723578857421875, 0.7241543579101563, 0.7230054321289062, 0.7233526000976562, 0.7226992797851562, 0.7232420043945312, 0.7230075073242187, 0.7230187377929688, 1.490323486328125, 0.7229685668945313, 0.723535888671875, 0.72338330078125, 0.723409912109375, 0.7233341674804687, 0.7232112426757813, 0.72279345703125, 0.7230853271484375, 0.7230105590820313, 0.7226060791015625, 0.723346435546875, 0.7229296875, 0.72382568359375, 0.7241666259765625, 0.72303515625, 0.7230812377929687, 0.7226583251953125, 0.7230535888671875, 0.7229890747070312, 0.7228118896484375, 0.7222753295898438, 0.7228641357421876, 0.722740234375, 0.72254052734375, 0.7228671875, 0.7227391967773438, 0.7233505249023438, 0.722619384765625, 0.72300439453125, 0.7234150390625, 0.7230556030273437, 0.7235297241210937, 0.722819091796875, 0.723610595703125, 0.7228836059570313, 0.7235348510742188, 0.7226911010742187, 0.7227914428710938, 0.7233935546875, 0.7231590576171875, 0.7238717651367188, 0.72331982421875, 0.7227811889648438, 0.7233136596679688, 0.7229542236328125, 0.7231754150390625, 0.7233607788085937, 0.7233925170898438, 0.7229081420898438, 0.7231047973632813, 0.7224483642578124, 0.723252197265625, 0.722640869140625, 0.7238778686523437, 0.7232604370117187, 0.7231641845703125, 0.7244615478515625, 0.7236874389648438, 0.72321533203125, 0.7241400146484375, 0.7235686645507813, 0.7226695556640625, 1.48693603515625, 0.7224832153320313, 0.7234774780273437, 0.7231426391601562, 0.724173828125, 0.7240755004882813, 0.7229542236328125, 0.72241357421875, 0.7228876953125, 0.7233106079101562, 0.7236618041992188, 0.7231641845703125, 0.7225897216796875, 0.7224903564453125, 0.7225599975585938, 0.7225702514648438, 0.7227361450195312, 0.7226112060546875, 0.7231498413085937, 0.723304443359375, 0.722703369140625, 0.7227955322265625, 0.7233474731445313, 0.7234703369140625, 0.7267368774414062, 0.7227781982421875, 0.7225128173828125, 0.7224033203125, 0.7225589599609376, 0.7226634521484375, 0.7223306274414063, 0.7225364990234375, 0.7230811767578125, 0.72255078125, 0.7227003173828125, 0.7224832153320313, 0.7223961791992187, 0.7230310668945312, 0.7257907104492187, 0.7230904541015625, 0.7228538818359375, 0.7229788208007812, 0.7225180053710938, 0.7223818359375, 0.7229481201171875, 0.7229378662109375, 0.72367822265625, 0.7230084838867188, 0.7230146484375, 0.7226326904296875, 0.7231416015625, 0.7237335205078125, 0.7241860961914063, 0.7245127563476562, 0.722572265625, 0.7229020385742188, 0.72300341796875, 0.72266650390625, 0.7228159790039063, 0.7224207153320312, 0.7239270629882812, 0.72285693359375, 0.722966552734375, 1.4896527099609376, 0.7232348022460937, 0.7239567260742188, 0.7227739868164063, 0.723078125, 0.7226429443359375, 0.7226798095703125, 0.7228703002929687, 0.7228917846679688, 0.7229112548828125, 0.722935791015625, 0.7229030151367187, 0.7226050415039063, 0.7226798095703125, 0.7230105590820313, 0.7234058227539063, 0.7233239135742188, 0.7225077514648437, 0.7225938110351563, 0.7227412719726563, 0.7225303344726562, 0.72310888671875, 0.7248046264648438, 0.7248180541992187, 0.723907470703125, 0.72346826171875, 0.7232081909179687, 0.7231743774414062, 0.7237877807617188, 0.7234160766601563, 0.7235860595703125, 0.7227647705078125, 0.7225620727539063, 0.7228334350585938, 0.7226992797851562, 0.7227996215820313, 0.7227381591796875, 0.7233106079101562, 0.723267578125, 0.7230556030273437, 0.7226695556640625, 0.723061767578125, 0.7235317993164062, 0.7233689575195312, 0.7238010864257812, 0.7234078979492188, 0.7232849731445312, 0.7231876831054688, 0.7232327880859375, 0.7230422973632813, 0.7230341186523438, 0.7235563354492187, 0.7233157348632813, 0.7235266723632813, 0.723040283203125, 0.7234692993164062, 0.7238154296875, 0.7239547119140625, 0.7235758056640625, 0.7227924194335937, 0.7224013061523438, 0.7225753784179687, 0.7224832153320313, 1.4909122314453125, 0.7237437744140625, 0.7234396362304687, 0.7226849365234375, 0.7229102172851563, 0.7227125854492188, 0.7236638793945313, 0.7237918701171875, 0.722882568359375, 0.7225845947265624, 0.7231959228515625, 0.7231826171875, 0.722893798828125, 0.7226316528320312, 0.7233382568359376, 0.7234171142578125, 0.7229818725585937, 0.722428955078125, 0.7228836059570313, 0.722682861328125, 0.7232973022460938, 0.7227125854492188, 0.7229685668945313, 0.723040283203125, 0.7242997436523437, 0.7234037475585937, 0.7232604370117187, 0.7234345092773438, 0.72426904296875, 0.7237816162109375, 0.7232747802734375, 0.7224575805664063, 0.7224043579101562, 0.7228845825195312, 0.7226439819335938, 0.7229317016601563, 0.722651123046875, 0.7223142700195313, 0.7236024169921875, 0.7237283935546875, 0.7242454833984375, 0.72339453125, 0.7232337646484375, 0.7232767944335937, 0.7239905395507813, 0.7230320434570312, 0.7228037109375, 0.7227996215820313, 0.722904052734375, 0.7226705932617188, 0.7241994018554687, 0.7242670288085937, 0.7234703369140625, 0.723314697265625, 0.7229102172851563, 0.722967529296875, 0.7240089721679688, 0.723979248046875, 0.7236167602539062, 0.7229450073242187, 0.7226654663085937, 0.7226122436523438, 0.722820068359375, 1.495736328125, 0.724738037109375, 0.7240570678710937, 0.72363623046875, 0.72394140625, 0.7237017822265625, 0.7253534545898438, 0.7251988525390625, 0.7241973876953125, 0.7238829956054688, 0.7238615112304687, 0.7239464721679687, 0.7240714111328125, 0.7241809692382812, 0.7237929077148437, 0.72289892578125, 0.7232706298828125, 0.722914306640625, 0.7235338134765625, 0.7231948852539063, 0.7239393310546876, 0.7230525512695313, 0.7231815795898437, 0.7229603881835938, 0.7230853271484375, 0.72344677734375, 0.7233054809570313, 0.72283544921875, 0.7226583251953125, 0.7230003051757813, 0.72287744140625, 0.722608154296875, 0.7231324462890625, 0.7233526000976562, 0.7234529418945312, 0.72300439453125, 0.7229020385742188, 0.7233484497070313, 0.723610595703125, 0.7233925170898438, 0.72308837890625, 0.7229317016601563, 0.7229389038085937, 0.7231682739257812, 0.7229910888671875, 0.7232286987304688, 0.72271875, 0.723019775390625, 0.723493896484375, 0.72239208984375, 0.722845703125, 0.7230084838867188, 0.7235686645507813, 0.7236188354492188, 0.7237345581054687, 0.72363623046875, 0.7234805908203125, 0.7234385986328125, 0.7238164672851563, 0.724041748046875, 0.723356689453125, 0.723030029296875, 0.7237140502929688, 1.4925987548828126, 0.7230996704101562, 0.72384716796875, 0.7239147338867188, 0.7256944580078125, 0.7247103881835938, 0.7244021606445312, 0.7243776245117187, 0.724316162109375, 0.7242546997070313, 0.7244994506835938, 0.724832275390625, 0.7239239501953125, 0.723041259765625, 0.7240745239257812, 0.7239096069335937, 0.723515380859375, 0.7226603393554687, 0.7232348022460937, 0.7224627075195312, 0.7226132202148438, 0.7228047485351563, 0.72265625, 0.7226470947265625, 0.7226756591796875, 0.7231713256835938, 0.72317236328125, 0.722787353515625, 0.7223971557617187, 0.7228057861328125, 0.7233065185546875, 0.7235245971679688, 0.7238748168945313, 0.72374169921875, 0.7234816284179687, 0.7235297241210937, 0.7231426391601562, 0.7237867431640626, 0.7235635375976562, 0.7232808837890625, 0.72345703125, 0.7230924682617188, 0.72296142578125, 0.7232747802734375, 0.7239485473632813, 0.724284423828125, 0.722783203125, 0.7224873046875, 0.7223971557617187, 0.7222200927734375, 0.7224954833984375, 0.7242076416015625, 0.722787353515625, 0.7238604736328125, 0.7227545776367188, 0.7224268798828125, 0.7232020263671874, 0.7240253295898438, 0.722998291015625, 0.7229900512695312, 0.72289892578125, 0.7227340698242187, 0.7230996704101562]",tokens/s,1.36166929287697,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,m,m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -27736,34 +25433,69 @@ ImportError: This modeling file requires the following packages that were not fo File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/m/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948c45-1493ab1b2b6a2b952f1b01fa;ec323376-0be7-4281-b02e-bb8025b2499f) + +Repository Not Found for url: https://huggingface.co/m/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + raise EnvironmentError( +OSError: m is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-30b,huggyllama/llama-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-72B,Qwen/Qwen1.5-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -27783,22 +25515,29 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-70b-hf,meta-llama/Llama-2-70b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -27818,22 +25557,31 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 112.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-8B,meta-llama/Meta-Llama-3-8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-13b-hf,meta-llama/Llama-2-13b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2986.500096,9259.450368,0.0,8613.003264,8211.364864,s,10,10.947190917968749,1.094719091796875,0.002010850578895603,1.0950899047851563,1.0971980224609374,1.0974085205078123,1.0975769189453124,"[1.0976190185546875, 1.096309326171875, 1.0916474609375, 1.09289697265625, 1.0933328857421876, 1.0920892333984376, 1.0948057861328124, 1.0953740234375, 1.0959649658203126, 1.0971512451171874]",tokens/s,233.8499455415552,kWh,1.291276744670338e-05,7.073689176177139e-06,6.076365972199904e-05,8.075011634487956e-05,tokens/kWh,3170274.070029042,MB,2986.500096,9330.753536,0.0,8684.306432,8503.627264,s,10,640.9193046874999,64.09193046875,0.016181839642145233,64.08713867187501,64.11070859375,64.119698046875,64.126889609375,"[64.0750625, 64.08454296875, 64.0822421875, 64.076171875, 64.07810546875, 64.09387890625, 64.10216796875, 64.089734375, 64.1087109375, 64.1286875]",tokens/s,0.9829630585197867,kWh,0.0007566528167658381,0.00041471410911453853,0.003539824637413,0.004711191563293376,tokens/kWh,13372.413147208052,,s,629,649.7487822875972,1.0329869352743999,0.1300160071749506,1.0172456665039062,1.0179758178710938,1.0183352172851563,2.110224638671875,"[1.016637451171875, 1.0170296020507812, 1.017143310546875, 1.0172344360351562, 1.0165718994140625, 1.016827880859375, 1.0167459716796876, 1.0169722900390625, 1.0170675048828124, 1.01732861328125, 1.0169548950195313, 1.0172835693359374, 1.0170890502929688, 1.01718017578125, 1.016700927734375, 1.0168627319335937, 1.016974365234375, 1.01762353515625, 1.0176194458007812, 1.0171002807617187, 1.0172579956054688, 1.0172610473632813, 1.01688525390625, 1.0172958984375, 1.016853515625, 1.0170009765625, 1.0169313354492187, 1.0170941162109375, 1.0171217651367188, 1.0168176879882813, 1.016890380859375, 1.0176798706054688, 1.0172395629882813, 1.017396240234375, 1.0169989013671874, 1.0170675048828124, 1.0171791381835937, 1.0177362060546875, 1.0171443481445313, 1.0171986083984375, 1.017133056640625, 1.0175907592773437, 1.01686376953125, 1.0169241333007812, 1.0167664794921876, 1.0166435546875, 1.0166865844726563, 1.01715966796875, 1.0166220703125, 1.0169251708984375, 1.0169763793945312, 1.0173429565429688, 1.016700927734375, 1.0169528198242188, 1.016858642578125, 1.0169600219726562, 1.0173624267578125, 1.0173972778320313, 1.0168811645507811, 1.0170654907226562, 1.0171514892578124, 1.0170183715820313, 2.113563720703125, 1.0165084228515624, 1.0165995483398438, 1.01704296875, 1.0168893432617188, 1.0168678588867188, 1.0165933837890626, 1.01682275390625, 1.0167122192382811, 1.0169712524414063, 1.017650146484375, 1.0175662231445313, 1.0175538940429687, 1.0177986450195313, 1.0178928833007812, 1.016896484375, 1.0167449340820311, 1.0172692260742187, 1.0168688354492188, 1.0166507568359375, 1.0167510986328125, 1.0167859497070313, 1.0173839111328125, 1.0172303466796875, 1.0169999389648436, 1.0167675170898438, 1.0172876586914064, 1.0169815063476562, 1.0168299560546874, 1.0169784545898437, 1.0168616943359374, 1.0168115234375, 1.0175344848632812, 1.0173378295898436, 1.0172190551757812, 1.017038818359375, 1.0170572509765625, 1.01707568359375, 1.0168831787109376, 1.0171309814453124, 1.01711669921875, 1.01686376953125, 1.017228271484375, 1.0172507934570312, 1.01673779296875, 1.0168883056640625, 1.0183065795898438, 1.0170347290039063, 1.0172979125976562, 1.0179051513671875, 1.0176614379882813, 1.017459716796875, 1.017312255859375, 1.0175733642578124, 1.01785498046875, 1.0175313720703125, 1.0179799194335937, 1.0179594116210937, 1.01766552734375, 1.017586669921875, 1.017523193359375, 1.0172456665039062, 1.0174935302734376, 2.110212158203125, 1.01697021484375, 1.0170562744140625, 1.0166824951171876, 1.017027587890625, 1.0168463134765624, 1.0169794311523437, 1.0168719482421875, 1.0174310302734375, 1.0172272338867188, 1.0172548828125, 1.0166978759765626, 1.0173173828125, 1.0170009765625, 1.0174668579101562, 1.0170675048828124, 1.0172139282226562, 1.017228271484375, 1.0174627685546875, 1.0169548950195313, 1.0171443481445313, 1.0174464111328125, 1.0173347778320312, 1.0173265991210938, 1.0174474487304688, 1.0170040283203126, 1.0171893920898438, 1.0172518310546874, 1.0172119140625, 1.0169682006835938, 1.0171197509765626, 1.0175057983398437, 1.017186279296875, 1.017196533203125, 1.0173778076171875, 1.016795166015625, 1.0170050659179688, 1.0167817993164063, 1.017259033203125, 1.0169620361328124, 1.0171812133789062, 1.0173296508789063, 1.0171238403320313, 1.0170531616210938, 1.0173737182617189, 1.0171729736328126, 1.0174576416015626, 1.01732861328125, 1.0171401977539063, 1.0170521850585938, 1.0174976196289063, 1.017228271484375, 1.0171412353515625, 1.0169722900390625, 1.0173092041015626, 1.0171893920898438, 1.0174105834960938, 1.0172794799804687, 1.0174299926757813, 1.0173112182617188, 1.017143310546875, 1.0173870239257812, 1.0169405517578125, 2.1099970703125, 1.0165718994140625, 1.0168822021484376, 1.0171340942382812, 1.0167890014648437, 1.0165309448242188, 1.0165729370117187, 1.0171259155273438, 1.0168145751953126, 1.0167357177734375, 1.0166978759765626, 1.0165995483398438, 1.017038818359375, 1.017069580078125, 1.0168657836914063, 1.0166671142578125, 1.0169508056640626, 1.0168002319335938, 1.0168309936523436, 1.01686376953125, 1.0169978637695312, 1.0169108276367187, 1.0175303955078125, 1.017259033203125, 1.0170203857421876, 1.017275390625, 1.0176215209960937, 1.0172620849609375, 1.0172682495117187, 1.0177730712890625, 1.017175048828125, 1.0169896850585938, 1.0171904296875, 1.0173450317382813, 1.0171514892578124, 1.017196533203125, 1.0175733642578124, 1.0169241333007812, 1.0169774169921875, 1.016858642578125, 1.0170009765625, 1.01692724609375, 1.0172477416992187, 1.0172241821289063, 1.0172979125976562, 1.017185302734375, 1.0175098876953126, 1.0170951538085937, 1.0170142822265624, 1.016974365234375, 1.0171340942382812, 1.0168934326171875, 1.0171658325195312, 1.0174044189453124, 1.0170419311523438, 1.0170009765625, 1.01764404296875, 1.017259033203125, 1.0177556762695312, 1.0170634155273437, 1.0172395629882813, 1.0169517822265626, 1.0172119140625, 2.11085009765625, 1.0167725830078125, 1.017186279296875, 1.0167930908203124, 1.0171504516601562, 1.0169845581054688, 1.0168934326171875, 1.0167664794921876, 1.0167285766601561, 1.016658935546875, 1.0167992553710938, 1.0168207397460938, 1.0168862915039063, 1.016806396484375, 1.0169343872070313, 1.01682177734375, 1.0170880126953126, 1.0174935302734376, 1.0173870239257812, 1.0168729858398438, 1.016933349609375, 1.0174105834960938, 1.0178846435546876, 1.0173112182617188, 1.017037841796875, 1.0165770263671876, 1.0169405517578125, 1.0169047241210938, 1.0172682495117187, 1.017038818359375, 1.0169456787109374, 1.0170654907226562, 1.0172426147460938, 1.01705419921875, 1.0172129516601562, 1.0170951538085937, 1.0170245361328125, 1.017217041015625, 1.0174197998046874, 1.016669189453125, 1.016816650390625, 1.0169917602539063, 1.0169262084960937, 1.0170654907226562, 1.0176153564453125, 1.0173839111328125, 1.0169313354492187, 1.017007080078125, 1.0170951538085937, 1.0168402099609375, 1.0171781005859375, 1.0170706176757813, 1.017101318359375, 1.0171300048828125, 1.0170357666015626, 1.016890380859375, 1.0173296508789063, 1.0192701416015626, 1.0171207885742188, 1.0169364624023438, 1.0173163452148437, 1.0173982543945312, 1.0175610961914063, 2.1102294921875, 1.0168330078125, 1.0173009643554687, 1.0168422241210937, 1.0167633666992189, 1.016748046875, 1.017270263671875, 1.0175191040039062, 1.0172374877929689, 1.0172579956054688, 1.0169036865234375, 1.01722314453125, 1.0172927856445313, 1.0177249145507812, 1.01745458984375, 1.0174157104492187, 1.0179625244140624, 1.0174013671875, 1.017365478515625, 1.0170818481445312, 1.016953857421875, 1.0169129028320312, 1.01753857421875, 1.0170408935546875, 1.017248779296875, 1.01697021484375, 1.0176993408203125, 1.0169528198242188, 1.0168002319335938, 1.0170091552734375, 1.0168760375976562, 1.0173685913085937, 1.0181334838867186, 1.0179051513671875, 1.0173931274414063, 1.0176051025390624, 1.0173521728515624, 1.0176522216796875, 1.0186475219726563, 1.017776123046875, 1.0168862915039063, 1.0169896850585938, 1.0183987426757812, 1.01768603515625, 1.018186767578125, 1.017185302734375, 1.0171566162109376, 1.0170480346679687, 1.0171371459960938, 1.0170992431640624, 1.0172692260742187, 1.0174402465820314, 1.0176215209960937, 1.0168811645507811, 1.0169937744140625, 1.017322509765625, 1.0178201904296875, 1.0176041259765625, 1.0179737548828125, 1.017111572265625, 1.017365478515625, 1.0178099365234374, 1.0178980102539064, 2.113080322265625, 1.0174884033203124, 1.0172631225585937, 1.0174566650390624, 1.0172620849609375, 1.0167183227539063, 1.0171514892578124, 1.017007080078125, 1.017343994140625, 1.0170880126953126, 1.016985595703125, 1.0176143188476563, 1.0176163940429688, 1.0170951538085937, 1.0172026977539061, 1.0171873168945313, 1.0176123046875, 1.017691162109375, 1.0170316772460937, 1.0167756958007812, 1.0169569091796875, 1.0173972778320313, 1.0178017578125, 1.0174781494140626, 1.0178662109375, 1.0171248779296875, 1.017670654296875, 1.0176788330078126, 1.0176256103515624, 1.0175354614257812, 1.0175897827148437, 1.0182471923828125, 1.01829736328125, 1.0176644897460938, 1.018271728515625, 1.0174146728515625, 1.0175713500976562, 1.0185062255859374, 1.0173245239257813, 1.0170501098632811, 1.0175221557617187, 1.0181396484375, 1.01762353515625, 1.0171248779296875, 1.0179276733398437, 1.0172764282226563, 1.0176091918945311, 1.0178416748046875, 1.0178385620117187, 1.0172415771484375, 1.0178160400390626, 1.0175958862304688, 1.0175139770507813, 1.0184058837890626, 1.0174474487304688, 1.0172610473632813, 1.0176348266601563, 1.0172989501953125, 1.0170726318359375, 1.0170726318359375, 1.0176849975585938, 1.0169343872070313, 1.0174033813476562, 2.112878662109375, 1.016953857421875, 1.0167767333984374, 1.0172262573242188, 1.017343994140625, 1.0176256103515624, 1.017802734375, 1.0175139770507813, 1.0169364624023438, 1.0173214721679686, 1.0175713500976562, 1.0171924438476563, 1.0175733642578124, 1.01711767578125, 1.0170449829101562, 1.0170040283203126, 1.0178385620117187, 1.0171453247070312, 1.0173972778320313, 1.0172129516601562, 1.0172528686523437, 1.0171781005859375, 1.0176245727539062, 1.01760205078125, 1.0175027465820312, 1.01718017578125, 1.017638916015625, 1.017111572265625, 1.0172241821289063, 1.0173060913085938, 1.017427978515625, 1.0172743530273438, 1.0173153076171875, 1.0171094970703125, 1.0171586303710938, 1.0175293579101563, 1.0171494140625, 1.0172057495117188, 1.0173634643554688, 1.0171945190429688, 1.0169733276367188, 1.0171525268554686, 1.0175272827148438, 1.0170572509765625, 1.0170685424804689, 1.0172467041015625, 1.01697021484375, 1.0168197021484375, 1.0174822387695313, 1.0170521850585938, 1.0171043701171876, 1.0171340942382812, 1.0171760864257813, 1.0169978637695312, 1.01732763671875, 1.0172794799804687, 1.0176839599609375, 1.017469970703125, 1.0180280151367187, 1.0174791870117188, 1.017849853515625, 1.0173368530273437, 1.01711669921875, 2.113290283203125, 1.017007080078125, 1.0168678588867188, 1.01684326171875, 1.0171268920898437, 1.016648681640625, 1.0167285766601561, 1.0171514892578124, 1.0172190551757812, 1.0169129028320312, 1.0168606567382812, 1.0169886474609375, 1.0172241821289063, 1.0173921508789063, 1.0177730712890625, 1.016896484375, 1.0171392211914063, 1.0172139282226562, 1.0171043701171876, 1.0171217651367188, 1.0177310791015626, 1.01746484375, 1.017628662109375, 1.017260009765625, 1.0183670043945312, 1.0173040771484374, 1.0178580322265625, 1.0175846557617187, 1.01725390625, 1.01791845703125, 1.0185062255859374, 1.0173634643554688, 1.0173931274414063, 1.0182645874023437, 1.0179307250976561, 1.0173163452148437, 1.0178989868164063, 1.0175098876953126, 1.0173235473632813, 1.0175590209960939, 1.01777099609375, 1.0175580444335937, 1.0173604125976563, 1.0171300048828125, 1.0181734619140625, 1.0173685913085937, 1.0175887451171874, 1.01719140625, 1.017218017578125, 1.0171586303710938, 1.0180546264648438, 1.0181591186523438, 1.0179061889648438, 1.0179747924804687, 1.0184212646484374, 1.0185728149414062, 1.0190858154296876, 1.0186967163085938, 1.0185779418945313, 1.0188789672851561, 1.0184888305664062, 1.0182215576171876, 1.01819189453125, 2.114828369140625, 1.0173347778320312, 1.0177095947265624, 1.0177669067382813, 1.0172406005859376, 1.0176143188476563, 1.017554931640625, 1.0172661743164062, 1.0174033813476562, 1.0175989990234375, 1.0177607421875, 1.0175191040039062, 1.0183218994140626, 1.0180669555664061, 1.0179829711914063, 1.0176931762695312, 1.0172927856445313, 1.0174801635742188, 1.0174003295898437, 1.0175467529296875, 1.0174320678710937, 1.0178211669921875, 1.0185543823242187, 1.0174586791992188, 1.0178580322265625, 1.0182103271484375, 1.0180054931640625, 1.0179921875, 1.0187222900390625, 1.0177330932617188, 1.0182236328125, 1.0179921875, 1.0184345703125, 1.0186956787109376, 1.018313720703125, 1.0182072143554688, 1.0180147094726562, 1.0174085083007813, 1.01800244140625, 1.0174351196289062, 1.0173193969726562, 1.0178539428710938, 1.0183413696289063, 1.0178672485351563, 1.0183229370117188, 1.0190479125976561, 1.01767578125, 1.0170265502929687, 1.0175949096679688, 1.0170900268554688, 1.0174924926757813, 1.0183259887695313, 1.0185646362304688, 1.0176317138671875, 1.0183250122070313, 1.0178457641601562, 1.018119140625, 1.01793994140625, 1.0190244140625, 1.0184181518554687, 1.0175703125, 1.0174607543945313, 1.0177362060546875]",tokens/s,0.9680664545233214,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-7b,stabilityai/stablelm-base-alpha-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.42.3,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,1607.868416,8198.291456,0.0,7551.844352,6941.631488,s,10,6.049583618164062,0.6049583618164063,0.00188642846372062,0.6043523254394532,0.6052415832519532,0.6079165069580078,0.6100564459228516,"[0.6105914306640625, 0.6046471557617188, 0.6042630615234375, 0.6042338256835937, 0.6039627075195313, 0.6043169555664063, 0.604395263671875, 0.6042136840820312, 0.6045718383789063, 0.6043876953125]",tokens/s,423.16961985838503,kWh,7.137859198782179e-06,3.9112609274686095e-06,3.3793049910240254e-05,4.484217003649104e-05,tokens/kWh,5708911.94140863,MB,1607.868416,8198.291456,0.0,7551.844352,7068.358144,s,10,357.60694921875006,35.76069492187501,0.005106009215487831,35.758738281250004,35.7667015625,35.76887421875,35.77061234375,"[35.771046875, 35.76394140625, 35.7568125, 35.758265625, 35.75676171875, 35.76621875, 35.7592109375, 35.754734375, 35.75566015625, 35.764296875]",tokens/s,1.7617107312269418,kWh,0.0004221826620896658,0.00023139278631924143,0.0020006029942719558,0.002654178442680863,tokens/kWh,23736.158423608704,,s,629,362.47854425048865,0.5762774948338447,0.07177628984511826,0.5675980834960938,0.567922509765625,0.5680580688476562,1.17174888671875,"[0.5675130615234375, 0.567689208984375, 0.5675007934570313, 0.5676400756835938, 0.5674649658203125, 0.5675069580078125, 0.5678878784179687, 0.567362548828125, 0.5674598388671875, 0.5676318969726563, 0.5675222778320312, 0.5676452026367188, 0.5675714721679688, 0.5676103515625, 0.5676881713867188, 0.5674454956054688, 0.567530517578125, 0.567910400390625, 0.5679451904296875, 0.5677383422851563, 0.5676656494140625, 0.5675929565429687, 0.5674803466796875, 0.5676605224609375, 0.567752685546875, 0.5674424438476563, 0.5676011352539062, 0.5677957153320312, 0.567546875, 0.5675243530273437, 0.5677138061523438, 0.5675284423828125, 0.5678120727539062, 0.5674086303710938, 0.5677987670898438, 0.5677322387695313, 0.5678274536132812, 0.5677987670898438, 0.5678561401367187, 0.5680128173828125, 0.5680640258789063, 0.568237060546875, 0.5680230102539062, 0.56797900390625, 0.5682124633789063, 0.5679288330078125, 0.5680722045898438, 0.5680875244140625, 0.5679697875976563, 0.5680936889648438, 0.5682411499023438, 0.5679902954101562, 0.5680732421875, 0.5680537719726563, 0.5682831420898438, 0.56803125, 0.5680128173828125, 0.5679288330078125, 0.5679288330078125, 0.5681571655273437, 0.5682012329101562, 0.5679349975585938, 1.1725772705078126, 0.5678028564453125, 0.5673922729492188, 0.5673328857421875, 0.5676503295898437, 0.5674823608398437, 0.5677864990234375, 0.5676216430664063, 0.5676328735351562, 0.5674219360351562, 0.5675181884765625, 0.567531494140625, 0.5675028686523438, 0.5675673828125, 0.56765234375, 0.5675458374023438, 0.5677005004882812, 0.5678448486328125, 0.5676810302734375, 0.5675069580078125, 0.5675714721679688, 0.567625732421875, 0.5676769409179687, 0.56762060546875, 0.56759912109375, 0.5676226806640625, 0.567994384765625, 0.5675867919921875, 0.5675130615234375, 0.5675714721679688, 0.5675089721679687, 0.5679052734375, 0.5676492919921875, 0.5678059692382813, 0.56771484375, 0.5675673828125, 0.5678981323242187, 0.5678489379882813, 0.5676195678710938, 0.5676830444335937, 0.5675397338867187, 0.5676615600585937, 0.5679585571289063, 0.567816162109375, 0.5676226806640625, 0.5676912841796875, 0.56768408203125, 0.5677619018554687, 0.5679022216796875, 0.5678663940429688, 0.56771484375, 0.5676287841796875, 0.5677537231445312, 0.5677793579101562, 0.56771484375, 0.5677178955078125, 0.5676318969726563, 0.5678059692382813, 0.5677650146484375, 0.5679185791015625, 0.5677650146484375, 0.5678991088867188, 0.5676861572265625, 1.171936279296875, 0.5674823608398437, 0.56759912109375, 0.5674803466796875, 0.567468017578125, 0.5674844360351563, 0.5675469360351563, 0.5675325317382812, 0.5674557495117187, 0.5675243530273437, 0.56749462890625, 0.5673666381835938, 0.5673912353515626, 0.5676083374023437, 0.5674833984375, 0.5677506713867188, 0.5675888671875, 0.5676615600585937, 0.5675294799804688, 0.5676707763671875, 0.567794677734375, 0.5677701416015625, 0.5675960083007813, 0.5676718139648438, 0.567488525390625, 0.56749365234375, 0.5673687133789063, 0.5673953247070312, 0.5675048828125, 0.5674158325195312, 0.5673799438476562, 0.567678955078125, 0.567593994140625, 0.5675335693359375, 0.5674383544921875, 0.5675346069335937, 0.5674301147460937, 0.5676072998046875, 0.5677158203125, 0.5674608764648438, 0.5674281005859375, 0.5676697387695312, 0.5675172729492187, 0.5675755004882812, 0.567488525390625, 0.5675181884765625, 0.5676513061523437, 0.5677721557617188, 0.5679093627929688, 0.5675867919921875, 0.5678960571289062, 0.5678704833984375, 0.5674854125976563, 0.56757861328125, 0.56753564453125, 0.5677537231445312, 0.567525390625, 0.5675007934570313, 0.567530517578125, 0.5677332763671875, 0.56753662109375, 0.56765234375, 0.5674793090820313, 1.171693603515625, 0.5673564453125, 0.5675079956054687, 0.5678284912109375, 0.56759912109375, 0.5673697509765625, 0.56745166015625, 0.5675796508789063, 0.567320556640625, 0.5678018798828125, 0.5676707763671875, 0.5673635864257812, 0.5676656494140625, 0.5675222778320312, 0.56749462890625, 0.5674741821289062, 0.567573486328125, 0.567699462890625, 0.5673584594726563, 0.5676636352539063, 0.56764208984375, 0.5677854614257812, 0.5675489501953125, 0.5675601806640626, 0.567446533203125, 0.5675335693359375, 0.5677322387695313, 0.567583740234375, 0.5675673828125, 0.5675980834960938, 0.5676871948242187, 0.5675335693359375, 0.567404541015625, 0.5675264282226562, 0.5674711303710938, 0.5676072998046875, 0.5674208984375, 0.5676165161132812, 0.5676124267578125, 0.5678079833984375, 0.5675714721679688, 0.5675264282226562, 0.5675376586914063, 0.5676820678710938, 0.5676615600585937, 0.5676175537109375, 0.5676226806640625, 0.5675980834960938, 0.5676953735351562, 0.567625732421875, 0.56749462890625, 0.5675007934570313, 0.5674485473632812, 0.567520263671875, 0.5676431274414062, 0.5678233642578125, 0.5678878784179687, 0.5677035522460937, 0.5675448608398438, 0.5679554443359375, 0.5675960083007813, 0.5678827514648438, 0.567709716796875, 1.1716024169921875, 0.5677035522460937, 0.56723046875, 0.5673492431640625, 0.5673277587890625, 0.567320556640625, 0.5673185424804688, 0.5673236694335938, 0.5675140991210937, 0.5675294799804688, 0.5676615600585937, 0.5673820190429687, 0.5674485473632812, 0.5675274047851563, 0.5675827026367187, 0.567720947265625, 0.5676400756835938, 0.5675509643554687, 0.5675499267578125, 0.5675950317382813, 0.5675909423828125, 0.5674383544921875, 0.5674721069335937, 0.5676441650390625, 0.5673717651367187, 0.5674035034179687, 0.5676103515625, 0.567657470703125, 0.5675407104492187, 0.5674403686523437, 0.5674895629882812, 0.567446533203125, 0.5674240112304687, 0.5677138061523438, 0.5675427856445312, 0.5676287841796875, 0.5675827026367187, 0.567952392578125, 0.567657470703125, 0.5674956665039063, 0.5674475708007812, 0.5674977416992187, 0.5673901977539062, 0.567546875, 0.5674669799804688, 0.5677168579101562, 0.5674926147460938, 0.56757861328125, 0.5675765991210937, 0.567751708984375, 0.5678325805664063, 0.5675448608398438, 0.5675632934570313, 0.567720947265625, 0.5677639770507813, 0.567773193359375, 0.5677352905273437, 0.56757861328125, 0.5675642700195312, 0.5677168579101562, 0.5677168579101562, 0.5680588989257812, 0.5677189331054687, 1.172095947265625, 0.5675909423828125, 0.5673646240234375, 0.5673492431640625, 0.5674547119140625, 0.5674444580078125, 0.5672734985351563, 0.5673164672851563, 0.5674342651367188, 0.5674281005859375, 0.5676697387695312, 0.5677752075195313, 0.5677977294921875, 0.5678356323242187, 0.5677998046875, 0.5678991088867188, 0.5680814208984375, 0.5678212890625, 0.5678837890625, 0.5678131103515625, 0.5674895629882812, 0.567678955078125, 0.56818994140625, 0.567931884765625, 0.5678868408203125, 0.568015869140625, 0.5680803833007813, 0.5679933471679688, 0.567414794921875, 0.5675847778320312, 0.567510009765625, 0.5673533325195312, 0.5675867919921875, 0.5678397216796875, 0.5681592407226562, 0.5679216918945312, 0.5678868408203125, 0.5680036010742188, 0.5678960571289062, 0.567910400390625, 0.56768408203125, 0.5676759033203125, 0.56764111328125, 0.567841796875, 0.5676144409179688, 0.5677485961914063, 0.5675560913085937, 0.5678561401367187, 0.5677404174804688, 0.5678765869140625, 0.5678756103515625, 0.5678305053710937, 0.5676820678710938, 0.5676103515625, 0.567615478515625, 0.56755712890625, 0.5675775756835938, 0.5678540649414062, 0.5675448608398438, 0.5674608764648438, 0.5675858154296874, 0.5679667358398437, 0.5677393798828125, 1.172157470703125, 0.5676431274414062, 0.5675038452148438, 0.56789404296875, 0.56765234375, 0.567773193359375, 0.5675950317382813, 0.5673973388671875, 0.5673799438476562, 0.5674803466796875, 0.5675591430664062, 0.5674803466796875, 0.5673779296875, 0.56747314453125, 0.5676553955078125, 0.5675550537109375, 0.5675919189453125, 0.5674454956054688, 0.5675775756835938, 0.5674403686523437, 0.5674086303710938, 0.5675755615234375, 0.56759912109375, 0.5675294799804688, 0.56740966796875, 0.5674608764648438, 0.5674270629882813, 0.5675284423828125, 0.5676134643554688, 0.5675919189453125, 0.5675397338867187, 0.5674752197265625, 0.567573486328125, 0.5682390747070313, 0.5677588500976563, 0.5674352416992188, 0.5674403686523437, 0.5675755615234375, 0.5675909423828125, 0.5676226806640625, 0.56793701171875, 0.5677005004882812, 0.5675007934570313, 0.5674823608398437, 0.5673840942382813, 0.567699462890625, 0.5675847778320312, 0.5675458374023438, 0.5675089721679687, 0.5674793090820313, 0.5676072998046875, 0.5675909423828125, 0.5674526977539063, 0.5676298217773438, 0.567678955078125, 0.5677291259765626, 0.5681397705078125, 0.5680568237304687, 0.5680926513671875, 0.5679401245117187, 0.5678806762695312, 0.56757861328125, 0.567404541015625, 1.1717703857421875, 0.56732568359375, 0.567245849609375, 0.5675130615234375, 0.5674526977539063, 0.5675530395507813, 0.5674905395507812, 0.5674536743164063, 0.5673287963867187, 0.5674977416992187, 0.5676021728515624, 0.5677404174804688, 0.5675274047851563, 0.567419921875, 0.5674434814453125, 0.5673963623046875, 0.5674526977539063, 0.56757861328125, 0.5674188842773438, 0.5672969970703124, 0.5674066162109375, 0.5676973876953125, 0.567436279296875, 0.56740966796875, 0.5673236694335938, 0.56744140625, 0.5674004516601563, 0.5676953735351562, 0.5674639282226562, 0.5678069458007813, 0.5674035034179687, 0.5674823608398437, 0.5674240112304687, 0.56744140625, 0.567636962890625, 0.567636962890625, 0.5675264282226562, 0.5676195678710938, 0.5674833984375, 0.5677875366210937, 0.5674434814453125, 0.5675632934570313, 0.5675233154296875, 0.5676011352539062, 0.5673973999023437, 0.5679646606445312, 0.5675233154296875, 0.5678765869140625, 0.56774755859375, 0.5677557983398438, 0.5675827026367187, 0.5676103515625, 0.5677701416015625, 0.5676697387695312, 0.5676113891601563, 0.5676482543945313, 0.5674711303710938, 0.5676072998046875, 0.5674915771484375, 0.5675120849609375, 0.5675172119140625, 0.5675079956054687, 0.5674905395507812, 1.172304931640625, 0.5675038452148438, 0.5672386474609376, 0.5673328857421875, 0.5673697509765625, 0.5676912841796875, 0.567583740234375, 0.5673380126953125, 0.5673441162109375, 0.56738818359375, 0.56747314453125, 0.5674075927734376, 0.567319580078125, 0.5673380126953125, 0.5675089721679687, 0.5675806884765625, 0.567647216796875, 0.5674915771484375, 0.567647216796875, 0.5674557495117187, 0.56743115234375, 0.5675878295898438, 0.5675867919921875, 0.5676287841796875, 0.5674761962890625, 0.567446533203125, 0.5674403686523437, 0.5674004516601563, 0.5676267700195312, 0.5675714721679688, 0.567510009765625, 0.5675950317382813, 0.5674393310546875, 0.5676165161132812, 0.5676932983398437, 0.5677056274414063, 0.5676697387695312, 0.5675755615234375, 0.5675489501953125, 0.5675140991210937, 0.5675038452148438, 0.5677691040039062, 0.5677168579101562, 0.56785302734375, 0.5675059204101562, 0.5676021728515624, 0.5676103515625, 0.5676124267578125, 0.5676318969726563, 0.5675110473632813, 0.5675213012695313, 0.5676707763671875, 0.5675929565429687, 0.5677793579101562, 0.5675653076171875, 0.5676707763671875, 0.5675325317382812, 0.5675663452148437, 0.5677567749023438, 0.56762060546875, 0.567562255859375, 0.5676032104492188, 0.567562255859375, 1.1719853515625, 0.5674874877929688, 0.5673359375, 0.5679820556640625, 0.5675775756835938, 0.567525390625, 0.5675980834960938, 0.5674485473632812, 0.5673912353515626, 0.5674332275390624, 0.567457763671875, 0.567488525390625, 0.5680855102539063, 0.5679380493164062, 0.56792578125, 0.5678489379882813, 0.5679390869140625, 0.5678981323242187, 0.568069091796875, 0.5680824584960937, 0.56776806640625, 0.5675407104492187, 0.5676697387695312, 0.5676544189453125, 0.5677803344726563, 0.56749462890625, 0.5674619140625, 0.567635986328125, 0.5676564331054688, 0.5678848266601563, 0.56764208984375, 0.5677240600585938, 0.5675878295898438, 0.5675458374023438, 0.5677567749023438, 0.5675765991210937, 0.5677138061523438, 0.5677014770507812, 0.5678551025390625, 0.5678653564453126, 0.5678233642578125, 0.5675663452148437, 0.56768408203125, 0.5676195678710938, 0.5673472290039062, 0.567673828125, 0.5675069580078125, 0.5678008422851563, 0.5677434692382812, 0.5677178955078125, 0.5676564331054688, 0.5677291259765626, 0.5676759033203125, 0.5676492919921875, 0.5674803466796875, 0.5675130615234375, 0.567530517578125, 0.5675028686523438, 0.567562255859375, 0.5679052734375, 0.5681500244140625, 0.5680568237304687, 0.5677977294921875]",tokens/s,1.7352751217333675,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-72B,Qwen/Qwen-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -27851,24 +25599,18 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained + model_class = get_class_from_dynamic_module( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module + final_module = get_cached_module_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file + modules_needed = check_imports(resolved_module_file) + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports + raise ImportError( +ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,x,x,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,0,0,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -27880,7 +25622,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/x/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/0/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -27907,9 +25649,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669492b1-3921fa19586c45085fc01876;2d3b220d-7f3c-4e7f-9c37-ec7b22bfa61a) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669494e0-06a5921e10bc036224ba3991;86ec66b0-7d04-4792-b49c-193cdbfcdaca) -Repository Not Found for url: https://huggingface.co/x/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/0/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -27934,11 +25676,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: x is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: 0 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,i,i,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-7b,google/gemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -27950,7 +25692,82 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/i/resolve/main/config.json +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/gemma-7b/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status + raise HfHubHTTPError(message, response=response) from e +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66948164-47fd127e05a4356c2ec574b8;c3061e5b-3558-4fd8-8cfe-a7ee51ad94f2) + +403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. +Cannot access content at: https://huggingface.co/google/gemma-7b/resolve/main/config.json. +If you are trying to create or update content,make sure you have a token with the `write` role. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error + raise LocalEntryNotFoundError( +huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file + raise EnvironmentError( +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/gemma-7b is not the path to a directory containing a file named config.json. +Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,x,x,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/x/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -27977,9 +25794,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949002-26fdf5626dc5efa91db5ec71;22bfa71f-82db-4115-acfb-e8f0138cbf69) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669492bf-47ca378751a51202361d0c4e;efa62947-c698-40da-8752-a7596e8054bd) -Repository Not Found for url: https://huggingface.co/i/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/x/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -28004,75 +25821,13 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: i is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: x is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-72B,Qwen/Qwen-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained - model_class = get_class_from_dynamic_module( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module - final_module = get_cached_module_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file - modules_needed = check_imports(resolved_module_file) - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports - raise ImportError( -ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.4b,EleutherAI/pythia-1.4b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-3B-v1,togethercomputer/RedPajama-INCITE-Base-3B-v1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm2-20b,internlm/internlm2-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.217-205.860.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.2,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,3088.633856,14093.385728,0.0,13446.938624,13175.804928,s,10,15.872446411132811,1.5872446411132812,0.001977784195727725,1.5869342651367186,1.5899507080078126,1.5901222045898438,1.5902594018554688,"[1.58719189453125, 1.584764892578125, 1.5848123779296874, 1.5860927734375, 1.5866766357421875, 1.5853348388671875, 1.590293701171875, 1.58790966796875, 1.58991259765625, 1.58945703125]",tokens/s,161.28578630477753,kWh,1.8717543135086694e-05,1.0257253674026287e-05,9.112487845540085e-05,0.00012009967526451382,tokens/kWh,2131562.7992846123,MB,3091.492864,14093.385728,0.0,13446.938624,13300.586496,s,10,928.4395625000001,92.84395624999999,0.007570288473903254,92.84323828125,92.8531703125,92.8533390625,92.8534740625,"[92.8279765625, 92.8535078125, 92.8414140625, 92.8458828125, 92.8531328125, 92.853015625, 92.843109375, 92.8433671875, 92.8399140625, 92.8382421875]",tokens/s,0.6785579002079632,kWh,0.0010960241793427203,0.00060071625912522,0.005404193295573401,0.007100933734041341,tokens/kWh,8872.072654048685,,s,629,941.2515487060549,1.4964253556535052,0.1885841806933767,1.4736722412109375,1.4742849609375,1.4745136962890626,3.0601340332031253,"[1.4728734130859376, 1.473666015625, 1.473407958984375, 1.47373974609375, 1.4734244384765625, 1.47390771484375, 1.47325244140625, 1.4737960205078124, 1.4734847412109375, 1.4734468994140626, 1.473364013671875, 1.47363330078125, 1.4732943115234376, 1.47340087890625, 1.4733291015625, 1.47338134765625, 1.473206298828125, 1.473244140625, 1.4738125, 1.473511474609375, 1.4734613037109374, 1.4737889404296876, 1.473449951171875, 1.473580078125, 1.473765380859375, 1.473459228515625, 1.473560546875, 1.47323388671875, 1.474029541015625, 1.4734468994140626, 1.473263671875, 1.4734326171875, 1.47308642578125, 1.4729144287109375, 1.4731171875, 1.47327490234375, 1.473290283203125, 1.4730946044921875, 1.4730894775390626, 1.4733568115234374, 1.4730352783203124, 1.473344482421875, 1.4731263427734376, 1.4731683349609375, 1.4734151611328126, 1.4735421142578125, 1.473369140625, 1.4731141357421875, 1.4733404541015624, 1.47325439453125, 1.4731715087890624, 1.47344384765625, 1.4731990966796875, 1.473396728515625, 1.473218505859375, 1.4735196533203125, 1.4733302001953126, 1.47679638671875, 1.473838134765625, 1.4735543212890625, 1.4735584716796875, 1.473474609375, 3.058888671875, 1.4736353759765626, 1.4734478759765626, 1.47342333984375, 1.4732247314453124, 1.4741309814453125, 1.4735350341796876, 1.4742303466796876, 1.474051025390625, 1.4743828125, 1.4741749267578126, 1.4742200927734375, 1.4739588623046875, 1.4743316650390625, 1.4739302978515625, 1.4737408447265625, 1.474087890625, 1.47405517578125, 1.4743592529296874, 1.4743214111328125, 1.474566162109375, 1.473896484375, 1.47449853515625, 1.4739251708984376, 1.47448828125, 1.473300537109375, 1.4734755859375, 1.4742425537109376, 1.4745487060546876, 1.4744595947265624, 1.47428662109375, 1.4733526611328125, 1.4731519775390625, 1.47367529296875, 1.4740152587890625, 1.4736251220703125, 1.473764404296875, 1.4738944091796875, 1.4733157958984375, 1.473659912109375, 1.4736898193359376, 1.47346826171875, 1.4733157958984375, 1.4738472900390625, 1.4736722412109375, 1.4738759765625, 1.4739302978515625, 1.473797119140625, 1.4737530517578126, 1.47359130859375, 1.4737294921875, 1.4736865234375, 1.4733988037109376, 1.47375, 1.473734619140625, 1.4735994873046876, 1.4738953857421875, 1.47376123046875, 1.4736036376953126, 1.473574951171875, 1.474008056640625, 1.473680419921875, 1.473565673828125, 3.06031005859375, 1.4730966796875, 1.4736650390625, 1.4730096435546876, 1.473244140625, 1.4731519775390625, 1.4736844482421876, 1.4732667236328125, 1.4738687744140626, 1.4742548828125, 1.4740458984375, 1.473471435546875, 1.473302490234375, 1.4735523681640625, 1.473406982421875, 1.473101806640625, 1.47376953125, 1.4739149169921875, 1.4731151123046875, 1.4732298583984376, 1.4734039306640625, 1.4731314697265625, 1.473111083984375, 1.4737376708984375, 1.4738216552734376, 1.4737899169921875, 1.4738800048828125, 1.4739691162109374, 1.4734581298828124, 1.47338134765625, 1.4734776611328124, 1.47355029296875, 1.473333251953125, 1.4734776611328124, 1.4733946533203126, 1.4732882080078125, 1.473912841796875, 1.473892333984375, 1.474216064453125, 1.4738175048828126, 1.47407666015625, 1.4737275390625, 1.473375244140625, 1.4743492431640626, 1.4744185791015625, 1.4742845458984375, 1.4742108154296876, 1.474523193359375, 1.4741842041015625, 1.47373876953125, 1.4740675048828125, 1.474164794921875, 1.474018310546875, 1.473081298828125, 1.474177001953125, 1.4735738525390625, 1.47327587890625, 1.4737294921875, 1.4737100830078125, 1.4734151611328126, 1.4735892333984375, 1.47363330078125, 1.473797119140625, 3.0603828125, 1.4735103759765624, 1.4731171875, 1.4736036376953126, 1.4737879638671876, 1.4736036376953126, 1.47382470703125, 1.4734530029296875, 1.473491943359375, 1.4732840576171875, 1.4735810546875, 1.4739404296875, 1.4733045654296875, 1.4736578369140625, 1.4735308837890626, 1.4735565185546875, 1.4735206298828125, 1.47350830078125, 1.4735667724609376, 1.473364013671875, 1.4735780029296874, 1.473996826171875, 1.4732401123046874, 1.4733731689453125, 1.4740458984375, 1.473659912109375, 1.4739732666015626, 1.4740029296875, 1.47403369140625, 1.4737161865234376, 1.474050048828125, 1.474302978515625, 1.47325439453125, 1.473807373046875, 1.474555908203125, 1.474566162109375, 1.4731663818359375, 1.473481689453125, 1.4736650390625, 1.473850341796875, 1.4740213623046876, 1.4742425537109376, 1.4736527099609376, 1.4736947021484375, 1.473903564453125, 1.4739005126953124, 1.473833984375, 1.4741944580078126, 1.473732666015625, 1.4733824462890626, 1.473692626953125, 1.474039794921875, 1.4735994873046876, 1.4731766357421876, 1.4735155029296876, 1.473933349609375, 1.4738759765625, 1.473734619140625, 1.4740357666015624, 1.47370703125, 1.4738463134765625, 1.4742486572265625, 1.4741298828125, 3.061118896484375, 1.473859619140625, 1.4736097412109375, 1.4739149169921875, 1.4740848388671874, 1.474361328125, 1.4743634033203126, 1.4743951416015626, 1.473876953125, 1.4742210693359374, 1.4737510986328124, 1.473217529296875, 1.4732984619140626, 1.473310791015625, 1.473673095703125, 1.4737142333984374, 1.4734090576171874, 1.4737091064453125, 1.474240478515625, 1.4736937255859375, 1.4738544921875, 1.4743326416015625, 1.4735289306640624, 1.4736065673828125, 1.4740234375, 1.4740274658203125, 1.4741329345703125, 1.473870849609375, 1.4740899658203126, 1.473397705078125, 1.473323974609375, 1.473269775390625, 1.4733096923828124, 1.4737264404296875, 1.473578125, 1.47388916015625, 1.473797119140625, 1.474377685546875, 1.47427734375, 1.4738125, 1.473481689453125, 1.473944580078125, 1.473754150390625, 1.4732686767578125, 1.473934326171875, 1.4739149169921875, 1.4737080078125, 1.47405615234375, 1.4740255126953126, 1.4739588623046875, 1.4738177490234374, 1.4743765869140626, 1.474249755859375, 1.473743896484375, 1.4736650390625, 1.4745087890625, 1.473791015625, 1.473939453125, 1.4738421630859375, 1.4741165771484375, 1.4739957275390625, 1.4737919921875, 1.4739312744140625, 3.059681396484375, 1.4742149658203125, 1.4734141845703126, 1.4730894775390626, 1.4733916015625, 1.473896484375, 1.473638427734375, 1.4734898681640625, 1.4739404296875, 1.47435107421875, 1.47458349609375, 1.474293701171875, 1.4747064208984375, 1.4745426025390624, 1.47485693359375, 1.4739322509765624, 1.4736671142578126, 1.473491943359375, 1.4745078125, 1.474566162109375, 1.47476171875, 1.47451806640625, 1.4742261962890626, 1.4741903076171874, 1.47418115234375, 1.4742999267578125, 1.4743060302734374, 1.4741258544921876, 1.473733642578125, 1.4733138427734376, 1.472933837890625, 1.4730772705078126, 1.47359130859375, 1.473479736328125, 1.4740745849609376, 1.4737479248046874, 1.4733055419921874, 1.4737100830078125, 1.474017333984375, 1.4741851806640625, 1.47333935546875, 1.474234375, 1.4739200439453124, 1.473474609375, 1.47338037109375, 1.4740694580078124, 1.473732666015625, 1.4734735107421875, 1.4738309326171875, 1.4739005126953124, 1.473574951171875, 1.473660888671875, 1.47378076171875, 1.473206298828125, 1.4732236328125, 1.4738565673828126, 1.4739322509765624, 1.4736004638671876, 1.473474609375, 1.4738258056640625, 1.4735831298828126, 1.4737120361328124, 1.4735411376953125, 3.0642236328125, 1.4730126953125, 1.47343359375, 1.4729718017578124, 1.4735728759765625, 1.4736158447265626, 1.4739005126953124, 1.47361279296875, 1.473840087890625, 1.4736087646484375, 1.4734949951171874, 1.47426611328125, 1.47422314453125, 1.4739998779296875, 1.4739046630859376, 1.474639892578125, 1.474404296875, 1.474365478515625, 1.4745169677734375, 1.474093017578125, 1.4741513671875, 1.4736055908203125, 1.47390869140625, 1.47327490234375, 1.473606689453125, 1.473691650390625, 1.47382373046875, 1.473692626953125, 1.4730546875, 1.473733642578125, 1.4736373291015625, 1.47371923828125, 1.473250244140625, 1.473560546875, 1.4734674072265626, 1.473487060546875, 1.4741666259765625, 1.47329638671875, 1.473322021484375, 1.473585205078125, 1.4732359619140625, 1.473195068359375, 1.4736046142578125, 1.4733804931640626, 1.473373046875, 1.4742098388671876, 1.4742425537109376, 1.4739527587890624, 1.4736629638671874, 1.473869873046875, 1.47333935546875, 1.4739404296875, 1.4740797119140625, 1.4739158935546874, 1.47359130859375, 1.4735042724609375, 1.4738052978515626, 1.473397705078125, 1.4735718994140625, 1.473728515625, 1.4734254150390624, 1.473385498046875, 1.4733148193359376, 3.0616728515625, 1.4734571533203125, 1.4732861328125, 1.4731346435546875, 1.473143798828125, 1.4733568115234374, 1.4734940185546874, 1.4731695556640625, 1.4739505615234374, 1.473987548828125, 1.4735789794921874, 1.4733271484375, 1.4738790283203125, 1.4730577392578126, 1.473259521484375, 1.474188232421875, 1.474802734375, 1.4733424072265624, 1.473292236328125, 1.474060302734375, 1.4732933349609374, 1.4734765625, 1.47428662109375, 1.4740941162109376, 1.4739312744140625, 1.4739609375, 1.4747392578125, 1.4735155029296876, 1.47369775390625, 1.4734786376953124, 1.473407958984375, 1.473471435546875, 1.4732052001953124, 1.473833984375, 1.4732821044921875, 1.4737459716796875, 1.4735677490234376, 1.473176513671875, 1.4732420654296876, 1.473311767578125, 1.4738421630859375, 1.4735667724609376, 1.4740521240234374, 1.4739364013671874, 1.4734776611328124, 1.4733291015625, 1.4738514404296874, 1.473481689453125, 1.4737315673828124, 1.473935302734375, 1.4735574951171875, 1.473122314453125, 1.47314892578125, 1.473607666015625, 1.4732789306640626, 1.4734888916015625, 1.47401416015625, 1.47483544921875, 1.4746541748046875, 1.47443603515625, 1.4748702392578126, 1.4743603515625, 1.4745528564453125, 3.064785888671875, 1.4746173095703126, 1.47447607421875, 1.4746685791015626, 1.47447607421875, 1.4743643798828125, 1.4738125, 1.4731048583984374, 1.473474609375, 1.47338134765625, 1.473534912109375, 1.473302490234375, 1.473479736328125, 1.4740050048828126, 1.473471435546875, 1.47342333984375, 1.473850341796875, 1.4732401123046874, 1.4734808349609374, 1.4733658447265625, 1.4733629150390626, 1.473560546875, 1.473197021484375, 1.47348681640625, 1.473091552734375, 1.4735728759765625, 1.47310693359375, 1.473244140625, 1.4730096435546876, 1.4732452392578126, 1.473584228515625, 1.473293212890625, 1.4733302001953126, 1.4733189697265625, 1.473532958984375, 1.473896484375, 1.47376953125, 1.474218994140625, 1.473491943359375, 1.4740469970703125, 1.4737294921875, 1.4742374267578124, 1.4740889892578124, 1.473924072265625, 1.473764404296875, 1.473859619140625, 1.4736947021484375, 1.4739609375, 1.47409716796875, 1.47407763671875, 1.4737705078125, 1.4731356201171875, 1.4733404541015624, 1.473121337890625, 1.4731192626953125, 1.4733465576171876, 1.473375244140625, 1.4740101318359375, 1.4735616455078124, 1.47340087890625, 1.4733568115234374, 1.473385498046875, 1.4738780517578125, 3.063844970703125, 1.4731295166015625, 1.4731304931640625, 1.4736036376953126, 1.473776611328125, 1.47394970703125, 1.4742486572265625, 1.4738533935546876, 1.4738216552734376, 1.4736895751953125, 1.4738575439453125, 1.473681396484375, 1.473460205078125, 1.47378076171875, 1.4738780517578125, 1.4737530517578126, 1.473596435546875, 1.4732513427734375, 1.4733271484375, 1.47356982421875, 1.4737847900390626, 1.47350732421875, 1.473412109375, 1.47346533203125, 1.4734541015625, 1.473197021484375, 1.4740101318359375, 1.47386669921875, 1.4737366943359376, 1.4738145751953124, 1.4737264404296875, 1.47363330078125, 1.4732882080078125, 1.473638427734375, 1.4737899169921875, 1.473912841796875, 1.473796142578125, 1.4733824462890626, 1.473281005859375, 1.473376220703125, 1.473712158203125, 1.47343359375, 1.473532958984375, 1.4734254150390624, 1.4737110595703125, 1.473586181640625, 1.4736097412109375, 1.4738094482421875, 1.47342236328125, 1.473691650390625, 1.4737294921875, 1.4736414794921875, 1.4735841064453126, 1.4735462646484374, 1.4737427978515625, 1.473418212890625, 1.473576904296875, 1.473511474609375, 1.47342333984375, 1.4733507080078125, 1.47335986328125, 1.474207763671875, 1.47342138671875]",tokens/s,0.6682591926299519,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.42.3,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,1384.353792,6237.454336,0.0,5591.007232,5346.100224,s,10,5.621484252929688,0.5621484252929687,0.0006512231383256937,0.5619280090332031,0.5629722900390625,0.5631148376464843,0.5632288757324219,"[0.5632573852539062, 0.5619976196289063, 0.561502197265625, 0.561581787109375, 0.56184912109375, 0.5611882934570313, 0.5618583984375, 0.5625692138671875, 0.5627396240234375, 0.5629406127929687]",tokens/s,455.39574333341466,kWh,6.6308295009312805e-06,3.633394705801994e-06,3.0662030702449045e-05,4.092625490918232e-05,tokens/kWh,6255153.3378287,MB,1385.762816,6237.454336,0.0,5591.007232,5529.622016,s,10,326.683455078125,32.668345507812504,0.005059921734622061,32.669546875,32.673459570312495,32.67500029296875,32.676232871093745,"[32.676541015625, 32.670173828125, 32.662392578125, 32.6731171875, 32.671205078125, 32.66616796875, 32.67228515625, 32.668919921875, 32.66134765625, 32.6613046875]",tokens/s,1.9284723184078545,kWh,0.0003856536088773498,0.00021137137319951726,0.0017394750242949513,0.0023365000063718185,tokens/kWh,26963.406731518968,,s,629,331.22317260742193,0.5265869198846135,0.06676456858509212,0.5185095825195313,0.5189097534179687,0.5190709106445313,1.080322138671875,"[0.5188095703125, 0.5182166748046875, 0.5186017456054688, 0.5188095703125, 0.5184255981445313, 0.5183231811523438, 0.51841943359375, 0.5183098754882812, 0.5187072143554687, 0.5183672485351563, 0.5182525634765625, 0.5186539306640625, 0.5185064697265624, 0.5181951904296875, 0.5179996337890626, 0.5185115966796875, 0.5183805541992188, 0.5186437377929688, 0.5184778442382812, 0.5189140625, 0.5192980346679688, 0.5191638793945312, 0.518930419921875, 0.5191065673828125, 0.518508544921875, 0.5184798583984375, 0.518361083984375, 0.5188628540039063, 0.518540283203125, 0.5188761596679687, 0.5184215087890625, 0.518645751953125, 0.5184061279296875, 0.5188270263671875, 0.5185966186523437, 0.5184757690429688, 0.5186529541015625, 0.5185863647460938, 0.5191638793945312, 0.5191014404296875, 0.5186867065429688, 0.5188812866210938, 0.5187266845703125, 0.5185075073242188, 0.518697998046875, 0.5185228881835937, 0.5184696044921875, 0.5186682739257813, 0.51854541015625, 0.5184461059570312, 0.5185996704101562, 0.5186078491210937, 0.51859765625, 0.5185884399414062, 0.51877685546875, 0.5190922241210938, 0.5191895141601562, 0.5191741333007812, 0.5192550659179688, 0.5191157836914062, 0.5191659545898437, 0.518845458984375, 1.0806650390625, 0.5187543334960938, 0.5186386108398438, 0.518856689453125, 0.5189160766601563, 0.5187870483398438, 0.5190062255859375, 0.5187553100585938, 0.5186437377929688, 0.51831298828125, 0.5186365356445313, 0.5181327514648437, 0.5182822265625, 0.517855224609375, 0.5185443725585938, 0.5185177612304688, 0.5186467895507813, 0.5184409790039063, 0.5186969604492188, 0.5182013549804687, 0.5184624633789062, 0.518456298828125, 0.5188157348632813, 0.518245361328125, 0.5183590698242188, 0.51825048828125, 0.5184716796875, 0.5190277099609375, 0.5182545776367188, 0.5186058349609375, 0.5184737548828126, 0.51859765625, 0.518403076171875, 0.5183590698242188, 0.5187256469726562, 0.5184972534179687, 0.51888232421875, 0.5187758178710937, 0.5185167236328125, 0.5184839477539063, 0.5184092407226563, 0.5188699951171875, 0.5185812377929687, 0.5185095825195313, 0.5184573364257813, 0.5184921875, 0.5184737548828126, 0.5184603881835937, 0.5184911499023438, 0.5186386108398438, 0.5184378662109375, 0.5186990356445312, 0.5184532470703125, 0.5188690185546875, 0.5186221923828125, 0.5189376220703125, 0.5190870971679687, 0.5185853271484375, 0.5185474853515625, 0.5184737548828126, 0.5185966186523437, 0.5188659057617188, 0.5187153930664062, 1.08008544921875, 0.5183876953125, 0.5183805541992188, 0.5181194458007813, 0.5184419555664063, 0.5182669067382812, 0.518513671875, 0.5181430053710937, 0.5185761108398438, 0.51825048828125, 0.5185054931640625, 0.5182116088867188, 0.5189078979492188, 0.5183272705078125, 0.5183908081054688, 0.5181583251953125, 0.5181675415039062, 0.5184737548828126, 0.5183364868164062, 0.51837646484375, 0.5182279663085938, 0.51806005859375, 0.5183364868164062, 0.5183334350585938, 0.5184174194335938, 0.5184747314453125, 0.518287353515625, 0.5188116455078124, 0.5184337768554688, 0.518771728515625, 0.5185095825195313, 0.5183733520507813, 0.5180508422851563, 0.5186058349609375, 0.5183743896484375, 0.5189140625, 0.5184409790039063, 0.5186283569335938, 0.5184163818359375, 0.5185833129882812, 0.5184041137695312, 0.5184071655273438, 0.5186764526367188, 0.5181409301757812, 0.5184235229492188, 0.5182443237304688, 0.5182146606445313, 0.5187942504882812, 0.5187543334960938, 0.5190287475585937, 0.5187266845703125, 0.518451171875, 0.5184706420898437, 0.5183651733398438, 0.5186488037109375, 0.51856689453125, 0.5184808959960937, 0.5186990356445312, 0.5183580322265625, 0.5184839477539063, 0.5183866577148437, 0.5184931640625, 0.5186262817382813, 1.0804141845703126, 0.5185863647460938, 0.5185955810546875, 0.5184798583984375, 0.5184952392578125, 0.5181726684570312, 0.5187952880859374, 0.518445068359375, 0.51839794921875, 0.5184686279296875, 0.5185792236328125, 0.5180999755859375, 0.5182177124023437, 0.5181572875976562, 0.5183170776367187, 0.5185464477539062, 0.5185044555664062, 0.5182678833007812, 0.5184010009765625, 0.5184624633789062, 0.518302734375, 0.518582275390625, 0.5185014038085938, 0.5188433837890625, 0.5185966186523437, 0.519103515625, 0.5185044555664062, 0.5182361450195313, 0.5182843017578125, 0.5184716796875, 0.5183252563476562, 0.5183436889648437, 0.5181808471679688, 0.5183488159179688, 0.5182064819335938, 0.5183488159179688, 0.5181931762695312, 0.5184389038085937, 0.5183406372070313, 0.5183948974609375, 0.5183641357421875, 0.5188024291992187, 0.5191905517578125, 0.5192560424804687, 0.5191629028320313, 0.51881982421875, 0.5188444213867187, 0.518962158203125, 0.5190697021484375, 0.5190154418945313, 0.5188935546875, 0.5190338745117188, 0.518972412109375, 0.5189693603515625, 0.5189816284179688, 0.5191700439453125, 0.5193287963867188, 0.518739990234375, 0.5188853759765625, 0.5185628051757812, 0.5189918823242188, 0.5186201782226563, 0.5191505737304688, 1.0808135986328125, 0.51853515625, 0.5181163330078125, 0.5184470825195312, 0.5182996215820312, 0.518171630859375, 0.5183119506835937, 0.51818701171875, 0.518203369140625, 0.5182802124023438, 0.5185525512695313, 0.5187522583007812, 0.518487060546875, 0.5186611328125, 0.5187286987304688, 0.518908935546875, 0.518830078125, 0.5189468383789062, 0.5185269775390625, 0.5185689697265625, 0.5184174194335938, 0.5183887329101563, 0.518234130859375, 0.5185863647460938, 0.5180579833984374, 0.5184757690429688, 0.5182648315429688, 0.5183539428710937, 0.5185167236328125, 0.5185372314453125, 0.518513671875, 0.51848193359375, 0.5186898193359375, 0.5184696044921875, 0.5185628051757812, 0.51841845703125, 0.5189990234375, 0.5187839965820312, 0.5193861083984375, 0.518898681640625, 0.5187921752929687, 0.5188413696289063, 0.5190901489257812, 0.5189130249023437, 0.5188925170898437, 0.5186703491210938, 0.5184102172851562, 0.5185751342773437, 0.518434814453125, 0.5185751342773437, 0.5184911499023438, 0.5185218505859375, 0.5186570434570312, 0.518592529296875, 0.5186652221679687, 0.5188474731445313, 0.5188054809570313, 0.5184102172851562, 0.5188587646484375, 0.5183876953125, 0.5187327880859375, 0.5192386474609375, 0.518329345703125, 1.0797823486328124, 0.5184645385742187, 0.5180784912109375, 0.5182371826171875, 0.5183170776367187, 0.51822900390625, 0.518414306640625, 0.5182443237304688, 0.5181859741210938, 0.5187860717773437, 0.5186262817382813, 0.5189263305664062, 0.5186529541015625, 0.5186600952148438, 0.518392822265625, 0.51827197265625, 0.5186017456054688, 0.518455322265625, 0.5184215087890625, 0.5184624633789062, 0.5183283081054687, 0.5182945556640625, 0.5183364868164062, 0.5184890747070312, 0.5184890747070312, 0.5183621215820312, 0.5186611328125, 0.5183385620117188, 0.5185679321289063, 0.518445068359375, 0.5188474731445313, 0.5187174682617187, 0.5190717163085937, 0.5187266845703125, 0.5183631591796874, 0.518223876953125, 0.5186600952148438, 0.518667236328125, 0.5187758178710937, 0.518560791015625, 0.51850341796875, 0.5185003662109375, 0.5185853271484375, 0.5183672485351563, 0.5182003173828125, 0.5184706420898437, 0.5184307250976562, 0.5187706909179688, 0.5183969116210938, 0.5187327880859375, 0.5183334350585938, 0.5185341186523438, 0.5186181030273438, 0.5184255981445313, 0.5184542846679687, 0.5187205200195313, 0.518129638671875, 0.5184603881835937, 0.5185167236328125, 0.51881982421875, 0.518624267578125, 0.51871435546875, 0.5189232788085938, 1.0807879638671876, 0.5186129760742187, 0.518371337890625, 0.5185361938476563, 0.518656005859375, 0.5183733520507813, 0.5184470825195312, 0.5185771484375, 0.5185413208007813, 0.5184358520507812, 0.5186365356445313, 0.5184696044921875, 0.5184747314453125, 0.5182965698242188, 0.51846142578125, 0.5183303833007813, 0.5184307250976562, 0.5183743896484375, 0.5185730590820312, 0.518403076171875, 0.5184429931640625, 0.5185464477539062, 0.5187133178710938, 0.518592529296875, 0.5189293823242187, 0.5185494995117188, 0.5188423461914062, 0.5185587158203125, 0.5185433349609375, 0.5187420043945312, 0.5186324462890625, 0.5185761108398438, 0.5185269775390625, 0.5186856689453125, 0.5186160888671875, 0.518697998046875, 0.5186262817382813, 0.5185792236328125, 0.51859765625, 0.5188095703125, 0.5186631469726563, 0.5189130249023437, 0.5186232299804687, 0.51881982421875, 0.5186939086914063, 0.5188731079101563, 0.5187584228515625, 0.5185372314453125, 0.5184962768554687, 0.5189385986328126, 0.5185597534179688, 0.5186795654296875, 0.518572021484375, 0.518687744140625, 0.518813720703125, 0.5186826171875, 0.518513671875, 0.5185904541015625, 0.51853515625, 0.5184655151367188, 0.5187901611328125, 0.5186437377929688, 0.5187153930664062, 1.0812200927734374, 0.5190051879882812, 0.5185259399414063, 0.5182935180664062, 0.51880859375, 0.5185054931640625, 0.5187153930664062, 0.5184440307617187, 0.5183447265625, 0.5185700073242188, 0.5186478271484375, 0.5184255981445313, 0.5183006591796875, 0.5179422607421875, 0.5181675415039062, 0.5181358032226563, 0.5180006103515625, 0.5183467407226563, 0.51862939453125, 0.5185341186523438, 0.5186846923828125, 0.5184655151367188, 0.5186693115234375, 0.518824951171875, 0.5188341674804687, 0.5186990356445312, 0.5188495483398438, 0.51874609375, 0.5188362426757812, 0.518856689453125, 0.5190697021484375, 0.5187962646484375, 0.5187471313476563, 0.518961181640625, 0.5186170654296876, 0.5190113525390625, 0.5188720703125, 0.5186529541015625, 0.5184112548828125, 0.518487060546875, 0.5186253051757812, 0.51827099609375, 0.5185054931640625, 0.5184163818359375, 0.5184174194335938, 0.5182597045898437, 0.5180006103515625, 0.5184583740234375, 0.5184020385742187, 0.518455322265625, 0.5182986450195313, 0.5184798583984375, 0.5184307250976562, 0.5184706420898437, 0.51846142578125, 0.5185208129882812, 0.5186549682617188, 0.51833447265625, 0.5185966186523437, 0.5187051391601563, 0.5184440307617187, 0.5187573852539062, 0.518919189453125, 1.0813255615234374, 0.5182597045898437, 0.5179361572265625, 0.5181696166992188, 0.5183784790039062, 0.5182894287109375, 0.5182791748046875, 0.51852490234375, 0.518408203125, 0.5189385986328126, 0.518445068359375, 0.5186150512695312, 0.518277099609375, 0.5182412719726562, 0.5184952392578125, 0.5183211669921876, 0.5186611328125, 0.518781982421875, 0.5183262939453125, 0.5183580322265625, 0.518451171875, 0.5184849853515625, 0.5184337768554688, 0.51825048828125, 0.5185095825195313, 0.518381591796875, 0.51833447265625, 0.5182853393554687, 0.5183549194335938, 0.5184962768554687, 0.51846142578125, 0.518513671875, 0.5183303833007813, 0.5186969604492188, 0.5186815795898437, 0.5183436889648437, 0.518614013671875, 0.5184727172851562, 0.5183436889648437, 0.5183866577148437, 0.5183252563476562, 0.518297607421875, 0.5183355102539062, 0.5184061279296875, 0.5183549194335938, 0.5184010009765625, 0.5183662109375, 0.5183590698242188, 0.5187440795898437, 0.5185802001953125, 0.5185177612304688, 0.5186570434570312, 0.5183119506835937, 0.5188116455078124, 0.5184276733398437, 0.5184890747070312, 0.5185904541015625, 0.5183037719726562, 0.518476806640625, 0.518213623046875, 0.51850341796875, 0.51825048828125, 0.5185443725585938, 1.0814249267578124, 0.518656005859375, 0.518150146484375, 0.5185014038085938, 0.51856591796875, 0.5186262817382813, 0.5183231811523438, 0.5181675415039062, 0.5183549194335938, 0.5182146606445313, 0.5182986450195313, 0.5185382690429687, 0.5181614379882813, 0.518223876953125, 0.5182249145507812, 0.5183303833007813, 0.5183180541992187, 0.5182515258789062, 0.518128662109375, 0.51858740234375, 0.5183529052734375, 0.5182423095703125, 0.5184102172851562, 0.5182515258789062, 0.5182013549804687, 0.5184522094726562, 0.5184061279296875, 0.5185044555664062, 0.51863037109375, 0.5185700073242188, 0.5186262817382813, 0.5184317626953125, 0.51835595703125, 0.5185781860351563, 0.5184603881835937, 0.5184542846679687, 0.5183364868164062, 0.518434814453125, 0.5183662109375, 0.5183795166015625, 0.51816552734375, 0.5183355102539062, 0.51835595703125, 0.518350830078125, 0.5186395874023437, 0.5182269287109375, 0.5184327392578125, 0.5185730590820312, 0.5184491577148438, 0.5190123291015625, 0.5186806030273438, 0.5186017456054688, 0.5186570434570312, 0.5187604370117187, 0.5186160888671875, 0.518666259765625, 0.518624267578125, 0.5184112548828125, 0.5184635009765625, 0.5184808959960937, 0.5184696044921875, 0.5186734008789062, 0.5181480712890625]",tokens/s,1.8990217231736815,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-6.7b,facebook/opt-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -28092,22 +25847,17 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-0.5B,Qwen/Qwen1.5-0.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-14B,Qwen/Qwen2-beta-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,3934.998528,12732.33408,0.0,12085.886976,11337.370624,s,10,10.913714233398439,1.0913714233398437,0.0019187724556758634,1.0909278564453126,1.0936456420898437,1.0942043518066407,1.0946513195800782,"[1.0947630615234376, 1.093521484375, 1.0894732666015625, 1.0895545654296874, 1.089643798828125, 1.0893114013671874, 1.0899912109375, 1.091864501953125, 1.093216552734375, 1.0923743896484375]",tokens/s,234.56725595451456,kWh,1.2859468128946092e-05,7.046563530275307e-06,6.250710556117145e-05,8.241313722039284e-05,tokens/kWh,3106300.871854854,MB,3934.998528,12732.33408,0.0,12085.886976,11686.804992,s,10,636.61697265625,63.661697265625,0.007269593222884917,63.66015234375,63.672558203125,63.6732771484375,63.6738523046875,"[63.6561171875, 63.66687109375, 63.65788671875, 63.66241796875, 63.65402734375, 63.67399609375, 63.6723984375, 63.656875, 63.65174609375, 63.66463671875]",tokens/s,0.9896060379467405,kWh,0.0007518513685133722,0.0004120810364553653,0.003630345543163038,0.004794277948131776,tokens/kWh,13140.664909624129,,s,629,645.425664550782,1.0261139341029908,0.12959104210993952,1.0104422607421875,1.0109677490234374,1.0113603271484375,2.100010478515625,"[1.0103787231445311, 1.0104750366210937, 1.010914306640625, 1.0098585815429688, 1.0104279174804687, 1.010324462890625, 1.0105446166992187, 1.010070556640625, 1.0100776977539063, 1.0105692138671876, 1.0102251586914062, 1.0103941040039062, 1.0105692138671876, 1.0099476318359375, 1.010234375, 1.0106050415039063, 1.0103367919921875, 1.0100828247070313, 1.0105968627929687, 1.0105446166992187, 1.0105169677734376, 1.0106787719726562, 1.0105886840820313, 1.0103572387695312, 1.0107811889648437, 1.010609130859375, 1.010071533203125, 1.0102784423828124, 1.0099865112304687, 1.010282470703125, 1.0107012939453126, 1.0107606811523437, 1.0109655151367187, 1.0103797607421876, 1.0103644409179688, 1.0103593139648437, 1.0102118530273438, 1.0102118530273438, 1.0101124877929688, 1.0109286499023438, 1.0103910522460937, 1.0106552124023438, 1.011262451171875, 1.0107944946289062, 1.0104873046875, 1.0106204223632813, 1.0099425048828126, 1.0105272216796874, 1.00997119140625, 1.0104494018554688, 1.0101258544921874, 1.010229248046875, 1.0103654174804688, 1.0102947998046874, 1.0099885864257812, 1.0105845947265626, 1.0102702026367187, 1.0102896728515625, 1.0102702026367187, 1.0103797607421876, 1.0103336791992188, 1.0109767456054688, 2.1042431640625, 1.0108385009765626, 1.0106071166992188, 1.0101176147460937, 1.0099619750976563, 1.01039306640625, 1.0101083984375, 1.0104063720703125, 1.0112655639648438, 1.0104002685546876, 1.0102466430664063, 1.0105128784179687, 1.0102671508789063, 1.0101801147460938, 1.0101739501953124, 1.0103828735351563, 1.0103910522460937, 1.0109398803710938, 1.0110330810546875, 1.0103602905273437, 1.0109020385742187, 1.0112982788085938, 1.010745361328125, 1.0104309692382814, 1.0102783813476564, 1.010271240234375, 1.0101309204101563, 1.0107698974609376, 1.0114027709960938, 1.01064501953125, 1.0102230834960937, 1.0105385131835938, 1.0106644287109374, 1.0104248046875, 1.0108897094726563, 1.010545654296875, 1.0105814819335937, 1.0107955322265625, 1.0110156860351562, 1.0106214599609376, 1.01065625, 1.01066650390625, 1.0106920776367188, 1.0103101196289062, 1.0108272705078125, 1.0104053955078125, 1.0105886840820313, 1.010440185546875, 1.0111314086914063, 1.010808837890625, 1.0105968627929687, 1.010450439453125, 1.0106644287109374, 1.010177001953125, 1.0106286010742187, 1.01064599609375, 1.01049853515625, 1.0107146606445312, 1.0105742797851562, 1.0107597045898438, 1.0104780883789062, 1.01089794921875, 1.0108590087890625, 2.10035302734375, 1.0105681762695313, 1.0103634033203126, 1.0108939819335938, 1.0105936279296874, 1.01033984375, 1.0102159423828125, 1.0105128784179687, 1.0100869140625, 1.0100756225585938, 1.0101299438476563, 1.0103162841796876, 1.0100142211914063, 1.010387939453125, 1.0102691650390625, 1.0100736083984374, 1.0103839111328126, 1.0102691650390625, 1.0101923828125, 1.0100633544921875, 1.0100695190429687, 1.0103623657226561, 1.0100408325195311, 1.0103367919921875, 1.0102200317382812, 1.0101944580078126, 1.0105272216796874, 1.0104760131835937, 1.010466796875, 1.0102435913085936, 1.010566162109375, 1.010461669921875, 1.0103326416015626, 1.0106859741210938, 1.0104954833984374, 1.0103705444335938, 1.0109921264648438, 1.0105057373046875, 1.0102046508789062, 1.01007666015625, 1.0101852416992188, 1.0097950439453125, 1.0098770141601563, 1.0107269287109375, 1.0103705444335938, 1.0104033203125, 1.0112020263671875, 1.0103848876953125, 1.0109419555664063, 1.0105897216796875, 1.0109766845703125, 1.010745361328125, 1.0108344116210937, 1.011294189453125, 1.0108703002929686, 1.0104647827148439, 1.0111211547851562, 1.010250732421875, 1.0104473876953124, 1.0103490600585938, 1.0106961669921875, 1.010408447265625, 1.0106736450195313, 2.09991064453125, 1.0102855834960938, 1.010808837890625, 1.0101883544921875, 1.0098963623046875, 1.0099046630859374, 1.0102015380859375, 1.0112860107421875, 1.0114365234375, 1.0114171142578126, 1.011398681640625, 1.0108375854492186, 1.011353515625, 1.0101831665039063, 1.0099578857421876, 1.0098401489257813, 1.0104351806640626, 1.0098911743164063, 1.01047705078125, 1.0109163818359375, 1.0101514282226562, 1.0102528076171875, 1.0105303344726562, 1.010460693359375, 1.0104515380859376, 1.0105640258789061, 1.0108231811523438, 1.0104279174804687, 1.0102528076171875, 1.0102149047851563, 1.0106552124023438, 1.0108037109375, 1.0104227905273437, 1.010044921875, 1.0103521118164063, 1.0104022827148438, 1.0106019897460938, 1.0105252075195312, 1.0107361450195314, 1.0110341186523437, 1.0109389038085939, 1.0102589721679687, 1.0107658081054687, 1.01032958984375, 1.0109112548828125, 1.0104422607421875, 1.0104935302734375, 1.0104278564453124, 1.0109645385742188, 1.0107493896484374, 1.01064501953125, 1.0110023803710937, 1.0106593017578125, 1.0102763671875, 1.01026611328125, 1.0103255004882812, 1.0103726196289062, 1.010171875, 1.0105169677734376, 1.0103091430664062, 1.0100910034179686, 1.0103613891601562, 1.010420654296875, 2.10003857421875, 1.0099517211914062, 1.010044921875, 1.0100490112304688, 1.010212890625, 1.0100838623046875, 1.0100510864257812, 1.0103336791992188, 1.0101473388671875, 1.0099937133789063, 1.0099507446289062, 1.0100213623046874, 1.0101913452148437, 1.010255859375, 1.0110208129882812, 1.0101217041015624, 1.0101422119140624, 1.0106214599609376, 1.0106583251953125, 1.0105067749023438, 1.0107003173828124, 1.0106572875976563, 1.0101596069335939, 1.0103726196289062, 1.0107791137695312, 1.0102958374023439, 1.0105692138671876, 1.010567138671875, 1.0101862182617187, 1.0100357055664062, 1.0101422119140624, 1.0100562133789062, 1.0101636962890626, 1.0102886352539062, 1.0103009033203125, 1.0100858764648437, 1.0102108154296876, 1.0106234741210938, 1.0103255004882812, 1.0102271728515626, 1.0103224487304687, 1.0102650756835938, 1.0104852294921876, 1.0101156005859375, 1.0108948364257813, 1.0105333862304688, 1.0106009521484376, 1.010366455078125, 1.0103654174804688, 1.0105374755859375, 1.0105303344726562, 1.010418701171875, 1.0103674926757813, 1.0106214599609376, 1.0106808471679687, 1.0101104736328126, 1.0104002685546876, 1.010713623046875, 1.010361328125, 1.0107811889648437, 1.0112348022460937, 1.0109830322265625, 1.010874267578125, 2.099938232421875, 1.0099097900390626, 1.010356201171875, 1.0107750244140625, 1.0106531982421876, 1.0112010498046875, 1.0109235229492188, 1.0112593994140624, 1.011103759765625, 1.0114088745117187, 1.0117509155273436, 1.0115809326171874, 1.0110750732421876, 1.0116761474609375, 1.0117703857421876, 1.01070849609375, 1.0111211547851562, 1.0108140869140625, 1.010822021484375, 1.0101463012695313, 1.010524169921875, 1.010092041015625, 1.0108528442382811, 1.0102384643554687, 1.0105374755859375, 1.0103961791992186, 1.0102907104492187, 1.0105763549804687, 1.0101422119140624, 1.0106972045898437, 1.010524169921875, 1.0101381225585937, 1.01081396484375, 1.0101923828125, 1.010398193359375, 1.0102046508789062, 1.0100275268554688, 1.0102159423828125, 1.01076171875, 1.0107730102539063, 1.0104595947265624, 1.0105743408203125, 1.0107811889648437, 1.0105466918945312, 1.010503662109375, 1.0107811889648437, 1.0115594482421875, 1.0113648681640626, 1.0109235229492188, 1.0113966064453126, 1.0115973510742187, 1.0105558471679688, 1.0106337280273439, 1.0101053466796874, 1.0102333374023438, 1.0100643920898438, 1.0104063720703125, 1.0102118530273438, 1.0105886840820313, 1.0109163818359375, 1.01098291015625, 1.0103121948242189, 1.0104627075195312, 2.1005556640625, 1.0100828247070313, 1.0103214111328125, 1.0101217041015624, 1.0104524536132813, 1.0106480712890624, 1.009934326171875, 1.0109644775390625, 1.01163427734375, 1.011917724609375, 1.0118707275390626, 1.0117642211914062, 1.0120970458984375, 1.0110791625976563, 1.0113136596679688, 1.0106326904296874, 1.010629638671875, 1.0110320434570312, 1.0109531860351562, 1.0102200317382812, 1.0101647338867188, 1.01035107421875, 1.0101319580078125, 1.0104688720703126, 1.0105006103515626, 1.01138330078125, 1.010892822265625, 1.0108292846679687, 1.0109214477539064, 1.0098134765625, 1.0101145629882813, 1.0102262573242187, 1.0102721557617187, 1.010165771484375, 1.0108426513671875, 1.0108047485351563, 1.010640869140625, 1.0113280029296876, 1.0108528442382811, 1.010176025390625, 1.0101810913085938, 1.0100869140625, 1.0103460083007811, 1.010440185546875, 1.0107904052734376, 1.0101801147460938, 1.0104586181640625, 1.0103050537109375, 1.0111918334960937, 1.0107914428710938, 1.0108416137695313, 1.0108283081054688, 1.0106810302734375, 1.0106591186523437, 1.0115072021484375, 1.0104279174804687, 1.0108436279296875, 1.0108283081054688, 1.01055078125, 1.0102097778320311, 1.010460693359375, 1.0103121948242189, 1.0103951416015624, 2.102578125, 1.0104268798828124, 1.0102036743164062, 1.010355224609375, 1.0103173217773438, 1.0101637573242188, 1.01056201171875, 1.0103060302734375, 1.0101749877929687, 1.0104330444335938, 1.0104094848632812, 1.0101801147460938, 1.0102282104492188, 1.0102640380859376, 1.0102354125976563, 1.01035107421875, 1.0101268310546876, 1.01020263671875, 1.0103245849609375, 1.010389892578125, 1.0105927734375, 1.0102783813476564, 1.0102159423828125, 1.0109481201171875, 1.0104248046875, 1.0102097778320311, 1.0102999267578125, 1.0106634521484374, 1.01051904296875, 1.0106911010742188, 1.0106603393554687, 1.0103428955078124, 1.010208740234375, 1.0103828735351563, 1.0103501586914063, 1.0101267700195313, 1.010428955078125, 1.0099415283203126, 1.0103070678710937, 1.010746337890625, 1.0105733032226563, 1.0100193481445312, 1.0105620727539062, 1.0108969116210937, 1.010830322265625, 1.010567138671875, 1.0105261840820312, 1.0104903564453125, 1.010502685546875, 1.010763916015625, 1.0106510009765626, 1.01055078125, 1.010597900390625, 1.010534423828125, 1.01037158203125, 1.0100613403320313, 1.0104227905273437, 1.0101196899414062, 1.0103214111328125, 1.0106286010742187, 1.0109337768554687, 1.0104739990234375, 1.0107742309570313, 2.104293212890625, 1.010323486328125, 1.0104320068359376, 1.0102138671875, 1.0099435424804688, 1.0105354614257813, 1.0101022338867187, 1.0104801025390624, 1.0105220947265625, 1.0102742919921874, 1.0100582275390626, 1.0102661743164063, 1.0102158813476563, 1.0104473876953124, 1.0102271728515626, 1.0102630615234376, 1.0100213623046874, 1.0100828247070313, 1.0104155883789063, 1.01005517578125, 1.010208740234375, 1.0101239013671874, 1.0102445068359376, 1.0100910034179686, 1.0104801025390624, 1.0102210693359375, 1.0102210693359375, 1.0105426025390625, 1.0104248046875, 1.0105814819335937, 1.0103746337890624, 1.0100991821289063, 1.0102630615234376, 1.0103203735351562, 1.0105231323242188, 1.0105108642578124, 1.0102191162109375, 1.0101605224609376, 1.0104053955078125, 1.0104586181640625, 1.0102518920898438, 1.0101390380859374, 1.0103285522460939, 1.0101493530273438, 1.0104166259765626, 1.0106941528320312, 1.0107689208984374, 1.0102313232421876, 1.0105620727539062, 1.01051708984375, 1.0104871826171875, 1.01003369140625, 1.0101371459960937, 1.0099342651367187, 1.0106521606445313, 1.0104391479492187, 1.0105620727539062, 1.010513916015625, 1.010798583984375, 1.0104074096679687, 1.0103634033203126, 1.0103224487304687, 1.010681884765625, 2.103435302734375, 1.010229248046875, 1.0106736450195313, 1.0107843017578124, 1.0107432861328125, 1.0110986328125, 1.0106265869140625, 1.010587646484375, 1.0101248168945312, 1.0100542602539062, 1.0107769775390625, 1.0108426513671875, 1.0104627075195312, 1.0106603393554687, 1.0108734741210939, 1.01037255859375, 1.0107083740234375, 1.0104166259765626, 1.0103275756835937, 1.0101319580078125, 1.0107750244140625, 1.0107258911132813, 1.0107606811523437, 1.0102907104492187, 1.0104279174804687, 1.0105446166992187, 1.0105364379882813, 1.0103009643554688, 1.010494384765625, 1.0100807495117188, 1.0106644287109374, 1.0108026733398439, 1.0108375244140626, 1.010492431640625, 1.0103746337890624, 1.0101227416992187, 1.0101484375, 1.0099373168945311, 1.0103756713867187, 1.0104944458007812, 1.0109050903320314, 1.0101473388671875, 1.0104903564453125, 1.0099251098632813, 1.0105374755859375, 1.010134033203125, 1.0101810913085938, 1.0101248168945312, 1.0104063720703125, 1.0102702026367187, 1.0105569458007813, 1.0107965698242187, 1.01083544921875, 1.0107893676757813, 1.01082421875, 1.0101309204101563, 1.0103572387695312, 1.010207763671875, 1.010361328125, 1.0107053833007813, 1.0118082275390625, 1.01166796875, 1.01172021484375]",tokens/s,0.9745506485828798,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-110B,Qwen/Qwen1.5-110B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -28127,51 +25877,29 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-7B,Qwen/Qwen-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained - model_class = get_class_from_dynamic_module( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module - final_module = get_cached_module_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file - modules_needed = check_imports(resolved_module_file) - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports - raise ImportError( -ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 32.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-14B,Qwen/Qwen2-beta-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-564M,facebook/xglm-564M,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -28191,22 +25919,16 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: XGLMForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-7b,google/recurrentgemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,t,t,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -28218,7 +25940,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/google/recurrentgemma-7b/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/t/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -28245,9 +25967,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948229-737bac1f473f50945bc8d0b0;117f7788-2c0d-4053-84e3-d75d8bf7d799) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669490c0-127c6af3417ed277160f9e7f;5cef989b-7a9b-4aff-8cd8-9e0843e8f847) -Repository Not Found for url: https://huggingface.co/google/recurrentgemma-7b/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/t/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -28272,11 +25994,57 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: google/recurrentgemma-7b is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: t is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-rw-1b,tiiuae/falcon-rw-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neox-20b,EleutherAI/gpt-neox-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.42.3,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,1950.920704,15045.492736,0.0,14399.045632,13900.420096,s,10,16.790244384765625,1.6790244384765625,0.0010486142582281257,1.6790367431640625,1.6804459716796873,1.6805005737304688,1.6805442553710939,"[1.679192626953125, 1.6789603271484375, 1.6780438232421875, 1.678517333984375, 1.680433837890625, 1.67788916015625, 1.6791131591796875, 1.680181640625, 1.6773572998046875, 1.68055517578125]",tokens/s,152.46949010002365,kWh,1.9813106258710223e-05,1.0857679242523961e-05,9.179171232219785e-05,0.00012246249782343202,tokens/kWh,2090435.8848625156,MB,1950.920704,15045.492736,0.0,14399.045632,14292.420096,s,10,981.8734921875001,98.18734921875,0.011000398968485372,98.1860859375,98.20038515625,98.204403515625,98.207618203125,"[98.184484375, 98.208421875, 98.1873671875, 98.1855078125, 98.1994921875, 98.1972734375, 98.1793359375, 98.1732421875, 98.171703125, 98.1866640625]",tokens/s,0.6416305206452139,kWh,0.0011591991291774646,0.0006353437306229187,0.005368699933845403,0.007163242793645786,tokens/kWh,8794.899435195004,,s,629,995.4237821044923,1.5825497330755043,0.19938333773778583,1.55846142578125,1.5592523681640624,1.559604833984375,3.2361203808593753,"[1.5580538330078124, 1.5583099365234374, 1.558223876953125, 1.55838671875, 1.55867138671875, 1.558048828125, 1.5581358642578125, 1.55835693359375, 1.55815625, 1.5579002685546874, 1.5581112060546876, 1.5579954833984375, 1.5578941650390625, 1.5584471435546876, 1.5588095703125, 1.559251953125, 1.5590963134765625, 1.558498291015625, 1.5594239501953124, 1.559110595703125, 1.558477783203125, 1.5582054443359374, 1.5585330810546876, 1.5583743896484374, 1.558171630859375, 1.5580078125, 1.5581695556640625, 1.5581890869140624, 1.5580272216796875, 1.5581531982421875, 1.5582095947265624, 1.5581317138671875, 1.558971435546875, 1.558867919921875, 1.5581644287109375, 1.5584481201171876, 1.558408203125, 1.558391845703125, 1.558349853515625, 1.5588013916015624, 1.558470703125, 1.558509521484375, 1.5585679931640626, 1.55841943359375, 1.558540283203125, 1.5586170654296876, 1.5587318115234374, 1.558656982421875, 1.558823974609375, 1.5588424072265625, 1.5585596923828124, 1.5589283447265625, 1.5587532958984376, 1.55822900390625, 1.5586396484375, 1.5583641357421876, 1.55864990234375, 1.5585484619140626, 1.5585382080078125, 1.5590430908203126, 1.5587666015625, 1.5589632568359375, 3.237376953125, 1.5580640869140625, 1.558181884765625, 1.557844970703125, 1.5580006103515625, 1.5579954833984375, 1.5581123046875, 1.5579893798828126, 1.558107177734375, 1.5582781982421876, 1.5594127197265626, 1.559099365234375, 1.559131103515625, 1.5585341796875, 1.5591177978515625, 1.55886279296875, 1.5582791748046876, 1.558634521484375, 1.55941064453125, 1.559609375, 1.5590020751953124, 1.5593431396484374, 1.559488525390625, 1.5587420654296875, 1.5596728515625, 1.5594976806640626, 1.5597445068359375, 1.5597117919921875, 1.55930322265625, 1.5584010009765625, 1.5583519287109375, 1.558445068359375, 1.55962060546875, 1.5594803466796876, 1.5595396728515625, 1.5590604248046875, 1.55877783203125, 1.55829150390625, 1.5592386474609374, 1.559795654296875, 1.5599677734375, 1.559572509765625, 1.5594322509765626, 1.5586314697265624, 1.560300537109375, 1.5584686279296875, 1.55837646484375, 1.5587890625, 1.558540283203125, 1.558470703125, 1.5584583740234375, 1.558497314453125, 1.5582698974609375, 1.558455322265625, 1.5591485595703125, 1.5591710205078124, 1.5590338134765624, 1.5596605224609374, 1.5584798583984374, 1.5588690185546874, 1.5584910888671875, 1.5581890869140624, 1.55858740234375, 3.2361298828125, 1.558045654296875, 1.5582381591796874, 1.558180908203125, 1.5579576416015626, 1.5579566650390626, 1.55797705078125, 1.5577784423828125, 1.5582259521484374, 1.5582371826171875, 1.5580057373046876, 1.55856591796875, 1.5581695556640625, 1.5578818359375, 1.55877783203125, 1.5584163818359376, 1.558245361328125, 1.5582525634765625, 1.5581624755859376, 1.5581583251953126, 1.5581051025390624, 1.558556640625, 1.5584256591796875, 1.558476806640625, 1.558287353515625, 1.5582464599609376, 1.558298583984375, 1.5586898193359375, 1.558340576171875, 1.55793505859375, 1.5584154052734376, 1.5581326904296875, 1.55810205078125, 1.558065185546875, 1.5584481201171876, 1.5580743408203126, 1.5586007080078126, 1.558350830078125, 1.558640625, 1.558423583984375, 1.5587113037109375, 1.5584420166015625, 1.55839794921875, 1.5586263427734375, 1.5582689208984375, 1.5584296875, 1.5582177734375, 1.55880859375, 1.558539306640625, 1.558929443359375, 1.558582275390625, 1.558930419921875, 1.558613037109375, 1.55983251953125, 1.56031689453125, 1.5597752685546875, 1.5597598876953125, 1.5601285400390625, 1.55953564453125, 1.5596953125, 1.5594854736328125, 1.55881884765625, 1.5586212158203125, 3.237253173828125, 1.5578316650390625, 1.5583251953125, 1.55785009765625, 1.558055908203125, 1.5579197998046874, 1.5578603515625, 1.55808154296875, 1.558330322265625, 1.55824951171875, 1.5579053955078126, 1.557854248046875, 1.557908447265625, 1.5580303955078125, 1.558086669921875, 1.5586058349609375, 1.55808154296875, 1.5584583740234375, 1.5582320556640625, 1.5581337890625, 1.5581746826171874, 1.5581737060546874, 1.5594495849609376, 1.5593502197265625, 1.55987353515625, 1.559400390625, 1.558656982421875, 1.5581593017578126, 1.558519775390625, 1.5582698974609375, 1.558197265625, 1.558408203125, 1.5585330810546876, 1.5579146728515625, 1.558423583984375, 1.5582259521484374, 1.55835595703125, 1.55822802734375, 1.5586058349609375, 1.5585423583984375, 1.5584420166015625, 1.558414306640625, 1.558656982421875, 1.5590482177734375, 1.55839892578125, 1.5587000732421874, 1.558583251953125, 1.5587010498046876, 1.558455322265625, 1.558435791015625, 1.55865087890625, 1.5584051513671875, 1.5583887939453125, 1.5587010498046876, 1.558929443359375, 1.558476806640625, 1.5586846923828126, 1.5584317626953126, 1.558667236328125, 1.5589652099609375, 1.559405517578125, 1.559698486328125, 1.56028515625, 3.24001904296875, 1.559047119140625, 1.5582115478515626, 1.559482421875, 1.55951416015625, 1.557960693359375, 1.558873046875, 1.5592540283203125, 1.5592652587890625, 1.558792236328125, 1.5587071533203125, 1.5585771484375, 1.557887939453125, 1.5581942138671876, 1.5579146728515625, 1.5587696533203126, 1.5585545654296875, 1.5591290283203125, 1.558961181640625, 1.5583519287109375, 1.558830078125, 1.5593133544921876, 1.5585177001953125, 1.5584798583984374, 1.5584490966796876, 1.558161376953125, 1.5583846435546875, 1.5586396484375, 1.5587840576171874, 1.55858740234375, 1.5587706298828126, 1.5585311279296874, 1.5585853271484376, 1.558718505859375, 1.55877783203125, 1.5583519287109375, 1.5585361328125, 1.5583436279296874, 1.5583160400390625, 1.5586314697265624, 1.55827197265625, 1.5586263427734375, 1.558256591796875, 1.5586048583984375, 1.56061083984375, 1.55869189453125, 1.5582628173828126, 1.55932470703125, 1.559943115234375, 1.55940966796875, 1.55860986328125, 1.558519775390625, 1.5587215576171876, 1.558623291015625, 1.5588004150390624, 1.5584306640625, 1.5585311279296874, 1.559140380859375, 1.5590625, 1.5583037109375, 1.558941650390625, 1.5583519287109375, 1.5587593994140625, 3.236095947265625, 1.55803955078125, 1.5580579833984376, 1.5585648193359376, 1.55922119140625, 1.5585577392578125, 1.5581224365234374, 1.5580743408203126, 1.557939208984375, 1.558950927734375, 1.5590543212890624, 1.5589171142578124, 1.55820751953125, 1.5580906982421876, 1.558582275390625, 1.5586478271484374, 1.5581624755859376, 1.5583251953125, 1.558139892578125, 1.558404052734375, 1.558762451171875, 1.558740966796875, 1.55846044921875, 1.55859765625, 1.5587103271484375, 1.55846044921875, 1.55847265625, 1.55835595703125, 1.5592816162109375, 1.558283203125, 1.5583631591796876, 1.558256591796875, 1.5584962158203124, 1.5584859619140625, 1.5586282958984374, 1.5587747802734375, 1.5586324462890624, 1.558761474609375, 1.558920166015625, 1.5590062255859376, 1.559319580078125, 1.5589990234375, 1.5587880859375, 1.5590902099609374, 1.55905126953125, 1.559146484375, 1.5588126220703125, 1.5589180908203124, 1.5586734619140625, 1.5591004638671875, 1.5590809326171875, 1.5590645751953125, 1.55970458984375, 1.5590850830078125, 1.5590697021484374, 1.558794189453125, 1.558703125, 1.5587318115234374, 1.5590830078125, 1.5591229248046874, 1.5588321533203124, 1.5586334228515626, 1.5587808837890624, 3.23734619140625, 1.558002685546875, 1.5577149658203124, 1.558254638671875, 1.5578726806640626, 1.55822998046875, 1.558177734375, 1.5585648193359376, 1.558667236328125, 1.5586529541015626, 1.5583426513671874, 1.55926123046875, 1.5578367919921876, 1.55795458984375, 1.558508544921875, 1.5586611328125, 1.5580989990234375, 1.5586651611328124, 1.5579781494140625, 1.5578511962890624, 1.558193115234375, 1.558066162109375, 1.5584921875, 1.5580631103515625, 1.558329345703125, 1.5580068359375, 1.5581522216796875, 1.5584962158203124, 1.5587593994140625, 1.558128662109375, 1.558140869140625, 1.558129638671875, 1.5582259521484374, 1.5581961669921875, 1.55856591796875, 1.5580845947265625, 1.558054931640625, 1.5582054443359374, 1.558171630859375, 1.5583519287109375, 1.55859765625, 1.5583262939453124, 1.5581573486328124, 1.558824951171875, 1.558509521484375, 1.5589549560546876, 1.558813720703125, 1.5588546142578126, 1.55884130859375, 1.558962158203125, 1.5589754638671875, 1.5583538818359375, 1.5587542724609376, 1.5585946044921875, 1.5591341552734375, 1.5585167236328126, 1.55884130859375, 1.5582105712890626, 1.5585382080078125, 1.558287353515625, 1.559066650390625, 1.558328369140625, 1.5585638427734374, 3.238383544921875, 1.558488037109375, 1.557611572265625, 1.5580323486328125, 1.5576668701171874, 1.5577364501953126, 1.5578460693359375, 1.557897216796875, 1.5580999755859375, 1.558709228515625, 1.557866455078125, 1.5580303955078125, 1.5580068359375, 1.5578204345703126, 1.5581685791015625, 1.5583262939453124, 1.5580938720703126, 1.558171630859375, 1.55803857421875, 1.5583016357421875, 1.558519775390625, 1.557992431640625, 1.5580426025390626, 1.5578306884765625, 1.5581573486328124, 1.5579320068359375, 1.558286376953125, 1.5582371826171875, 1.5583016357421875, 1.5584952392578124, 1.5585279541015624, 1.558201416015625, 1.558108154296875, 1.558107177734375, 1.558592529296875, 1.558244384765625, 1.558054931640625, 1.5581644287109375, 1.55880859375, 1.5584910888671875, 1.558899658203125, 1.5585997314453126, 1.55806103515625, 1.5583375244140625, 1.5583109130859376, 1.55829345703125, 1.5588638916015625, 1.5589119873046875, 1.5587071533203125, 1.5580262451171876, 1.558403076171875, 1.5584798583984374, 1.558330322265625, 1.55858642578125, 1.558856689453125, 1.558193115234375, 1.558345703125, 1.558108154296875, 1.5583251953125, 1.5581982421875, 1.5610501708984375, 1.5583887939453125, 1.5587952880859375, 3.235346435546875, 1.5581163330078125, 1.55756640625, 1.5580068359375, 1.55763916015625, 1.55790234375, 1.5576688232421876, 1.557738525390625, 1.5576319580078124, 1.558244384765625, 1.557791748046875, 1.5579586181640626, 1.5577528076171876, 1.557613525390625, 1.5579515380859374, 1.5582166748046875, 1.5581358642578125, 1.55793505859375, 1.55818603515625, 1.5580927734375, 1.55803857421875, 1.558433837890625, 1.55839697265625, 1.5587225341796875, 1.5587174072265626, 1.5583846435546875, 1.5585064697265625, 1.5582259521484374, 1.558518798828125, 1.5581593017578126, 1.5583385009765625, 1.5581470947265625, 1.5582484130859375, 1.5581358642578125, 1.5583436279296874, 1.558077392578125, 1.5579207763671874, 1.55822900390625, 1.55804052734375, 1.5581890869140624, 1.558372314453125, 1.5585648193359376, 1.558033447265625, 1.5585955810546874, 1.55846142578125, 1.5585228271484375, 1.558578125, 1.5584296875, 1.55850244140625, 1.558202392578125, 1.55873486328125, 1.5583662109375, 1.55852490234375, 1.558560791015625, 1.5590738525390626, 1.55888330078125, 1.5588905029296876, 1.55881982421875, 1.558825927734375, 1.5586263427734375, 1.5591884765625, 1.558414306640625, 1.5586529541015626, 3.238762451171875, 1.557859375, 1.557813232421875, 1.55837744140625, 1.558393798828125, 1.55814404296875, 1.55791259765625, 1.55789208984375, 1.5579832763671875, 1.5583538818359375, 1.558372314453125, 1.5582945556640626, 1.557918701171875, 1.5579627685546875, 1.5581337890625, 1.558581298828125, 1.5580999755859375, 1.557992431640625, 1.5592130126953125, 1.5587860107421876, 1.5587532958984376, 1.559041015625, 1.5587696533203126, 1.559415771484375, 1.5595980224609376, 1.559413818359375, 1.5599595947265625, 1.559562255859375, 1.5584573974609375, 1.55867236328125, 1.5585638427734374, 1.558118408203125, 1.5581470947265625, 1.5581961669921875, 1.558635498046875, 1.558296630859375, 1.558118408203125, 1.558240234375, 1.5587225341796875, 1.558730712890625, 1.5587952880859375, 1.558772705078125, 1.55820849609375, 1.558361083984375, 1.558244384765625, 1.5583170166015625, 1.558265869140625, 1.55871337890625, 1.5584215087890625, 1.558140869140625, 1.5588372802734376, 1.5583487548828125, 1.5584635009765626, 1.5586375732421875, 1.5585433349609374, 1.558372314453125, 1.5584256591796875, 1.5581634521484375, 1.5582484130859375, 1.558240234375, 1.5586221923828125, 1.5586898193359375, 1.5584942626953124]",tokens/s,0.6318916739865195,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-6B,,cuda,0,42,,,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,MB,1571.749888,5448.925184,0.0,4802.47808,4489.12128,s,10,5.0903373718261715,0.5090337371826171,0.0024963690031113454,0.5090882415771485,0.5114007537841796,0.5133009628295898,0.514821130065918,"[0.515201171875, 0.5058653564453125, 0.5075380249023438, 0.5109784851074218, 0.5074734191894531, 0.5066469421386719, 0.5090344543457032, 0.5092752685546875, 0.5091822204589844, 0.5091420288085937]",tokens/s,502.91362104386286,kWh,5.98198832737075e-06,3.277856253707796e-06,2.697877158300277e-05,3.623861616408132e-05,tokens/kWh,7064287.412104325,MB,1571.749888,5448.925184,0.0,4802.47808,4557.793792,s,10,299.8803828125,29.98803828125,0.03808075694133287,29.9707392578125,30.046216015625,30.058939062500002,30.0691175,"[29.972552734375, 30.043388671875, 30.071662109375, 30.010330078125, 29.96, 29.95865625, 29.96925, 29.972228515625, 29.963451171875, 29.95886328125]",tokens/s,2.1008376543053404,kWh,0.00035374844759702685,0.00019388459414373753,0.001556149911585597,0.0021037829533263617,tokens/kWh,29946.05498651303,,s,629,303.97862612915014,0.48327285553124066,0.06045359810307915,0.47556915283203127,0.47775867309570313,0.47801220703124997,0.9833881201171876,"[0.4750715026855469, 0.4762265625, 0.4773417053222656, 0.47625729370117187, 0.47571148681640624, 0.47557223510742186, 0.47629312133789065, 0.47471615600585937, 0.475789306640625, 0.47461376953125, 0.4746967163085937, 0.474913818359375, 0.47592657470703126, 0.47551071166992187, 0.47595623779296875, 0.47574118041992186, 0.4750817260742187, 0.47586611938476564, 0.4771154479980469, 0.47594082641601565, 0.4757462768554688, 0.47569818115234375, 0.4764293212890625, 0.475978759765625, 0.47632794189453126, 0.47545343017578123, 0.47498138427734377, 0.47522305297851564, 0.47550360107421874, 0.47533575439453124, 0.4750652770996094, 0.4751790161132812, 0.47525888061523436, 0.4754544677734375, 0.4752803955078125, 0.4756971435546875, 0.4763504638671875, 0.4758845520019531, 0.47809332275390626, 0.475462646484375, 0.47741644287109375, 0.47680307006835937, 0.47630642700195314, 0.47653070068359377, 0.47590911865234375, 0.4751380615234375, 0.47556710815429687, 0.475146240234375, 0.47564901733398435, 0.4757647399902344, 0.47530291748046877, 0.4750807189941406, 0.47518719482421873, 0.47629925537109374, 0.4754646911621094, 0.4754155578613281, 0.4753121337890625, 0.4750469055175781, 0.47505612182617185, 0.4759122009277344, 0.47506842041015623, 0.4758763427734375, 0.9829324951171875, 0.4772618103027344, 0.47679385375976563, 0.4752302551269531, 0.47515850830078127, 0.4750141296386719, 0.4753879089355469, 0.47504486083984376, 0.47488204956054686, 0.47477862548828126, 0.4748114013671875, 0.47600946044921877, 0.4750940246582031, 0.4750837707519531, 0.4750745544433594, 0.4750592041015625, 0.47484109497070315, 0.4761292724609375, 0.4751933288574219, 0.4750182495117187, 0.475357177734375, 0.47510528564453125, 0.4762142639160156, 0.47762432861328125, 0.4771512451171875, 0.478097412109375, 0.47743179321289064, 0.4781097106933594, 0.4774246520996094, 0.47769497680664064, 0.4778270568847656, 0.4778741760253906, 0.47795404052734375, 0.47758233642578124, 0.47754238891601564, 0.47758438110351564, 0.4775854187011719, 0.4776581115722656, 0.4781363220214844, 0.47784140014648435, 0.4785827941894531, 0.4778670043945312, 0.478013427734375, 0.4813271179199219, 0.4787435607910156, 0.4778823547363281, 0.4775577697753906, 0.47766937255859376, 0.4776509399414062, 0.47802163696289063, 0.4775925903320313, 0.4771829833984375, 0.47707955932617185, 0.4779130859375, 0.47752191162109375, 0.4774225769042969, 0.47764581298828124, 0.47809228515625, 0.47725054931640626, 0.47956683349609375, 0.47532647705078124, 0.47634738159179685, 0.4757237854003906, 0.9846497192382813, 0.4779151306152344, 0.47775845336914063, 0.4778516540527344, 0.4773468017578125, 0.47776461791992186, 0.47770932006835937, 0.4769669189453125, 0.4777676696777344, 0.4777635803222656, 0.47618765258789064, 0.4749752197265625, 0.4755538024902344, 0.4747980651855469, 0.4747796630859375, 0.4748114013671875, 0.47680514526367185, 0.4753622741699219, 0.47532440185546876, 0.4750438537597656, 0.4750325622558594, 0.47742669677734373, 0.4790394897460937, 0.47991500854492186, 0.4776028137207031, 0.4770672607421875, 0.47781991577148436, 0.4773304443359375, 0.4778946533203125, 0.4778496398925781, 0.4774788818359375, 0.4779632568359375, 0.47771136474609377, 0.47775640869140623, 0.47768267822265625, 0.47796121215820314, 0.4775454711914062, 0.4780103759765625, 0.4779438171386719, 0.4773253173828125, 0.4780001220703125, 0.47749530029296877, 0.478482421875, 0.4767160339355469, 0.47870156860351565, 0.47761203002929686, 0.47860427856445314, 0.47783221435546874, 0.4779366149902344, 0.4776212463378906, 0.4775301208496094, 0.477328369140625, 0.478376953125, 0.4772362365722656, 0.47751168823242185, 0.47775955200195314, 0.47782699584960936, 0.47732632446289064, 0.47806362915039063, 0.4772454528808594, 0.4775782775878906, 0.47722698974609373, 0.477765625, 0.9892290649414063, 0.47758950805664063, 0.47766937255859376, 0.47711026000976564, 0.4785479736328125, 0.4779674072265625, 0.47848751831054687, 0.4773918762207031, 0.47714407348632815, 0.475968505859375, 0.47733248901367187, 0.4777830505371094, 0.4774912109375, 0.4774410095214844, 0.4776990661621094, 0.47711026000976564, 0.47647540283203127, 0.4762900390625, 0.47571044921875, 0.47531622314453126, 0.47745126342773436, 0.4778526611328125, 0.4754595947265625, 0.4753295593261719, 0.47519024658203124, 0.47728536987304687, 0.4776847229003906, 0.47796734619140624, 0.47679693603515627, 0.4769525756835937, 0.47623678588867185, 0.47598489379882813, 0.47588760375976563, 0.47573504638671876, 0.4752127990722656, 0.47496600341796874, 0.4763709411621094, 0.47549542236328124, 0.4751493225097656, 0.4747591552734375, 0.47531109619140627, 0.47625933837890627, 0.47604122924804687, 0.4752691345214844, 0.478866455078125, 0.4751441650390625, 0.4752322692871094, 0.47499981689453125, 0.47643954467773436, 0.4755630187988281, 0.4757166137695312, 0.47565005493164064, 0.476015625, 0.4754155578613281, 0.4754124755859375, 0.47525070190429686, 0.47504281616210936, 0.4759347229003906, 0.47554763793945315, 0.47518923950195313, 0.47525274658203126, 0.475404296875, 0.47679489135742187, 0.9835653076171875, 0.4750100708007812, 0.47497518920898435, 0.47521792602539065, 0.47529168701171876, 0.47549435424804687, 0.47515341186523435, 0.47609548950195313, 0.47539712524414063, 0.47541351318359376, 0.47511859130859374, 0.47484622192382814, 0.47537664794921874, 0.475104248046875, 0.47634738159179685, 0.4752896118164063, 0.47548724365234374, 0.4761077880859375, 0.4751452026367188, 0.4771768188476562, 0.4755333251953125, 0.4755230712890625, 0.4750796813964844, 0.4751923217773438, 0.4752496643066406, 0.4748308410644531, 0.47501516723632814, 0.47498751831054686, 0.4759531555175781, 0.4754883117675781, 0.47538067626953123, 0.4753909912109375, 0.47539712524414063, 0.4753735656738281, 0.475494384765625, 0.47589376831054686, 0.4761006164550781, 0.47518206787109374, 0.4750602111816406, 0.47489434814453124, 0.47634228515625, 0.47604940795898437, 0.47567974853515627, 0.47519744873046876, 0.4751749267578125, 0.47551077270507813, 0.4754002685546875, 0.47505914306640623, 0.47493426513671877, 0.475788330078125, 0.4752465515136719, 0.47501516723632814, 0.47556915283203127, 0.4761507873535156, 0.47565823364257814, 0.47601458740234376, 0.47671194458007815, 0.478308349609375, 0.4755906677246094, 0.47542578125, 0.4754708557128906, 0.4771061706542969, 0.4754810791015625, 0.9827368774414063, 0.47548416137695315, 0.4752916564941406, 0.4750274658203125, 0.4750274658203125, 0.47477658081054686, 0.4755199890136719, 0.47510833740234376, 0.4752332763671875, 0.47511962890625, 0.4750837707519531, 0.47506329345703124, 0.4751718444824219, 0.477048828125, 0.4756756591796875, 0.475315185546875, 0.47508685302734377, 0.474925048828125, 0.476084228515625, 0.4754022521972656, 0.47531417846679686, 0.47490765380859373, 0.47505612182617185, 0.4752547912597656, 0.47493939208984376, 0.4751216735839844, 0.4752363586425781, 0.47553741455078125, 0.47550872802734373, 0.4752025451660156, 0.47503768920898437, 0.47521588134765624, 0.47512063598632814, 0.4751523742675781, 0.4767621154785156, 0.4764487609863281, 0.47532235717773436, 0.4752414855957031, 0.47862374877929686, 0.47638223266601565, 0.47562542724609375, 0.47544525146484373, 0.47627877807617186, 0.47506329345703124, 0.47538995361328124, 0.4754227294921875, 0.47551693725585936, 0.4754288635253906, 0.47596337890625, 0.4758896789550781, 0.4756899719238281, 0.4755988464355469, 0.4755916748046875, 0.4752066650390625, 0.4755640258789062, 0.47575653076171875, 0.47548416137695315, 0.4752998962402344, 0.4755332336425781, 0.4752363586425781, 0.4765552673339844, 0.4758056945800781, 0.47643853759765625, 0.9858508911132813, 0.4760975341796875, 0.4763627624511719, 0.47618048095703125, 0.47583026123046873, 0.4758814697265625, 0.47627365112304687, 0.47550360107421874, 0.4748226623535156, 0.4754380798339844, 0.4754176025390625, 0.47634841918945314, 0.47666278076171875, 0.4759449462890625, 0.47538177490234373, 0.475430908203125, 0.4754606018066406, 0.4765736999511719, 0.47562957763671876, 0.47619277954101563, 0.4762623901367187, 0.47586407470703124, 0.4763156433105469, 0.47800421142578126, 0.47563058471679687, 0.47566949462890623, 0.4764661865234375, 0.47568487548828126, 0.4763525085449219, 0.47546881103515626, 0.4754503784179688, 0.47535821533203126, 0.4751155090332031, 0.476685302734375, 0.4755333251953125, 0.4750540771484375, 0.4750325622558594, 0.4753387451171875, 0.47632281494140627, 0.47543603515625, 0.47514727783203126, 0.47536947631835935, 0.4750110778808594, 0.4750960693359375, 0.47505816650390625, 0.47526605224609375, 0.47514215087890627, 0.47597158813476564, 0.47550054931640623, 0.47509503173828127, 0.47519845581054687, 0.4751452026367188, 0.4753704833984375, 0.474967041015625, 0.47536639404296877, 0.47516876220703125, 0.47490457153320315, 0.4751523742675781, 0.47530905151367187, 0.4764610595703125, 0.47634228515625, 0.47607601928710935, 0.4758845520019531, 0.9857208251953125, 0.4755548095703125, 0.47583026123046873, 0.4755302734375, 0.4761640625, 0.4756316223144531, 0.475904052734375, 0.4751758728027344, 0.47539813232421874, 0.475536376953125, 0.4755210266113281, 0.475514892578125, 0.4755937805175781, 0.47548818969726564, 0.47541656494140627, 0.47544216918945315, 0.477454345703125, 0.4756387939453125, 0.4758138732910156, 0.47603302001953124, 0.47580465698242186, 0.47644158935546876, 0.4751994934082031, 0.47532339477539065, 0.4750745544433594, 0.47546981811523437, 0.4754565124511719, 0.47503768920898437, 0.47527935791015624, 0.4750858154296875, 0.4753018798828125, 0.4747683715820312, 0.4749916076660156, 0.47602789306640625, 0.4755906677246094, 0.4751790161132812, 0.47570123291015626, 0.477876220703125, 0.477338623046875, 0.4760637512207031, 0.4767999877929687, 0.47610983276367186, 0.47703347778320315, 0.47675802612304685, 0.47620712280273436, 0.4752158508300781, 0.47609036254882814, 0.4771328125, 0.4762552185058594, 0.4760504455566406, 0.47554458618164064, 0.475283447265625, 0.47543603515625, 0.4751523742675781, 0.475335693359375, 0.4752138366699219, 0.47528140258789064, 0.475109375, 0.47681332397460935, 0.47562240600585937, 0.47532339477539065, 0.47533465576171874, 0.47510833740234376, 0.984848388671875, 0.4750960693359375, 0.47506024169921873, 0.4759930419921875, 0.47555789184570313, 0.4750254211425781, 0.47533978271484373, 0.4758394775390625, 0.475610107421875, 0.47590911865234375, 0.4757596130371094, 0.4766791687011719, 0.4766371765136719, 0.4757176208496094, 0.4764549255371094, 0.4773990478515625, 0.4758917236328125, 0.476790771484375, 0.47595416259765627, 0.4752404479980469, 0.47515545654296876, 0.475030517578125, 0.4752916564941406, 0.4751278076171875, 0.4755138549804688, 0.47549234008789065, 0.47554150390625, 0.4758425598144531, 0.47556607055664063, 0.4752015380859375, 0.47505612182617185, 0.4750540771484375, 0.47509811401367186, 0.4751697998046875, 0.4750817260742187, 0.4752066650390625, 0.4769587097167969, 0.4757596130371094, 0.47552410888671875, 0.4753387451171875, 0.4751247253417969, 0.47600946044921877, 0.47491787719726564, 0.47531417846679686, 0.47513394165039063, 0.4757739562988281, 0.4750469055175781, 0.475030517578125, 0.4758507385253906, 0.4755599365234375, 0.47600741577148437, 0.4752414855957031, 0.4751247253417969, 0.47610470581054687, 0.4753530883789063, 0.475404296875, 0.4752005004882813, 0.476626953125, 0.4756654052734375, 0.47670578002929687, 0.4761466979980469, 0.4752547912597656, 0.4752209777832031, 0.9850972290039063, 0.47500698852539064, 0.47586099243164065, 0.475536376953125, 0.4751933288574219, 0.4753070068359375, 0.47523434448242186, 0.475157470703125, 0.4753039245605469, 0.4752762756347656, 0.4760606689453125, 0.47565216064453125, 0.4750796203613281, 0.47518106079101563, 0.4763607177734375, 0.47558758544921875, 0.47543499755859375, 0.47558349609375, 0.4752384033203125, 0.47536639404296877, 0.47527423095703125, 0.47547494506835936, 0.4750335998535156, 0.4753049621582031, 0.47516571044921874, 0.4754155578613281, 0.4772812805175781, 0.4751769714355469, 0.4758814697265625, 0.4761343994140625, 0.4757074279785156, 0.4766033630371094, 0.47504281616210936, 0.47508480834960937, 0.4752629699707031, 0.47697714233398436, 0.4764979248046875, 0.4756357421875, 0.4753837890625, 0.4751473083496094, 0.475273193359375, 0.475177978515625, 0.47527835083007813, 0.4753541259765625, 0.4753623046875, 0.4753930358886719, 0.4750796813964844, 0.47559576416015625, 0.47536334228515625, 0.4764241943359375, 0.47548724365234374, 0.47530087280273436, 0.47603302001953124, 0.4752906188964844, 0.47511962890625, 0.47501516723632814, 0.4768563232421875, 0.4758026123046875, 0.47588864135742187, 0.4753950805664062, 0.4752138366699219, 0.47535000610351563, 0.4750120849609375]",tokens/s,2.069224432025556,,,main,False,False +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-72B,Qwen/Qwen2-beta-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-7B,Qwen/Qwen1.5-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2805.69856,8389.132288,0.0,7742.685184,7007.0144,s,10,5.757144287109376,0.5757144287109376,0.0011485729711129637,0.5757064819335938,0.5769704406738282,0.5771491607666016,0.5772921368408204,"[0.5760953979492187, 0.5769307250976563, 0.574836669921875, 0.5745257568359375, 0.574697998046875, 0.5738778076171875, 0.5753175659179688, 0.5767816162109375, 0.577327880859375, 0.5767528686523438]",tokens/s,444.66490196050984,kWh,6.783310471125591e-06,3.7157116531489013e-06,3.30976653669996e-05,4.3596687491274095e-05,tokens/kWh,5872005.758493431,MB,2805.69856,8389.132288,0.0,7742.685184,7283.984384,s,10,336.2841484375,33.62841484375,0.0041773861216769514,33.62973046875,33.63291328125,33.63334921875,33.63369796875,"[33.62066796875, 33.6314140625, 33.6304453125, 33.62453125, 33.627359375, 33.629015625, 33.63378515625, 33.63111328125, 33.623, 33.63281640625]",tokens/s,1.873415690056198,kWh,0.0003969375698617947,0.00021755745967517217,0.0019112099178555991,0.0025257049473925665,tokens/kWh,24943.531137727943,,s,629,340.93043640136693,0.5420197717032864,0.06847421137969394,0.5337415771484375,0.53422822265625,0.5344366455078124,1.1091660595703123,"[0.5336361083984374, 0.5341531982421875, 0.533359619140625, 0.5337293090820312, 0.53304931640625, 0.5336708984375, 0.5331292114257813, 0.5338419189453125, 0.5331640625, 0.5335398559570312, 0.53309033203125, 0.5335951538085938, 0.5331834716796875, 0.5338798217773437, 0.5333298950195312, 0.5336842041015625, 0.5331845092773437, 0.5336678466796875, 0.533411865234375, 0.53406103515625, 0.5336094970703125, 0.5338388671875, 0.5332828369140625, 0.5337896728515625, 0.5332971801757812, 0.533770263671875, 0.5334599609375, 0.5337487182617188, 0.5331834716796875, 0.5339166870117188, 0.5336627197265625, 0.5344092407226563, 0.5335090942382813, 0.5339432983398438, 0.533738525390625, 0.5342853393554687, 0.5333934326171875, 0.5340252075195312, 0.53340771484375, 0.534096923828125, 0.5334374389648437, 0.5337191162109375, 0.5333012084960937, 0.5337835693359375, 0.5332633666992187, 0.53411328125, 0.533443603515625, 0.5338327026367188, 0.5333759765625, 0.5339893798828125, 0.5333831787109375, 0.5338306274414063, 0.5334395141601562, 0.5340466918945312, 0.5333514404296875, 0.5337937622070312, 0.5338665161132813, 0.5344153442382813, 0.5337047119140625, 0.5338112182617187, 0.5332122192382812, 0.5337702026367187, 1.1116871337890626, 0.5333892822265625, 0.53395556640625, 0.5335818481445312, 0.534329345703125, 0.53378662109375, 0.533939208984375, 0.533485595703125, 0.5340098266601563, 0.533265380859375, 0.5337507934570312, 0.5338316650390625, 0.53416552734375, 0.533770263671875, 0.5342669067382813, 0.5334896850585937, 0.5339904174804687, 0.5334537963867187, 0.5338736572265625, 0.5339002685546875, 0.5341122436523438, 0.5333739624023438, 0.5337057495117188, 0.5331763305664062, 0.5336084594726562, 0.5334323120117187, 0.5338009643554688, 0.5331425170898437, 0.5337620239257812, 0.5331527709960937, 0.5337323608398438, 0.5339801635742187, 0.5345730590820312, 0.53325927734375, 0.5336207275390625, 0.53326953125, 0.5340211791992188, 0.5333349609375, 0.5338777465820312, 0.53340673828125, 0.5337753295898438, 0.533338134765625, 0.533880859375, 0.533570556640625, 0.5340579833984375, 0.5336616821289063, 0.5373572998046875, 0.5339514770507813, 0.53390234375, 0.5336719360351563, 0.5342648315429688, 0.5339279174804688, 0.5340426025390625, 0.5336504516601562, 0.5338839721679688, 0.53328173828125, 0.534540283203125, 0.5336729736328125, 0.5342125854492188, 0.5336329956054687, 0.53383984375, 0.5335726318359375, 0.5343897705078124, 1.10948046875, 0.5335797729492188, 0.5341194458007813, 0.5339064331054687, 0.5345751342773437, 0.5335787353515625, 0.533949462890625, 0.5334251708984376, 0.5337794799804687, 0.5332059936523438, 0.5337763671875, 0.5334661254882812, 0.533986328125, 0.5332305908203125, 0.5337221069335938, 0.5334609985351563, 0.53401904296875, 0.5335316772460937, 0.5339371337890625, 0.53347021484375, 0.5337108764648437, 0.5331456298828126, 0.5338245239257813, 0.5349140625, 0.5346262817382812, 0.5334579467773437, 0.5338726196289062, 0.533796875, 0.5340897216796875, 0.5336565551757813, 0.5343047485351563, 0.5332715454101562, 0.534076416015625, 0.533580810546875, 0.5337415771484375, 0.5334824829101562, 0.53382861328125, 0.53319677734375, 0.5336668090820312, 0.5332664184570313, 0.5337743530273438, 0.5335418701171875, 0.5340856323242188, 0.5335429077148437, 0.53378662109375, 0.5334508056640626, 0.5341675415039062, 0.5349437255859375, 0.5338644409179687, 0.5339566040039062, 0.5342269287109375, 0.5335900268554687, 0.5341214599609375, 0.53355419921875, 0.5342976684570313, 0.5334230346679687, 0.5340139770507812, 0.5335992431640625, 0.5341634521484375, 0.5334210815429687, 0.5340436401367188, 0.5337569580078125, 0.5342617797851562, 1.1091947021484374, 0.5332183227539062, 0.5337579345703125, 0.533496826171875, 0.5339699096679688, 0.53334326171875, 0.5339320068359374, 0.5333401489257813, 0.533749755859375, 0.533454833984375, 0.533738525390625, 0.5335623779296875, 0.5348157348632813, 0.5332367553710937, 0.5340784301757813, 0.5337159423828125, 0.5338306274414063, 0.5333944091796875, 0.5338828735351563, 0.533201904296875, 0.5338593139648438, 0.53323681640625, 0.5340261840820313, 0.5336555786132813, 0.5336821899414063, 0.5331660766601563, 0.5336535034179688, 0.5331763305664062, 0.5336637573242188, 0.5330974731445313, 0.5336381225585938, 0.5332664184570313, 0.5338818359375, 0.533327880859375, 0.53427099609375, 0.5336790771484375, 0.5338746948242188, 0.533159912109375, 0.5337006225585937, 0.5332623291015625, 0.5337293090820312, 0.5337589721679687, 0.533981201171875, 0.533370849609375, 0.5360977783203125, 0.5334261474609375, 0.5341010131835937, 0.5335623779296875, 0.5340078125, 0.5334896850585937, 0.5340006103515625, 0.5336053466796875, 0.5344645385742187, 0.53421875, 0.5342853393554687, 0.5334138793945312, 0.5337979125976563, 0.53326953125, 0.533792724609375, 0.5334814453125, 0.5338665161132813, 0.5334456176757812, 0.53382861328125, 1.1090924072265624, 0.5336094970703125, 0.5341419677734375, 0.5334814453125, 0.5340355224609376, 0.53357666015625, 0.53401904296875, 0.5336771240234375, 0.5337230834960938, 0.5334425048828125, 0.5336268920898437, 0.5331640625, 0.5335726318359375, 0.533123046875, 0.5340631103515625, 0.5331763305664062, 0.5340078125, 0.5347676391601562, 0.5339586791992188, 0.5332183227539062, 0.5338541870117187, 0.5333883056640625, 0.53372314453125, 0.5331834716796875, 0.5336309814453125, 0.5334537963867187, 0.534108154296875, 0.5333411865234375, 0.5341143188476563, 0.5333524780273438, 0.5335510864257812, 0.5337293090820312, 0.5341480712890625, 0.5335869140625, 0.5337671508789062, 0.533243896484375, 0.5338193969726562, 0.5337169799804687, 0.5342074584960937, 0.533265380859375, 0.5335838623046875, 0.533375, 0.5341593627929687, 0.5334948120117188, 0.5341030883789063, 0.5336299438476563, 0.5339105224609375, 0.5335091552734375, 0.5336759643554687, 0.5331793823242188, 0.5338460083007812, 0.5332551879882812, 0.5341522216796875, 0.5335869140625, 0.53411328125, 0.5335480346679687, 0.53422802734375, 0.5365042724609375, 0.5340682373046876, 0.533644287109375, 0.5340825805664062, 0.533528564453125, 0.5341306762695313, 1.1086192626953124, 0.5332972412109375, 0.534067138671875, 0.5337210693359375, 0.5342228393554688, 0.53347021484375, 0.53422900390625, 0.5334702758789063, 0.5339790649414062, 0.5337579345703125, 0.5341173706054687, 0.5335818481445312, 0.534245361328125, 0.5336678466796875, 0.5341265869140625, 0.5333944091796875, 0.5336135864257813, 0.5332551879882812, 0.5341911010742187, 0.533359619140625, 0.5341552734375, 0.5331834716796875, 0.53369140625, 0.5332572021484375, 0.53432421875, 0.533712890625, 0.5336708984375, 0.533106689453125, 0.533802001953125, 0.5334364013671875, 0.53359716796875, 0.5331845092773437, 0.53380810546875, 0.5332346801757812, 0.5336627197265625, 0.5332254638671875, 0.5337774047851562, 0.5336309814453125, 0.537302001953125, 0.5335510864257812, 0.5340999755859375, 0.5334763793945313, 0.5337241821289063, 0.5331824340820313, 0.5339197387695312, 0.53344970703125, 0.533875732421875, 0.53338623046875, 0.5339381713867187, 0.5334395141601562, 0.5338777465820312, 0.5334159545898437, 0.534012939453125, 0.5338378295898437, 0.5343323974609375, 0.534024169921875, 0.534361083984375, 0.5335521240234375, 0.5342996826171875, 0.5335305786132812, 0.533734375, 0.5334640502929687, 0.5342750854492188, 1.1099852294921875, 0.533232666015625, 0.5340067749023437, 0.5332183227539062, 0.5340108642578125, 0.5337364501953125, 0.534192138671875, 0.533570556640625, 0.5341460571289063, 0.533876708984375, 0.53406005859375, 0.5334681396484375, 0.5340528564453125, 0.5333984985351562, 0.53374462890625, 0.5331937255859375, 0.5337579345703125, 0.533475341796875, 0.5339535522460938, 0.533396484375, 0.53382861328125, 0.5333401489257813, 0.5337302856445313, 0.535394287109375, 0.5337927856445313, 0.5334507446289063, 0.5339443359375, 0.5337825317382813, 0.5344010009765625, 0.533728271484375, 0.5337845458984375, 0.5336329956054687, 0.5338839111328125, 0.5333759765625, 0.5338009643554688, 0.533201904296875, 0.5340794677734375, 0.5336320190429688, 0.5339146118164062, 0.53344873046875, 0.5339638061523437, 0.5336893310546875, 0.5338931274414063, 0.5337426147460937, 0.5341430053710937, 0.5335347290039063, 0.5341624145507813, 0.5345700073242188, 0.5347133178710938, 0.5338163452148438, 0.53465087890625, 0.5338040161132812, 0.5341941528320312, 0.533674072265625, 0.5342606811523437, 0.5343539428710937, 0.5342125854492188, 0.5335050048828125, 0.5339566040039062, 0.533570556640625, 0.5341276245117188, 0.5338695678710937, 0.5341880493164063, 1.111352294921875, 0.533518310546875, 0.534761474609375, 0.5335090942382813, 0.5338511352539063, 0.5336331176757813, 0.5341572265625, 0.5336279296875, 0.5341102294921874, 0.5339033813476562, 0.53374462890625, 0.5332838134765625, 0.5336801147460938, 0.5332142333984375, 0.5337333984375, 0.5331947631835937, 0.534908935546875, 0.533190673828125, 0.5336279296875, 0.5330892944335938, 0.5340794677734375, 0.5336063842773437, 0.5338890380859375, 0.5336463623046875, 0.5338880004882812, 0.5336104736328126, 0.533712890625, 0.5332838134765625, 0.5341624145507813, 0.5335418701171875, 0.5341460571289063, 0.53351220703125, 0.5338890380859375, 0.533243896484375, 0.5342177124023437, 0.5337088012695312, 0.5343447265625, 0.533712890625, 0.5340774536132813, 0.5339156494140626, 0.5344481201171875, 0.5336882934570313, 0.5341992797851562, 0.5336084594726562, 0.533676025390625, 0.5333197021484375, 0.5338849487304688, 0.533917724609375, 0.53441943359375, 0.5336135864257813, 0.5341010131835937, 0.5335132446289063, 0.5340897216796875, 0.5336616821289063, 0.5339934692382813, 0.5337794799804687, 0.5340200805664063, 0.5335142211914062, 0.5342648315429688, 0.533865478515625, 0.5339801635742187, 0.5338695678710937, 0.534255615234375, 1.112015869140625, 0.5335879516601563, 0.534097900390625, 0.5332183227539062, 0.5336187133789062, 0.5332059936523438, 0.5337405395507813, 0.5333309326171874, 0.5338091430664063, 0.533423095703125, 0.5338306274414063, 0.533191650390625, 0.5339586791992188, 0.5338961791992187, 0.5337569580078125, 0.5333165893554688, 0.534349853515625, 0.5343836059570313, 0.5336043701171875, 0.5334517822265625, 0.5338685913085938, 0.5332326049804688, 0.5336350708007812, 0.5330892944335938, 0.5336309814453125, 0.5331548461914063, 0.5336053466796875, 0.5331824340820313, 0.5337999267578125, 0.5332408447265625, 0.533622802734375, 0.5338716430664062, 0.5345494995117187, 0.53351220703125, 0.5343057861328125, 0.5334180297851563, 0.5338480224609375, 0.53349169921875, 0.5338357543945312, 0.533622802734375, 0.533875732421875, 0.5334579467773437, 0.5337610473632812, 0.5334579467773437, 0.5340170288085937, 0.5332745971679688, 0.534091796875, 0.5333995361328125, 0.5338532104492187, 0.5333872680664062, 0.5340620727539063, 0.533886962890625, 0.5340108642578125, 0.5335654296875, 0.533928955078125, 0.5333514404296875, 0.533950439453125, 0.5334404907226562, 0.5343201293945312, 0.5335582885742187, 0.5337221069335938, 0.5335408935546875, 0.5341378784179688, 1.111615478515625, 0.5335418701171875, 0.534171630859375, 0.5334824829101562, 0.533771240234375, 0.5340958862304688, 0.5341583251953125, 0.5335234375, 0.5342811889648438, 0.5338716430664062, 0.53395556640625, 0.533296142578125, 0.5340877075195313, 0.53382861328125, 0.5342125854492188, 0.5335961303710938, 0.5341245727539062, 0.5336575927734375, 0.5344921875, 0.5339248657226563, 0.5340242309570312, 0.533560302734375, 0.5341531982421875, 0.5337302856445313, 0.5339627685546875, 0.5335162963867187, 0.535699462890625, 0.5336187133789062, 0.5340529174804688, 0.5334834594726563, 0.5338634033203125, 0.5333811645507812, 0.5340415649414062, 0.5334630126953125, 0.53372314453125, 0.5333606567382813, 0.5338726196289062, 0.5338736572265625, 0.5340108642578125, 0.5332828369140625, 0.5338992919921876, 0.5332766723632812, 0.5340753784179687, 0.5338142700195313, 0.5339904174804687, 0.5335613403320313, 0.5342269287109375, 0.533306396484375, 0.5340200805664063, 0.5333984985351562, 0.5338890380859375, 0.5335675048828125, 0.5339054565429687, 0.5333565063476563, 0.5340200805664063, 0.5336309814453125, 0.5339617309570313, 0.5336258544921875, 0.5341859741210937, 0.5334886474609375, 0.5339893798828125, 0.53378662109375, 0.534213623046875]",tokens/s,1.8449511479212646,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-32B,Qwen/Qwen1.5-32B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,4461.907968,24111.480832,0.0,23465.033728,21690.932224,s,10,26.134937744140625,2.6134937744140623,0.002110944060506743,2.6131138916015626,2.6165289794921875,2.616893395996094,2.617184929199219,"[2.61349365234375, 2.615531005859375, 2.611662353515625, 2.612973388671875, 2.612295654296875, 2.611193115234375, 2.61325439453125, 2.616447998046875, 2.6172578125, 2.610828369140625]",tokens/s,97.95317000798843,kWh,3.0828719950384564e-05,1.6895240036155882e-05,0.0001496905919745939,0.00019741455196113433,tokens/kWh,1296763.5741989252,MB,4461.907968,24111.480832,0.0,23465.033728,21890.217984,s,10,1550.2514375,155.02514375,0.01758597574684522,155.027953125,155.04441406249998,155.04866796875,155.05207109375002,"[155.040484375, 155.052921875, 155.004375, 155.03190625, 155.025, 155.03090625, 155.00465625, 154.996828125, 155.020890625, 155.04346875]",tokens/s,0.4063856899342497,kWh,0.0018302277258535225,0.001003126846851137,0.008909165071770808,0.01174251964447547,tokens/kWh,5365.117701092351,,s,629,1571.3079760742191,2.498104890420062,0.3103664945461323,2.460632080078125,2.46187294921875,2.4623572265625002,5.0725159374999995,"[2.460918701171875, 2.46082666015625, 2.461980712890625, 2.4610048828125, 2.460906494140625, 2.46040576171875, 2.46205126953125, 2.4613447265625, 2.461484130859375, 2.4613662109375, 2.461151123046875, 2.461115478515625, 2.460440673828125, 2.460030029296875, 2.461190185546875, 2.460876708984375, 2.460451904296875, 2.460170166015625, 2.463140869140625, 2.46112060546875, 2.46163671875, 2.46084814453125, 2.463774658203125, 2.461010986328125, 2.4610498046875, 2.46070263671875, 2.461833251953125, 2.460528564453125, 2.4617880859375, 2.46072021484375, 2.461929443359375, 2.4613662109375, 2.46120849609375, 2.46112060546875, 2.4614892578125, 2.459990966796875, 2.461517822265625, 2.4609638671875, 2.46169189453125, 2.460205078125, 2.460928955078125, 2.461189208984375, 2.459634765625, 2.45965625, 2.45981396484375, 2.459525146484375, 2.459683837890625, 2.46053369140625, 2.46042529296875, 2.459734130859375, 2.461192138671875, 2.46074072265625, 2.46057470703125, 2.46108154296875, 2.46078564453125, 2.46036474609375, 2.461035400390625, 2.4617646484375, 2.460655517578125, 2.461253662109375, 2.461116455078125, 2.46118505859375, 5.0779052734375, 2.461738037109375, 2.461781982421875, 2.461154296875, 2.463372314453125, 2.462037109375, 2.462613525390625, 2.462189453125, 2.46213427734375, 2.46221923828125, 2.462265380859375, 2.462834716796875, 2.461442138671875, 2.460442626953125, 2.460788818359375, 2.460884033203125, 2.46097509765625, 2.461346923828125, 2.46034130859375, 2.460333984375, 2.46076318359375, 2.461075439453125, 2.460369873046875, 2.459978759765625, 2.4613203125, 2.461739013671875, 2.460712890625, 2.461740966796875, 2.46230322265625, 2.462064697265625, 2.4611767578125, 2.4604365234375, 2.46226318359375, 2.46073046875, 2.461908935546875, 2.4604140625, 2.4613857421875, 2.460633056640625, 2.46066796875, 2.459797607421875, 2.460780517578125, 2.46072119140625, 2.46026025390625, 2.4598271484375, 2.46049169921875, 2.46009765625, 2.460492919921875, 2.46042529296875, 2.461200439453125, 2.461295654296875, 2.460458984375, 2.461582275390625, 2.46042822265625, 2.460832763671875, 2.461412353515625, 2.460978271484375, 2.460579833984375, 2.4606044921875, 2.460789794921875, 2.460420166015625, 2.4605654296875, 2.461767578125, 2.46121875, 5.0727412109375, 2.4607958984375, 2.46120751953125, 2.4612392578125, 2.460706787109375, 2.46135595703125, 2.46187109375, 2.461371337890625, 2.4605634765625, 2.46158642578125, 2.46133251953125, 2.46209326171875, 2.46131103515625, 2.461284423828125, 2.46093212890625, 2.46143798828125, 2.460158935546875, 2.460937255859375, 2.459987060546875, 2.4602919921875, 2.460261474609375, 2.460375, 2.460521484375, 2.461273193359375, 2.46073046875, 2.46131396484375, 2.460286865234375, 2.46070263671875, 2.459401123046875, 2.460560302734375, 2.460210205078125, 2.4605859375, 2.459334716796875, 2.46042822265625, 2.460444580078125, 2.460652587890625, 2.4594482421875, 2.459885498046875, 2.459210693359375, 2.459854736328125, 2.45916162109375, 2.459714599609375, 2.45982421875, 2.45997265625, 2.460665771484375, 2.461526123046875, 2.459255859375, 2.4603525390625, 2.460240966796875, 2.460114990234375, 2.459881591796875, 2.46009765625, 2.459779052734375, 2.45985791015625, 2.459809814453125, 2.459896728515625, 2.459599853515625, 2.459850830078125, 2.459740234375, 2.459671630859375, 2.459470947265625, 2.45933984375, 2.4605419921875, 5.07296044921875, 2.459979736328125, 2.460074951171875, 2.460875732421875, 2.46111328125, 2.461024169921875, 2.4617041015625, 2.45998583984375, 2.461939697265625, 2.4617861328125, 2.46111328125, 2.460988525390625, 2.460284912109375, 2.460103759765625, 2.4607939453125, 2.461890625, 2.46074072265625, 2.4606279296875, 2.46205224609375, 2.46086865234375, 2.461393798828125, 2.461231201171875, 2.462035888671875, 2.4613251953125, 2.462630859375, 2.460718017578125, 2.46099853515625, 2.460675048828125, 2.4612158203125, 2.460883056640625, 2.461149169921875, 2.461590576171875, 2.4607939453125, 2.460654541015625, 2.460872802734375, 2.461231201171875, 2.46080712890625, 2.461241455078125, 2.46087158203125, 2.459632568359375, 2.460600341796875, 2.460632080078125, 2.46099365234375, 2.460303466796875, 2.46082568359375, 2.462000244140625, 2.461948974609375, 2.4596806640625, 2.460571533203125, 2.460125244140625, 2.46019677734375, 2.45987841796875, 2.46080810546875, 2.460212158203125, 2.460813232421875, 2.45957421875, 2.46019384765625, 2.460409912109375, 2.459958251953125, 2.45973095703125, 2.460412841796875, 2.46169384765625, 2.46048046875, 5.07272607421875, 2.461116455078125, 2.460166259765625, 2.461013916015625, 2.460505126953125, 2.46078662109375, 2.461305908203125, 2.4609658203125, 2.460851318359375, 2.461484130859375, 2.4605869140625, 2.4610498046875, 2.4601630859375, 2.46051318359375, 2.4606064453125, 2.461643798828125, 2.461190185546875, 2.461765625, 2.46075390625, 2.4614091796875, 2.460251220703125, 2.4604609375, 2.460229736328125, 2.460904541015625, 2.46035546875, 2.460232666015625, 2.46175439453125, 2.462803955078125, 2.4607958984375, 2.461580322265625, 2.461107177734375, 2.461393798828125, 2.460929931640625, 2.460676025390625, 2.461404052734375, 2.460982177734375, 2.460367919921875, 2.4600791015625, 2.4596552734375, 2.460010498046875, 2.45901318359375, 2.4592802734375, 2.46055224609375, 2.460517333984375, 2.459428955078125, 2.46019384765625, 2.460880859375, 2.4609208984375, 2.459928466796875, 2.46034423828125, 2.460252197265625, 2.460788818359375, 2.460273681640625, 2.45994287109375, 2.460907470703125, 2.4596796875, 2.460264404296875, 2.460949462890625, 2.460282958984375, 2.4613427734375, 2.462763916015625, 2.461613037109375, 2.460632080078125, 5.0719755859375, 2.462064697265625, 2.46147998046875, 2.46153515625, 2.461073486328125, 2.460905517578125, 2.461240234375, 2.460853271484375, 2.461421630859375, 2.462041015625, 2.46237890625, 2.46096484375, 2.461697998046875, 2.4613037109375, 2.461698974609375, 2.460219482421875, 2.462074951171875, 2.460283935546875, 2.459872314453125, 2.46007080078125, 2.45981689453125, 2.460726318359375, 2.459724853515625, 2.45985888671875, 2.460906494140625, 2.46042822265625, 2.46017626953125, 2.460051513671875, 2.46018359375, 2.46103759765625, 2.460602294921875, 2.46068212890625, 2.461318115234375, 2.460810302734375, 2.4603740234375, 2.46188037109375, 2.462437255859375, 2.460948486328125, 2.460538818359375, 2.460599365234375, 2.461042724609375, 2.46105712890625, 2.45985595703125, 2.46139697265625, 2.46086865234375, 2.460706787109375, 2.46046826171875, 2.4603740234375, 2.461024169921875, 2.4599951171875, 2.460008544921875, 2.460411865234375, 2.4604580078125, 2.460127197265625, 2.4596591796875, 2.460818359375, 2.461365234375, 2.460373046875, 2.46135302734375, 2.461212646484375, 2.4607734375, 2.460324951171875, 2.46021728515625, 5.07445458984375, 2.4605234375, 2.461729736328125, 2.461869140625, 2.461232177734375, 2.461845458984375, 2.463498291015625, 2.460968994140625, 2.46013232421875, 2.460211181640625, 2.45943603515625, 2.460124267578125, 2.46013037109375, 2.460103759765625, 2.461614013671875, 2.46322900390625, 2.461684814453125, 2.4606064453125, 2.4600556640625, 2.45979345703125, 2.459621337890625, 2.460230712890625, 2.459693115234375, 2.460508056640625, 2.460240966796875, 2.460556396484375, 2.459707275390625, 2.459610107421875, 2.459715576171875, 2.460527587890625, 2.459706298828125, 2.45965625, 2.45981591796875, 2.45966845703125, 2.4598037109375, 2.459366455078125, 2.4594267578125, 2.45954052734375, 2.46019580078125, 2.459505615234375, 2.4598701171875, 2.4605830078125, 2.46051953125, 2.4611103515625, 2.460297119140625, 2.45998388671875, 2.459361328125, 2.460695556640625, 2.46107958984375, 2.46091162109375, 2.45956494140625, 2.460255126953125, 2.460651611328125, 2.460200927734375, 2.45922314453125, 2.460324951171875, 2.460303466796875, 2.46060546875, 2.460147705078125, 2.459874267578125, 2.459558837890625, 2.460209228515625, 2.46225927734375, 5.07727880859375, 2.46051953125, 2.459748291015625, 2.460139404296875, 2.459675537109375, 2.460464111328125, 2.45935400390625, 2.460265380859375, 2.460979248046875, 2.46025927734375, 2.460180419921875, 2.45945654296875, 2.45956396484375, 2.4599091796875, 2.459864990234375, 2.459249755859375, 2.459658203125, 2.45960693359375, 2.4602666015625, 2.463476806640625, 2.46247314453125, 2.461254638671875, 2.4606064453125, 2.46013134765625, 2.4603095703125, 2.46048046875, 2.460453857421875, 2.460747802734375, 2.4610087890625, 2.45964501953125, 2.460734375, 2.460478515625, 2.460600341796875, 2.460285888671875, 2.460894287109375, 2.460316650390625, 2.460169189453125, 2.460146728515625, 2.459640869140625, 2.459826171875, 2.459534423828125, 2.46048876953125, 2.459629638671875, 2.459568115234375, 2.459454345703125, 2.46009765625, 2.46054296875, 2.46160693359375, 2.459303955078125, 2.459570068359375, 2.460251220703125, 2.459474853515625, 2.45965625, 2.460379150390625, 2.45972900390625, 2.459229248046875, 2.459660400390625, 2.45932958984375, 2.464058349609375, 2.461569091796875, 2.45967041015625, 2.459884521484375, 2.460506103515625, 5.07673388671875, 2.459622314453125, 2.462644287109375, 2.4620205078125, 2.461388916015625, 2.460607421875, 2.461044677734375, 2.461013916015625, 2.461294677734375, 2.460347412109375, 2.46035546875, 2.4605205078125, 2.460373046875, 2.459558837890625, 2.46158740234375, 2.462236572265625, 2.462750732421875, 2.46039453125, 2.459875244140625, 2.460180419921875, 2.459242431640625, 2.461361083984375, 2.461865966796875, 2.4626064453125, 2.46232470703125, 2.462096435546875, 2.460041259765625, 2.4603125, 2.460031005859375, 2.460012451171875, 2.460483642578125, 2.46249365234375, 2.460971923828125, 2.460064697265625, 2.460525634765625, 2.4618515625, 2.461947998046875, 2.46048046875, 2.460482666015625, 2.459716552734375, 2.46003515625, 2.45914111328125, 2.459892822265625, 2.4607099609375, 2.461216796875, 2.45960693359375, 2.459496337890625, 2.459989013671875, 2.46011181640625, 2.461148193359375, 2.459788330078125, 2.459845703125, 2.45964501953125, 2.45973291015625, 2.459387939453125, 2.460958740234375, 2.4599326171875, 2.459988037109375, 2.459134033203125, 2.4599716796875, 2.459010009765625, 2.4597216796875, 2.466093017578125, 5.07026025390625, 2.459715576171875, 2.459428955078125, 2.460008544921875, 2.45975244140625, 2.460271728515625, 2.4604365234375, 2.46042724609375, 2.46135595703125, 2.460927001953125, 2.460580810546875, 2.46221826171875, 2.461213623046875, 2.461199462890625, 2.460501953125, 2.461664306640625, 2.46034423828125, 2.460695556640625, 2.460241943359375, 2.46086865234375, 2.4613837890625, 2.4614892578125, 2.460771240234375, 2.461020263671875, 2.462573486328125, 2.461728759765625, 2.461054931640625, 2.46047021484375, 2.46080712890625, 2.46276806640625, 2.46089306640625, 2.461909912109375, 2.46152392578125, 2.4612607421875, 2.460707763671875, 2.461158447265625, 2.46102734375, 2.46084716796875, 2.460749755859375, 2.460251220703125, 2.460735595703125, 2.46051220703125, 2.461053955078125, 2.4607548828125, 2.46175244140625, 2.460388427734375, 2.46027880859375, 2.4614501953125, 2.461758544921875, 2.461529052734375, 2.460019775390625, 2.4599306640625, 2.460873779296875, 2.460814453125, 2.460541015625, 2.460760009765625, 2.46168994140625, 2.460673095703125, 2.46126806640625, 2.460421142578125, 2.462738525390625, 2.46156689453125, 2.461497314453125]",tokens/s,0.4003034475593408,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-40b,tiiuae/falcon-40b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -28296,22 +26064,19 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: FalconForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-70B,meta-llama/Meta-Llama-3-70B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-160m,EleutherAI/pythia-160m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.42.3,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,1298.558976,1030.22592,0.0,383.778816,312.459776,s,10,0.28084687995910645,0.028084687995910646,0.000728285740183105,0.028046159744262694,0.02834249210357666,0.029145854473114012,0.029788544368743897,"[0.029949216842651366, 0.026798112869262695, 0.028019840240478516, 0.028072479248046876, 0.02816396713256836, 0.02801126480102539, 0.027853151321411133, 0.028088735580444335, 0.02812339210510254, 0.027766719818115234]",tokens/s,9115.28730663754,kWh,3.2420572125929855e-07,1.7764934109754204e-07,7.379792814026657e-07,1.2398343437595062e-06,tokens/kWh,206479197.23189807,MB,1298.886656,1030.22592,0.0,383.778816,321.513984,s,10,17.335703369140624,1.7335703369140625,0.018391524502804384,1.7369953002929686,1.742456408691406,1.7499957214355468,1.7560271716308595,"[1.7575350341796876, 1.681819580078125, 1.740781005859375, 1.7369793701171874, 1.7387105712890625, 1.7344283447265625, 1.73701123046875, 1.7378514404296874, 1.7365494384765625, 1.734037353515625]",tokens/s,36.3411848129258,kWh,1.964119326918637e-05,1.0763519540993226e-05,4.278783331700238e-05,7.319254612718198e-05,tokens/kWh,860743.386225818,,s,629,17.55748351097106,0.0279133283163292,0.003379444288478559,0.027531295776367187,0.027742361068725588,0.028291072082519533,0.05581565963745117,"[0.028317695617675782, 0.02860339164733887, 0.02758246421813965, 0.02776268768310547, 0.02735206413269043, 0.027414560317993164, 0.029547487258911133, 0.029131776809692384, 0.028694528579711914, 0.02916659164428711, 0.028453887939453124, 0.029784063339233398, 0.028712959289550782, 0.028251136779785156, 0.028046335220336914, 0.02874675178527832, 0.028438528060913085, 0.02809343910217285, 0.027811840057373048, 0.02775142478942871, 0.027683839797973633, 0.027563007354736328, 0.02790399932861328, 0.028857343673706053, 0.027925567626953127, 0.027547584533691407, 0.027509759902954102, 0.027442176818847655, 0.027610111236572265, 0.027423744201660157, 0.027511808395385744, 0.027613183975219727, 0.02750873565673828, 0.02756710433959961, 0.027622400283813478, 0.027445247650146484, 0.027481088638305663, 0.027496448516845705, 0.0275230712890625, 0.027481088638305663, 0.027518976211547853, 0.027886592864990234, 0.027596799850463868, 0.02754150390625, 0.027484159469604492, 0.02752102470397949, 0.028536832809448243, 0.02763065528869629, 0.027487167358398436, 0.027603967666625977, 0.027572223663330078, 0.027682815551757813, 0.0275281925201416, 0.02760601615905762, 0.02755788803100586, 0.02758143997192383, 0.027496448516845705, 0.02754969596862793, 0.027570175170898437, 0.02755788803100586, 0.027470848083496095, 0.02771455955505371, 0.053613601684570314, 0.026470367431640624, 0.02636595153808594, 0.026263551712036134, 0.02627174377441406, 0.026299455642700195, 0.026310592651367187, 0.026295295715332033, 0.026380287170410157, 0.02631679916381836, 0.0263055362701416, 0.026335231781005858, 0.02631884765625, 0.026300416946411134, 0.026315776824951172, 0.02655232048034668, 0.0263874568939209, 0.02620217514038086, 0.026357696533203124, 0.026232831954956053, 0.02629631996154785, 0.026489856719970704, 0.02635468864440918, 0.026232831954956053, 0.026274816513061523, 0.02629734420776367, 0.026294271469116212, 0.026457088470458984, 0.02629734420776367, 0.026300479888916015, 0.026314687728881837, 0.026302463531494142, 0.02631270408630371, 0.02627276802062988, 0.026286079406738282, 0.026284032821655274, 0.026343423843383788, 0.02628505516052246, 0.026261503219604493, 0.026417152404785156, 0.02631782341003418, 0.02631270408630371, 0.026234880447387695, 0.026270719528198243, 0.026549247741699217, 0.026566656112670898, 0.02839756774902344, 0.027612159729003907, 0.027510784149169923, 0.027592704772949218, 0.027596799850463868, 0.027694080352783205, 0.027495424270629884, 0.02771865653991699, 0.027663360595703124, 0.02756915283203125, 0.027561983108520507, 0.027578367233276366, 0.02747395133972168, 0.027514848709106445, 0.02759884834289551, 0.027471872329711915, 0.028064767837524415, 0.056030208587646485, 0.02760704040527344, 0.027583488464355467, 0.027578367233276366, 0.02775654411315918, 0.028622848510742187, 0.027812864303588865, 0.027684864044189454, 0.027510784149169923, 0.027461631774902344, 0.02760601615905762, 0.027608064651489257, 0.02754867172241211, 0.02752921676635742, 0.02752204895019531, 0.027511808395385744, 0.02756608009338379, 0.027468799591064453, 0.02755788803100586, 0.0274913272857666, 0.02753638458251953, 0.02757734489440918, 0.02771046447753906, 0.027622400283813478, 0.02751283264160156, 0.02773401641845703, 0.027615232467651366, 0.02750873565673828, 0.027470848083496095, 0.027609088897705077, 0.027501567840576172, 0.02777907180786133, 0.028403711318969727, 0.02777292823791504, 0.027587583541870117, 0.02750668716430664, 0.027579456329345702, 0.027569087982177734, 0.02763270378112793, 0.027585472106933594, 0.027682815551757813, 0.027551744461059572, 0.02751590347290039, 0.027671552658081053, 0.02746678352355957, 0.027465696334838866, 0.027436031341552734, 0.028864511489868162, 0.028021760940551758, 0.027624448776245116, 0.027682815551757813, 0.027538431167602538, 0.02750054359436035, 0.02753023910522461, 0.027807743072509765, 0.02757734489440918, 0.027533376693725586, 0.02744108772277832, 0.02753126335144043, 0.02757529640197754, 0.02715443229675293, 0.027251712799072264, 0.02756403160095215, 0.05607014465332031, 0.02755583953857422, 0.02754969596862793, 0.02751283264160156, 0.02752511978149414, 0.027572223663330078, 0.0277708797454834, 0.027670528411865233, 0.027527168273925783, 0.02756096076965332, 0.02754867172241211, 0.027609088897705077, 0.0275732479095459, 0.027600896835327147, 0.02759065628051758, 0.027572223663330078, 0.02736128044128418, 0.027046911239624022, 0.02754047966003418, 0.027603967666625977, 0.027709440231323244, 0.02751283264160156, 0.027527168273925783, 0.02753331184387207, 0.02752409553527832, 0.027594751358032226, 0.027517951965332032, 0.02754867172241211, 0.027425792694091795, 0.027488256454467775, 0.027443199157714843, 0.02752102470397949, 0.027471872329711915, 0.027583488464355467, 0.02768076705932617, 0.02755891227722168, 0.027622400283813478, 0.02753023910522461, 0.02752511978149414, 0.027724800109863282, 0.027668479919433595, 0.027583488464355467, 0.02753433609008789, 0.02749849510192871, 0.027623424530029295, 0.027578367233276366, 0.027611135482788086, 0.02755583953857422, 0.027643903732299805, 0.027620351791381836, 0.027622400283813478, 0.02753331184387207, 0.027634687423706054, 0.027686912536621092, 0.02753331184387207, 0.027626495361328125, 0.027732992172241212, 0.027653120040893556, 0.027572223663330078, 0.02752409553527832, 0.02753331184387207, 0.02752409553527832, 0.027592704772949218, 0.05624319839477539, 0.02752204895019531, 0.02755583953857422, 0.02752511978149414, 0.02756608009338379, 0.027511808395385744, 0.027465728759765624, 0.027692031860351563, 0.027672576904296874, 0.02756403160095215, 0.027501567840576172, 0.027494400024414063, 0.027615232467651366, 0.027682815551757813, 0.02757529640197754, 0.027893760681152343, 0.027642879486083984, 0.027618303298950195, 0.027651071548461914, 0.027568128585815428, 0.0275599365234375, 0.02747494316101074, 0.0274913272857666, 0.027655168533325194, 0.027490304946899413, 0.027633663177490234, 0.027588607788085938, 0.027483200073242186, 0.027740095138549806, 0.027473920822143554, 0.027470848083496095, 0.02750054359436035, 0.027489280700683592, 0.027600896835327147, 0.02753433609008789, 0.02755788803100586, 0.02756915283203125, 0.02751692771911621, 0.027446271896362305, 0.027482112884521483, 0.027601919174194335, 0.027625471115112304, 0.028243967056274414, 0.027845632553100585, 0.027794431686401368, 0.02756710433959961, 0.02755788803100586, 0.02752204895019531, 0.02834022331237793, 0.02766748809814453, 0.027527135848999025, 0.027579391479492187, 0.027465728759765624, 0.027493375778198242, 0.027579391479492187, 0.02758143997192383, 0.027435007095336913, 0.02759884834289551, 0.027570175170898437, 0.027476991653442383, 0.027546623229980468, 0.027464767456054688, 0.027498432159423828, 0.056005630493164066, 0.02768076705932617, 0.02750771141052246, 0.0275732479095459, 0.02750464057922363, 0.027509759902954102, 0.027625471115112304, 0.027531295776367187, 0.02744828796386719, 0.02758246421813965, 0.027446271896362305, 0.027441152572631834, 0.027445247650146484, 0.027586559295654296, 0.02752409553527832, 0.02778726387023926, 0.027593727111816405, 0.027457536697387694, 0.027485183715820313, 0.02754867172241211, 0.027587583541870117, 0.027494400024414063, 0.027488256454467775, 0.027732992172241212, 0.02750873565673828, 0.027494400024414063, 0.027485183715820313, 0.02755891227722168, 0.02750054359436035, 0.027440128326416017, 0.027476991653442383, 0.027836416244506838, 0.02771865653991699, 0.027458560943603515, 0.02756505584716797, 0.027437055587768554, 0.027521087646484376, 0.027642816543579102, 0.027497472763061522, 0.027472896575927733, 0.02746675109863281, 0.027428863525390625, 0.02735820770263672, 0.027463680267333986, 0.02752409553527832, 0.027406335830688477, 0.027373567581176757, 0.027426816940307616, 0.027428863525390625, 0.027460607528686523, 0.027580415725708008, 0.02755276870727539, 0.027471872329711915, 0.027494400024414063, 0.02757529640197754, 0.027485183715820313, 0.027614208221435548, 0.0275599365234375, 0.027497472763061522, 0.027461631774902344, 0.027511808395385744, 0.02752409553527832, 0.02759782409667969, 0.055839744567871094, 0.0275281925201416, 0.02750873565673828, 0.027660287857055665, 0.028719104766845704, 0.02778316879272461, 0.0275599365234375, 0.027455488204956056, 0.02752511978149414, 0.02771865653991699, 0.027613183975219727, 0.02755583953857422, 0.027482112884521483, 0.027511808395385744, 0.02753433609008789, 0.027601919174194335, 0.02753331184387207, 0.027445247650146484, 0.027546623229980468, 0.02753023910522461, 0.027432960510253908, 0.027496448516845705, 0.02749849510192871, 0.027693056106567384, 0.027557952880859375, 0.027495359420776366, 0.02747494316101074, 0.027480064392089845, 0.028631040573120117, 0.02754560089111328, 0.027595775604248047, 0.02737664031982422, 0.02792448043823242, 0.027652095794677735, 0.02755686378479004, 0.027662336349487306, 0.02750873565673828, 0.027588607788085938, 0.027502592086791993, 0.027546623229980468, 0.027509759902954102, 0.027452415466308593, 0.02751590347290039, 0.027535360336303712, 0.027488256454467775, 0.0276112003326416, 0.027622400283813478, 0.027561920166015625, 0.027012096405029298, 0.027158527374267577, 0.027480064392089845, 0.027421695709228516, 0.02754764747619629, 0.027494400024414063, 0.02750771141052246, 0.027603967666625977, 0.027517951965332032, 0.027517951965332032, 0.027443199157714843, 0.027438079833984375, 0.02754252815246582, 0.02751590347290039, 0.02754047966003418, 0.05600460815429688, 0.027443199157714843, 0.027509759902954102, 0.027493375778198242, 0.027511808395385744, 0.027463680267333986, 0.027494400024414063, 0.027637760162353517, 0.027645952224731447, 0.027543552398681642, 0.027459583282470702, 0.027561983108520507, 0.02754457664489746, 0.027441152572631834, 0.027503616333007814, 0.027595775604248047, 0.027561983108520507, 0.02747398376464844, 0.02769811248779297, 0.027451391220092772, 0.027464767456054688, 0.02740838432312012, 0.027423679351806642, 0.027561983108520507, 0.02754150390625, 0.027533376693725586, 0.027514816284179688, 0.027436031341552734, 0.027654144287109376, 0.027490304946899413, 0.027462656021118165, 0.027414527893066407, 0.027724800109863282, 0.027621376037597657, 0.02755583953857422, 0.027533344268798828, 0.027511775970458983, 0.027583488464355467, 0.027473920822143554, 0.027888639450073242, 0.028013568878173828, 0.02753228759765625, 0.027543552398681642, 0.02751590347290039, 0.02752511978149414, 0.02753740882873535, 0.028087295532226563, 0.02811392021179199, 0.02836070442199707, 0.02752102470397949, 0.027493375778198242, 0.027467775344848632, 0.027691007614135742, 0.02755686378479004, 0.027661312103271486, 0.027489280700683592, 0.02771455955505371, 0.027546655654907225, 0.027526111602783204, 0.02749951934814453, 0.027551744461059572, 0.027627519607543945, 0.02756710433959961, 0.05608652877807617, 0.02756713676452637, 0.027494367599487306, 0.027629568099975587, 0.028110847473144532, 0.027906047821044923, 0.02756403160095215, 0.02756608009338379, 0.027489280700683592, 0.027599872589111327, 0.027708415985107423, 0.027561983108520507, 0.02712166404724121, 0.027146240234375, 0.027496448516845705, 0.02754457664489746, 0.027468799591064453, 0.027538431167602538, 0.027464704513549806, 0.027390975952148438, 0.02750668716430664, 0.027625471115112304, 0.027494400024414063, 0.027482112884521483, 0.027444223403930663, 0.027484159469604492, 0.028370943069458008, 0.028468223571777345, 0.02759065628051758, 0.027627519607543945, 0.027520000457763674, 0.02752614402770996, 0.02773708724975586, 0.027485183715820313, 0.02752204895019531, 0.027460607528686523, 0.027480064392089845, 0.027452415466308593, 0.027447296142578126, 0.027441152572631834, 0.027420671463012695, 0.027578367233276366, 0.027652095794677735, 0.02753228759765625, 0.027483200073242186, 0.027545536041259765, 0.027586559295654296, 0.02748313522338867, 0.027475008010864256, 0.027719615936279297, 0.02758143997192383, 0.027448320388793947, 0.027636735916137696, 0.027439104080200196, 0.027476991653442383, 0.02750873565673828, 0.027513856887817382, 0.02750464057922363, 0.0275230712890625, 0.027460607528686523, 0.027479040145874024, 0.027406335830688477, 0.027627519607543945, 0.05575372695922851, 0.02751692771911621, 0.027454463958740235, 0.02752102470397949, 0.027453439712524414, 0.02749545669555664, 0.027481056213378905, 0.027452415466308593, 0.0274913272857666, 0.0275732479095459, 0.02750054359436035, 0.02749951934814453, 0.02753023910522461, 0.02750668716430664, 0.02751487922668457, 0.027486207962036133, 0.027458560943603515, 0.02746063995361328, 0.027542495727539064, 0.027510784149169923, 0.027472896575927733, 0.02773504066467285, 0.027495424270629884, 0.02754867172241211, 0.027433984756469725, 0.027487232208251954, 0.02759884834289551, 0.027445247650146484, 0.027481088638305663, 0.027494400024414063, 0.02754560089111328, 0.027456512451171877, 0.027470848083496095, 0.027430912017822266, 0.02740121650695801, 0.027614240646362306, 0.027687904357910156, 0.02750054359436035, 0.0275230712890625, 0.02754047966003418, 0.027437055587768554, 0.027554815292358398, 0.027576320648193358, 0.027617279052734374, 0.027453439712524414, 0.02751283264160156, 0.027495424270629884, 0.02752204895019531, 0.02755891227722168, 0.02756096076965332, 0.027717632293701173, 0.027488256454467775, 0.02752614402770996, 0.027511808395385744, 0.02754047966003418, 0.02753945541381836, 0.027455488204956056, 0.027632640838623046, 0.027572223663330078, 0.027554815292358398, 0.027497472763061522, 0.027433984756469725, 0.02750873565673828]",tokens/s,35.82517959404373,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.3b,EleutherAI/pythia-1.3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.42.3,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,1587.982336,2204.63104,0.0,1558.183936,1460.94592,s,10,1.2122179565429687,0.12122179565429687,0.0013469234018574053,0.12083382415771485,0.12219305953979492,0.12357574729919434,0.12468189750671387,"[0.12495843505859375, 0.12104054260253906, 0.12057548522949219, 0.12037449645996094, 0.12039497375488281, 0.11999222564697265, 0.12062710571289062, 0.12108892822265625, 0.12127996826171875, 0.12188579559326172]",tokens/s,2111.8314459725275,kWh,1.4224020360165804e-06,7.790973572291746e-07,6.068685410500128e-06,8.270184803745883e-06,tokens/kWh,30954568.25632818,MB,1587.982336,2204.63104,0.0,1558.183936,1532.626432,s,10,69.92014404296876,6.992014404296876,0.006727859419007241,6.99023779296875,7.000593994140624,7.004389770507812,7.007426391601562,"[6.99975048828125, 7.008185546875, 6.98858837890625, 6.986208984375, 6.9851357421875, 6.99374658203125, 6.98664404296875, 6.99031103515625, 6.99016455078125, 6.99140869140625]",tokens/s,9.010278920661827,kWh,8.274091382308927e-05,4.5348256432790435e-05,0.0003488542096386977,0.00047694337989457746,tokens/kWh,132091.15097461964,,s,629,70.89538343048102,0.112711261415709,0.014361343558964127,0.11091452789306641,0.11135979766845704,0.11152422943115234,0.2312941162109375,"[0.11260415649414063, 0.11204608154296875, 0.11146956634521485, 0.11088588714599609, 0.1111009292602539, 0.11083468627929688, 0.11089715576171875, 0.11064217376708985, 0.11076403045654297, 0.11082137298583984, 0.1107609634399414, 0.11087155151367188, 0.11063091278076172, 0.11059814453125, 0.11085517120361328, 0.11080703735351563, 0.11068621063232421, 0.11079782104492188, 0.11078246307373046, 0.11077222442626954, 0.11091353607177734, 0.11159961700439452, 0.11078144073486328, 0.11073638153076172, 0.11068006134033204, 0.11083161926269532, 0.11083673858642579, 0.11088690948486328, 0.11075276947021484, 0.11083673858642579, 0.11077632141113282, 0.11068621063232421, 0.11071183776855469, 0.11085411071777344, 0.1114419174194336, 0.11082854461669922, 0.11074559783935548, 0.11080089569091797, 0.1116968994140625, 0.11094118499755859, 0.11080806732177734, 0.11078758239746093, 0.11085107421875, 0.11109375762939454, 0.11160063934326171, 0.11135692596435547, 0.11146137237548828, 0.1114777603149414, 0.11146444702148438, 0.11149005126953125, 0.11145423889160157, 0.1115258560180664, 0.11139177703857422, 0.11129033660888672, 0.11130060577392578, 0.11138253021240234, 0.111531005859375, 0.11130368041992188, 0.11148185729980468, 0.11152178955078125, 0.11143679809570313, 0.11145728302001953, 0.23240191650390624, 0.11125657653808593, 0.11134259033203125, 0.11128422546386718, 0.11129036712646484, 0.1112063980102539, 0.111388671875, 0.111494140625, 0.11130060577392578, 0.11108249664306641, 0.11072716522216797, 0.11124531555175782, 0.11140300750732422, 0.11135897827148437, 0.11131391906738282, 0.11140505981445313, 0.11139686584472656, 0.11118386840820313, 0.11124326324462891, 0.11125350189208984, 0.11120230102539062, 0.11123506927490234, 0.1113855972290039, 0.11118592071533204, 0.11209420776367188, 0.11132621002197265, 0.11162521362304688, 0.11137433624267579, 0.11121459197998047, 0.11121868896484376, 0.11114701080322266, 0.11115007781982422, 0.11130572509765625, 0.1112442855834961, 0.11130060577392578, 0.11130879974365235, 0.11134054565429688, 0.11200409698486329, 0.11145523071289062, 0.11124121856689453, 0.1113733139038086, 0.11126783752441406, 0.11100364685058593, 0.11117977905273438, 0.11108147430419922, 0.111246337890625, 0.11108761596679688, 0.11105996704101563, 0.11184435272216797, 0.1111009292602539, 0.11088896179199219, 0.11092991638183594, 0.11088076782226562, 0.110919677734375, 0.11087155151367188, 0.11093504333496093, 0.11084390258789062, 0.1109719009399414, 0.11107532501220703, 0.11094834899902344, 0.11092889404296875, 0.11180748748779297, 0.11107635498046875, 0.23147418212890625, 0.11071794891357421, 0.11122892761230468, 0.11095040130615234, 0.11085721588134766, 0.11081318664550781, 0.11099545288085938, 0.11087974548339843, 0.11081625366210937, 0.11067084503173828, 0.11092377471923828, 0.1108449249267578, 0.1108848648071289, 0.11079167938232422, 0.11096473693847657, 0.11096063995361329, 0.1108705291748047, 0.11078348541259765, 0.11086438751220704, 0.11078860473632812, 0.1108479995727539, 0.110814208984375, 0.11086540985107422, 0.11114393615722656, 0.11088076782226562, 0.11085004425048828, 0.11089305877685547, 0.11083161926269532, 0.11099545288085938, 0.11088697814941406, 0.11098617553710938, 0.11086438751220704, 0.11098419189453125, 0.11145216369628906, 0.1108828125, 0.11083366394042969, 0.11092684936523438, 0.11094425964355469, 0.110814208984375, 0.11094528198242187, 0.1110087661743164, 0.1107927017211914, 0.11096678161621094, 0.11096678161621094, 0.11110297393798828, 0.11113471984863281, 0.11093913269042968, 0.11126271820068359, 0.11096371459960938, 0.11096166229248047, 0.11107737731933594, 0.11087872314453125, 0.11096985626220703, 0.11090943908691406, 0.11095859527587891, 0.110887939453125, 0.11089417266845703, 0.11090525054931641, 0.11086540985107422, 0.11097702026367187, 0.11102207946777344, 0.11098214721679688, 0.11105177307128906, 0.23123660278320313, 0.1107066879272461, 0.11069132995605468, 0.11077017974853516, 0.1106851806640625, 0.11081011199951171, 0.1107988510131836, 0.11065446472167968, 0.11082444763183594, 0.11065446472167968, 0.1107558364868164, 0.11116544342041015, 0.11103641510009765, 0.11059302520751953, 0.1107240982055664, 0.11067903900146485, 0.11058995056152343, 0.11075788879394531, 0.11065856170654297, 0.11070771026611329, 0.11082342529296875, 0.11079065704345703, 0.11078144073486328, 0.11115724945068359, 0.1109401626586914, 0.11073126220703125, 0.11080089569091797, 0.11085004425048828, 0.11101388549804687, 0.11086131286621094, 0.11091865539550781, 0.11091251373291015, 0.11143782043457032, 0.11103030395507812, 0.11083977508544922, 0.1108449249267578, 0.11086438751220704, 0.11087155151367188, 0.11083570861816407, 0.11086847686767579, 0.11088690948486328, 0.1110804443359375, 0.11092889404296875, 0.11091046142578125, 0.1115863037109375, 0.11088998413085938, 0.11093504333496093, 0.11090739440917968, 0.11090636444091796, 0.11097702026367187, 0.11095142364501953, 0.11091046142578125, 0.110919677734375, 0.11080191802978516, 0.11134054565429688, 0.11100774383544922, 0.11119206237792968, 0.11088690948486328, 0.11100364685058593, 0.11100057220458984, 0.11100057220458984, 0.11090841674804687, 0.11100466918945312, 0.23131648254394532, 0.11071078491210938, 0.11071897888183593, 0.11086233520507813, 0.110740478515625, 0.11082444763183594, 0.11087564849853515, 0.1107240982055664, 0.11075993347167969, 0.1107589111328125, 0.11076914978027344, 0.11082649230957031, 0.11070873260498047, 0.11081728363037109, 0.1108111343383789, 0.11080601501464844, 0.11072306823730468, 0.11097907257080078, 0.1107435531616211, 0.11080703735351563, 0.11061555480957032, 0.11081215667724609, 0.11066265869140625, 0.11081523132324218, 0.11085926055908203, 0.11076300811767578, 0.1107609634399414, 0.11074457550048829, 0.1105950698852539, 0.11098009490966797, 0.11077836608886718, 0.11077632141113282, 0.11076812744140625, 0.11072614288330078, 0.11080397033691407, 0.11082240295410156, 0.11096166229248047, 0.11143270111083985, 0.11085209655761719, 0.11084595489501953, 0.11080191802978516, 0.11091046142578125, 0.11078758239746093, 0.1108746566772461, 0.11085001373291016, 0.11092991638183594, 0.1108111343383789, 0.11094834899902344, 0.1108695068359375, 0.11100774383544922, 0.11099954986572266, 0.1109381103515625, 0.1110487060546875, 0.11092173004150391, 0.11100262451171874, 0.11102413177490235, 0.11090431976318359, 0.11215052795410156, 0.11126271820068359, 0.11105894470214844, 0.11091763305664062, 0.11097087860107421, 0.110919677734375, 0.23087001037597657, 0.11094732666015625, 0.11078963470458984, 0.11091149139404297, 0.11068927764892578, 0.11086438751220704, 0.11078656005859375, 0.11087872314453125, 0.11075993347167969, 0.11079782104492188, 0.11075071716308593, 0.11108659362792969, 0.11072306823730468, 0.11085414123535156, 0.1107558364868164, 0.11082649230957031, 0.11118899536132812, 0.11099954986572266, 0.1111203842163086, 0.11085107421875, 0.11103948974609375, 0.11162419128417969, 0.11094528198242187, 0.11086438751220704, 0.1111756820678711, 0.11122380828857421, 0.1109381103515625, 0.11092582702636719, 0.11080806732177734, 0.11080191802978516, 0.11078758239746093, 0.11109792327880859, 0.11111417388916016, 0.11162726593017579, 0.11107225799560547, 0.11119206237792968, 0.11101081848144531, 0.11101907348632813, 0.11168351745605469, 0.11117772674560547, 0.11115007781982422, 0.11107328033447265, 0.11089510345458985, 0.11141017913818359, 0.11118694305419922, 0.11109478759765624, 0.11088690948486328, 0.11098111724853515, 0.1110149154663086, 0.11100774383544922, 0.11092173004150391, 0.11092991638183594, 0.11092889404296875, 0.11095552062988281, 0.1108848648071289, 0.11096166229248047, 0.11103743743896484, 0.11111219024658203, 0.11098419189453125, 0.11095552062988281, 0.11087974548339843, 0.1110302734375, 0.11111424255371094, 0.23252377319335937, 0.11073945617675782, 0.11071078491210938, 0.1107619857788086, 0.11067596435546875, 0.11072512054443359, 0.11079167938232422, 0.11081215667724609, 0.11079167938232422, 0.11069951629638672, 0.11086643218994141, 0.11136307525634766, 0.11100774383544922, 0.1108479995727539, 0.11097293090820312, 0.11082752227783203, 0.1111695327758789, 0.11093408203125, 0.11092269134521485, 0.11094118499755859, 0.11074457550048829, 0.11095040130615234, 0.1107957763671875, 0.11132006072998046, 0.11097805023193359, 0.11088588714599609, 0.11095449829101563, 0.1108828125, 0.11095040130615234, 0.11084185791015624, 0.1109032974243164, 0.11080300903320313, 0.11090118408203126, 0.1108479995727539, 0.11090022277832032, 0.11081932830810547, 0.11081932830810547, 0.11082035064697265, 0.11080806732177734, 0.11085721588134766, 0.11085619354248047, 0.11086335754394532, 0.11097087860107421, 0.11086438751220704, 0.11089817810058594, 0.11083878326416016, 0.11082342529296875, 0.11165081787109375, 0.1110835189819336, 0.1108828125, 0.11089202880859375, 0.11087769317626953, 0.11091353607177734, 0.11080499267578126, 0.11088690948486328, 0.11074150085449219, 0.11088690948486328, 0.11083776092529297, 0.110993408203125, 0.11085004425048828, 0.11094834899902344, 0.11091661071777344, 0.11094937896728516, 0.23204966735839844, 0.1106872329711914, 0.11069849395751953, 0.11082956695556641, 0.11078144073486328, 0.11082342529296875, 0.11082854461669922, 0.11079376220703124, 0.11085718536376953, 0.11064422607421875, 0.11098521423339844, 0.11083878326416016, 0.11085926055908203, 0.11075686645507812, 0.11085311889648437, 0.11100364685058593, 0.11110502624511719, 0.11081011199951171, 0.11087872314453125, 0.11080499267578126, 0.11087974548339843, 0.1108326416015625, 0.11086335754394532, 0.11092889404296875, 0.11091558074951172, 0.1112279052734375, 0.11199488067626953, 0.11085414123535156, 0.11087462615966796, 0.11084902191162109, 0.11083673858642579, 0.11081523132324218, 0.1108479995727539, 0.11087769317626953, 0.11084185791015624, 0.11078656005859375, 0.11094732666015625, 0.11140509033203125, 0.11115721893310547, 0.11089920043945313, 0.11119821166992187, 0.11126681518554687, 0.11108249664306641, 0.11089612579345703, 0.11095552062988281, 0.11087155151367188, 0.11136819458007813, 0.11114701080322266, 0.11097907257080078, 0.1109227523803711, 0.11113369750976562, 0.11089612579345703, 0.11105280303955078, 0.11134566497802735, 0.11094322967529296, 0.11105689239501954, 0.11099750518798829, 0.11082035064697265, 0.11092377471923828, 0.11092173004150391, 0.11097705841064454, 0.110930908203125, 0.11121868896484376, 0.2321387481689453, 0.11072819519042969, 0.11069235229492187, 0.11076505279541016, 0.11068006134033204, 0.1108674545288086, 0.11114189147949219, 0.11086029052734375, 0.11097805023193359, 0.11142041778564453, 0.11087257385253907, 0.11068313598632812, 0.11082854461669922, 0.11079782104492188, 0.11100057220458984, 0.11087974548339843, 0.11062271881103515, 0.1111910400390625, 0.11069951629638672, 0.11069747161865234, 0.11072000122070312, 0.11083570861816407, 0.11088998413085938, 0.11100978851318359, 0.11074253082275391, 0.11108249664306641, 0.11088896179199219, 0.11087155151367188, 0.11092787170410157, 0.1107558364868164, 0.11087059020996094, 0.11099231719970704, 0.11096268463134766, 0.11093504333496093, 0.11110399627685547, 0.11086029052734375, 0.1108111343383789, 0.11096268463134766, 0.11103948974609375, 0.11202969360351563, 0.11105792236328126, 0.1110292510986328, 0.11090841674804687, 0.11127295684814453, 0.11102105712890625, 0.1109012451171875, 0.11093401336669922, 0.11088998413085938, 0.11083478546142578, 0.1109031982421875, 0.11108454132080078, 0.111067138671875, 0.11216793823242187, 0.11090943908691406, 0.1109012451171875, 0.11096268463134766, 0.11092070770263672, 0.11093299102783204, 0.11096575927734376, 0.11093401336669922, 0.11090841674804687, 0.11118182373046875, 0.11094528198242187, 0.23299072265625, 0.1107957763671875, 0.11074969482421874, 0.11083776092529297, 0.11094118499755859, 0.11186585235595703, 0.11088690948486328, 0.11068211364746093, 0.11145830535888672, 0.11130879974365235, 0.11078348541259765, 0.11109069061279297, 0.11089408111572266, 0.11126681518554687, 0.1109381103515625, 0.1113169937133789, 0.11098009490966797, 0.11079065704345703, 0.11102003479003907, 0.11084902191162109, 0.11073535919189453, 0.11083878326416016, 0.11077120208740235, 0.11114393615722656, 0.11094528198242187, 0.11090943908691406, 0.11164876556396484, 0.11096575927734376, 0.11078656005859375, 0.11130572509765625, 0.11101900482177735, 0.11106201934814453, 0.11099852752685548, 0.11108454132080078, 0.11094118499755859, 0.11127295684814453, 0.11090431976318359, 0.11078656005859375, 0.11078451538085937, 0.11092889404296875, 0.1109032974243164, 0.11096575927734376, 0.11088179016113281, 0.1108848648071289, 0.11105996704101563, 0.11092684936523438, 0.11082546997070312, 0.11094528198242187, 0.11090022277832032, 0.11093401336669922, 0.11086137390136719, 0.11093910217285156, 0.11091452789306641, 0.1108674545288086, 0.11074150085449219, 0.11088384246826172, 0.1108705291748047, 0.11097907257080078, 0.11091149139404297, 0.11094118499755859, 0.11102003479003907, 0.11086335754394532, 0.11101081848144531]",tokens/s,8.872227916177204,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-1.8B,Qwen/Qwen1.5-1.8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1869.656064,3326.60736,0.0,2682.257408,2578.238464,s,10,1.3870304412841796,0.13870304412841797,0.00244373759901306,0.13811017608642578,0.14131588592529296,0.14323313064575197,0.14476692642211916,"[0.14515037536621095, 0.13752809143066405, 0.1378865966796875, 0.13688485717773438, 0.13833375549316407, 0.13642874145507813, 0.13711347961425782, 0.13835682678222655, 0.1384578857421875, 0.14088983154296875]",tokens/s,1845.6696578554026,kWh,1.6179650182774805e-06,8.864855210497944e-07,6.8487079142743225e-06,9.353158453601597e-06,tokens/kWh,27370433.342912387,MB,1869.656064,3328.704512,0.0,2682.257408,2667.0976,s,10,82.21512695312498,8.2215126953125,0.02726168309176718,8.22408544921875,8.254994140625,8.26155078125,8.26679609375,"[8.218158203125, 8.2300126953125, 8.231037109375, 8.253537109375, 8.2426494140625, 8.18561865234375, 8.1915498046875, 8.18607568359375, 8.268107421875, 8.208380859375]",tokens/s,7.662823416415751,kWh,9.660354430590225e-05,5.294595236465346e-05,0.0003949548913061273,0.000544504387976683,tokens/kWh,115701.54693169857,,s,629,83.32182740783702,0.1324671341936994,0.01648122008836376,0.13012069702148438,0.13181768188476561,0.13225840454101562,0.2677710559082031,"[0.1353492431640625, 0.13449932861328126, 0.13354396057128906, 0.13218812561035156, 0.1321062469482422, 0.132279296875, 0.1320765380859375, 0.1297838134765625, 0.12942950439453124, 0.13008486938476563, 0.1297357482910156, 0.12950111389160157, 0.12954214477539064, 0.12996812438964844, 0.12972236633300782, 0.129586181640625, 0.12967730712890624, 0.12944589233398437, 0.12974386596679688, 0.12966400146484375, 0.12964044189453125, 0.12967730712890624, 0.13006745910644532, 0.13016166687011718, 0.12972647094726564, 0.13020672607421874, 0.1301012420654297, 0.13006541442871095, 0.1300264892578125, 0.13026918029785156, 0.1298155517578125, 0.12965580749511718, 0.12980120849609375, 0.13100137329101563, 0.12973667907714845, 0.12997222900390626, 0.12998655700683595, 0.13009100341796875, 0.13086618041992187, 0.13041253662109376, 0.13003570556640626, 0.13003366088867188, 0.12998655700683595, 0.13012069702148438, 0.12974899291992187, 0.1296711730957031, 0.13009510803222657, 0.13012582397460937, 0.13009408569335937, 0.129723388671875, 0.12967532348632813, 0.13028140258789062, 0.1303726043701172, 0.13008793640136718, 0.13204173278808592, 0.13000090026855468, 0.1302650909423828, 0.12970188903808594, 0.13084979248046874, 0.12998963928222657, 0.12973773193359375, 0.13070130920410156, 0.26767672729492187, 0.13097874450683594, 0.12999679565429687, 0.1298524169921875, 0.12990463256835938, 0.12967730712890624, 0.130735107421875, 0.12993740844726562, 0.12993843078613282, 0.12966195678710937, 0.13075456237792968, 0.1301739501953125, 0.1298462677001953, 0.12979507446289062, 0.12965171813964843, 0.12960255432128906, 0.12983296203613282, 0.1297029113769531, 0.12987289428710938, 0.13024870300292968, 0.12961074829101563, 0.12961587524414062, 0.1304627227783203, 0.13114883422851562, 0.13138124084472655, 0.13123989868164063, 0.1312419891357422, 0.1315799102783203, 0.13145703125, 0.1315246124267578, 0.13152359008789063, 0.13154917907714844, 0.13147648620605468, 0.13150822448730468, 0.1314273223876953, 0.1317058563232422, 0.1314283447265625, 0.13160345458984374, 0.13148159790039063, 0.13152767944335939, 0.13164851379394532, 0.13085594177246093, 0.13025791931152345, 0.12963226318359375, 0.13061222839355469, 0.12971110534667968, 0.1318850860595703, 0.13038383483886717, 0.12956982421875, 0.13069512939453126, 0.12964761352539061, 0.1297664337158203, 0.1301851806640625, 0.13052313232421875, 0.1300756530761719, 0.131198974609375, 0.1302650909423828, 0.13156045532226562, 0.13132595825195312, 0.13137612915039062, 0.13114163208007812, 0.13150822448730468, 0.13148774719238282, 0.26988442993164063, 0.1297592315673828, 0.1303961639404297, 0.13102079772949218, 0.13180621337890625, 0.1311805419921875, 0.131198974609375, 0.1320120391845703, 0.13153382873535155, 0.13055078125, 0.13116621398925782, 0.13224858093261718, 0.1315379180908203, 0.13149183654785157, 0.13085594177246093, 0.1307740173339844, 0.13012069702148438, 0.13034701538085938, 0.13029273986816406, 0.12967219543457031, 0.12965785217285156, 0.13052621459960936, 0.1309951934814453, 0.13132908630371093, 0.12980528259277344, 0.12976431274414063, 0.130735107421875, 0.1307904052734375, 0.13091941833496093, 0.13070028686523438, 0.13097164916992188, 0.13049139404296875, 0.13055282592773437, 0.13094093322753905, 0.1304883270263672, 0.13196185302734376, 0.13015142822265624, 0.13110272216796875, 0.1304780731201172, 0.13022618103027345, 0.13066342163085937, 0.1300070343017578, 0.1298851776123047, 0.12999679565429687, 0.13136691284179688, 0.13021286010742186, 0.1300305938720703, 0.13127577209472657, 0.12978688049316406, 0.12988313293457032, 0.12990975952148437, 0.13098086547851562, 0.12965785217285156, 0.13045555114746094, 0.1315246124267578, 0.1313638458251953, 0.12958309936523438, 0.12952677917480468, 0.12959642028808593, 0.13055795288085936, 0.13012889099121094, 0.13161677551269532, 0.13049856567382812, 0.2679295959472656, 0.13007772827148437, 0.1300623016357422, 0.1296732177734375, 0.1302405090332031, 0.13101568603515626, 0.13053543090820313, 0.12958309936523438, 0.12989543151855468, 0.13040640258789063, 0.12972032165527345, 0.12959744262695314, 0.12965682983398438, 0.12967628479003906, 0.1296046142578125, 0.12968960571289062, 0.1309102020263672, 0.13147955322265625, 0.13136282348632813, 0.13167820739746094, 0.1325506591796875, 0.1314693145751953, 0.1313454132080078, 0.1313280029296875, 0.13255577087402343, 0.1314273223876953, 0.13156965637207033, 0.13132698059082032, 0.1305374755859375, 0.1306746826171875, 0.1309071350097656, 0.13065113830566405, 0.13108326721191407, 0.1307310333251953, 0.13129315185546875, 0.13122866821289061, 0.13088768005371093, 0.13070541381835937, 0.1310146484375, 0.13133619689941406, 0.1298104248046875, 0.13102490234375, 0.13102694702148437, 0.13097779846191407, 0.13345689392089843, 0.13114060974121095, 0.13085081481933594, 0.13208985900878906, 0.13153689575195313, 0.13162701416015626, 0.13186355590820312, 0.13157069396972657, 0.13132492065429688, 0.13146829223632814, 0.13144781494140625, 0.13143244934082032, 0.13133209228515624, 0.13199154663085938, 0.13162086486816407, 0.13136589050292968, 0.13134745788574217, 0.13149900817871094, 0.13125018310546874, 0.27049984741210936, 0.13173965454101563, 0.13157376098632811, 0.13129933166503907, 0.13149183654785157, 0.13152255249023437, 0.13144268798828124, 0.13151744079589844, 0.13144781494140625, 0.1312665557861328, 0.1313638458251953, 0.1312542724609375, 0.13116621398925782, 0.1316812744140625, 0.1304279022216797, 0.13107609558105468, 0.13173452758789062, 0.13157273864746094, 0.13156761169433595, 0.131114013671875, 0.13155325317382813, 0.13144883728027343, 0.13135667419433594, 0.1312972869873047, 0.13135154724121093, 0.13139456176757813, 0.13143653869628907, 0.13130137634277345, 0.13196800231933595, 0.1318707275390625, 0.131631103515625, 0.1325455322265625, 0.13174578857421876, 0.13033779907226561, 0.12979814147949217, 0.129902587890625, 0.13098188781738282, 0.13004287719726562, 0.13019442749023438, 0.12989439392089844, 0.13051187133789063, 0.12981350708007813, 0.12995890808105467, 0.13021900939941405, 0.12963839721679687, 0.12967628479003906, 0.13002546691894531, 0.13009510803222657, 0.1296711730957031, 0.13236019897460938, 0.12973362731933594, 0.13032858276367187, 0.13070643615722657, 0.1302425537109375, 0.1299220428466797, 0.12974490356445312, 0.12966812133789063, 0.12980630493164064, 0.129623046875, 0.13014938354492187, 0.13049958801269532, 0.12993023681640625, 0.1298841552734375, 0.26678680419921874, 0.1296680908203125, 0.12964556884765624, 0.12968447875976563, 0.12973260498046876, 0.129765380859375, 0.1300142059326172, 0.1296855010986328, 0.12954725646972656, 0.1295247344970703, 0.12960870361328125, 0.1295667266845703, 0.12963941955566408, 0.12973158264160156, 0.13008895874023438, 0.13011558532714843, 0.12971827697753907, 0.12998963928222657, 0.12966706848144532, 0.12973568725585938, 0.12970803833007813, 0.1298350067138672, 0.1297090606689453, 0.12965274047851563, 0.12967730712890624, 0.13019648742675782, 0.12975820922851564, 0.12972854614257812, 0.12970799255371093, 0.1302794189453125, 0.12972647094726564, 0.12966400146484375, 0.12970086669921874, 0.12959333801269532, 0.1299220428466797, 0.1300633544921875, 0.1296537628173828, 0.12968038940429688, 0.1319403839111328, 0.12973974609375, 0.13016064453125, 0.13014527893066405, 0.1306234893798828, 0.1300377655029297, 0.13088461303710938, 0.13168946838378906, 0.1299251251220703, 0.12965580749511718, 0.12978688049316406, 0.13135565185546874, 0.13036749267578124, 0.12981248474121093, 0.1297510986328125, 0.1297816925048828, 0.12961383056640624, 0.1298667449951172, 0.12978175354003907, 0.12962611389160156, 0.13000294494628906, 0.12986572265625, 0.1298462677001953, 0.12970803833007813, 0.12991897583007814, 0.2678077392578125, 0.13065216064453125, 0.12982272338867187, 0.13018418884277344, 0.13069625854492187, 0.12963424682617186, 0.12971827697753907, 0.12956063842773438, 0.13137094116210937, 0.13036647033691406, 0.12986265563964844, 0.12970803833007813, 0.1298462677001953, 0.12968447875976563, 0.1297029113769531, 0.12973670959472655, 0.12944793701171875, 0.12968345642089843, 0.1307125701904297, 0.12972134399414062, 0.12976742553710938, 0.12971929931640624, 0.12958309936523438, 0.13087026977539062, 0.12964659118652344, 0.1298032684326172, 0.12998757934570312, 0.13012275695800782, 0.12993536376953124, 0.1304698944091797, 0.1299988555908203, 0.12983807373046874, 0.13000192260742188, 0.13018623352050782, 0.1299199981689453, 0.13019648742675782, 0.13000090026855468, 0.13050265502929687, 0.12989645385742188, 0.12952677917480468, 0.12986778259277343, 0.13002546691894531, 0.13098597717285157, 0.129828857421875, 0.12967730712890624, 0.13003981018066407, 0.1295636444091797, 0.12984115600585938, 0.12994764709472656, 0.13031321716308594, 0.12971315002441405, 0.12961485290527344, 0.12971417236328125, 0.12996202087402345, 0.13037257385253906, 0.12986061096191406, 0.12995584106445313, 0.13010226440429687, 0.1315707550048828, 0.1297571258544922, 0.12957183837890626, 0.12970188903808594, 0.13077810668945314, 0.2692198486328125, 0.13007154846191407, 0.12988313293457032, 0.12971212768554688, 0.12965481567382814, 0.12962608337402343, 0.12967219543457031, 0.12959231567382812, 0.12979200744628908, 0.1296680908203125, 0.13002957153320313, 0.12997938537597656, 0.12960153198242189, 0.13012786865234374, 0.13016986083984375, 0.12967219543457031, 0.1310576629638672, 0.12998348999023437, 0.12976332092285156, 0.1300869140625, 0.1296824951171875, 0.13126751708984374, 0.12993536376953124, 0.13007359313964845, 0.12969984436035156, 0.12999679565429687, 0.1298698272705078, 0.1300858917236328, 0.1298913269042969, 0.1299404754638672, 0.13012275695800782, 0.13052313232421875, 0.1302425537109375, 0.13017805480957031, 0.12996812438964844, 0.12995071411132814, 0.13004083251953125, 0.130302978515625, 0.1300623321533203, 0.13056716918945313, 0.1300695037841797, 0.1299261474609375, 0.12973260498046876, 0.13010330200195314, 0.1296855010986328, 0.13009613037109374, 0.12976742553710938, 0.12981350708007813, 0.12980429077148437, 0.12988723754882814, 0.1295564727783203, 0.12995277404785155, 0.12949913024902343, 0.12956877136230469, 0.129870849609375, 0.13016371154785156, 0.12968754577636718, 0.1295667266845703, 0.12944383239746093, 0.1296282196044922, 0.1295543670654297, 0.12969778442382812, 0.12969062805175782, 0.26870681762695314, 0.1297827911376953, 0.1297592315673828, 0.131557373046875, 0.12989439392089844, 0.13009408569335937, 0.1305999298095703, 0.1311446990966797, 0.13035110473632813, 0.13046885681152343, 0.1303521270751953, 0.13139045715332032, 0.1301749725341797, 0.1304627227783203, 0.13010841369628906, 0.1311856689453125, 0.1305753936767578, 0.1308395233154297, 0.12992515563964843, 0.13041970825195312, 0.13009100341796875, 0.1309265594482422, 0.130155517578125, 0.13011354064941405, 0.12959437561035156, 0.1299148864746094, 0.13058047485351562, 0.13014527893066405, 0.13060198974609374, 0.12966400146484375, 0.12963533020019533, 0.1295380554199219, 0.12953395080566407, 0.1297786865234375, 0.13530213928222656, 0.13242477416992188, 0.13271443176269532, 0.1324779510498047, 0.13233970642089843, 0.13220352172851563, 0.1323294677734375, 0.13220556640625, 0.1319833526611328, 0.1321994171142578, 0.13245542907714844, 0.132347900390625, 0.13226495361328125, 0.13233561706542968, 0.13197415161132814, 0.13208883666992188, 0.13216461181640626, 0.1321881561279297, 0.13220249938964843, 0.13227622985839843, 0.1321246795654297, 0.13223423767089842, 0.13205606079101562, 0.13206629943847656, 0.13218611145019532, 0.13227622985839843, 0.13237759399414062, 0.13250457763671875, 0.13218917846679687, 0.27291647338867187, 0.13057228088378905, 0.12985139465332032, 0.12977766418457032, 0.12981146240234376, 0.1296363525390625, 0.12980120849609375, 0.12959642028808593, 0.12995993041992188, 0.129691650390625, 0.12974592590332032, 0.12970086669921874, 0.12972647094726564, 0.1295984649658203, 0.12972032165527345, 0.13100953674316407, 0.13002957153320313, 0.13050367736816407, 0.13074021911621095, 0.13157478332519532, 0.12986880493164063, 0.12991693115234376, 0.12960050964355468, 0.12965682983398438, 0.13195468139648436, 0.13054464721679687, 0.1317058563232422, 0.13119078063964842, 0.13114982604980469, 0.1297049560546875, 0.12969573974609375, 0.12971315002441405, 0.12958412170410155, 0.1308958740234375, 0.1309696044921875, 0.12978994750976564, 0.12954112243652344, 0.12962713623046876, 0.12967832946777344, 0.12949913024902343, 0.12971827697753907, 0.12982989501953124, 0.1297622985839844, 0.12973464965820314, 0.12974490356445312, 0.1297244110107422, 0.13159628295898437, 0.13082418823242187, 0.1297407989501953, 0.12985548400878907, 0.1299814453125, 0.13154815673828124, 0.13089791870117187, 0.12983602905273436, 0.1315010528564453, 0.13150003051757814, 0.132068359375, 0.13167718505859374, 0.13150309753417969, 0.13090509033203124, 0.12976332092285156, 0.1298053741455078, 0.1295963592529297]",tokens/s,7.549042304619914,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-6B-nl,Salesforce/codegen-6B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -28331,29 +26096,46 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: CodeGenForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2,openai-community/gpt2,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.42.3,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,1242.517504,1002.962944,0.0,356.51584,319.013888,s,24,0.17130540800094604,0.007137725333372751,0.00022311786687976846,0.0071282398700714105,0.007300579309463501,0.007423537635803223,0.007834636788368226,"[0.007951807975769044, 0.0069541120529174804, 0.007165823936462402, 0.007056672096252442, 0.007144512176513672, 0.00713647985458374, 0.007169407844543457, 0.007167103767395019, 0.007114399909973144, 0.007214687824249268, 0.007116288185119629, 0.007130335807800293, 0.006872928142547608, 0.006911136150360107, 0.006938623905181885, 0.00706390380859375, 0.0072626562118530275, 0.006821887969970703, 0.007244128227233887, 0.007442368030548096, 0.006888895988464355, 0.007316832065582275, 0.007094272136688232, 0.007126143932342529]",tokens/s,35865.76788028823,kWh,8.10983955910138e-08,4.4438154296628874e-08,1.700140534975713e-07,2.95550603385214e-07,tokens/kWh,866179926.7800356,MB,1242.517504,1002.962944,0.0,356.51584,319.016448,s,24,9.959905761718751,0.414996073404948,0.006233471890431573,0.41629383850097657,0.4203448516845703,0.42279765014648435,0.42333133697509767,"[0.415234619140625, 0.41458303833007815, 0.4162372741699219, 0.4174971008300781, 0.41968191528320314, 0.41635040283203123, 0.41644073486328126, 0.4139960021972656, 0.41676824951171876, 0.41499542236328124, 0.41386602783203125, 0.4151525268554688, 0.3974216613769531, 0.42062896728515625, 0.4150201416015625, 0.4167072448730469, 0.4132667541503906, 0.40156256103515625, 0.42318035888671873, 0.4192855529785156, 0.40144622802734375, 0.4233764343261719, 0.41931097412109375, 0.4178955688476563]",tokens/s,151.80866527988903,kWh,4.816906560124589e-06,2.6384911088194618e-06,8.122948136426575e-06,1.5578345805370628e-05,tokens/kWh,4044075.0762048676,,s,1511,10.116198400020602,0.006695035340847519,0.0009268447542668934,0.006612927913665772,0.0067041277885437015,0.006775808095932007,0.014021119976043704,"[0.007634943962097168, 0.007476223945617676, 0.007463935852050781, 0.00738918399810791, 0.007346176147460938, 0.0073175039291381834, 0.007235583782196045, 0.00733900785446167, 0.007542784214019775, 0.0065781760215759275, 0.006622208118438721, 0.006672383785247803, 0.006590464115142822, 0.006896639823913574, 0.0068577280044555666, 0.006666240215301514, 0.0066109437942504885, 0.006701087951660157, 0.00667952013015747, 0.006412288188934326, 0.006393856048583985, 0.006409215927124024, 0.006362112045288086, 0.006533120155334473, 0.006343679904937744, 0.006370304107666015, 0.006401023864746094, 0.006310912132263183, 0.006371327877044678, 0.006326272010803223, 0.0063591041564941405, 0.00633132791519165, 0.006340608119964599, 0.006364160060882569, 0.006348800182342529, 0.00637440013885498, 0.006408192157745361, 0.006342656135559082, 0.006371327877044678, 0.006342720031738281, 0.006365119934082031, 0.006333439826965332, 0.00643174409866333, 0.00638156795501709, 0.006400000095367431, 0.0063610877990722655, 0.006308864116668702, 0.006468607902526856, 0.00638156795501709, 0.006362112045288086, 0.0063805441856384275, 0.006326272010803223, 0.006370304107666015, 0.0063836159706115725, 0.006333439826965332, 0.006375423908233643, 0.006348800182342529, 0.006347775936126709, 0.006386688232421875, 0.006316031932830811, 0.006342656135559082, 0.0063211841583251955, 0.013602784156799316, 0.006305791854858398, 0.006337535858154297, 0.006291456222534179, 0.006341631889343262, 0.006328320026397705, 0.00628223991394043, 0.006347775936126709, 0.006299647808074951, 0.006325247764587402, 0.0063017277717590334, 0.006366176128387451, 0.006404096126556396, 0.006366208076477051, 0.006372352123260498, 0.00637440013885498, 0.006460415840148926, 0.006395904064178467, 0.006765567779541016, 0.006776832103729248, 0.0069283838272094726, 0.006744063854217529, 0.00679423999786377, 0.0067952961921691896, 0.006851552009582519, 0.006718463897705078, 0.006633471965789795, 0.006652927875518798, 0.006595583915710449, 0.006665215969085693, 0.006680575847625733, 0.006662144184112549, 0.006667263984680176, 0.006696959972381592, 0.006604800224304199, 0.006696959972381592, 0.006730751991271973, 0.006635519981384277, 0.006675456047058105, 0.0066447358131408694, 0.006719488143920899, 0.006614016056060791, 0.006627327919006347, 0.006595583915710449, 0.006636544227600098, 0.006609920024871826, 0.006592512130737305, 0.006639616012573242, 0.006603775978088379, 0.006661119937896728, 0.006605823993682861, 0.006584320068359375, 0.006621183872222901, 0.006619135856628418, 0.006663167953491211, 0.006627327919006347, 0.00658841609954834, 0.006609920024871826, 0.006628352165222168, 0.0067276802062988285, 0.006615104198455811, 0.006631360054016113, 0.006608895778656006, 0.014178303718566895, 0.006615039825439453, 0.00662937593460083, 0.0066078720092773435, 0.006615039825439453, 0.006625279903411865, 0.006624256134033203, 0.006624256134033203, 0.006604800224304199, 0.006620160102844238, 0.006608895778656006, 0.006621183872222901, 0.006648831844329834, 0.006624256134033203, 0.006626304149627686, 0.006686719894409179, 0.006639616012573242, 0.006585343837738037, 0.006602752208709717, 0.0066119680404663084, 0.006658048152923584, 0.006601727962493896, 0.006615039825439453, 0.006512639999389648, 0.0066641921997070315, 0.0067051520347595215, 0.0066344962120056155, 0.0066078720092773435, 0.006585343837738037, 0.006615039825439453, 0.006620160102844238, 0.006621183872222901, 0.006598656177520752, 0.006598656177520752, 0.0065812478065490725, 0.006618112087249756, 0.006597631931304931, 0.006608895778656006, 0.006660096168518067, 0.006615039825439453, 0.006555647850036621, 0.006604800224304199, 0.006606847763061524, 0.006584320068359375, 0.0065812478065490725, 0.00657919979095459, 0.006617087841033936, 0.006643712043762207, 0.006619135856628418, 0.006556672096252441, 0.006552576065063476, 0.006434815883636475, 0.006490111827850342, 0.006504447937011719, 0.006508543968200684, 0.00657203197479248, 0.006569983959197998, 0.006549503803253174, 0.006557695865631104, 0.0066119680404663084, 0.006565887928009034, 0.006652927875518798, 0.0066109437942504885, 0.013988863945007325, 0.006624256134033203, 0.006592512130737305, 0.006639616012573242, 0.0066375679969787596, 0.006642687797546387, 0.006603775978088379, 0.006667263984680176, 0.006649856090545654, 0.006614016056060791, 0.006626304149627686, 0.006628352165222168, 0.006699007987976074, 0.006639679908752441, 0.006616000175476074, 0.0066375679969787596, 0.006624256134033203, 0.006598656177520752, 0.006624256134033203, 0.006661119937896728, 0.006599679946899414, 0.006597631931304931, 0.006599679946899414, 0.006659071922302246, 0.0067041277885437015, 0.006591487884521485, 0.006616064071655273, 0.00659660816192627, 0.006567935943603515, 0.006624256134033203, 0.006604800224304199, 0.006604800224304199, 0.006601727962493896, 0.0066375679969787596, 0.006586368083953857, 0.0066109437942504885, 0.006624256134033203, 0.006635519981384277, 0.006601727962493896, 0.006585343837738037, 0.006585343837738037, 0.006604800224304199, 0.006619135856628418, 0.006654975891113281, 0.0066375679969787596, 0.006622208118438721, 0.006576128005981445, 0.0066447358131408694, 0.006661119937896728, 0.006622208118438721, 0.006684671878814697, 0.006584320068359375, 0.0066109437942504885, 0.0066078720092773435, 0.006583295822143555, 0.006645760059356689, 0.0066007041931152345, 0.006585343837738037, 0.006651904106140137, 0.006690815925598144, 0.006594560146331787, 0.006615039825439453, 0.006627327919006347, 0.014088191986083985, 0.006567935943603515, 0.0065812478065490725, 0.006626304149627686, 0.006586368083953857, 0.006626304149627686, 0.006603775978088379, 0.006598656177520752, 0.006854656219482422, 0.006645760059356689, 0.006645760059356689, 0.006620160102844238, 0.0066109437942504885, 0.006646783828735352, 0.006623231887817383, 0.006658048152923584, 0.0066416640281677245, 0.006660096168518067, 0.006614016056060791, 0.006606847763061524, 0.006636544227600098, 0.006589439868927002, 0.0066007041931152345, 0.006583295822143555, 0.006616064071655273, 0.006621183872222901, 0.006563839912414551, 0.006594560146331787, 0.006635519981384277, 0.006654975891113281, 0.0066416640281677245, 0.006614016056060791, 0.0065781760215759275, 0.007001088142395019, 0.006724607944488525, 0.006776832103729248, 0.006923264026641846, 0.006908927917480469, 0.007229440212249756, 0.006760447978973389, 0.006677504062652588, 0.0067041277885437015, 0.006633471965789795, 0.006689792156219483, 0.006648831844329834, 0.00660588788986206, 0.006613952159881592, 0.006594560146331787, 0.0066078720092773435, 0.006654975891113281, 0.0066078720092773435, 0.006602752208709717, 0.006626304149627686, 0.00657919979095459, 0.006684671878814697, 0.006621183872222901, 0.006585343837738037, 0.006631455898284912, 0.006635488033294678, 0.006573056221008301, 0.006650879859924317, 0.006606847763061524, 0.006642687797546387, 0.01434931182861328, 0.006706175804138184, 0.006661119937896728, 0.006606847763061524, 0.006617087841033936, 0.006575104236602783, 0.006612991809844971, 0.006605823993682861, 0.006573056221008301, 0.0065177597999572755, 0.006467584133148193, 0.0065075201988220215, 0.006500351905822754, 0.0065781760215759275, 0.006614016056060791, 0.006605823993682861, 0.006686719894409179, 0.006617087841033936, 0.006611008167266846, 0.006617023944854737, 0.006618112087249756, 0.006622208118438721, 0.006604800224304199, 0.006615039825439453, 0.006621183872222901, 0.0066078720092773435, 0.006645760059356689, 0.006660096168518067, 0.006627327919006347, 0.006625279903411865, 0.006633471965789795, 0.006614016056060791, 0.006750207901000976, 0.0066406397819519045, 0.006614016056060791, 0.006614016056060791, 0.006592512130737305, 0.006621183872222901, 0.006646783828735352, 0.006500415802001953, 0.006513599872589111, 0.006481919765472412, 0.006615039825439453, 0.006624256134033203, 0.006639616012573242, 0.00658022403717041, 0.0066119680404663084, 0.006622208118438721, 0.006597631931304931, 0.006621183872222901, 0.006657023906707763, 0.006600736141204834, 0.006635488033294678, 0.006545407772064209, 0.0065443840026855465, 0.006523903846740723, 0.006500351905822754, 0.006523903846740723, 0.006499328136444092, 0.0065484800338745115, 0.006569983959197998, 0.0066641921997070315, 0.006716415882110595, 0.01415782356262207, 0.006632448196411133, 0.006606847763061524, 0.006604800224304199, 0.00658841609954834, 0.006623231887817383, 0.006602752208709717, 0.006601727962493896, 0.006605823993682861, 0.006618112087249756, 0.006612991809844971, 0.0066406397819519045, 0.006635519981384277, 0.006615039825439453, 0.006665215969085693, 0.0066304001808166506, 0.006602752208709717, 0.006648831844329834, 0.006602752208709717, 0.00657203197479248, 0.006553599834442139, 0.006601727962493896, 0.006551551818847656, 0.006707200050354004, 0.006573056221008301, 0.006590496063232422, 0.0066037440299987794, 0.006590464115142822, 0.006642687797546387, 0.006612991809844971, 0.006595583915710449, 0.006689792156219483, 0.00667852783203125, 0.006576128005981445, 0.006612991809844971, 0.006601727962493896, 0.006564864158630371, 0.006606847763061524, 0.0066344962120056155, 0.0065710082054138185, 0.00658841609954834, 0.006599711894989014, 0.00657916784286499, 0.00658022403717041, 0.006684671878814697, 0.006550528049468994, 0.006591487884521485, 0.006593535900115967, 0.006625279903411865, 0.00662937593460083, 0.006553599834442139, 0.0066109437942504885, 0.006631423950195312, 0.006582272052764892, 0.006649856090545654, 0.00659660816192627, 0.006560768127441406, 0.006602752208709717, 0.006618112087249756, 0.006554624080657959, 0.00658739185333252, 0.006608895778656006, 0.006449215888977051, 0.014105536460876466, 0.006559743881225586, 0.006602752208709717, 0.006622208118438721, 0.006557695865631104, 0.006612991809844971, 0.006627327919006347, 0.006625279903411865, 0.006560768127441406, 0.006626304149627686, 0.006623231887817383, 0.006604800224304199, 0.006590464115142822, 0.0066119680404663084, 0.006515711784362793, 0.006474751949310303, 0.006576128005981445, 0.006467584133148193, 0.006466559886932373, 0.006496255874633789, 0.006532095909118653, 0.006472703933715821, 0.006501376152038574, 0.006467584133148193, 0.006494207859039307, 0.0065075201988220215, 0.006481919765472412, 0.006482944011688232, 0.006497280120849609, 0.006467616081237793, 0.0064726719856262206, 0.00648089599609375, 0.006492159843444824, 0.006602752208709717, 0.006665215969085693, 0.006614016056060791, 0.006632448196411133, 0.006595583915710449, 0.006575104236602783, 0.006602752208709717, 0.00659660816192627, 0.006615039825439453, 0.006586368083953857, 0.006584320068359375, 0.006590464115142822, 0.0066078720092773435, 0.006621183872222901, 0.006591487884521485, 0.00658739185333252, 0.00657919979095459, 0.006599679946899414, 0.006576128005981445, 0.00665503978729248, 0.006610879898071289, 0.006606847763061524, 0.00657203197479248, 0.006584320068359375, 0.0066078720092773435, 0.0065894718170166015, 0.006585311889648437, 0.006475776195526123, 0.006569983959197998, 0.006608895778656006, 0.014060544013977052, 0.006614016056060791, 0.006609920024871826, 0.006631423950195312, 0.006593535900115967, 0.006609920024871826, 0.006618112087249756, 0.006598656177520752, 0.006564864158630371, 0.00658739185333252, 0.006601727962493896, 0.006608895778656006, 0.006594560146331787, 0.006595583915710449, 0.006605823993682861, 0.00662937593460083, 0.006681600093841553, 0.0066713600158691405, 0.006608895778656006, 0.006583295822143555, 0.00658739185333252, 0.006583295822143555, 0.006593535900115967, 0.006553599834442139, 0.006652927875518798, 0.006683648109436035, 0.006639616012573242, 0.006656000137329102, 0.006604800224304199, 0.006593535900115967, 0.006597631931304931, 0.0065771517753601075, 0.006597631931304931, 0.00658739185333252, 0.006591487884521485, 0.006598656177520752, 0.006598656177520752, 0.006624256134033203, 0.0066007041931152345, 0.0066007041931152345, 0.006635519981384277, 0.006590464115142822, 0.006689792156219483, 0.006603775978088379, 0.0066078720092773435, 0.006593535900115967, 0.006575104236602783, 0.0066212158203125, 0.006588384151458741, 0.006633471965789795, 0.006592512130737305, 0.006511616230010986, 0.006509568214416504, 0.0064767999649047855, 0.006648831844329834, 0.006685696125030518, 0.0066304001808166506, 0.006681600093841553, 0.0066744318008422855, 0.006615039825439453, 0.006653952121734619, 0.006653952121734619, 0.006643712043762207, 0.014236672401428223, 0.0066447358131408694, 0.006639616012573242, 0.006658048152923584, 0.006650879859924317, 0.006642687797546387, 0.006651904106140137, 0.0066744318008422855, 0.006650879859924317, 0.006643712043762207, 0.0066344962120056155, 0.006614016056060791, 0.006625279903411865, 0.006636544227600098, 0.006662144184112549, 0.006662144184112549, 0.006665215969085693, 0.006599679946899414, 0.006651904106140137, 0.006532127857208252, 0.0065382080078125, 0.0065413122177124024, 0.006599679946899414, 0.006529024124145508, 0.006524928092956543, 0.006496255874633789, 0.006631423950195312, 0.006649856090545654, 0.006647808074951172, 0.006662144184112549, 0.006620160102844238, 0.006645760059356689, 0.006635519981384277, 0.006672383785247803, 0.006624256134033203, 0.006660096168518067, 0.006633471965789795, 0.006516736030578613, 0.0064880638122558594, 0.00663759994506836, 0.0064992961883544925, 0.006536191940307618, 0.006494207859039307, 0.006503424167633057, 0.006509600162506103, 0.006504415988922119, 0.0064542717933654785, 0.006605823993682861, 0.00652185583114624, 0.0065484800338745115, 0.006526976108551025, 0.0065771517753601075, 0.006526976108551025, 0.006481919765472412, 0.006527999877929688, 0.0065177597999572755, 0.006498303890228272, 0.006512639999389648, 0.0065136637687683106, 0.0065669121742248536, 0.0065146880149841305, 0.006498303890228272, 0.006510591983795166, 0.014119935989379882, 0.0066109437942504885, 0.006601727962493896, 0.006649856090545654, 0.006703135967254639, 0.006661087989807129, 0.006651904106140137, 0.006604800224304199, 0.0066406397819519045, 0.006617087841033936, 0.006614016056060791, 0.006648831844329834, 0.006633471965789795, 0.00652185583114624, 0.00653004789352417, 0.006516736030578613, 0.006532095909118653, 0.00652288007736206, 0.006494207859039307, 0.006586368083953857, 0.006556672096252441, 0.006494207859039307, 0.006533120155334473, 0.006512639999389648, 0.00652288007736206, 0.006645760059356689, 0.006689792156219483, 0.006711296081542969, 0.00672051191329956, 0.006668288230895996, 0.0067123198509216305, 0.006601727962493896, 0.00652185583114624, 0.00658739185333252, 0.006556672096252441, 0.006518784046173095, 0.006518784046173095, 0.006492159843444824, 0.00658841609954834, 0.006502399921417237, 0.006502399921417237, 0.006535168170928955, 0.006529024124145508, 0.006554624080657959, 0.006508543968200684, 0.006511616230010986, 0.0064849920272827145, 0.006505504131317139, 0.00649724817276001, 0.006583295822143555, 0.006526976108551025, 0.0064849920272827145, 0.006533120155334473, 0.006525951862335205, 0.006479872226715088, 0.006542335987091064, 0.006512639999389648, 0.0064778242111206055, 0.0065177597999572755, 0.006503424167633057, 0.006551551818847656, 0.006511616230010986, 0.006508543968200684, 0.014226431846618653, 0.0066979842185974124, 0.006638591766357422, 0.006646783828735352, 0.0066007041931152345, 0.006658048152923584, 0.006615039825439453, 0.006631423950195312, 0.006619135856628418, 0.006662144184112549, 0.0065812478065490725, 0.006553599834442139, 0.006510591983795166, 0.00658739185333252, 0.006773759841918945, 0.006754303932189941, 0.006670335769653321, 0.0066979842185974124, 0.006624256134033203, 0.006711296081542969, 0.006715392112731934, 0.006631423950195312, 0.006546432018280029, 0.006619135856628418, 0.006663167953491211, 0.0066406397819519045, 0.006766592025756836, 0.006685696125030518, 0.0066826238632202144, 0.006653952121734619, 0.006616064071655273, 0.00662937593460083, 0.006627327919006347, 0.006665215969085693, 0.006620160102844238, 0.0065833601951599124, 0.00659449577331543, 0.0064839677810668945, 0.006452223777770996, 0.00648089599609375, 0.0064778242111206055, 0.006474751949310303, 0.006462463855743408, 0.006458367824554443, 0.00648089599609375, 0.006453248023986816, 0.006493184089660644, 0.006461440086364746, 0.006519807815551758, 0.006486015796661377, 0.00652288007736206, 0.006569983959197998, 0.006503424167633057, 0.006456319808959961, 0.006512639999389648, 0.006496255874633789, 0.006542335987091064, 0.006493184089660644, 0.006486015796661377, 0.006561791896820069, 0.006503424167633057, 0.006489120006561279, 0.00658735990524292, 0.013493247985839844, 0.006289408206939697, 0.006296576023101807, 0.006315008163452148, 0.006300672054290772, 0.006293504238128662, 0.006275072097778321, 0.0062269439697265625, 0.006235136032104492, 0.006207488059997559, 0.006214655876159668, 0.006227968215942382, 0.006205440044403076, 0.006254591941833496, 0.006221824169158936, 0.006329343795776367, 0.006291456222534179, 0.006296576023101807, 0.006258687973022461, 0.0063283519744873045, 0.006334432125091553, 0.006309887886047363, 0.006434815883636475, 0.006309887886047363, 0.006338560104370118, 0.006328320026397705, 0.006333439826965332, 0.006348800182342529, 0.006306816101074219, 0.006341631889343262, 0.006312960147857666, 0.0063170561790466305, 0.006302720069885254, 0.006285312175750732, 0.006295551776885986, 0.006289472103118896, 0.006285247802734375, 0.0062791681289672855, 0.006329343795776367, 0.0064143362045288085, 0.0063508481979370115, 0.006376448154449463, 0.0063201279640197755, 0.006395904064178467, 0.006427648067474365, 0.006301695823669433, 0.006292479991912842, 0.006301695823669433, 0.006306816101074219, 0.006335487842559814, 0.006315008163452148, 0.0063201279640197755, 0.0062791681289672855, 0.006328320026397705, 0.006266880035400391, 0.006331391811370849, 0.006337535858154297, 0.006280191898345947, 0.006295551776885986, 0.006269951820373535, 0.006280191898345947, 0.006284287929534912, 0.006262784004211426, 0.013628416061401367, 0.006308864116668702, 0.0063211522102355954, 0.0063201279640197755, 0.0062863359451293946, 0.006301695823669433, 0.006296576023101807, 0.006576128005981445, 0.0066447358131408694, 0.006652927875518798, 0.006668288230895996, 0.006708223819732666, 0.006662144184112549, 0.006710271835327148, 0.006683648109436035, 0.006653952121734619, 0.006662144184112549, 0.006675456047058105, 0.0066641921997070315, 0.006755328178405762, 0.006732800006866455, 0.006658048152923584, 0.0067276802062988285, 0.006668288230895996, 0.006662144184112549, 0.0067276802062988285, 0.006647808074951172, 0.007676928043365478, 0.007031807899475098, 0.006772736072540283, 0.0066826238632202144, 0.0067010560035705566, 0.006714367866516113, 0.006654975891113281, 0.006670335769653321, 0.006653952121734619, 0.0066119680404663084, 0.006774784088134766, 0.00667955207824707, 0.006646783828735352, 0.0069621758460998535, 0.006809599876403808, 0.006687744140625, 0.006675456047058105, 0.0069008002281188965, 0.006768576145172119, 0.006726655960083008, 0.006666240215301514, 0.0066416640281677245, 0.006711296081542969, 0.006719488143920899, 0.006622208118438721, 0.006683648109436035, 0.0066744318008422855, 0.006653952121734619, 0.0066744318008422855, 0.006677504062652588, 0.0066406397819519045, 0.00667852783203125, 0.0067338237762451176, 0.0066713600158691405, 0.006665215969085693, 0.006628352165222168, 0.013584383964538574, 0.006291456222534179, 0.006294528007507324, 0.006313983917236328, 0.006647808074951172, 0.006662176132202148, 0.006650911808013916, 0.0066631040573120115, 0.006639616012573242, 0.006676479816436768, 0.006642687797546387, 0.00672051191329956, 0.006683648109436035, 0.0066344962120056155, 0.006663167953491211, 0.006652927875518798, 0.006658048152923584, 0.006625279903411865, 0.0066416640281677245, 0.006654975891113281, 0.0066447358131408694, 0.006648928165435791, 0.006696864128112793, 0.00672156810760498, 0.00659555196762085, 0.006661119937896728, 0.0065474557876586915, 0.006543360233306885, 0.006553599834442139, 0.006553599834442139, 0.006569983959197998, 0.0065484800338745115, 0.0065484800338745115, 0.006510591983795166, 0.006535168170928955, 0.006557695865631104, 0.006568960189819336, 0.006615039825439453, 0.006576128005981445, 0.006526976108551025, 0.0065413122177124024, 0.006532095909118653, 0.006518784046173095, 0.006553599834442139, 0.006540287971496582, 0.0065382399559021, 0.00653926420211792, 0.0065372161865234375, 0.006543360233306885, 0.006755328178405762, 0.006635519981384277, 0.006667263984680176, 0.006663167953491211, 0.006659071922302246, 0.006658048152923584, 0.006626304149627686, 0.00653926420211792, 0.006536191940307618, 0.006534143924713135, 0.006536191940307618, 0.006558720111846924, 0.006525951862335205, 0.006555647850036621, 0.014024703979492188, 0.006663167953491211, 0.0066938881874084475, 0.006687744140625, 0.006643712043762207, 0.0067420158386230465, 0.006636544227600098, 0.006662144184112549, 0.0066304001808166506, 0.006636544227600098, 0.006628352165222168, 0.006694911956787109, 0.006685696125030518, 0.006700032234191895, 0.006662144184112549, 0.006724607944488525, 0.006725632190704346, 0.006654975891113281, 0.00667955207824707, 0.006652927875518798, 0.006609920024871826, 0.006743040084838867, 0.006716415882110595, 0.006688767910003662, 0.006670335769653321, 0.006663167953491211, 0.006626304149627686, 0.006616064071655273, 0.006737919807434082, 0.006636544227600098, 0.006661119937896728, 0.006651904106140137, 0.006619135856628418, 0.006636544227600098, 0.006639616012573242, 0.006668288230895996, 0.006621183872222901, 0.0066375679969787596, 0.006575104236602783, 0.006642687797546387, 0.006590464115142822, 0.006633471965789795, 0.006618112087249756, 0.006599679946899414, 0.006623231887817383, 0.006322175979614258, 0.006309887886047363, 0.006273024082183838, 0.006336512088775635, 0.006567935943603515, 0.0063907837867736815, 0.006482944011688232, 0.006322175979614258, 0.006307839870452881, 0.006502399921417237, 0.006603775978088379, 0.0066119680404663084, 0.006677504062652588, 0.006618112087249756, 0.006677504062652588, 0.006624256134033203, 0.006617087841033936, 0.006584320068359375, 0.01439641571044922, 0.0066304001808166506, 0.006607935905456543, 0.006634431838989258, 0.00667955207824707, 0.006647808074951172, 0.00660588788986206, 0.006608831882476807, 0.006612991809844971, 0.006631487846374511, 0.006518720149993896, 0.006568960189819336, 0.006631423950195312, 0.006667263984680176, 0.0066007041931152345, 0.006632448196411133, 0.006626304149627686, 0.00659660816192627, 0.00658841609954834, 0.006624256134033203, 0.006594560146331787, 0.0066641921997070315, 0.006632448196411133, 0.006619135856628418, 0.006649951934814453, 0.006619040012359619, 0.006639616012573242, 0.0066416640281677245, 0.00674508810043335, 0.006648831844329834, 0.0066344962120056155, 0.006591487884521485, 0.006621183872222901, 0.006604800224304199, 0.006652927875518798, 0.006602784156799316, 0.006627295970916748, 0.006569983959197998, 0.006623231887817383, 0.006626304149627686, 0.006623231887817383, 0.006616064071655273, 0.0066119680404663084, 0.006627327919006347, 0.00662937593460083, 0.006601727962493896, 0.006666240215301514, 0.006606847763061524, 0.006593535900115967, 0.006656000137329102, 0.006329343795776367, 0.0062904319763183595, 0.006337535858154297, 0.006302720069885254, 0.006250495910644531, 0.006260799884796143, 0.006354879856109619, 0.006252543926239014, 0.006238207817077636, 0.006238207817077636, 0.006223872184753418, 0.006252543926239014, 0.006278143882751465, 0.013460479736328124, 0.006302720069885254, 0.006312960147857666, 0.006304768085479737, 0.006268928050994873, 0.006306816101074219, 0.006271999835968017, 0.006340608119964599, 0.006277120113372803, 0.006309887886047363, 0.006330368041992188, 0.006273024082183838, 0.006296576023101807, 0.006294528007507324, 0.006270976066589356, 0.006304768085479737, 0.006306816101074219, 0.006336512088775635, 0.006303743839263916, 0.00628326416015625, 0.006303743839263916, 0.0063211522102355954, 0.00628223991394043, 0.006302720069885254, 0.006285312175750732, 0.0064143362045288085, 0.00633241605758667, 0.006295551776885986, 0.006328320026397705, 0.006300672054290772, 0.006343679904937744, 0.0063211522102355954, 0.006278143882751465, 0.006346752166748047, 0.006318079948425293, 0.006295551776885986, 0.006316031932830811, 0.006299647808074951, 0.006298624038696289, 0.006311935901641846, 0.006319104194641113, 0.006296576023101807, 0.006323200225830078, 0.006259712219238281, 0.006307839870452881, 0.006273024082183838, 0.0062679038047790524, 0.006304800033569336, 0.006276063919067383, 0.006398975849151611, 0.006325247764587402, 0.006411263942718506, 0.00658841609954834, 0.0065443840026855465, 0.0065710082054138185, 0.006657023906707763, 0.0066375679969787596, 0.006677504062652588, 0.006666240215301514, 0.006936575889587402, 0.006621183872222901, 0.006707200050354004, 0.006597631931304931, 0.014204928398132324, 0.006622208118438721, 0.006638591766357422, 0.006658048152923584, 0.006616064071655273, 0.006595583915710449, 0.006636544227600098, 0.006509568214416504, 0.0065064959526062015, 0.0065474557876586915, 0.0064839677810668945, 0.006519807815551758, 0.006601727962493896, 0.006621183872222901, 0.006665215969085693, 0.006653952121734619, 0.006594560146331787, 0.006592512130737305, 0.0066119680404663084, 0.006568960189819336, 0.006620160102844238, 0.006583295822143555, 0.00658841609954834, 0.006656000137329102, 0.006696959972381592, 0.006711296081542969, 0.006905856132507324, 0.006700032234191895, 0.006670335769653321, 0.006672383785247803, 0.006706175804138184, 0.006722559928894043, 0.006874112129211426, 0.0066938881874084475, 0.00675328016281128, 0.006690815925598144, 0.0067010560035705566, 0.006730751991271973, 0.006758399963378906, 0.0066344962120056155, 0.006667263984680176, 0.006636544227600098, 0.006665215969085693, 0.00667852783203125, 0.006659071922302246, 0.0066375679969787596, 0.006654975891113281, 0.006657023906707763, 0.006676479816436768, 0.006707200050354004, 0.0067573761940002445, 0.00667852783203125, 0.00672979211807251, 0.007108543872833252, 0.006815743923187256, 0.006897664070129395, 0.007226367950439453, 0.008385536193847656, 0.006814720153808594, 0.006776832103729248, 0.0067123198509216305, 0.006680575847625733, 0.006706175804138184, 0.014495743751525878, 0.006643712043762207, 0.006730751991271973, 0.006677504062652588, 0.006604800224304199, 0.006708223819732666, 0.0066713600158691405, 0.0067123198509216305, 0.006663167953491211, 0.006658048152923584, 0.006615039825439453, 0.006650879859924317, 0.006648831844329834, 0.006659071922302246, 0.006642687797546387, 0.006676479816436768, 0.006657023906707763, 0.006666240215301514, 0.006651904106140137, 0.006662144184112549, 0.006642687797546387, 0.006657023906707763, 0.0066344962120056155, 0.0066938881874084475, 0.006617087841033936, 0.006643712043762207, 0.006646783828735352, 0.006635519981384277, 0.006748159885406494, 0.006575104236602783, 0.006512639999389648, 0.0065136637687683106, 0.006534143924713135, 0.006594560146331787, 0.00659660816192627, 0.006670335769653321, 0.006673408031463623, 0.0066304001808166506, 0.006646783828735352, 0.00669593620300293, 0.0066416640281677245, 0.006632448196411133, 0.006654975891113281, 0.006638591766357422, 0.006643712043762207, 0.006639616012573242, 0.006602752208709717, 0.0066416640281677245, 0.006799359798431396, 0.006619135856628418, 0.0066202239990234375, 0.006612927913665772, 0.006662144184112549, 0.006647808074951172, 0.0066304001808166506, 0.0066744318008422855, 0.006666240215301514, 0.006662144184112549, 0.00667955207824707, 0.006737919807434082, 0.0067358717918396, 0.006633471965789795, 0.006627327919006347, 0.013528063774108886, 0.006284287929534912, 0.006270976066589356, 0.006296576023101807, 0.00624128007888794, 0.006300672054290772, 0.006276095867156982, 0.006313983917236328, 0.006309887886047363, 0.006268928050994873, 0.006355967998504639, 0.006330368041992188, 0.006269951820373535, 0.006284287929534912, 0.006298624038696289, 0.0063170561790466305, 0.006275072097778321, 0.006264832019805908, 0.0062679038047790524, 0.006275072097778321, 0.006355967998504639, 0.0062679038047790524, 0.006281216144561768, 0.006277120113372803, 0.006293504238128662, 0.006310912132263183, 0.006312960147857666, 0.006310912132263183, 0.0064440321922302245, 0.006316031932830811, 0.006293536186218262, 0.006313951969146728, 0.006285312175750732, 0.006295551776885986, 0.0064245758056640625, 0.006555647850036621, 0.006355967998504639, 0.00633241605758667, 0.006273024082183838, 0.006291456222534179, 0.006294528007507324, 0.006291456222534179, 0.006272031784057617, 0.006305759906768799, 0.006288383960723877, 0.0062863359451293946, 0.006309887886047363, 0.006262784004211426, 0.006276095867156982, 0.006325247764587402, 0.006336512088775635, 0.006355967998504639, 0.006593535900115967, 0.0066979842185974124, 0.006696959972381592, 0.00667955207824707, 0.00658739185333252, 0.006660096168518067, 0.006658048152923584, 0.006604800224304199, 0.006663167953491211, 0.006598656177520752, 0.006688767910003662, 0.014336000442504883, 0.006606847763061524, 0.006635519981384277, 0.0066344962120056155, 0.006615039825439453, 0.006618112087249756, 0.006616064071655273, 0.006873087882995605, 0.007664639949798584, 0.0074065918922424315, 0.006867968082427979, 0.0067338237762451176, 0.006797311782836914, 0.006686719894409179, 0.006696959972381592, 0.006700032234191895, 0.006801407814025879, 0.0066744318008422855, 0.0068280320167541505, 0.007235583782196045, 0.007131135940551757, 0.006710271835327148, 0.0066938881874084475, 0.006676479816436768, 0.006687744140625, 0.006663167953491211, 0.006716415882110595, 0.006707200050354004, 0.006669312000274658, 0.006708223819732666, 0.0066344962120056155, 0.00667955207824707, 0.006959104061126709, 0.006726655960083008, 0.006583295822143555, 0.0066447358131408694, 0.006635519981384277, 0.006618112087249756, 0.006632448196411133, 0.006635519981384277, 0.0066375679969787596, 0.006687744140625, 0.006594560146331787, 0.006642687797546387, 0.006676479816436768, 0.0065812478065490725, 0.006656000137329102, 0.006635519981384277, 0.0064737281799316405, 0.006524928092956543, 0.006605823993682861, 0.006601727962493896, 0.006645760059356689, 0.006675456047058105, 0.006601727962493896, 0.0066488637924194335, 0.00667849588394165, 0.006636544227600098, 0.006590464115142822, 0.006685696125030518, 0.006595583915710449, 0.006690815925598144, 0.006801407814025879, 0.014134271621704102, 0.006654975891113281, 0.006591487884521485, 0.006643712043762207, 0.0066447358131408694, 0.0066375679969787596, 0.006680575847625733, 0.006661119937896728, 0.0066078720092773435, 0.006665215969085693, 0.006608895778656006, 0.006653952121734619, 0.006666240215301514, 0.006605823993682861, 0.006661151885986328, 0.006680543899536133, 0.006620160102844238, 0.0066304001808166506, 0.006690815925598144, 0.006731776237487793, 0.00669593620300293, 0.0066744318008422855, 0.006615039825439453, 0.006669312000274658, 0.0066447358131408694, 0.006638591766357422, 0.006669312000274658, 0.006659071922302246, 0.006611008167266846, 0.006669248104095459, 0.006669312000274658, 0.0066406397819519045, 0.006665215969085693, 0.006619135856628418, 0.006647808074951172, 0.006700032234191895, 0.006636544227600098, 0.006626304149627686, 0.006731776237487793, 0.006645760059356689, 0.006620160102844238, 0.006659071922302246, 0.006632448196411133, 0.006608895778656006, 0.00657919979095459, 0.006495232105255127, 0.006553599834442139, 0.006552576065063476, 0.00659660816192627, 0.006731776237487793, 0.006663167953491211, 0.006635519981384277, 0.006714367866516113, 0.006703104019165039, 0.006657023906707763, 0.006699007987976074, 0.006661119937896728, 0.006847487926483154, 0.006709248065948486, 0.006659071922302246, 0.006594560146331787, 0.006659071922302246, 0.006639616012573242, 0.014132224082946777, 0.006639616012573242, 0.006605823993682861, 0.006700032234191895, 0.0070563840866088865, 0.006667263984680176, 0.006658080101013183, 0.006961120128631592, 0.006503424167633057, 0.006562816143035889, 0.0064880638122558594, 0.006516736030578613, 0.0066304001808166506, 0.0065075201988220215, 0.0065136637687683106, 0.006653952121734619, 0.006619135856628418, 0.006621183872222901, 0.0066375679969787596, 0.006589439868927002, 0.006619135856628418, 0.0066416640281677245, 0.0066007041931152345, 0.0066109437942504885, 0.006642687797546387, 0.0066109437942504885, 0.006598656177520752, 0.006634528160095215, 0.006590432167053223, 0.006624256134033203, 0.006589439868927002, 0.006617087841033936, 0.006636544227600098, 0.006554624080657959, 0.006609920024871826, 0.006616064071655273, 0.006788095951080322, 0.006667263984680176, 0.0066447358131408694, 0.006618112087249756, 0.006668288230895996, 0.00662937593460083, 0.0065710082054138185, 0.006667263984680176, 0.006648831844329834, 0.006560800075531006, 0.006664159774780273, 0.0066344962120056155, 0.006592512130737305, 0.006692863941192627, 0.0066979842185974124, 0.006448128223419189, 0.006543360233306885, 0.006525951862335205, 0.006505472183227539, 0.00658739185333252, 0.006567935943603515, 0.006686719894409179, 0.006691840171813965, 0.006684671878814697, 0.006652927875518798, 0.0066744318008422855, 0.006646783828735352]",tokens/s,149.36440946007178,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-14B,Qwen/Qwen-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained + model_class = get_class_from_dynamic_module( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module + final_module = get_cached_module_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file + modules_needed = check_imports(resolved_module_file) + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports + raise ImportError( +ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-65b,huggyllama/llama-65b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-7B,Qwen/Qwen-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -28371,31 +26153,18 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 86.00 MiB. GPU + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained + model_class = get_class_from_dynamic_module( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module + final_module = get_cached_module_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file + modules_needed = check_imports(resolved_module_file) + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports + raise ImportError( +ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,l,l,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,v,v,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -28407,7 +26176,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/l/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/v/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -28434,9 +26203,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669491a9-55c60cf979dcb5c619ce3f4d;4df3d572-31f2-4b1f-9406-8d3163b1d5a4) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949482-3719cd0645f9a8c14f888ff0;b01adc61-02a6-4d1d-8afa-ae53d5ffe983) -Repository Not Found for url: https://huggingface.co/l/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/v/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -28461,11 +26230,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: l is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: v is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-4.5B,facebook/xglm-4.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-125m,EleutherAI/gpt-neo-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -28485,22 +26254,16 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: GPTNeoForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-110B,Qwen/Qwen1.5-110B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,.,.,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -28512,37 +26275,83 @@ ChildProcessError: Traceback (most recent call last): report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 32.00 MiB. GPU + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 373, in cached_file + raise EnvironmentError( +OSError: . does not appear to have a file named config.json. Checkout 'https://huggingface.co/./tree/None' for available files. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,8,8,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/phi-1_5,microsoft/phi-1_5,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/phi/modeling_phi.py"", line 1268, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/phi/modeling_phi.py"", line 1064, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/phi/modeling_phi.py"", line 804, in forward + attn_outputs, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/phi/modeling_phi.py"", line 666, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,s,s,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -28554,7 +26363,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/8/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/s/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -28581,9 +26390,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694925d-0baf58ab1d166f8b78697d37;233f7997-9e86-437a-8c02-e00df324e39b) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948cee-5d3c281c356bac8654d3c923;e2f4e06c-196f-4500-b11c-ae1ca59aed45) -Repository Not Found for url: https://huggingface.co/8/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/s/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -28608,116 +26417,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: 8 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: s is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/rho-math-1b-v0.1,microsoft/rho-math-1b-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-7b-hf,meta-llama/Llama-2-7b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-13b-hf,meta-llama/Llama-2-13b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mistral-7B-v0.1,mistralai/Mistral-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -28727,32 +26431,56 @@ NameError: name 'exl_ext' is not defined ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 614, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-32B,Qwen/Qwen1.5-32B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-66b,facebook/opt-66b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -28772,22 +26500,16 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,r,r,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,i,i,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -28799,7 +26521,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/r/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/i/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -28826,9 +26548,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949103-5bc42b867a3e578b301bdf84;3bd5d13b-68ab-4200-896c-05d44122967b) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949019-36803f161ef2193064e775cd;9ffb7bff-aa8e-4217-ae14-7197afb3fb12) -Repository Not Found for url: https://huggingface.co/r/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/i/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -28853,11 +26575,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: r is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: i is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-564M,facebook/xglm-564M,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-6.7b,EleutherAI/pythia-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -28867,32 +26589,117 @@ If this is a private repository, make sure to pass a token having permission to ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward + outputs = self.gpt_neox( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward + outputs = layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward + attention_layer_outputs = self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 545, in forward + query, key, value, present = self._attn_projections_and_rope( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope + qkv = self.query_key_value(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-0.5B,Qwen/Qwen1.5-0.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1221, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1023, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 763, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 650, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-2.7B,EleutherAI/gpt-neo-2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-16B-nl,Salesforce/codegen-16B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -28912,22 +26719,16 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: CodeGenForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-410m,EleutherAI/pythia-410m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-j-6b,EleutherAI/gpt-j-6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -28947,22 +26748,125 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: GPTJForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2-large,openai-community/gpt2-large,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.42.3,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,1249.247232,2645.03296,0.0,1998.585856,1692.386816,s,10,0.18110473632812502,0.018110473632812502,0.0005832169414279196,0.017981696128845214,0.01848877696990967,0.019090020084381102,0.01957101457595825,"[0.01969126319885254, 0.017800607681274415, 0.017747167587280274, 0.017933311462402343, 0.017479488372802734, 0.018030080795288086, 0.01773776054382324, 0.018034944534301756, 0.018294944763183593, 0.018355167388916016]",tokens/s,14135.466867977431,kWh,2.0449506301505892e-07,1.12053370853919e-07,6.15953972193862e-07,9.3250240606284e-07,tokens/kWh,274530122.74881846,MB,1250.115584,2645.03296,0.0,1998.585856,1714.454528,s,10,10.794084228515624,1.0794084228515626,0.016644320820693784,1.0746611938476562,1.0933045532226562,1.1081316467285156,1.1199933215332032,"[1.122958740234375, 1.0686610107421874, 1.0693388671875, 1.0852027587890625, 1.0651156005859375, 1.0635029296875, 1.0766837158203124, 1.072638671875, 1.0900096435546875, 1.0799722900390625]",tokens/s,58.365303314539354,kWh,1.2562686432810393e-05,6.8838655438497616e-06,2.551703915640865e-05,4.496359113306879e-05,tokens/kWh,1401133.6375146916,,s,629,10.936251413345326,0.01738672720722629,0.0022197024292994623,0.016885791778564453,0.017659904098510742,0.018658509063720703,0.034891817016601566,"[0.01904435157775879, 0.0187064323425293, 0.01863270378112793, 0.018726911544799805, 0.018726911544799805, 0.018873344421386717, 0.018765823364257812, 0.018811904907226562, 0.018739200592041014, 0.018676736831665038, 0.018762752532958983, 0.018803712844848632, 0.018678783416748047, 0.01875660705566406, 0.018675712585449217, 0.018868223190307617, 0.018815999984741212, 0.018736127853393555, 0.018751487731933594, 0.018682880401611326, 0.018691072463989256, 0.01845964813232422, 0.019186687469482423, 0.018593791961669923, 0.018990079879760743, 0.0188723201751709, 0.01862553596496582, 0.01846067237854004, 0.017209344863891602, 0.016954368591308593, 0.017811456680297853, 0.016908287048339844, 0.01696767997741699, 0.01758720016479492, 0.017490943908691405, 0.017522687911987304, 0.017477632522583008, 0.017419296264648436, 0.01743459129333496, 0.017391616821289063, 0.01677107238769531, 0.01680998420715332, 0.01681920051574707, 0.016915456771850586, 0.01683865547180176, 0.01681100845336914, 0.01679155158996582, 0.016780288696289062, 0.01678745651245117, 0.016950271606445313, 0.016879615783691407, 0.016874496459960937, 0.01683558464050293, 0.016773120880126953, 0.016753664016723634, 0.016665599822998048, 0.01686016082763672, 0.016930816650390625, 0.016816160202026368, 0.016822240829467774, 0.01683558464050293, 0.01679667282104492, 0.03492966461181641, 0.01683558464050293, 0.016866304397583007, 0.01678335952758789, 0.01679871940612793, 0.016550912857055664, 0.016587776184082033, 0.016528383255004882, 0.016562175750732423, 0.01659395217895508, 0.016603103637695314, 0.01661849594116211, 0.017155071258544922, 0.016927743911743166, 0.01680281639099121, 0.016898048400878905, 0.01679974365234375, 0.01720832061767578, 0.01759231948852539, 0.01741312026977539, 0.01738751983642578, 0.01700556755065918, 0.016825344085693358, 0.017289247512817383, 0.01739465522766113, 0.01723187255859375, 0.016772096633911132, 0.01683558464050293, 0.01681407928466797, 0.01676288032531738, 0.016736255645751954, 0.016784383773803712, 0.016827392578125, 0.016879615783691407, 0.01670867156982422, 0.01733932876586914, 0.01680793571472168, 0.01677414321899414, 0.016729087829589845, 0.016703487396240235, 0.016753664016723634, 0.016742399215698242, 0.01681100845336914, 0.01680486488342285, 0.016742399215698242, 0.017876991271972655, 0.017705984115600586, 0.017125375747680666, 0.016781312942504883, 0.0167956485748291, 0.016955392837524414, 0.01680281639099121, 0.016741376876831054, 0.016845823287963867, 0.01765888023376465, 0.017520639419555666, 0.017494016647338868, 0.017333248138427734, 0.01734758377075195, 0.01744588851928711, 0.016930816650390625, 0.01677926445007324, 0.01683660888671875, 0.03493273544311523, 0.016877567291259766, 0.016845823287963867, 0.016837631225585938, 0.0167956485748291, 0.01678233528137207, 0.01701068878173828, 0.018579456329345705, 0.017508352279663086, 0.01745305633544922, 0.017385471343994142, 0.017447935104370118, 0.017209344863891602, 0.01686835289001465, 0.016921600341796874, 0.016829439163208008, 0.01679871940612793, 0.017161216735839844, 0.017475584030151366, 0.017442815780639647, 0.016941055297851563, 0.016772096633911132, 0.016741376876831054, 0.017126399993896483, 0.01683251190185547, 0.016769023895263673, 0.0167587833404541, 0.016749568939208984, 0.01679871940612793, 0.016845823287963867, 0.01680281639099121, 0.016793600082397463, 0.016722944259643553, 0.01680691146850586, 0.016722944259643553, 0.016822303771972656, 0.016772096633911132, 0.016756704330444336, 0.016680959701538087, 0.0167956485748291, 0.016973823547363282, 0.01684787178039551, 0.0165928955078125, 0.016727039337158203, 0.016833536148071288, 0.016866304397583007, 0.016881664276123046, 0.01721651268005371, 0.016885759353637696, 0.016885759353637696, 0.016877567291259766, 0.01679974365234375, 0.01678643226623535, 0.016821247100830078, 0.01676288032531738, 0.01681510353088379, 0.016925695419311524, 0.016898080825805663, 0.01683247947692871, 0.016909311294555664, 0.017939456939697264, 0.017320959091186524, 0.017529855728149413, 0.035783679962158206, 0.017524736404418945, 0.017922048568725587, 0.017533952713012696, 0.017596416473388672, 0.017516544342041016, 0.01758415985107422, 0.017504224777221678, 0.01761587142944336, 0.01772035217285156, 0.01703318405151367, 0.01683967971801758, 0.017302528381347656, 0.017532928466796875, 0.017551359176635743, 0.017521663665771483, 0.0174335994720459, 0.017333248138427734, 0.017681407928466796, 0.01702809524536133, 0.016926719665527345, 0.016827392578125, 0.016739328384399413, 0.01679667282104492, 0.01683967971801758, 0.016821247100830078, 0.016755712509155272, 0.01680588722229004, 0.016742399215698242, 0.01681100845336914, 0.01683865547180176, 0.01679462432861328, 0.01680691146850586, 0.01680588722229004, 0.017383424758911133, 0.01756876754760742, 0.017504255294799806, 0.017168384552001953, 0.017187839508056642, 0.01743155288696289, 0.017506303787231444, 0.017521696090698244, 0.01765782356262207, 0.01742540740966797, 0.01803878402709961, 0.01743974494934082, 0.017356800079345702, 0.01720217514038086, 0.0174202880859375, 0.017399808883666993, 0.01712950325012207, 0.017301471710205078, 0.01706598472595215, 0.016917503356933594, 0.016837631225585938, 0.01700454330444336, 0.01720319938659668, 0.016863231658935548, 0.017084415435791016, 0.016883712768554687, 0.016911359786987306, 0.016948223114013672, 0.016947200775146484, 0.03465932846069336, 0.016855039596557618, 0.016886783599853517, 0.01677926445007324, 0.016875520706176757, 0.017054719924926756, 0.018347007751464844, 0.017502208709716797, 0.016885759353637696, 0.01677827262878418, 0.01684169578552246, 0.01680281639099121, 0.016855039596557618, 0.016882688522338866, 0.016919551849365236, 0.016873472213745116, 0.016904191970825197, 0.01702400016784668, 0.01683456039428711, 0.0168089599609375, 0.01681817626953125, 0.01678950309753418, 0.016825344085693358, 0.0168724479675293, 0.01741926383972168, 0.01754521560668945, 0.01702911949157715, 0.01677107238769531, 0.01682841682434082, 0.016863231658935548, 0.016890880584716796, 0.01681100845336914, 0.01683456039428711, 0.016755712509155272, 0.01681510353088379, 0.01676697540283203, 0.01680076789855957, 0.01677824020385742, 0.016638975143432617, 0.016635904312133788, 0.01660518455505371, 0.01659187126159668, 0.016564224243164064, 0.01677107238769531, 0.016738304138183592, 0.01681407928466797, 0.016753664016723634, 0.016854015350341797, 0.016908287048339844, 0.016905216217041014, 0.016857088088989256, 0.016907264709472656, 0.016872512817382813, 0.01691846466064453, 0.016712703704833985, 0.016891904830932617, 0.01698406410217285, 0.017449983596801756, 0.016718847274780273, 0.0166297607421875, 0.017092607498168946, 0.017095680236816405, 0.017131519317626954, 0.03580416107177734, 0.01741823959350586, 0.017531904220581054, 0.017286144256591796, 0.016875520706176757, 0.016792575836181642, 0.01678745651245117, 0.01683251190185547, 0.016887807846069337, 0.016873472213745116, 0.01686425590515137, 0.016894975662231446, 0.016882688522338866, 0.016870399475097657, 0.016746496200561522, 0.01676595115661621, 0.016723968505859374, 0.01664204788208008, 0.016663551330566406, 0.016582656860351562, 0.01677107238769531, 0.016749568939208984, 0.01679871940612793, 0.01680281639099121, 0.016901151657104492, 0.016837600708007813, 0.0168407039642334, 0.016712703704833985, 0.016760831832885743, 0.01677516746520996, 0.016748544692993163, 0.016825344085693358, 0.01679667282104492, 0.01682329559326172, 0.01675775909423828, 0.01678950309753418, 0.01677926445007324, 0.0168407039642334, 0.0173885440826416, 0.016639999389648438, 0.017270784378051757, 0.01745408058166504, 0.01702707290649414, 0.016867328643798828, 0.01680281639099121, 0.01678643226623535, 0.01683865547180176, 0.01683660888671875, 0.01681305694580078, 0.01685196876525879, 0.01686425590515137, 0.016905216217041014, 0.016862207412719727, 0.01678745651245117, 0.016662527084350585, 0.01660825538635254, 0.016852991104125976, 0.016821247100830078, 0.01678950309753418, 0.016772096633911132, 0.016773120880126953, 0.017385471343994142, 0.016871423721313478, 0.03479449462890625, 0.016877567291259766, 0.016845823287963867, 0.01698918342590332, 0.018563072204589845, 0.018008064270019532, 0.017552383422851564, 0.017528831481933595, 0.017434623718261717, 0.017492992401123047, 0.017391616821289063, 0.016911359786987306, 0.0168089599609375, 0.016854047775268555, 0.016837600708007813, 0.016928768157958983, 0.016761856079101564, 0.01681203269958496, 0.0168407039642334, 0.017082368850708008, 0.016893951416015626, 0.01683865547180176, 0.01681612777709961, 0.017269760131835937, 0.017571840286254883, 0.017605632781982423, 0.017517568588256836, 0.017464319229125978, 0.01724723243713379, 0.01680179214477539, 0.016780288696289062, 0.01679052734375, 0.017031167984008787, 0.017063936233520507, 0.01683558464050293, 0.016869375228881836, 0.016865280151367186, 0.016833536148071288, 0.017081344604492187, 0.01686016082763672, 0.016842752456665038, 0.017504255294799806, 0.017483776092529296, 0.017307647705078123, 0.01740595245361328, 0.01787596893310547, 0.017582080841064454, 0.017482751846313475, 0.016935935974121095, 0.016882688522338866, 0.016845823287963867, 0.0168724479675293, 0.01681715202331543, 0.016829439163208008, 0.01680793571472168, 0.016883712768554687, 0.01684787178039551, 0.01682841682434082, 0.01678233528137207, 0.01678745651245117, 0.01681510353088379, 0.016867328643798828, 0.01681612777709961, 0.03634995269775391, 0.017678335189819337, 0.01745305633544922, 0.01757900810241699, 0.01740287971496582, 0.01696767997741699, 0.01686425590515137, 0.016873472213745116, 0.01681203269958496, 0.016969728469848632, 0.01683558464050293, 0.01681100845336914, 0.01684889602661133, 0.01699942398071289, 0.016881664276123046, 0.017523712158203125, 0.017688575744628905, 0.01743052864074707, 0.01702604866027832, 0.01676697540283203, 0.016785408020019533, 0.01679871940612793, 0.016767999649047852, 0.01678643226623535, 0.016793600082397463, 0.016772096633911132, 0.016752639770507814, 0.01679871940612793, 0.016849920272827147, 0.0167956485748291, 0.01680793571472168, 0.01679462432861328, 0.016788480758666992, 0.01682636833190918, 0.016620576858520506, 0.01664201545715332, 0.016541696548461913, 0.01660620880126953, 0.01659699249267578, 0.016553983688354493, 0.016726015090942382, 0.01682022476196289, 0.016731136322021483, 0.016721920013427736, 0.016743423461914063, 0.01677926445007324, 0.016788480758666992, 0.01682636833190918, 0.016746496200561522, 0.016876544952392578, 0.01685606384277344, 0.017342464447021484, 0.018585599899291993, 0.017912832260131836, 0.017761280059814453, 0.017554431915283202, 0.01761894416809082, 0.017217536926269532, 0.016668672561645507, 0.016897024154663084, 0.01738444709777832, 0.017338367462158204, 0.017370111465454103, 0.03539251327514648, 0.016876544952392578, 0.017663999557495116, 0.017537023544311522, 0.017534975051879884, 0.017489952087402345, 0.01749603271484375, 0.017464319229125978, 0.017743871688842772, 0.017655807495117186, 0.017180671691894533, 0.016876544952392578, 0.016903167724609376, 0.016885791778564453, 0.016744415283203126, 0.017467391967773437, 0.017570816040039062, 0.017704959869384765, 0.017072128295898437, 0.016825344085693358, 0.016929792404174804, 0.01744895935058594, 0.017524736404418945, 0.017520639419555666, 0.017458175659179686, 0.017447935104370118, 0.01744076728820801, 0.017460224151611328, 0.017291263580322267, 0.01724415969848633, 0.01681817626953125, 0.016566272735595702, 0.016907264709472656, 0.01762611198425293, 0.01757798385620117, 0.01747865676879883, 0.0174653434753418, 0.017352703094482422, 0.017552383422851564, 0.017476608276367187, 0.017583103179931642, 0.017557504653930665, 0.017567743301391603, 0.01742848014831543, 0.017554431915283202, 0.01745715141296387, 0.017464319229125978, 0.017435647964477538, 0.017383424758911133, 0.01677004814147949, 0.01717350387573242, 0.01722163200378418, 0.017273855209350587, 0.017217536926269532, 0.01686016082763672, 0.017150976181030272, 0.01758720016479492, 0.017476608276367187, 0.01745510482788086, 0.01721036720275879, 0.01666662406921387, 0.016963584899902344, 0.01720012855529785, 0.03548262405395508, 0.016893951416015626, 0.017361919403076173, 0.017487871170043946, 0.016788480758666992, 0.016672767639160157, 0.01684377670288086, 0.01679462432861328, 0.016883712768554687, 0.017301504135131835, 0.017128448486328125, 0.016857088088989256, 0.01679871940612793, 0.01764659118652344, 0.017615936279296876, 0.017562559127807617, 0.017510400772094727, 0.017022975921630858, 0.01685606384277344, 0.016910335540771485, 0.0174653434753418, 0.017408000946044923, 0.01719808006286621, 0.01721651268005371, 0.01722777557373047, 0.01698508834838867, 0.017738752365112305, 0.01719808006286621, 0.016927743911743166, 0.016893951416015626, 0.01681920051574707, 0.01686425590515137, 0.017348608016967772, 0.01757900810241699, 0.017496063232421876, 0.017507328033447265, 0.0174704647064209, 0.017138687133789063, 0.01746227264404297, 0.017505279541015627, 0.01741721534729004, 0.017737728118896484, 0.017764352798461915, 0.017746944427490235, 0.018143232345581056, 0.017331199645996095, 0.016846847534179688, 0.01680384063720703, 0.01679155158996582, 0.01681612777709961, 0.01681715202331543, 0.01684377670288086, 0.01679462432861328, 0.01679769515991211, 0.01679769515991211, 0.016767999649047852, 0.01686016082763672, 0.01681100845336914, 0.017131519317626954, 0.01700249671936035, 0.01682022476196289, 0.016827392578125, 0.01680998420715332]",tokens/s,57.51513715498906,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) +TypeError: DeciCoderAttention.forward() got an unexpected keyword argument 'cache_position' + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mistral-7B-v0.1,mistralai/Mistral-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 1200, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 976, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 718, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 613, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,0,0,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,r,r,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -28974,7 +26878,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/0/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/r/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -29001,9 +26905,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669494d3-6af856cf1c8afc57242df494;6c6317f3-b7d5-4453-86b3-85f9cdc1364e) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949118-79007d023fd65816461713b3;8fdbdf07-c644-4548-b48b-e6085f36dc4a) -Repository Not Found for url: https://huggingface.co/0/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/r/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -29028,88 +26932,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: 0 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: r is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-6B-nl,Salesforce/codegen-6B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-70b-hf,meta-llama/Llama-2-70b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 112.00 MiB. GPU - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,2,2,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,l,l,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -29121,7 +26948,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/2/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/l/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -29148,9 +26975,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694935a-35f42d024bb07a2971d6deef;ee9a5760-9924-4384-8bd7-8625ad6ae447) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669491be-6be489d15777cf0d431fe6cc;22eeef10-eb0a-48d7-8393-55415d6f0ed8) -Repository Not Found for url: https://huggingface.co/2/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/l/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -29175,11 +27002,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: 2 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: l is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,a,a,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,a,a,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -29218,7 +27045,7 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949155-7056511327fcda72778b4f6c;a5810a58-112b-4c8c-b677-59d406d81771) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694916b-5c81fcc12f4a975e21f2ee46;d6e973a0-f217-425f-aa51-7e20b8750b92) Repository Not Found for url: https://huggingface.co/a/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. @@ -29241,295 +27068,15 @@ Traceback (most recent call last): config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file - raise EnvironmentError( -OSError: a is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-350m,facebook/opt-350m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/phi-1_5,microsoft/phi-1_5,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-2.7b,facebook/opt-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-13b,huggyllama/llama-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-7b,tiiuae/falcon-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-MoE-A2.7B,Qwen/Qwen1.5-MoE-A2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-7b,huggyllama/llama-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + raise EnvironmentError( +OSError: a is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-2b,google/recurrentgemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,1,1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -29541,11 +27088,21 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/1/resolve/main/config.json The above exception was the direct cause of the following exception: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn @@ -29556,28 +27113,13 @@ Traceback (most recent call last): response = _request_wrapper( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status - raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-669481bd-5fab551753c2656905cd0985;2c272794-392b-4766-991d-adfa098a50b1) - -403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json. -If you are trying to create or update content,make sure you have a token with the `write` role. - -The above exception was the direct cause of the following exception: + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669495ba-46bf15af50f6da881454533c;f514b970-f019-47a3-95ec-ce168f4a3757) -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error - raise LocalEntryNotFoundError( -huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. +Repository Not Found for url: https://huggingface.co/1/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. The above exception was the direct cause of the following exception: @@ -29598,48 +27140,13 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/recurrentgemma-2b is not the path to a directory containing a file named config.json. -Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-30b,facebook/opt-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined +OSError: 1 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-160m,EleutherAI/pythia-160m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-7b,huggyllama/llama-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -29649,32 +27156,56 @@ NameError: name 'exl_ext' is not defined ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 614, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-7b,stabilityai/stablelm-base-alpha-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-2.7b,EleutherAI/pythia-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -29684,32 +27215,58 @@ NameError: name 'exl_ext' is not defined ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward + outputs = self.gpt_neox( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward + outputs = layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward + attention_layer_outputs = self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 545, in forward + query, key, value, present = self._attn_projections_and_rope( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope + qkv = self.query_key_value(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,m,m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,B,B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -29721,7 +27278,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/m/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/B/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -29748,9 +27305,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948c37-134fabb91c0cd58328069fde;b3b530aa-5ad1-434d-b422-e7ac6fc493fd) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669493d2-53e5d6e0771e6cca3e572585;3bd21c41-644c-4ec7-bc91-12e19074b5d8) -Repository Not Found for url: https://huggingface.co/m/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/B/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -29775,11 +27332,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: m is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: B is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-3b-4e1t,stabilityai/stablelm-3b-4e1t,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-30b,huggyllama/llama-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -29789,32 +27346,56 @@ If this is a private repository, make sure to pass a token having permission to ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 614, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-125m,EleutherAI/gpt-neo-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,2,2,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -29822,35 +27403,69 @@ NameError: name 'exl_ext' is not defined File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/2/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949371-407674857434fc174bd383a3;ec6ab7ea-adb7-435f-b82a-4272733aa337) + +Repository Not Found for url: https://huggingface.co/2/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + raise EnvironmentError( +OSError: 2 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2,openai-community/gpt2,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1231.843328,1005.060096,0.0,358.612992,318.913024,s,21,0.18355030345916748,0.008740490640912738,0.0003350787955471485,0.00862604808807373,0.008949695587158203,0.00923475170135498,0.009869042778015138,"[0.010027615547180176, 0.008949695587158203, 0.008625503540039062, 0.00923475170135498, 0.008610015869140624, 0.00866915225982666, 0.00862604808807373, 0.008871392250061035, 0.008561504364013673, 0.008556192398071288, 0.008633919715881348, 0.00886348819732666, 0.008537247657775878, 0.008714079856872559, 0.008701151847839355, 0.008674336433410644, 0.008554752349853516, 0.008511584281921386, 0.00850607967376709, 0.008580191612243653, 0.008541600227355957]",tokens/s,29288.973642018205,kWh,1.0310658924635563e-07,5.648848538782815e-08,2.2294035675046953e-07,3.825354313846533e-07,tokens/kWh,669219055.2738177,MB,1232.13824,1005.060096,0.0,358.612992,328.809472,s,21,10.26999664306641,0.48904745919363846,0.00403887718511448,0.487286376953125,0.4949382019042969,0.4976250915527344,0.4998394714355469,"[0.50039306640625, 0.4949382019042969, 0.491740478515625, 0.4892876586914062, 0.4909471740722656, 0.4976250915527344, 0.487286376953125, 0.48865457153320313, 0.48538818359375, 0.48481610107421874, 0.48979806518554686, 0.48635006713867185, 0.48722393798828123, 0.485962646484375, 0.4894192504882813, 0.48873077392578124, 0.4857748413085938, 0.4860442810058594, 0.48649954223632813, 0.4870877685546875, 0.486028564453125]",tokens/s,128.821853208024,kWh,5.764060866563101e-06,3.1584372687529265e-06,9.864422210484918e-06,1.878692034580095e-05,tokens/kWh,3353396.8761453275,,s,1322,10.43460300683975,0.007893043121663959,0.0011110576671242386,0.007707647800445557,0.007921459436416627,0.008081356382369995,0.016560291538238524,"[0.009092096328735352, 0.009058367729187012, 0.008918975830078125, 0.008963071823120117, 0.008934399604797364, 0.008929280281066895, 0.00934502410888672, 0.008104960441589355, 0.008223744392395019, 0.007952415943145752, 0.007911392211914062, 0.007724063873291016, 0.007740384101867676, 0.007718912124633789, 0.007732223987579345, 0.007771135807037354, 0.007724031925201416, 0.007733248233795166, 0.007701568126678467, 0.00769324779510498, 0.007707647800445557, 0.007727104187011719, 0.007730175971984863, 0.007672832012176513, 0.007747583866119385, 0.007762944221496582, 0.007890944004058837, 0.007702527999877929, 0.007723008155822754, 0.007799808025360107, 0.007707647800445557, 0.007696383953094482, 0.007733248233795166, 0.0076902399063110355, 0.007792640209197998, 0.007727104187011719, 0.007721983909606934, 0.007738368034362793, 0.007664639949798584, 0.0076902399063110355, 0.007693312168121338, 0.0076902399063110355, 0.0076912641525268555, 0.007764992237091065, 0.007812096118927002, 0.0076984319686889645, 0.007737343788146973, 0.007910399913787843, 0.007769087791442871, 0.007794688224792481, 0.007959551811218261, 0.007833600044250488, 0.007940095901489258, 0.007715839862823487, 0.007907328128814697, 0.007768064022064209, 0.0076984319686889645, 0.007676928043365478, 0.007727104187011719, 0.007711743831634522, 0.00790937614440918, 0.007811071872711181, 0.01726470375061035, 0.007868351936340333, 0.007919616222381591, 0.008102911949157715, 0.008324095726013184, 0.008201215744018555, 0.008301568031311036, 0.008308735847473145, 0.008286208152770995, 0.00830463981628418, 0.008102911949157715, 0.00808140754699707, 0.007987199783325195, 0.007973919868469239, 0.007829472064971924, 0.00774348783493042, 0.007905280113220215, 0.007950335979461669, 0.008045568466186523, 0.007724031925201416, 0.00809779167175293, 0.007895040035247802, 0.007924736022949219, 0.007701504230499268, 0.007714816093444824, 0.007802879810333252, 0.007689216136932373, 0.007731200218200684, 0.0076902399063110355, 0.007704576015472412, 0.0077209601402282715, 0.0077036161422729494, 0.00770963191986084, 0.00785100793838501, 0.007706624031066894, 0.00785920000076294, 0.007693312168121338, 0.00774348783493042, 0.007714816093444824, 0.007696383953094482, 0.007706624031066894, 0.007671807765960693, 0.008090656280517578, 0.00802505588531494, 0.007776256084442139, 0.007709695816040039, 0.007713791847229004, 0.007703551769256592, 0.00783462381362915, 0.007703551769256592, 0.0076984319686889645, 0.007723008155822754, 0.007885824203491211, 0.007710720062255859, 0.007711743831634522, 0.007705599784851074, 0.007715839862823487, 0.007755775928497314, 0.007683072090148926, 0.007688191890716553, 0.007709695816040039, 0.007748608112335205, 0.007685120105743408, 0.01663488006591797, 0.007726079940795898, 0.007717887878417969, 0.0077281279563903805, 0.007688191890716553, 0.007729152202606201, 0.0076943359375, 0.007702527999877929, 0.007713888168334961, 0.007737247943878174, 0.0077209601402282715, 0.007712768077850342, 0.0077608962059021, 0.007717887878417969, 0.007710720062255859, 0.008239104270935058, 0.008116224288940429, 0.008475647926330567, 0.008458239555358887, 0.008246272087097169, 0.007942143917083741, 0.00795961618423462, 0.007945151805877685, 0.007906303882598878, 0.007910399913787843, 0.007938047885894776, 0.007723008155822754, 0.007715839862823487, 0.0076902399063110355, 0.0076902399063110355, 0.0076902399063110355, 0.007681024074554443, 0.007697408199310303, 0.007683104038238526, 0.0076943359375, 0.0077506241798400875, 0.00775270414352417, 0.007787519931793213, 0.007673855781555176, 0.007689216136932373, 0.007712768077850342, 0.007634943962097168, 0.007689216136932373, 0.0076902399063110355, 0.0076912641525268555, 0.007678976058959961, 0.0076902399063110355, 0.007709695816040039, 0.007890944004058837, 0.007795711994171142, 0.007898111820220948, 0.007674880027770996, 0.007759871959686279, 0.007707647800445557, 0.007746560096740723, 0.007889920234680176, 0.007853055953979492, 0.007882751941680909, 0.007867392063140868, 0.0077547521591186525, 0.007782400131225586, 0.007676928043365478, 0.007889920234680176, 0.01763020706176758, 0.008062975883483887, 0.007933951854705811, 0.00788479995727539, 0.007878655910491944, 0.007974912166595459, 0.007945216178894043, 0.007906303882598878, 0.007907328128814697, 0.007918591976165772, 0.007847936153411865, 0.007732223987579345, 0.00775270414352417, 0.007715839862823487, 0.007693312168121338, 0.007790592193603516, 0.007701504230499268, 0.00767084789276123, 0.007698368072509765, 0.007670783996582031, 0.007679999828338623, 0.007670783996582031, 0.007672832012176513, 0.0076871681213378906, 0.007737343788146973, 0.007924736022949219, 0.007703551769256592, 0.007711743831634522, 0.007705599784851074, 0.007706624031066894, 0.007683072090148926, 0.007726079940795898, 0.007684095859527588, 0.007717887878417969, 0.007829504013061523, 0.007885824203491211, 0.007727104187011719, 0.007808000087738037, 0.007792640209197998, 0.007704576015472412, 0.007664639949798584, 0.007731200218200684, 0.007749631881713868, 0.007715839862823487, 0.007766016006469726, 0.007790592193603516, 0.007709695816040039, 0.007795711994171142, 0.007740416049957275, 0.007689216136932373, 0.007677951812744141, 0.007688191890716553, 0.007706624031066894, 0.007693312168121338, 0.007697440147399902, 0.007667679786682129, 0.0076912641525268555, 0.007759871959686279, 0.007836671829223632, 0.007707647800445557, 0.007697408199310303, 0.007692287921905518, 0.007705599784851074, 0.01658367919921875, 0.007725056171417236, 0.007701568126678467, 0.007698368072509765, 0.007697408199310303, 0.007677984237670898, 0.007667744159698486, 0.00769324779510498, 0.007798816204071045, 0.007762944221496582, 0.00780079984664917, 0.008656895637512207, 0.00830361557006836, 0.008055839538574219, 0.008196063995361328, 0.007998464107513427, 0.00795136022567749, 0.008061951637268066, 0.007879712104797364, 0.00796668815612793, 0.007711808204650879, 0.0077086081504821775, 0.007677951812744141, 0.007714816093444824, 0.007709695816040039, 0.007789567947387695, 0.007707647800445557, 0.0076912641525268555, 0.007716864109039307, 0.007702527999877929, 0.007709695816040039, 0.007679999828338623, 0.007709695816040039, 0.007703551769256592, 0.007715839862823487, 0.007775231838226319, 0.007758848190307617, 0.007897088050842285, 0.007768064022064209, 0.007769087791442871, 0.007915520191192627, 0.007915520191192627, 0.007895040035247802, 0.0076943359375, 0.007679999828338623, 0.007676928043365478, 0.00769536018371582, 0.007711743831634522, 0.007781375885009765, 0.007708735942840576, 0.00771065616607666, 0.0076984319686889645, 0.007763967990875244, 0.007647232055664062, 0.007775231838226319, 0.007683072090148926, 0.007717887878417969, 0.007763967990875244, 0.0076943359375, 0.007715839862823487, 0.007766016006469726, 0.007777279853820801, 0.007678976058959961, 0.016675840377807616, 0.007716864109039307, 0.0076984319686889645, 0.007701504230499268, 0.00780185604095459, 0.007713791847229004, 0.007725056171417236, 0.007714816093444824, 0.007688191890716553, 0.008960000038146973, 0.008425472259521484, 0.00793497610092163, 0.007820288181304931, 0.007699456214904785, 0.007699456214904785, 0.007682047843933106, 0.007803904056549072, 0.007661568164825439, 0.007709695816040039, 0.007979008197784423, 0.007948287963867188, 0.008050687789916992, 0.007895040035247802, 0.007890944004058837, 0.007904255867004394, 0.00800051212310791, 0.007781375885009765, 0.007700479984283447, 0.0076902399063110355, 0.0076902399063110355, 0.007723008155822754, 0.007730175971984863, 0.007696383953094482, 0.007681024074554443, 0.008360960006713868, 0.009117695808410644, 0.009527296066284179, 0.00808243179321289, 0.00799955177307129, 0.00785094404220581, 0.007670783996582031, 0.007714816093444824, 0.007681024074554443, 0.007689216136932373, 0.007984127998352051, 0.007931903839111328, 0.007922688007354736, 0.00800870418548584, 0.007964672088623047, 0.008010751724243164, 0.007980031967163086, 0.00773529577255249, 0.007676928043365478, 0.0076871681213378906, 0.00769536018371582, 0.007947264194488525, 0.008145919799804687, 0.007927807807922363, 0.007897088050842285, 0.007776256084442139, 0.007714816093444824, 0.007714816093444824, 0.007712768077850342, 0.016688127517700196, 0.007721983909606934, 0.007673855781555176, 0.00773529577255249, 0.008170495986938477, 0.008371199607849121, 0.0077209601402282715, 0.0077281599044799806, 0.007708640098571778, 0.007672832012176513, 0.0076943359375, 0.0076943359375, 0.007738368034362793, 0.00773529577255249, 0.007715839862823487, 0.007730175971984863, 0.0076871681213378906, 0.007707647800445557, 0.007707647800445557, 0.007686143875122071, 0.007689216136932373, 0.0076984319686889645, 0.007703551769256592, 0.007768064022064209, 0.00774348783493042, 0.007772160053253174, 0.0076871681213378906, 0.007663616180419922, 0.007666687965393066, 0.007672832012176513, 0.0076656961441040035, 0.007675871849060058, 0.0076871681213378906, 0.00764518404006958, 0.007671807765960693, 0.007745535850524903, 0.007677951812744141, 0.0076902399063110355, 0.007734272003173828, 0.007685120105743408, 0.0076943359375, 0.007675903797149658, 0.007677951812744141, 0.007675903797149658, 0.007730175971984863, 0.007740416049957275, 0.007658495903015137, 0.007704576015472412, 0.007727104187011719, 0.007727104187011719, 0.007701504230499268, 0.007684095859527588, 0.0077578239440917966, 0.007705599784851074, 0.007681024074554443, 0.007710720062255859, 0.007685184001922607, 0.007728064060211181, 0.007676959991455078, 0.007675871849060058, 0.007856128215789794, 0.00790118408203125, 0.0079267840385437, 0.017124351501464845, 0.007890944004058837, 0.007896063804626464, 0.007844863891601562, 0.007715839862823487, 0.007679999828338623, 0.007675903797149658, 0.0076912641525268555, 0.007697408199310303, 0.007703551769256592, 0.007701504230499268, 0.007693312168121338, 0.00774348783493042, 0.0076984319686889645, 0.007705599784851074, 0.007809023857116699, 0.007742464065551758, 0.007864319801330566, 0.007906303882598878, 0.007886847972869874, 0.007703551769256592, 0.007671807765960693, 0.007692287921905518, 0.007684095859527588, 0.007683072090148926, 0.007726079940795898, 0.007716864109039307, 0.007705599784851074, 0.007701504230499268, 0.007738368034362793, 0.007684095859527588, 0.007758848190307617, 0.007689216136932373, 0.007742464065551758, 0.007646207809448242, 0.007659520149230957, 0.007811071872711181, 0.007968768119812012, 0.007933951854705811, 0.007763967990875244, 0.007693312168121338, 0.0076943359375, 0.007675903797149658, 0.007677951812744141, 0.007677951812744141, 0.007675936222076416, 0.007691232204437256, 0.0076687359809875484, 0.007788544178009033, 0.007912447929382324, 0.0077209601402282715, 0.007674880027770996, 0.007666687965393066, 0.007675903797149658, 0.007684095859527588, 0.007665664196014404, 0.007678976058959961, 0.008128512382507324, 0.008069120407104492, 0.007811071872711181, 0.007938047885894776, 0.007679999828338623, 0.007688223838806152, 0.016586719512939455, 0.007676928043365478, 0.007712768077850342, 0.007682047843933106, 0.007674880027770996, 0.007696383953094482, 0.007659520149230957, 0.007680031776428222, 0.007677919864654541, 0.0076912641525268555, 0.0076912641525268555, 0.007704576015472412, 0.007708672046661377, 0.007681024074554443, 0.007847936153411865, 0.007811071872711181, 0.00773632001876831, 0.007725056171417236, 0.0076574721336364745, 0.0076769919395446775, 0.007656383991241455, 0.007673855781555176, 0.007708672046661377, 0.00769536018371582, 0.007670783996582031, 0.007692287921905518, 0.007771135807037354, 0.007670783996582031, 0.007665664196014404, 0.007670783996582031, 0.007733248233795166, 0.007681024074554443, 0.007705599784851074, 0.007664639949798584, 0.0076605439186096195, 0.007678976058959961, 0.007718912124633789, 0.007679999828338623, 0.007672832012176513, 0.007723008155822754, 0.007666687965393066, 0.007671807765960693, 0.007719999790191651, 0.007715775966644287, 0.007756832122802734, 0.007769055843353271, 0.007670783996582031, 0.007681024074554443, 0.0076871681213378906, 0.007742464065551758, 0.007697408199310303, 0.007704576015472412, 0.007715839862823487, 0.0077199358940124516, 0.007715839862823487, 0.007699456214904785, 0.007782400131225586, 0.007672832012176513, 0.007705599784851074, 0.007671807765960693, 0.007681024074554443, 0.007676928043365478, 0.007688191890716553, 0.016537599563598633, 0.007702527999877929, 0.0076912641525268555, 0.00780185604095459, 0.007649280071258545, 0.0077199358940124516, 0.0076605439186096195, 0.007711743831634522, 0.0076360001564025875, 0.0076789441108703616, 0.007679999828338623, 0.007708672046661377, 0.007693376064300537, 0.0076594557762145994, 0.007683072090148926, 0.007707647800445557, 0.007715839862823487, 0.007693312168121338, 0.007656447887420655, 0.007662591934204102, 0.007688191890716553, 0.007667712211608887, 0.007652383804321289, 0.007774176120758057, 0.007679999828338623, 0.0076277761459350585, 0.0077199358940124516, 0.007705599784851074, 0.007661568164825439, 0.007655424118041992, 0.00765337610244751, 0.007646207809448242, 0.007651328086853027, 0.00765337610244751, 0.007684095859527588, 0.007672832012176513, 0.00765235185623169, 0.007797760009765625, 0.0076574721336364745, 0.007676928043365478, 0.007676928043365478, 0.0076605439186096195, 0.007675936222076416, 0.007666656017303467, 0.007671807765960693, 0.007673855781555176, 0.007711743831634522, 0.007681024074554443, 0.0076605439186096195, 0.007897088050842285, 0.007715839862823487, 0.007639039993286132, 0.007663616180419922, 0.007663616180419922, 0.007703551769256592, 0.007701504230499268, 0.007685120105743408, 0.007809023857116699, 0.007738368034362793, 0.007857151985168457, 0.007700479984283447, 0.007667744159698486, 0.007658463954925537, 0.01657142448425293, 0.007717855930328369, 0.007683072090148926, 0.007674880027770996, 0.007670783996582031, 0.007671807765960693, 0.0076984319686889645, 0.007650303840637207, 0.007666687965393066, 0.007692287921905518, 0.007678976058959961, 0.00769536018371582, 0.007678976058959961, 0.007858176231384278, 0.0076912641525268555, 0.007671807765960693, 0.007683072090148926, 0.007661568164825439, 0.007699456214904785, 0.00769536018371582, 0.007699456214904785, 0.007732223987579345, 0.0076902399063110355, 0.007854080200195313, 0.007869440078735352, 0.007822336196899414, 0.007726079940795898, 0.008191007614135742, 0.008648672103881837, 0.008141823768615723, 0.007966720104217529, 0.007977983951568603, 0.008117247581481933, 0.007708672046661377, 0.007697408199310303, 0.007654399871826172, 0.007683072090148926, 0.007730175971984863, 0.007701504230499268, 0.008463359832763672, 0.008068096160888672, 0.007916543960571289, 0.007705599784851074, 0.007667712211608887, 0.007699456214904785, 0.007643136024475097, 0.007656447887420655, 0.007656447887420655, 0.007661568164825439, 0.0076605439186096195, 0.007755775928497314, 0.007671807765960693, 0.0076871681213378906, 0.007669760227203369, 0.0077619199752807615, 0.007662591934204102, 0.0076605439186096195, 0.007664639949798584, 0.007772160053253174, 0.007708672046661377, 0.007676928043365478, 0.007662591934204102, 0.00795750379562378, 0.017183744430541992, 0.007907328128814697, 0.007918591976165772, 0.00783462381362915, 0.007717887878417969, 0.0076943359375, 0.007677951812744141, 0.007763967990875244, 0.007702527999877929, 0.007685120105743408, 0.007701504230499268, 0.007684095859527588, 0.007709695816040039, 0.007688191890716553, 0.007730175971984863, 0.007692287921905518, 0.007733248233795166, 0.007673855781555176, 0.007678976058959961, 0.007662591934204102, 0.007718912124633789, 0.007674880027770996, 0.007672832012176513, 0.007670783996582031, 0.007658495903015137, 0.007688191890716553, 0.007734272003173828, 0.007763967990875244, 0.007769087791442871, 0.007686143875122071, 0.007650303840637207, 0.007665664196014404, 0.007681024074554443, 0.007721983909606934, 0.0077281279563903805, 0.007683072090148926, 0.00769536018371582, 0.0077916159629821775, 0.007670783996582031, 0.007696383953094482, 0.0076605439186096195, 0.007673920154571533, 0.0076819839477539065, 0.007651328086853027, 0.0076943359375, 0.007655424118041992, 0.0076574721336364745, 0.007684095859527588, 0.007669760227203369, 0.007726079940795898, 0.007689216136932373, 0.007771135807037354, 0.0076912641525268555, 0.007823359966278077, 0.007716864109039307, 0.007703551769256592, 0.007678976058959961, 0.007688191890716553, 0.0077844481468200685, 0.007733248233795166, 0.007706624031066894, 0.0077199358940124516, 0.007748608112335205, 0.016525312423706053, 0.007715839862823487, 0.0077209601402282715, 0.007697408199310303, 0.007702527999877929, 0.007712800025939942, 0.007707615852355957, 0.007683072090148926, 0.007696383953094482, 0.007737343788146973, 0.0076687359809875484, 0.007705599784851074, 0.007711743831634522, 0.007686143875122071, 0.007732223987579345, 0.00773632001876831, 0.00787660789489746, 0.00830361557006836, 0.007911424160003662, 0.007717887878417969, 0.007702527999877929, 0.007723008155822754, 0.007732223987579345, 0.007715839862823487, 0.007697408199310303, 0.007795711994171142, 0.007724031925201416, 0.007716864109039307, 0.007809023857116699, 0.007868415832519531, 0.0077608962059021, 0.00773632001876831, 0.007714816093444824, 0.007705599784851074, 0.007703551769256592, 0.007706624031066894, 0.007705599784851074, 0.007702527999877929, 0.007710720062255859, 0.007686143875122071, 0.007699456214904785, 0.007853055953979492, 0.007704576015472412, 0.007655424118041992, 0.007672832012176513, 0.007702527999877929, 0.007703551769256592, 0.007702527999877929, 0.007742464065551758, 0.0076871681213378906, 0.007737343788146973, 0.007697408199310303, 0.007700479984283447, 0.007683072090148926, 0.007702527999877929, 0.007733248233795166, 0.007663616180419922, 0.007678976058959961, 0.007686143875122071, 0.00769536018371582, 0.0077209601402282715, 0.007686143875122071, 0.007703551769256592, 0.01681612777709961, 0.007713791847229004, 0.007679999828338623, 0.007707712173461914, 0.007690176010131836, 0.007659520149230957, 0.007675903797149658, 0.007814144134521485, 0.007681024074554443, 0.007721983909606934, 0.007671807765960693, 0.007718912124633789, 0.007726079940795898, 0.007714816093444824, 0.007703551769256592, 0.007715839862823487, 0.0076943359375, 0.00769536018371582, 0.007705599784851074, 0.007677951812744141, 0.007672832012176513, 0.007671807765960693, 0.007730175971984863, 0.007686143875122071, 0.007659520149230957, 0.0076912641525268555, 0.0076984319686889645, 0.007662591934204102, 0.007699456214904785, 0.0077578239440917966, 0.0076943359375, 0.0077404799461364745, 0.007823296070098877, 0.007710720062255859, 0.0076943359375, 0.007682047843933106, 0.00769536018371582, 0.007639039993286132, 0.007710720062255859, 0.007692287921905518, 0.007687200069427491, 0.007911392211914062, 0.00794316816329956, 0.007654399871826172, 0.0076943359375, 0.007661568164825439, 0.0076902399063110355, 0.007673855781555176, 0.007707647800445557, 0.007701504230499268, 0.007683072090148926, 0.007661568164825439, 0.00773632001876831, 0.007669760227203369, 0.007759871959686279, 0.007682047843933106, 0.007688191890716553, 0.007670783996582031, 0.00773638391494751, 0.007666624069213867, 0.007685120105743408, 0.007774208068847656, 0.007774208068847656, 0.016714752197265623, 0.007661568164825439, 0.007718912124633789, 0.007678976058959961, 0.0076902399063110355, 0.0076687359809875484, 0.007655424118041992, 0.007704576015472412, 0.007724031925201416, 0.007693312168121338, 0.007682047843933106, 0.007713856220245362, 0.007695295810699463, 0.007727104187011719, 0.007708672046661377, 0.0076912641525268555, 0.0076943359375, 0.007725056171417236, 0.007659520149230957, 0.008349696159362792, 0.008087552070617676, 0.00800153636932373, 0.007982079982757568, 0.007956480026245117, 0.007929855823516846, 0.008227840423583984, 0.008046591758728027, 0.008014847755432129, 0.007885824203491211, 0.007773183822631836, 0.0076871681213378906, 0.007777279853820801, 0.007727104187011719, 0.007721983909606934, 0.007692287921905518, 0.007705599784851074, 0.007746560096740723, 0.007696383953094482, 0.007721983909606934, 0.007792640209197998, 0.007708672046661377, 0.007921664237976075, 0.007707647800445557, 0.007706624031066894, 0.007712768077850342, 0.007642111778259277, 0.007730175971984863, 0.007689216136932373, 0.007717887878417969, 0.007708672046661377, 0.007692287921905518, 0.007714816093444824, 0.007763967990875244, 0.007715839862823487, 0.007689216136932373, 0.007714816093444824, 0.007768064022064209, 0.0076912641525268555, 0.007679999828338623, 0.007677951812744141, 0.007693312168121338, 0.007681024074554443, 0.007692287921905518, 0.01683967971801758, 0.007956480026245117, 0.00795136022567749, 0.007931968212127686, 0.007883711814880371, 0.0077209601402282715, 0.007726111888885498, 0.007844831943511963, 0.007725056171417236, 0.007685120105743408, 0.007966720104217529, 0.007915520191192627, 0.007905280113220215, 0.007930880069732665, 0.0077209601402282715, 0.0077199358940124516, 0.007727104187011719, 0.007699456214904785, 0.0076912641525268555, 0.0076912641525268555, 0.007654399871826172, 0.007792640209197998, 0.0076871681213378906, 0.007699456214904785, 0.0076902399063110355, 0.007671807765960693, 0.0077209601402282715, 0.0076984319686889645, 0.007840767860412597, 0.007961599826812745, 0.007816192150115966, 0.007692287921905518, 0.007686143875122071, 0.007718912124633789, 0.007701504230499268, 0.007663616180419922, 0.007713791847229004, 0.007682047843933106, 0.007669760227203369, 0.007689216136932373, 0.007676928043365478, 0.00800153636932373, 0.007803904056549072, 0.007771135807037354, 0.0077322559356689455, 0.007685152053833008, 0.007731135845184326, 0.007712768077850342, 0.007674880027770996, 0.007709695816040039, 0.007684095859527588, 0.007681024074554443, 0.00773632001876831, 0.007786496162414551, 0.007685120105743408, 0.007683072090148926, 0.007667712211608887, 0.007677951812744141, 0.007724031925201416, 0.007700479984283447, 0.007700479984283447, 0.007817215919494629, 0.0077209601402282715, 0.01655705642700195, 0.007729152202606201, 0.007725056171417236, 0.007679999828338623, 0.00773529577255249, 0.007704576015472412, 0.007726079940795898, 0.007715839862823487, 0.007713791847229004, 0.00774454402923584, 0.007709663867950439, 0.007705599784851074, 0.007731200218200684, 0.007697408199310303, 0.007729152202606201, 0.007713791847229004, 0.00773632001876831, 0.007699456214904785, 0.007676928043365478, 0.007709695816040039, 0.007763967990875244, 0.007693312168121338, 0.007684095859527588, 0.007672832012176513, 0.007727104187011719, 0.007699456214904785, 0.007692287921905518, 0.007696383953094482, 0.007666687965393066, 0.007671807765960693, 0.007734272003173828, 0.007797760009765625, 0.007671807765960693, 0.007671807765960693, 0.007674880027770996, 0.007686143875122071, 0.007685120105743408, 0.007680031776428222, 0.007708640098571778, 0.007688191890716553, 0.007741439819335938, 0.007726079940795898, 0.007679999828338623, 0.007747583866119385, 0.007707647800445557, 0.007661568164825439, 0.007709695816040039, 0.007714816093444824, 0.007689216136932373, 0.007710720062255859, 0.007702527999877929, 0.00769536018371582, 0.007712768077850342, 0.007729152202606201, 0.007714816093444824, 0.0076984319686889645, 0.00769536018371582, 0.007725056171417236, 0.007663616180419922, 0.007682112216949463, 0.007765952110290527, 0.007704576015472412, 0.007675903797149658, 0.016482303619384766, 0.0077209601402282715, 0.007693312168121338, 0.007663616180419922, 0.007686143875122071, 0.007688191890716553, 0.007673855781555176, 0.007783423900604248, 0.007667712211608887, 0.007689216136932373, 0.007803904056549072, 0.00769536018371582, 0.007676928043365478, 0.007678976058959961, 0.007724031925201416, 0.007696383953094482, 0.007805952072143555, 0.007718912124633789, 0.007708672046661377, 0.0076912641525268555, 0.007655424118041992, 0.0076902399063110355, 0.007697408199310303, 0.007712768077850342, 0.007770112037658691, 0.007656447887420655, 0.00785920000076294, 0.007704576015472412, 0.007676928043365478, 0.007677951812744141, 0.007712768077850342, 0.0076943359375, 0.007666687965393066, 0.007725056171417236, 0.007830527782440186, 0.007674880027770996, 0.00769536018371582, 0.007692287921905518, 0.007716864109039307, 0.0076687359809875484, 0.007670783996582031, 0.007796735763549805, 0.007696383953094482, 0.0076943359375, 0.007697408199310303, 0.007675903797149658, 0.007701504230499268, 0.007655424118041992, 0.007669760227203369, 0.007663616180419922, 0.007686143875122071, 0.007696383953094482, 0.00764518404006958, 0.00769536018371582, 0.007786496162414551, 0.007718912124633789, 0.007711743831634522, 0.0077209601402282715, 0.007987199783325195, 0.0076871681213378906, 0.007702527999877929, 0.007797760009765625, 0.007693312168121338, 0.016484352111816408, 0.007674880027770996, 0.007697408199310303, 0.007717887878417969, 0.007707647800445557, 0.007704576015472412, 0.007643136024475097, 0.007710720062255859, 0.0077199358940124516, 0.0077199358940124516, 0.007701504230499268, 0.007710720062255859, 0.0076984319686889645, 0.0077619199752807615, 0.007701504230499268, 0.007733248233795166, 0.007715871810913086, 0.007692255973815918, 0.007709695816040039, 0.0076943359375, 0.007684095859527588, 0.0076912641525268555, 0.007692287921905518, 0.007710720062255859, 0.007682047843933106, 0.007670783996582031, 0.007689216136932373, 0.007673855781555176, 0.007685120105743408, 0.007702527999877929, 0.007711743831634522, 0.007717887878417969, 0.007881728172302246, 0.007721983909606934, 0.007707647800445557, 0.007847936153411865, 0.007799808025360107, 0.0077281279563903805, 0.007715839862823487, 0.0076902399063110355, 0.007700479984283447, 0.007724031925201416, 0.0076943359375, 0.007865344047546387, 0.0076871681213378906, 0.007723008155822754, 0.007727104187011719, 0.0077199358940124516, 0.007688191890716553, 0.007844863891601562, 0.007663616180419922, 0.007730175971984863, 0.007700479984283447, 0.007699456214904785, 0.00773529577255249, 0.007684095859527588, 0.007678976058959961, 0.007696383953094482, 0.007714816093444824, 0.00782643222808838, 0.007778304100036621, 0.007774208068847656, 0.007678976058959961, 0.016561151504516602, 0.007704576015472412, 0.007812096118927002, 0.007910399913787843, 0.007922688007354736, 0.008080384254455567, 0.007913472175598145, 0.007903232097625732, 0.007676928043365478, 0.007712831974029541, 0.007683008193969726, 0.007683072090148926, 0.007721983909606934, 0.007693312168121338, 0.007700479984283447, 0.0077199358940124516, 0.007685120105743408, 0.007682047843933106, 0.007686143875122071, 0.007696383953094482, 0.007689216136932373, 0.007641088008880615, 0.007703551769256592, 0.0076912641525268555, 0.007705599784851074, 0.0077281599044799806, 0.007726047992706299, 0.007732223987579345, 0.007673855781555176, 0.0076687359809875484, 0.00778547191619873, 0.007723008155822754, 0.007731200218200684, 0.007683072090148926, 0.007699456214904785, 0.007643136024475097, 0.007693312168121338, 0.007725088119506836, 0.007687136173248291, 0.007711743831634522, 0.007689216136932373, 0.007809023857116699, 0.007697408199310303, 0.007674911975860596, 0.0076861119270324706, 0.007665664196014404, 0.007709695816040039, 0.007683072090148926, 0.007771135807037354, 0.007688191890716553, 0.007716864109039307, 0.007693312168121338, 0.007705599784851074, 0.007773183822631836, 0.007767039775848389, 0.0077578239440917966, 0.0077209601402282715, 0.007709695816040039, 0.007776256084442139, 0.007709695816040039, 0.007684095859527588, 0.007709695816040039, 0.00769536018371582, 0.016553983688354493, 0.007738368034362793, 0.007707647800445557, 0.0077199358940124516, 0.007712768077850342, 0.007697408199310303, 0.007688191890716553, 0.007713791847229004, 0.007730175971984863, 0.007711743831634522, 0.007738368034362793, 0.007681024074554443, 0.007712768077850342, 0.007685120105743408, 0.007709695816040039, 0.007734272003173828, 0.007716864109039307, 0.007678976058959961, 0.0076912641525268555, 0.007699456214904785, 0.0077209601402282715, 0.007701504230499268, 0.007718912124633789, 0.007665664196014404, 0.0076912641525268555, 0.007706624031066894, 0.007685120105743408, 0.007721983909606934, 0.007716864109039307, 0.007688191890716553, 0.007689216136932373, 0.007676928043365478, 0.007684095859527588, 0.007715839862823487, 0.007701504230499268, 0.007725056171417236, 0.0076912641525268555, 0.007726079940795898, 0.007692287921905518, 0.007766016006469726, 0.00800051212310791, 0.00773529577255249, 0.007711743831634522, 0.007738368034362793, 0.0076912641525268555, 0.0076574721336364745, 0.0077066879272460935, 0.007749567985534668, 0.007740416049957275, 0.007701504230499268, 0.007696383953094482, 0.007714816093444824, 0.0076871681213378906, 0.007677951812744141, 0.0076902399063110355, 0.007684095859527588, 0.007696415901184082, 0.007714784145355225, 0.007678976058959961, 0.007717919826507568, 0.0077270717620849605, 0.007686143875122071, 0.007689216136932373]",tokens/s,126.69384730146851,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-j-6b,EleutherAI/gpt-j-6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-350m,facebook/opt-350m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -29870,22 +27485,16 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-16B-nl,Salesforce/codegen-16B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-MoE-A2.7B,Qwen/Qwen1.5-MoE-A2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -29905,22 +27514,27 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3724, in from_pretrained + hf_quantizer.preprocess_model( + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 182, in preprocess_model + return self._process_model_before_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 85, in _process_model_before_weight_loading + model, has_been_replaced = replace_with_awq_linear( + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear + _, has_been_replaced = replace_with_awq_linear( + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear + _, has_been_replaced = replace_with_awq_linear( + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear + _, has_been_replaced = replace_with_awq_linear( + [Previous line repeated 1 more time] + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 166, in replace_with_awq_linear + model._modules[name] = target_cls( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 46, in __init__ + assert out_features % (32 // self.w_bit) == 0 +AssertionError -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-6.7b,facebook/opt-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-70B,meta-llama/Meta-Llama-3-70B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -29940,22 +27554,90 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/polyglot-ko-12.8b,EleutherAI/polyglot-ko-12.8b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward + outputs = self.gpt_neox( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward + outputs = layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward + attention_layer_outputs = self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 545, in forward + query, key, value, present = self._attn_projections_and_rope( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope + qkv = self.query_key_value(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-65b,huggyllama/llama-65b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -29975,22 +27657,29 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 86.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm2-20b,internlm/internlm2-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-14B,Qwen/Qwen1.5-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -30000,32 +27689,115 @@ NameError: name 'exl_ext' is not defined ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1221, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1023, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 763, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 650, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-12b,stabilityai/stablelm-2-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 1268, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 1062, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 792, in forward + self_attn_output, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 441, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,t,t,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,8,8,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -30037,7 +27809,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/t/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/8/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -30064,9 +27836,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669490b2-45ae11576d865af9256c6d61;e4c2efda-3968-4a76-9362-193274524683) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949272-30fc1f382cb5d26b08532336;08adbcbe-7fb4-4822-a2c5-f98111028f67) -Repository Not Found for url: https://huggingface.co/t/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/8/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -30091,53 +27863,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: t is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: 8 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-66b,facebook/opt-66b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 162.00 MiB. GPU - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,.,.,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-8B,meta-llama/Meta-Llama-3-8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -30147,26 +27877,56 @@ torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 162.00 MiB. G ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 373, in cached_file - raise EnvironmentError( -OSError: . does not appear to have a file named config.json. Checkout 'https://huggingface.co/./tree/None' for available files. + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 614, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mixtral-8x7B-v0.1,mistralai/Mixtral-8x7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/rho-math-1b-v0.1,microsoft/rho-math-1b-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -30176,39 +27936,56 @@ OSError: . does not appear to have a file named config.json. Checkout 'https://h ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 614, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-72B,Qwen/Qwen2-beta-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-70m,EleutherAI/pythia-70m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -30218,39 +27995,58 @@ torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GP ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward + outputs = self.gpt_neox( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward + outputs = layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward + attention_layer_outputs = self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 545, in forward + query, key, value, present = self._attn_projections_and_rope( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope + qkv = self.query_key_value(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-180B,tiiuae/falcon-180B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,databricks/dbrx-base,databricks/dbrx-base,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -30262,7 +28058,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -30279,10 +28075,10 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66949905-6ad6100d31e8154424405ed6;ff96113b-425d-487e-9c7c-98986d9bb0e1) +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66947b3d-4aac973e3f3ff11b18e0c716;92390d91-62b7-4cb7-abc6-60f7d7e2567b) 403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json. +Cannot access content at: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json. If you are trying to create or update content,make sure you have a token with the `write` role. The above exception was the direct cause of the following exception: @@ -30321,14 +28117,98 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like tiiuae/falcon-180B is not the path to a directory containing a file named config.json. +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like databricks/dbrx-base is not the path to a directory containing a file named config.json. Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-4B,Qwen/Qwen1.5-4B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,3203.223552,5128.060928,0.0,4481.613824,4276.256768,s,10,3.1983958740234373,0.31983958740234375,0.001538131138588488,0.31976911926269536,0.32137343139648433,0.3217927795410156,0.3221282580566406,"[0.31961990356445313, 0.3212218933105469, 0.3187176513671875, 0.3199183349609375, 0.3183829040527344, 0.3169226989746094, 0.31905938720703125, 0.32106072998046875, 0.32128024291992185, 0.32221212768554686]",tokens/s,800.4012326277909,kWh,3.750147018581629e-06,2.054515901244258e-06,1.6957018773937002e-05,2.276168169376289e-05,tokens/kWh,11246972.14574214,MB,3203.223552,5128.060928,0.0,4481.613824,4465.662976,s,10,186.97800781249998,18.69780078125,0.017296888320766722,18.693263671875002,18.720369140625,18.729755859375,18.737265234375002,"[18.718283203125, 18.689103515625, 18.695333984375, 18.678984375, 18.739142578125, 18.694673828125, 18.691853515625, 18.6855234375, 18.701947265625, 18.683162109375]",tokens/s,3.369380214125283,kWh,0.00022053018352016812,0.00012086672241809653,0.0009756264419588673,0.001317023347897132,tokens/kWh,47835.14286257035,,s,629,189.55983416748046,0.3013669859578386,0.038019298519587436,0.29649102783203124,0.2979925964355469,0.29949728393554687,0.6154752392578126,"[0.29722113037109377, 0.2962104187011719, 0.2994401550292969, 0.3005357666015625, 0.30041702270507814, 0.2999255065917969, 0.30030029296875, 0.3005870056152344, 0.30005453491210937, 0.3003166809082031, 0.2982318115234375, 0.29764404296875, 0.29678591918945313, 0.2977320861816406, 0.2972508239746094, 0.2988697509765625, 0.29594931030273436, 0.29598825073242185, 0.29595953369140626, 0.2961408081054687, 0.29663333129882813, 0.2959800415039063, 0.2984028015136719, 0.29736856079101565, 0.29788876342773435, 0.2962769775390625, 0.2963660888671875, 0.2973767700195312, 0.2967070617675781, 0.2959728698730469, 0.2965258178710938, 0.29611212158203126, 0.2976409606933594, 0.2969599914550781, 0.2967398376464844, 0.2962391052246094, 0.29641522216796873, 0.2959902648925781, 0.29629336547851565, 0.29671832275390625, 0.29604147338867187, 0.2959872131347656, 0.2960855102539062, 0.2966855773925781, 0.29605990600585935, 0.29604147338867187, 0.29675726318359374, 0.29607012939453126, 0.2964500427246094, 0.29650942993164064, 0.2962022399902344, 0.2960516967773438, 0.29594830322265625, 0.296783935546875, 0.296870849609375, 0.29710232543945314, 0.29665484619140625, 0.29788363647460936, 0.29600152587890627, 0.29640191650390624, 0.29616229248046877, 0.2960711669921875, 0.6185267333984374, 0.29601278686523436, 0.29589199829101565, 0.29706646728515623, 0.29594418334960937, 0.29600460815429686, 0.29592166137695314, 0.2975078430175781, 0.2961551208496094, 0.29602200317382815, 0.2963240966796875, 0.2960445556640625, 0.2958970947265625, 0.2962135009765625, 0.29608447265625, 0.29607730102539065, 0.29639883422851565, 0.29659750366210935, 0.29723443603515626, 0.29676031494140626, 0.2970972290039062, 0.296911865234375, 0.29686373901367186, 0.29711358642578123, 0.29724774169921875, 0.29758157348632813, 0.29762457275390625, 0.2963056640625, 0.29703271484375, 0.29604864501953126, 0.2962616271972656, 0.296153076171875, 0.2962769775390625, 0.2961919860839844, 0.2968739929199219, 0.29633843994140624, 0.2965504150390625, 0.29617355346679686, 0.29583154296875, 0.2962042846679688, 0.2970060729980469, 0.2965278625488281, 0.29644491577148435, 0.29606298828125, 0.29650225830078125, 0.2965186462402344, 0.3018721313476562, 0.29692620849609375, 0.2963681640625, 0.29674798583984374, 0.296806396484375, 0.29622067260742185, 0.2960076904296875, 0.2968924255371094, 0.2960343017578125, 0.2965831604003906, 0.2970480651855469, 0.29702047729492187, 0.296217529296875, 0.29626266479492186, 0.29842022705078125, 0.29761843872070315, 0.29686373901367186, 0.6160445556640625, 0.2960199890136719, 0.2965903015136719, 0.2964684753417969, 0.29644390869140624, 0.2965688171386719, 0.2976983032226562, 0.29753759765625, 0.29599737548828126, 0.29653094482421877, 0.2970838928222656, 0.2961479797363281, 0.29596878051757813, 0.29587353515625, 0.2960445556640625, 0.2966005859375, 0.2975467529296875, 0.2962995300292969, 0.2958847961425781, 0.2957864990234375, 0.2960732116699219, 0.295973876953125, 0.2962944030761719, 0.29851339721679687, 0.295984130859375, 0.29607730102539065, 0.2961203308105469, 0.2960425109863281, 0.29593295288085936, 0.29733270263671874, 0.29703067016601564, 0.29734808349609376, 0.29631283569335937, 0.296816650390625, 0.29681048583984376, 0.296489990234375, 0.29625653076171876, 0.29661590576171876, 0.29632000732421876, 0.2966937561035156, 0.2978652038574219, 0.2965299072265625, 0.2963240966796875, 0.29751806640625, 0.29830859375, 0.297481201171875, 0.29719039916992185, 0.29953536987304685, 0.29737368774414064, 0.29692108154296876, 0.296585205078125, 0.296052734375, 0.29637939453125, 0.29625753784179687, 0.29655654907226564, 0.29799423217773435, 0.2968268737792969, 0.29685043334960937, 0.29692108154296876, 0.29714944458007814, 0.29722930908203127, 0.2967623596191406, 0.297270263671875, 0.6168934326171875, 0.29688626098632814, 0.296279052734375, 0.29670297241210936, 0.2962923583984375, 0.29618795776367185, 0.2966793518066406, 0.2960650329589844, 0.29615924072265626, 0.29594418334960937, 0.2973972473144531, 0.29612338256835935, 0.2971064453125, 0.2982297668457031, 0.29685043334960937, 0.2960855102539062, 0.296089599609375, 0.29661489868164065, 0.2965350341796875, 0.29597695922851563, 0.2961705017089844, 0.29597695922851563, 0.29592276000976564, 0.29643975830078123, 0.29586328125, 0.29596466064453125, 0.2959923095703125, 0.2958981018066406, 0.29643777465820315, 0.2959923095703125, 0.29621759033203127, 0.2963650512695313, 0.29609677124023437, 0.29788980102539064, 0.2977914733886719, 0.29713613891601565, 0.2964951171875, 0.29727642822265626, 0.2966794128417969, 0.2964142150878906, 0.2965821533203125, 0.2960855102539062, 0.2957701416015625, 0.2966097717285156, 0.29938388061523435, 0.29615609741210935, 0.29603640747070314, 0.2962728271484375, 0.29596978759765624, 0.2960455627441406, 0.296300537109375, 0.29595040893554686, 0.29649197387695314, 0.29635379028320313, 0.296342529296875, 0.29667330932617186, 0.2967008972167969, 0.29659442138671877, 0.29601690673828124, 0.29651455688476563, 0.29645925903320314, 0.2973665466308594, 0.29616226196289064, 0.615267333984375, 0.29617767333984374, 0.29771673583984376, 0.29707980346679685, 0.298039306640625, 0.297238525390625, 0.2971115417480469, 0.29701837158203126, 0.29682891845703124, 0.2972641296386719, 0.2971668395996094, 0.29752627563476564, 0.2972252197265625, 0.29701632690429686, 0.29692620849609375, 0.29619302368164063, 0.2964234619140625, 0.2987468566894531, 0.296131591796875, 0.2958981018066406, 0.29623501586914064, 0.29586944580078123, 0.295846923828125, 0.29605377197265625, 0.29625753784179687, 0.29595443725585935, 0.29606195068359376, 0.29590631103515624, 0.29597491455078123, 0.29599948120117187, 0.296310791015625, 0.2964664306640625, 0.29622885131835935, 0.2963630065917969, 0.29594317626953126, 0.2961397705078125, 0.29812017822265624, 0.3001466979980469, 0.3003924560546875, 0.3000289306640625, 0.29983538818359373, 0.29985791015625, 0.29986712646484376, 0.29981594848632814, 0.30056344604492186, 0.29986407470703125, 0.2999111633300781, 0.29782833862304686, 0.2960773315429687, 0.2960137939453125, 0.29763687133789063, 0.2979921875, 0.2981877746582031, 0.2967510986328125, 0.29627288818359376, 0.29777716064453125, 0.2970634155273438, 0.30057470703125, 0.2982738037109375, 0.2991800231933594, 0.30042315673828124, 0.2963568725585938, 0.2961418151855469, 0.6139617309570312, 0.29619406127929687, 0.29618585205078124, 0.29586431884765624, 0.296079345703125, 0.29643060302734375, 0.2977740783691406, 0.2977832946777344, 0.2964633483886719, 0.29604147338867187, 0.2960609130859375, 0.29627084350585936, 0.29602822875976564, 0.2961315307617188, 0.29630160522460935, 0.29599432373046874, 0.2961469421386719, 0.296531982421875, 0.2960977783203125, 0.2960373840332031, 0.2965381164550781, 0.2960506896972656, 0.29609063720703127, 0.2962063293457031, 0.2960169677734375, 0.29643975830078123, 0.2966312866210937, 0.2963077087402344, 0.2960865173339844, 0.2961162109375, 0.2960281677246094, 0.2961766357421875, 0.296352783203125, 0.2976133117675781, 0.29756414794921876, 0.29727435302734373, 0.29644595336914065, 0.2974146423339844, 0.30141543579101565, 0.2976788330078125, 0.2980526123046875, 0.2980894775390625, 0.29788058471679685, 0.2963497009277344, 0.29696920776367186, 0.29795635986328123, 0.29711566162109376, 0.29751296997070314, 0.29756314086914065, 0.2974320678710938, 0.29744332885742186, 0.29654324340820315, 0.29747711181640624, 0.2984744873046875, 0.29649203491210935, 0.2962442321777344, 0.2966384582519531, 0.2963189697265625, 0.29589913940429685, 0.2962176208496094, 0.2958837585449219, 0.29590936279296876, 0.29634048461914064, 0.6155560913085938, 0.29629541015625, 0.2960916442871094, 0.2964561767578125, 0.29645208740234374, 0.2960373840332031, 0.2963875732421875, 0.2963620300292969, 0.2962861633300781, 0.29651251220703123, 0.29747915649414064, 0.2981519470214844, 0.29662823486328127, 0.2976133117675781, 0.29637530517578126, 0.29608038330078124, 0.29605682373046877, 0.2960496520996094, 0.29625140380859377, 0.29587966918945313, 0.2968821716308594, 0.29635174560546873, 0.29616537475585936, 0.3003904113769531, 0.2970214538574219, 0.2966312866210937, 0.29685556030273436, 0.29636813354492186, 0.29714739990234373, 0.29626266479492186, 0.29595135498046876, 0.2962196350097656, 0.29621759033203127, 0.29663333129882813, 0.2961408081054687, 0.2965729370117188, 0.2961131591796875, 0.2963865661621094, 0.296479736328125, 0.296900634765625, 0.2964776611328125, 0.296848388671875, 0.29701937866210937, 0.29931622314453127, 0.29786627197265625, 0.2962636413574219, 0.29623806762695315, 0.2966210632324219, 0.2961336364746094, 0.2963711853027344, 0.29625140380859377, 0.2967357482910156, 0.29616845703125, 0.2963599853515625, 0.29687493896484374, 0.296300537109375, 0.2967142333984375, 0.29815499877929685, 0.29702349853515625, 0.29747610473632813, 0.296627197265625, 0.29662515258789063, 0.2977822570800781, 0.6183147583007812, 0.29672344970703124, 0.296764404296875, 0.29664154052734376, 0.2967080993652344, 0.29716583251953127, 0.29694155883789064, 0.2967244873046875, 0.2972221374511719, 0.2974392395019531, 0.2972866516113281, 0.2969518127441406, 0.2982625427246094, 0.296279052734375, 0.29735015869140624, 0.2961131591796875, 0.2980966491699219, 0.29623806762695315, 0.29628826904296873, 0.2956605529785156, 0.29607012939453126, 0.2962001953125, 0.29612442016601564, 0.29620736694335936, 0.29724774169921875, 0.2960086975097656, 0.297548828125, 0.2967602844238281, 0.29649102783203124, 0.2963619384765625, 0.2962708740234375, 0.29639984130859376, 0.2968350830078125, 0.2963292236328125, 0.296099853515625, 0.29622784423828125, 0.29627093505859375, 0.296197021484375, 0.2974996337890625, 0.2962104187011719, 0.2960639953613281, 0.29599948120117187, 0.2959902648925781, 0.2965739440917969, 0.2961817626953125, 0.2968320007324219, 0.29708084106445315, 0.2968320007324219, 0.29710540771484373, 0.2960558166503906, 0.2963138427734375, 0.29637326049804685, 0.29592166137695314, 0.2962083740234375, 0.29609573364257813, 0.2962114562988281, 0.2961203308105469, 0.29699481201171873, 0.29659442138671877, 0.29610906982421875, 0.29717401123046877, 0.29671218872070315, 0.2965350341796875, 0.61785498046875, 0.29675213623046875, 0.29679409790039063, 0.29726925659179687, 0.29639578247070314, 0.29744537353515627, 0.2977556457519531, 0.29687704467773435, 0.2974320678710938, 0.297416748046875, 0.29766244506835937, 0.29807000732421873, 0.2972119140625, 0.2973388671875, 0.2967439270019531, 0.2972999572753906, 0.2976030578613281, 0.2986280822753906, 0.29623602294921875, 0.29600152587890627, 0.2964695739746094, 0.2963936767578125, 0.2961868896484375, 0.29702349853515625, 0.29616024780273437, 0.29621148681640624, 0.2964879150390625, 0.29709210205078124, 0.2963056640625, 0.2973767700195312, 0.2969722900390625, 0.29783346557617185, 0.2965718994140625, 0.2977576904296875, 0.2961418151855469, 0.2967091064453125, 0.2973644714355469, 0.29671218872070315, 0.29666201782226564, 0.296838134765625, 0.2965801086425781, 0.2962391052246094, 0.296089599609375, 0.2963804016113281, 0.29701119995117187, 0.2961469421386719, 0.29617767333984374, 0.296384521484375, 0.296369140625, 0.29728460693359376, 0.2963015747070312, 0.2967838745117187, 0.29621554565429686, 0.2963097534179687, 0.29686373901367186, 0.2963947448730469, 0.2962995300292969, 0.29706649780273436, 0.2967142333984375, 0.29672857666015623, 0.2966722412109375, 0.2982359008789062, 0.2979543151855469, 0.6189783325195313, 0.2962237548828125, 0.2969938049316406, 0.29632614135742186, 0.2961541748046875, 0.2965380554199219, 0.2963343505859375, 0.29643777465820315, 0.29634866333007814, 0.2962872314453125, 0.2963630065917969, 0.29629644775390623, 0.29665484619140625, 0.296310791015625, 0.29620120239257813, 0.29598513793945314, 0.29617767333984374, 0.2959667053222656, 0.2962749328613281, 0.2967930908203125, 0.29673779296875, 0.29692825317382815, 0.29633331298828125, 0.29688934326171873, 0.2962821044921875, 0.29612954711914063, 0.2987386779785156, 0.2962083740234375, 0.296374267578125, 0.2962135009765625, 0.29653402709960935, 0.2968299560546875, 0.2963097534179687, 0.2981970520019531, 0.2961192321777344, 0.2962135009765625, 0.2961069946289063, 0.295920654296875, 0.2961459655761719, 0.29606500244140627, 0.29621453857421876, 0.29600564575195315, 0.29583566284179685, 0.2993377380371094, 0.29691802978515625, 0.2961561584472656, 0.2958428039550781, 0.2965329895019531, 0.29672549438476564, 0.29595547485351564, 0.2960772705078125, 0.29593496704101563, 0.2966548767089844, 0.2969466552734375, 0.2978447265625, 0.296627197265625, 0.29650433349609373, 0.2975867004394531, 0.2982461853027344, 0.29639166259765626, 0.29643161010742186, 0.29704702758789064, 0.29672344970703124]",tokens/s,3.3182134958203435,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm-20b,internlm/internlm-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,4294.987776,14621.868032,0.0,13975.420928,13366.068224,s,10,16.495098876953126,1.6495098876953125,0.0005626635207808348,1.6493680419921875,1.6498059448242186,1.6504339782714843,1.650936405029297,"[1.65106201171875, 1.6493150634765625, 1.6490108642578125, 1.64951513671875, 1.6496663818359374, 1.6489195556640626, 1.649384521484375, 1.6492862548828124, 1.6495875244140625, 1.6493515625]",tokens/s,155.19761470340868,kWh,1.9482200029823513e-05,1.067632958434842e-05,9.151657321320173e-05,0.00012167510282737365,tokens/kWh,2103963.7037595077,MB,4294.987776,14621.868032,0.0,13975.420928,13814.414848,s,10,977.7317578124998,97.77317578125,0.006501026483324052,97.774078125,97.7795859375,97.78208203125,97.78407890625,"[97.7740859375, 97.76746875, 97.7754296875, 97.784578125, 97.7782421875, 97.7740703125, 97.77903125, 97.76209375, 97.764875, 97.7718828125]",tokens/s,0.6443485086436308,kWh,0.0011542207027475041,0.0006326151578875942,0.005356944729996799,0.007143780590631898,tokens/kWh,8818.859874086276,,s,629,991.0235808105483,1.5755541825286914,0.19600214423351972,1.55186181640625,1.5529105224609374,1.5533291259765625,3.2017358984375,"[1.5526031494140624, 1.5511746826171875, 1.5512442626953125, 1.5510794677734374, 1.55169482421875, 1.5518966064453126, 1.5526973876953125, 1.5532349853515626, 1.55080810546875, 1.55123095703125, 1.5509954833984374, 1.5513375244140626, 1.551034423828125, 1.552995361328125, 1.5513057861328126, 1.55249462890625, 1.5510445556640624, 1.551331298828125, 1.5506575927734374, 1.55245263671875, 1.5513251953125, 1.5512381591796875, 1.551388671875, 1.5524095458984375, 1.5524761962890625, 1.5533260498046875, 1.553095703125, 1.5521700439453125, 1.551240234375, 1.551688720703125, 1.5509698486328125, 1.55129443359375, 1.5527669677734375, 1.5515802001953125, 1.551595458984375, 1.5514736328125, 1.552204833984375, 1.5519498291015625, 1.55194677734375, 1.55318994140625, 1.55307421875, 1.5523338623046874, 1.5521546630859375, 1.55177978515625, 1.5524197998046876, 1.5533404541015625, 1.5529237060546874, 1.5524351806640626, 1.55150439453125, 1.55194775390625, 1.552548828125, 1.5523931884765625, 1.55225390625, 1.5514603271484375, 1.5512484130859374, 1.5517244873046876, 1.5518822021484375, 1.552468017578125, 1.55346630859375, 1.5518555908203124, 1.5518289794921876, 1.5518668212890625, 3.202376708984375, 1.55222216796875, 1.5525550537109376, 1.551751220703125, 1.5510302734375, 1.55141943359375, 1.5515596923828125, 1.5518863525390625, 1.5530260009765624, 1.5516702880859374, 1.5516968994140625, 1.55188330078125, 1.55222119140625, 1.5524822998046874, 1.5535472412109375, 1.552794677734375, 1.550878662109375, 1.551520751953125, 1.55161083984375, 1.5515064697265626, 1.5530260009765624, 1.5537049560546874, 1.5521280517578124, 1.5518392333984374, 1.5516507568359375, 1.5517174072265625, 1.5512647705078124, 1.5524556884765626, 1.5519549560546875, 1.552384033203125, 1.5521689453125, 1.5524669189453124, 1.5522928466796875, 1.5529041748046875, 1.552691162109375, 1.55226318359375, 1.552175048828125, 1.5517655029296875, 1.5517972412109375, 1.55106201171875, 1.5525765380859375, 1.551730712890625, 1.5510968017578124, 1.550551025390625, 1.5507015380859375, 1.5512001953125, 1.5515802001953125, 1.5522396240234375, 1.5507763671875, 1.5507752685546874, 1.551515625, 1.551489990234375, 1.5510538330078125, 1.552689208984375, 1.5505909423828126, 1.55152587890625, 1.551647705078125, 1.5511357421875, 1.5508541259765625, 1.5514869384765626, 1.5528365478515624, 1.5521771240234374, 1.5512657470703124, 3.201815673828125, 1.5507783203125, 1.5535196533203126, 1.55132421875, 1.551177734375, 1.55173681640625, 1.5521044921875, 1.5513375244140626, 1.5526204833984374, 1.5516661376953125, 1.5514337158203124, 1.551310791015625, 1.5512391357421875, 1.5521761474609375, 1.5526307373046875, 1.553349609375, 1.551321044921875, 1.5509493408203125, 1.5514971923828125, 1.5512432861328125, 1.551467529296875, 1.552627685546875, 1.552321533203125, 1.5515975341796875, 1.5512330322265624, 1.55135595703125, 1.5512811279296874, 1.55175732421875, 1.5532247314453125, 1.5510487060546876, 1.55163232421875, 1.551236083984375, 1.55205224609375, 1.551705078125, 1.5527781982421875, 1.55230517578125, 1.5521064453125, 1.5526748046875, 1.551935546875, 1.5518392333984374, 1.553038330078125, 1.552990234375, 1.5518115234375, 1.551340576171875, 1.5512269287109375, 1.5518863525390625, 1.551740966796875, 1.553649658203125, 1.551879150390625, 1.5528212890625, 1.552669677734375, 1.5528980712890625, 1.5524495849609374, 1.5538206787109374, 1.55340185546875, 1.5514490966796874, 1.55186181640625, 1.5515064697265626, 1.5515709228515624, 1.5511982421875, 1.5528519287109375, 1.5516334228515625, 1.5513446044921875, 3.2030166015625, 1.55180029296875, 1.552606201171875, 1.5531837158203126, 1.551551513671875, 1.55184130859375, 1.5515115966796875, 1.551283203125, 1.551794189453125, 1.5518525390625, 1.5510743408203125, 1.551730712890625, 1.551551513671875, 1.5510927734375, 1.550951416015625, 1.5540325927734375, 1.55168359375, 1.5516273193359376, 1.5512708740234376, 1.5510076904296874, 1.55110302734375, 1.552822265625, 1.5531990966796876, 1.551572021484375, 1.552153564453125, 1.5514736328125, 1.5518802490234376, 1.551657958984375, 1.5528406982421874, 1.5522344970703126, 1.5521812744140624, 1.5515064697265626, 1.55281103515625, 1.55241064453125, 1.552889892578125, 1.5524730224609375, 1.5517911376953124, 1.5517276611328126, 1.5515074462890626, 1.550802978515625, 1.552126953125, 1.55321240234375, 1.5522139892578124, 1.5518084716796876, 1.5521444091796874, 1.5523614501953125, 1.55158837890625, 1.5536046142578126, 1.5520296630859376, 1.5530731201171875, 1.5527608642578126, 1.552880615234375, 1.5533311767578124, 1.5541422119140624, 1.55335888671875, 1.551869873046875, 1.55161083984375, 1.5517900390625, 1.5514500732421874, 1.551742919921875, 1.553448974609375, 1.551916015625, 1.552142333984375, 3.20272802734375, 1.5516005859375, 1.55409814453125, 1.552426025390625, 1.5515802001953125, 1.5510958251953124, 1.5515125732421875, 1.55104052734375, 1.5517767333984376, 1.5526820068359375, 1.5530455322265626, 1.5519539794921875, 1.5517962646484376, 1.552195556640625, 1.5515853271484374, 1.5515821533203125, 1.5523768310546875, 1.5513426513671875, 1.551593505859375, 1.5516016845703124, 1.5524136962890625, 1.551958984375, 1.5531632080078126, 1.5515289306640625, 1.55102099609375, 1.5516641845703125, 1.5517286376953126, 1.5518515625, 1.5519652099609376, 1.5515596923828125, 1.55163134765625, 1.5519027099609375, 1.5522764892578125, 1.5519969482421876, 1.5524884033203126, 1.5527935791015626, 1.5509124755859376, 1.55156884765625, 1.551499267578125, 1.5518935546875, 1.551709228515625, 1.552568359375, 1.552501708984375, 1.5518760986328124, 1.5515699462890624, 1.551488037109375, 1.5521546630859375, 1.5521934814453124, 1.5524454345703125, 1.553112060546875, 1.5525970458984375, 1.551457275390625, 1.551424560546875, 1.5510076904296874, 1.5529554443359375, 1.5528099365234376, 1.552541748046875, 1.5528201904296874, 1.5534459228515625, 1.5517440185546876, 1.5520296630859376, 1.5527730712890624, 1.55129345703125, 3.201416259765625, 1.5519610595703126, 1.551810546875, 1.5517440185546876, 1.551605712890625, 1.5520235595703125, 1.5515657958984375, 1.552027587890625, 1.551488037109375, 1.5524935302734375, 1.5531314697265626, 1.5514276123046875, 1.5520655517578126, 1.5519825439453125, 1.551853515625, 1.5516712646484374, 1.5525252685546875, 1.551730712890625, 1.5519703369140625, 1.55103125, 1.55213720703125, 1.552764892578125, 1.553755126953125, 1.5528775634765626, 1.5516845703125, 1.5517542724609374, 1.5515330810546875, 1.5523287353515625, 1.552110595703125, 1.5518494873046875, 1.5517244873046876, 1.55184228515625, 1.551310791015625, 1.5519027099609375, 1.5507896728515624, 1.552606201171875, 1.5512637939453124, 1.5521474609375, 1.5516856689453125, 1.551458251953125, 1.5516610107421875, 1.552607177734375, 1.5517041015625, 1.5525919189453126, 1.55161083984375, 1.552396240234375, 1.550496826171875, 1.551563720703125, 1.5521248779296875, 1.5515289306640625, 1.5516282958984375, 1.5522191162109376, 1.5513795166015625, 1.551456298828125, 1.5522652587890624, 1.5525396728515626, 1.5528642578125, 1.5518760986328124, 1.5516190185546874, 1.5520552978515625, 1.5518668212890625, 1.5532369384765625, 1.552636962890625, 3.202765869140625, 1.5513466796875, 1.553580078125, 1.5520194091796875, 1.5519456787109376, 1.5510753173828125, 1.5518084716796876, 1.55133544921875, 1.5519498291015625, 1.5519241943359374, 1.5514061279296876, 1.551531005859375, 1.5519334716796875, 1.5514398193359376, 1.5528131103515626, 1.55154638671875, 1.55287451171875, 1.552290771484375, 1.5517265625, 1.550793701171875, 1.5515279541015625, 1.5525499267578124, 1.5527659912109375, 1.5533721923828125, 1.5519078369140624, 1.55173583984375, 1.5521668701171876, 1.5522508544921876, 1.5519713134765625, 1.5531519775390625, 1.5524608154296875, 1.551698974609375, 1.552278564453125, 1.55198974609375, 1.5515361328125, 1.55272705078125, 1.551920166015625, 1.552759765625, 1.5514500732421874, 1.5516590576171876, 1.551510498046875, 1.5519405517578124, 1.552752685546875, 1.55184130859375, 1.55072509765625, 1.5517808837890625, 1.5512965087890624, 1.552079833984375, 1.552720947265625, 1.5514542236328126, 1.553217529296875, 1.5522928466796875, 1.5522979736328124, 1.551899658203125, 1.551836181640625, 1.5530526123046875, 1.55264306640625, 1.552206787109375, 1.55278955078125, 1.5506513671875, 1.5514705810546876, 1.552828369140625, 1.5512606201171875, 3.20153076171875, 1.5501854248046876, 1.5515657958984375, 1.5514951171875, 1.552109619140625, 1.552099365234375, 1.552288818359375, 1.5523583984375, 1.5526461181640625, 1.5514920654296875, 1.5523031005859376, 1.5516446533203125, 1.55148291015625, 1.5517808837890625, 1.5515330810546875, 1.5520235595703125, 1.5527147216796875, 1.5511695556640626, 1.552215087890625, 1.5506851806640625, 1.5511387939453125, 1.5506053466796874, 1.55132421875, 1.5518238525390624, 1.551515625, 1.5510947265625, 1.5512073974609375, 1.5515657958984375, 1.5510599365234374, 1.5514132080078125, 1.551810546875, 1.55152490234375, 1.55114697265625, 1.5516077880859376, 1.5506268310546876, 1.5511910400390625, 1.5526318359375, 1.552217041015625, 1.551873046875, 1.5515443115234375, 1.551283203125, 1.551500244140625, 1.55306494140625, 1.5515596923828125, 1.5516978759765625, 1.5517235107421874, 1.551678466796875, 1.553006591796875, 1.5524617919921875, 1.5526624755859375, 1.5517911376953124, 1.5515576171875, 1.5515587158203126, 1.551556640625, 1.5509442138671874, 1.5528365478515624, 1.5521904296875, 1.55300244140625, 1.5519825439453125, 1.5525980224609375, 1.551983642578125, 1.5516201171875, 1.5528509521484375, 3.202553955078125, 1.551009765625, 1.5523553466796876, 1.5506207275390624, 1.5519232177734374, 1.551784912109375, 1.551542236328125, 1.551203369140625, 1.5513343505859376, 1.55032373046875, 1.5522550048828125, 1.5514869384765626, 1.551784912109375, 1.5508438720703126, 1.5520716552734375, 1.5515863037109374, 1.55217919921875, 1.552343017578125, 1.5512073974609375, 1.5511490478515626, 1.5520225830078125, 1.551941650390625, 1.5513641357421875, 1.5520562744140625, 1.5527935791015626, 1.553005615234375, 1.5519703369140625, 1.5519405517578124, 1.55236962890625, 1.5524075927734375, 1.552400390625, 1.5521392822265625, 1.5526983642578125, 1.5521812744140624, 1.5518033447265625, 1.5511234130859375, 1.5530147705078126, 1.552041015625, 1.5515872802734374, 1.5513333740234374, 1.5513599853515625, 1.5520286865234374, 1.5513743896484375, 1.55210546875, 1.5510108642578124, 1.551393798828125, 1.55116845703125, 1.551873046875, 1.5514449462890625, 1.5518966064453126, 1.55174609375, 1.5518658447265625, 1.5518095703125, 1.5519150390625, 1.5517449951171876, 1.5523460693359374, 1.552300048828125, 1.552015380859375, 1.551193115234375, 1.5512535400390626, 1.5524495849609374, 1.55131494140625, 1.553142822265625, 3.20293701171875, 1.5507025146484374, 1.5517491455078125, 1.5505745849609376, 1.551394775390625, 1.5516416015625, 1.5522529296875, 1.5509012451171875, 1.551172607421875, 1.5507313232421875, 1.551066162109375, 1.5524403076171875, 1.552574462890625, 1.5519908447265625, 1.5519549560546875, 1.5521126708984374, 1.5522078857421875, 1.553606689453125, 1.552162841796875, 1.5526041259765626, 1.552289794921875, 1.5522764892578125, 1.55186376953125, 1.5506749267578126, 1.551815673828125, 1.5521044921875, 1.550876708984375, 1.5515504150390624, 1.550856201171875, 1.5514798583984375, 1.552759765625, 1.551753173828125, 1.5519580078125, 1.5519119873046876, 1.551141845703125, 1.551688720703125, 1.5519180908203125, 1.5516416015625, 1.5518433837890624, 1.5516488037109375, 1.55226416015625, 1.5521085205078125, 1.5519918212890624, 1.5524515380859376, 1.55057666015625, 1.5518023681640625, 1.5514920654296875, 1.5522559814453125, 1.551362060546875, 1.5525518798828124, 1.5522672119140626, 1.551783935546875, 1.551810546875, 1.5519447021484376, 1.5518751220703124, 1.5525919189453126, 1.5539844970703125, 1.5537889404296874, 1.5529072265625, 1.55158935546875, 1.55196826171875, 1.5523502197265624, 1.552722900390625]",tokens/s,0.6346973091049438,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-1_6b,stabilityai/stablelm-2-1_6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1459.101696,2483.552256,0.0,1837.105152,1664.652288,s,10,1.3924120025634767,0.13924120025634767,0.0012999906015036696,0.139004638671875,0.1399875732421875,0.14133694152832033,0.14241643615722657,"[0.14268630981445313, 0.13829638671875, 0.13825672912597656, 0.13859184265136718, 0.13820169067382812, 0.13813597106933595, 0.13968771362304688, 0.13956375122070314, 0.1395741729736328, 0.13941743469238282]",tokens/s,1838.5362919071044,kWh,1.625099111365401e-06,8.904696633330225e-07,6.785176661013463e-06,9.300745435711887e-06,tokens/kWh,27524675.497196376,MB,1459.101696,2483.552256,0.0,1837.105152,1763.594752,s,10,82.5780146484375,8.25780146484375,0.007490083700840557,8.258056640625,8.26394970703125,8.268834228515626,8.272741845703125,"[8.261927734375, 8.246669921875, 8.2540546875, 8.2559892578125, 8.2628642578125, 8.261189453125, 8.27371875, 8.2601240234375, 8.2488525390625, 8.2526240234375]",tokens/s,7.629149267902877,kWh,9.755284506867285e-05,5.34662001699176e-05,0.00039530770056858775,0.0005463267458071782,tokens/kWh,115315.60642691902,,s,629,83.69452130126959,0.13305965230726477,0.01654754583003512,0.13084364318847655,0.13196041564941405,0.1323978759765625,0.2692352648925781,"[0.13379481506347657, 0.13254144287109376, 0.13190042114257813, 0.1307463684082031, 0.13086207580566406, 0.13051699829101562, 0.13088563537597656, 0.13059686279296875, 0.1305753631591797, 0.1306071014404297, 0.13055078125, 0.13059071350097656, 0.13054771423339845, 0.13065216064453125, 0.13135154724121093, 0.13138841247558594, 0.13123583984375, 0.13066546630859374, 0.13075045776367186, 0.13078834533691405, 0.130555908203125, 0.13037977600097655, 0.13052517700195312, 0.1304883270263672, 0.1306112060546875, 0.13059686279296875, 0.13050572204589844, 0.13065011596679688, 0.13144883728027343, 0.13071359252929687, 0.13058047485351562, 0.13251072692871094, 0.1310064697265625, 0.13063475036621094, 0.1306859588623047, 0.1307494354248047, 0.13061734008789064, 0.130661376953125, 0.13066035461425782, 0.13148672485351562, 0.13165568542480469, 0.13089280700683595, 0.13063372802734374, 0.13172633361816405, 0.13140377807617187, 0.13122969055175782, 0.13104946899414063, 0.13110272216796875, 0.13083135986328126, 0.13193215942382813, 0.13141708374023436, 0.13122560119628907, 0.1308784637451172, 0.13365965270996094, 0.13181951904296876, 0.13121638488769533, 0.13081907653808594, 0.13171200561523438, 0.1312593994140625, 0.13223219299316405, 0.13111807250976562, 0.13094400024414063, 0.2691379699707031, 0.13103199768066406, 0.1306234893798828, 0.13054873657226562, 0.13060812377929687, 0.1306552276611328, 0.13165773010253906, 0.13123992919921876, 0.13063168334960937, 0.13058560180664064, 0.13068389892578125, 0.13071565246582031, 0.1307463684082031, 0.13084466552734375, 0.1307125701904297, 0.13099623107910155, 0.13122764587402344, 0.1306798095703125, 0.1305128936767578, 0.1305200653076172, 0.13082931518554688, 0.13104742431640626, 0.13062757873535155, 0.13068800354003907, 0.13034291076660157, 0.1306429443359375, 0.1306183624267578, 0.13080677795410156, 0.13188607788085938, 0.13072589111328126, 0.13059686279296875, 0.13140786743164062, 0.13105459594726562, 0.13074227905273436, 0.13063987731933593, 0.13232537841796874, 0.1305538635253906, 0.13083340454101564, 0.1308590087890625, 0.13096754455566406, 0.13071974182128906, 0.1309388732910156, 0.13309132385253905, 0.13125836181640624, 0.13162495422363282, 0.1309450225830078, 0.13123890686035156, 0.13122969055175782, 0.13076173400878907, 0.13033779907226561, 0.13071974182128906, 0.1306808319091797, 0.13068389892578125, 0.13058355712890626, 0.1307535400390625, 0.13082521057128907, 0.13138330078125, 0.13090815734863281, 0.1307678680419922, 0.13069209289550782, 0.13084774780273437, 0.13068287658691408, 0.13077197265625, 0.26904986572265627, 0.13090304565429686, 0.13155123901367188, 0.1310064697265625, 0.13056512451171876, 0.1314580535888672, 0.13161677551269532, 0.13072178649902344, 0.13050572204589844, 0.1319393310546875, 0.1306808319091797, 0.13063168334960937, 0.13043609619140625, 0.13061427307128906, 0.13054566955566407, 0.13078732299804688, 0.130440185546875, 0.1307043914794922, 0.13066957092285156, 0.13071052551269532, 0.1307473907470703, 0.1307606964111328, 0.130587646484375, 0.132389892578125, 0.13151539611816407, 0.13108224487304687, 0.1304524841308594, 0.13092556762695312, 0.1307709503173828, 0.13067878723144533, 0.13066444396972657, 0.13064601135253906, 0.13057638549804687, 0.13061222839355469, 0.13061734008789064, 0.13069517517089843, 0.1307484130859375, 0.13075045776367186, 0.13066752624511718, 0.13076991271972657, 0.13184307861328126, 0.13099417114257814, 0.13157273864746094, 0.1309870147705078, 0.13192396545410157, 0.13073715209960937, 0.1307791290283203, 0.13263565063476562, 0.1323888702392578, 0.13131365966796876, 0.13071359252929687, 0.13122764587402344, 0.13066854858398438, 0.13092250061035157, 0.13190963745117187, 0.1317898254394531, 0.13199052429199218, 0.1315246124267578, 0.13117645263671876, 0.13117439270019532, 0.13063679504394532, 0.1306071014404297, 0.13064601135253906, 0.27082650756835935, 0.1319393310546875, 0.13072076416015624, 0.13070233154296876, 0.13060914611816407, 0.1306982421875, 0.1306941375732422, 0.1307361297607422, 0.13072384643554688, 0.13180825805664062, 0.13077708435058594, 0.13068902587890624, 0.1307166748046875, 0.1306112060546875, 0.13075456237792968, 0.13076480102539062, 0.1316259765625, 0.13118873596191405, 0.13114265441894532, 0.13099110412597656, 0.13076377868652345, 0.13220045471191405, 0.1319833526611328, 0.131051513671875, 0.1304217529296875, 0.1321359405517578, 0.13102284240722656, 0.13118975830078125, 0.13145599365234376, 0.13123890686035156, 0.13081805419921874, 0.13088050842285157, 0.13064396667480468, 0.13075967407226563, 0.1305620422363281, 0.13079756164550782, 0.1306480712890625, 0.13070130920410156, 0.13066546630859374, 0.13078323364257813, 0.13063168334960937, 0.13063372802734374, 0.1307361297607422, 0.13077810668945314, 0.1324031982421875, 0.1307852783203125, 0.13074227905273436, 0.13091635131835938, 0.1307842559814453, 0.13073408508300782, 0.13077606201171876, 0.13099725341796875, 0.1314017333984375, 0.13113139343261718, 0.13084774780273437, 0.1308579864501953, 0.1312112579345703, 0.1308897247314453, 0.13232537841796874, 0.13256089782714844, 0.1308651580810547, 0.13114060974121095, 0.13100236511230468, 0.2692731018066406, 0.13084364318847655, 0.1314017333984375, 0.13194137573242187, 0.1307535400390625, 0.13124607849121095, 0.1310320587158203, 0.13100338745117188, 0.13084979248046874, 0.130735107421875, 0.13073408508300782, 0.13077810668945314, 0.13074021911621095, 0.13047500610351562, 0.13073100280761718, 0.1308590087890625, 0.1306746826171875, 0.1320499267578125, 0.13072793579101563, 0.13061222839355469, 0.13069004821777344, 0.13063475036621094, 0.13072486877441405, 0.1314580535888672, 0.13120716857910156, 0.13121434020996095, 0.13137100219726563, 0.1323335723876953, 0.13257215881347656, 0.13070130920410156, 0.13072280883789061, 0.13117543029785156, 0.1306480712890625, 0.1327298583984375, 0.13261415100097657, 0.13112832641601563, 0.1316864013671875, 0.1313607635498047, 0.13099008178710939, 0.13083135986328126, 0.1309696044921875, 0.13129830932617187, 0.13074227905273436, 0.13066444396972657, 0.13106892395019532, 0.13083340454101564, 0.13119078063964842, 0.13266432189941407, 0.13248716735839844, 0.13077503967285156, 0.1307914276123047, 0.13080677795410156, 0.13104946899414063, 0.13092556762695312, 0.13065216064453125, 0.1306480712890625, 0.13058969116210936, 0.13318450927734374, 0.1311262664794922, 0.13230592346191405, 0.13067059326171876, 0.13073408508300782, 0.13068185424804687, 0.27066061401367186, 0.1313095703125, 0.13158502197265626, 0.13086822509765625, 0.13064703369140626, 0.1305917510986328, 0.13066957092285156, 0.13082009887695312, 0.13070950317382812, 0.13068800354003907, 0.1308579864501953, 0.13097062683105468, 0.13119488525390624, 0.13108735656738282, 0.1311057891845703, 0.13334323120117186, 0.13187992858886718, 0.13169049072265626, 0.13072793579101563, 0.13088359069824218, 0.13073919677734375, 0.13076582336425782, 0.1306378173828125, 0.13069926452636718, 0.13055999755859374, 0.13076991271972657, 0.1307361297607422, 0.1307115478515625, 0.13066444396972657, 0.1318144073486328, 0.13064601135253906, 0.1307914276123047, 0.13064396667480468, 0.13078221130371093, 0.13085696411132813, 0.13073408508300782, 0.13069004821777344, 0.13040435791015625, 0.13216152954101562, 0.13084774780273437, 0.13076275634765624, 0.1308784637451172, 0.13086822509765625, 0.1307484130859375, 0.13084364318847655, 0.13232025146484375, 0.13216461181640626, 0.1316546630859375, 0.13190963745117187, 0.13114572143554687, 0.13153176879882814, 0.131056640625, 0.13069107055664062, 0.13102284240722656, 0.13223219299316405, 0.13078630065917968, 0.13118258666992189, 0.1313228759765625, 0.13151641845703124, 0.13187481689453126, 0.13146418762207032, 0.13131263732910156, 0.13112115478515626, 0.2720235595703125, 0.13148159790039063, 0.1317724151611328, 0.13106072998046875, 0.13132492065429688, 0.13174169921875, 0.13085285949707032, 0.13085183715820312, 0.1307484130859375, 0.13077503967285156, 0.13059071350097656, 0.13101158142089844, 0.13111500549316407, 0.13174578857421876, 0.1308159942626953, 0.13084466552734375, 0.13157171630859374, 0.13134848022460938, 0.13074432373046874, 0.13075045776367186, 0.13068800354003907, 0.13058969116210936, 0.13147442626953126, 0.13185433959960938, 0.130872314453125, 0.13104537963867188, 0.13076991271972657, 0.13386341857910156, 0.132885498046875, 0.13136895751953126, 0.1308590087890625, 0.13111091613769532, 0.13062757873535155, 0.1306480712890625, 0.13030911254882813, 0.13067263793945313, 0.13060096740722657, 0.13076582336425782, 0.13124710083007812, 0.13097164916992188, 0.13212261962890626, 0.13122047424316408, 0.1317918701171875, 0.13056410217285155, 0.13102079772949218, 0.13193011474609376, 0.13195468139648436, 0.13295513916015625, 0.13061427307128906, 0.13063270568847657, 0.13238067626953126, 0.13169151306152344, 0.13129830932617187, 0.13212364196777343, 0.13201408386230468, 0.1310709686279297, 0.13222093200683593, 0.1328711700439453, 0.13222195434570314, 0.13068287658691408, 0.1308057556152344, 0.13097779846191407, 0.13187481689453126, 0.271072265625, 0.13202432250976562, 0.13072998046875, 0.13133721923828126, 0.1315010528564453, 0.13107609558105468, 0.13116006469726563, 0.1324267578125, 0.1318338623046875, 0.13117543029785156, 0.13102694702148437, 0.13115699768066405, 0.1313720245361328, 0.13114572143554687, 0.13089791870117187, 0.13081497192382813, 0.1320273895263672, 0.13255679321289063, 0.13251686096191406, 0.13236122131347655, 0.13119488525390624, 0.13082009887695312, 0.130629638671875, 0.1312522277832031, 0.13159219360351562, 0.131557373046875, 0.13065113830566405, 0.13070233154296876, 0.13060403442382812, 0.13083750915527342, 0.13064396667480468, 0.13056614685058593, 0.13110272216796875, 0.13064909362792967, 0.13075967407226563, 0.13072486877441405, 0.13138330078125, 0.13096754455566406, 0.13072076416015624, 0.13083241271972657, 0.13185635375976562, 0.13205708312988282, 0.1308344268798828, 0.1318041534423828, 0.1312798767089844, 0.13098086547851562, 0.13061529541015626, 0.1309071350097656, 0.13069107055664062, 0.13145703125, 0.13063372802734374, 0.13061016845703124, 0.13082623291015624, 0.13071871948242186, 0.13061529541015626, 0.1307125701904297, 0.13055897521972656, 0.13065728759765624, 0.13056410217285155, 0.13088255310058594, 0.13070335388183593, 0.130735107421875, 0.1306234893798828, 0.27049368286132813, 0.1308221435546875, 0.13063679504394532, 0.13080166625976564, 0.1306071014404297, 0.13121945190429687, 0.1331988525390625, 0.1310433349609375, 0.13162701416015626, 0.1306234893798828, 0.13115391540527344, 0.13173452758789062, 0.13072793579101563, 0.1314897918701172, 0.13150413513183593, 0.1313218536376953, 0.1311191101074219, 0.13160960388183593, 0.13073817443847657, 0.1321881561279297, 0.13074227905273436, 0.1307494354248047, 0.13070233154296876, 0.13128807067871093, 0.1311068115234375, 0.1307729949951172, 0.1307146301269531, 0.1308078155517578, 0.13059788513183593, 0.13057638549804687, 0.13050982666015626, 0.13075762939453126, 0.13053439331054686, 0.13056614685058593, 0.13058355712890626, 0.13062144470214843, 0.1315635223388672, 0.13227008056640624, 0.13068698120117186, 0.13062451171875, 0.130693115234375, 0.1305917510986328, 0.13058457946777344, 0.13053439331054686, 0.13104229736328124, 0.13112832641601563, 0.13049139404296875, 0.13087026977539062, 0.13059686279296875, 0.13072793579101563, 0.13054771423339845, 0.13068185424804687, 0.1312030792236328, 0.13103411865234374, 0.13126451110839843, 0.13072998046875, 0.13075456237792968, 0.13058969116210936, 0.13065933227539062, 0.13062144470214843, 0.1305753631591797, 0.13052517700195312, 0.13057331848144532, 0.2703288269042969, 0.13065420532226563, 0.13157785034179686, 0.13085285949707032, 0.130619384765625, 0.13085594177246093, 0.130735107421875, 0.13151129150390625, 0.13070335388183593, 0.13061734008789064, 0.1304698944091797, 0.1307709503173828, 0.1307484130859375, 0.13094297790527343, 0.1308395538330078, 0.130735107421875, 0.13068185424804687, 0.13075660705566405, 0.13218304443359374, 0.1309634552001953, 0.13148159790039063, 0.13058253479003906, 0.1310627899169922, 0.1309020233154297, 0.13047193908691407, 0.13053030395507811, 0.13151846313476562, 0.1308170166015625, 0.13100338745117188, 0.1308968963623047, 0.13076889038085937, 0.1309644775390625, 0.13093785095214844, 0.1307740173339844, 0.13066648864746094, 0.13088665771484376, 0.1311293487548828, 0.13094706726074218, 0.13092250061035157, 0.13099314880371093, 0.13093785095214844, 0.13083135986328126, 0.1308078155517578, 0.13092250061035157, 0.13095321655273437, 0.13083544921875, 0.13072691345214843, 0.13097471618652343, 0.1313228759765625, 0.13215846252441407, 0.13237759399414062, 0.1312788543701172, 0.13164134216308593, 0.1313638458251953, 0.1314334716796875, 0.13113446044921875, 0.1308159942626953, 0.13188607788085938, 0.1307361297607422, 0.1308733367919922, 0.13075558471679688, 0.13074534606933594, 0.1307606964111328]",tokens/s,7.515426221697727,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,1,1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-2.7B,EleutherAI/gpt-neo-2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: GPTNeoForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-2.7b,facebook/opt-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciLM-7B,Deci/DeciLM-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: DeciLMForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-7b,google/recurrentgemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -30340,7 +28220,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/1/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/google/recurrentgemma-7b/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -30367,9 +28247,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694958f-529911556505267b75f3ce9b;baf86dc0-c37b-49ce-8e47-31cfeb96b820) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948248-18d2409c7f4a20813d8e82a7;bc8c46ef-4899-4a2d-a8b2-cab0dd019f37) -Repository Not Found for url: https://huggingface.co/1/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/google/recurrentgemma-7b/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -30394,12 +28274,40 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: 1 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: google/recurrentgemma-7b is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-1.8B,Qwen/Qwen1.5-1.8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1868.201984,3349.676032,0.0,2703.228928,2578.238464,s,10,1.410495346069336,0.1410495346069336,0.0017689689177857657,0.14056432342529296,0.14309543151855467,0.14402269134521484,0.14476449920654297,"[0.144949951171875, 0.1412518768310547, 0.1397279357910156, 0.13956182861328126, 0.13982972717285155, 0.13892410278320313, 0.13987677001953125, 0.14288937377929686, 0.1413212127685547, 0.14216256713867187]",tokens/s,1814.9652227737006,kWh,1.6439394082552122e-06,9.00797525271931e-07,6.874183740083411e-06,9.418920673610555e-06,tokens/kWh,27179334.96533712,MB,1868.201984,3349.676032,0.0,2703.228928,2667.098624,s,10,83.44500195312501,8.3445001953125,0.03302115511867202,8.3336259765625,8.37593193359375,8.403280419921876,8.425159208984375,"[8.33203515625, 8.335076171875, 8.333888671875, 8.3144501953125, 8.32368359375, 8.3150146484375, 8.3698544921875, 8.43062890625, 8.3570068359375, 8.33336328125]",tokens/s,7.549882979856609,kWh,9.832901556366757e-05,5.38916025818177e-05,0.0003962753054459165,0.0005484959235914018,tokens/kWh,114859.55918777513,,s,629,84.57831109619147,0.13446472352335676,0.016756456539684012,0.13199974060058595,0.1339588592529297,0.13428590698242188,0.27203026611328124,"[0.131915771484375, 0.13208883666992188, 0.13340570068359375, 0.13261517333984374, 0.1320437774658203, 0.13189222717285157, 0.13191372680664062, 0.13180621337890625, 0.13191270446777345, 0.1318174743652344, 0.13188607788085938, 0.13165977478027344, 0.13220761108398438, 0.13279539489746095, 0.132642822265625, 0.1319086151123047, 0.13183590698242187, 0.13183692932128907, 0.13191372680664062, 0.1319710693359375, 0.13185536193847655, 0.13166387939453125, 0.13191888427734375, 0.13172015380859375, 0.1317058563232422, 0.13175704956054687, 0.1318830108642578, 0.13170687866210937, 0.1325506591796875, 0.13195468139648436, 0.13218412780761718, 0.13190444946289062, 0.1321625671386719, 0.13238067626953126, 0.13378150939941405, 0.13233255004882813, 0.13199667358398437, 0.13365965270996094, 0.13226495361328125, 0.13205401611328124, 0.13234483337402345, 0.13211033630371094, 0.13187481689453126, 0.13180210876464843, 0.13335859680175782, 0.13234176635742187, 0.13278311157226563, 0.13272679138183593, 0.1324042205810547, 0.13250457763671875, 0.13250662231445312, 0.13336883544921874, 0.13242880249023437, 0.13245030212402345, 0.13245234680175783, 0.13265408325195313, 0.1332162628173828, 0.13244825744628907, 0.1322782745361328, 0.13222093200683593, 0.13194239807128907, 0.1318461456298828, 0.2743060607910156, 0.13452493286132813, 0.13292338562011718, 0.13269094848632812, 0.13221580505371094, 0.13191372680664062, 0.13204888916015625, 0.1319393310546875, 0.13207244873046875, 0.13193624877929688, 0.1332346954345703, 0.13184307861328126, 0.13165977478027344, 0.13174169921875, 0.1319331817626953, 0.13257011413574218, 0.13245234680175783, 0.13182669067382813, 0.13220249938964843, 0.1319772186279297, 0.13190451049804688, 0.13176934814453126, 0.13176832580566405, 0.13202943420410157, 0.131842041015625, 0.13187992858886718, 0.13245132446289062, 0.1319014434814453, 0.13174374389648438, 0.13188096618652342, 0.1329971160888672, 0.1325875244140625, 0.1321922607421875, 0.13208473205566407, 0.1319751739501953, 0.13210829162597656, 0.132173828125, 0.1320202178955078, 0.13244108581542968, 0.1323520050048828, 0.13193624877929688, 0.1318707275390625, 0.13215335083007812, 0.1319833526611328, 0.13199871826171874, 0.13258546447753905, 0.1363056640625, 0.13410917663574218, 0.132347900390625, 0.13224557495117187, 0.13346809387207031, 0.1320499267578125, 0.1319823303222656, 0.13196595764160157, 0.13193113708496093, 0.13199974060058595, 0.13258444213867188, 0.13302787780761718, 0.13199562072753906, 0.13191885375976561, 0.13196493530273437, 0.1318461456298828, 0.13196800231933595, 0.27239935302734375, 0.1318348846435547, 0.13182975769042968, 0.13207449340820313, 0.13185638427734375, 0.1317724151611328, 0.13244415283203126, 0.13195263671875, 0.1320099792480469, 0.13171302795410156, 0.13188505554199217, 0.13182054138183594, 0.13208575439453124, 0.1338101806640625, 0.13198439025878905, 0.13201919555664063, 0.13190348815917968, 0.13199871826171874, 0.13165977478027344, 0.13169357299804688, 0.13205708312988282, 0.13223014831542967, 0.13255679321289063, 0.13336166381835937, 0.1323274230957031, 0.1321175079345703, 0.13262745666503906, 0.13243597412109376, 0.13281074523925782, 0.13219737243652344, 0.13270425415039064, 0.1319403839111328, 0.13225782775878905, 0.13328172302246094, 0.13259266662597657, 0.13259056091308594, 0.13216152954101562, 0.1320622100830078, 0.13242469787597655, 0.1341696014404297, 0.13195263671875, 0.13167718505859374, 0.13170278930664062, 0.13178675842285156, 0.13180108642578126, 0.13196902465820312, 0.13176319885253907, 0.1331517791748047, 0.1319188232421875, 0.13173248291015624, 0.13183795166015624, 0.13228440856933593, 0.1320273895263672, 0.13176934814453126, 0.13183897399902345, 0.13179600524902343, 0.13171708679199218, 0.13180108642578126, 0.13352243041992187, 0.1350635528564453, 0.13252915954589845, 0.13388493347167968, 0.1324451904296875, 0.2718658447265625, 0.1323663330078125, 0.1318041534423828, 0.1317375946044922, 0.13224755859375, 0.13172837829589842, 0.13183692932128907, 0.13180825805664062, 0.13196493530273437, 0.13201612854003905, 0.13178060913085937, 0.13186866760253907, 0.13176422119140624, 0.13189222717285157, 0.13185331726074218, 0.13174476623535156, 0.13189631652832032, 0.1319833526611328, 0.13183180236816405, 0.13173965454101563, 0.13178880310058594, 0.13191474914550783, 0.13178163146972657, 0.13190553283691406, 0.132674560546875, 0.13195161437988281, 0.13180313110351563, 0.13180108642578126, 0.13176524353027344, 0.13174578857421876, 0.1317232666015625, 0.13185740661621093, 0.1315359344482422, 0.13187271118164062, 0.13189427185058594, 0.13176217651367186, 0.13183999633789062, 0.131842041015625, 0.13198028564453124, 0.1318461456298828, 0.13185740661621093, 0.13189222717285157, 0.1318656005859375, 0.13177548217773438, 0.13433549499511718, 0.1318778839111328, 0.13178163146972657, 0.1320099792480469, 0.13189529418945312, 0.13173043823242186, 0.13199974060058595, 0.1317908477783203, 0.13167718505859374, 0.1318707580566406, 0.1319085693359375, 0.1320079345703125, 0.1317375946044922, 0.1329776611328125, 0.13234278869628907, 0.13224960327148438, 0.13266841125488282, 0.13238578796386719, 0.13234994506835937, 0.2727505798339844, 0.13219532775878906, 0.1322977294921875, 0.1321318359375, 0.13251072692871094, 0.13448908996582032, 0.13275852966308593, 0.1344153594970703, 0.13294796752929688, 0.1335828552246094, 0.13194137573242187, 0.1318604736328125, 0.13178469848632812, 0.13185023498535156, 0.13183282470703125, 0.13243084716796874, 0.13204582214355468, 0.13287628173828125, 0.13193522644042968, 0.13247999572753907, 0.13198028564453124, 0.13178880310058594, 0.1318225860595703, 0.13189529418945312, 0.1317969970703125, 0.1317898254394531, 0.13174783325195313, 0.13180825805664062, 0.1317611541748047, 0.13181951904296876, 0.13173043823242186, 0.1318901824951172, 0.1316822967529297, 0.1317908477783203, 0.13169664001464843, 0.1318656005859375, 0.1333289031982422, 0.1319536590576172, 0.13187890625, 0.13186457824707032, 0.13181951904296876, 0.1317969970703125, 0.1317580871582031, 0.13171200561523438, 0.13176934814453126, 0.13164851379394532, 0.13176524353027344, 0.13194239807128907, 0.13188812255859375, 0.13191270446777345, 0.1322117156982422, 0.13192909240722656, 0.13183999633789062, 0.1317693786621094, 0.13185020446777343, 0.13187583923339843, 0.1317611541748047, 0.13403237915039062, 0.13205503845214844, 0.13186151123046874, 0.13183795166015624, 0.13185536193847655, 0.13172531127929688, 0.2711296081542969, 0.13194137573242187, 0.131852294921875, 0.13176217651367186, 0.13171609497070313, 0.13177548217773438, 0.13163827514648438, 0.1318164520263672, 0.1318707275390625, 0.13187277221679689, 0.13203762817382814, 0.13187174987792968, 0.13186968994140624, 0.13186866760253907, 0.13186972045898437, 0.13196592712402344, 0.1320099792480469, 0.1333217315673828, 0.13214207458496094, 0.13328793334960937, 0.13255679321289063, 0.13287628173828125, 0.1319505920410156, 0.13182566833496093, 0.13165158081054687, 0.13177650451660156, 0.13287423706054688, 0.13261311340332033, 0.13195878601074218, 0.1316505584716797, 0.1316495361328125, 0.13174989318847657, 0.13171302795410156, 0.13187686157226564, 0.13190553283691406, 0.13175296020507812, 0.13174989318847657, 0.13191474914550783, 0.13393820190429687, 0.13187989807128905, 0.13174681091308593, 0.1316864013671875, 0.13167205810546875, 0.13172019958496095, 0.13174783325195313, 0.1315952606201172, 0.13168435668945314, 0.13165362548828125, 0.13327769470214842, 0.13195161437988281, 0.1319024963378906, 0.1318594207763672, 0.13180313110351563, 0.13170381164550782, 0.13171507263183593, 0.13190451049804688, 0.13232640075683594, 0.13192294311523436, 0.13172940063476563, 0.1317406768798828, 0.13174578857421876, 0.13170381164550782, 0.13169561767578125, 0.2720942077636719, 0.1323653106689453, 0.1319772186279297, 0.13174887084960937, 0.1318461456298828, 0.13169049072265626, 0.13180825805664062, 0.13170994567871094, 0.13199974060058595, 0.13190348815917968, 0.13172940063476563, 0.13172735595703125, 0.13171612548828124, 0.13159523010253907, 0.13188914489746092, 0.13179904174804688, 0.13198130798339844, 0.13195578002929687, 0.13164845275878906, 0.13183590698242187, 0.13194752502441406, 0.13176524353027344, 0.13180621337890625, 0.13325619506835937, 0.1319086456298828, 0.13182666015625, 0.13163929748535155, 0.13185125732421876, 0.1320396728515625, 0.13438668823242186, 0.13385317993164061, 0.13466111755371094, 0.13423411560058593, 0.133897216796875, 0.1338357696533203, 0.1337620849609375, 0.13375177001953126, 0.1338419189453125, 0.1338470458984375, 0.13377127075195314, 0.13373440551757812, 0.1337507781982422, 0.13362892150878905, 0.13362687683105468, 0.133718017578125, 0.1337139129638672, 0.13433139038085937, 0.1335930938720703, 0.13229158020019532, 0.13321932983398438, 0.1331998748779297, 0.1333289031982422, 0.13277183532714842, 0.13196185302734376, 0.13300531005859376, 0.13356031799316406, 0.13304013061523437, 0.13298892211914062, 0.1336432647705078, 0.13445120239257813, 0.13455258178710938, 0.1344040985107422, 0.13423922729492188, 0.27732583618164064, 0.1339084777832031, 0.13382144165039062, 0.1346867218017578, 0.13416653442382812, 0.13392076110839843, 0.13295001220703126, 0.13354495239257813, 0.13410508728027343, 0.1338173370361328, 0.13408869934082032, 0.1340200958251953, 0.1339043884277344, 0.13345074462890624, 0.1340712890625, 0.133653564453125, 0.1348218231201172, 0.13366886901855468, 0.13357466125488282, 0.1335029754638672, 0.1333729248046875, 0.13342617797851564, 0.1340518341064453, 0.1341563262939453, 0.13418496704101562, 0.13429244995117187, 0.13391769409179688, 0.13419314575195312, 0.13331149291992186, 0.13398121643066407, 0.1340333709716797, 0.13403135681152345, 0.13413682556152343, 0.13416447448730467, 0.1341071319580078, 0.13356748962402343, 0.13255885314941407, 0.1329449005126953, 0.13408767700195312, 0.13382655334472657, 0.13446556091308592, 0.134451171875, 0.1342740478515625, 0.13432524108886718, 0.13397196960449217, 0.133928955078125, 0.13388800048828126, 0.13408154296875, 0.1339463653564453, 0.13414707946777343, 0.1341204528808594, 0.1346938934326172, 0.13456895446777345, 0.13381427001953125, 0.13382553100585937, 0.13402316284179688, 0.13395558166503907, 0.13448602294921874, 0.13234994506835937, 0.13215437316894532, 0.13213081359863282, 0.13221376037597657, 0.13244825744628907, 0.27383807373046876, 0.13208677673339844, 0.1318748779296875, 0.13186143493652344, 0.1319342041015625, 0.1316986846923828, 0.13210009765625, 0.13194956970214844, 0.1318338623046875, 0.13179904174804688, 0.13189427185058594, 0.1324390411376953, 0.1331261444091797, 0.13414399719238282, 0.13440205383300782, 0.13397196960449217, 0.13388394165039064, 0.13371900939941406, 0.13379379272460937, 0.1336944580078125, 0.13435395812988282, 0.133012451171875, 0.1330391082763672, 0.13337496948242186, 0.13211033630371094, 0.1332316131591797, 0.1331374053955078, 0.1329827880859375, 0.13283839416503906, 0.13333401489257812, 0.1330401611328125, 0.1329510040283203, 0.13266636657714845, 0.132642822265625, 0.1325813751220703, 0.1328547821044922, 0.13313536071777343, 0.13244313049316406, 0.13259365844726562, 0.13253018188476562, 0.1329459228515625, 0.13234585571289062, 0.13299200439453124, 0.13250764465332032, 0.13244210815429688, 0.13175296020507812, 0.1317580871582031, 0.1318338623046875, 0.1318666229248047, 0.1317580871582031, 0.13186358642578125, 0.13192803955078125, 0.13181849670410156, 0.13414501953125, 0.13427609252929687, 0.13285580444335937, 0.13174476623535156, 0.1318656005859375, 0.13187277221679689, 0.13214002990722656, 0.13324185180664064, 0.13186151123046874, 0.13166592407226563, 0.27445761108398437, 0.13168025207519532, 0.1318492126464844, 0.13196595764160157, 0.13203353881835939, 0.13289573669433594, 0.13374771118164064, 0.13365350341796875, 0.13377433776855469, 0.13357772827148437, 0.13372621154785155, 0.1335900115966797, 0.1336494140625, 0.13360946655273437, 0.1339095001220703, 0.13365863037109374, 0.13385317993164061, 0.1333053436279297, 0.13203660583496094, 0.13213388061523437, 0.13183897399902345, 0.132063232421875, 0.13191372680664062, 0.13187992858886718, 0.13165875244140626, 0.1317560272216797, 0.13234994506835937, 0.13201510620117188, 0.13194342041015625, 0.13241856384277345, 0.13182566833496093, 0.1321871337890625, 0.13201715087890625, 0.13212979125976562, 0.13185331726074218, 0.13186764526367187, 0.1317969970703125, 0.13172940063476563, 0.13185433959960938, 0.1317959747314453, 0.13192909240722656, 0.1318144073486328, 0.1319772186279297, 0.13174783325195313, 0.13176422119140624, 0.13171916198730468, 0.13182464599609375, 0.1319086151123047, 0.13198745727539063, 0.13206431579589845, 0.13207244873046875, 0.1318757781982422, 0.13179391479492186, 0.13187379455566406, 0.13178060913085937, 0.1318113250732422, 0.13175196838378905, 0.13170889282226564, 0.13177754211425782, 0.13175091552734375, 0.1317611541748047, 0.13186968994140624, 0.1329213409423828]",tokens/s,7.43689477654188,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: GPTNeoForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-4B,Qwen/Qwen1.5-4B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -30427,28 +28335,38 @@ ChildProcessError: Traceback (most recent call last): return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1221, in forward outputs = self.model( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1023, in forward layer_outputs = decoder_layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 763, in forward hidden_states, self_attn_weights, present_key_value = self.self_attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) -TypeError: DeciCoderAttention.forward() got an unexpected keyword argument 'cache_position' + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 650, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,s,s,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-4.5B,facebook/xglm-4.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -30456,73 +28374,87 @@ TypeError: DeciCoderAttention.forward() got an unexpected keyword argument 'cach File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/s/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948ccc-4aa524e44773ac6e2fbb1a0d;7fc4bb38-2856-4d9d-a5cd-537123b54f21) - -Repository Not Found for url: https://huggingface.co/s/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file - raise EnvironmentError( -OSError: s is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: XGLMForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-3b-4e1t,stabilityai/stablelm-3b-4e1t,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 1268, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 1062, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 792, in forward + self_attn_output, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 441, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,TencentARC/Mistral_Pro_8B_v0.1,TencentARC/Mistral_Pro_8B_v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2593.296384,7298.613248,0.0,6652.166144,6323.352576,s,10,7.731728576660157,0.7731728576660156,0.0036666872570226623,0.7712686767578125,0.7772910278320313,0.7798124450683593,0.7818295788574219,"[0.7823338623046875, 0.776730712890625, 0.7708938598632813, 0.7714732666015625, 0.7710640869140625, 0.770478515625, 0.770045166015625, 0.773399658203125, 0.7746173706054688, 0.7706920776367188]",tokens/s,331.10319052428935,kWh,9.090474362556752e-06,4.981150633102515e-06,4.3684586229685554e-05,5.775621122534482e-05,tokens/kWh,4432423.709394238,MB,2593.296384,7298.613248,0.0,6652.166144,6382.565888,s,10,458.08653125,45.808653125,0.015714942284677954,45.80371484375,45.83385546875,45.83744140625,45.84031015625,"[45.8103125, 45.8045234375, 45.84102734375, 45.79598828125, 45.78718359375, 45.80095703125, 45.79937890625, 45.80290625, 45.8111953125, 45.83305859375]",tokens/s,1.3752860148079282,kWh,0.0005408116745630392,0.00029641227384910964,0.0025237221621385317,0.0033609461105506802,tokens/kWh,18744.721851454397,,s,629,464.3046874389652,0.7381632550698964,0.09178720852369766,0.7269785766601562,0.7282177978515625,0.72855,1.49778814453125,"[0.728890380859375, 0.7286569213867188, 0.728468505859375, 0.727841796875, 0.7261204223632812, 0.7262678833007813, 0.7260436401367187, 0.7263180541992188, 0.7261552734375, 0.7261777954101563, 0.727593994140625, 0.7266488037109375, 0.726371337890625, 0.7267962646484375, 0.7268167724609375, 0.72713623046875, 0.7261091918945313, 0.7263775024414062, 0.726086669921875, 0.7265126953125, 0.7268792114257813, 0.7265433349609375, 0.7264358520507812, 0.7269488525390625, 0.7277793579101562, 0.7264532470703124, 0.7258746948242187, 0.7262843017578124, 0.726619140625, 0.726530029296875, 0.726930419921875, 0.7266365356445312, 0.7263467407226563, 0.7267451171875, 0.7262003173828125, 0.7265435180664063, 0.7259226684570312, 0.7268444213867188, 0.727319580078125, 0.72618798828125, 0.725907470703125, 0.7261306762695312, 0.7267153930664062, 0.7260835571289063, 0.7304304809570312, 0.7278233642578125, 0.7278356323242188, 0.7286978759765625, 0.7283251342773438, 0.7282206420898437, 0.7269744873046875, 0.7285032958984375, 0.728458251953125, 0.7281141967773438, 0.7277547607421875, 0.727568359375, 0.7287777099609375, 0.727846923828125, 0.7280547485351563, 0.72765234375, 0.7284254760742187, 0.7282565307617187, 1.504901123046875, 0.7284664306640625, 0.7290664672851562, 0.7276646118164063, 0.7266221923828124, 0.7263283081054688, 0.7270154418945313, 0.7276861572265625, 0.7269110717773437, 0.7259544677734375, 0.7266682739257813, 0.7265515747070312, 0.7271710815429687, 0.7266058349609374, 0.7279667358398437, 0.7284111328125, 0.7286005859375, 0.726703125, 0.7264102172851562, 0.7261973876953125, 0.7271340942382812, 0.72724072265625, 0.7264429931640625, 0.726245361328125, 0.7261767578125, 0.7261071166992188, 0.72650244140625, 0.726097900390625, 0.7263776245117187, 0.726574951171875, 0.728237060546875, 0.7274116821289063, 0.7262125854492187, 0.7267153930664062, 0.7282913208007813, 0.726614013671875, 0.7263006591796874, 0.7260282592773437, 0.726560791015625, 0.7266262817382813, 0.7263662109375, 0.7263231811523437, 0.7260938110351562, 0.727815185546875, 0.7281008911132812, 0.727647216796875, 0.7297269897460937, 0.726920166015625, 0.72753564453125, 0.7265023803710937, 0.726255615234375, 0.7262545776367187, 0.7261071166992188, 0.72612353515625, 0.726687744140625, 0.726403076171875, 0.7265781860351562, 0.7276553955078126, 0.728158203125, 0.7277864990234375, 0.7276748657226563, 0.7281663818359375, 0.7285872802734376, 1.497443359375, 0.726253662109375, 0.7272754516601563, 0.7280455932617188, 0.7274752197265625, 0.7277711181640625, 0.728121337890625, 0.7287439575195312, 0.7278479614257812, 0.7272069091796876, 0.728195068359375, 0.7279093627929687, 0.7278653564453125, 0.7270317993164063, 0.7276226806640625, 0.7280025634765624, 0.7273707275390625, 0.7268731079101562, 0.7277240600585938, 0.7278991088867187, 0.728922119140625, 0.7292661743164063, 0.7271915283203125, 0.72674609375, 0.72665087890625, 0.7293204345703125, 0.7278919677734375, 0.7269775390625, 0.7271495971679688, 0.7265064697265625, 0.7276011352539062, 0.7278345947265625, 0.7281715087890624, 0.7285504150390625, 0.72888525390625, 0.7278458862304688, 0.7282175903320313, 0.7279083251953125, 0.7274700927734375, 0.72768408203125, 0.7280230102539063, 0.727125, 0.7273963623046875, 0.7267492065429687, 0.7279011840820313, 0.7279144897460937, 0.7274905395507812, 0.7290408935546875, 0.7272591552734375, 0.7271188354492187, 0.7262003173828125, 0.7260712890625, 0.7269284057617188, 0.7274291381835938, 0.7278981323242187, 0.7281622924804687, 0.727773193359375, 0.72789501953125, 0.7277240600585938, 0.727568359375, 0.727462890625, 0.72740966796875, 0.7279739379882812, 1.49783544921875, 0.7277803344726562, 0.7284193115234375, 0.7274598388671875, 0.727204833984375, 0.7272642822265625, 0.7271331787109375, 0.7269990234375, 0.72734619140625, 0.726697998046875, 0.7275581665039063, 0.7281787109375, 0.7283179321289063, 0.7270953369140625, 0.7263682250976562, 0.7266856689453125, 0.7272109985351562, 0.7262371826171875, 0.7263467407226563, 0.726561767578125, 0.7266099243164063, 0.7263775024414062, 0.7269427490234375, 0.7270051879882813, 0.7267901611328125, 0.7268003540039063, 0.7271588134765625, 0.7267839965820313, 0.7270287475585937, 0.7264204711914063, 0.7269273681640624, 0.7266437377929688, 0.7264727172851563, 0.7263098754882813, 0.7269898071289063, 0.72724072265625, 0.7265023803710937, 0.726582275390625, 0.727125, 0.7272601318359375, 0.7271116943359375, 0.7265310668945313, 0.7264296875, 0.7270942993164062, 0.72810498046875, 0.7268444213867188, 0.7269007568359375, 0.72627197265625, 0.7266754760742188, 0.7263273315429688, 0.726993896484375, 0.72631298828125, 0.727208984375, 0.7275560913085938, 0.7275110473632812, 0.7266375732421875, 0.7264818725585938, 0.7270154418945313, 0.726582275390625, 0.7271209106445312, 0.7262269287109375, 0.7262637939453125, 0.7265955810546875, 1.49766650390625, 0.7265485229492188, 0.7276533203125, 0.7271311645507812, 0.726666259765625, 0.7262494506835937, 0.7270901489257813, 0.7279677734375, 0.7269109497070313, 0.7260007934570313, 0.726369140625, 0.7265126342773438, 0.7262740478515625, 0.7264921875, 0.7263375244140625, 0.7265730590820313, 0.727419921875, 0.7267584228515624, 0.726582275390625, 0.7271137084960938, 0.7265505981445313, 0.726699951171875, 0.72631298828125, 0.7264921875, 0.7262166748046875, 0.7264942016601562, 0.727056396484375, 0.7262740478515625, 0.726329345703125, 0.72700927734375, 0.7266652221679688, 0.7271157836914063, 0.7266324462890625, 0.7262699584960938, 0.7262648315429687, 0.7263733520507812, 0.7264257202148438, 0.7263466796875, 0.7261910400390625, 0.726476806640625, 0.7270922241210938, 0.7264163818359375, 0.726287353515625, 0.726835205078125, 0.7277772827148438, 0.7272254638671874, 0.7271760864257812, 0.7273492431640625, 0.7281674194335938, 0.7272499389648438, 0.7273533325195313, 0.7268812866210937, 0.7270850830078125, 0.7263784790039063, 0.7263406372070312, 0.7266806030273437, 0.7265914916992188, 0.7289251708984374, 0.7269837036132812, 0.7268054809570312, 0.7262802124023438, 0.7263119506835938, 0.727593994140625, 1.498050537109375, 0.7272069091796876, 0.7269785766601562, 0.7263672485351562, 0.7267686157226563, 0.7265392456054688, 0.7266918334960938, 0.7279226684570312, 0.7270952758789062, 0.7273717651367188, 0.7269324951171875, 0.7273584594726562, 0.7267799072265625, 0.7266355590820313, 0.7265770874023437, 0.7268864135742188, 0.7267072143554687, 0.7268515625, 0.72646875, 0.7266506958007812, 0.7269765014648437, 0.7271884765625, 0.7277824096679687, 0.7268259887695312, 0.7264942016601562, 0.7269846801757812, 0.7266631469726562, 0.7266221923828124, 0.7265433959960937, 0.7265709228515626, 0.7269048461914063, 0.726640625, 0.7268331298828125, 0.7268157348632812, 0.7275376586914063, 0.7284869384765625, 0.72732568359375, 0.72707275390625, 0.7283681030273438, 0.7273052368164062, 0.727035888671875, 0.726771728515625, 0.7267860717773438, 0.7267205200195312, 0.7269447631835938, 0.7271106567382812, 0.7269212036132813, 0.7263958740234375, 0.7277291259765625, 0.7267225341796875, 0.7280814208984375, 0.726513671875, 0.72703076171875, 0.7273072509765625, 0.7264839477539062, 0.72660888671875, 0.7266047973632812, 0.7268126831054688, 0.7263416137695312, 0.7265904541015625, 0.727103515625, 0.72654541015625, 0.7273564453125, 1.4995804443359375, 0.7264389038085938, 0.72692529296875, 0.726814697265625, 0.7266785278320312, 0.7263928833007812, 0.7267000122070313, 0.726929443359375, 0.7269508666992187, 0.7267072143554687, 0.7272652587890625, 0.727456787109375, 0.7268905029296875, 0.7272182006835938, 0.7271659545898438, 0.7272396850585937, 0.727488525390625, 0.727024658203125, 0.7267123413085937, 0.7267573852539062, 0.72673486328125, 0.7267174682617188, 0.7264542846679688, 0.7265056762695312, 0.7268145141601563, 0.7267010498046875, 0.7269017333984376, 0.7276697387695312, 0.7267901611328125, 0.7262535400390625, 0.7270850830078125, 0.7274118041992188, 0.7274280395507813, 0.7267235717773437, 0.727041015625, 0.7266365356445312, 0.7266611328125, 0.7265853271484375, 0.7269519653320312, 0.7284623413085938, 0.7270697021484375, 0.7270390014648438, 0.7264204711914063, 0.7266826171875, 0.7274915771484375, 0.726845458984375, 0.72681982421875, 0.72749365234375, 0.72808447265625, 0.727667724609375, 0.726656005859375, 0.7265833129882813, 0.726640625, 0.7277496337890625, 0.7269703979492188, 0.7271680297851563, 0.7267593994140625, 0.7272683715820313, 0.727320556640625, 0.7269324951171875, 0.7269560546875, 0.7263651733398437, 0.7267870483398438, 1.500390380859375, 0.7265679321289062, 0.7275233154296875, 0.7270062255859375, 0.7268106079101563, 0.7261430053710938, 0.7260712890625, 0.7270625, 0.7281285400390625, 0.728479736328125, 0.7286661376953125, 0.7285464477539062, 0.7271463623046875, 0.7275120849609376, 0.7265228881835938, 0.7265628051757812, 0.7272130737304687, 0.7273912353515625, 0.7264358520507812, 0.7261306762695312, 0.7267123413085937, 0.7264491577148438, 0.72669287109375, 0.726719482421875, 0.7263631591796875, 0.7265198364257812, 0.7262894287109375, 0.7263252563476562, 0.7271505737304688, 0.7277117309570312, 0.7283435668945313, 0.7273421020507812, 0.7282186279296875, 0.7270390014648438, 0.7294136352539062, 0.7282667236328125, 0.7285493774414062, 0.7274598388671875, 0.7267921752929688, 0.7266416625976563, 0.72656591796875, 0.72635595703125, 0.7266129760742187, 0.7267891235351562, 0.7269498901367187, 0.7263416137695312, 0.72686181640625, 0.7261245727539063, 0.7262761840820312, 0.7264869995117188, 0.7264901123046875, 0.7260047607421874, 0.726487060546875, 0.7265208129882812, 0.7264603881835937, 0.7263908081054687, 0.7275448608398437, 0.727146484375, 0.72680859375, 0.7264603881835937, 0.7277178955078125, 0.72709326171875, 0.728501220703125, 1.5012095947265625, 0.72654541015625, 0.7268945922851563, 0.7272919311523437, 0.7272028198242187, 0.7270809326171875, 0.7276093139648437, 0.7282923583984375, 0.7271884765625, 0.7268485717773437, 0.726763427734375, 0.7262822265625, 0.7274660034179687, 0.7266007080078125, 0.72632421875, 0.7261010131835938, 0.726930419921875, 0.7262833251953125, 0.727236572265625, 0.7263109130859375, 0.727277587890625, 0.729017333984375, 0.7280557861328125, 0.7287122192382812, 0.726213623046875, 0.72635595703125, 0.7278028564453125, 0.7271577758789063, 0.7265413208007813, 0.7267686157226563, 0.7265740966796875, 0.7276277465820312, 0.727436279296875, 0.7270174560546875, 0.7273318481445312, 0.72755712890625, 0.72652392578125, 0.7278878784179688, 0.7272489013671875, 0.7272007446289063, 0.727320556640625, 0.7268229370117187, 0.7260794677734375, 0.7274660034179687, 0.726408203125, 0.726381591796875, 0.7260671997070313, 0.7263037719726563, 0.7268433837890625, 0.726957275390625, 0.7271473388671875, 0.7270225830078125, 0.7275509643554687, 0.7284777221679688, 0.7270584106445312, 0.7272191772460938, 0.727357421875, 0.7268218994140625, 0.7266734008789062, 0.726677490234375, 0.7279493408203125, 0.7279093627929687, 0.7280087280273437, 1.50259716796875, 0.7271526489257812, 0.727667724609375, 0.7279851684570312, 0.7274424438476562, 0.7262618408203125, 0.7266088256835938, 0.7269324951171875, 0.7273543701171875, 0.7273164672851562, 0.7271823120117188, 0.7268035278320313, 0.7278939208984375, 0.7264112548828126, 0.7268864135742188, 0.726513671875, 0.7265802001953126, 0.72677685546875, 0.7268116455078125, 0.7273564453125, 0.72827392578125, 0.72766259765625, 0.7272315063476562, 0.7262218017578125, 0.726414306640625, 0.7278561401367187, 0.728342529296875, 0.7276656494140625, 0.7273707275390625, 0.7264389038085938, 0.7276830444335938, 0.7273564453125, 0.7274208984375, 0.7277598876953125, 0.72755712890625, 0.7271044921875, 0.7269417114257812, 0.7284859008789063, 0.728322021484375, 0.727647216796875, 0.7293214721679687, 0.7274178466796875, 0.7273226318359375, 0.7271823120117188, 0.72783154296875, 0.7280087280273437, 0.7273554077148437, 0.7271423950195313, 0.7276287841796875, 0.7275499267578125, 0.7273082885742187, 0.7275765991210937, 0.7275704345703125, 0.7288955078125, 0.7285176391601562, 0.7280199584960938, 0.727841796875, 0.72796875, 0.7280548095703125, 0.7271168212890625, 0.7272642822265625, 0.7274669799804687, 0.7284869384765625]",tokens/s,1.3547138700439787,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-12b,EleutherAI/pythia-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,,MB,1585.569792,9676.783616,0.0,9030.336512,8583.573504,s,10,9.573078491210937,0.9573078491210938,0.0009060771854647526,0.9570158996582031,0.9584730651855469,0.958728140258789,0.9589322003173828,"[0.9589832153320312, 0.956114501953125, 0.95637109375, 0.9565009765625, 0.9567921142578125, 0.9570035400390625, 0.9570282592773437, 0.95793017578125, 0.957938232421875, 0.9584163818359375]",tokens/s,267.41658938139295,kWh,1.1295311258296775e-05,6.189367993647465e-06,5.412797259527177e-05,7.161265184721602e-05,tokens/kWh,3574787.323141869,MB,1585.569792,9676.783616,0.0,9030.336512,8872.967168,s,10,567.96033984375,56.796033984375,0.005905783414625482,56.796150390625,56.802221875,56.803097265625,56.803797578125,"[56.78812109375, 56.796453125, 56.795734375, 56.80109765625, 56.800734375, 56.79584765625, 56.80202734375, 56.80397265625, 56.7909765625, 56.785375]",tokens/s,1.1092323808618707,kWh,0.0006704276505549146,0.00036745356669733154,0.0031837375343617275,0.004221618751613973,tokens/kWh,14923.185561442368,,s,629,575.6730700073241,0.9152195071658572,0.113749717069217,0.901496826171875,0.9019905639648437,0.9021755371093749,1.8586116552734375,"[0.9012899780273438, 0.9015009155273438, 0.9013851928710938, 0.9014036254882812, 0.9017272338867187, 0.9014722290039062, 0.9017364501953125, 0.9016832275390625, 0.901676025390625, 0.9014937744140625, 0.9013677978515625, 0.90115380859375, 0.9009315795898437, 0.9009326171875, 0.9006499633789062, 0.9008291625976562, 0.9008558349609375, 0.9008486328125, 0.9011026000976563, 0.9014824829101562, 0.901602294921875, 0.901296142578125, 0.9016278686523438, 0.9010196533203125, 0.901043212890625, 0.9009264526367188, 0.9010216674804687, 0.9008496704101563, 0.901128173828125, 0.9008875732421875, 0.901443603515625, 0.9013667602539063, 0.9012459716796875, 0.90106982421875, 0.9016514282226562, 0.9009028930664063, 0.9010933837890625, 0.9009028930664063, 0.9010616455078125, 0.9009520874023438, 0.901349365234375, 0.9014415283203125, 0.901707763671875, 0.9015367431640625, 0.9014681396484375, 0.9018613891601562, 0.901622802734375, 0.9018931274414063, 0.901707763671875, 0.9014057006835937, 0.901602294921875, 0.90210302734375, 0.9018941650390625, 0.9015654296875, 0.9017302856445313, 0.9016248168945312, 0.9020457153320313, 0.9013043212890625, 0.9014906616210937, 0.9013822021484375, 0.9013165283203125, 0.901349365234375, 1.86075439453125, 0.901201904296875, 0.9012777099609375, 0.9009407958984375, 0.9011107788085938, 0.9012059936523438, 0.901411865234375, 0.9011742553710937, 0.9014906616210937, 0.9008762817382813, 0.9011650390625, 0.9011548461914063, 0.9017159423828125, 0.9009899291992187, 0.9010339965820312, 0.9014087524414063, 0.901095458984375, 0.9012418212890625, 0.9011476440429688, 0.90099609375, 0.901496826171875, 0.9016145629882812, 0.9013197021484375, 0.9020405883789062, 0.9015439453125, 0.9012941284179687, 0.9013165893554688, 0.9014087524414063, 0.9009602661132813, 0.9014149169921875, 0.901086181640625, 0.901359619140625, 0.9010995483398437, 0.9015562133789062, 0.9015613403320313, 0.9021737060546875, 0.9016637573242188, 0.9020088500976563, 0.9014948120117188, 0.90166064453125, 0.901233642578125, 0.901607421875, 0.90140673828125, 0.9016708984375, 0.9019443359375, 0.9020333862304688, 0.90393701171875, 0.9017435913085937, 0.90208154296875, 0.9017467041015625, 0.901749755859375, 0.9017620239257812, 0.9014108276367188, 0.901612548828125, 0.9014630126953125, 0.901897216796875, 0.9016043701171875, 0.9021522216796874, 0.9015429077148438, 0.9017200927734375, 0.9018798217773437, 0.901327880859375, 0.9020098266601563, 1.8579189453125, 0.9009674072265625, 0.9019514770507813, 0.9013217163085937, 0.9013043212890625, 0.9010616455078125, 0.901369873046875, 0.9010882568359375, 0.9010647583007813, 0.9008700561523437, 0.901254150390625, 0.9011005249023437, 0.9012029418945312, 0.901781494140625, 0.9017036743164063, 0.9013206787109375, 0.901180419921875, 0.9015664672851562, 0.9012275390625, 0.901060546875, 0.9013350219726562, 0.9012828369140625, 0.9011179809570312, 0.902530029296875, 0.901454833984375, 0.9017108764648437, 0.9014998779296876, 0.9013156127929688, 0.9013903198242188, 0.901664794921875, 0.9012408447265625, 0.9015879516601563, 0.9012008666992187, 0.9010565185546875, 0.9010083618164062, 0.9016893310546875, 0.9017681884765625, 0.9018941650390625, 0.9012459716796875, 0.9014087524414063, 0.9018050537109376, 0.9015992431640625, 0.9015572509765625, 0.9015726318359375, 0.9014558715820312, 0.9014138793945312, 0.901760009765625, 0.9032969970703125, 0.9014159545898438, 0.9015982055664062, 0.90126953125, 0.9023529052734375, 0.901634033203125, 0.9018787841796875, 0.9014353637695313, 0.9016453247070313, 0.9016279296875, 0.901738525390625, 0.9017559204101563, 0.902043701171875, 0.9015582275390625, 0.9019248657226563, 0.9020723266601562, 1.8581309814453124, 0.9010073852539062, 0.9013156127929688, 0.9008977661132812, 0.9008128051757812, 0.9016401977539062, 0.9013319702148438, 0.9011097412109375, 0.9010739135742187, 0.9013370971679687, 0.9015664672851562, 0.9017160034179688, 0.9023712768554687, 0.9015736083984375, 0.9013422241210938, 0.901080078125, 0.9018327026367188, 0.90148046875, 0.9011190185546875, 0.901212158203125, 0.9018624267578125, 0.9014783935546875, 0.9012479858398438, 0.9013688354492188, 0.90138623046875, 0.9015767211914063, 0.90112109375, 0.901693359375, 0.901707763671875, 0.9020232543945312, 0.901571533203125, 0.9019771118164063, 0.901349365234375, 0.9013718872070312, 0.9014671630859376, 0.9014220581054687, 0.9012838134765625, 0.9017538452148437, 0.9016350708007812, 0.9019105224609375, 0.9021767578125, 0.901813232421875, 0.9018296508789062, 0.9015695190429688, 0.903024658203125, 0.902118408203125, 0.9014558715820312, 0.9017098388671875, 0.901375, 0.901796875, 0.90182861328125, 0.9018388671875, 0.901644287109375, 0.9020845947265625, 0.9015941162109375, 0.9019043579101562, 0.9019207763671875, 0.901602294921875, 0.9014589233398438, 0.9020272827148438, 0.9018408813476563, 0.9020088500976563, 0.9018572998046875, 1.8591446533203124, 0.9011109008789062, 0.9014906005859376, 0.9012500610351563, 0.9013309326171876, 0.9015132446289063, 0.9010267944335938, 0.90169140625, 0.9015234375, 0.9012705078125, 0.90149169921875, 0.90165869140625, 0.90100830078125, 0.9009920043945312, 0.9015848999023437, 0.9015347290039063, 0.9014989013671875, 0.9024532470703125, 0.9021880493164063, 0.9016944580078124, 0.9015951538085938, 0.9013145751953126, 0.90147021484375, 0.9014896850585937, 0.9010872192382813, 0.9012111206054687, 0.9012377319335938, 0.9011046142578125, 0.90134423828125, 0.9021696166992188, 0.9015510864257813, 0.9017293090820313, 0.9014609985351563, 0.9018982543945312, 0.9016985473632813, 0.9015664672851562, 0.9012459716796875, 0.9016145629882812, 0.9012357177734375, 0.9017845458984375, 0.9017640991210938, 0.9023355102539062, 0.9016002807617187, 0.9013688354492188, 0.9013800659179687, 0.9019535522460937, 0.9013340454101563, 0.9017763671875, 0.9015776977539063, 0.90165966796875, 0.9015429077148438, 0.9014620361328125, 0.9018777465820312, 0.9020886840820312, 0.9014589233398438, 0.9016187133789062, 0.901876708984375, 0.903267333984375, 0.9016299438476563, 0.9016832275390625, 0.901592041015625, 0.9018306274414063, 0.9016535034179688, 1.8594969482421875, 0.90172314453125, 0.901623779296875, 0.9014261474609375, 0.9010974731445313, 0.9016514282226562, 0.9012612915039062, 0.9012162475585938, 0.9010811157226563, 0.900874267578125, 0.9016196899414063, 0.9018163452148438, 0.9015050048828125, 0.9010811157226563, 0.9016350708007812, 0.9010995483398437, 0.9011435546875, 0.9012008666992187, 0.9010196533203125, 0.90096337890625, 0.9009110717773438, 0.9015501098632812, 0.9013790893554687, 0.901444580078125, 0.9009868774414063, 0.9019638061523437, 0.9014251708984375, 0.9013463134765625, 0.9010083618164062, 0.9014886474609375, 0.9014528198242188, 0.9012612915039062, 0.902129638671875, 0.9023948974609375, 0.9013688354492188, 0.9017241821289063, 0.90169140625, 0.9015562133789062, 0.9032264404296875, 0.90172509765625, 0.9013514404296875, 0.9015767211914063, 0.9013986206054687, 0.9023374633789063, 0.9012766723632812, 0.90123876953125, 0.9009448852539063, 0.9015643920898437, 0.9012295532226563, 0.9011148681640625, 0.9011896362304688, 0.9011199951171875, 0.9018316650390625, 0.9017835693359375, 0.9014640502929687, 0.9016084594726562, 0.90189208984375, 0.901802978515625, 0.9020620727539063, 0.9019801635742187, 0.9017937622070312, 0.9018091430664062, 0.90191357421875, 1.858798583984375, 0.9011435546875, 0.9014241333007813, 0.90132275390625, 0.9010053100585937, 0.9013289184570312, 0.9013585815429688, 0.9011660766601562, 0.9014292602539062, 0.901317626953125, 0.901381103515625, 0.901228515625, 0.9015480346679687, 0.9016514282226562, 0.9015521240234375, 0.90144873046875, 0.9019647827148437, 0.9018716430664062, 0.9012531127929687, 0.9012572021484375, 0.901212158203125, 0.9014169311523438, 0.901138427734375, 0.9026416625976562, 0.9016320190429687, 0.9017907104492188, 0.9014876098632812, 0.9016504516601562, 0.901855224609375, 0.9019913940429688, 0.9016053466796875, 0.9015654296875, 0.9016565551757812, 0.9016135864257813, 0.901591064453125, 0.9022617797851562, 0.901928955078125, 0.9018091430664062, 0.901897216796875, 0.9014537963867187, 0.9010780029296875, 0.9012725830078125, 0.9011988525390625, 0.9014630126953125, 0.90176416015625, 0.9015735473632812, 0.9017302856445313, 0.9021542358398438, 0.9014528198242188, 0.9019176635742188, 0.9015859375, 0.9015582275390625, 0.901423095703125, 0.9016873168945313, 0.9015879516601563, 0.9017313232421875, 0.9018091430664062, 0.902240234375, 0.9021122436523438, 0.9021419677734375, 0.9018674926757813, 0.9018511352539063, 0.9022258911132812, 1.8597550048828124, 0.9009326171875, 0.90142822265625, 0.901043212890625, 0.9013135375976562, 0.9019094848632813, 0.9014773559570313, 0.9016790771484375, 0.9016719360351563, 0.9012367553710937, 0.9012531127929687, 0.9010974731445313, 0.901064697265625, 0.90119677734375, 0.9015040283203125, 0.901970947265625, 0.90260888671875, 0.9018121948242187, 0.9016063842773437, 0.9018624267578125, 0.9015449829101563, 0.901992431640625, 0.9017988891601563, 0.901696533203125, 0.9012930297851562, 0.9012428588867187, 0.90197607421875, 0.9014159545898438, 0.90151220703125, 0.9018674926757813, 0.9016678466796875, 0.9016135864257813, 0.9015623779296875, 0.9015643920898437, 0.9014937744140625, 0.902150146484375, 0.9015090942382813, 0.9018839111328125, 0.9017354125976562, 0.9015787353515625, 0.9013851928710938, 0.9017507934570312, 0.9015869140625, 0.9017579345703125, 0.901917724609375, 0.9019903564453124, 0.90163916015625, 0.9023303833007813, 0.901960693359375, 0.9023068237304688, 0.9017538452148437, 0.9017886962890626, 0.901560302734375, 0.9016637573242188, 0.9014384765625, 0.9020631103515625, 0.9018910522460938, 0.9014251708984375, 0.9013934326171875, 0.9016893310546875, 0.9019873657226563, 0.9017251586914062, 0.901432373046875, 1.8595020751953124, 0.9010237426757812, 0.9012930297851562, 0.9010022583007813, 0.9012469482421875, 0.9015675048828125, 0.9011814575195313, 0.9016350708007812, 0.9019985961914062, 0.9014097900390625, 0.9013739624023438, 0.9014691772460938, 0.901528564453125, 0.9014323120117187, 0.90157568359375, 0.9015634155273438, 0.9018613891601562, 0.9021675415039062, 0.9016709594726563, 0.9019002685546875, 0.9019852905273438, 0.9018562622070313, 0.900979736328125, 0.90132373046875, 0.901507080078125, 0.9013309936523437, 0.9011680908203125, 0.9011712036132813, 0.9011783447265626, 0.9020948486328125, 0.9016350708007812, 0.9018470458984374, 0.9016832275390625, 0.901180419921875, 0.9011251220703125, 0.901518310546875, 0.9013657836914063, 0.9012398071289063, 0.90106982421875, 0.9011405029296875, 0.901254150390625, 0.9014476928710937, 0.9010718994140625, 0.9012920532226563, 0.90113330078125, 0.9011609497070312, 0.901159912109375, 0.9013043212890625, 0.9009213256835937, 0.9009336547851563, 0.90114453125, 0.9015357666015625, 0.9015296020507813, 0.9014456176757812, 0.9014261474609375, 0.9017907104492188, 0.9016565551757812, 0.9016832275390625, 0.90138623046875, 0.9014343872070313, 0.9012725830078125, 0.9016371459960938, 0.902470703125, 1.8604583740234375, 0.9015695190429688, 0.9012644653320312, 0.9009939575195313, 0.9012254638671875, 0.9013217163085937, 0.9012008666992187, 0.9012828369140625, 0.9010513916015624, 0.9015951538085938, 0.9012674560546875, 0.9009285278320313, 0.9009203491210938, 0.9009633178710937, 0.9009141845703125, 0.9008394165039062, 0.9009039306640625, 0.901094482421875, 0.9009048461914062, 0.9008230590820312, 0.9013002319335938, 0.9019085083007813, 0.9010206909179688, 0.9013463134765625, 0.9014251708984375, 0.9011159057617187, 0.9022166748046875, 0.9010892944335938, 0.900806640625, 0.9012715454101563, 0.9008599243164063, 0.9013524780273438, 0.9015029907226563, 0.9012828369140625, 0.9010565185546875, 0.9016555786132813, 0.9012265014648437, 0.90136474609375, 0.9013237915039063, 0.9012940673828125, 0.90121728515625, 0.9013165893554688, 0.901396484375, 0.9020753784179687, 0.9011875610351563, 0.9012091064453125, 0.9015101318359375, 0.9015930786132812, 0.90141796875, 0.9013585815429688, 0.9015480346679687, 0.9018736572265625, 0.9019412231445313, 0.9015439453125, 0.9019586791992188, 0.9018480834960938, 0.9013289184570312, 0.9018142700195313, 0.9015265502929688, 0.901791748046875, 0.9013944091796875, 0.9017569580078125, 0.9013258056640625]",tokens/s,1.0926340535470893,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/polyglot-ko-12.8b,EleutherAI/polyglot-ko-12.8b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,,MB,1740.263424,9941.024768,0.0,9294.577664,8910.102528,s,10,10.642888305664064,1.0642888305664062,0.0008435144191809837,1.06450927734375,1.0651936889648437,1.065327557373047,1.0654346520996094,"[1.065136474609375, 1.06546142578125, 1.063631591796875, 1.063218505859375, 1.06368701171875, 1.0628612060546876, 1.0644658203125, 1.064552734375, 1.0647095947265626, 1.0651639404296875]",tokens/s,240.5362084498799,kWh,1.2557922783825134e-05,6.880571250694628e-06,6.097363211219897e-05,8.041212614671872e-05,tokens/kWh,3183599.4428614704,MB,1740.86144,9941.024768,0.0,9294.577664,9220.867072,s,10,630.7354296875,63.07354296875,0.00490218127220892,63.07426171875,63.081011718750005,63.081064453125,63.081106640625,"[63.0750703125, 63.07307421875, 63.081, 63.075046875, 63.07416015625, 63.0811171875, 63.07436328125, 63.0665078125, 63.06765234375, 63.0674375]",tokens/s,0.9988340124037992,kWh,0.0007445980064074199,0.0004081038876869388,0.003603297882636,0.004755999776730358,tokens/kWh,13246.426189555263,,s,629,639.312124511719,1.016394474581429,0.12643667238363906,1.0011002807617186,1.0017415283203124,1.002017578125,2.065029130859375,"[1.0008678588867188, 1.0004398193359374, 1.001291748046875, 1.0011023559570313, 1.0010675048828126, 1.0010203857421875, 1.0008780517578124, 1.000616943359375, 1.0006917114257812, 1.0008555297851562, 1.0007982177734376, 1.000685546875, 1.0008023071289063, 1.000985595703125, 1.0008780517578124, 1.0010081787109375, 1.0006251220703124, 1.0007255249023437, 1.000806396484375, 1.0009149169921876, 1.0006405029296874, 1.0007285766601564, 1.0012835693359374, 1.0011812133789062, 1.0010265502929687, 1.0012303466796875, 1.0011586303710938, 1.0011637573242187, 1.0010664672851564, 1.0014730224609374, 1.0011238403320313, 1.0014033813476562, 1.0011033325195313, 1.0013900756835938, 1.0010501098632814, 1.0017617797851563, 1.0014638061523438, 1.0016256103515624, 1.0009415893554687, 1.0013726806640626, 1.000985595703125, 1.0008145751953126, 1.001359375, 1.0016143188476563, 1.0011217651367188, 1.0013255615234375, 1.0009302978515624, 1.001133056640625, 1.0009508056640626, 1.001533447265625, 1.0019143676757813, 1.0015897827148437, 1.0020361938476563, 1.0020464477539062, 1.00206591796875, 1.0012640991210937, 1.0014044189453124, 1.001734130859375, 1.0015846557617187, 1.00234033203125, 1.0014207763671874, 1.0013255615234375, 2.067092529296875, 1.0008361206054688, 1.0011576538085938, 1.0006384887695312, 1.001079833984375, 1.0007879638671875, 1.0012293090820312, 1.0010501098632814, 1.001322509765625, 1.0013265991210938, 1.0013900756835938, 1.000838134765625, 1.001486328125, 1.0010675048828126, 1.0011484375, 1.0016091918945313, 1.001449462890625, 1.0011023559570313, 1.0005330200195313, 1.0008074340820312, 1.0010623779296874, 1.0006220703125, 1.0009927978515625, 1.0007716064453125, 1.001026611328125, 1.0008770141601562, 1.0014136352539063, 1.0009508056640626, 1.0009508056640626, 1.00097021484375, 1.001290771484375, 1.00075830078125, 1.0016583862304687, 1.0007131958007813, 1.0006619873046876, 1.0005339965820312, 1.0010706176757813, 1.0007859497070313, 1.0006456298828126, 1.0009036865234375, 1.00139111328125, 1.0010776977539062, 1.0015672607421875, 1.0008135375976563, 1.0011463623046875, 1.000784912109375, 1.0035189819335937, 1.00113818359375, 1.0015252685546876, 1.0012507934570312, 1.0016573486328124, 1.0014893798828124, 1.001533447265625, 1.0010839233398436, 1.0011525268554688, 1.0011566162109375, 1.0015396118164062, 1.0014955444335938, 1.0011074829101563, 1.0009037475585938, 1.0016132202148438, 1.0009343872070313, 1.002029052734375, 2.06504150390625, 1.0005913696289062, 1.0010398559570313, 1.00097021484375, 1.0005196533203125, 1.0015057983398437, 1.0011084594726563, 1.0007337036132813, 1.0012190551757814, 1.0008473510742188, 1.0012252197265625, 1.0008402099609375, 1.0011617431640625, 1.0010194091796876, 1.0008719482421875, 1.0009927978515625, 1.0008237915039062, 1.00075927734375, 1.0011688842773439, 1.000806396484375, 1.0008606567382812, 1.0010132446289062, 1.0011740112304688, 1.00221337890625, 1.0005995483398438, 1.000721435546875, 1.00090673828125, 1.0007039794921875, 1.001343994140625, 1.001470947265625, 1.0014852905273437, 1.00143408203125, 1.0017413330078124, 1.002018798828125, 1.0018693237304688, 1.0017587280273437, 1.0011954956054687, 1.0007203979492187, 1.0011064453125, 1.00105419921875, 1.0013839111328124, 1.0012108764648437, 1.001881591796875, 1.0012119140625, 1.0016245727539062, 1.0019154052734376, 1.0013501586914062, 1.0026547241210937, 1.0016737060546874, 1.0011678466796874, 1.00153857421875, 1.0014085083007813, 1.0018191528320313, 1.001275390625, 1.0014157104492187, 1.0018908081054687, 1.0011791381835937, 1.0009927978515625, 1.0019522705078125, 1.0013368530273437, 1.0016307373046875, 1.0016552734375, 1.001829345703125, 2.064997314453125, 1.001175048828125, 1.0011033935546876, 1.0011688232421876, 1.001164794921875, 1.0007736206054687, 1.001064453125, 1.0007973022460936, 1.00076025390625, 1.0006077270507812, 1.0007183227539063, 1.0011361083984376, 1.0011351318359376, 1.0006005859375, 1.0008688354492188, 1.000642578125, 1.00075830078125, 1.0010562744140625, 1.001421875, 1.0009476318359376, 1.000995849609375, 1.0008811645507814, 1.001438232421875, 1.000816650390625, 1.0011361083984376, 1.0006569213867187, 1.0008370971679688, 1.0008350830078125, 1.00099072265625, 1.0007787475585936, 1.0014464111328125, 1.0013634643554687, 1.0017720336914062, 1.001069580078125, 1.001523193359375, 1.0014351196289062, 1.002029052734375, 1.001865234375, 1.0020095825195312, 1.0007572631835937, 1.0010081176757812, 1.0010040283203125, 1.000943603515625, 1.001080810546875, 1.0031155395507811, 1.000857666015625, 1.00139208984375, 1.001006103515625, 1.0015139770507813, 1.0011719970703126, 1.0016010131835937, 1.0014443359375, 1.0011443481445312, 1.0013952026367188, 1.0011340942382811, 1.0010603637695312, 1.0010203857421875, 1.0011033935546876, 1.0015077514648438, 1.00125390625, 1.002071044921875, 1.0015109252929688, 1.0014412841796876, 2.065207275390625, 1.0004561767578124, 1.0008197021484375, 1.0008104858398437, 1.0015027465820312, 1.0008872680664063, 1.0009497680664063, 1.0020311279296874, 1.0013726806640626, 1.0015405883789064, 1.00103271484375, 1.0013511962890624, 1.0011668701171874, 1.0011986083984374, 1.00210791015625, 1.0007920532226562, 1.0011351318359376, 1.0023803100585937, 1.0009579467773437, 1.0010460205078124, 1.0012252197265625, 1.0007500610351563, 1.001091064453125, 1.0007879638671875, 1.0017576904296874, 1.0010828857421874, 1.0014474487304688, 1.0011094970703125, 1.0007890014648437, 1.0009169921875, 1.0007787475585936, 1.0004838256835937, 1.0008545532226563, 1.0006609497070313, 1.0009682006835938, 1.0007777099609374, 1.0011300048828125, 1.00124365234375, 1.000796142578125, 1.0009343872070313, 1.0009251708984375, 1.000722412109375, 1.0007971801757813, 1.0006896362304687, 1.0014924926757813, 1.0007080688476562, 1.0007705688476562, 1.0013204345703124, 1.001218017578125, 1.0010511474609376, 1.0009517822265626, 1.0008607177734374, 1.0009199829101563, 1.00119140625, 1.0017146606445313, 1.0010194091796876, 1.0013358154296874, 1.003936767578125, 1.001802734375, 1.0014443359375, 1.0012477416992187, 1.0015396118164062, 1.0018938598632812, 2.064691162109375, 1.0003916625976563, 1.0009784545898437, 1.0010337524414064, 1.0008944702148437, 1.00107470703125, 1.0008616943359374, 1.001354248046875, 1.00143408203125, 1.0012088623046875, 1.0020802612304687, 1.0009651489257811, 1.001312255859375, 1.0014505004882812, 1.0007481079101563, 1.0010009155273438, 1.0012723388671876, 1.0009712524414063, 1.0011033325195313, 1.0011371459960938, 1.0015723266601562, 1.0016163940429688, 1.0008381958007813, 1.0017801513671876, 1.0015897827148437, 1.0014259033203126, 1.0019799194335937, 1.0012518310546874, 1.0014515380859375, 1.0014484252929687, 1.001759765625, 1.00107568359375, 1.0014505004882812, 1.0014423217773438, 1.001112548828125, 1.0011678466796874, 1.0010286254882812, 1.0009210815429688, 1.0033643798828125, 1.0010767211914062, 1.001469970703125, 1.0009139404296874, 1.001143310546875, 1.00132763671875, 1.0011791381835937, 1.001169921875, 1.0012620849609375, 1.0009456787109374, 1.0010347290039063, 1.00092724609375, 1.0015047607421874, 1.00096923828125, 1.0009251708984375, 1.0013870239257812, 1.0013132934570312, 1.0014105834960938, 1.0011658325195312, 1.0012948608398438, 1.0014935302734376, 1.0009978637695311, 1.0015344848632812, 1.001290771484375, 1.0020157470703126, 2.0664228515625, 1.001302001953125, 1.000827880859375, 1.0009938354492187, 1.0006937255859376, 1.0006784057617188, 1.000911865234375, 1.0006487426757813, 1.0011852416992189, 1.0008043823242188, 1.0012477416992187, 1.0013726806640626, 1.0013101806640625, 1.0008023071289063, 1.0008514404296875, 1.0008248291015625, 1.0011658325195312, 1.001006103515625, 1.0012498168945312, 1.0011207885742188, 1.0012610473632813, 1.0012415771484375, 1.0010951538085937, 1.0023833618164062, 1.0010685424804688, 1.0005288696289063, 1.000853515625, 1.000543212890625, 1.0008811645507814, 1.0009784545898437, 1.0013153076171875, 1.0010859375, 1.0009425659179687, 1.0009343872070313, 1.000748046875, 1.000453125, 1.0013388671875, 1.00075927734375, 1.000826904296875, 1.00143310546875, 1.0011207885742188, 1.0015027465820312, 1.001175048828125, 1.0009395141601563, 1.0011279296875, 1.0010224609375, 1.0013798217773437, 1.0013460693359375, 1.00193896484375, 1.00166552734375, 1.0014197998046874, 1.0018252563476562, 1.0011893920898438, 1.0011268920898437, 1.0015764770507813, 1.0016574096679687, 1.0018969116210938, 1.0011760864257813, 1.0016829223632813, 1.0013952026367188, 1.0015078125, 1.0017791748046876, 1.001365478515625, 2.065933349609375, 1.00049609375, 1.0008944702148437, 1.00080126953125, 1.0008135375976563, 1.0008340454101563, 1.0008822021484376, 1.001302001953125, 1.0008237915039062, 1.0006292724609376, 1.0011105346679687, 1.0010654907226562, 1.0013255615234375, 1.0006692504882813, 1.0007797241210938, 1.0010091552734375, 1.0015211791992187, 1.0007367553710937, 1.0007234497070312, 1.0005473022460938, 1.0006712036132812, 1.00077978515625, 1.0011351318359376, 1.001279541015625, 1.0010480346679687, 1.0010921020507813, 1.000892333984375, 1.001080810546875, 1.00067431640625, 1.0010296020507812, 1.0010767822265625, 1.0005595703125, 1.0013173828125, 1.0010501098632814, 1.0013409423828126, 1.0012006225585937, 1.0011443481445312, 1.0012139282226562, 1.0008053588867187, 1.0007408447265624, 1.0009384765625, 1.0005883178710937, 1.0010715942382813, 1.0009569091796875, 1.0010900268554688, 1.0009027099609376, 1.000849365234375, 1.0009651489257811, 1.0008524780273438, 1.001027587890625, 1.0014033813476562, 1.0012498168945312, 1.00135009765625, 1.001059326171875, 1.0014095458984376, 1.0020269775390624, 1.0020638427734374, 1.0020095825195312, 1.0013235473632813, 1.0012037353515626, 1.0014484252929687, 1.0009476928710936, 1.0012733154296876, 2.066282470703125, 1.0010859375, 1.0004767456054688, 1.0010264892578125, 1.0008135375976563, 1.0007572631835937, 1.0011146240234374, 1.0009620361328124, 1.0013931274414063, 1.0009630737304687, 1.0009375, 1.0007900390625, 1.0008340454101563, 1.0009886474609375, 1.0007900390625, 1.0007756958007812, 1.0007982177734376, 1.0019952392578124, 1.0009794311523437, 1.0006138916015626, 1.0008309936523438, 1.0008893432617187, 1.0010368041992188, 1.0011248779296875, 1.0005238037109374, 1.0006343383789063, 1.0008145751953126, 1.0007039794921875, 1.0007521362304688, 1.0009896850585938, 1.0010880126953126, 1.0012303466796875, 1.00091796875, 1.0013450317382813, 1.000784912109375, 1.0007367553710937, 1.0009825439453126, 1.0009108276367187, 1.001238525390625, 1.0008944702148437, 1.0009989013671876, 1.0009886474609375, 1.0009651489257811, 1.0011422729492188, 1.0012374877929688, 1.0012569580078126, 1.00099072265625, 1.0008780517578124, 1.0009682006835938, 1.0007080688476562, 1.001248779296875, 1.0015518798828125, 1.0010582885742187, 1.0014033813476562, 1.001016357421875, 1.0009476318359376, 1.0012354736328124, 1.0020833129882813, 1.0019143676757813, 1.0018539428710938, 1.0019850463867188, 1.0015999755859375, 1.0015641479492188, 2.0665712890625, 1.0007060546875, 1.0006599731445311, 1.00056884765625, 1.000685546875, 1.0005678100585937, 1.0009722900390625, 1.000806396484375, 1.0007203979492187, 1.0008207397460938, 1.0005872802734375, 1.0005545043945312, 1.00069384765625, 1.0008534545898438, 1.0013716430664064, 1.0008811645507814, 1.0013511962890624, 1.0014893798828124, 1.0010726318359375, 1.0017157592773438, 1.0011299438476562, 1.00086376953125, 1.00071728515625, 1.0005729370117187, 1.0008995971679688, 1.0005995483398438, 1.0024898681640626, 1.0008678588867188, 1.000722412109375, 1.0012149658203124, 1.0008237915039062, 1.00071728515625, 1.00101220703125, 1.0010562744140625, 1.0010572509765625, 1.00170751953125, 1.00140234375, 1.000974365234375, 1.0007828369140626, 1.0009139404296874, 1.0011300048828125, 1.0010675048828126, 1.0013562622070313, 1.000953857421875, 1.0009722900390625, 1.0011146240234374, 1.0015631103515625, 1.000975341796875, 1.0017495727539063, 1.0013224487304688, 1.0012518310546874, 1.001439208984375, 1.0012415771484375, 1.0010685424804688, 1.0010286254882812, 1.00105419921875, 1.0016696166992187, 1.0011002807617186, 1.0011443481445312, 1.0017423095703124, 1.0011033325195313, 1.0011924438476563, 1.0012406005859376]",tokens/s,0.9838699688049951,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-3b,stabilityai/stablelm-base-alpha-3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1400.946688,4467.458048,0.0,3821.010944,3588.539904,s,10,2.8509368591308593,0.285093685913086,0.0018864014341163783,0.28445895385742187,0.2852971740722656,0.28801900939941405,0.29019647766113277,"[0.2907408447265625, 0.28459954833984374, 0.28446585083007814, 0.2842637329101563, 0.28442007446289064, 0.2843152465820312, 0.2845796203613281, 0.2844075622558594, 0.28469232177734377, 0.2844520568847656]",tokens/s,897.9504375205436,kWh,3.3620131512482964e-06,1.8420311789971794e-06,1.613754377422258e-05,2.134158810446806e-05,tokens/kWh,11995358.487234792,MB,1400.946688,4467.458048,0.0,3821.010944,3698.94656,s,10,165.60105078125,16.560105078124998,0.002304538991507171,16.5600693359375,16.5629611328125,16.56372666015625,16.56433908203125,"[16.5644921875, 16.559681640625, 16.560998046875, 16.557119140625, 16.55881640625, 16.558265625, 16.56045703125, 16.562791015625, 16.556978515625, 16.561451171875]",tokens/s,3.804323686521747,kWh,0.00019549797135922647,0.00010714875620388434,0.0009433736405007801,0.0012460203680638908,tokens/kWh,50560.97124470891,,s,629,167.89605535888654,0.2669253662303445,0.03378333259823164,0.26283621215820313,0.2630875061035156,0.263170263671875,0.5471718627929687,"[0.26277273559570313, 0.26256280517578123, 0.2627635192871094, 0.2625884094238281, 0.262614013671875, 0.26269287109375, 0.26282803344726563, 0.26283111572265627, 0.2626437072753906, 0.26271026611328124, 0.2626826171875, 0.2628269958496094, 0.2629119873046875, 0.2628935546875, 0.26298162841796874, 0.26274612426757815, 0.2627860412597656, 0.26264779663085935, 0.26285055541992186, 0.26276556396484374, 0.26288433837890623, 0.2632120361328125, 0.2632437744140625, 0.262935546875, 0.26322021484375, 0.2628751220703125, 0.26288433837890623, 0.2628751220703125, 0.2629795837402344, 0.26279833984375, 0.263130126953125, 0.2629437561035156, 0.263046142578125, 0.26281777954101565, 0.26273895263671876, 0.26270721435546873, 0.26306353759765627, 0.2627993469238281, 0.263014404296875, 0.26284442138671876, 0.26303692626953123, 0.26287103271484374, 0.26279220581054685, 0.26292633056640624, 0.2630000610351563, 0.2632509460449219, 0.2630911865234375, 0.26301644897460935, 0.2629447631835938, 0.2627860412597656, 0.26292837524414064, 0.26297344970703124, 0.2631321716308594, 0.26289767456054686, 0.26301132202148436, 0.2628464660644531, 0.26280755615234375, 0.2627205200195312, 0.2628055114746094, 0.26311065673828127, 0.26308914184570314, 0.26280755615234375, 0.5474641723632813, 0.2627502136230469, 0.262677490234375, 0.26272564697265627, 0.26257305908203127, 0.2627666015625, 0.26281777954101565, 0.26266726684570313, 0.2627686462402344, 0.26266009521484374, 0.2626662292480469, 0.26324069213867185, 0.2628741149902344, 0.26273382568359377, 0.26285772705078125, 0.2628853759765625, 0.26265701293945315, 0.2628894653320312, 0.2630328369140625, 0.26302566528320315, 0.26280856323242185, 0.2628055114746094, 0.2626734008789062, 0.2630440979003906, 0.2628382568359375, 0.26280038452148435, 0.2630901794433594, 0.26281573486328125, 0.2629386291503906, 0.2631526489257813, 0.2629437561035156, 0.2629140625, 0.26282803344726563, 0.2627686462402344, 0.26325503540039064, 0.26316903686523435, 0.26300314331054686, 0.26308096313476564, 0.263041015625, 0.26282290649414064, 0.26275430297851565, 0.26275942993164064, 0.2629099426269531, 0.26284542846679687, 0.26273995971679687, 0.2628136901855469, 0.2626826171875, 0.26290689086914065, 0.26275225830078125, 0.2628515930175781, 0.26283416748046873, 0.2628751220703125, 0.2627901306152344, 0.26285772705078125, 0.26277273559570313, 0.26280142211914065, 0.26279833984375, 0.2628833312988281, 0.26294168090820313, 0.2629375915527344, 0.26277273559570313, 0.26275839233398435, 0.2627430419921875, 0.547251220703125, 0.2627635192871094, 0.26263143920898435, 0.2626652221679687, 0.2625669250488281, 0.2627276916503906, 0.2626590576171875, 0.26271026611328124, 0.2630768737792969, 0.26291915893554685, 0.26271435546875, 0.2629437561035156, 0.2627635192871094, 0.2625976257324219, 0.262697998046875, 0.2629939270019531, 0.2626723937988281, 0.2627799072265625, 0.26286285400390624, 0.26268978881835936, 0.2628239440917969, 0.2629273681640625, 0.2628853759765625, 0.2630993957519531, 0.2629744567871094, 0.26282290649414064, 0.26280856323242185, 0.2628874206542969, 0.26281573486328125, 0.2628106384277344, 0.26278707885742186, 0.2631178283691406, 0.2629519348144531, 0.26300827026367185, 0.2628822937011719, 0.262793212890625, 0.2627358703613281, 0.262898681640625, 0.2627635192871094, 0.2630543212890625, 0.26283621215820313, 0.2628751220703125, 0.2629508972167969, 0.2629242858886719, 0.26298675537109373, 0.26301336669921876, 0.2632284240722656, 0.26328472900390626, 0.2629119873046875, 0.2631649169921875, 0.26297854614257815, 0.26286181640625, 0.26307379150390625, 0.26298880004882813, 0.26273995971679687, 0.26296728515625, 0.26279730224609377, 0.2629386291503906, 0.26305535888671877, 0.262835205078125, 0.2627409973144531, 0.26296728515625, 0.26286181640625, 0.5470679321289063, 0.26265496826171875, 0.2626447448730469, 0.26254437255859375, 0.2625976257324219, 0.26270513916015625, 0.2626662292480469, 0.2626078796386719, 0.2626385803222656, 0.2627911682128906, 0.26279525756835936, 0.26274713134765626, 0.26267544555664063, 0.2626795654296875, 0.26265396118164064, 0.2627348327636719, 0.2626273193359375, 0.26269287109375, 0.26267648315429687, 0.26258740234375, 0.26294168090820313, 0.2628188171386719, 0.2626805725097656, 0.26300927734375, 0.26291915893554685, 0.2627901306152344, 0.2627624816894531, 0.2626580505371094, 0.26270925903320314, 0.26276556396484374, 0.2627819519042969, 0.26282803344726563, 0.26264779663085935, 0.26278707885742186, 0.26265087890625, 0.26304510498046874, 0.26298162841796874, 0.26296728515625, 0.2629273681640625, 0.26303079223632814, 0.26278091430664063, 0.262898681640625, 0.2630758361816406, 0.2631127014160156, 0.2629908447265625, 0.2628485107421875, 0.2629222412109375, 0.2627747802734375, 0.26271026611328124, 0.2629294128417969, 0.26290277099609377, 0.2629468078613281, 0.2629150695800781, 0.2629375915527344, 0.262803466796875, 0.2627768249511719, 0.26270721435546873, 0.26287307739257815, 0.2632929382324219, 0.2630379638671875, 0.2627747802734375, 0.26309222412109373, 0.26279730224609377, 0.5472327880859374, 0.2629273681640625, 0.2627839965820313, 0.26275225830078125, 0.26269183349609376, 0.26259249877929686, 0.26274508666992186, 0.26279425048828126, 0.2629375915527344, 0.2630973510742188, 0.26277069091796873, 0.2626744384765625, 0.26267544555664063, 0.2627768249511719, 0.2626908264160156, 0.2628167724609375, 0.2626355285644531, 0.2627747802734375, 0.2627993469238281, 0.26275942993164064, 0.2628392944335938, 0.26277069091796873, 0.2627286987304687, 0.26279730224609377, 0.2626713562011719, 0.26264984130859376, 0.2627358703613281, 0.26286590576171875, 0.26278091430664063, 0.2628464660644531, 0.2626447448730469, 0.2627850341796875, 0.2631075744628906, 0.26286285400390624, 0.26297549438476564, 0.26297650146484375, 0.26297344970703124, 0.26278912353515627, 0.2626252746582031, 0.2630748291015625, 0.26306149291992187, 0.26298880004882813, 0.2631884765625, 0.26296218872070315, 0.2627358703613281, 0.26285055541992186, 0.26278912353515627, 0.26330316162109374, 0.26291302490234375, 0.26285055541992186, 0.2627799072265625, 0.2628055114746094, 0.2628536376953125, 0.2628884582519531, 0.26296319580078126, 0.26335232543945314, 0.262930419921875, 0.26275326538085936, 0.2627911682128906, 0.262835205078125, 0.26279833984375, 0.2627778625488281, 0.2626990051269531, 0.547040283203125, 0.2626211853027344, 0.2626027526855469, 0.26274713134765626, 0.26255462646484373, 0.26267034912109377, 0.2627778625488281, 0.2628802490234375, 0.26282907104492187, 0.2628853759765625, 0.26311578369140626, 0.2628106384277344, 0.262761474609375, 0.26274200439453127, 0.262645751953125, 0.2627491760253906, 0.2628413391113281, 0.2627215270996094, 0.262719482421875, 0.26273690795898436, 0.2629324951171875, 0.26294168090820313, 0.26289767456054686, 0.2629847106933594, 0.26286590576171875, 0.262866943359375, 0.2628167724609375, 0.2628802490234375, 0.262972412109375, 0.2628741149902344, 0.26290072631835937, 0.2630010986328125, 0.26286489868164065, 0.2628536376953125, 0.26311883544921877, 0.26306561279296875, 0.26278912353515627, 0.2628884582519531, 0.2627799072265625, 0.2629795837402344, 0.26278912353515627, 0.2628812866210937, 0.26278912353515627, 0.2628106384277344, 0.26293145751953123, 0.26276760864257814, 0.2627758178710938, 0.2628536376953125, 0.26280755615234375, 0.26282086181640624, 0.26271026611328124, 0.26280242919921876, 0.26279730224609377, 0.2627082214355469, 0.26268365478515626, 0.2629601135253906, 0.26269287109375, 0.2627307434082031, 0.26279525756835936, 0.26303079223632814, 0.26300314331054686, 0.262866943359375, 0.2628792419433594, 0.5475604248046875, 0.2626938781738281, 0.262719482421875, 0.26291915893554685, 0.26270309448242185, 0.262719482421875, 0.26266827392578124, 0.2629447631835938, 0.26271743774414064, 0.2627205200195312, 0.262645751953125, 0.26268161010742186, 0.26261196899414063, 0.2626805725097656, 0.26280960083007815, 0.26294784545898436, 0.2627061767578125, 0.26282803344726563, 0.26302462768554685, 0.2627491760253906, 0.2626959228515625, 0.2627440490722656, 0.26291915893554685, 0.26292120361328125, 0.26270721435546873, 0.26285260009765626, 0.26279525756835936, 0.26292327880859373, 0.2627440490722656, 0.26276043701171875, 0.26281268310546874, 0.2629427185058594, 0.26270925903320314, 0.2629847106933594, 0.26284442138671876, 0.2630963134765625, 0.26291815185546874, 0.2629662780761719, 0.26276556396484374, 0.2630348815917969, 0.2629161071777344, 0.26322738647460936, 0.26300827026367185, 0.26284033203125, 0.26286798095703123, 0.2630676574707031, 0.2629591064453125, 0.26298062133789063, 0.2627184753417969, 0.2629345397949219, 0.2627491760253906, 0.26317108154296875, 0.2627276916503906, 0.26300619506835937, 0.26283621215820313, 0.26308709716796874, 0.26335028076171874, 0.26290585327148436, 0.262793212890625, 0.2628751220703125, 0.2630625305175781, 0.262866943359375, 0.26292120361328125, 0.5473106079101563, 0.262751220703125, 0.26283111572265627, 0.2626652221679687, 0.2627184753417969, 0.26272357177734373, 0.26292327880859373, 0.26301031494140625, 0.26290585327148436, 0.26286181640625, 0.26279220581054685, 0.2627553405761719, 0.2628884582519531, 0.26308914184570314, 0.26276556396484374, 0.2630502319335937, 0.26282803344726563, 0.26288641357421877, 0.2627993469238281, 0.26274200439453127, 0.26290277099609377, 0.2628853759765625, 0.2627716979980469, 0.2627716979980469, 0.2627010498046875, 0.26282803344726563, 0.2629017639160156, 0.26265087890625, 0.262935546875, 0.2629508972167969, 0.2630492248535156, 0.26289971923828126, 0.2630379638671875, 0.2628894653320312, 0.2629601135253906, 0.2628935546875, 0.2628833312988281, 0.26278707885742186, 0.26283724975585937, 0.2631280517578125, 0.2629242858886719, 0.26284237670898436, 0.2629294128417969, 0.262930419921875, 0.2628167724609375, 0.2629847106933594, 0.26290585327148436, 0.26296832275390625, 0.2628269958496094, 0.2630911865234375, 0.2628587646484375, 0.26311578369140626, 0.2628044738769531, 0.2630000610351563, 0.26291915893554685, 0.26306866455078126, 0.26301644897460935, 0.2631628723144531, 0.2630225830078125, 0.26312396240234376, 0.26298367309570314, 0.26306561279296875, 0.2629017639160156, 0.547757080078125, 0.2626713562011719, 0.26260171508789065, 0.262729736328125, 0.26323355102539064, 0.2629171142578125, 0.2627225646972656, 0.2627696533203125, 0.262856689453125, 0.2626641845703125, 0.26276760864257814, 0.2626375732421875, 0.2626744384765625, 0.2626744384765625, 0.26258636474609376, 0.262724609375, 0.2627061767578125, 0.26262835693359377, 0.26265087890625, 0.26280856323242185, 0.2628044738769531, 0.26286181640625, 0.2627768249511719, 0.26277069091796873, 0.2627133483886719, 0.26289971923828126, 0.26298880004882813, 0.2631403503417969, 0.2628608093261719, 0.26283416748046873, 0.26289254760742187, 0.26295297241210935, 0.2626713562011719, 0.2626641845703125, 0.2626150512695313, 0.26276455688476563, 0.26270413208007815, 0.2628331604003906, 0.262793212890625, 0.26271539306640623, 0.2627286987304687, 0.2627010498046875, 0.26297854614257815, 0.26323251342773435, 0.26312295532226565, 0.2629427185058594, 0.2632806396484375, 0.2629427185058594, 0.26271435546875, 0.26275326538085936, 0.2626631774902344, 0.262866943359375, 0.2626744384765625, 0.26271539306640623, 0.26262631225585936, 0.26273895263671876, 0.26274713134765626, 0.2630215759277344, 0.26290380859375, 0.2628802490234375, 0.26276760864257814, 0.26292837524414064, 0.26273995971679687, 0.5472122802734375, 0.262940673828125, 0.2628536376953125, 0.2628188171386719, 0.26270513916015625, 0.26295501708984376, 0.2627082214355469, 0.26284954833984375, 0.26267852783203127, 0.2627666015625, 0.26269491577148435, 0.2628239440917969, 0.26267034912109377, 0.26264883422851565, 0.2627061767578125, 0.2629591064453125, 0.2631485290527344, 0.26324786376953124, 0.26280755615234375, 0.26280960083007815, 0.26319256591796875, 0.26267852783203127, 0.2628167724609375, 0.2628433837890625, 0.26269287109375, 0.26274713134765626, 0.2629744567871094, 0.26298367309570314, 0.26273178100585937, 0.26305227661132813, 0.26277886962890623, 0.26314138793945313, 0.26285260009765626, 0.26283621215820313, 0.2628055114746094, 0.26295297241210935, 0.2627491760253906, 0.2626693115234375, 0.26276043701171875, 0.26314752197265623, 0.26287820434570314, 0.26291302490234375, 0.26278912353515627, 0.2630154113769531, 0.2626723937988281, 0.2631383056640625, 0.2627901306152344, 0.26301644897460935, 0.2626805725097656, 0.2629847106933594, 0.262761474609375, 0.26287103271484374, 0.26281268310546874, 0.26283724975585937, 0.2633441162109375, 0.2631127014160156, 0.2628884582519531, 0.26285260009765626, 0.26326937866210937, 0.26319155883789064, 0.2628894653320312, 0.26291815185546874, 0.2629099426269531]",tokens/s,3.7463655632377972,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,/,/,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-30b,facebook/opt-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -30534,25 +28466,24 @@ ChildProcessError: Traceback (most recent call last): report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 373, in cached_file - raise EnvironmentError( -OSError: / does not appear to have a file named config.json. Checkout 'https://huggingface.co///tree/None' for available files. + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-70m,EleutherAI/pythia-70m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1298.415616,872.93952,0.0,226.492416,184.397824,s,11,0.17165715312957763,0.015605195739052512,0.0007607833862353127,0.01534540843963623,0.01575004768371582,0.016863200187683107,0.017753722190856934,"[0.01797635269165039, 0.015421407699584961, 0.015347392082214355, 0.015315903663635253, 0.015256128311157226, 0.01575004768371582, 0.01534540843963623, 0.015287008285522461, 0.015340383529663087, 0.01527171230316162, 0.01534540843963623]",tokens/s,16404.792626814135,kWh,1.8500959462776245e-07,1.0137606156642736e-07,3.4862617005003736e-07,6.350118262442272e-07,tokens/kWh,403142098.1780924,MB,1298.743296,872.93952,0.0,226.492416,197.933568,s,11,10.171151123046876,0.9246501020951705,0.010660233315434522,0.920117919921875,0.9293056640625,0.9430220336914062,0.9539951293945312,"[0.9567384033203125, 0.9293056640625, 0.9245167846679687, 0.9185679931640625, 0.920117919921875, 0.9228417358398437, 0.919580810546875, 0.9193172607421874, 0.9187877807617187, 0.923688232421875, 0.9176885375976562]",tokens/s,68.13388097535262,kWh,1.1024352834572037e-05,6.040874968975529e-06,1.993414258140665e-05,3.6999370384954216e-05,tokens/kWh,1702731.6774454878,,s,692,10.307773435592651,0.014895626352012501,0.0018980452913926306,0.014577664375305176,0.01503354845046997,0.015412480163574216,0.030279741020202637,"[0.016365568161010743, 0.016268287658691406, 0.01589350414276123, 0.01510707187652588, 0.015166463851928711, 0.015711232185363768, 0.015400959968566894, 0.015467519760131837, 0.015654911994934084, 0.015433728218078613, 0.015542304039001465, 0.015136799812316894, 0.015172543525695801, 0.015097855567932129, 0.015466496467590332, 0.016034816741943358, 0.015383551597595215, 0.015619071960449218, 0.015451135635375977, 0.015178751945495606, 0.015625215530395507, 0.015426560401916504, 0.015222847938537598, 0.015156160354614258, 0.015565823554992676, 0.016327680587768553, 0.015833087921142578, 0.01530675220489502, 0.015086591720581055, 0.01507737636566162, 0.01501088047027588, 0.01481721591949463, 0.015222784042358398, 0.015755264282226563, 0.016021503448486327, 0.015339520454406739, 0.015148032188415527, 0.01509171199798584, 0.015104000091552734, 0.015050751686096191, 0.015105024337768554, 0.014737407684326171, 0.014621696472167968, 0.014722047805786133, 0.014584896087646484, 0.014627776145935058, 0.014577664375305176, 0.014598143577575684, 0.014589952468872071, 0.014524415969848633, 0.014585856437683106, 0.01456332778930664, 0.014573568344116212, 0.014537728309631348, 0.014552063941955566, 0.014576640129089356, 0.014576640129089356, 0.014548992156982422, 0.01457049560546875, 0.014616576194763184, 0.014621696472167968, 0.014593024253845215, 0.030418943405151368, 0.014628864288330079, 0.014632960319519044, 0.0145797119140625, 0.01460531234741211, 0.014616576194763184, 0.01458073616027832, 0.014573568344116212, 0.014584832191467285, 0.014578687667846679, 0.014615551948547363, 0.014621696472167968, 0.01458790397644043, 0.014673919677734374, 0.014622719764709472, 0.01457151985168457, 0.014611455917358398, 0.0145797119140625, 0.014619647979736328, 0.014697471618652343, 0.014582783699035644, 0.014603263854980468, 0.01460223960876465, 0.01459404754638672, 0.014568448066711426, 0.014610431671142577, 0.014583807945251465, 0.014577664375305176, 0.014595071792602539, 0.014558208465576173, 0.01457254409790039, 0.014645248413085938, 0.014598143577575684, 0.015670271873474122, 0.015376383781433106, 0.015114239692687988, 0.015088640213012695, 0.015019007682800293, 0.015113216400146484, 0.015021056175231933, 0.014995455741882324, 0.014962688446044922, 0.014998527526855468, 0.014962688446044922, 0.014985216140747071, 0.014946304321289062, 0.01500876808166504, 0.014965760231018066, 0.015024191856384277, 0.014966719627380371, 0.014658559799194336, 0.014590975761413574, 0.014565376281738282, 0.01461350440979004, 0.014582783699035644, 0.015023103713989258, 0.01509887981414795, 0.014726143836975097, 0.014541824340820313, 0.0145797119140625, 0.014606335639953612, 0.014665727615356445, 0.01459609603881836, 0.030462976455688476, 0.014574591636657714, 0.014746623992919922, 0.015026176452636719, 0.015056960105895996, 0.015804351806640624, 0.015242239952087403, 0.015034367561340332, 0.015006719589233398, 0.014931967735290527, 0.01477734375, 0.0145797119140625, 0.014584832191467285, 0.014592000007629394, 0.014552063941955566, 0.014543871879577636, 0.014574591636657714, 0.014581760406494141, 0.014575615882873535, 0.014657535552978516, 0.014608384132385254, 0.014558208465576173, 0.014607359886169433, 0.014606335639953612, 0.01459609603881836, 0.014619647979736328, 0.014576640129089356, 0.014553088188171387, 0.014573568344116212, 0.014575615882873535, 0.014550016403198243, 0.01458892822265625, 0.014589952468872071, 0.014590975761413574, 0.014647295951843262, 0.01455513572692871, 0.014576640129089356, 0.014583807945251465, 0.014652416229248047, 0.01460223960876465, 0.014617600440979005, 0.014598143577575684, 0.0145797119140625, 0.01457254409790039, 0.014576640129089356, 0.014589952468872071, 0.01458790397644043, 0.014652416229248047, 0.014550016403198243, 0.01457049560546875, 0.01458892822265625, 0.014541824340820313, 0.0145797119140625, 0.0145633602142334, 0.014960607528686524, 0.014947327613830566, 0.014850111961364746, 0.014465984344482421, 0.014386176109313965, 0.014425087928771972, 0.014609408378601075, 0.014697471618652343, 0.014664704322814942, 0.030324735641479493, 0.014525440216064453, 0.014568448066711426, 0.014598143577575684, 0.01457049560546875, 0.014592000007629394, 0.014541824340820313, 0.014660639762878418, 0.014574560165405273, 0.014515199661254884, 0.014586879730224609, 0.014577664375305176, 0.01461350440979004, 0.014574591636657714, 0.01455513572692871, 0.014520319938659668, 0.014518272399902344, 0.01457151985168457, 0.014554112434387208, 0.01456332778930664, 0.014540800094604492, 0.01457049560546875, 0.01456332778930664, 0.014504960060119629, 0.014553088188171387, 0.014619647979736328, 0.014583807945251465, 0.014557184219360352, 0.014566399574279786, 0.014529536247253418, 0.014600192070007324, 0.014612480163574219, 0.01456332778930664, 0.014575615882873535, 0.014627840042114258, 0.01467084789276123, 0.014575615882873535, 0.014560256004333496, 0.014663680076599121, 0.014564352035522461, 0.014524415969848633, 0.01454694366455078, 0.01458073616027832, 0.014548992156982422, 0.01452444839477539, 0.014602208137512207, 0.01455513572692871, 0.01456332778930664, 0.014532608032226562, 0.01461350440979004, 0.014622719764709472, 0.014517248153686524, 0.01459404754638672, 0.014558208465576173, 0.014556159973144531, 0.014548992156982422, 0.01457049560546875, 0.014508031845092773, 0.014590975761413574, 0.014540800094604492, 0.014600192070007324, 0.01469644832611084, 0.014692352294921876, 0.030276607513427735, 0.01461350440979004, 0.014553088188171387, 0.014508031845092773, 0.014564352035522461, 0.014553088188171387, 0.014565376281738282, 0.014566399574279786, 0.014537728309631348, 0.014530559539794922, 0.01459609603881836, 0.014569472312927247, 0.014567423820495605, 0.014508031845092773, 0.01455513572692871, 0.014628864288330079, 0.014535679817199706, 0.01458790397644043, 0.014557184219360352, 0.014535712242126466, 0.014557151794433594, 0.014535679817199706, 0.014534655570983887, 0.014531583786010742, 0.014545920372009278, 0.014566399574279786, 0.014538751602172852, 0.014553088188171387, 0.01456332778930664, 0.014638079643249511, 0.014538751602172852, 0.014615551948547363, 0.014623744010925293, 0.014533663749694824, 0.014525407791137696, 0.014531583786010742, 0.0145797119140625, 0.01457049560546875, 0.014547967910766601, 0.014557184219360352, 0.014577664375305176, 0.014550016403198243, 0.014560256004333496, 0.014547967910766601, 0.01447935962677002, 0.014482432365417481, 0.014364671707153321, 0.014386176109313965, 0.014722047805786133, 0.015221759796142579, 0.01508351993560791, 0.015017984390258789, 0.014990336418151855, 0.014946304321289062, 0.014996479988098145, 0.014521344184875488, 0.014540800094604492, 0.014592000007629394, 0.014558208465576173, 0.014535679817199706, 0.01457049560546875, 0.014556159973144531, 0.014526464462280274, 0.031153152465820313, 0.014898176193237305, 0.01458790397644043, 0.014568448066711426, 0.014693375587463378, 0.014625791549682618, 0.015431679725646973, 0.014708736419677734, 0.014601216316223145, 0.01455513572692871, 0.014576640129089356, 0.014567423820495605, 0.014589952468872071, 0.014566399574279786, 0.014551039695739745, 0.01480191993713379, 0.014784511566162109, 0.015605759620666505, 0.015138815879821778, 0.014937088012695313, 0.014920703887939453, 0.014586879730224609, 0.014550047874450684, 0.014574624061584473, 0.01459712028503418, 0.014562239646911621, 0.014526464462280274, 0.014525440216064453, 0.014536704063415527, 0.014520319938659668, 0.014515199661254884, 0.014625791549682618, 0.014533632278442383, 0.014556159973144531, 0.014573568344116212, 0.014589952468872071, 0.01458073616027832, 0.014565376281738282, 0.014610431671142577, 0.01459609603881836, 0.01466982364654541, 0.014590975761413574, 0.014558208465576173, 0.014566399574279786, 0.014538751602172852, 0.014564352035522461, 0.014567423820495605, 0.014530559539794922, 0.014538751602172852, 0.014535679817199706, 0.014551039695739745, 0.01457151985168457, 0.014675968170166016, 0.014567423820495605, 0.014585856437683106, 0.014559231758117675, 0.014527487754821777, 0.014577664375305176, 0.014561280250549317, 0.014562303543090821, 0.014578687667846679, 0.014515199661254884, 0.01454086399078369, 0.03033900833129883, 0.014519295692443847, 0.014643199920654297, 0.014578687667846679, 0.014610431671142577, 0.014585856437683106, 0.014574591636657714, 0.014586879730224609, 0.01457254409790039, 0.014628864288330079, 0.01458790397644043, 0.01529856014251709, 0.014918656349182128, 0.014584832191467285, 0.014532608032226562, 0.014585920333862305, 0.014574527740478516, 0.014573568344116212, 0.014543871879577636, 0.014592063903808595, 0.01458886432647705, 0.014574591636657714, 0.01458892822265625, 0.014633983612060546, 0.014540800094604492, 0.014567423820495605, 0.014564352035522461, 0.014526464462280274, 0.014562303543090821, 0.01458073616027832, 0.014523391723632812, 0.014614527702331542, 0.014553088188171387, 0.014541824340820313, 0.014567423820495605, 0.014635007858276367, 0.014566399574279786, 0.01459404754638672, 0.014535679817199706, 0.014558208465576173, 0.014565376281738282, 0.01458073616027832, 0.014585856437683106, 0.014607359886169433, 0.014540800094604492, 0.014544896125793457, 0.014617600440979005, 0.014566399574279786, 0.01457254409790039, 0.014559231758117675, 0.014561280250549317, 0.01458073616027832, 0.014527551651000977, 0.014563263893127442, 0.014543871879577636, 0.014548992156982422, 0.014582783699035644, 0.014598143577575684, 0.014575615882873535, 0.014552063941955566, 0.014589952468872071, 0.01457254409790039, 0.014573568344116212, 0.030249984741210937, 0.014523391723632812, 0.014586943626403809, 0.014542783737182617, 0.014595104217529296, 0.014566368103027343, 0.014517248153686524, 0.014551039695739745, 0.014527487754821777, 0.014636032104492188, 0.014616576194763184, 0.014551072120666505, 0.014565343856811524, 0.014598143577575684, 0.0146626558303833, 0.014781439781188965, 0.015035391807556153, 0.014568448066711426, 0.01457254409790039, 0.014618623733520507, 0.014560256004333496, 0.014574591636657714, 0.014547967910766601, 0.014540800094604492, 0.014562303543090821, 0.014603263854980468, 0.01456332778930664, 0.014577664375305176, 0.014547967910766601, 0.01459404754638672, 0.01458790397644043, 0.014542847633361817, 0.014595071792602539, 0.01458790397644043, 0.014665792465209961, 0.014555071830749512, 0.014537728309631348, 0.014530559539794922, 0.014581760406494141, 0.014584832191467285, 0.014564352035522461, 0.014573568344116212, 0.014548992156982422, 0.014700544357299805, 0.014585856437683106, 0.014574591636657714, 0.014560256004333496, 0.014617600440979005, 0.014556159973144531, 0.014578687667846679, 0.01455513572692871, 0.01466982364654541, 0.014557184219360352, 0.014561280250549317, 0.014525440216064453, 0.014565376281738282, 0.014586879730224609, 0.0145664644241333, 0.014582719802856445, 0.014539775848388671, 0.014560256004333496, 0.01460428810119629, 0.014592000007629394, 0.030311424255371092, 0.014531583786010742, 0.014569472312927247, 0.014636032104492188, 0.014564352035522461, 0.014538751602172852, 0.01458892822265625, 0.014531583786010742, 0.014553088188171387, 0.014525440216064453, 0.014530624389648437, 0.014523327827453613, 0.014575615882873535, 0.014558208465576173, 0.014516223907470703, 0.014637056350708008, 0.014518272399902344, 0.014577664375305176, 0.01495961570739746, 0.014617600440979005, 0.014619711875915528, 0.014569408416748047, 0.014639103889465332, 0.014576640129089356, 0.014560256004333496, 0.014568448066711426, 0.0145797119140625, 0.014550016403198243, 0.014577664375305176, 0.014582783699035644, 0.014611488342285156, 0.014558176040649413, 0.014578687667846679, 0.014569472312927247, 0.014663680076599121, 0.014584832191467285, 0.014565376281738282, 0.01456332778930664, 0.014550016403198243, 0.014538751602172852, 0.014530559539794922, 0.014534655570983887, 0.014559231758117675, 0.01455513572692871, 0.014628864288330079, 0.014585856437683106, 0.014578687667846679, 0.014625791549682618, 0.014540800094604492, 0.014582783699035644, 0.014582783699035644, 0.014595071792602539, 0.014568448066711426, 0.014524415969848633, 0.014545920372009278, 0.014603263854980468, 0.01457049560546875, 0.014561280250549317, 0.014623744010925293, 0.014557184219360352, 0.014583807945251465, 0.014567487716674805, 0.014582719802856445, 0.03019980812072754, 0.014551039695739745, 0.01457151985168457, 0.014541824340820313, 0.014585856437683106, 0.01539891242980957, 0.015851519584655763, 0.014816255569458007, 0.014586879730224609, 0.014638079643249511, 0.014639103889465332, 0.014531583786010742, 0.014663680076599121, 0.014520319938659668, 0.014543871879577636, 0.014617600440979005, 0.014495743751525878, 0.01458073616027832, 0.014540800094604492, 0.014554112434387208, 0.014567423820495605, 0.01455513572692871, 0.014504960060119629, 0.01479475212097168, 0.015308799743652344, 0.014611455917358398, 0.014626815795898437, 0.014567423820495605, 0.014535679817199706, 0.01460223960876465, 0.01458892822265625, 0.014566399574279786, 0.014566399574279786, 0.014557184219360352, 0.014724096298217774, 0.014551039695739745, 0.014535712242126466, 0.014597087860107423, 0.014573599815368652, 0.014573535919189452, 0.014564352035522461, 0.01457049560546875, 0.014740480422973632, 0.014905344009399414, 0.014684160232543946, 0.014547967910766601, 0.014768128395080566, 0.015746047973632812, 0.014673919677734374, 0.014562303543090821, 0.014558208465576173, 0.014558208465576173, 0.01455513572692871, 0.014536704063415527, 0.01458790397644043, 0.014529536247253418, 0.014589952468872071, 0.014554112434387208, 0.014553088188171387, 0.014586879730224609, 0.014547967910766601, 0.014573599815368652, 0.014557151794433594, 0.03037593650817871, 0.014526464462280274, 0.014798848152160645, 0.014523391723632812, 0.01459404754638672, 0.014567423820495605, 0.014531583786010742, 0.014575615882873535, 0.014536704063415527, 0.014520319938659668, 0.014532608032226562, 0.014419967651367188, 0.014387200355529785, 0.01439027214050293, 0.014443519592285157, 0.014552063941955566, 0.014498815536499024, 0.014529536247253418, 0.014651391983032227, 0.014534655570983887, 0.014548992156982422, 0.014628864288330079, 0.014568448066711426, 0.01458790397644043, 0.01457151985168457, 0.014544896125793457, 0.014608384132385254, 0.014728192329406739, 0.014638079643249511, 0.014592000007629394, 0.014573568344116212, 0.014636032104492188, 0.014647295951843262, 0.014457856178283691, 0.014402560234069824, 0.014632960319519044, 0.014524415969848633, 0.01457049560546875, 0.01459712028503418, 0.014574591636657714, 0.014561280250549317, 0.01458790397644043, 0.014598143577575684, 0.014618623733520507, 0.014533632278442383, 0.014523391723632812, 0.014573568344116212, 0.01456332778930664, 0.01457151985168457, 0.01458073616027832, 0.014542847633361817, 0.014547967910766601, 0.014568448066711426, 0.014557184219360352, 0.014553088188171387, 0.014541824340820313, 0.014518272399902344, 0.014573568344116212, 0.014523455619812012, 0.014740415573120117, 0.014707776069641113, 0.014453696250915528, 0.014403583526611329]",tokens/s,67.13379997376835,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-2b,google/gemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-2b,google/recurrentgemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -30564,7 +28495,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/gemma-2b/resolve/main/config.json +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -30581,10 +28512,10 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-669480ef-69208ced482777fa740d5535;1009ffa5-3e2a-4d1a-b243-a0fc9b7c959d) +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-669481d5-7a8ff08d2b374de832affc38;7e8766eb-a2b6-4ae2-a3a5-1838dd20a502) 403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/google/gemma-2b/resolve/main/config.json. +Cannot access content at: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json. If you are trying to create or update content,make sure you have a token with the `write` role. The above exception was the direct cause of the following exception: @@ -30623,12 +28554,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/gemma-2b is not the path to a directory containing a file named config.json. +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/recurrentgemma-2b is not the path to a directory containing a file named config.json. Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciLM-7B,,cuda,0,42,,,,,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,MB,1674.596352,5516.034048,0.0,4869.586944,4743.593472,s,10,6.137113647460938,0.6137113647460938,0.0032895717697753717,0.6129547424316406,0.6153997436523437,0.6190885131835938,0.6220395288085938,"[0.6227772827148438, 0.6144583129882812, 0.61261669921875, 0.61060546875, 0.612577392578125, 0.6105811157226563, 0.6121093139648438, 0.6145800170898438, 0.6132927856445313, 0.6135152587890625]",tokens/s,417.13420136176387,kWh,7.2172448039054885e-06,3.954746732982612e-06,3.355963469082604e-05,4.473162622771414e-05,tokens/kWh,5723020.189268045,MB,1674.596352,5516.034048,0.0,4869.586944,4769.651712,s,10,361.12618359375006,36.112618359375006,0.009999043540991457,36.112980468749996,36.125964453125,36.127720507812505,36.1291253515625,"[36.1294765625, 36.0964296875, 36.12557421875, 36.1174140625, 36.11404296875, 36.1114296875, 36.11191796875, 36.09769140625, 36.10714453125, 36.1150625]",tokens/s,1.7445425688343892,kWh,0.00042614284929302004,0.0002335616249413365,0.0019425026683799653,0.0026022071426143214,tokens/kWh,24210.217153084406,,s,629,366.0647033081055,0.5819788605852233,0.07282065333686359,0.5730969848632812,0.5741784912109374,0.5745491943359375,1.1854891552734375,"[0.5736980590820312, 0.573138916015625, 0.5735465087890625, 0.574129150390625, 0.5737092895507813, 0.57447216796875, 0.5745264892578125, 0.5731635131835937, 0.5737205810546875, 0.5735956420898437, 0.5749248046875, 0.5725880126953125, 0.5736376342773437, 0.57371337890625, 0.573749267578125, 0.5733990478515625, 0.5727344360351563, 0.57394482421875, 0.57497705078125, 0.5740851440429687, 0.5741229858398438, 0.5742008056640625, 0.5734738159179688, 0.574509033203125, 0.5738157958984375, 0.573897705078125, 0.5732402954101562, 0.5745704956054688, 0.5727620849609375, 0.5734061889648437, 0.5746319580078125, 0.5745643310546875, 0.5739735107421875, 0.5731901245117188, 0.5725511474609375, 0.5742970581054687, 0.5729157104492187, 0.572837890625, 0.57303857421875, 0.5725552368164063, 0.5740175170898437, 0.5737943115234375, 0.57314404296875, 0.5743441772460938, 0.5747333374023438, 0.5747230834960938, 0.5726239013671875, 0.5742520141601563, 0.5729638671875, 0.5725716552734375, 0.572348388671875, 0.572031005859375, 0.5730672607421875, 0.5724190673828125, 0.572590087890625, 0.5723648071289062, 0.5724487915039063, 0.572526611328125, 0.5727549438476562, 0.57301708984375, 0.5722869873046875, 0.5721016235351563, 1.18763623046875, 0.5728788452148438, 0.5735679931640625, 0.5728031005859375, 0.5727078247070313, 0.5732781982421875, 0.5730969848632812, 0.5728460693359375, 0.57259521484375, 0.5722409057617187, 0.57280615234375, 0.57242724609375, 0.57225830078125, 0.5726760864257813, 0.572142578125, 0.5723013305664062, 0.5727958984375, 0.5730846557617187, 0.572316650390625, 0.5732341918945313, 0.57354443359375, 0.5724467163085938, 0.5723648071289062, 0.5720924072265625, 0.5729249267578125, 0.5723299560546875, 0.5724815063476563, 0.572590087890625, 0.5723525390625, 0.5726453857421875, 0.572458984375, 0.5725296630859374, 0.5720729370117188, 0.572706787109375, 0.5740257568359375, 0.572758056640625, 0.5724251708984375, 0.5737236328125, 0.57303857421875, 0.5752218017578125, 0.5730856323242187, 0.57284814453125, 0.5734194946289063, 0.5729658813476562, 0.5726095581054688, 0.5726730346679687, 0.5732310791015625, 0.5731287231445312, 0.5729985961914063, 0.572822509765625, 0.5728573608398437, 0.5731840209960938, 0.5744937133789062, 0.5729187622070312, 0.5740841064453125, 0.5739561157226563, 0.5734850463867187, 0.5729812622070313, 0.5727211303710937, 0.5733560180664062, 0.5732577514648437, 0.5737369384765625, 0.5736038208007812, 1.18655078125, 0.5729157104492187, 0.5731143798828126, 0.5728522338867188, 0.5734451293945313, 0.5739530029296875, 0.572958740234375, 0.572759033203125, 0.5748234252929687, 0.57375537109375, 0.573359130859375, 0.5733130493164063, 0.5738352661132813, 0.57318603515625, 0.5733314819335937, 0.5734747924804687, 0.5750180053710937, 0.5730693359375, 0.5736345825195313, 0.573718505859375, 0.57335498046875, 0.5729044189453125, 0.5738772583007813, 0.5738352661132813, 0.5730682983398437, 0.5731051635742187, 0.5734297485351563, 0.5730928344726562, 0.5731317749023438, 0.5730283813476562, 0.573849609375, 0.57297509765625, 0.5731461181640625, 0.5727354736328125, 0.5730130004882813, 0.5731461181640625, 0.5728123168945313, 0.5729003295898437, 0.5728778076171875, 0.5738741455078125, 0.5740830688476563, 0.572737548828125, 0.5726536254882812, 0.5742734985351563, 0.5730897827148438, 0.5729822998046875, 0.5732136840820312, 0.5756242065429688, 0.5729976196289063, 0.5738700561523438, 0.573106201171875, 0.573149169921875, 0.5729013671875, 0.573991943359375, 0.573201416015625, 0.5733877563476563, 0.5732608032226563, 0.5743902587890625, 0.5742141723632812, 0.5728829345703125, 0.5743646850585937, 0.5734010620117187, 0.573259765625, 1.1840142822265625, 0.5737728271484375, 0.5731215209960937, 0.5732106323242188, 0.5732505493164063, 0.572969970703125, 0.573033447265625, 0.57314306640625, 0.5731942138671875, 0.5728460693359375, 0.5744957275390625, 0.5742643432617187, 0.5740144653320313, 0.5731768798828125, 0.5741864624023437, 0.5734174194335937, 0.573322265625, 0.5733375854492188, 0.5739192504882813, 0.5734788818359375, 0.5737677001953125, 0.5734850463867187, 0.5734430541992187, 0.5732044677734375, 0.5726986083984374, 0.572821533203125, 0.5730499267578125, 0.5735310668945313, 0.574656494140625, 0.5733201904296875, 0.5725225219726563, 0.5739570922851562, 0.5737728271484375, 0.57303857421875, 0.5733232421875, 0.5734522705078124, 0.5738311767578125, 0.575151123046875, 0.5733201904296875, 0.5735167846679687, 0.5731133422851562, 0.5729003295898437, 0.5728235473632812, 0.573318115234375, 0.5730816040039063, 0.5742418212890625, 0.573048828125, 0.5728880615234375, 0.572990478515625, 0.5729679565429687, 0.5725675659179688, 0.5726566162109376, 0.5728235473632812, 0.5745910034179688, 0.5722357788085938, 0.5722327270507812, 0.572821533203125, 0.5726668701171875, 0.5724385375976563, 0.5728890991210938, 0.5728051147460937, 0.5724405517578125, 0.5733775634765625, 1.1864791259765626, 0.5730631713867187, 0.5741793212890625, 0.574244873046875, 0.5729197998046875, 0.5730785522460937, 0.5742643432617187, 0.5736028442382812, 0.5729208374023438, 0.5731768188476563, 0.573612060546875, 0.5728307495117188, 0.5726996459960938, 0.57314306640625, 0.5741906127929688, 0.572669921875, 0.5738731689453125, 0.5743124389648437, 0.5728778076171875, 0.5729352416992187, 0.574119873046875, 0.5733079223632812, 0.5724866333007812, 0.572231689453125, 0.5732946166992188, 0.5724682006835937, 0.5730529174804687, 0.5733519287109375, 0.573106201171875, 0.5727999877929687, 0.57236376953125, 0.5724620971679687, 0.5725665893554688, 0.5737697143554688, 0.5733406372070312, 0.573254638671875, 0.5726945190429688, 0.5743114013671875, 0.5735679931640625, 0.5726617431640625, 0.5724610595703125, 0.57396533203125, 0.5732372436523437, 0.5741332397460938, 0.5733570556640625, 0.5733375854492188, 0.572717041015625, 0.572859375, 0.5731901245117188, 0.572558349609375, 0.5723750610351562, 0.5745213623046875, 0.573633544921875, 0.5729638671875, 0.573412353515625, 0.5735505981445312, 0.5726494750976563, 0.5753558959960937, 0.5728399658203125, 0.573432861328125, 0.5723391723632812, 0.5729290161132813, 0.572626953125, 1.1842232666015624, 0.5728092041015626, 0.572779541015625, 0.572632080078125, 0.5737963256835937, 0.5736775512695312, 0.5726033935546875, 0.572564453125, 0.5733416748046875, 0.5725654907226563, 0.5723832397460937, 0.5723812255859375, 0.5731624755859375, 0.5723832397460937, 0.5729197998046875, 0.572788818359375, 0.5723237915039062, 0.5723801879882813, 0.5726771850585938, 0.5727251586914063, 0.5726986083984374, 0.57333349609375, 0.5739939575195312, 0.5731481323242188, 0.5727344360351563, 0.5737195434570312, 0.5727918090820312, 0.5725234985351563, 0.5729740600585937, 0.5731522827148438, 0.5736734619140625, 0.5729310913085938, 0.5734471435546875, 0.573127685546875, 0.5729720458984375, 0.5730723876953125, 0.5730529174804687, 0.5730682983398437, 0.5760235595703125, 0.5742151489257813, 0.573750244140625, 0.5731143798828126, 0.573844482421875, 0.5748480224609375, 0.5746339721679687, 0.5739223022460938, 0.5732044677734375, 0.5739735107421875, 0.5730263061523437, 0.5728583984375, 0.5729924926757812, 0.5730785522460937, 0.5734502563476562, 0.5732157592773437, 0.573191162109375, 0.5728983154296875, 0.5738905639648437, 0.5733457641601563, 0.57269873046875, 0.572650390625, 0.5734747924804687, 0.5728338012695312, 0.5733191528320313, 1.1859814453125, 0.57253271484375, 0.5722654418945312, 0.5727242431640625, 0.5725839233398438, 0.5722265625, 0.572601318359375, 0.5729863891601562, 0.572706787109375, 0.5726239013671875, 0.5739888916015625, 0.5729249267578125, 0.573317138671875, 0.5733673095703125, 0.5743882446289063, 0.5732106323242188, 0.5734819946289063, 0.5727047729492187, 0.5730140380859375, 0.572675048828125, 0.5729136352539063, 0.5729924926757812, 0.5723709716796875, 0.5744793701171875, 0.57339599609375, 0.5728604125976563, 0.5722327270507812, 0.5737615356445313, 0.5753026733398438, 0.5738475341796875, 0.5734512939453125, 0.5752913818359375, 0.5733673095703125, 0.5729085693359375, 0.5732177734375, 0.573886474609375, 0.5727651977539062, 0.57282763671875, 0.57284814453125, 0.5731399536132813, 0.5727467651367187, 0.5733314819335937, 0.5736110229492187, 0.5734830322265625, 0.5729003295898437, 0.574867431640625, 0.5740697631835937, 0.572969970703125, 0.5728942260742188, 0.5735751342773437, 0.5731563720703124, 0.5731113891601562, 0.5729085083007812, 0.5745828247070313, 0.5727620849609375, 0.5729269409179687, 0.5724876708984376, 0.573665283203125, 0.5732260131835938, 0.5726268920898437, 0.57246923828125, 0.572621826171875, 0.5729013671875, 1.1888896484375, 0.57364990234375, 0.5738916015625, 0.5726515502929688, 0.5726239013671875, 0.5722838745117188, 0.5730723876953125, 0.573032470703125, 0.5727662353515625, 0.5732413330078125, 0.5728880615234375, 0.5727396240234375, 0.5731368408203125, 0.573233154296875, 0.5731963500976562, 0.5735249633789062, 0.5744219970703125, 0.5727999877929687, 0.5726064453125, 0.5729290771484375, 0.5737103271484375, 0.572811279296875, 0.5732679443359375, 0.5726730346679687, 0.5734287109375, 0.5722675170898438, 0.5725828857421875, 0.5725849609375, 0.5723627319335938, 0.5727416381835938, 0.5728348388671874, 0.5723678588867187, 0.5728604125976563, 0.573675537109375, 0.57333349609375, 0.5725634765625, 0.5726546020507812, 0.5731399536132813, 0.5728031005859375, 0.5724630737304688, 0.57310205078125, 0.5734573974609375, 0.5732689819335938, 0.5729290161132813, 0.5729782104492187, 0.5726064453125, 0.572527587890625, 0.5728818969726562, 0.5733007202148438, 0.5730426635742187, 0.5736365966796875, 0.5730549926757813, 0.573111328125, 0.5725552368164063, 0.5726505126953125, 0.5732802734375, 0.5726494750976563, 0.5724876708984376, 0.5733058471679687, 0.5727211303710937, 0.5725931396484375, 0.5726648559570312, 0.5728655395507812, 1.1863818359375, 0.5727938842773438, 0.5733508911132813, 0.5740676879882812, 0.574234619140625, 0.5727047729492187, 0.5733447875976563, 0.5732515869140625, 0.5743012084960938, 0.5728123168945313, 0.5730969848632812, 0.5729976196289063, 0.5739694213867188, 0.5728798828125, 0.5730140380859375, 0.5724334106445312, 0.5727744140625, 0.5740390625, 0.5736099853515625, 0.5726300048828125, 0.572969970703125, 0.5736683349609375, 0.572948486328125, 0.5725542602539062, 0.5725962524414062, 0.5727139892578125, 0.573559814453125, 0.572568603515625, 0.5725419311523438, 0.5730426635742187, 0.5727252197265625, 0.5726781616210938, 0.5734676513671875, 0.573179931640625, 0.5726351318359375, 0.573233154296875, 0.5737062377929687, 0.5729423217773437, 0.5729710083007813, 0.5735885009765626, 0.5732741088867187, 0.5730344848632812, 0.5727262573242188, 0.5732567138671875, 0.5732689819335938, 0.5727232055664062, 0.5727559814453125, 0.5730703125, 0.5724334716796875, 0.5731378784179687, 0.5730191650390625, 0.572896240234375, 0.5732177734375, 0.5728727416992188, 0.5729361572265625, 0.5730979614257813, 0.574118896484375, 0.573497314453125, 0.5732976684570312, 0.5737840576171875, 0.5730130004882813, 0.5730549926757813, 0.572958740234375, 1.187092529296875, 0.5724129028320313, 0.5726473999023437, 0.57280615234375, 0.572416015625, 0.5723361206054688, 0.572821533203125, 0.5732761840820313, 0.5727733764648437, 0.573095947265625, 0.5734052124023438, 0.573053955078125, 0.572674072265625, 0.5729341430664062, 0.5734830322265625, 0.573849609375, 0.5724999389648437, 0.5727334594726563, 0.5741107177734375, 0.5736663208007813, 0.57402978515625, 0.5733611450195313, 0.572958740234375, 0.5730099487304687, 0.5733345336914063, 0.5739038696289063, 0.575910888671875, 0.574392333984375, 0.5739898681640625, 0.5732730712890625, 0.5733109741210938, 0.5730928344726562, 0.5741782836914062, 0.5731993408203125, 0.57302734375, 0.5732771606445313, 0.572506103515625, 0.5729556274414063, 0.5733088989257813, 0.572968994140625, 0.5736283569335937, 0.5738291015625, 0.5733499145507812, 0.5729085693359375, 0.573539306640625, 0.5743226928710937, 0.5736959838867187, 0.5733365478515625, 0.57354443359375, 0.5733949584960938, 0.5731727294921874, 0.5731215209960937, 0.5734061889648437, 0.5725133056640626, 0.5726607055664062, 0.5729464111328125, 0.5725101928710937, 0.57212109375, 0.5734563598632813, 0.5726597290039063, 0.5727313842773437, 0.572416015625, 0.5735731201171875]",tokens/s,1.7182754696526694,,,,,,main,False,False -4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,databricks/dbrx-base,databricks/dbrx-base,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mixtral-8x7B-v0.1,mistralai/Mixtral-8x7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -30636,75 +28566,41 @@ Checkout your internet connection or see how to run the library in offline mode File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status - raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66947b17-58f1373e6b3ad3d40c17eb3c;270d6a5d-cafe-425e-8dbb-fc9be7000662) - -403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json. -If you are trying to create or update content,make sure you have a token with the `write` role. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error - raise LocalEntryNotFoundError( -huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file - raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like databricks/dbrx-base is not the path to a directory containing a file named config.json. -Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-7.5B,facebook/xglm-7.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2170.855424,7227.31008,0.0,6580.862976,6226.036224,s,10,5.757403198242186,0.5757403198242188,0.0009922788511109175,0.5756337280273438,0.5767303344726562,0.5773405700683594,0.5778287585449219,"[0.5763906860351562, 0.5754805908203126, 0.5742902221679688, 0.5758182373046875, 0.5751873168945313, 0.574752685546875, 0.575786865234375, 0.5751510620117187, 0.5779508056640625, 0.5765947265625]",tokens/s,444.6449053249566,kWh,6.784125003549789e-06,3.717420948032668e-06,3.101488592300367e-05,4.151643187458613e-05,tokens/kWh,6166233.1862557735,MB,2170.855424,7227.31008,0.0,6580.862976,6478.658048,s,10,336.90312500000005,33.6903125,0.0038578817961585758,33.690537109375,33.6951453125,33.6965375,33.69765125,"[33.6891484375, 33.6979296875, 33.68431640625, 33.69015234375, 33.69138671875, 33.68830859375, 33.690921875, 33.6910078125, 33.6948359375, 33.6851171875]",tokens/s,1.8699737498724598,kWh,0.00039786197528243067,0.0002180628312197768,0.001800652746076575,0.0024165775525787823,tokens/kWh,26069.926840448938,,s,629,341.54916522216826,0.5430034423245914,0.06841490320905963,0.5347440795898437,0.5353432861328125,0.5355950317382813,1.1101828955078124,"[0.5346764526367187, 0.534593505859375, 0.53607421875, 0.5346488037109375, 0.5349376220703125, 0.5348045043945312, 0.5348710327148437, 0.534361083984375, 0.5351505737304687, 0.5344501953125, 0.5342750854492188, 0.5343682861328125, 0.5348853759765625, 0.5342218017578125, 0.5351854248046874, 0.5346846923828125, 0.5351168212890625, 0.5340159912109375, 0.5345996704101562, 0.5340569458007812, 0.5348679809570313, 0.5342392578125, 0.5346948852539063, 0.5346427001953125, 0.5350113525390625, 0.5345361938476563, 0.534276123046875, 0.5349284057617187, 0.5341531982421875, 0.5347072143554688, 0.534413330078125, 0.5346447143554688, 0.5343323974609375, 0.534677490234375, 0.5346836547851562, 0.5348843383789063, 0.5341747436523437, 0.53469287109375, 0.5349488525390625, 0.5349376220703125, 0.5349048461914062, 0.5350922241210937, 0.5349293823242187, 0.5348905029296875, 0.5348187866210937, 0.5352499389648437, 0.5351372680664063, 0.5351874389648438, 0.5344020385742188, 0.5347307739257813, 0.534319091796875, 0.5348607788085937, 0.53452490234375, 0.5352724609375, 0.5355673828125, 0.53477685546875, 0.5353441162109375, 0.5347553100585938, 0.535225341796875, 0.5340364990234375, 0.5348362426757812, 0.53452392578125, 1.1103118896484374, 0.5353318481445313, 0.5341173706054687, 0.5345740966796875, 0.5343201293945312, 0.5346703491210938, 0.5341255493164062, 0.5354373168945312, 0.534645751953125, 0.5345771484375, 0.5340641479492187, 0.535025634765625, 0.5342791748046875, 0.5352877807617188, 0.5341102294921874, 0.5349335327148438, 0.53408154296875, 0.5348935546875, 0.5341614379882812, 0.5348187866210937, 0.5348075561523438, 0.5348945922851562, 0.5341737060546875, 0.5358602294921875, 0.5343109130859375, 0.53522021484375, 0.5344286499023437, 0.5350133666992187, 0.5340877075195313, 0.5351638793945312, 0.5342811889648438, 0.535573486328125, 0.5346611328125, 0.5351854248046874, 0.5346078491210937, 0.53532568359375, 0.5343160400390625, 0.53486181640625, 0.5339535522460938, 0.5352847290039062, 0.5343467407226562, 0.5350491943359375, 0.5341419677734375, 0.5348751220703125, 0.534150146484375, 0.5347573852539063, 0.5344307250976562, 0.5354004516601563, 0.5344286499023437, 0.5352489013671875, 0.5350963134765625, 0.5354454956054687, 0.537660400390625, 0.5361489868164062, 0.53553662109375, 0.5356922607421875, 0.5343662109375, 0.5351168212890625, 0.535394287109375, 0.5363414916992187, 0.5349365844726562, 0.5353850708007812, 0.5346826171875, 1.110350830078125, 0.5346856689453126, 0.5343385620117187, 0.5345433349609375, 0.5344020385742188, 0.5345515747070313, 0.5340989379882812, 0.5348003540039062, 0.5341388549804688, 0.53479833984375, 0.5344071655273438, 0.5343672485351563, 0.5352960205078126, 0.5340405883789062, 0.5349048461914062, 0.5344491577148438, 0.535067626953125, 0.5343518676757812, 0.5349970092773437, 0.534128662109375, 0.5347153930664063, 0.53432421875, 0.5345413208007812, 0.5351311645507812, 0.5347737426757813, 0.534719482421875, 0.5343641357421876, 0.5350553588867187, 0.5344020385742188, 0.5347225341796875, 0.5345587158203124, 0.5351331787109375, 0.5342013549804687, 0.5347911376953125, 0.5345372314453125, 0.5347225341796875, 0.5342412719726563, 0.5348792114257812, 0.5342689208984375, 0.5345525512695313, 0.5345115966796875, 0.5345474853515625, 0.53495703125, 0.53488232421875, 0.535014404296875, 0.5344368896484375, 0.53495703125, 0.534287353515625, 0.5348126831054687, 0.5351044921875, 0.535436279296875, 0.53448193359375, 0.5350891723632812, 0.5339913940429688, 0.5349908447265626, 0.5347307739257813, 0.5351055297851562, 0.5346611328125, 0.5345126342773437, 0.5350236206054687, 0.5345863647460938, 0.5352509155273437, 0.5350174560546875, 1.1105382080078126, 0.5355950317382813, 0.5344696044921875, 0.5347164306640625, 0.5345341186523438, 0.5346948852539063, 0.5343866577148437, 0.535103515625, 0.5347359008789062, 0.5351536865234375, 0.5343518676757812, 0.5350891723632812, 0.5348259887695312, 0.5349007568359375, 0.5342996215820313, 0.5354127197265625, 0.5349365844726562, 0.5348239135742188, 0.5341798095703125, 0.534992919921875, 0.534329345703125, 0.5348515625, 0.5342095336914062, 0.53524072265625, 0.5343549194335937, 0.534803466796875, 0.534345703125, 0.534719482421875, 0.5346047973632813, 0.5349662475585938, 0.5341337890625, 0.5350051879882812, 0.5342566528320313, 0.5347942504882812, 0.5347379150390625, 0.5350942993164063, 0.5344153442382813, 0.5352182006835937, 0.534846435546875, 0.5348956298828125, 0.5342689208984375, 0.5350553588867187, 0.5349601440429688, 0.53513525390625, 0.534561767578125, 0.535309326171875, 0.5342945556640625, 0.5351065673828125, 0.5344860229492188, 0.53475634765625, 0.534240234375, 0.5348341674804687, 0.5342648315429688, 0.534993896484375, 0.5347952880859375, 0.5356380004882813, 0.534824951171875, 0.5348976440429688, 0.5344174194335938, 0.5349017333984375, 0.5350840454101562, 0.5351629028320313, 0.5344470825195312, 1.1098358154296875, 0.5345259399414063, 0.5348362426757812, 0.534181884765625, 0.5347102661132812, 0.534091796875, 0.5347164306640625, 0.534054931640625, 0.5361285400390625, 0.5355950317382813, 0.5359862060546875, 0.5356984252929687, 0.5359247436523438, 0.5353123779296876, 0.5349468383789062, 0.53486181640625, 0.5354373168945312, 0.5347164306640625, 0.5351342163085937, 0.5345413208007812, 0.5349837036132813, 0.53418701171875, 0.5347440795898437, 0.5342218017578125, 0.5345996704101562, 0.5342843017578125, 0.5351854248046874, 0.5345218505859375, 0.5348915405273438, 0.5342116088867187, 0.5350205688476563, 0.534297607421875, 0.534667236328125, 0.5343784790039062, 0.5350491943359375, 0.5344635009765625, 0.535109619140625, 0.5345679321289063, 0.5353430786132812, 0.5343150024414063, 0.5344952392578125, 0.5345228881835937, 0.5347676391601562, 0.53477783203125, 0.534740966796875, 0.5348997192382813, 0.5346795654296875, 0.53429248046875, 0.534645751953125, 0.5347973022460938, 0.5346099243164063, 0.5341378784179688, 0.5352919311523437, 0.5342832641601563, 0.5348894653320313, 0.53421875, 0.5347788696289062, 0.534635498046875, 0.5353768920898437, 0.5347850341796875, 0.5351485595703125, 0.5345423583984374, 0.5350031127929687, 1.1105545654296876, 0.5355919189453126, 0.5343006591796875, 0.5348720703125, 0.53427197265625, 0.5345126342773437, 0.5340037231445313, 0.535520263671875, 0.534739990234375, 0.535130126953125, 0.5343836059570313, 0.5350440673828125, 0.5346948852539063, 0.5351239624023437, 0.5344174194335938, 0.5351260375976562, 0.5345014038085938, 0.5347993774414063, 0.534582275390625, 0.5357168579101562, 0.5343109130859375, 0.5353820190429688, 0.5346990356445313, 0.5351629028320313, 0.5347451171875, 0.5354332275390625, 0.5348679809570313, 0.5348095703125, 0.5343733520507813, 0.5351966552734375, 0.5344102172851563, 0.5353021240234375, 0.5340569458007812, 0.534813720703125, 0.5341829223632812, 0.5347389526367188, 0.5341173706054687, 0.5348935546875, 0.5345310668945312, 0.535056396484375, 0.5342576904296875, 0.5349898071289062, 0.5346007080078125, 0.5354352416992187, 0.53414501953125, 0.5347205200195313, 0.5340692749023438, 0.5347993774414063, 0.5341737060546875, 0.53488330078125, 0.5342361450195312, 0.5347962646484375, 0.53441845703125, 0.53486181640625, 0.5344409790039063, 0.5348505859375, 0.5344778442382813, 0.5346652221679687, 0.5343754272460938, 0.5350758666992188, 0.5344163818359375, 0.5350686645507813, 0.5343856811523438, 1.1107747802734376, 0.5348556518554688, 0.5345413208007812, 0.5346017456054688, 0.5344235229492188, 0.5347625122070313, 0.534202392578125, 0.5346734008789062, 0.534513671875, 0.5345167236328126, 0.5345884399414063, 0.5348331298828125, 0.534603759765625, 0.5347123413085938, 0.535151611328125, 0.5338849487304688, 0.5345567016601562, 0.53408154296875, 0.5351454467773438, 0.5341777954101562, 0.5348731079101563, 0.534076416015625, 0.5348925170898438, 0.5345361938476563, 0.534635498046875, 0.534403076171875, 0.5345423583984374, 0.5348433837890625, 0.5344429931640625, 0.5346826171875, 0.5351076049804687, 0.5349652709960937, 0.5341634521484375, 0.5351157836914062, 0.534329345703125, 0.5346119384765625, 0.5346826171875, 0.5350000610351563, 0.5348444213867187, 0.5346211547851563, 0.5343887329101562, 0.5350768432617188, 0.53532568359375, 0.5349631958007812, 0.5353236694335938, 0.534540283203125, 0.5354454956054687, 0.5352796020507813, 0.5357506713867187, 0.5357987670898438, 0.5363568725585938, 0.5354977416992187, 0.5355079956054688, 0.5346631469726563, 0.5348648681640625, 0.53481982421875, 0.5350850830078125, 0.5346867065429688, 0.534488037109375, 0.5345198364257813, 0.5341511840820312, 0.5348761596679688, 0.5343672485351563, 1.1098511962890625, 0.5344020385742188, 0.5343488159179688, 0.5351004028320312, 0.5345003662109375, 0.5340426025390625, 0.5349335327148438, 0.534129638671875, 0.5345115966796875, 0.534624267578125, 0.5344778442382813, 0.5346898193359375, 0.5347532958984375, 0.5341439819335938, 0.5348208618164062, 0.5342740478515625, 0.534593505859375, 0.5343160400390625, 0.5345218505859375, 0.5341788330078125, 0.5349027709960937, 0.5340282592773438, 0.5352099609375, 0.5348515625, 0.5344050903320312, 0.534667236328125, 0.534846435546875, 0.5345792236328125, 0.5350031127929687, 0.5352366333007812, 0.5349683227539063, 0.5348577270507813, 0.5350656127929687, 0.5350123291015625, 0.5349437255859375, 0.5353164672851562, 0.535109619140625, 0.5345955810546875, 0.5346232299804687, 0.5350543212890625, 0.5351209106445313, 0.5352017822265625, 0.5351526489257813, 0.534813720703125, 0.5347174682617187, 0.53507275390625, 0.5347962646484375, 0.535278564453125, 0.5350348510742188, 0.5344235229492188, 0.5348864135742187, 0.5350287475585938, 0.5347123413085938, 0.5351557006835937, 0.5351854248046874, 0.534824951171875, 0.5352898559570313, 0.5345700073242188, 0.5350369262695313, 0.5348126831054687, 0.5350420532226563, 0.5343068237304688, 0.5352109985351563, 1.1140484619140625, 0.5357752075195312, 0.5347020874023437, 0.5347215576171875, 0.5340579833984375, 0.5347225341796875, 0.5339064331054687, 0.5348648681640625, 0.5343109130859375, 0.5346764526367187, 0.5340579833984375, 0.534751220703125, 0.5342074584960937, 0.53477685546875, 0.5345331420898437, 0.5362677612304687, 0.5344603881835938, 0.535562255859375, 0.534560791015625, 0.5345679321289063, 0.53437646484375, 0.5348444213867187, 0.5341480712890625, 0.5348433837890625, 0.5341439819335938, 0.5348792114257812, 0.5344849853515625, 0.5353707275390625, 0.534392822265625, 0.5349959716796875, 0.534276123046875, 0.5353820190429688, 0.5345740966796875, 0.5356973876953125, 0.534592529296875, 0.5353021240234375, 0.5345812377929687, 0.5350471801757812, 0.5342730102539063, 0.5356431274414063, 0.5344461059570312, 0.5352222900390625, 0.534319091796875, 0.5352243041992187, 0.5342218017578125, 0.5354874877929687, 0.5344635009765625, 0.5353492431640625, 0.5346590576171875, 0.5352969970703125, 0.5345413208007812, 0.5364439086914062, 0.5349744873046876, 0.5354383544921875, 0.5349171142578125, 0.5353850708007812, 0.5352386474609375, 0.5347727661132813, 0.5347440795898437, 0.5347891235351563, 0.53429248046875, 0.5350348510742188, 0.5342208251953126, 1.1111966552734376, 0.5346058349609375, 0.5340743408203125, 0.5344491577148438, 0.5340753784179687, 0.5344573364257813, 0.5351997680664062, 0.5346652221679687, 0.5347676391601562, 0.5348843383789063, 0.5340805053710938, 0.5348229370117188, 0.5342904052734375, 0.5346806030273438, 0.5341122436523438, 0.5346744384765625, 0.5341951904296875, 0.53463037109375, 0.5346017456054688, 0.5344931640625, 0.5348495483398438, 0.5341675415039062, 0.534192138671875, 0.5346129760742188, 0.5353421020507813, 0.5345730590820312, 0.5347010498046875, 0.5343364868164062, 0.53553564453125, 0.5343969116210937, 0.534887451171875, 0.5349539794921875, 0.5349130249023437, 0.5349970092773437, 0.5343682861328125, 0.534813720703125, 0.5341798095703125, 0.5349908447265626, 0.5340886840820313, 0.5348864135742187, 0.53427197265625, 0.5349468383789062, 0.5341091918945312, 0.5351629028320313, 0.5349376220703125, 0.5348556518554688, 0.53496728515625, 0.5342669067382813, 0.5347440795898437, 0.53432421875, 0.53492529296875, 0.5341470947265625, 0.5350174560546875, 0.5343016967773437, 0.5352642822265625, 0.5343908081054688, 0.535689208984375, 0.535041015625, 0.5345894165039062, 0.5347891235351563, 0.5347962646484375, 0.5358428344726562, 0.5355755615234375]",tokens/s,1.8416089513521527,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,B,B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-125m,facebook/opt-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -30712,71 +28608,151 @@ Checkout your internet connection or see how to run the library in offline mode File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/B/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669493af-07a0696f7b37cf132d2642fe;02f94de0-9875-4055-96c5-25d6f155b65d) - -Repository Not Found for url: https://huggingface.co/B/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -The above exception was the direct cause of the following exception: +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm-20b,internlm/internlm-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3710, in from_pretrained + model = cls(config, *model_args, **model_kwargs) + File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 906, in __init__ + self.model = InternLMModel(config) + File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 729, in __init__ + self.layers = nn.ModuleList([InternLMDecoderLayer(config) for _ in range(config.num_hidden_layers)]) + File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 729, in + self.layers = nn.ModuleList([InternLMDecoderLayer(config) for _ in range(config.num_hidden_layers)]) + File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 545, in __init__ + self.self_attn = INTERNLM_ATTENTION_CLASSES[config.attn_implementation](config=config) +KeyError: 'sdpa' -Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-7.5B,facebook/xglm-7.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file - raise EnvironmentError( -OSError: B is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: XGLMForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-3B-v1,togethercomputer/RedPajama-INCITE-Base-3B-v1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward + outputs = self.gpt_neox( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward + outputs = layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward + attention_layer_outputs = self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 545, in forward + query, key, value, present = self._attn_projections_and_rope( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope + qkv = self.query_key_value(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-14B,Qwen/Qwen1.5-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,3951.190016,12732.33408,0.0,12085.886976,11337.496064,s,10,10.983638916015623,1.0983638916015628,0.002145812483257245,1.0982380981445312,1.1009110717773436,1.1018160705566407,1.1025400695800782,"[1.1027210693359375, 1.1007099609375, 1.0960345458984375, 1.0957255859375, 1.0965640869140625, 1.096655029296875, 1.0976143798828124, 1.09886181640625, 1.0996507568359375, 1.0991016845703125]",tokens/s,233.07394021003134,kWh,1.2942184060811996e-05,7.0910633564744784e-06,6.339727294000231e-05,8.343052035728877e-05,tokens/kWh,3068421.4709879244,MB,3951.190016,12732.33408,0.0,12085.886976,11686.800384,s,10,637.80165234375,63.780165234375,0.009100497531913991,63.777451171875,63.784855859375,63.7953341796875,63.8037168359375,"[63.775953125, 63.7747265625, 63.78252734375, 63.77445703125, 63.77937109375, 63.7818203125, 63.8058125, 63.7783125, 63.77208203125, 63.77658984375]",tokens/s,0.9877679019565393,kWh,0.0007529117455250688,0.00041266306092793453,0.003710265523765599,0.004875840330218602,tokens/kWh,12920.849686063342,,s,629,646.6700090332033,1.028092224218129,0.13044395391192767,1.0122936401367189,1.0129029296874998,1.0132424438476564,2.1090928125,"[1.0118082275390625, 1.0120591430664063, 1.0121963500976563, 1.0122721557617187, 1.0119987182617187, 1.0119086303710938, 1.0127564697265625, 1.0119772338867188, 1.013127197265625, 1.0117877807617188, 1.0121246948242189, 1.0118850708007812, 1.0127083740234375, 1.0122250366210936, 1.0122311401367188, 1.01222705078125, 1.0121298217773438, 1.01207958984375, 1.0122537231445312, 1.0121769409179688, 1.0120580444335938, 1.0120304565429687, 1.0126674194335938, 1.0122168579101563, 1.0119823608398437, 1.0118645629882812, 1.0125404052734375, 1.0122362670898437, 1.01228955078125, 1.012083740234375, 1.0118092651367188, 1.0122362670898437, 1.0126837768554688, 1.0127236938476563, 1.0127257690429687, 1.0131476440429688, 1.0123878784179687, 1.0122587280273438, 1.0124882202148437, 1.0123243408203124, 1.0121123657226563, 1.0124574584960937, 1.012696044921875, 1.0123038940429687, 1.012063232421875, 1.01218408203125, 1.0126653442382811, 1.012890625, 1.0124677124023438, 1.0129090576171875, 1.0120939331054688, 1.01304931640625, 1.0123591918945312, 1.0120345458984374, 1.0119608154296875, 1.0121820068359375, 1.0124882202148437, 1.0120724487304686, 1.01193115234375, 1.0123868408203125, 1.0123858642578125, 1.0128014526367188, 2.113512451171875, 1.0119444580078125, 1.0120970458984375, 1.0116249389648437, 1.0117980346679687, 1.0118410034179688, 1.0118922119140625, 1.0117406616210938, 1.012063232421875, 1.0121236572265624, 1.0118225708007813, 1.0117457885742187, 1.012200439453125, 1.0118594360351563, 1.0123018188476562, 1.0119075927734376, 1.0119393310546876, 1.0118450927734375, 1.0121697387695312, 1.0119772338867188, 1.0117940063476563, 1.0117733764648438, 1.0121502685546875, 1.0117877807617188, 1.0121226196289062, 1.0117345581054686, 1.011778564453125, 1.0116874389648438, 1.0122762451171874, 1.0118328247070312, 1.0120519409179687, 1.0118645629882812, 1.0123099975585939, 1.0122506103515625, 1.012801513671875, 1.0120089721679688, 1.0126571655273438, 1.0122014770507812, 1.0129817504882812, 1.0126458740234374, 1.012490234375, 1.0121615600585938, 1.0127646484375, 1.0119393310546876, 1.0128711547851563, 1.011999755859375, 1.0165934448242187, 1.0120037841796874, 1.0129735717773438, 1.0124287719726563, 1.0122291259765626, 1.0124595336914062, 1.01273291015625, 1.0122619018554688, 1.0127390747070313, 1.0128394165039063, 1.0125383911132813, 1.01269091796875, 1.013369873046875, 1.0124830932617188, 1.0126510009765626, 1.0123509521484375, 1.0127933349609375, 2.1089033203125, 1.0117857055664063, 1.0120253295898438, 1.012158447265625, 1.0124718017578125, 1.0120816650390625, 1.0120447998046875, 1.0125680541992188, 1.0123571166992187, 1.0120724487304686, 1.0127575073242188, 1.01252001953125, 1.0122987060546875, 1.0124451904296874, 1.0127728881835938, 1.011794921875, 1.011989501953125, 1.0122485961914063, 1.0122066040039062, 1.0119823608398437, 1.012210693359375, 1.0119772338867188, 1.01199462890625, 1.0123724975585937, 1.0123673706054688, 1.0120867919921874, 1.0119280395507813, 1.0121994018554688, 1.0121431274414063, 1.0121226196289062, 1.0124666748046875, 1.0119382934570313, 1.012031494140625, 1.0129346313476562, 1.012621337890625, 1.0127984619140624, 1.0124257202148437, 1.012552734375, 1.0124932861328124, 1.0126151733398439, 1.0124769287109374, 1.0124185791015625, 1.0123202514648437, 1.0127390747070313, 1.0145853271484375, 1.0121594848632813, 1.0121994018554688, 1.016111083984375, 1.01210009765625, 1.012337646484375, 1.0126919555664062, 1.0125444946289062, 1.0131015625, 1.0132469482421875, 1.0124186401367188, 1.0119146728515624, 1.0125578002929687, 1.0123294677734376, 1.0121595458984376, 1.0121768798828126, 1.0121963500976563, 1.0120345458984374, 1.0120714111328124, 2.108083251953125, 1.0117611694335937, 1.0117723999023438, 1.0123253784179687, 1.0121656494140625, 1.011751953125, 1.011820556640625, 1.0120601806640626, 1.0119454956054688, 1.01188916015625, 1.0119761962890625, 1.0117877807617188, 1.0130258178710938, 1.0123018188476562, 1.0121328735351562, 1.01246875, 1.0121953125, 1.0118369140625, 1.0122199096679687, 1.0124267578125, 1.0122546997070312, 1.0124503173828125, 1.0120703735351562, 1.0122537231445312, 1.0119536743164061, 1.0123397216796874, 1.0123960571289063, 1.0120325317382812, 1.0122772216796876, 1.012115478515625, 1.012005859375, 1.011937255859375, 1.0124103393554686, 1.0128527221679688, 1.012220947265625, 1.0126182250976563, 1.0130596313476563, 1.012464599609375, 1.0132828369140625, 1.0123468627929688, 1.0119547119140626, 1.0120048828125, 1.0124175415039063, 1.012010986328125, 1.0151219482421876, 1.0123069458007812, 1.0124124145507813, 1.0122076416015624, 1.0128138427734374, 1.0126878662109375, 1.0123939819335936, 1.0121318359375, 1.01235302734375, 1.011895263671875, 1.0121062622070311, 1.0122885131835937, 1.0123724975585937, 1.012242431640625, 1.012421630859375, 1.0123786010742188, 1.0121113891601563, 1.0120017700195312, 1.0122393798828124, 2.10916650390625, 1.0120038452148437, 1.0127247314453125, 1.0125916137695312, 1.0125660400390626, 1.0119761962890625, 1.0121748657226564, 1.0119721069335939, 1.0121370239257812, 1.0121942138671876, 1.0123048706054687, 1.0119403686523438, 1.0117099609375, 1.01187890625, 1.0121195678710937, 1.0117509155273436, 1.0118615112304687, 1.013433349609375, 1.012052978515625, 1.0117959594726562, 1.0120274047851563, 1.0121123657226563, 1.012421630859375, 1.012052978515625, 1.0121298217773438, 1.0119987182617187, 1.0118973388671875, 1.0125066528320312, 1.0120836791992187, 1.0121307983398438, 1.01264697265625, 1.0120714111328124, 1.0120857543945312, 1.0123540649414062, 1.0124544067382812, 1.0121564331054687, 1.0122383422851562, 1.0122454833984376, 1.0119935913085938, 1.0119239501953126, 1.0125363159179688, 1.0117755126953125, 1.011968017578125, 1.0119495239257812, 1.0124840698242188, 1.0122025146484375, 1.0122854614257812, 1.01258447265625, 1.0125885620117188, 1.0125301513671876, 1.012516845703125, 1.012400146484375, 1.0123970336914063, 1.0127892456054688, 1.01247998046875, 1.01256396484375, 1.0124237060546875, 1.0165504150390625, 1.0126458740234374, 1.0126848754882813, 1.0138418579101562, 1.0126428833007812, 1.0132418212890626, 2.10956298828125, 1.0119423828125, 1.0119608154296875, 1.0120847778320312, 1.011984375, 1.0120007934570312, 1.0124031982421875, 1.01182568359375, 1.0117908325195313, 1.0122680053710937, 1.012263916015625, 1.0119035034179686, 1.0124677734375, 1.0120057983398438, 1.0118276977539062, 1.011904541015625, 1.0125209350585938, 1.012252685546875, 1.0120653076171875, 1.0124205932617187, 1.0122495727539063, 1.0123724975585937, 1.0126407470703125, 1.012590576171875, 1.0119659423828125, 1.0125209350585938, 1.0127493286132812, 1.0124779663085937, 1.0127708129882813, 1.0121123657226563, 1.0121646118164063, 1.0116229248046875, 1.0122229614257812, 1.0120335083007812, 1.0120325317382812, 1.0120078735351563, 1.0126233520507812, 1.0124185791015625, 1.01650634765625, 1.0135787353515624, 1.012727783203125, 1.0122936401367189, 1.0128947143554687, 1.0121277465820313, 1.012600830078125, 1.0126612548828124, 1.0123960571289063, 1.012105224609375, 1.0127769775390625, 1.01275341796875, 1.012274169921875, 1.012279296875, 1.0123386840820312, 1.0121942749023438, 1.0125885620117188, 1.012947998046875, 1.0124779663085937, 1.0123930053710937, 1.0128373413085938, 1.0122721557617187, 1.01233251953125, 1.0123386840820312, 1.0127564697265625, 2.110841796875, 1.0128209838867188, 1.0126233520507812, 1.012595703125, 1.0131865844726562, 1.01278515625, 1.0128342895507811, 1.0131220703125, 1.0128527221679688, 1.012337646484375, 1.0124810180664063, 1.0129080200195313, 1.012747314453125, 1.0124318237304688, 1.0134036254882812, 1.0129408569335938, 1.0123612060546876, 1.0120929565429688, 1.0134886474609375, 1.0132265014648438, 1.0129080200195313, 1.0132152099609375, 1.0127984619140624, 1.0145208129882812, 1.013728271484375, 1.0132162475585937, 1.0127083740234375, 1.0127789916992187, 1.012833251953125, 1.0120120239257813, 1.0122465209960938, 1.0125762329101562, 1.0127605590820312, 1.0129448852539062, 1.01275341796875, 1.0117826538085937, 1.0119331665039062, 1.0120591430664063, 1.0131445922851563, 1.0131220703125, 1.0128814086914062, 1.0128875732421876, 1.0127513427734376, 1.013012451171875, 1.0131896362304686, 1.0130308837890625, 1.0130473022460937, 1.0133401489257812, 1.0132930297851563, 1.0126981201171874, 1.0128568115234375, 1.012906982421875, 1.0124503173828125, 1.0124984130859376, 1.0132520751953125, 1.0128076782226563, 1.0122936401367189, 1.0126827392578126, 1.0122035522460937, 1.0120509033203124, 1.0123540649414062, 1.0125946655273437, 1.0123171997070313, 2.112021484375, 1.0123406982421874, 1.0120253295898438, 1.0121513061523437, 1.0124144897460938, 1.012274169921875, 1.012401123046875, 1.0119710693359374, 1.012263916015625, 1.0128281860351562, 1.0122537231445312, 1.0122373046875, 1.0121615600585938, 1.0122373046875, 1.0120325317382812, 1.0120929565429688, 1.01382861328125, 1.0119669799804687, 1.0119239501953126, 1.0123489379882813, 1.0119403686523438, 1.0117539672851563, 1.0119976806640625, 1.0121533203125, 1.0122137451171875, 1.0119065551757813, 1.0129019165039062, 1.0124779052734374, 1.0123939819335936, 1.0126571655273438, 1.0125834350585938, 1.0119721069335939, 1.0120038452148437, 1.012474853515625, 1.0120499267578125, 1.0122383422851562, 1.0124830932617188, 1.0124758911132812, 1.0127083740234375, 1.012632568359375, 1.0122034912109374, 1.0120222778320314, 1.012178955078125, 1.0122977294921875, 1.0122034912109374, 1.01212158203125, 1.0132428588867188, 1.0123274536132814, 1.0125435180664062, 1.0123755493164062, 1.0122383422851562, 1.01226904296875, 1.0125250854492187, 1.0119833374023437, 1.0120601806640626, 1.0121134033203125, 1.012974609375, 1.0124656372070313, 1.01243798828125, 1.012580322265625, 1.0127124633789062, 1.0127247314453125, 1.0126704711914063, 2.11262353515625, 1.0118778686523437, 1.0124564208984375, 1.0118143920898437, 1.0125772705078124, 1.0121441040039063, 1.0118225708007813, 1.0119639892578125, 1.0122833251953125, 1.011894287109375, 1.0119280395507813, 1.0119198608398436, 1.0127401123046875, 1.01235205078125, 1.012570068359375, 1.011726318359375, 1.0117744750976563, 1.013375, 1.0122465209960938, 1.01218505859375, 1.0120325317382812, 1.011989501953125, 1.0127339477539063, 1.0121031494140624, 1.0123878173828125, 1.0119874267578124, 1.011962890625, 1.0119680786132812, 1.0123140258789063, 1.0120407104492188, 1.012220947265625, 1.0121410522460939, 1.0122772216796876, 1.011979248046875, 1.0125343017578126, 1.01197412109375, 1.01228955078125, 1.0118973388671875, 1.0122465209960938, 1.0119423828125, 1.012041748046875, 1.0123131103515626, 1.0124677124023438, 1.0119342041015624, 1.012621337890625, 1.012105224609375, 1.0122291259765626, 1.0119669799804687, 1.0125332641601563, 1.0122034912109374, 1.0122045288085937, 1.0123519897460938, 1.012875244140625, 1.0126397705078125, 1.0126233520507812, 1.0123182373046875, 1.0127708129882813, 1.0124646606445313, 1.0125987548828126, 1.0120775756835938, 1.012442138671875, 1.012552734375, 1.012252685546875, 2.11210546875, 1.011620849609375, 1.0120519409179687, 1.0119721069335939, 1.0122485961914063, 1.0120714111328124, 1.0120621948242188, 1.0127001342773438, 1.0125178833007813, 1.012548583984375, 1.01243701171875, 1.0118604736328125, 1.0117130126953124, 1.0120304565429687, 1.0122587890625, 1.01167822265625, 1.0118010864257811, 1.0119813232421875, 1.011894287109375, 1.0122905883789062, 1.01184716796875, 1.0117959594726562, 1.0116761474609375, 1.0118410034179688, 1.0117744750976563, 1.0119515991210937, 1.0144215087890625, 1.0122987670898438, 1.012021240234375, 1.0126315307617189, 1.0124862060546875, 1.0122158203125, 1.0121727905273437, 1.0125875244140625, 1.0124472045898438, 1.0122403564453124, 1.0122117309570313, 1.0127349853515626, 1.0121431274414063, 1.012495361328125, 1.012738037109375, 1.0124758911132812, 1.0128773193359375, 1.0123079833984374, 1.0123099975585939, 1.0121298217773438, 1.0122557373046874, 1.0126878662109375, 1.0124810180664063, 1.013000244140625, 1.012516845703125, 1.0124298095703126, 1.012358154296875, 1.0124656372070313, 1.0123171997070313, 1.01239501953125, 1.01268994140625, 1.0127656860351562, 1.01236328125, 1.0124308471679688, 1.012527099609375, 1.0123038940429687, 1.0129132080078125]",tokens/s,0.972675384993313,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-6B,,cuda,0,42,,,,,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,MB,1575.784448,5448.925184,0.0,4802.47808,4489.252352,s,10,5.114569244384766,0.5114569244384766,0.0014045752365005437,0.51150537109375,0.5130841125488281,0.5135362274169921,0.5138979193115234,"[0.512983642578125, 0.5139883422851562, 0.5091934204101562, 0.5101927795410156, 0.5104193725585937, 0.5101881103515625, 0.5112746887207031, 0.5121220092773437, 0.5117360534667968, 0.5124708251953125]",tokens/s,500.5309103617276,kWh,6.020330099595917e-06,3.2988774182740595e-06,2.7782869448500503e-05,3.710207696637048e-05,tokens/kWh,6899883.266158921,MB,1575.784448,5448.925184,0.0,4802.47808,4557.794816,s,10,301.333625,30.133362499999997,0.011965382718741807,30.1356015625,30.146014453125,30.1513353515625,30.1555920703125,"[30.12017578125, 30.120552734375, 30.1369375, 30.140724609375, 30.15665625, 30.137947265625, 30.123359375, 30.14483203125, 30.118173828125, 30.134265625]",tokens/s,2.0907059409649356,kWh,0.00035569889715148347,0.00019495335105611957,0.001580753417379499,0.002131405665587102,tokens/kWh,29557.958401431977,,s,629,305.4536612854004,0.48561790347440437,0.060780789003776696,0.4781598815917969,0.47936102294921873,0.4797579284667969,0.9888164648437501,"[0.47731610107421873, 0.4777103271484375, 0.4780533752441406, 0.4779223022460938, 0.47746868896484373, 0.47739285278320315, 0.4777676696777344, 0.47874050903320314, 0.47792022705078124, 0.4776212463378906, 0.47766937255859376, 0.4774625244140625, 0.4779018249511719, 0.47790591430664064, 0.47894528198242187, 0.47799398803710935, 0.47878759765625, 0.47878964233398436, 0.47852645874023436, 0.47817422485351563, 0.4778905334472656, 0.47780557250976563, 0.47809637451171877, 0.47767245483398435, 0.477765625, 0.4778649597167969, 0.4779622497558594, 0.47779531860351565, 0.47874456787109376, 0.47817214965820315, 0.4782950439453125, 0.47745944213867186, 0.47759051513671874, 0.4785008544921875, 0.47783013916015626, 0.4780267639160156, 0.4782438354492187, 0.4785858459472656, 0.4793190307617187, 0.47905487060546875, 0.47873635864257813, 0.47829400634765623, 0.4777697143554688, 0.4778240661621094, 0.47742047119140624, 0.4780851135253906, 0.4782008361816406, 0.47801651000976564, 0.47831243896484377, 0.47876199340820313, 0.4778547058105469, 0.47859405517578124, 0.4782591857910156, 0.47776461791992186, 0.47824075317382814, 0.4776304626464844, 0.4778383483886719, 0.4776642456054688, 0.47760385131835936, 0.478160888671875, 0.47876300048828124, 0.4783943786621094, 0.9927915649414063, 0.47756494140625, 0.4774000549316406, 0.47765298461914063, 0.47747378540039065, 0.4782704772949219, 0.477907958984375, 0.4783944091796875, 0.477813720703125, 0.47758950805664063, 0.47759051513671874, 0.4776069030761719, 0.47729867553710936, 0.4773724060058594, 0.47751473999023436, 0.47745742797851565, 0.4780113525390625, 0.4786903076171875, 0.47860427856445314, 0.4783482971191406, 0.47794790649414065, 0.47776461791992186, 0.4778291320800781, 0.4779427795410156, 0.4779376525878906, 0.47769189453125, 0.47908352661132814, 0.47773797607421875, 0.47901287841796875, 0.4777134094238281, 0.4779151306152344, 0.47777587890625, 0.47748709106445314, 0.47771136474609377, 0.4781527099609375, 0.47798886108398436, 0.47750042724609376, 0.47809127807617186, 0.47905892944335937, 0.4782591857910156, 0.4781598815917969, 0.4782981262207031, 0.4776468505859375, 0.47786392211914064, 0.4776560668945313, 0.478023681640625, 0.48116427612304685, 0.4793456726074219, 0.4777492370605469, 0.47873126220703127, 0.47907122802734375, 0.4783626098632813, 0.4779949951171875, 0.47790286254882813, 0.4776908874511719, 0.478065673828125, 0.4777738342285156, 0.477770751953125, 0.47832369995117185, 0.47939175415039065, 0.47875686645507814, 0.47773284912109376, 0.478023681640625, 0.988906494140625, 0.47783013916015626, 0.4776437683105469, 0.4778649597167969, 0.4783902587890625, 0.47753521728515624, 0.4795494384765625, 0.47817214965820315, 0.4789770202636719, 0.4776386413574219, 0.47787213134765627, 0.47758950805664063, 0.47774514770507814, 0.47762841796875, 0.47790386962890624, 0.479541259765625, 0.4791797790527344, 0.47914700317382813, 0.4779294738769531, 0.4777625732421875, 0.47816497802734376, 0.4782356567382812, 0.47807180786132814, 0.4797726745605469, 0.4777687072753906, 0.4803246154785156, 0.4800747375488281, 0.4793231506347656, 0.4796539001464844, 0.48039935302734377, 0.4796252136230469, 0.4790927429199219, 0.477655029296875, 0.4791510925292969, 0.4787394409179688, 0.47877017211914064, 0.47938558959960936, 0.47959552001953126, 0.47838516235351564, 0.47773593139648435, 0.478129150390625, 0.4781404113769531, 0.4776857604980469, 0.4779018249511719, 0.47747378540039065, 0.4776847229003906, 0.4781803588867187, 0.4799620971679687, 0.4786053161621094, 0.47794790649414065, 0.4777123718261719, 0.4776683654785156, 0.4774696960449219, 0.47712460327148437, 0.4774481811523438, 0.47752908325195315, 0.47732632446289064, 0.4782438354492187, 0.47871487426757814, 0.47837286376953125, 0.4777123718261719, 0.47754238891601564, 0.4779929504394531, 0.9885849609375, 0.47834625244140627, 0.47808615112304687, 0.47836468505859375, 0.47836468505859375, 0.4776908874511719, 0.47762738037109376, 0.4779254455566406, 0.477751220703125, 0.4784117736816406, 0.47790286254882813, 0.4781741943359375, 0.4787138671875, 0.47869439697265626, 0.47841998291015625, 0.4790876159667969, 0.47936920166015623, 0.4789770202636719, 0.4778157958984375, 0.47849676513671874, 0.4780349426269531, 0.4785776672363281, 0.4781475830078125, 0.4785581970214844, 0.4792135620117188, 0.47874969482421875, 0.4787026062011719, 0.47837899780273435, 0.47872308349609377, 0.47839334106445314, 0.4786411437988281, 0.4790169677734375, 0.47768063354492185, 0.4778465270996094, 0.4781793212890625, 0.47906610107421876, 0.47883367919921876, 0.4782213134765625, 0.4785172424316406, 0.47826739501953125, 0.478087158203125, 0.4777277526855469, 0.4778680419921875, 0.47746456909179685, 0.4802908020019531, 0.47867086791992186, 0.47896060180664063, 0.4792279052734375, 0.4781783142089844, 0.47810867309570315, 0.4786063232421875, 0.4785162353515625, 0.4785848388671875, 0.4778659973144531, 0.4776212463378906, 0.4777840576171875, 0.4788787231445312, 0.47973171997070313, 0.47971328735351565, 0.4792842102050781, 0.477655029296875, 0.47770315551757814, 0.4779049377441406, 0.9883463134765625, 0.4791357421875, 0.4782458801269531, 0.4794173583984375, 0.478166015625, 0.47800833129882814, 0.4775157775878906, 0.4780421142578125, 0.47852032470703126, 0.4791224365234375, 0.47801651000976564, 0.47799398803710935, 0.4782530517578125, 0.47967129516601564, 0.47834417724609374, 0.4779847717285156, 0.4790302734375, 0.47956378173828124, 0.4773304443359375, 0.4774420471191406, 0.4774143981933594, 0.4773447570800781, 0.47814349365234377, 0.47828582763671873, 0.479710205078125, 0.4788910217285156, 0.479056884765625, 0.47832369995117185, 0.4782438354492187, 0.4783964233398437, 0.479025146484375, 0.4786606140136719, 0.4782909545898438, 0.47821823120117185, 0.4802129821777344, 0.47790286254882813, 0.47835751342773436, 0.4782561340332031, 0.478635009765625, 0.47870156860351565, 0.4777001037597656, 0.4775802917480469, 0.47765914916992186, 0.479578125, 0.4784527282714844, 0.47922894287109374, 0.47923199462890625, 0.4788213806152344, 0.47869439697265626, 0.4787804260253906, 0.47939993286132815, 0.47935186767578125, 0.4787639770507813, 0.4786268310546875, 0.4793589782714844, 0.48041677856445314, 0.48034817504882815, 0.482777099609375, 0.4785745849609375, 0.478571533203125, 0.47958123779296874, 0.47865029907226564, 0.4787384338378906, 0.990581787109375, 0.4781793212890625, 0.4788521423339844, 0.47797039794921875, 0.47851007080078123, 0.47790286254882813, 0.4778321838378906, 0.47813427734375, 0.4789043273925781, 0.47835134887695313, 0.47826226806640626, 0.47895858764648436, 0.4790947875976562, 0.4783759460449219, 0.47830938720703126, 0.4781803588867187, 0.477991943359375, 0.47756903076171875, 0.47764480590820313, 0.47726080322265624, 0.47773797607421875, 0.47950848388671874, 0.47766015625, 0.47899853515625, 0.47830322265625, 0.4781537170410156, 0.47825204467773436, 0.4785592346191406, 0.479025146484375, 0.47944705200195314, 0.47835134887695313, 0.478445556640625, 0.47876199340820313, 0.47891659545898435, 0.4791101379394531, 0.47820391845703125, 0.4782581787109375, 0.47862374877929686, 0.4814622802734375, 0.47808819580078127, 0.47835751342773436, 0.47878964233398436, 0.4785551452636719, 0.4777082824707031, 0.4787271728515625, 0.4784322509765625, 0.47835546875, 0.4775679931640625, 0.4779346008300781, 0.47834521484375, 0.478160888671875, 0.47767962646484374, 0.47781170654296873, 0.4783585205078125, 0.4791285705566406, 0.4783697814941406, 0.47800216674804685, 0.47763250732421875, 0.4782294921875, 0.47773696899414064, 0.47801651000976564, 0.4774718017578125, 0.47802670288085936, 0.9896888427734375, 0.47829608154296877, 0.47802975463867187, 0.47756497192382813, 0.47750039672851563, 0.47811380004882814, 0.4781025390625, 0.4778936767578125, 0.47798370361328124, 0.47788851928710935, 0.4786268310546875, 0.4782899169921875, 0.4779632568359375, 0.47777484130859377, 0.47753521728515624, 0.4779007873535156, 0.47758544921875, 0.47753726196289065, 0.47787213134765627, 0.47847628784179685, 0.4782909545898438, 0.4778014831542969, 0.47860223388671874, 0.47986483764648435, 0.47783935546875, 0.47765298461914063, 0.4779980773925781, 0.47794073486328126, 0.4787517395019531, 0.4781506652832031, 0.4780155029296875, 0.47900875854492186, 0.47818548583984377, 0.47805029296875, 0.4782233581542969, 0.47802471923828127, 0.4779346008300781, 0.47827557373046875, 0.478497802734375, 0.47849063110351564, 0.47899237060546873, 0.4786196594238281, 0.47815167236328127, 0.4799846801757813, 0.47795709228515626, 0.47788851928710935, 0.4778270568847656, 0.4778547058105469, 0.478060546875, 0.47782608032226564, 0.4778434143066406, 0.477601806640625, 0.4788572082519531, 0.47828274536132814, 0.47832986450195314, 0.4779417724609375, 0.477633544921875, 0.477907958984375, 0.478065673828125, 0.4780482482910156, 0.47808819580078127, 0.47858380126953126, 0.47811892700195313, 0.9911572265625, 0.4780707702636719, 0.47788134765625, 0.4775536499023437, 0.4774696960449219, 0.47756185913085936, 0.47758642578125, 0.4777615356445313, 0.47794790649414065, 0.4787118225097656, 0.47779736328125, 0.47749325561523437, 0.4775475158691406, 0.4777697143554688, 0.4781363220214844, 0.4779141235351563, 0.4792012939453125, 0.4778874816894531, 0.47856845092773437, 0.47768267822265625, 0.4781311950683594, 0.4785070190429688, 0.47809127807617186, 0.4776365966796875, 0.4780707702636719, 0.47816497802734376, 0.47828582763671873, 0.47777279663085936, 0.4780728454589844, 0.47835751342773436, 0.47851211547851563, 0.47822235107421873, 0.4775055236816406, 0.4781465454101563, 0.47790386962890624, 0.4779018249511719, 0.478359619140625, 0.4794295654296875, 0.4784394226074219, 0.4795248718261719, 0.4780544128417969, 0.477949951171875, 0.48094821166992185, 0.4794306640625, 0.4784814147949219, 0.4792197265625, 0.4782981262207031, 0.47831655883789065, 0.47831243896484377, 0.4784998474121094, 0.47935488891601563, 0.47914599609375, 0.48005630493164064, 0.48013311767578126, 0.47997030639648436, 0.48005426025390624, 0.4799140625, 0.4794142150878906, 0.4800153503417969, 0.4793067626953125, 0.47961505126953125, 0.47790789794921873, 0.4778670043945312, 0.9900185546875, 0.4775372924804687, 0.47779840087890624, 0.477633544921875, 0.4782950439453125, 0.47761920166015626, 0.47800421142578126, 0.478803955078125, 0.4791029663085937, 0.4782643127441406, 0.47842098999023436, 0.4776908874511719, 0.4780185546875, 0.47770932006835937, 0.4777851257324219, 0.477681640625, 0.477812744140625, 0.47979006958007814, 0.47791717529296873, 0.4780451965332031, 0.4788193359375, 0.477955078125, 0.47790591430664064, 0.47803903198242187, 0.47824697875976563, 0.4786861572265625, 0.47816192626953125, 0.477655029296875, 0.47835134887695313, 0.478919677734375, 0.47831039428710936, 0.4777205810546875, 0.4773253173828125, 0.47773284912109376, 0.4778260498046875, 0.4776069030761719, 0.47773492431640624, 0.4777461853027344, 0.478587890625, 0.47767041015625, 0.4789801330566406, 0.47915618896484374, 0.4780257263183594, 0.47762841796875, 0.4778168334960938, 0.4776714172363281, 0.47783526611328125, 0.47757107543945315, 0.4779704284667969, 0.4786677856445313, 0.47908148193359373, 0.4783206481933594, 0.4781240234375, 0.47756494140625, 0.4773294067382812, 0.47757208251953126, 0.477348876953125, 0.47757720947265625, 0.47773492431640624, 0.47816192626953125, 0.47770932006835937, 0.4789381103515625, 0.47819366455078127, 0.9904609375, 0.47848550415039065, 0.478013427734375, 0.4775751647949219, 0.4774912109375, 0.4782847900390625, 0.4794931335449219, 0.4796549072265625, 0.47851318359375, 0.4785254211425781, 0.47859506225585935, 0.4788695068359375, 0.47816293334960935, 0.47827969360351563, 0.4785244140625, 0.4797358093261719, 0.4782438354492187, 0.4776570739746094, 0.4789125061035156, 0.47882650756835937, 0.4777082824707031, 0.47753216552734373, 0.47809637451171877, 0.47831655883789065, 0.4776488952636719, 0.4774471740722656, 0.4796170349121094, 0.47986483764648435, 0.4793456726074219, 0.479599609375, 0.4791654357910156, 0.4776488952636719, 0.4775475158691406, 0.47792538452148436, 0.4778240051269531, 0.4774819946289062, 0.4782612915039062, 0.4777738037109375, 0.4777543640136719, 0.47963134765625, 0.47828070068359374, 0.4778486022949219, 0.4777625427246094, 0.477601806640625, 0.4777185363769531, 0.47762432861328125, 0.47770932006835937, 0.4777062377929687, 0.47948800659179686, 0.4784066467285156, 0.47847015380859376, 0.4775106506347656, 0.4777420654296875, 0.47842098999023436, 0.47805233764648436, 0.47766015625, 0.47758746337890623, 0.47821926879882815, 0.4781087036132812, 0.4776806640625, 0.47913876342773437, 0.47851828002929686, 0.4783575744628906]",tokens/s,2.059232151132392,,,,,,main,False,False -4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,v,v,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,M,M,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -30788,7 +28764,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/v/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/M/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -30815,9 +28791,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949463-026faf42475103197641a8df;55e13455-78b3-4a93-b731-e264c355deb4) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948fc3-59bca28f3b130fdb7f28ad70;6ca362e5-613d-43e9-89fb-90090ff76b41) -Repository Not Found for url: https://huggingface.co/v/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/M/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -30842,12 +28818,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: v is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: M is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.3b,EleutherAI/pythia-1.3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,,MB,1688.977408,2250.768384,0.0,1604.32128,1463.693312,s,10,1.2614907455444335,0.12614907455444335,0.001156305474696835,0.12596041870117186,0.12672372131347656,0.12802366485595704,0.12906361968994143,"[0.1293236083984375, 0.12533795166015624, 0.12527750396728515, 0.1264024658203125, 0.12550204467773438, 0.12507218933105468, 0.1257669143676758, 0.12615392303466796, 0.12621929931640624, 0.12643484497070312]",tokens/s,2029.3450499275416,kWh,1.4795928945144019e-06,8.107423014348568e-07,6.482848936275459e-06,8.773184132224718e-06,tokens/kWh,29179827.545131337,MB,1688.977408,2250.768384,0.0,1604.32128,1560.975872,s,10,72.8006865234375,7.280068652343751,0.00707557452467299,7.2794865722656255,7.288760400390625,7.290637524414063,7.292139223632812,"[7.2925146484375, 7.2867998046875, 7.28834326171875, 7.272900390625, 7.28120458984375, 7.28177783203125, 7.2702080078125, 7.2777685546875, 7.277201171875, 7.27196826171875]",tokens/s,8.653764546535935,kWh,8.591771873335045e-05,4.70891264273655e-05,0.0003703246191761246,0.0005033314643368406,tokens/kWh,125166.02768516574,,s,629,73.8150656280517,0.1173530455135958,0.015000349665490152,0.11545600128173829,0.11595755310058595,0.11627356262207031,0.24130564147949218,"[0.1175910415649414, 0.11764224243164062, 0.11673804473876953, 0.11585126495361328, 0.115281982421875, 0.11545388793945313, 0.11590860748291015, 0.11528498840332031, 0.11539968109130859, 0.11538841247558594, 0.11548159790039063, 0.11523072052001954, 0.11521842956542969, 0.11532492828369141, 0.11577958679199218, 0.11560755157470703, 0.1152696304321289, 0.11566079711914062, 0.1159925765991211, 0.11540889739990234, 0.11546623992919922, 0.11522150421142578, 0.11538944244384766, 0.1153617935180664, 0.11544371032714844, 0.1166714859008789, 0.11574886322021484, 0.1154672622680664, 0.11605299377441407, 0.11584102630615234, 0.1156485137939453, 0.11544882965087891, 0.11554099273681641, 0.115557373046875, 0.11551026916503906, 0.1155788803100586, 0.115725341796875, 0.11555939483642579, 0.11551129913330078, 0.11544371032714844, 0.11543244934082031, 0.11539968109130859, 0.11540684509277344, 0.11523072052001954, 0.11638988494873047, 0.11598438262939453, 0.11537510681152344, 0.11538534545898438, 0.11558604431152343, 0.11559219360351562, 0.11591474914550781, 0.11588198089599609, 0.1159362564086914, 0.11570175933837891, 0.11595673370361329, 0.11578368377685547, 0.11646463775634766, 0.11617485046386719, 0.11598336029052735, 0.11553279876708984, 0.11578470611572265, 0.11579801940917969, 0.24151040649414063, 0.11573862457275391, 0.11605094146728516, 0.11689881896972656, 0.1161523208618164, 0.1156648941040039, 0.11554099273681641, 0.11535564422607422, 0.11528498840332031, 0.11527065277099609, 0.11566387176513672, 0.11533516693115234, 0.11576012420654297, 0.11564749145507812, 0.1155051498413086, 0.11542221069335938, 0.11543961334228516, 0.11525529479980469, 0.11523993682861328, 0.11541913604736329, 0.1155225601196289, 0.1157734375, 0.11563929748535157, 0.11553587341308594, 0.11531571197509766, 0.115378173828125, 0.11524201965332032, 0.11551340484619141, 0.11532073974609375, 0.11577961730957032, 0.11592704010009766, 0.11556451416015626, 0.1154549789428711, 0.11527680206298828, 0.11526656341552734, 0.11538739013671875, 0.11530854034423828, 0.11538432312011719, 0.11546214294433593, 0.11541401672363281, 0.11528192138671875, 0.11616563415527344, 0.11571199798583984, 0.11578880310058594, 0.11551747131347656, 0.11540067291259766, 0.11685273742675781, 0.11557068634033203, 0.11726950073242187, 0.1159393310546875, 0.11543148803710937, 0.11552044677734374, 0.1161891860961914, 0.11548876953125, 0.11572940826416016, 0.1157396469116211, 0.11657421112060547, 0.11594854736328125, 0.11598851013183593, 0.11593417358398438, 0.11551846313476563, 0.11548365020751954, 0.11548569488525391, 0.2411530303955078, 0.11556454467773437, 0.11577139282226563, 0.11626496124267578, 0.11560652923583985, 0.11565161895751953, 0.11566384124755859, 0.11581747436523437, 0.1154672622680664, 0.11527474975585937, 0.11536998748779297, 0.11562598419189453, 0.11528089904785156, 0.11566902160644531, 0.11589116668701172, 0.11617894744873047, 0.1157201919555664, 0.11589734649658204, 0.11571302032470702, 0.11588607788085938, 0.11542323303222657, 0.11556966400146484, 0.1156833267211914, 0.11643392181396485, 0.11568434906005859, 0.11659468841552735, 0.11596083068847657, 0.11616665649414062, 0.11567922973632813, 0.11553794860839844, 0.11543036651611328, 0.11538636779785157, 0.11580620574951171, 0.11554918670654298, 0.11579296112060547, 0.1156412811279297, 0.11582361602783203, 0.11581132507324218, 0.11555328369140624, 0.11571507263183593, 0.11545600128173829, 0.11533926391601562, 0.1156147232055664, 0.1153966064453125, 0.1154119644165039, 0.11549286651611328, 0.11582566070556641, 0.11649638366699219, 0.1159516830444336, 0.11595462036132813, 0.11600281524658203, 0.11591474914550781, 0.11610931396484375, 0.11565261077880859, 0.1153290252685547, 0.11547238159179687, 0.1153290252685547, 0.115346435546875, 0.11534438323974609, 0.11529523468017579, 0.115378173828125, 0.11543551635742187, 0.11540377807617187, 0.24315084838867188, 0.11575193786621094, 0.11506790161132813, 0.11524915313720703, 0.1155962905883789, 0.11531366729736328, 0.11553177642822265, 0.11558297729492187, 0.11519385528564453, 0.11537305450439453, 0.11545811462402343, 0.11599967956542968, 0.11572838592529297, 0.1153966064453125, 0.11536077117919921, 0.11558092498779297, 0.1153617935180664, 0.1152911376953125, 0.11529011535644532, 0.11535564422607422, 0.11525939178466797, 0.1152143325805664, 0.11515494537353516, 0.11549696350097656, 0.11525017547607422, 0.11560550689697266, 0.11576217651367188, 0.11544268798828125, 0.11537203216552734, 0.11532288360595704, 0.11530239868164062, 0.11551334381103516, 0.115162109375, 0.11524813079833984, 0.1151436767578125, 0.11530035400390624, 0.11520614624023437, 0.11535871887207032, 0.11520716857910156, 0.11560345458984375, 0.11539968109130859, 0.11531676483154298, 0.11529417419433594, 0.1153966064453125, 0.11623017883300782, 0.11542422485351563, 0.11526451110839844, 0.11549388885498046, 0.11539762878417968, 0.11577855682373046, 0.1153955841064453, 0.11553279876708984, 0.11524403381347656, 0.11579084777832031, 0.11539968109130859, 0.11569152069091797, 0.11539353942871093, 0.11553997039794922, 0.11545600128173829, 0.11532492828369141, 0.1152696304321289, 0.11538841247558594, 0.1153433609008789, 0.241364990234375, 0.11547853088378907, 0.11533721923828125, 0.11539049530029297, 0.11531874847412109, 0.11551129913330078, 0.1152542724609375, 0.11560758209228515, 0.11542422485351563, 0.1155389404296875, 0.11542118072509766, 0.11545804595947265, 0.1156178207397461, 0.115463134765625, 0.11520716857910156, 0.11564339447021485, 0.11541913604736329, 0.11587276458740234, 0.1153955841064453, 0.11544882965087891, 0.11543654632568359, 0.11536793518066406, 0.11598540496826172, 0.11562393951416015, 0.11578470611572265, 0.11597004699707031, 0.11561062622070313, 0.11569459533691406, 0.11571302032470702, 0.11590144348144531, 0.11557068634033203, 0.11549900817871094, 0.11544678497314453, 0.11544268798828125, 0.11540889739990234, 0.11547443389892578, 0.11561574554443359, 0.11543449401855468, 0.11550624084472656, 0.11566381072998047, 0.11555225372314454, 0.11549286651611328, 0.11550822448730469, 0.11547955322265625, 0.1153064956665039, 0.11546623992919922, 0.11551744079589844, 0.11544371032714844, 0.11622195434570312, 0.11589017486572266, 0.11552665710449218, 0.1153986587524414, 0.11532390594482422, 0.11578470611572265, 0.11576934051513672, 0.11560550689697266, 0.11554713439941407, 0.11664281463623047, 0.11574784088134765, 0.11553997039794922, 0.11533824157714843, 0.11548569488525391, 0.11580518341064452, 0.2409891815185547, 0.11542425537109376, 0.11530342102050781, 0.11544166564941406, 0.115346435546875, 0.11540684509277344, 0.11648614501953125, 0.1165475845336914, 0.11569561767578125, 0.11536281585693359, 0.11529318237304688, 0.11541401672363281, 0.11542221069335938, 0.11558809661865234, 0.11539456176757812, 0.11545702362060548, 0.11533209228515626, 0.11550822448730469, 0.11541913604736329, 0.11535667419433594, 0.11532185363769532, 0.11544985961914063, 0.11528300476074219, 0.11542829132080078, 0.11535564422607422, 0.11552665710449218, 0.11533004760742188, 0.11546419525146484, 0.11538022613525391, 0.11521539306640625, 0.1153545913696289, 0.11576934051513672, 0.11584614562988281, 0.11546214294433593, 0.11551232147216797, 0.11547647857666016, 0.11558092498779297, 0.1154796142578125, 0.11671033477783203, 0.11560243225097656, 0.11540480041503906, 0.11559120178222657, 0.11558499145507813, 0.11560243225097656, 0.11611443328857422, 0.11554815673828125, 0.11593113708496093, 0.11560857391357422, 0.11550003051757812, 0.1153433609008789, 0.11553488159179688, 0.11636220550537109, 0.11614924621582032, 0.11589631652832032, 0.11544371032714844, 0.11543961334228516, 0.11590144348144531, 0.11554303741455078, 0.11543961334228516, 0.11548467254638672, 0.1157918701171875, 0.11545804595947265, 0.11548159790039063, 0.24169778442382814, 0.11536077117919921, 0.11515801239013672, 0.1152573471069336, 0.11527884674072265, 0.11527986907958984, 0.115346435546875, 0.11558502197265624, 0.1152471694946289, 0.11550918579101563, 0.11519078063964844, 0.11538329315185547, 0.11518669128417969, 0.11536281585693359, 0.11518163299560547, 0.11539347076416015, 0.11518678283691407, 0.11522755432128906, 0.11527577972412109, 0.11537920379638672, 0.11528710174560547, 0.11573241424560547, 0.11531775665283203, 0.11599462127685548, 0.11536895751953125, 0.11559219360351562, 0.1152174072265625, 0.11544473266601563, 0.11515187072753906, 0.11589734649658204, 0.11575091552734375, 0.11540377807617187, 0.11524508666992188, 0.11525116729736327, 0.1152573471069336, 0.11555532836914062, 0.1153259506225586, 0.1153617935180664, 0.1152542724609375, 0.11547135925292969, 0.11532083129882813, 0.11537305450439453, 0.11539968109130859, 0.11537612915039062, 0.11517235565185546, 0.11529216003417969, 0.11535257720947266, 0.11539046478271485, 0.11532390594482422, 0.11542940521240234, 0.11545801544189453, 0.115557373046875, 0.11530239868164062, 0.11545193481445312, 0.11529827117919922, 0.11565363311767578, 0.11541299438476563, 0.11608678436279297, 0.11551641845703126, 0.11544064331054688, 0.11531980895996094, 0.11546214294433593, 0.11526348876953126, 0.2421370849609375, 0.11553485107421875, 0.11565363311767578, 0.11698073577880859, 0.11526451110839844, 0.11523788452148437, 0.11507615661621094, 0.11531769561767578, 0.11525939178466797, 0.11527884674072265, 0.11663155364990234, 0.11554815673828125, 0.11534745788574219, 0.11536281585693359, 0.11533106994628907, 0.11543449401855468, 0.11581439971923828, 0.11606221008300781, 0.11575091552734375, 0.11566182708740234, 0.1154867172241211, 0.1154119644165039, 0.11538432312011719, 0.11553075408935547, 0.11544985961914063, 0.1154119644165039, 0.11534540557861328, 0.11543142700195312, 0.11537612915039062, 0.11558502197265624, 0.11556352233886719, 0.1155072021484375, 0.11545394897460938, 0.11533824157714843, 0.11553485107421875, 0.11541094207763672, 0.1153597412109375, 0.11537407684326172, 0.11529216003417969, 0.11547955322265625, 0.11540787506103516, 0.11534950256347656, 0.11540275573730469, 0.11537305450439453, 0.11569664001464844, 0.11560038757324219, 0.11557785797119141, 0.11525635528564453, 0.115210205078125, 0.11607859039306641, 0.11538022613525391, 0.11546419525146484, 0.11593727874755859, 0.11551436614990235, 0.11531263732910156, 0.11544576263427735, 0.11548569488525391, 0.11550924682617188, 0.11583999633789062, 0.11551641845703126, 0.11535871887207032, 0.11538739013671875, 0.11543142700195312, 0.24210124206542968, 0.11537920379638672, 0.11549593353271484, 0.11537612915039062, 0.11512525177001953, 0.11541709136962891, 0.1153280029296875, 0.11576729583740235, 0.115378173828125, 0.11518669128417969, 0.11519593811035156, 0.115463134765625, 0.11528498840332031, 0.11549491119384765, 0.11540172576904296, 0.11594445037841797, 0.11559526062011719, 0.116279296875, 0.11579698944091797, 0.11580210876464844, 0.11537203216552734, 0.11540991973876953, 0.11529318237304688, 0.11539456176757812, 0.1153597412109375, 0.11614412689208985, 0.11539968109130859, 0.11535155487060547, 0.11532492828369141, 0.11529523468017579, 0.11584108734130859, 0.1154241943359375, 0.11634585571289062, 0.11548159790039063, 0.11571302032470702, 0.1153219223022461, 0.1154579849243164, 0.11549388885498046, 0.1154303970336914, 0.11558297729492187, 0.11536383819580077, 0.11582975769042969, 0.11551436614990235, 0.11530035400390624, 0.11534233856201172, 0.11510886383056641, 0.11527168273925781, 0.11539968109130859, 0.11526860809326171, 0.1152573471069336, 0.11550822448730469, 0.11615952301025391, 0.1159669418334961, 0.11542835235595703, 0.11572223663330078, 0.11554918670654298, 0.11545906829833984, 0.11568742370605468, 0.1153812484741211, 0.11539762878417968, 0.11535155487060547, 0.1154303970336914, 0.11551129913330078, 0.24231832885742188, 0.11538432312011719, 0.1153259506225586, 0.11540480041503906, 0.11546419525146484, 0.11534745788574219, 0.11531878662109375, 0.11547138977050782, 0.115283935546875, 0.11556147003173828, 0.11574169921875, 0.11635916900634766, 0.11543142700195312, 0.11534540557861328, 0.11524813079833984, 0.1152911376953125, 0.11551436614990235, 0.11536589050292968, 0.11532083129882813, 0.11543247985839844, 0.11533615875244141, 0.11537407684326172, 0.11525631713867188, 0.11534438323974609, 0.11512217712402344, 0.11535769653320313, 0.11603763580322266, 0.11543449401855468, 0.1153986587524414, 0.11541506958007812, 0.11541094207763672, 0.11551331329345703, 0.11517440032958984, 0.11537715148925781, 0.11538534545898438, 0.11531263732910156, 0.11526758575439452, 0.11542835235595703, 0.11535052490234375, 0.11555430603027343, 0.11530035400390624, 0.11539046478271485, 0.11545398712158203, 0.1154815673828125, 0.11535667419433594, 0.11539250946044922, 0.1153812484741211, 0.1153986587524414, 0.1155051498413086, 0.11556665802001953, 0.11569554901123047, 0.11560447692871094, 0.11522866821289063, 0.11546419525146484, 0.11527577972412109, 0.11578880310058594, 0.11543142700195312, 0.1154119644165039, 0.115346435546875, 0.11526553344726563, 0.11522560119628907, 0.11540480041503906, 0.11531673431396484]",tokens/s,8.5212956819612,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-40b,tiiuae/falcon-40b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-3b,stabilityai/stablelm-base-alpha-3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -30875,47 +28850,40 @@ ChildProcessError: Traceback (most recent call last): return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) - File ""/root/.cache/huggingface/modules/transformers_modules/tiiuae/falcon-40b/4a70170c215b36a3cce4b4253f6d0612bb7d4146/modeling_falcon.py"", line 900, in forward - transformer_outputs = self.transformer( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward + outputs = self.gpt_neox( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) - File ""/root/.cache/huggingface/modules/transformers_modules/tiiuae/falcon-40b/4a70170c215b36a3cce4b4253f6d0612bb7d4146/modeling_falcon.py"", line 797, in forward - outputs = block( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward + outputs = layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) - File ""/root/.cache/huggingface/modules/transformers_modules/tiiuae/falcon-40b/4a70170c215b36a3cce4b4253f6d0612bb7d4146/modeling_falcon.py"", line 477, in forward - mlp_output = self.mlp(mlp_layernorm_out) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward + attention_layer_outputs = self.attention( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) - File ""/root/.cache/huggingface/modules/transformers_modules/tiiuae/falcon-40b/4a70170c215b36a3cce4b4253f6d0612bb7d4146/modeling_falcon.py"", line 409, in forward - x = self.act(self.dense_h_to_4h(x)) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 545, in forward + query, key, value, present = self._attn_projections_and_rope( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope + qkv = self.query_key_value(hidden_states) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemm.py"", line 242, in forward - out = WQLinearMMFunction.apply( - File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 598, in apply - return super().apply(*args, **kwargs) # type: ignore[misc] - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemm.py"", line 50, in forward - out = dequantize_gemm(qweight, qzeros, scales, w_bit, group_size) - File ""/usr/local/lib/python3.10/dist-packages/awq/utils/packing_utils.py"", line 85, in dequantize_gemm - iweight, izeros = unpack_awq(qweight, qzeros, bits) - File ""/usr/local/lib/python3.10/dist-packages/awq/utils/packing_utils.py"", line 12, in unpack_awq - iweights = torch.bitwise_right_shift(qweight[:, :, None], shifts[None, None, :]).to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 2.00 GiB. GPU + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neox-20b,,cuda,0,42,,,,,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,MB,1888.280576,15194.390528,0.0,14547.943424,13898.252288,s,10,16.972713500976564,1.6972713500976564,0.0011802396473078822,1.6969771728515626,1.6988580200195311,1.699245782470703,1.6995559924316406,"[1.6969825439453126, 1.6969718017578126, 1.6960919189453125, 1.6958106689453125, 1.6964619140625, 1.69635986328125, 1.6974122314453124, 1.6982171630859375, 1.699633544921875, 1.6987718505859375]",tokens/s,150.83033127570937,kWh,2.0026979611979592e-05,1.097496669508473e-05,9.603446571639917e-05,0.0001270364120234635,tokens/kWh,2015170.2643547354,MB,1888.280576,15194.390528,0.0,14547.943424,14315.97312,s,10,986.8612499999999,98.68612499999999,0.014850841233799409,98.68501953125,98.70599609374999,98.707103515625,98.707989453125,"[98.6797109375, 98.687671875, 98.6747890625, 98.6555546875, 98.6919140625, 98.6783203125, 98.6969609375, 98.7082109375, 98.70575, 98.6823671875]",tokens/s,0.6383876152802637,kWh,0.0011649224273860455,0.0006384806384544572,0.00558826860950019,0.007391671675340693,tokens/kWh,8523.105836826315,,s,629,1000.5712542724599,1.5907333136287136,0.2015788363996436,1.5663739013671876,1.5674868164062499,1.5676927978515625,3.262457841796875,"[1.5671644287109374, 1.5661424560546875, 1.56664013671875, 1.5672913818359375, 1.566525390625, 1.5666636962890625, 1.56687158203125, 1.566798828125, 1.565517822265625, 1.56556494140625, 1.56592333984375, 1.56533251953125, 1.5655465087890625, 1.5658004150390625, 1.565998046875, 1.5670538330078125, 1.5664508056640625, 1.56584033203125, 1.5667855224609375, 1.5674542236328124, 1.567055908203125, 1.5672022705078126, 1.5673907470703126, 1.56657666015625, 1.5663001708984374, 1.566665771484375, 1.5659376220703125, 1.5659520263671876, 1.5661055908203125, 1.566899169921875, 1.5660892333984375, 1.566604248046875, 1.5656611328125, 1.5667138671875, 1.565654052734375, 1.566857177734375, 1.5661802978515624, 1.5664854736328124, 1.5667210693359375, 1.5670538330078125, 1.56666162109375, 1.566857177734375, 1.5659581298828125, 1.565955078125, 1.5662294921875, 1.5661065673828125, 1.566191650390625, 1.5659642333984376, 1.5664527587890624, 1.5659898681640625, 1.5656510009765625, 1.5664803466796875, 1.566614501953125, 1.566317626953125, 1.5665059814453124, 1.565919189453125, 1.5657093505859374, 1.5657308349609376, 1.5665244140625, 1.565981689453125, 1.5660799560546874, 1.56632373046875, 3.263318115234375, 1.5650416259765625, 1.5667425537109374, 1.5671868896484376, 1.5674766845703125, 1.566899169921875, 1.5670477294921874, 1.567247314453125, 1.5669462890625, 1.566482421875, 1.56721044921875, 1.567352783203125, 1.56718603515625, 1.5668541259765625, 1.565632568359375, 1.5655035400390624, 1.565454345703125, 1.566171142578125, 1.5655423583984376, 1.5656632080078126, 1.565739013671875, 1.5655546875, 1.56594384765625, 1.565739990234375, 1.5656090087890624, 1.5654093017578126, 1.5656141357421876, 1.5657379150390625, 1.565550537109375, 1.5656468505859376, 1.566182373046875, 1.56573388671875, 1.5660994873046874, 1.566614501953125, 1.5671705322265626, 1.5668858642578125, 1.5673907470703126, 1.5655372314453124, 1.5656827392578125, 1.567224853515625, 1.5674173583984374, 1.567141845703125, 1.567562744140625, 1.56704150390625, 1.566593994140625, 1.5660902099609375, 1.56824267578125, 1.56689404296875, 1.5673763427734375, 1.5663564453125, 1.566992431640625, 1.567836181640625, 1.5679334716796876, 1.5667803955078126, 1.5659478759765626, 1.566908447265625, 1.566277587890625, 1.5658690185546875, 1.5664803466796875, 1.5664271240234375, 1.5662049560546876, 1.5662171630859374, 1.5660595703125, 3.26247021484375, 1.5656990966796875, 1.5657799072265626, 1.566017578125, 1.5667598876953126, 1.565744140625, 1.566393310546875, 1.56580859375, 1.56586083984375, 1.5654072265625, 1.56617529296875, 1.5659202880859375, 1.5659725341796875, 1.5665029296875, 1.5664486083984375, 1.5655260009765626, 1.5660780029296875, 1.5663062744140626, 1.5667117919921876, 1.566983154296875, 1.5657728271484375, 1.565895751953125, 1.566373779296875, 1.5677890625, 1.566457763671875, 1.5663277587890625, 1.566962646484375, 1.566697509765625, 1.5665489501953125, 1.566899169921875, 1.56623046875, 1.566688232421875, 1.5666124267578125, 1.5657093505859374, 1.566341064453125, 1.5660462646484374, 1.5663482666015625, 1.566123046875, 1.5662838134765624, 1.5664619140625, 1.56621826171875, 1.566017578125, 1.5659622802734374, 1.565760498046875, 1.5661669921875, 1.566396484375, 1.5663912353515625, 1.5682620849609374, 1.5664476318359375, 1.5661475830078124, 1.56608203125, 1.56626123046875, 1.5659765625, 1.5659632568359374, 1.565811767578125, 1.56657763671875, 1.5658956298828124, 1.5657799072265626, 1.5660042724609375, 1.566275634765625, 1.5663533935546874, 1.56682958984375, 1.566255126953125, 3.26236865234375, 1.5657420654296874, 1.5653990478515625, 1.5662427978515625, 1.565697021484375, 1.5651962890625, 1.56592333984375, 1.5652525634765626, 1.5654676513671875, 1.5651666259765624, 1.56598583984375, 1.5653150634765625, 1.5663011474609374, 1.5655894775390624, 1.5655516357421875, 1.565338623046875, 1.5655577392578126, 1.5656806640625, 1.56554345703125, 1.56598779296875, 1.5655843505859375, 1.5654718017578124, 1.5656263427734376, 1.5660400390625, 1.5658824462890626, 1.5657850341796875, 1.5657625732421876, 1.5657196044921875, 1.56554443359375, 1.566350341796875, 1.5656375732421874, 1.5655997314453125, 1.566192626953125, 1.565496337890625, 1.5660390625, 1.566271484375, 1.5658936767578124, 1.565685791015625, 1.5660216064453125, 1.5656141357421876, 1.565828125, 1.566434326171875, 1.5664906005859376, 1.5654307861328125, 1.56860107421875, 1.56617529296875, 1.566096435546875, 1.5658311767578126, 1.5665806884765625, 1.5662591552734375, 1.5666104736328126, 1.56617724609375, 1.566076904296875, 1.5665244140625, 1.566587890625, 1.56634521484375, 1.5658741455078125, 1.5661434326171875, 1.566371826171875, 1.5663533935546874, 1.566328857421875, 1.5666011962890625, 1.5661240234375, 3.263153076171875, 1.56556494140625, 1.565706298828125, 1.5666165771484375, 1.566034912109375, 1.566002197265625, 1.5660831298828124, 1.565319091796875, 1.5665797119140625, 1.5655751953125, 1.5664332275390624, 1.5658896484375, 1.5659744873046875, 1.5658916015625, 1.566130126953125, 1.5668695068359375, 1.5666226806640624, 1.5660933837890625, 1.566509033203125, 1.5661363525390626, 1.5657738037109374, 1.5658199462890625, 1.5663206787109376, 1.5657840576171875, 1.566213134765625, 1.5667742919921874, 1.5661240234375, 1.5659315185546876, 1.565498291015625, 1.5660472412109374, 1.5656407470703124, 1.56573486328125, 1.566254150390625, 1.56568359375, 1.5663575439453126, 1.566123046875, 1.5667579345703124, 1.5663963623046875, 1.5667947998046876, 1.5661865234375, 1.5662919921875, 1.5661158447265624, 1.5670897216796875, 1.56710302734375, 1.567573974609375, 1.5670128173828124, 1.5670006103515626, 1.5675535888671874, 1.568489501953125, 1.5677030029296875, 1.5673804931640625, 1.5675074462890626, 1.5675924072265626, 1.56819970703125, 1.56786181640625, 1.5679241943359374, 1.5680113525390624, 1.5678955078125, 1.56760888671875, 1.5664681396484375, 1.5662049560546876, 1.5662213134765626, 1.5661905517578125, 3.262426025390625, 1.5655628662109375, 1.56493212890625, 1.5661669921875, 1.5657431640625, 1.5655537109375, 1.5660482177734374, 1.5657359619140625, 1.5666063232421874, 1.5661004638671876, 1.5656785888671876, 1.5670230712890625, 1.5668284912109376, 1.5666944580078126, 1.566755859375, 1.566581787109375, 1.5667763671875, 1.5658946533203124, 1.5655372314453124, 1.5659530029296875, 1.565708251953125, 1.5669320068359376, 1.56744091796875, 1.566341064453125, 1.5660360107421876, 1.5659837646484376, 1.5658629150390626, 1.5660892333984375, 1.565887451171875, 1.56593359375, 1.5656898193359374, 1.5661455078125, 1.566086181640625, 1.5658076171875, 1.5659263916015624, 1.5658218994140625, 1.56609033203125, 1.56613525390625, 1.5673641357421875, 1.5665848388671875, 1.5666175537109375, 1.5664681396484375, 1.5664619140625, 1.566224365234375, 1.5664588623046876, 1.5661363525390626, 1.5667579345703124, 1.5667978515625, 1.5667178955078125, 1.5658916015625, 1.5658680419921875, 1.5657728271484375, 1.5670528564453126, 1.567161376953125, 1.5674490966796875, 1.567394775390625, 1.567477783203125, 1.56653369140625, 1.5658792724609376, 1.56665966796875, 1.5675699462890624, 1.56628076171875, 1.5665899658203124, 3.26359765625, 1.5656744384765624, 1.565328369140625, 1.566392333984375, 1.565917236328125, 1.566066650390625, 1.567247314453125, 1.56674560546875, 1.567057861328125, 1.566623779296875, 1.5667916259765624, 1.5669647216796876, 1.56680810546875, 1.5664117431640625, 1.566813232421875, 1.5673231201171876, 1.566376953125, 1.5661844482421876, 1.567056884765625, 1.567025146484375, 1.566773193359375, 1.5668214111328125, 1.5673548583984376, 1.568668701171875, 1.567552490234375, 1.566614501953125, 1.566899169921875, 1.567447021484375, 1.5675135498046875, 1.5669381103515625, 1.5667794189453126, 1.567139892578125, 1.5667916259765624, 1.566656494140625, 1.566287841796875, 1.5665806884765625, 1.5664046630859374, 1.5664854736328124, 1.56649169921875, 1.56577587890625, 1.5662652587890624, 1.5666688232421875, 1.5665521240234375, 1.56607080078125, 1.5668214111328125, 1.5663809814453125, 1.5665684814453125, 1.5666226806640624, 1.566630859375, 1.5663360595703124, 1.566734375, 1.5659100341796874, 1.566339111328125, 1.5664271240234375, 1.5667056884765624, 1.5661854248046876, 1.5660308837890624, 1.56668310546875, 1.5665264892578126, 1.5664742431640626, 1.5667752685546874, 1.5658568115234375, 1.566477294921875, 3.26474853515625, 1.5660062255859375, 1.5659560546875, 1.5659263916015624, 1.5657471923828126, 1.5661905517578125, 1.5662623291015625, 1.5657779541015624, 1.5659345703125, 1.5662991943359375, 1.5659427490234374, 1.565487060546875, 1.566613525390625, 1.56559765625, 1.56596533203125, 1.566318603515625, 1.566983154296875, 1.5657728271484375, 1.5661322021484374, 1.566572509765625, 1.5666114501953126, 1.5659100341796874, 1.56704150390625, 1.56611376953125, 1.5677716064453124, 1.5673876953125, 1.5676068115234374, 1.5671654052734374, 1.5670262451171875, 1.5657738037109374, 1.5667547607421874, 1.5669217529296875, 1.5676558837890624, 1.56761083984375, 1.567972412109375, 1.567614990234375, 1.5675115966796875, 1.5676702880859374, 1.56752587890625, 1.567363037109375, 1.567826904296875, 1.567635498046875, 1.5676488037109375, 1.5662724609375, 1.5680296630859376, 1.567309814453125, 1.567677490234375, 1.567458251953125, 1.5668489990234375, 1.565865966796875, 1.566993408203125, 1.5673487548828124, 1.567581298828125, 1.566005126953125, 1.5679825439453126, 1.567009765625, 1.566161865234375, 1.5676138916015625, 1.56758935546875, 1.5667568359375, 1.5663258056640625, 1.566224365234375, 1.5670302734375, 3.26736279296875, 1.5667579345703124, 1.5664261474609376, 1.5665531005859374, 1.5668193359375, 1.566329833984375, 1.5663739013671876, 1.566214111328125, 1.5671173095703126, 1.565612060546875, 1.5653099365234375, 1.565854736328125, 1.5658486328125, 1.5660902099609375, 1.566256103515625, 1.5667547607421874, 1.5674736328125, 1.56900244140625, 1.5678065185546874, 1.567677490234375, 1.5673057861328126, 1.5676702880859374, 1.5678648681640626, 1.566625732421875, 1.566234619140625, 1.5665244140625, 1.565811767578125, 1.566467041015625, 1.5663380126953126, 1.5663995361328125, 1.56670458984375, 1.566562255859375, 1.56580859375, 1.5658076171875, 1.567499267578125, 1.566665771484375, 1.5675023193359374, 1.5676190185546874, 1.5666585693359374, 1.5654676513671875, 1.5674849853515624, 1.5671900634765625, 1.567220703125, 1.5676558837890624, 1.5666514892578125, 1.5663369140625, 1.5666441650390626, 1.566841796875, 1.566866455078125, 1.56685107421875, 1.567130615234375, 1.5664896240234376, 1.5665152587890625, 1.5667691650390625, 1.56735693359375, 1.5668797607421876, 1.5669544677734375, 1.565843505859375, 1.5657564697265625, 1.5662509765625, 1.5679661865234376, 1.567494140625, 1.5670753173828125, 3.26488671875, 1.56588232421875, 1.5666165771484375, 1.56659912109375, 1.5660400390625, 1.565919189453125, 1.5653775634765625, 1.5651685791015626, 1.5665255126953126, 1.5655526123046875, 1.56554443359375, 1.565875244140625, 1.565812744140625, 1.56569091796875, 1.56594384765625, 1.566340087890625, 1.565750244140625, 1.5661793212890625, 1.5670374755859375, 1.5664691162109374, 1.5666708984375, 1.5669124755859376, 1.5670743408203125, 1.565885498046875, 1.567392822265625, 1.56645068359375, 1.567561767578125, 1.5667598876953126, 1.566843994140625, 1.566246826171875, 1.56635546875, 1.5664219970703126, 1.565961181640625, 1.5663524169921874, 1.5675914306640626, 1.56609326171875, 1.5661405029296875, 1.5667711181640624, 1.566587890625, 1.5662694091796876, 1.566982177734375, 1.566482421875, 1.566496826171875, 1.5665531005859374, 1.5663370361328126, 1.5661158447265624, 1.566561279296875, 1.566202880859375, 1.566286865234375, 1.5659674072265626, 1.5661629638671875, 1.5660155029296876, 1.566634033203125, 1.5668284912109376, 1.5664476318359375, 1.5665438232421875, 1.5667864990234375, 1.5668736572265625, 1.56661865234375, 1.5671204833984376, 1.566720947265625, 1.5667332763671875, 1.566159912109375]",tokens/s,0.6286408862079101,,,,,,main,False,False -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-13b,facebook/opt-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2935.840768,9548.857344,0.0,8902.41024,8265.321472,s,10,10.732376098632812,1.0732376098632814,0.0018882051518454717,1.0727980346679686,1.0744577026367188,1.076272918701172,1.0777250915527343,"[1.078088134765625, 1.0709527587890626, 1.071809814453125, 1.072758056640625, 1.0723739013671876, 1.0717447509765625, 1.0728380126953125, 1.07379296875, 1.0740543212890625, 1.07396337890625]",tokens/s,238.53058972897117,kWh,1.2652489013142056e-05,6.933077765861525e-06,5.8725796980607646e-05,7.831136375961123e-05,tokens/kWh,3269001.939307702,MB,2940.198912,9548.857344,0.0,8902.41024,8556.582912,s,10,636.0469335937499,63.60469335937499,0.008753951962243356,63.60478125,63.61318203125,63.615917187499996,63.6181053125,"[63.59721875, 63.61257421875, 63.61096484375, 63.6103046875, 63.61865234375, 63.5982421875, 63.6112421875, 63.58923828125, 63.5992578125, 63.59923828125]",tokens/s,0.9904929443499021,kWh,0.0007508853809701072,0.00041155162046943583,0.003498196520777186,0.00466063352221673,tokens/kWh,13517.475617785843,,s,629,644.6920160522462,1.0249475612913292,0.12743236447478887,1.0094981079101562,1.01038447265625,1.0106333129882812,2.0813571875,"[1.0103838500976563, 1.011209228515625, 1.0106275634765625, 1.010282470703125, 1.0090455322265626, 1.00902294921875, 1.0092001342773438, 1.0092001342773438, 1.0087454833984375, 1.0091202392578125, 1.0090209350585937, 1.0097459106445312, 1.009122314453125, 1.0094325561523438, 1.0090762329101564, 1.008990234375, 1.009164306640625, 1.0090936279296876, 1.0088233032226563, 1.009649658203125, 1.0089727783203124, 1.0095328979492189, 1.009112060546875, 1.0095298461914062, 1.0089553833007812, 1.0094817504882811, 1.0095001831054689, 1.0089779052734376, 1.0089512939453125, 1.0092308349609376, 1.0093475952148439, 1.0095062866210938, 1.0100172729492187, 1.0097244262695313, 1.0091735229492187, 1.0095360107421876, 1.0095134887695312, 1.0093209838867188, 1.009239013671875, 1.00967529296875, 1.0096640014648437, 1.00973974609375, 1.0092687377929688, 1.009269775390625, 1.0091714477539062, 1.0091786499023438, 1.0094950561523437, 1.0094622802734374, 1.0091345825195313, 1.009670166015625, 1.0100039672851562, 1.0096732177734375, 1.0092994384765626, 1.0093557739257812, 1.0091253662109374, 1.00938134765625, 1.0091427612304686, 1.0090465087890625, 1.0089072875976564, 1.0098462524414062, 1.010165771484375, 1.0093465576171874, 2.08412060546875, 1.0087465209960937, 1.0093834228515626, 1.0092031860351562, 1.0096558227539063, 1.0095739135742188, 1.0104360961914063, 1.0100264892578126, 1.0097346801757812, 1.0098964233398438, 1.0101534423828125, 1.00982373046875, 1.009934326171875, 1.0099998779296875, 1.0098063354492188, 1.0099056396484376, 1.0100838623046875, 1.0100254516601563, 1.00965478515625, 1.0096107788085937, 1.0098421630859375, 1.0097664184570312, 1.0100264892578126, 1.0098104248046875, 1.0099118041992188, 1.0101432495117189, 1.010134033203125, 1.0106337280273439, 1.0090772705078126, 1.0097838134765624, 1.0102476806640626, 1.0099251098632813, 1.0096466064453125, 1.00933837890625, 1.0092185668945313, 1.0092902221679687, 1.0095257568359375, 1.00948583984375, 1.0100172729492187, 1.010408447265625, 1.0100695190429687, 1.0098995361328125, 1.0105394897460938, 1.00971826171875, 1.0095902709960938, 1.0096414794921875, 1.009565673828125, 1.00931787109375, 1.0096066284179688, 1.0097407836914063, 1.009343505859375, 1.0096947021484375, 1.0099138793945313, 1.009455078125, 1.0092472534179688, 1.0096680908203124, 1.0096250610351563, 1.0100101318359376, 1.0093414306640625, 1.0092892456054687, 1.009311767578125, 1.009322998046875, 1.0097203369140626, 2.081078369140625, 1.009328125, 1.0090977172851563, 1.0092052612304687, 1.0094520263671876, 1.0091028442382812, 1.0091796264648438, 1.0086420288085938, 1.0094274291992187, 1.0089891967773437, 1.0090137329101563, 1.0094161987304688, 1.0096568603515625, 1.0095421142578125, 1.009850341796875, 1.0090895385742187, 1.0094059448242187, 1.009059814453125, 1.0094509887695313, 1.0088161010742187, 1.008974853515625, 1.0091888427734375, 1.0095595703125, 1.009016845703125, 1.0097346801757812, 1.0089810180664063, 1.00931787109375, 1.0090147705078125, 1.0099138793945313, 1.0100213623046874, 1.0104381713867188, 1.010629638671875, 1.010713623046875, 1.0101360473632812, 1.0105651245117186, 1.0090690307617187, 1.0092144775390626, 1.009344482421875, 1.01054052734375, 1.0098954467773438, 1.0101473388671875, 1.010071533203125, 1.0109757690429688, 1.0099885864257812, 1.010386962890625, 1.0099199829101562, 1.0098933715820313, 1.0100418701171876, 1.0103040161132812, 1.0101207275390625, 1.0105702514648438, 1.0102599487304686, 1.00997119140625, 1.0098646850585937, 1.0102732543945312, 1.0096066284179688, 1.00906494140625, 1.0095984497070312, 1.0102210693359375, 1.0098585815429688, 1.0101514282226562, 1.010039794921875, 1.0104360961914063, 2.082943115234375, 1.009787841796875, 1.0099476318359375, 1.0097244262695313, 1.0104217529296875, 1.0104340209960938, 1.0096947021484375, 1.0098309326171875, 1.009544189453125, 1.0100009155273437, 1.01024560546875, 1.0097223510742188, 1.0100695190429687, 1.0102835083007813, 1.009902587890625, 1.0104699096679688, 1.0107535400390626, 1.0102671508789063, 1.010640869140625, 1.0102630615234376, 1.0101463012695313, 1.0099834594726562, 1.0103336791992188, 1.0099384155273436, 1.0103685302734375, 1.0097254638671875, 1.0096906127929688, 1.0098125, 1.0103756713867187, 1.0102271728515626, 1.010640869140625, 1.0090096435546876, 1.0095994873046874, 1.0097633056640625, 1.0101729125976562, 1.0090198974609375, 1.0095718383789063, 1.0087034912109376, 1.009523681640625, 1.00916943359375, 1.0090352783203125, 1.0087833862304687, 1.0096363525390626, 1.0092359619140625, 1.0092656860351563, 1.0091233520507812, 1.00946533203125, 1.008932861328125, 1.009027099609375, 1.0091468505859376, 1.0092257080078124, 1.0089072875976564, 1.008837646484375, 1.0091827392578125, 1.0094110717773437, 1.0090751953125, 1.0094848022460938, 1.0091868286132812, 1.009480712890625, 1.0097039184570313, 1.0093670654296876, 1.0094059448242187, 1.0094376831054688, 2.081429443359375, 1.009227783203125, 1.0094479370117186, 1.010234375, 1.0106552124023438, 1.010882568359375, 1.0105589599609375, 1.0087034912109376, 1.0110679321289062, 1.0107822265625, 1.0108876953125, 1.0104412231445312, 1.0089584350585938, 1.0093711547851563, 1.0090792846679688, 1.0109276123046875, 1.0108334350585937, 1.0103521118164063, 1.0105712890625, 1.0102968139648438, 1.0089482421875, 1.0090025024414062, 1.0100203247070312, 1.0104258422851562, 1.009818603515625, 1.0096087036132813, 1.0098165893554687, 1.0094642944335936, 1.0101575927734374, 1.0103203735351562, 1.0114457397460936, 1.0106500854492189, 1.010361328125, 1.010103271484375, 1.0099415283203126, 1.0093311767578126, 1.0099465942382813, 1.0090475463867188, 1.0093302001953126, 1.0094981079101562, 1.0090823974609375, 1.0102753295898437, 1.0096322631835937, 1.0092564697265625, 1.0091519775390625, 1.0096640014648437, 1.009281005859375, 1.0090864868164062, 1.0091448364257813, 1.0099537963867187, 1.0093250732421875, 1.0095186157226563, 1.0094940185546875, 1.00933837890625, 1.0094080200195312, 1.0091744995117187, 1.0092451782226564, 1.0095390625, 1.0101217041015624, 1.01006640625, 1.0101780395507813, 1.009744873046875, 1.0093660278320313, 2.08117138671875, 1.0091130981445313, 1.009100830078125, 1.0086492309570312, 1.0088734741210938, 1.0091294555664063, 1.0090188598632812, 1.0089410400390626, 1.009344482421875, 1.0095523681640626, 1.0093916015625, 1.0090680541992187, 1.00940185546875, 1.009154052734375, 1.0091970825195313, 1.0093629150390624, 1.0088673095703125, 1.0088601684570313, 1.009817626953125, 1.009006591796875, 1.0100746459960936, 1.009349609375, 1.0093670654296876, 1.0091519775390625, 1.0093035278320313, 1.0091581420898437, 1.0092021484375, 1.0091058959960937, 1.01058251953125, 1.0097705078125, 1.0106183471679688, 1.0098779907226563, 1.0096998291015624, 1.0104105224609374, 1.0094213256835938, 1.009344482421875, 1.0096097412109375, 1.0097407836914063, 1.0099261474609376, 1.009217529296875, 1.0095718383789063, 1.0091837158203125, 1.0093905639648437, 1.0092267456054687, 1.0091878662109375, 1.0096301879882812, 1.0098125, 1.0094929809570312, 1.009860595703125, 1.0093219604492187, 1.0101544799804687, 1.009301513671875, 1.0094714965820313, 1.009460205078125, 1.0093588256835937, 1.0097899780273438, 1.0095984497070312, 1.0096742553710938, 1.010693115234375, 1.0096957397460937, 1.010155517578125, 1.010134033203125, 1.00997119140625, 2.082757568359375, 1.0091796264648438, 1.0095452270507812, 1.0092155151367188, 1.0096373901367188, 1.00949609375, 1.0099005737304687, 1.0090813598632813, 1.009080322265625, 1.008932861328125, 1.0091448364257813, 1.008964599609375, 1.00949609375, 1.0093455200195312, 1.0097909545898438, 1.0094417724609375, 1.00999267578125, 1.0092533569335937, 1.009428466796875, 1.0093148193359376, 1.0098770141601563, 1.0099015502929687, 1.0105159912109376, 1.0107003173828124, 1.0108948364257813, 1.009523681640625, 1.010176025390625, 1.009207275390625, 1.0096517333984374, 1.0096107788085937, 1.010208740234375, 1.0101217041015624, 1.0100725708007812, 1.0099415283203126, 1.01014013671875, 1.009311767578125, 1.0097100830078125, 1.0091714477539062, 1.0097858276367186, 1.0092830810546876, 1.0094745483398437, 1.009259521484375, 1.0102118530273438, 1.0100234375, 1.0097469482421875, 1.010239501953125, 1.0100633544921875, 1.0095165405273439, 1.0095984497070312, 1.0094940185546875, 1.0099507446289062, 1.0094642944335936, 1.0101094360351563, 1.0097879028320313, 1.0109890747070311, 1.0111426391601563, 1.0094315795898436, 1.0090772705078126, 1.009227783203125, 1.0092001342773438, 1.009723388671875, 1.00982373046875, 1.0097694702148436, 2.08317333984375, 1.0093322143554688, 1.00935986328125, 1.0087188720703124, 1.0093055419921875, 1.008848876953125, 1.0092216186523437, 1.0090895385742187, 1.0095001831054689, 1.0094622802734374, 1.0091847534179688, 1.0095789794921874, 1.0093875122070313, 1.0095748901367188, 1.0098646850585937, 1.0092850952148438, 1.0101329956054688, 1.0093475952148439, 1.0094888916015625, 1.00940185546875, 1.0091079711914062, 1.0090505981445312, 1.0093823852539063, 1.0089502563476562, 1.009269775390625, 1.0090301513671875, 1.00952783203125, 1.0098544921875, 1.0100684814453125, 1.0095472412109374, 1.0094541015625, 1.0092247314453124, 1.0096537475585938, 1.0091100463867186, 1.0094458618164062, 1.0091038818359375, 1.0096301879882812, 1.0089943237304688, 1.0096271362304687, 1.009623046875, 1.0094694213867188, 1.009554443359375, 1.0093568115234375, 1.0092083129882812, 1.0091427612304686, 1.0093660278320313, 1.010423828125, 1.0095114135742187, 1.0090711059570312, 1.0094817504882811, 1.009312744140625, 1.0092687377929688, 1.009132568359375, 1.0089052124023437, 1.0089922485351563, 1.0089625854492188, 1.0091192016601562, 1.00922265625, 1.0094295043945312, 1.0091376342773437, 1.0093772583007812, 1.0091202392578125, 1.0095810546875, 2.08344580078125, 1.0095042724609375, 1.0109685668945312, 1.0099476928710938, 1.01062548828125, 1.0095011596679688, 1.0104494018554688, 1.008996337890625, 1.0095462646484374, 1.008911376953125, 1.00917041015625, 1.0089707641601562, 1.00910693359375, 1.0093240356445312, 1.0093403930664062, 1.0089093017578126, 1.009713134765625, 1.0089676513671875, 1.0090844116210937, 1.0088786010742188, 1.00897998046875, 1.0090782470703126, 1.0091878662109375, 1.0094356689453126, 1.009923095703125, 1.0092708129882813, 1.0097356567382811, 1.008616455078125, 1.0090946655273438, 1.0091868286132812, 1.0094305419921874, 1.0093619384765624, 1.0100254516601563, 1.0098093872070313, 1.0101801147460938, 1.0097049560546876, 1.010398193359375, 1.0095513305664063, 1.0100848388671875, 1.0106326904296874, 1.011041259765625, 1.010619384765625, 1.0100930786132813, 1.0094878540039063, 1.0097684326171874, 1.0093609008789062, 1.0095360107421876, 1.009154052734375, 1.0090618896484376, 1.009249267578125, 1.009196044921875, 1.0090895385742187, 1.0093352661132813, 1.0091714477539062, 1.0094796752929687, 1.0091049194335937, 1.0094694213867188, 1.0094202880859375, 1.009227783203125, 1.0093311767578126, 1.0093629150390624, 1.0093004760742188, 1.0094376831054688, 2.083451904296875, 1.0096097412109375, 1.0098380737304689, 1.009165283203125, 1.0100848388671875, 1.0104432373046874, 1.0090741577148437, 1.0095851440429688, 1.0092666625976563, 1.0088263549804688, 1.0094428100585937, 1.0090045166015624, 1.0094745483398437, 1.0092830810546876, 1.0091581420898437, 1.0089246826171876, 1.0092728271484375, 1.009238037109375, 1.0095165405273439, 1.0092728271484375, 1.009455078125, 1.00973876953125, 1.009924072265625, 1.0094458618164062, 1.0094541015625, 1.0086737670898438, 1.009306640625, 1.009659912109375, 1.0100695190429687, 1.0101934204101561, 1.0098739013671876, 1.0097745971679688, 1.0097152099609374, 1.0097776489257813, 1.0097192993164064, 1.0093025512695313, 1.0096865234375, 1.009438720703125, 1.0101616821289063, 1.0098831176757812, 1.0098104248046875, 1.0097673950195312, 1.01049853515625, 1.0099834594726562, 1.0104944458007812, 1.0097633056640625, 1.0092708129882813, 1.009201171875, 1.0093056030273437, 1.0092236938476562, 1.0090127563476563, 1.0091929321289062, 1.00919091796875, 1.0090670166015625, 1.0091888427734375, 1.008996337890625, 1.0091161499023438, 1.0092789916992186, 1.0097572021484376, 1.0099056396484376, 1.0091837158203125, 1.0094663696289063, 1.0093506469726563]",tokens/s,0.9756596705690017,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2-large,openai-community/gpt2-large,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1263.47264,2645.03296,0.0,1998.585856,1692.285952,s,10,0.24304076957702642,0.02430407695770264,0.0005675228251535707,0.024276448249816895,0.024567701721191406,0.025167994689941405,0.025648229064941408,"[0.025768287658691408, 0.024286592483520508, 0.02426630401611328, 0.024318464279174806, 0.024434303283691405, 0.02419811248779297, 0.02437276840209961, 0.023690656661987306, 0.024211936950683594, 0.023493343353271485]",tokens/s,10533.212203266434,kWh,2.780947089195252e-07,1.5238005259914857e-07,8.187235307952231e-07,1.2491982923138968e-06,tokens/kWh,204931436.0859474,MB,1263.767552,2645.03296,0.0,1998.585856,1740.091904,s,10,13.987102905273439,1.3987102905273439,0.014214042604732734,1.4048785400390624,1.412000280761719,1.4145778381347656,1.416639884033203,"[1.4171553955078124, 1.4012147216796875, 1.405033935546875, 1.411427490234375, 1.4068282470703124, 1.40472314453125, 1.405282958984375, 1.3729639892578125, 1.3760699462890624, 1.386403076171875]",tokens/s,45.04149317171867,kWh,1.62772132953008e-05,8.91975746257787e-06,3.22519140368052e-05,5.7448884794683886e-05,tokens/kWh,1096627.0315804249,,s,629,14.179969017028807,0.022543670933273148,0.0029405698135304874,0.02225868797302246,0.02251775932312012,0.02303631362915039,0.046451998291015664,"[0.023488512039184572, 0.023197696685791015, 0.02246143913269043, 0.02229555130004883, 0.022401023864746093, 0.02228326416015625, 0.02222489547729492, 0.02231091117858887, 0.0225218563079834, 0.023541759490966797, 0.023616512298583983, 0.02328985595703125, 0.023191551208496093, 0.023250944137573244, 0.023595008850097656, 0.023343103408813477, 0.023159807205200195, 0.02307788848876953, 0.023666688919067383, 0.023583744049072267, 0.023846912384033202, 0.022800384521484376, 0.02242355155944824, 0.022296575546264647, 0.02229043197631836, 0.022129663467407225, 0.022167552947998048, 0.022289407730102538, 0.022231039047241212, 0.022359039306640623, 0.022163455963134765, 0.022146047592163084, 0.022198272705078126, 0.022213632583618165, 0.022329343795776366, 0.021812223434448243, 0.021354496002197267, 0.02143436813354492, 0.02147225570678711, 0.021506048202514647, 0.021397504806518555, 0.02148659133911133, 0.02149478340148926, 0.021702655792236326, 0.023331840515136718, 0.022391807556152343, 0.022338560104370117, 0.022211584091186523, 0.022155263900756835, 0.022253568649291993, 0.02229145622253418, 0.022244352340698242, 0.022239231109619142, 0.02221670341491699, 0.022311935424804686, 0.022478847503662108, 0.022331392288208008, 0.02230681610107422, 0.022419456481933595, 0.02239897537231445, 0.02230169677734375, 0.0223242244720459, 0.04737433624267578, 0.022154239654541014, 0.02226483154296875, 0.02230271911621094, 0.02144972801208496, 0.02142617607116699, 0.021544960021972655, 0.021599231719970705, 0.02222489547729492, 0.022396928787231447, 0.022296575546264647, 0.022246400833129884, 0.022206464767456056, 0.022237184524536133, 0.022380544662475587, 0.022543359756469726, 0.022381568908691408, 0.022289407730102538, 0.022167552947998048, 0.02228428840637207, 0.022130687713623046, 0.022371328353881836, 0.02229145622253418, 0.022179840087890625, 0.022157312393188477, 0.022328319549560546, 0.02233344078063965, 0.02234982490539551, 0.022245376586914063, 0.022261760711669923, 0.02227712059020996, 0.02226483154296875, 0.02225868797302246, 0.0223191032409668, 0.022218751907348632, 0.022326271057128907, 0.022303743362426756, 0.02248806381225586, 0.022181888580322266, 0.022226943969726562, 0.02222591972351074, 0.022255615234375, 0.02224844741821289, 0.022112255096435548, 0.022326271057128907, 0.022156288146972656, 0.022769664764404295, 0.022261760711669923, 0.02227507209777832, 0.0222740478515625, 0.022338560104370117, 0.02231500816345215, 0.02227609634399414, 0.022260736465454102, 0.02228326416015625, 0.02230784034729004, 0.022261760711669923, 0.022268928527832032, 0.02252390480041504, 0.02224947166442871, 0.02229555130004883, 0.0222423038482666, 0.02222591972351074, 0.04691865539550781, 0.022223871231079103, 0.022368255615234374, 0.02228121566772461, 0.02227712059020996, 0.02224844741821289, 0.022231039047241212, 0.022236160278320313, 0.02225049591064453, 0.022305791854858398, 0.022199296951293947, 0.022161407470703123, 0.02229350471496582, 0.02231603240966797, 0.022381568908691408, 0.022329343795776366, 0.022428672790527345, 0.022311935424804686, 0.022203392028808593, 0.02231705665588379, 0.022589439392089843, 0.02243891143798828, 0.022245376586914063, 0.02247372817993164, 0.022378496170043945, 0.02221670341491699, 0.022323200225830078, 0.02222489547729492, 0.022269952774047853, 0.022195199966430663, 0.022361087799072265, 0.0221942081451416, 0.022280160903930663, 0.022350847244262697, 0.022339584350585938, 0.02242355155944824, 0.022280191421508787, 0.022199296951293947, 0.022214656829833986, 0.022261760711669923, 0.022237184524536133, 0.0222423038482666, 0.022214656829833986, 0.022581247329711913, 0.022334463119506837, 0.022419456481933595, 0.022260736465454102, 0.022581247329711913, 0.0222423038482666, 0.02211020851135254, 0.022381568908691408, 0.022228992462158204, 0.02225868797302246, 0.02223411178588867, 0.022211584091186523, 0.022369279861450195, 0.02228121566772461, 0.02229452705383301, 0.022181888580322266, 0.022215679168701173, 0.022194175720214843, 0.022372352600097657, 0.022351871490478514, 0.04692172622680664, 0.02230988883972168, 0.02225868797302246, 0.02221772766113281, 0.022237184524536133, 0.02212761688232422, 0.02230169677734375, 0.022252544403076172, 0.02224127960205078, 0.02227302360534668, 0.022236160278320313, 0.022244352340698242, 0.022401023864746093, 0.022337535858154296, 0.022404096603393556, 0.02231808090209961, 0.022379520416259766, 0.022289407730102538, 0.023015424728393553, 0.022839296340942384, 0.023625728607177734, 0.02254643249511719, 0.022501375198364256, 0.022212608337402344, 0.02230886459350586, 0.022192127227783204, 0.02186751937866211, 0.02225868797302246, 0.022220800399780274, 0.022244352340698242, 0.02232729530334473, 0.022322175979614257, 0.022200319290161134, 0.02231603240966797, 0.022213632583618165, 0.022260736465454102, 0.02225971221923828, 0.022184959411621095, 0.022322175979614257, 0.022223871231079103, 0.02229350471496582, 0.022244352340698242, 0.02253824043273926, 0.02221772766113281, 0.022656000137329102, 0.022313983917236328, 0.02267238426208496, 0.022330400466918945, 0.022226911544799804, 0.02228326416015625, 0.026193920135498046, 0.02267852783203125, 0.022219776153564453, 0.022269952774047853, 0.022245376586914063, 0.022183935165405275, 0.022200319290161134, 0.022311935424804686, 0.022221824645996095, 0.022288383483886717, 0.02233241653442383, 0.02232524871826172, 0.02229452705383301, 0.04700876617431641, 0.022387712478637696, 0.022311935424804686, 0.022374399185180666, 0.02227712059020996, 0.022320127487182616, 0.022426624298095704, 0.02230271911621094, 0.0225167350769043, 0.022564863204956053, 0.02248806381225586, 0.022361087799072265, 0.022419456481933595, 0.022410240173339844, 0.022541311264038084, 0.02245737648010254, 0.022437856674194335, 0.02248192024230957, 0.02223411178588867, 0.022358015060424806, 0.02230886459350586, 0.022378496170043945, 0.02230784034729004, 0.022552576065063477, 0.022374399185180666, 0.022311935424804686, 0.02235699272155762, 0.022362112045288086, 0.02224742317199707, 0.02226790428161621, 0.022237184524536133, 0.022477823257446287, 0.022300703048706055, 0.022344671249389648, 0.02226688003540039, 0.022345727920532226, 0.022303743362426756, 0.022238208770751954, 0.022254592895507814, 0.022183935165405275, 0.02230169677734375, 0.022226943969726562, 0.02231603240966797, 0.022246400833129884, 0.02222591972351074, 0.022192127227783204, 0.022269952774047853, 0.02223411178588867, 0.022280191421508787, 0.02234060859680176, 0.02229555130004883, 0.02225766372680664, 0.02227507209777832, 0.022221824645996095, 0.022200319290161134, 0.022208511352539064, 0.02225049591064453, 0.022527999877929687, 0.02226688003540039, 0.022324256896972657, 0.022201311111450194, 0.02225868797302246, 0.02229862403869629, 0.04681727981567383, 0.0222873592376709, 0.022252544403076172, 0.02227609634399414, 0.02228531265258789, 0.022226943969726562, 0.022236160278320313, 0.02235699272155762, 0.022329343795776366, 0.022527999877929687, 0.022365184783935548, 0.022367231369018553, 0.02240716743469238, 0.022360063552856444, 0.022312959671020507, 0.022500352859497072, 0.02227712059020996, 0.02225663948059082, 0.022190080642700196, 0.02223411178588867, 0.02221670341491699, 0.022297599792480468, 0.022380544662475587, 0.02223411178588867, 0.0222740478515625, 0.022218751907348632, 0.02250547218322754, 0.022362112045288086, 0.022189056396484375, 0.022197248458862305, 0.022175743103027345, 0.0222423038482666, 0.02221670341491699, 0.02226585578918457, 0.022161407470703123, 0.022182912826538087, 0.022428672790527345, 0.022236160278320313, 0.02267344093322754, 0.022254560470581056, 0.022212608337402344, 0.022169599533081053, 0.022261760711669923, 0.022228992462158204, 0.022177791595458983, 0.022404096603393556, 0.022181888580322266, 0.022383615493774413, 0.02244915199279785, 0.022458368301391602, 0.022296575546264647, 0.022377471923828125, 0.022180864334106445, 0.02232729530334473, 0.02223308753967285, 0.0223191032409668, 0.022232063293457033, 0.022355968475341798, 0.022238208770751954, 0.022271999359130858, 0.02221670341491699, 0.022223871231079103, 0.022175743103027345, 0.04688896179199219, 0.022303743362426756, 0.022354944229125977, 0.022297599792480468, 0.022215679168701173, 0.022192127227783204, 0.022171648025512695, 0.02224844741821289, 0.02211327934265137, 0.02228531265258789, 0.023112703323364257, 0.023995391845703123, 0.02248089599609375, 0.02227609634399414, 0.02220134353637695, 0.022296575546264647, 0.022337535858154296, 0.02222489547729492, 0.022120447158813478, 0.022183935165405275, 0.02221670341491699, 0.022187007904052734, 0.022220800399780274, 0.022237184524536133, 0.02226790428161621, 0.022206464767456056, 0.02225971221923828, 0.022140928268432617, 0.02229452705383301, 0.02228531265258789, 0.02229350471496582, 0.022176767349243166, 0.022361087799072265, 0.02225152015686035, 0.022210559844970702, 0.022215679168701173, 0.02226380729675293, 0.022187007904052734, 0.022213632583618165, 0.02224332809448242, 0.022754304885864256, 0.02226585578918457, 0.02221772766113281, 0.022206464767456056, 0.02226483154296875, 0.021966848373413086, 0.02205183982849121, 0.022099967956542968, 0.022203392028808593, 0.022363136291503907, 0.022364160537719727, 0.022344703674316405, 0.02223308753967285, 0.022335487365722655, 0.0224399356842041, 0.022565887451171874, 0.0225218563079834, 0.022244352340698242, 0.02223411178588867, 0.02225663948059082, 0.022342655181884767, 0.02221878433227539, 0.02215318489074707, 0.04551270294189453, 0.021498880386352538, 0.021541887283325196, 0.021501951217651367, 0.021432319641113282, 0.021425151824951173, 0.02147327995300293, 0.02146406364440918, 0.021530624389648437, 0.021445632934570313, 0.021526527404785157, 0.021679103851318358, 0.02146611213684082, 0.021538816452026367, 0.0215285758972168, 0.021593088150024413, 0.021651456832885742, 0.02127257537841797, 0.021340160369873046, 0.021440511703491212, 0.021550079345703126, 0.02147737693786621, 0.021549055099487305, 0.02142207908630371, 0.02148249626159668, 0.021562368392944335, 0.021440511703491212, 0.02149171257019043, 0.021424127578735352, 0.021378047943115236, 0.021389312744140625, 0.021445632934570313, 0.02142720031738281, 0.02143948745727539, 0.021332992553710937, 0.021432319641113282, 0.021433343887329103, 0.02142617607116699, 0.02143129539489746, 0.02147327995300293, 0.02142617607116699, 0.021556224822998047, 0.021329919815063478, 0.021178367614746094, 0.02149478340148926, 0.02295091247558594, 0.024001535415649415, 0.02289151954650879, 0.022328319549560546, 0.02247270393371582, 0.022336511611938475, 0.022393856048583984, 0.022271999359130858, 0.02305023956298828, 0.0224399356842041, 0.02233241653442383, 0.022658048629760744, 0.022633472442626954, 0.022371360778808594, 0.022270944595336913, 0.02266726493835449, 0.022451200485229493, 0.02231091117858887, 0.04704051208496094, 0.022401023864746093, 0.022451200485229493, 0.022221824645996095, 0.022182912826538087, 0.023061504364013673, 0.022665216445922853, 0.022202367782592772, 0.02227302360534668, 0.022352895736694335, 0.022350847244262697, 0.022240255355834963, 0.02226585578918457, 0.022435840606689454, 0.022339584350585938, 0.023191551208496093, 0.022448160171508788, 0.022245344161987306, 0.022419456481933595, 0.02229555130004883, 0.022278144836425783, 0.022253568649291993, 0.022322175979614257, 0.02143539237976074, 0.021354496002197267, 0.021412864685058593, 0.021437440872192383, 0.021246976852416992, 0.021206016540527343, 0.021312511444091797, 0.02145996856689453, 0.021396480560302734, 0.02141900825500488, 0.021416959762573243, 0.021406719207763672, 0.02141798400878906, 0.021346303939819337, 0.021408767700195314, 0.02161664009094238, 0.02151219177246094, 0.021358591079711914, 0.021411840438842773, 0.021358591079711914, 0.021420032501220702, 0.02142416000366211, 0.021448671340942384, 0.021368831634521485, 0.02146611213684082, 0.021394432067871092, 0.02146099281311035, 0.021359615325927735, 0.021428224563598632, 0.021392383575439454, 0.021569536209106444, 0.02145996856689453, 0.02147020721435547, 0.0214835205078125, 0.021580799102783203, 0.02149478340148926, 0.02230169677734375, 0.0222873592376709, 0.022323200225830078, 0.02229964828491211, 0.045434879302978515, 0.02152448081970215, 0.02148044776916504, 0.021498880386352538, 0.021572608947753907, 0.021533695220947266, 0.021521408081054686, 0.02148454475402832, 0.02149990463256836, 0.02147737693786621, 0.021549055099487305, 0.02145484733581543, 0.02142207908630371, 0.02142310333251953, 0.021547008514404296, 0.021576704025268553, 0.021511167526245118, 0.021346303939819337, 0.021358591079711914, 0.02142720031738281, 0.021970943450927736, 0.02230169677734375, 0.022139904022216796, 0.022558719635009765, 0.022374399185180666, 0.022157312393188477, 0.022334463119506837, 0.022297599792480468, 0.02227712059020996, 0.022139904022216796, 0.02226585578918457, 0.022194175720214843, 0.022185983657836913, 0.022076416015625, 0.022228992462158204, 0.02224844741821289, 0.02190336036682129, 0.022204416275024414, 0.022226943969726562, 0.022199296951293947, 0.022120447158813478, 0.02222591972351074, 0.02211327934265137, 0.02224745559692383, 0.022212575912475586, 0.022345727920532226, 0.022420480728149415, 0.022236160278320313, 0.022222848892211915, 0.02214297676086426, 0.02222591972351074, 0.022152191162109376, 0.02224127960205078, 0.022139904022216796, 0.022162431716918944, 0.022288383483886717, 0.022170623779296874, 0.02231705665588379, 0.022303743362426756, 0.022345727920532226, 0.0222423038482666, 0.022157312393188477, 0.02229964828491211]",tokens/s,44.35834797978967,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-72B,Qwen/Qwen1.5-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-13b,huggyllama/llama-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -30925,39 +28893,56 @@ torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 2.00 GiB. GPU ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 614, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,M,M,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-7b-hf,meta-llama/Llama-2-7b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -30965,42 +28950,72 @@ torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GP File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/M/resolve/main/config.json - -The above exception was the direct cause of the following exception: + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 614, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,-,-,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948fa1-62746c825836de1161edb143;2d4885ee-5948-43c7-8ad8-d27f3d3ef705) - -Repository Not Found for url: https://huggingface.co/M/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 106, in _inner_fn + validate_repo_id(arg_value) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 160, in validate_repo_id + raise HFValidationError( +huggingface_hub.errors.HFValidationError: Repo id must use alphanumeric chars or '-', '_', '.', '--' and '..' are forbidden, '-' and '.' cannot start or end the name, max length is 96: '-'. The above exception was the direct cause of the following exception: @@ -31021,13 +29036,12 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 466, in cached_file raise EnvironmentError( -OSError: M is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` +OSError: Incorrect path_or_model_id: '-'. Please provide either the path to a local folder or the repo_id of a model on the Hub. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-7b,google/gemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-410m,EleutherAI/pythia-410m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -31035,51 +29049,67 @@ If this is a private repository, make sure to pass a token having permission to File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/gemma-7b/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status - raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66948147-454b740b381979b0360e98be;996817f2-d6f1-477f-813a-0f54ae537c23) - -403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/google/gemma-7b/resolve/main/config.json. -If you are trying to create or update content,make sure you have a token with the `write` role. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error - raise LocalEntryNotFoundError( -huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. - -The above exception was the direct cause of the following exception: + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward + outputs = self.gpt_neox( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward + outputs = layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward + attention_layer_outputs = self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 545, in forward + query, key, value, present = self._attn_projections_and_rope( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope + qkv = self.query_key_value(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,/,/,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run @@ -31096,15 +29126,12 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 373, in cached_file raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/gemma-7b is not the path to a directory containing a file named config.json. -Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. +OSError: / does not appear to have a file named config.json. Checkout 'https://huggingface.co///tree/None' for available files. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-2.7b,EleutherAI/pythia-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2265.919488,3330.801664,0.0,2684.35456,2447.59552,s,10,2.4030111236572265,0.24030111236572266,0.0012440053970201484,0.24010930633544922,0.24119976043701172,0.24230707931518555,0.24319293441772463,"[0.2434143981933594, 0.2409536895751953, 0.23907139587402343, 0.23946762084960938, 0.2396122589111328, 0.23890797424316407, 0.23970700073242188, 0.2405301055908203, 0.24051161193847656, 0.24083506774902344]",tokens/s,1065.330066430923,kWh,2.8237744456245787e-06,1.5472998550649208e-06,1.2583984934904673e-05,1.6955059235594172e-05,tokens/kWh,15098738.166751605,MB,2265.919488,3330.801664,0.0,2684.35456,2597.681664,s,10,139.56764257812497,13.9567642578125,0.0037662168729373563,13.95505322265625,13.962588671875,13.96323818359375,13.963757792968751,"[13.95483984375, 13.95481640625, 13.9549306640625, 13.95517578125, 13.9599765625, 13.9638876953125, 13.9624443359375, 13.953060546875, 13.952154296875, 13.9563564453125]",tokens/s,4.513940254076789,kWh,0.00016469605360239274,9.026671937368518e-05,0.0007221266028330957,0.0009770893758091737,tokens/kWh,64477.21320050864,,s,629,141.50236668396,0.22496401698562793,0.028578568615475336,0.22146662902832032,0.22197882690429688,0.222200830078125,0.46145660278320316,"[0.222501953125, 0.22133958435058593, 0.22126080322265626, 0.22115533447265626, 0.22122291564941407, 0.22115737915039063, 0.22111334228515625, 0.2211881561279297, 0.22123001098632813, 0.22108671569824218, 0.22202674865722657, 0.2213621826171875, 0.22130892944335936, 0.221412353515625, 0.22178816223144532, 0.22125669860839844, 0.22154550170898438, 0.22125155639648436, 0.22184141540527344, 0.22194586181640624, 0.22131817626953126, 0.22113481140136718, 0.22139187622070314, 0.22203596496582031, 0.22120550537109376, 0.22182707214355468, 0.22148197937011718, 0.22121574401855468, 0.22116249084472656, 0.22113999938964843, 0.22153315734863283, 0.22137344360351563, 0.22128536987304687, 0.22147686767578126, 0.22139497375488282, 0.2215167694091797, 0.22115020751953124, 0.22119526672363282, 0.2216222686767578, 0.22131507873535156, 0.2215731201171875, 0.22197042846679688, 0.2214871063232422, 0.22137344360351563, 0.22149530029296874, 0.2211829833984375, 0.22195916748046876, 0.22144102478027344, 0.22115122985839844, 0.22134988403320313, 0.2216417236328125, 0.22153318786621093, 0.2213396453857422, 0.22140824890136718, 0.2213949432373047, 0.22160794067382814, 0.22140109252929688, 0.22149017333984375, 0.22158233642578126, 0.2214686737060547, 0.2215290832519531, 0.2215116729736328, 0.4632596435546875, 0.22171238708496094, 0.221233154296875, 0.22143283081054688, 0.2215679931640625, 0.22207183837890626, 0.22199087524414063, 0.2218137664794922, 0.22159461975097655, 0.2211604766845703, 0.22112969970703125, 0.22134375, 0.22146156311035156, 0.2211706237792969, 0.2218250274658203, 0.2215004119873047, 0.2212454376220703, 0.22122291564941407, 0.22121881103515625, 0.22129049682617188, 0.22144000244140624, 0.22122496032714845, 0.22121574401855468, 0.22197247314453125, 0.2214799346923828, 0.22136012268066407, 0.22134066772460936, 0.22136422729492186, 0.22131097412109374, 0.22127923583984374, 0.22128128051757812, 0.22142156982421876, 0.22127308654785155, 0.22122598266601562, 0.22121676635742188, 0.22201344299316406, 0.2224384002685547, 0.22226841735839845, 0.22168576049804686, 0.22131507873535156, 0.2211666259765625, 0.22145021057128905, 0.2213509063720703, 0.2210908203125, 0.2211420135498047, 0.2215116729736328, 0.22274458312988282, 0.22148300170898438, 0.2212454376220703, 0.22115327453613282, 0.22183013916015626, 0.22141746520996095, 0.22183628845214845, 0.2215557098388672, 0.22127104187011717, 0.2220482635498047, 0.2213693389892578, 0.22153421020507813, 0.22129356384277343, 0.22213938903808594, 0.22136114501953125, 0.22106112670898437, 0.22137957763671876, 0.4608409729003906, 0.22114405822753908, 0.2210918426513672, 0.22119833374023437, 0.22196018981933593, 0.2215413818359375, 0.22137139892578125, 0.2214246368408203, 0.22122802734375, 0.22138983154296876, 0.2213478698730469, 0.2211327667236328, 0.22113591003417968, 0.2211645050048828, 0.22161613464355467, 0.22142771911621092, 0.22118502807617188, 0.22131715393066406, 0.22171746826171876, 0.22127410888671875, 0.22118911743164063, 0.22119740295410156, 0.22118185424804687, 0.22219775390625, 0.22114816284179686, 0.22126797485351563, 0.22138265991210937, 0.22202163696289062, 0.221623291015625, 0.22125567626953124, 0.2214297637939453, 0.22170930480957032, 0.22169293212890626, 0.22206874084472655, 0.22159257507324218, 0.2214799346923828, 0.22199090576171876, 0.22157720947265624, 0.22174208068847656, 0.22161613464355467, 0.2212843475341797, 0.22151271057128907, 0.22158233642578126, 0.22143283081054688, 0.22131404113769532, 0.22166323852539063, 0.22163046264648437, 0.22240870666503906, 0.22161407470703126, 0.22181785583496094, 0.22200831604003907, 0.22142874145507813, 0.22144102478027344, 0.22163661193847656, 0.22149530029296874, 0.22142668151855469, 0.22134169006347656, 0.2213683166503906, 0.2215076141357422, 0.2218208923339844, 0.221412353515625, 0.2214072265625, 0.22158233642578126, 0.46169601440429686, 0.2212136993408203, 0.22105702209472655, 0.2211266632080078, 0.2211031036376953, 0.22123622131347656, 0.22111846923828124, 0.22110105895996093, 0.22219468688964844, 0.22128536987304687, 0.2216058807373047, 0.22124237060546875, 0.22226022338867188, 0.22136323547363282, 0.2218741455078125, 0.22145741271972658, 0.22111538696289063, 0.22111231994628905, 0.22129766845703125, 0.22105702209472655, 0.22113792419433595, 0.22142874145507813, 0.2212351989746094, 0.22122496032714845, 0.22117068481445312, 0.22113279724121093, 0.22115122985839844, 0.22112973022460938, 0.2212024383544922, 0.2211102752685547, 0.2212956085205078, 0.22164582824707033, 0.2216058807373047, 0.22137548828125, 0.22140524291992186, 0.22150752258300782, 0.22146560668945312, 0.22119526672363282, 0.22161715698242188, 0.22124032592773438, 0.22137651062011718, 0.221770751953125, 0.22136524963378906, 0.22113690185546875, 0.22289407348632811, 0.22195814514160156, 0.22175027465820313, 0.22173286437988282, 0.2216048583984375, 0.221559814453125, 0.22163661193847656, 0.22160383605957032, 0.22145741271972658, 0.22292991638183593, 0.22169804382324218, 0.22141644287109374, 0.22166732788085938, 0.22217625427246093, 0.2222335968017578, 0.22209843444824218, 0.22188134765625, 0.2213939208984375, 0.22153727722167968, 0.46185061645507813, 0.2211788787841797, 0.22111436462402342, 0.22129049682617188, 0.22150553894042968, 0.22128128051757812, 0.2212024383544922, 0.22144000244140624, 0.22146969604492187, 0.22136114501953125, 0.22112562561035157, 0.2214481964111328, 0.2222335968017578, 0.22209536743164063, 0.22137548828125, 0.2215034942626953, 0.22125567626953124, 0.22210150146484375, 0.22135398864746095, 0.22115122985839844, 0.22146560668945312, 0.22135501098632812, 0.2211973114013672, 0.2217144317626953, 0.22152809143066407, 0.22151266479492188, 0.2218260498046875, 0.22138777160644532, 0.22115327453613282, 0.22133042907714845, 0.2219438018798828, 0.22181068420410155, 0.22151679992675782, 0.22163967895507813, 0.22198374938964843, 0.222202880859375, 0.2216089630126953, 0.22158848571777343, 0.22197964477539062, 0.2219304962158203, 0.2216058807373047, 0.22188236999511718, 0.2217144317626953, 0.2216990966796875, 0.22185162353515625, 0.22161509704589843, 0.22144825744628907, 0.2215761260986328, 0.22152294921875, 0.22147789001464843, 0.22122189331054687, 0.22149017333984375, 0.22142054748535156, 0.2215905303955078, 0.2212833251953125, 0.22145535278320314, 0.2214256591796875, 0.22370611572265625, 0.22159666442871093, 0.22157209777832032, 0.22164889526367187, 0.22127622985839843, 0.2215331268310547, 0.4607232055664062, 0.2214246368408203, 0.22150758361816406, 0.22157212829589842, 0.22139695739746093, 0.22143283081054688, 0.22193766784667968, 0.22149017333984375, 0.22146456909179688, 0.22140824890136718, 0.22149533081054687, 0.22149014282226562, 0.22156288146972655, 0.22154342651367187, 0.22170623779296875, 0.2220062713623047, 0.22157107543945312, 0.22163865661621093, 0.22165196228027345, 0.22187519836425781, 0.22198477172851563, 0.22197862243652344, 0.22181272888183592, 0.22163456726074218, 0.22144921875, 0.2217902069091797, 0.22170623779296875, 0.22131404113769532, 0.22122291564941407, 0.22189158630371095, 0.22152499389648436, 0.2215362548828125, 0.22123417663574219, 0.2213365783691406, 0.2216407012939453, 0.22166015625, 0.22149221801757812, 0.22126182556152343, 0.22392626953125, 0.2219438018798828, 0.22167347717285157, 0.22165606689453124, 0.22170930480957032, 0.22157626342773437, 0.2213846435546875, 0.22152499389648436, 0.2214307861328125, 0.2218014678955078, 0.22188134765625, 0.22133042907714845, 0.22165298461914062, 0.22161407470703126, 0.22176870727539064, 0.22166835021972656, 0.22149017333984375, 0.22150656127929688, 0.22176768493652343, 0.22180863952636717, 0.22148101806640624, 0.221297607421875, 0.22151373291015625, 0.222308349609375, 0.22171034240722656, 0.46220184326171876, 0.22253363037109375, 0.22171034240722656, 0.22214041137695312, 0.22114816284179686, 0.2212351989746094, 0.22153932189941405, 0.22129664611816408, 0.2211778564453125, 0.22154853820800782, 0.22134176635742187, 0.22164781188964844, 0.22147378540039062, 0.22127615356445313, 0.2212843475341797, 0.22165913391113282, 0.2215885467529297, 0.22137234497070313, 0.22157516479492187, 0.22207180786132813, 0.22170623779296875, 0.22145126342773438, 0.22118502807617188, 0.22266777038574218, 0.22152601623535156, 0.2213744659423828, 0.22128947448730468, 0.22164991760253908, 0.2218076171875, 0.22161920166015625, 0.22146969604492187, 0.22127513122558592, 0.22119424438476562, 0.22168269348144531, 0.22124441528320313, 0.22097100830078126, 0.221085693359375, 0.22113381958007813, 0.22170008850097656, 0.22122700500488282, 0.22127923583984374, 0.22145330810546876, 0.22255923461914062, 0.22140007019042968, 0.22144613647460937, 0.22161509704589843, 0.222023681640625, 0.22214041137695312, 0.22231552124023438, 0.2217574462890625, 0.22175949096679687, 0.22195610046386718, 0.22176666259765626, 0.221739013671875, 0.22195001220703126, 0.22145529174804687, 0.2223953857421875, 0.22163661193847656, 0.22160281372070312, 0.22152294921875, 0.22183322143554687, 0.2217840576171875, 0.2217410583496094, 0.46331597900390625, 0.22162431335449218, 0.22123930358886718, 0.2212843475341797, 0.2211409912109375, 0.22146662902832032, 0.22136729431152344, 0.22115020751953124, 0.22153216552734376, 0.22155059814453126, 0.22213427734375, 0.2212034606933594, 0.221412353515625, 0.22128640747070313, 0.22130995178222657, 0.22144102478027344, 0.22194688415527344, 0.22158131408691406, 0.22149632263183594, 0.22149427795410156, 0.2216222686767578, 0.22129664611816408, 0.22110617065429689, 0.22211993408203126, 0.2216058807373047, 0.22146456909179688, 0.22136012268066407, 0.22197760009765624, 0.2215905303955078, 0.22179327392578124, 0.2214993896484375, 0.22128230285644532, 0.2213017578125, 0.22127410888671875, 0.22146456909179688, 0.22121778869628905, 0.22168576049804686, 0.22120037841796875, 0.22118406677246094, 0.22135084533691407, 0.22131301879882812, 0.22129869079589845, 0.22116659545898437, 0.2210508728027344, 0.2215045166015625, 0.22192332458496095, 0.2215854034423828, 0.22149325561523436, 0.22160076904296874, 0.2215669708251953, 0.22166323852539063, 0.22128536987304687, 0.22132333374023438, 0.22139077758789064, 0.22124549865722656, 0.22128941345214845, 0.221665283203125, 0.22161613464355467, 0.22151577758789062, 0.22136524963378906, 0.2216407012939453, 0.22126693725585939, 0.22150860595703126, 0.4624425048828125, 0.22111744689941407, 0.22104473876953126, 0.2211829833984375, 0.22187826538085936, 0.22165196228027345, 0.2212290496826172, 0.22156083679199218, 0.22200729370117187, 0.22158950805664063, 0.22172671508789063, 0.221380615234375, 0.221306884765625, 0.22107449340820312, 0.22128428649902343, 0.22132121276855468, 0.221306884765625, 0.22197042846679688, 0.22143589782714843, 0.2213027801513672, 0.22142771911621092, 0.22136524963378906, 0.22115225219726561, 0.22165811157226561, 0.22134988403320313, 0.22114303588867187, 0.22162124633789063, 0.22177484130859376, 0.22148812866210937, 0.2213570556640625, 0.22117170715332032, 0.22172569274902343, 0.221444091796875, 0.22128640747070313, 0.22114816284179686, 0.22123423767089845, 0.22163040161132813, 0.22124134826660155, 0.22113900756835939, 0.22141433715820313, 0.22133351135253906, 0.22119833374023437, 0.22116659545898437, 0.2211727294921875, 0.2214256591796875, 0.22142771911621092, 0.22107034301757814, 0.2211973114013672, 0.22134579467773438, 0.22134988403320313, 0.2222950439453125, 0.22165298461914062, 0.22142361450195314, 0.22213938903808594, 0.22171749877929686, 0.2223206329345703, 0.2216816711425781, 0.22124032592773438, 0.22122700500488282, 0.22170623779296875, 0.22179840087890626, 0.22177587890625, 0.2214297637939453, 0.4629862365722656, 0.22168269348144531, 0.22135910034179687, 0.22179840087890626, 0.22143487548828125, 0.2214686737060547, 0.22133042907714845, 0.22189260864257812, 0.22169088745117188, 0.22153421020507813, 0.22115327453613282, 0.22121165466308593, 0.22176153564453124, 0.221380615234375, 0.22127308654785155, 0.22127206420898438, 0.2213959655761719, 0.22139085388183594, 0.22160592651367186, 0.2212945556640625, 0.22128128051757812, 0.2216611785888672, 0.22154751586914062, 0.22151373291015625, 0.2215004119873047, 0.22142361450195314, 0.22282957458496094, 0.22140313720703125, 0.22110617065429689, 0.22118502807617188, 0.22146456909179688, 0.2219325408935547, 0.22170828247070312, 0.22170008850097656, 0.22203187561035156, 0.22157005310058595, 0.22241897583007814, 0.22136521911621093, 0.22132940673828125, 0.22154444885253907, 0.22126284790039064, 0.22154444885253907, 0.22126080322265626, 0.22116966247558595, 0.22158335876464844, 0.22131199645996094, 0.2215188446044922, 0.22126797485351563, 0.22128128051757812, 0.22140518188476563, 0.22145126342773438, 0.221559814453125, 0.22204620361328126, 0.22181068420410155, 0.22146456909179688, 0.22160794067382814, 0.22161715698242188, 0.22150553894042968, 0.22128640747070313, 0.22156185913085938, 0.22152806091308594, 0.22130995178222657, 0.2214297637939453]",tokens/s,4.445155333725598,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-7B,Qwen/Qwen1.5-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2628.173824,8389.132288,0.0,7742.685184,7007.145472,s,10,5.8011931152343745,0.5801193115234377,0.0010375594919882804,0.5799924316406251,0.5812619140624999,0.5815937561035156,0.5818592297363281,"[0.5800941772460938, 0.5819255981445313, 0.5788403930664062, 0.5789609375, 0.5798906860351563, 0.5787822265625, 0.57971533203125, 0.5806090698242188, 0.5811865234375, 0.5811881713867187]",tokens/s,441.28853309110576,kWh,6.83268827420694e-06,3.744032605603327e-06,3.3321369249667614e-05,4.3898090129477875e-05,tokens/kWh,5831688.787483131,MB,2628.173824,8389.132288,0.0,7742.685184,7283.985408,s,10,337.06498046875,33.706498046875,0.006009418787724905,33.706857421875,33.7119703125,33.715088671875,33.717583359375006,"[33.70903515625, 33.70971875, 33.7039609375, 33.70134375, 33.71127734375, 33.70996875, 33.71820703125, 33.69992578125, 33.69686328125, 33.7046796875]",tokens/s,1.869075805869452,kWh,0.0003979287963388143,0.0002180992035304977,0.0019156344121359354,0.0025316624120052473,tokens/kWh,24884.8344476149,,s,629,341.74955133056636,0.5433220211932693,0.06898772267341372,0.5349846801757813,0.5355790161132813,0.5358112670898437,1.1147944775390626,"[0.5351260375976562, 0.535109619140625, 0.534408203125, 0.5347737426757813, 0.5349273681640625, 0.5355181884765625, 0.5343795166015625, 0.5353154296875, 0.5344747314453125, 0.5348731079101563, 0.5341849365234375, 0.5352171630859375, 0.5348259887695312, 0.5350338745117188, 0.5346682739257812, 0.5355919189453126, 0.5350399780273437, 0.535109619140625, 0.53498779296875, 0.5350379638671875, 0.5342330932617188, 0.534898681640625, 0.5348997192382813, 0.535445556640625, 0.5350767822265625, 0.5357158203125, 0.5351649169921875, 0.53486181640625, 0.5343006591796875, 0.5351065673828125, 0.5353646240234375, 0.5352591552734375, 0.53469091796875, 0.5347808227539063, 0.5347430419921875, 0.5353215942382813, 0.5346262817382812, 0.5358970947265626, 0.5353533325195312, 0.535372802734375, 0.5349212646484375, 0.5354249877929688, 0.5347993774414063, 0.5352724609375, 0.5352263793945312, 0.5359462280273437, 0.5349867553710937, 0.5358069458007813, 0.5356390380859375, 0.5357721557617188, 0.5345842895507813, 0.5350502319335938, 0.5345679321289063, 0.5353901977539063, 0.534408203125, 0.5348423461914062, 0.5349427490234375, 0.5352744750976562, 0.5348515625, 0.5350000610351563, 0.5347225341796875, 0.5350891723632812, 1.117781005859375, 0.5343908081054688, 0.5352744750976562, 0.5350615234375, 0.5358694458007812, 0.5350860595703125, 0.5349007568359375, 0.5344706420898437, 0.5346253051757812, 0.534213623046875, 0.5346007080078125, 0.534765625, 0.5350972900390625, 0.5347195434570312, 0.5356298217773438, 0.5349805908203125, 0.5357711181640625, 0.5348290405273437, 0.5349857177734375, 0.5353421020507813, 0.5351044921875, 0.5350942993164063, 0.5355233154296875, 0.5351280517578125, 0.536111083984375, 0.53477783203125, 0.5354240112304688, 0.5351700439453125, 0.5359093627929687, 0.5350686645507813, 0.5352868041992187, 0.5346743774414062, 0.534993896484375, 0.534455322265625, 0.5347471313476563, 0.5344000244140625, 0.5349601440429688, 0.5342822265625, 0.5353840942382813, 0.5345341186523438, 0.5348598022460938, 0.5351505737304687, 0.5354915771484375, 0.5350184936523438, 0.535066650390625, 0.5345361328125, 0.53806591796875, 0.5347102661132812, 0.535362548828125, 0.5352243041992187, 0.5350154418945312, 0.5345475463867188, 0.5348187255859375, 0.5344368896484375, 0.5351710815429688, 0.5345422973632813, 0.5351874389648438, 0.5350225830078125, 0.5353594970703125, 0.5346467895507813, 0.53593701171875, 0.5349805908203125, 0.535109619140625, 1.11461376953125, 0.5346682739257812, 0.5355612182617188, 0.535363525390625, 0.5350051879882812, 0.5345147094726562, 0.5349580688476563, 0.5345648803710937, 0.5349765014648438, 0.5342883911132813, 0.534782958984375, 0.5348720703125, 0.5348485107421875, 0.5344696044921875, 0.5351680297851562, 0.535014404296875, 0.5347891235351563, 0.5343958740234375, 0.534729736328125, 0.5343323974609375, 0.5347850341796875, 0.534245361328125, 0.5351393432617187, 0.5362525024414062, 0.53484130859375, 0.5343948974609375, 0.53480859375, 0.5345147094726562, 0.535352294921875, 0.5345781860351563, 0.5349120483398437, 0.5347604370117187, 0.5352069091796875, 0.5347593994140625, 0.5351116943359375, 0.5349611206054687, 0.5350625, 0.5345709838867188, 0.535088134765625, 0.5350850830078125, 0.535235595703125, 0.53505126953125, 0.5352868041992187, 0.5351475219726562, 0.5351701049804688, 0.535184326171875, 0.5351956176757813, 0.536447998046875, 0.5354301147460937, 0.53513427734375, 0.5351146850585937, 0.5348946533203125, 0.5352826538085937, 0.5349775390625, 0.5352734985351563, 0.5348341674804687, 0.5351444702148438, 0.5347440185546875, 0.53526220703125, 0.5349683227539063, 0.5353143920898438, 0.5344860229492188, 0.534940673828125, 1.1146219482421875, 0.5341777954101562, 0.5348720703125, 0.5346262817382812, 0.5350717163085937, 0.5346693725585937, 0.5351198120117188, 0.5349754638671875, 0.53484033203125, 0.5343754272460938, 0.5346856689453126, 0.534470703125, 0.5363936767578125, 0.5344901123046875, 0.5354598388671875, 0.5345167236328126, 0.535103515625, 0.5345525512695313, 0.5347041015625, 0.5342689208984375, 0.53492431640625, 0.5343795166015625, 0.5349335327148438, 0.5343723754882812, 0.53469287109375, 0.5351454467773438, 0.5353369750976562, 0.5347051391601563, 0.5347532958984375, 0.5346580200195312, 0.5352058715820313, 0.5351024780273438, 0.5352191772460938, 0.53522021484375, 0.5348075561523438, 0.534297607421875, 0.534724609375, 0.5345833129882812, 0.5349539794921875, 0.5344808959960937, 0.53492529296875, 0.5351454467773438, 0.5350830078125, 0.5344010009765625, 0.5376593627929688, 0.5356707763671875, 0.5352120361328125, 0.5348014526367187, 0.5355078735351563, 0.5344962768554687, 0.5350451049804688, 0.5349385986328125, 0.5351188354492188, 0.5344829711914062, 0.5351536865234375, 0.5346395874023437, 0.5351792602539063, 0.534635498046875, 0.5352366333007812, 0.534640625, 0.5355222778320312, 0.53492431640625, 0.5352960205078126, 1.1157667236328126, 0.5344829711914062, 0.5347286987304688, 0.53443994140625, 0.5350502319335938, 0.5349959716796875, 0.5357506713867187, 0.5345075073242187, 0.5348935546875, 0.5344307250976562, 0.5347952880859375, 0.5344050903320312, 0.5348792114257812, 0.5342566528320313, 0.5350963745117188, 0.5344285888671875, 0.534782958984375, 0.5359862060546875, 0.5356195678710938, 0.53477783203125, 0.5348853759765625, 0.534413330078125, 0.5349529418945312, 0.5347205200195313, 0.5349427490234375, 0.5349754638671875, 0.5349099731445313, 0.5344389038085937, 0.5352949829101562, 0.5348628540039062, 0.5350799560546875, 0.5344368896484375, 0.5352714233398438, 0.5348720703125, 0.5350604858398438, 0.534603759765625, 0.5353707275390625, 0.5352437744140625, 0.535731201171875, 0.5351393432617187, 0.535103515625, 0.5343733520507813, 0.534950927734375, 0.53507275390625, 0.535462890625, 0.5348690185546875, 0.5352427368164062, 0.5344849853515625, 0.5353912353515625, 0.5345740966796875, 0.5349765014648438, 0.5348229370117188, 0.5356441650390625, 0.5349171142578125, 0.5356072998046875, 0.5357066040039062, 0.5356267700195313, 0.5386843872070313, 0.535677978515625, 0.53519970703125, 0.5360302124023437, 0.5351813354492188, 0.5363681030273437, 1.114861572265625, 0.534814697265625, 0.5358141479492188, 0.5348894653320313, 0.535541748046875, 0.5344706420898437, 0.5349130249023437, 0.5350021362304688, 0.5350850830078125, 0.534813720703125, 0.5355775756835938, 0.5344389038085937, 0.53571484375, 0.5351659545898437, 0.5355847778320313, 0.53517822265625, 0.5354332275390625, 0.53538818359375, 0.5351044921875, 0.5344112548828125, 0.5350000610351563, 0.5343201293945312, 0.5348331298828125, 0.5342853393554687, 0.5347276611328124, 0.5348331298828125, 0.534877197265625, 0.534382568359375, 0.5348782348632812, 0.5349212036132812, 0.5350440673828125, 0.5346990356445313, 0.5352007446289062, 0.5345945434570313, 0.5349151000976563, 0.5347184448242187, 0.5349703979492187, 0.5343866577148437, 0.5375672607421875, 0.5345842895507813, 0.535604248046875, 0.5345730590820312, 0.5350553588867187, 0.5347706909179688, 0.5352007446289062, 0.5347727661132813, 0.535562255859375, 0.5352611694335937, 0.5354332275390625, 0.5348392944335938, 0.5353809814453125, 0.5349007568359375, 0.5352796020507813, 0.5347973022460938, 0.535889892578125, 0.535098388671875, 0.5354475708007812, 0.5351219482421875, 0.5354977416992187, 0.5351229248046875, 0.5353697509765625, 0.5347573852539063, 0.5351884765625, 1.11545751953125, 0.534709228515625, 0.5355346069335938, 0.5345218505859375, 0.53505126953125, 0.5347532958984375, 0.5353421020507813, 0.5347676391601562, 0.535130126953125, 0.53502978515625, 0.5353748779296875, 0.5347379150390625, 0.53549462890625, 0.5350656127929687, 0.53538818359375, 0.5347123413085938, 0.53515673828125, 0.5347584228515625, 0.5352509155273437, 0.5351055297851562, 0.5358919677734375, 0.5351751708984375, 0.535287841796875, 0.5365626831054687, 0.5354188842773437, 0.5353696899414062, 0.5352734985351563, 0.5352540283203125, 0.5353543701171875, 0.5349550170898437, 0.5355130615234375, 0.5348792114257812, 0.535568359375, 0.5348311767578126, 0.5353768310546875, 0.5346519165039062, 0.53517822265625, 0.5345648803710937, 0.5352017822265625, 0.535309326171875, 0.5357240600585937, 0.5350317993164062, 0.5355181884765625, 0.5348699951171875, 0.5352345581054687, 0.5348505859375, 0.5359411010742188, 0.5351085815429687, 0.5355888671875, 0.5350133666992187, 0.5354229736328125, 0.5347727661132813, 0.5353400268554688, 0.5348945922851562, 0.5355601806640625, 0.5356461791992188, 0.5350768432617188, 0.5353328857421875, 0.5356503295898437, 0.5349284057617187, 0.53524169921875, 0.53501953125, 0.5352315063476563, 1.1161282958984375, 0.5346826171875, 0.53496630859375, 0.5344050903320312, 0.5346508178710937, 0.5344050903320312, 0.5348168334960938, 0.5343477172851563, 0.5350819702148437, 0.5347593994140625, 0.5352212524414063, 0.534572021484375, 0.5355878295898437, 0.53490380859375, 0.5348966674804687, 0.5346734008789062, 0.5364859008789062, 0.53452392578125, 0.5349498901367188, 0.5348843383789063, 0.5350963134765625, 0.5344942016601563, 0.5349078979492188, 0.5345894165039062, 0.5349498901367188, 0.5344747314453125, 0.53500927734375, 0.5347010498046875, 0.535119873046875, 0.5345147094726562, 0.53530419921875, 0.5354342651367188, 0.535141357421875, 0.5348782348632812, 0.5348505859375, 0.5344890747070312, 0.5351444702148438, 0.53507275390625, 0.535056396484375, 0.5347092895507812, 0.5349498291015625, 0.534508544921875, 0.5350236206054687, 0.5345904541015625, 0.535593994140625, 0.5347225341796875, 0.5352581176757812, 0.5349776000976563, 0.5351546020507812, 0.5346416625976562, 0.5357752075195312, 0.5347604370117187, 0.5349846801757813, 0.5344286499023437, 0.5350154418945312, 0.5346324462890625, 0.5349918823242188, 0.5349908447265626, 0.5351976928710938, 0.5346375732421875, 0.5349151000976563, 0.5348065185546875, 0.5351188354492188, 1.1169342041015624, 0.534445068359375, 0.5351669921875, 0.5345443725585938, 0.53528369140625, 0.534782958984375, 0.5349293823242187, 0.5344174194335938, 0.5348372192382812, 0.5343057861328125, 0.53471435546875, 0.534593505859375, 0.5350717163085937, 0.5345064697265625, 0.5349273681640625, 0.5345054931640625, 0.5349867553710937, 0.535751708984375, 0.5350215454101562, 0.5345771484375, 0.535593994140625, 0.534761474609375, 0.5349488525390625, 0.5347625122070313, 0.5349222412109375, 0.5344276733398438, 0.53481982421875, 0.5344440307617188, 0.5348536376953125, 0.5344583740234375, 0.5348925170898438, 0.5345833129882812, 0.5350532836914063, 0.5344010009765625, 0.5347758178710937, 0.5343866577148437, 0.5347593994140625, 0.534382568359375, 0.5348362426757812, 0.53475634765625, 0.5349376831054687, 0.5345422973632813, 0.5351393432617187, 0.53452490234375, 0.5351270141601563, 0.5344603881835938, 0.5351065673828125, 0.5345259399414063, 0.5350799560546875, 0.5351802978515625, 0.5355919189453126, 0.5348382568359376, 0.5353246459960938, 0.5350021362304688, 0.535816162109375, 0.5346324462890625, 0.5352212524414063, 0.5346836547851562, 0.5353799438476563, 0.5346682739257812, 0.5351454467773438, 0.5346416625976562, 0.53532568359375, 1.116949462890625, 0.5343743896484375, 0.5350113525390625, 0.5348218994140626, 0.5349816284179687, 0.5344235229492188, 0.5348731079101563, 0.534445068359375, 0.534877197265625, 0.53441943359375, 0.5347359008789062, 0.5345535888671875, 0.5347891235351563, 0.5345515747070313, 0.5351004028320312, 0.53458740234375, 0.5349119873046875, 0.5347153930664063, 0.5349099731445313, 0.5344542846679687, 0.5348812866210938, 0.5343672485351563, 0.5352898559570313, 0.5349918823242188, 0.5351209106445313, 0.5350277099609375, 0.5352345581054687, 0.5350748291015625, 0.5352857666015625, 0.5347102661132812, 0.5349519653320313, 0.5349539794921875, 0.5350645751953125, 0.534740966796875, 0.5353809814453125, 0.5346959228515625, 0.5358069458007813, 0.53460888671875, 0.5353052368164063, 0.5350338745117188, 0.5352212524414063, 0.53507275390625, 0.5351802978515625, 0.5347666015625, 0.5349642333984375, 0.53477783203125, 0.535235595703125, 0.5350543212890625, 0.5352120361328125, 0.5350082397460938, 0.5354352416992187, 0.5352120361328125, 0.5354669799804688, 0.535140380859375, 0.535362548828125, 0.534782958984375, 0.5354803466796875, 0.5349232788085938, 0.5352908935546875, 0.535625732421875, 0.5352755126953125, 0.53500732421875, 0.5353860473632812]",tokens/s,1.8405291171591998,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,-,-,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-13b,facebook/opt-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -31112,41 +29139,148 @@ Checkout your internet connection or see how to run the library in offline mode File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 106, in _inner_fn - validate_repo_id(arg_value) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 160, in validate_repo_id - raise HFValidationError( -huggingface_hub.errors.HFValidationError: Repo id must use alphanumeric chars or '-', '_', '.', '--' and '..' are forbidden, '-' and '.' cannot start or end the name, max length is 96: '-'. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 466, in cached_file - raise EnvironmentError( -OSError: Incorrect path_or_model_id: '-'. Please provide either the path to a local folder or the repo_id of a model on the Hub. + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.4b,EleutherAI/pythia-1.4b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward + outputs = self.gpt_neox( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward + outputs = layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward + attention_layer_outputs = self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 545, in forward + query, key, value, present = self._attn_projections_and_rope( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope + qkv = self.query_key_value(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-1_6b,stabilityai/stablelm-2-1_6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 1268, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 1062, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 792, in forward + self_attn_output, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 441, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-125m,facebook/opt-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1231.42144,879.230976,0.0,232.783872,169.719808,s,10,0.35891270065307623,0.035891270065307616,0.001166922312453486,0.03606051254272461,0.03654228057861328,0.037586180877685546,0.03842130111694336,"[0.03863008117675781, 0.03461849594116211, 0.03453500747680664, 0.034383518218994144, 0.03608425521850586, 0.03613267135620117, 0.036015392303466794, 0.036310302734375, 0.036166206359863284, 0.03603676986694336]",tokens/s,7132.653693619183,kWh,4.2057203039815654e-07,2.3039066429929688e-07,8.883686426833978e-07,1.5393313373808513e-06,tokens/kWh,166305975.7073354,MB,1231.42144,879.230976,0.0,232.783872,199.793152,s,10,21.796639404296876,2.179663940429687,0.03379298018028798,2.1997751464843747,2.2025270751953125,2.2029048950195316,2.2032071508789066,"[2.15886328125, 2.11872216796875, 2.1151240234375, 2.1993291015625, 2.20328271484375, 2.20231494140625, 2.20022119140625, 2.201608642578125, 2.194730224609375, 2.202443115234375]",tokens/s,28.903538215886858,kWh,2.6054930089725813e-05,1.4278879354016576e-05,5.1935423616310185e-05,9.22692330600526e-05,tokens/kWh,682784.4765870875,,s,629,22.081034248352047,0.035104982906760014,0.004313579122612795,0.03483135986328125,0.03513838195800781,0.035482418823242184,0.06834089904785158,"[0.035579902648925785, 0.0354150390625, 0.035542015075683595, 0.0358737907409668, 0.03517337417602539, 0.035922943115234376, 0.03607551956176758, 0.03511808013916016, 0.03547443389892578, 0.035765247344970705, 0.035937278747558594, 0.03575091171264649, 0.03546214294433594, 0.04169113540649414, 0.03495731353759766, 0.03391795349121094, 0.033565696716308595, 0.03336908721923828, 0.03351347351074219, 0.03344179153442383, 0.03361177444458008, 0.03342745590209961, 0.03343564987182617, 0.03342745590209961, 0.03340185546875, 0.03341926574707031, 0.03338649749755859, 0.03336294555664063, 0.033552383422851564, 0.03352883148193359, 0.03450368118286133, 0.03436032104492188, 0.034111488342285154, 0.03450265502929688, 0.03355136108398438, 0.034164737701416016, 0.03474431991577148, 0.034351104736328124, 0.03521331024169922, 0.035111934661865234, 0.03381760025024414, 0.034427902221679685, 0.033756160736083986, 0.0334510383605957, 0.0331734733581543, 0.03338854217529297, 0.03346944046020508, 0.03350425720214844, 0.03346636962890625, 0.03356671905517578, 0.03343769454956055, 0.03313971328735352, 0.03326259231567383, 0.03314790344238281, 0.03320729446411133, 0.03347967910766601, 0.03352678298950195, 0.033538047790527346, 0.03310182571411133, 0.03322163009643555, 0.033478656768798826, 0.03340800094604492, 0.06847795104980468, 0.03334348678588867, 0.03356576156616211, 0.03346118545532226, 0.033667072296142575, 0.03376025772094727, 0.033555454254150394, 0.03353497695922852, 0.03349913787841797, 0.03347455978393555, 0.03362713623046875, 0.033650688171386715, 0.03344998550415039, 0.03351244735717773, 0.033532928466796875, 0.033718273162841796, 0.033614849090576174, 0.03364659118652344, 0.033478656768798826, 0.03355136108398438, 0.03344998550415039, 0.034282497406005856, 0.03367833709716797, 0.033516544342041016, 0.03338854217529297, 0.033584129333496096, 0.033539070129394534, 0.033326080322265625, 0.03335987091064453, 0.03366604614257813, 0.03334143829345703, 0.033258495330810545, 0.03334041595458984, 0.03343155288696289, 0.03324620819091797, 0.03349401473999023, 0.03338547134399414, 0.03338137435913086, 0.0335175666809082, 0.03442892837524414, 0.03411558532714844, 0.034249729156494144, 0.03337011337280273, 0.03331174468994141, 0.033413120269775394, 0.033301502227783206, 0.03349606323242187, 0.03334143829345703, 0.03332403182983398, 0.033527809143066405, 0.0335206413269043, 0.03582156753540039, 0.035253246307373046, 0.03405209732055664, 0.03366604614257813, 0.033827838897705076, 0.03394559860229492, 0.03346636962890625, 0.03348582458496094, 0.03372544097900391, 0.03336703872680664, 0.03363942337036133, 0.033410049438476565, 0.06798847961425782, 0.033957889556884766, 0.03349401473999023, 0.03372236633300781, 0.033659934997558594, 0.033262561798095704, 0.033339393615722655, 0.03347148895263672, 0.03481190490722656, 0.03399270248413086, 0.033448993682861326, 0.033379295349121096, 0.03344179153442383, 0.03343155288696289, 0.0330618896484375, 0.03346124649047852, 0.033410049438476565, 0.033430526733398434, 0.033495040893554685, 0.03334656143188477, 0.03343564987182617, 0.033446910858154294, 0.033513534545898435, 0.03330553436279297, 0.03338547134399414, 0.033484798431396484, 0.03334147262573242, 0.03339465713500977, 0.03335782241821289, 0.03341516876220703, 0.033355777740478515, 0.03362713623046875, 0.03338854217529297, 0.033360897064208986, 0.03363020706176758, 0.03340800094604492, 0.03336505508422852, 0.03361990356445312, 0.03336191940307617, 0.035092479705810545, 0.034958335876464845, 0.03446783828735352, 0.033719329833984374, 0.0333260498046875, 0.03360768127441406, 0.03371417617797851, 0.03365785598754883, 0.033653759002685545, 0.03359027099609375, 0.03361177444458008, 0.033465343475341795, 0.033562625885009766, 0.03357183837890625, 0.03344076919555664, 0.0335093765258789, 0.03359231948852539, 0.033463294982910154, 0.03351551818847656, 0.03339059066772461, 0.0335022087097168, 0.03354009628295898, 0.033432575225830076, 0.033476608276367184, 0.06785228729248047, 0.038763519287109374, 0.03499212646484375, 0.03476172637939453, 0.03466035079956055, 0.03442892837524414, 0.03445862579345703, 0.0349194221496582, 0.03481087875366211, 0.03482009506225586, 0.03474227142333984, 0.03470336151123047, 0.03492768096923828, 0.0348221435546875, 0.034755519866943356, 0.03479654312133789, 0.035053569793701174, 0.03477503967285156, 0.03513651275634765, 0.03483647918701172, 0.03467161560058594, 0.03479244613647461, 0.034738174438476564, 0.03485184097290039, 0.03481292724609375, 0.03513651275634765, 0.03499728012084961, 0.034848735809326174, 0.03482009506225586, 0.03604684829711914, 0.03580108642578125, 0.034900993347167966, 0.03499622344970703, 0.03482009506225586, 0.03486617660522461, 0.034716670989990234, 0.034871295928955076, 0.03480883026123047, 0.03496857452392578, 0.034961406707763674, 0.03484262466430664, 0.03478732681274414, 0.0348671989440918, 0.03487539291381836, 0.03496038436889649, 0.03478121566772461, 0.03482006454467773, 0.03547750473022461, 0.03485184097290039, 0.034953216552734374, 0.034854911804199216, 0.03493478393554687, 0.03474943923950195, 0.03476889419555664, 0.03471974563598633, 0.034825214385986326, 0.035095550537109374, 0.0350300178527832, 0.034802688598632815, 0.034781185150146485, 0.034677761077880856, 0.034490367889404294, 0.034372608184814454, 0.07120281219482422, 0.03474227142333984, 0.03492659378051758, 0.03486515045166016, 0.035027999877929684, 0.035214336395263675, 0.035108863830566404, 0.03492655944824219, 0.03491635131835937, 0.03499212646484375, 0.0349409294128418, 0.03500236892700195, 0.03487641525268555, 0.03486105728149414, 0.03492659378051758, 0.03494911956787109, 0.03502489471435547, 0.034909183502197266, 0.03505152130126953, 0.03499724960327148, 0.03479142379760742, 0.03497983932495117, 0.03498291015625, 0.03495116806030273, 0.03492454528808594, 0.03508633422851563, 0.034934814453125, 0.03494499206542969, 0.034936832427978515, 0.034841598510742186, 0.03491839981079101, 0.035023872375488284, 0.03488665771484375, 0.03486617660522461, 0.03508428955078125, 0.03497881698608398, 0.03496448135375976, 0.03487334442138672, 0.034991104125976565, 0.035092479705810545, 0.03487641525268555, 0.0350013427734375, 0.035125247955322264, 0.03501567840576172, 0.035350528717041016, 0.03521843338012695, 0.03506687927246094, 0.03503104019165039, 0.034985984802246094, 0.03507308959960938, 0.034981822967529295, 0.03523174285888672, 0.0352174072265625, 0.034923519134521484, 0.034361343383789066, 0.03486822509765625, 0.03495731353759766, 0.03501875305175781, 0.034956287384033204, 0.03489484786987305, 0.034835456848144535, 0.035156993865966796, 0.03473408126831055, 0.07153561401367188, 0.034855934143066404, 0.03496345520019531, 0.034987071990966796, 0.035133377075195316, 0.03502592086791992, 0.035043327331542966, 0.035209217071533204, 0.03504844665527344, 0.03502592086791992, 0.034936832427978515, 0.03493478393554687, 0.0358205451965332, 0.035659774780273434, 0.03496038436889649, 0.03518668746948242, 0.03511296081542969, 0.03490304183959961, 0.03482624053955078, 0.03487539291381836, 0.03492761611938477, 0.03479142379760742, 0.035125247955322264, 0.03506585693359375, 0.03505254364013672, 0.034825214385986326, 0.03476995086669922, 0.03494089508056641, 0.03478732681274414, 0.03488256072998047, 0.035244033813476565, 0.035007488250732424, 0.03475046539306641, 0.03497062301635742, 0.0347770881652832, 0.03480166244506836, 0.03479964828491211, 0.03495734405517578, 0.03496441650390625, 0.03494911956787109, 0.034885631561279294, 0.034953216552734374, 0.034909183502197266, 0.03480575942993164, 0.03474943923950195, 0.034948097229003904, 0.03509862518310547, 0.03496857452392578, 0.03502284622192383, 0.0344719352722168, 0.03450271987915039, 0.03489888000488281, 0.034909183502197266, 0.03487846374511719, 0.03488460922241211, 0.03492147064208984, 0.03486515045166016, 0.03475251388549805, 0.03486310577392578, 0.03487027359008789, 0.03497369766235352, 0.03508230209350586, 0.034826175689697265, 0.07138098907470704, 0.035064830780029296, 0.035089408874511716, 0.03489894485473633, 0.03474537658691406, 0.034952159881591796, 0.034969600677490234, 0.03484985733032227, 0.0348732795715332, 0.03523481750488281, 0.034993152618408206, 0.03489593505859375, 0.03493983840942383, 0.03493580627441406, 0.034854911804199216, 0.03482316970825195, 0.03493273544311523, 0.034797569274902344, 0.03540787124633789, 0.035068992614746095, 0.03575494384765625, 0.03548672103881836, 0.03483955383300781, 0.03533107376098633, 0.03497062301635742, 0.034800640106201174, 0.034786304473876956, 0.03497574234008789, 0.0349306869506836, 0.03490508651733398, 0.034917377471923826, 0.03463065719604492, 0.034928638458251955, 0.03481292724609375, 0.03505254364013672, 0.03483955383300781, 0.03466854476928711, 0.03482112121582031, 0.03525734329223633, 0.03482726287841797, 0.034948097229003904, 0.034776065826416014, 0.03475558471679688, 0.034283519744873044, 0.03471974563598633, 0.034735103607177735, 0.03482931137084961, 0.03508224105834961, 0.034678783416748044, 0.03488870239257812, 0.034802688598632815, 0.03478015899658203, 0.03476070404052734, 0.03488051223754883, 0.034976768493652347, 0.0347586555480957, 0.03504435348510742, 0.034929695129394533, 0.03516617584228516, 0.034799617767333986, 0.034723838806152346, 0.03487334442138672, 0.03482931137084961, 0.07187558746337891, 0.03538739013671875, 0.03526348876953125, 0.03513241577148438, 0.034925567626953126, 0.03487744140625, 0.0354856948852539, 0.035422206878662106, 0.0351723518371582, 0.034976768493652347, 0.03488460922241211, 0.034890750885009765, 0.0349409294128418, 0.03503206253051758, 0.035076095581054685, 0.03489279937744141, 0.035119102478027346, 0.034729984283447264, 0.03479244613647461, 0.034864158630371095, 0.034802654266357425, 0.0348221435546875, 0.034678783416748044, 0.03501055908203125, 0.03484467315673828, 0.0348487663269043, 0.03479859161376953, 0.03482931137084961, 0.03487539291381836, 0.034783233642578126, 0.03495116806030273, 0.03474534225463867, 0.03493580627441406, 0.03485388946533203, 0.03487948989868164, 0.034926624298095704, 0.034881504058837894, 0.03505254364013672, 0.03485081481933594, 0.03487846374511719, 0.03444224166870117, 0.03474431991577148, 0.03492761611938477, 0.034948097229003904, 0.03510067367553711, 0.0347770881652832, 0.03488972854614258, 0.03482112121582031, 0.034977790832519534, 0.034405376434326174, 0.03482422256469726, 0.034968544006347656, 0.03485081481933594, 0.0349409294128418, 0.034840576171875, 0.034907135009765625, 0.035122177124023435, 0.03496755218505859, 0.03485388946533203, 0.035350528717041016, 0.03549593734741211, 0.03502182388305664, 0.03480473709106445, 0.07150796508789062, 0.0350013427734375, 0.03506995010375977, 0.034994174957275394, 0.03483647918701172, 0.03483135986328125, 0.034991104125976565, 0.03488153457641602, 0.03486310577392578, 0.034756607055664065, 0.034781185150146485, 0.03496038436889649, 0.034710529327392575, 0.03470848083496094, 0.034977790832519534, 0.03480780792236328, 0.03479040145874023, 0.034776065826416014, 0.03490304183959961, 0.03465219116210937, 0.0350074577331543, 0.03491123199462891, 0.03498905563354492, 0.03513139343261719, 0.03480883026123047, 0.03476582336425781, 0.03472281646728516, 0.034713600158691404, 0.034830337524414064, 0.03484364700317383, 0.03500646209716797, 0.034683902740478514, 0.03486310577392578, 0.03489894485473633, 0.034664447784423826, 0.03480575942993164, 0.034835456848144535, 0.03486822509765625, 0.0347770881652832, 0.03489382553100586, 0.03503615951538086, 0.03473715209960938, 0.03480473709106445, 0.034802688598632815, 0.034677761077880856, 0.03475251388549805, 0.03466652679443359, 0.03473097610473633, 0.0347883529663086, 0.035141632080078124, 0.03476070404052734, 0.03492966461181641, 0.03492147064208984, 0.034854911804199216, 0.034776065826416014, 0.03474431991577148, 0.0348037109375, 0.034800640106201174, 0.0348037109375, 0.03454054260253906, 0.03448934555053711, 0.03489791870117188, 0.03465830230712891, 0.07124582672119141, 0.03520102310180664, 0.03487744140625, 0.035156993865966796, 0.03470848083496094, 0.03489996719360351, 0.03482726287841797, 0.03494297790527344, 0.03487744140625, 0.034769920349121096, 0.034885631561279294, 0.03489996719360351, 0.03513756942749023, 0.03485385513305664, 0.03532185745239258, 0.03501875305175781, 0.0368721923828125, 0.03486310577392578, 0.03483443069458008, 0.03476582336425781, 0.03483647918701172, 0.0348221435546875, 0.03477196884155274, 0.034669567108154296, 0.03483647918701172, 0.034947071075439456, 0.0348671989440918, 0.03482316970825195, 0.03477814483642578, 0.03476988983154297, 0.03473612976074219, 0.03470745468139649, 0.03570380783081055, 0.03584921646118164, 0.03489484786987305, 0.03489689636230469, 0.03458969497680664, 0.034830337524414064, 0.03489689636230469, 0.03477811050415039, 0.034705406188964845, 0.03480985641479492, 0.03458662414550781, 0.03588614273071289, 0.03546003341674805, 0.035043327331542966, 0.034993152618408206, 0.03488051223754883, 0.03490611267089844, 0.035004417419433595, 0.03475763320922851, 0.034797569274902344, 0.03473715209960938, 0.03501772689819336, 0.034772991180419925, 0.034885631561279294, 0.03487539291381836, 0.03483443069458008, 0.03482316970825195, 0.0350013427734375, 0.03475763320922851, 0.03494604873657227, 0.0350300178527832]",tokens/s,28.485984529775525,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-6.7b,EleutherAI/pythia-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1368.223744,6256.328704,0.0,5609.8816,5292.617728,s,10,5.657606628417969,0.5657606628417968,0.0009498936514595362,0.5654808349609375,0.5660143920898437,0.5672829833984374,0.5682978564453125,"[0.5685515747070312, 0.5654931030273438, 0.565177734375, 0.5654685668945313, 0.5652743530273437, 0.5651702880859375, 0.5656128540039063, 0.5657227172851562, 0.5657324829101562, 0.5654029541015625]",tokens/s,452.48815764977473,kWh,6.682694372203615e-06,3.660675940348786e-06,3.1253065125888854e-05,4.159643543844126e-05,tokens/kWh,6154373.50103846,MB,1368.551424,6256.328704,0.0,5609.8816,5503.949312,s,10,330.81899609375,33.081899609375,0.006904428548072782,33.079876953125,33.091131640625,33.0930072265625,33.0945076953125,"[33.07798046875, 33.078234375, 33.07119921875, 33.0948828125, 33.09071484375, 33.08729296875, 33.08378515625, 33.07924609375, 33.0805078125, 33.07515234375]",tokens/s,1.9043646448327465,kWh,0.0003903993130889204,0.00021397087349180462,0.001808246989806311,0.0024126171763870358,tokens/kWh,26112.721328770578,,s,629,335.3824949340819,0.5331995149985406,0.06720644230645373,0.5250816040039062,0.52554873046875,0.52574228515625,1.0904419140625001,"[0.5248307495117187, 0.5246986083984375, 0.5245040893554688, 0.524674072265625, 0.52523828125, 0.5248563232421875, 0.5253027954101562, 0.5246597290039062, 0.5248173828125, 0.5247999877929688, 0.5255188598632813, 0.5246453247070313, 0.5245347900390624, 0.5246586303710937, 0.525032470703125, 0.5246986083984375, 0.5246525268554687, 0.5253273315429687, 0.5247651977539063, 0.5249915161132812, 0.5252413330078125, 0.5252423706054687, 0.5247785034179687, 0.5247273559570312, 0.5247057495117188, 0.5248440551757813, 0.5247232055664063, 0.5247467651367187, 0.5255465087890625, 0.5256212768554688, 0.5258025512695312, 0.5255167846679687, 0.5248409423828125, 0.5254369506835938, 0.5253928833007813, 0.5247928466796875, 0.5255188598632813, 0.5249791870117188, 0.5249310913085937, 0.5250969848632813, 0.5247672119140625, 0.5248972778320312, 0.5248655395507813, 0.5252689819335937, 0.5248040771484375, 0.525211669921875, 0.5255167846679687, 0.525169677734375, 0.5251573486328125, 0.524832763671875, 0.5248081665039063, 0.5248256225585938, 0.5252925415039063, 0.5251204833984375, 0.525022216796875, 0.5254482421875, 0.525276123046875, 0.5254348754882813, 0.5250242309570312, 0.5254471435546875, 0.5251328125, 0.5251553344726563, 1.0913822021484374, 0.5247088623046875, 0.52463818359375, 0.5248921508789063, 0.5250447387695313, 0.52459423828125, 0.5247610473632812, 0.524621826171875, 0.5250303955078125, 0.5247098999023437, 0.5248706665039062, 0.52496484375, 0.524769287109375, 0.525318115234375, 0.5248880615234375, 0.5248450317382812, 0.5251092529296875, 0.5249443969726563, 0.5248491821289063, 0.5246842651367187, 0.524643310546875, 0.5247713012695312, 0.5255167846679687, 0.5258618774414062, 0.5249320678710937, 0.5256673583984375, 0.5253673095703125, 0.525570068359375, 0.5251849975585937, 0.5251604614257812, 0.5255874633789063, 0.5250549926757813, 0.5249617309570312, 0.5247528686523437, 0.5250518798828125, 0.525127685546875, 0.5249607543945313, 0.5249474487304687, 0.525033447265625, 0.5248983154296875, 0.5250068359375, 0.52510205078125, 0.5252761840820312, 0.5249771728515625, 0.5250181274414063, 0.5249228515625, 0.5253406982421875, 0.5251481323242188, 0.5250140380859375, 0.5252628784179687, 0.525149169921875, 0.5251195068359376, 0.5251184692382812, 0.5249095458984375, 0.5248972778320312, 0.5250303955078125, 0.525391845703125, 0.524969970703125, 0.5247293701171875, 0.5249556274414062, 0.5251163940429687, 0.5255157470703125, 0.5251348266601562, 1.090335693359375, 0.524874755859375, 0.5245787963867188, 0.524506103515625, 0.5248809204101562, 0.5247160034179688, 0.5246280517578125, 0.5246934204101562, 0.5246658325195312, 0.5245573120117187, 0.5246976928710938, 0.5247764282226562, 0.524717041015625, 0.5248132934570312, 0.52461669921875, 0.52514306640625, 0.525487060546875, 0.5247119140625, 0.524663818359375, 0.524600341796875, 0.524516357421875, 0.524632080078125, 0.5244651489257812, 0.5252577514648438, 0.5246760864257812, 0.524959716796875, 0.5246556396484375, 0.5247354736328125, 0.5250734252929687, 0.5248143310546876, 0.5247682495117187, 0.5251287231445313, 0.5246996459960938, 0.5248102416992187, 0.5250416870117187, 0.5254154052734376, 0.5251204833984375, 0.524943359375, 0.5247672119140625, 0.5249054565429687, 0.5247723388671875, 0.5249924926757813, 0.5250969848632813, 0.5248839721679688, 0.524780517578125, 0.5248870239257812, 0.5249146728515625, 0.525117431640625, 0.5246310424804688, 0.5249474487304687, 0.5247897338867188, 0.52493310546875, 0.5250109252929688, 0.5253570556640625, 0.5257471923828125, 0.5256693725585937, 0.52505908203125, 0.5255249633789062, 0.5257697143554687, 0.5254031372070312, 0.5251993408203125, 0.5257103271484375, 0.5251307373046875, 1.090680908203125, 0.525180908203125, 0.524788818359375, 0.5252505493164062, 0.5254584350585938, 0.5254379272460937, 0.52552294921875, 0.5255587768554687, 0.525601806640625, 0.5258516235351562, 0.5258157958984375, 0.5254614868164063, 0.5251604614257812, 0.5255485229492187, 0.5253007202148438, 0.5253621826171875, 0.5256417236328125, 0.525749267578125, 0.5251840209960937, 0.5252259521484375, 0.5253324584960938, 0.5253058471679688, 0.52491162109375, 0.5250846557617187, 0.525254638671875, 0.525391845703125, 0.52520654296875, 0.5254430541992188, 0.5258055419921875, 0.525138916015625, 0.5251840209960937, 0.5249403076171875, 0.525707275390625, 0.5251296997070313, 0.52486962890625, 0.5257564086914063, 0.5252894897460938, 0.5254993896484375, 0.5254983520507812, 0.5253345336914063, 0.5253857421875, 0.5251768188476562, 0.52502734375, 0.5253447875976562, 0.5251942138671875, 0.52514306640625, 0.5253836669921875, 0.5265366821289063, 0.5247119140625, 0.5249392700195312, 0.5253396606445313, 0.5246771240234375, 0.5253150634765625, 0.5247682495117187, 0.5253621826171875, 0.5255966796875, 0.5253765258789063, 0.5253641967773437, 0.5249669189453126, 0.5252526245117187, 0.5254635009765625, 0.5250498657226562, 0.5251553344726563, 1.090404296875, 0.524969970703125, 0.5259376831054687, 0.5252003784179687, 0.5258106689453125, 0.5252955932617187, 0.5250447387695313, 0.525154296875, 0.5248737182617188, 0.5253058471679688, 0.5248440551757813, 0.524874755859375, 0.5246546020507813, 0.5248102416992187, 0.5245665283203125, 0.5248348388671875, 0.5247498168945313, 0.5249761352539063, 0.5246576538085937, 0.5247181396484375, 0.5246954956054688, 0.5256632080078125, 0.5248604125976563, 0.524747802734375, 0.5248604125976563, 0.5250211791992188, 0.5254573974609374, 0.5250242309570312, 0.52548095703125, 0.5251154174804687, 0.5251461181640625, 0.5252608032226562, 0.52522607421875, 0.5251276245117188, 0.5253990478515626, 0.5256478881835938, 0.525464599609375, 0.5254779052734375, 0.5252710571289062, 0.5255720825195312, 0.5254932250976563, 0.52564892578125, 0.5251912231445313, 0.5251798095703125, 0.5252771606445312, 0.5259796752929687, 0.5252730712890625, 0.5259386596679687, 0.5251870727539063, 0.525286376953125, 0.52527001953125, 0.5250816040039062, 0.525275146484375, 0.52520654296875, 0.5252454833984375, 0.5256109619140625, 0.5253765258789063, 0.52531201171875, 0.5252474975585938, 0.5265930786132812, 0.525812744140625, 0.5261884765625, 0.5251481323242188, 1.09045654296875, 0.5245020141601563, 0.5246781616210937, 0.5249658813476562, 0.5249915161132812, 0.5245040893554688, 0.52481640625, 0.5248297119140625, 0.5247836303710938, 0.524885986328125, 0.5248921508789063, 0.52484814453125, 0.5248286743164062, 0.524632080078125, 0.5257512817382812, 0.524990478515625, 0.5250908203125, 0.5249392700195312, 0.5247129516601563, 0.5252608032226562, 0.5249863891601563, 0.5254144287109375, 0.524600341796875, 0.5249567260742187, 0.5247467041015625, 0.5249075317382812, 0.5252260131835937, 0.5248870239257812, 0.5250662231445312, 0.5250048828125, 0.5253692626953125, 0.5249249267578125, 0.524853271484375, 0.5260421142578126, 0.5258383178710937, 0.5250867309570313, 0.5253775634765625, 0.524843017578125, 0.525390869140625, 0.5253294067382812, 0.5256530151367188, 0.5254686889648438, 0.525365234375, 0.525201416015625, 0.5253119506835937, 0.5253365478515625, 0.5253560180664063, 0.5255802612304687, 0.5252782592773437, 0.5253252563476563, 0.5253990478515626, 0.52508056640625, 0.5262468872070313, 0.5258137817382813, 0.525549560546875, 0.5252843627929688, 0.5254717407226562, 0.525453369140625, 0.5256119384765625, 0.5255628662109375, 0.5259458618164062, 0.5253795776367187, 0.52560693359375, 1.0914058837890626, 0.5248624877929687, 0.5247764282226562, 0.5250928344726562, 0.5249915161132812, 0.5249924926757813, 0.524921875, 0.5255986938476562, 0.525233154296875, 0.5249976196289062, 0.525106201171875, 0.525254638671875, 0.5254993896484375, 0.52495361328125, 0.5254133911132812, 0.5256365966796875, 0.5252393188476563, 0.5251287231445313, 0.5250734252929687, 0.5250263061523438, 0.5252188110351562, 0.5251512451171875, 0.5254318237304687, 0.5252034301757813, 0.5248993530273437, 0.5250560302734375, 0.5257349243164062, 0.5247313842773438, 0.5247518920898437, 0.5246392211914063, 0.5248256225585938, 0.5250816040039062, 0.5247979736328126, 0.5251195068359376, 0.5250089111328125, 0.525053955078125, 0.5249034423828125, 0.5249392700195312, 0.525000732421875, 0.5251604614257812, 0.5249515380859375, 0.5250344848632813, 0.5250201416015625, 0.524843017578125, 0.5250570068359375, 0.525391845703125, 0.5252781982421875, 0.5252321166992188, 0.5249515380859375, 0.5251287231445313, 0.5253140258789063, 0.524959716796875, 0.5254113159179687, 0.5252976684570313, 0.5251635131835938, 0.525433837890625, 0.5251604614257812, 0.5252894897460938, 0.5252474975585938, 0.5253939208984375, 0.5253867797851562, 0.5253079223632813, 0.525212646484375, 1.0918123779296875, 0.5249392700195312, 0.5248511962890625, 0.5250714111328125, 0.525445068359375, 0.5252464599609376, 0.5249423217773438, 0.5251881103515625, 0.5252290649414062, 0.5253109741210937, 0.5252495727539063, 0.524802001953125, 0.52481640625, 0.5247365112304687, 0.5250303955078125, 0.5251235961914062, 0.5250078735351562, 0.5248880615234375, 0.5249197998046875, 0.5250938720703126, 0.525497314453125, 0.5250078735351562, 0.5247528686523437, 0.5247733764648438, 0.524821533203125, 0.524938232421875, 0.5251942138671875, 0.5249832763671874, 0.5250949096679688, 0.5249238891601562, 0.524906494140625, 0.5249658813476562, 0.5247979736328126, 0.5248522338867188, 0.52481640625, 0.52491162109375, 0.5247928466796875, 0.5249320678710937, 0.5248573608398438, 0.5247938842773437, 0.5249791870117188, 0.52478466796875, 0.5247897338867188, 0.5247600708007812, 0.52487890625, 0.5249884033203125, 0.5252925415039063, 0.5250416870117187, 0.5249464111328125, 0.5251000366210937, 0.5250816040039062, 0.5249525756835938, 0.5252413940429688, 0.5255003662109375, 0.5252474975585938, 0.5254031372070312, 0.5251502075195312, 0.5256693725585937, 0.5256007690429687, 0.5253478393554688, 0.5253816528320312, 0.525201416015625, 0.5253990478515626, 1.0916168212890625, 0.52502734375, 0.5249310913085937, 0.524822509765625, 0.5248081665039063, 0.5246361694335937, 0.5247744140625, 0.5250693359375, 0.5248952026367187, 0.5249024047851563, 0.5249915161132812, 0.5248173828125, 0.525412353515625, 0.5252208862304687, 0.5250160522460937, 0.524969970703125, 0.525085693359375, 0.5248706665039062, 0.5251307373046875, 0.5251522827148437, 0.5256038208007813, 0.5248409423828125, 0.5249832763671874, 0.5250211791992188, 0.524906494140625, 0.524864501953125, 0.52510107421875, 0.5247754516601563, 0.5251942138671875, 0.5250908203125, 0.5250857543945312, 0.5254880981445312, 0.5257154541015625, 0.5253683471679688, 0.5251204833984375, 0.5250826416015625, 0.525117431640625, 0.525169677734375, 0.5254266967773438, 0.525581298828125, 0.5249771728515625, 0.5250396118164062, 0.5251522827148437, 0.5250263061523438, 0.5251163940429687, 0.5250775146484375, 0.5251696166992188, 0.5251348266601562, 0.5248726806640625, 0.5248040771484375, 0.525322265625, 0.5251829833984375, 0.5251051635742188, 0.5248706665039062, 0.5250303955078125, 0.5250109252929688, 0.5251963500976562, 0.5250313720703125, 0.5255403442382812, 0.5248737182617188, 0.5250242309570312, 0.5249843139648438, 0.5250836181640625, 1.0909224853515624, 0.5246965942382813, 0.5248829345703125, 0.5249362182617188, 0.5247160034179688, 0.5250303955078125, 0.5250089111328125, 0.5251287231445313, 0.5249238891601562, 0.5249658813476562, 0.5249515380859375, 0.5246607055664062, 0.52463720703125, 0.525317138671875, 0.5247047729492188, 0.5247109375, 0.5245911254882812, 0.5245593872070312, 0.5245286254882813, 0.5245368041992188, 0.5244630737304687, 0.5245419311523437, 0.5247344360351562, 0.5246781616210937, 0.5250242309570312, 0.525285400390625, 0.5248081665039063, 0.5248297119140625, 0.5248153686523438, 0.5249310913085937, 0.5255239868164062, 0.5253621826171875, 0.5255106811523438, 0.5247969360351562, 0.52493115234375, 0.5251900634765625, 0.525365234375, 0.52534375, 0.52518603515625, 0.5249095458984375, 0.524705810546875, 0.5250477905273437, 0.5248071899414063, 0.5250426635742188, 0.5253519287109375, 0.52510205078125, 0.5249894409179687, 0.5251450805664063, 0.52478466796875, 0.5255065307617187, 0.5247191162109375, 0.5256325073242187, 0.5251266479492187, 0.5251030883789063, 0.5249208374023437, 0.5255485229492187, 0.525053955078125, 0.5254256591796875, 0.525159423828125, 0.525106201171875, 0.5251512451171875, 0.5250416870117187, 0.5253683471679688]",tokens/s,1.8754705731544732,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-14B,Qwen/Qwen-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-rw-1b,tiiuae/falcon-rw-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -31164,22 +29298,18 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained - model_class = get_class_from_dynamic_module( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module - final_module = get_cached_module_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file - modules_needed = check_imports(resolved_module_file) - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports - raise ImportError( -ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: FalconForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-12b,stabilityai/stablelm-2-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2280.779776,9584.508928,0.0,8938.061824,8629.0688,s,10,10.176551086425778,1.0176551086425778,0.0015328797671352301,1.0172308959960938,1.018193273925781,1.0201789428710937,1.0217674780273438,"[1.0221646118164063, 1.0172261352539063, 1.0167738647460938, 1.0172377319335937, 1.0172356567382812, 1.0169893188476562, 1.0167650146484375, 1.017517822265625, 1.016888916015625, 1.0177520141601561]",tokens/s,251.55870375521562,kWh,1.2027085920174918e-05,6.590293178160209e-06,5.696557335020391e-05,7.558295244853905e-05,tokens/kWh,3387007.145219666,MB,2281.074688,9584.508928,0.0,8938.061824,8715.66592,s,10,595.0380507812499,59.50380507812499,0.008158332777429248,59.504548828124996,59.5143921875,59.51552421875,59.51642984375,"[59.500625, 59.49740234375, 59.49325390625, 59.50875, 59.50894140625, 59.514140625, 59.4951328125, 59.50847265625, 59.49467578125, 59.51665625]",tokens/s,1.0587558210316923,kWh,0.0007025720743172699,0.00038506887292403917,0.0033221314077029936,0.004409772354944303,tokens/kWh,14286.451755125965,,s,629,603.2482678222655,0.9590592493199772,0.12088183404247937,0.9444280395507813,0.945362939453125,0.9457379272460937,1.96203095703125,"[0.9439191284179688, 0.9438074951171875, 0.9435494384765625, 0.9451939697265626, 0.9448151245117188, 0.9447935791015625, 0.94410546875, 0.9439744262695312, 0.9437614135742187, 0.9440634765625, 0.94390576171875, 0.9446031494140625, 0.9444812622070312, 0.945565673828125, 0.9449103393554688, 0.9443286743164062, 0.9433487548828124, 0.9437614135742187, 0.943837158203125, 0.9445468139648437, 0.9442355346679687, 0.9440911254882812, 0.9451141357421875, 0.9447239379882812, 0.9452031860351563, 0.9445714111328125, 0.9450618896484375, 0.9444659423828125, 0.9439969482421875, 0.9436231689453125, 0.944216064453125, 0.9437163696289063, 0.9447649536132813, 0.9448642578125, 0.9447239379882812, 0.9447444458007812, 0.944990234375, 0.9443727416992187, 0.9441873779296875, 0.9447096557617187, 0.9451028442382813, 0.9457059936523438, 0.9445437622070313, 0.9448652954101563, 0.9439764404296875, 0.945954833984375, 0.9447557373046875, 0.9458032836914062, 0.9443123168945312, 0.9440501708984375, 0.9439887084960937, 0.9450444946289063, 0.9437235107421875, 0.944195556640625, 0.9443512573242188, 0.9439027099609375, 0.9452513427734375, 0.9451724853515625, 0.94409521484375, 0.9442816162109375, 0.9435177001953124, 0.943952880859375, 1.961964599609375, 0.9452953491210937, 0.9439201049804687, 0.9446041870117188, 0.9441761474609375, 0.9450936279296875, 0.9438955688476562, 0.944521240234375, 0.9442867431640625, 0.944669677734375, 0.9439436645507813, 0.9444669189453125, 0.9447761840820312, 0.9443717041015625, 0.9457489624023437, 0.9448304443359375, 0.9437224731445313, 0.943720458984375, 0.943825927734375, 0.9439569702148437, 0.9447649536132813, 0.9438760986328125, 0.94512744140625, 0.9446553344726563, 0.9442754516601563, 0.9448980712890624, 0.944395263671875, 0.9436589965820312, 0.9441065063476562, 0.9436221313476563, 0.94472705078125, 0.9441556396484375, 0.9437644653320313, 0.94514892578125, 0.9441781616210938, 0.9451366577148438, 0.943805419921875, 0.9449574584960938, 0.94401025390625, 0.9444935913085938, 0.9444280395507813, 0.9449482421875, 0.9444423828125, 0.944490478515625, 0.9455534057617188, 0.9445355224609375, 0.944510986328125, 0.9453905639648438, 0.944805908203125, 0.9447341918945312, 0.9445673217773437, 0.9435391845703125, 0.94436865234375, 0.9436989135742188, 0.9443194580078125, 0.9437255859375, 0.943572998046875, 0.9442672729492188, 0.9445857543945313, 0.9441392822265625, 0.9437747192382813, 0.9438228759765624, 0.9449410400390625, 1.9620567626953125, 0.94470556640625, 0.9442181396484375, 0.945459228515625, 0.944817138671875, 0.944289794921875, 0.9441679077148437, 0.943963134765625, 0.9437173461914062, 0.9446461181640625, 0.9440194702148438, 0.9441679077148437, 0.9439436645507813, 0.94363134765625, 0.9440819091796875, 0.9446000366210937, 0.9443461303710937, 0.9433681640625, 0.9446809692382813, 0.945306640625, 0.9444782104492188, 0.9442139892578125, 0.9447669677734375, 0.9443020629882812, 0.9446246337890625, 0.9445652465820312, 0.9445877685546875, 0.94449560546875, 0.9440122680664063, 0.9438228759765624, 0.9451950073242188, 0.9438597412109375, 0.9438197631835937, 0.9448263549804687, 0.9439232177734375, 0.9453045654296875, 0.9447987060546875, 0.944822265625, 0.944021484375, 0.9442969360351563, 0.9446051635742188, 0.945090576171875, 0.9438689575195313, 0.9441822509765625, 0.9437224731445313, 0.9438904418945312, 0.9443860473632812, 0.9447403564453125, 0.944142333984375, 0.9441279907226563, 0.94382080078125, 0.9441802368164063, 0.9439436645507813, 0.9441648559570313, 0.9440030517578125, 0.9440491333007812, 0.944716796875, 0.9447926025390625, 0.9442672729492188, 0.9440327758789062, 0.9443020629882812, 0.944078857421875, 0.9440512084960937, 1.962303466796875, 0.9448621826171875, 0.9440481567382812, 0.945122314453125, 0.9454274291992187, 0.9450147705078125, 0.9446143798828125, 0.9449840698242188, 0.9448417358398438, 0.94497998046875, 0.9441136474609375, 0.9453189086914062, 0.9442518920898437, 0.9458114624023437, 0.9444659423828125, 0.9440430297851562, 0.943193115234375, 0.9432238159179688, 0.9438320922851563, 0.9455195922851563, 0.9445857543945313, 0.9451468505859375, 0.9443491821289063, 0.9451049194335938, 0.9449103393554688, 0.945438720703125, 0.9439078369140625, 0.9441853637695312, 0.9438812255859375, 0.9447454833984374, 0.9449072875976563, 0.9441033935546875, 0.9460459594726562, 0.9442908325195313, 0.9438238525390625, 0.9456240844726562, 0.9443204956054687, 0.9439620971679688, 0.9440112915039063, 0.944047119140625, 0.9453885498046875, 0.94415771484375, 0.9452503051757812, 0.9443839721679688, 0.9442600708007812, 0.9446881103515625, 0.9450864868164063, 0.944437255859375, 0.9439979248046875, 0.94411572265625, 0.9444382934570312, 0.9443983154296876, 0.9445570678710937, 0.9448038330078125, 0.944584716796875, 0.9450680541992188, 0.9447341918945312, 0.944616455078125, 0.9441351928710937, 0.9442734375, 0.944194580078125, 0.9450393676757812, 0.9440450439453125, 1.96240380859375, 0.944021484375, 0.9450997924804687, 0.9445232543945312, 0.944395263671875, 0.9442621459960937, 0.9440450439453125, 0.9442600708007812, 0.9443963012695312, 0.944542724609375, 0.9447127075195313, 0.944289794921875, 0.9443440551757812, 0.9460879516601562, 0.9445314331054687, 0.944732177734375, 0.9441167602539062, 0.9434654541015625, 0.9446461181640625, 0.9446021118164063, 0.9455134887695312, 0.94460107421875, 0.944163818359375, 0.9440798950195313, 0.9460429077148438, 0.9448857421875, 0.9443890991210937, 0.944552978515625, 0.9442201538085937, 0.945523681640625, 0.9453793334960937, 0.946145263671875, 0.9447127075195313, 0.9450925903320313, 0.9457950439453126, 0.9460930786132813, 0.9446625366210938, 0.9440460815429688, 0.9442805786132813, 0.9451847534179687, 0.9439201049804687, 0.9439293212890625, 0.9453352661132812, 0.9441095581054687, 0.9442600708007812, 0.9441249389648437, 0.9455513305664063, 0.9446041870117188, 0.9449758911132813, 0.944733154296875, 0.9457428588867187, 0.9441658935546875, 0.9438597412109375, 0.9436641235351563, 0.94344189453125, 0.945201171875, 0.9446563720703125, 0.9440634765625, 0.9435924682617187, 0.9437214965820313, 0.9441249389648437, 0.9439600830078125, 0.94362109375, 1.9618406982421874, 0.9449922485351563, 0.9445714111328125, 0.946429931640625, 0.9437757568359375, 0.9441884155273438, 0.943705078125, 0.94535986328125, 0.9445396728515625, 0.9449246826171875, 0.943847412109375, 0.9441607666015625, 0.9455728759765625, 0.9447864379882812, 0.9441095581054687, 0.9441699829101563, 0.9446051635742188, 0.9435985717773437, 0.9450465087890625, 0.9443768310546875, 0.9445549926757812, 0.944733154296875, 0.9450895385742187, 0.9451468505859375, 0.945554443359375, 0.9442498779296875, 0.9442662353515625, 0.9444259643554688, 0.945138671875, 0.9445048217773437, 0.9450762329101563, 0.944775146484375, 0.9441412963867187, 0.9443184814453125, 0.945238037109375, 0.9445673217773437, 0.9456680908203124, 0.9446410522460937, 0.9445181274414063, 0.9456373901367188, 0.9438515014648438, 0.9446522827148438, 0.9439600830078125, 0.944447509765625, 0.9449236450195313, 0.9451837158203125, 0.944015380859375, 0.944595947265625, 0.9445867309570313, 0.944869384765625, 0.9447772216796875, 0.9439764404296875, 0.9448857421875, 0.9445509033203126, 0.9448018188476562, 0.9448990478515625, 0.94510693359375, 0.944690185546875, 0.9443369140625, 0.9444546508789062, 0.9454674072265625, 0.9442078857421875, 0.9450659790039062, 1.9620792236328124, 0.9442550048828126, 0.9450751953125, 0.9438463745117187, 0.9439702758789063, 0.944837646484375, 0.9442098999023437, 0.9442938842773437, 0.9439365234375, 0.94470556640625, 0.9441126098632813, 0.944058349609375, 0.9444188232421875, 0.9445037841796875, 0.943837158203125, 0.9439406127929687, 0.9434613647460938, 0.9443983154296876, 0.944353271484375, 0.9448919067382813, 0.9447465209960938, 0.9449727783203125, 0.9444126586914062, 0.9454131469726562, 0.945016845703125, 0.9439498291015626, 0.9441412963867187, 0.9441597290039062, 0.9443522338867187, 0.9438381958007812, 0.9442887573242188, 0.944189453125, 0.9438013305664062, 0.9440122680664063, 0.9451192016601563, 0.9441802368164063, 0.944279541015625, 0.9441546020507813, 0.944953369140625, 0.9451735229492187, 0.9439866943359375, 0.9443461303710937, 0.9438648071289063, 0.9442754516601563, 0.9446963500976563, 0.944337890625, 0.9436928100585937, 0.9441341552734375, 0.9442744140625, 0.9443624877929687, 0.9439539184570312, 0.9444546508789062, 0.9440614624023438, 0.9443717041015625, 0.9440122680664063, 0.9457305297851563, 0.9445120239257813, 0.9440767822265625, 0.9440235595703125, 0.944637939453125, 0.9447669677734375, 0.9439303588867187, 0.9450260620117188, 1.96250830078125, 0.945138671875, 0.94508544921875, 0.9441658935546875, 0.944089111328125, 0.9439273071289063, 0.944532470703125, 0.9449574584960938, 0.9450444946289063, 0.9448878173828125, 0.9445734252929687, 0.9452164916992187, 0.9463602905273437, 0.9454663696289063, 0.9445283813476563, 0.944996337890625, 0.9449359130859375, 0.9434193725585938, 0.9439549560546875, 0.9449943237304688, 0.9439518432617188, 0.9447526245117187, 0.94417919921875, 0.9459722290039062, 0.943705078125, 0.9437808837890626, 0.9436303100585938, 0.945122314453125, 0.9443286743164062, 0.9444597778320313, 0.9451847534179687, 0.944753662109375, 0.9440460815429688, 0.9454346313476563, 0.9441884155273438, 0.9441730346679688, 0.9445990600585937, 0.9442191162109375, 0.9447506103515625, 0.94445361328125, 0.9448314819335938, 0.9444966430664062, 0.9454448852539062, 0.9437501220703125, 0.9454315795898437, 0.943909912109375, 0.9438177490234375, 0.9439487915039062, 0.944637939453125, 0.944753662109375, 0.9441044311523438, 0.9440993041992187, 0.9442928466796875, 0.9440347900390625, 0.9455585327148438, 0.9453936767578125, 0.9444710693359375, 0.9441751098632812, 0.944163818359375, 0.9446604614257812, 0.9442406616210938, 0.9449768676757813, 0.9444280395507813, 1.9621160888671876, 0.9457469482421875, 0.94449560546875, 0.9444403076171874, 0.9441771240234375, 0.9445068969726562, 0.9441464233398438, 0.9440808715820312, 0.9447423706054687, 0.9440921630859375, 0.9448734741210938, 0.944405517578125, 0.945375244140625, 0.944026611328125, 0.9439928588867188, 0.9442150268554688, 0.9443993530273438, 0.9442857055664062, 0.9451458740234375, 0.9446522827148438, 0.944701416015625, 0.9448027954101562, 0.9459158935546875, 0.9446707153320313, 0.9441566772460938, 0.9440133056640625, 0.9440880737304688, 0.944232421875, 0.9440133056640625, 0.9441699829101563, 0.9440634765625, 0.9437409057617188, 0.943952880859375, 0.944626708984375, 0.944152587890625, 0.9444495239257813, 0.9439201049804687, 0.945048583984375, 0.9437726440429688, 0.9444515991210938, 0.94368359375, 0.9439324340820312, 0.9438914794921875, 0.9448427734375, 0.9442590942382812, 0.9434368286132813, 0.9441812744140625, 0.9437726440429688, 0.9446533203125, 0.9439723510742187, 0.9444556884765625, 0.9440726928710937, 0.9439303588867187, 0.94407373046875, 0.9452779541015625, 0.9441228637695313, 0.9435852661132812, 0.9436907348632813, 0.943984619140625, 0.944078857421875, 0.9446338500976562, 0.9449257202148438, 0.9452236938476563, 1.963953125, 0.9454633178710937, 0.9447341918945312, 0.9460571899414062, 0.94517041015625, 0.9456434936523438, 0.9455032348632812, 0.9461248168945312, 0.9460029296875, 0.9438279418945312, 0.9447096557617187, 0.94533837890625, 0.94419970703125, 0.943636474609375, 0.943752197265625, 0.9444884643554687, 0.9433948364257813, 0.9433794555664062, 0.9446205444335938, 0.9441167602539062, 0.9440307006835937, 0.9440122680664063, 0.9449257202148438, 0.9440286865234375, 0.943515625, 0.9437122802734375, 0.9445457763671875, 0.9440726928710937, 0.9442130126953125, 0.9443328247070313, 0.9440071411132812, 0.9451980590820312, 0.9459169311523438, 0.944890869140625, 0.9443102416992187, 0.9445673217773437, 0.9445437622070313, 0.9452554321289063, 0.9446389770507813, 0.9451735229492187, 0.9450977172851562, 0.944343017578125, 0.9447926025390625, 0.9471918334960937, 0.9450096435546875, 0.9446543579101563, 0.9449779052734375, 0.9458626708984375, 0.9440061645507812, 0.9450895385742187, 0.945090576171875, 0.9444638671875, 0.9445816040039062, 0.944679931640625, 0.9448161010742188, 0.944236572265625, 0.9442642211914063, 0.9439815673828125, 0.9447567138671875, 0.944205810546875, 0.9459619750976562, 0.9442539672851562, 0.9440655517578125]",tokens/s,1.0426884477773943,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-30b,huggyllama/llama-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,6416.572416,20902.838272,0.0,20256.391168,19273.842688,s,10,27.008011230468746,2.700801123046875,0.0043850724799974665,2.700565551757813,2.7060529296875,2.7063339599609373,2.7065587841796876,"[2.703509521484375, 2.7029794921875, 2.69485400390625, 2.69747705078125, 2.696227783203125, 2.69636279296875, 2.698151611328125, 2.705843505859375, 2.706614990234375, 2.705990478515625]",tokens/s,94.7866904436106,kWh,3.1842278407679666e-05,1.7448346880028112e-05,0.00015081939843319958,0.00020011002372090735,tokens/kWh,1279296.2353402255,MB,6420.922368,20902.838272,0.0,20256.391168,19862.693376,s,10,1586.4640625,158.64640624999998,0.022306639855444715,158.64365625,158.67640156250002,158.68144296875,158.68547609375,"[158.63340625, 158.605671875, 158.67528125, 158.686484375, 158.659984375, 158.625515625, 158.642296875, 158.6395, 158.65090625, 158.645015625]",tokens/s,0.3971095311211943,kWh,0.0018735859500534004,0.0010268917923910701,0.0086674246283786,0.011567902370823072,tokens/kWh,5446.104054171531,,s,629,1608.2408713378911,2.556821735036392,0.3208393016972219,2.518036376953125,2.5194736328125003,2.520285693359375,5.21544693359375,"[2.518319091796875, 2.519310302734375, 2.51766064453125, 2.517339111328125, 2.51743017578125, 2.51803955078125, 2.517208984375, 2.517015625, 2.516982666015625, 2.5182587890625, 2.51766064453125, 2.517487548828125, 2.5175009765625, 2.51837646484375, 2.5176474609375, 2.517837890625, 2.517665771484375, 2.51789208984375, 2.517560302734375, 2.517328857421875, 2.517376953125, 2.51846044921875, 2.517990478515625, 2.517222412109375, 2.517308349609375, 2.518451171875, 2.5171455078125, 2.518161376953125, 2.51881884765625, 2.518177734375, 2.517626953125, 2.5173310546875, 2.51724072265625, 2.517538818359375, 2.51719384765625, 2.5173740234375, 2.517359619140625, 2.518120361328125, 2.517709716796875, 2.51768310546875, 2.51764013671875, 2.51835400390625, 2.51860791015625, 2.51725927734375, 2.518401123046875, 2.5179462890625, 2.518530029296875, 2.51753466796875, 2.517834716796875, 2.518044677734375, 2.517002197265625, 2.5178828125, 2.51770361328125, 2.5193173828125, 2.519462890625, 2.51964306640625, 2.51835595703125, 2.51885986328125, 2.51799560546875, 2.51936767578125, 2.519690185546875, 2.5200732421875, 5.22134814453125, 2.517864501953125, 2.51825244140625, 2.51934716796875, 2.5177138671875, 2.5171435546875, 2.517161865234375, 2.51721826171875, 2.51709326171875, 2.517622802734375, 2.518835205078125, 2.51759912109375, 2.517168212890625, 2.517455810546875, 2.518162353515625, 2.517591064453125, 2.51749365234375, 2.517919677734375, 2.517905517578125, 2.51747216796875, 2.51761669921875, 2.517444580078125, 2.51732373046875, 2.516890625, 2.517098388671875, 2.517686279296875, 2.517358642578125, 2.516806640625, 2.516729736328125, 2.51791259765625, 2.517181396484375, 2.516504638671875, 2.5171435546875, 2.517117919921875, 2.517271484375, 2.516725830078125, 2.5167197265625, 2.5176513671875, 2.517125, 2.51666015625, 2.51749365234375, 2.518317138671875, 2.5185751953125, 2.51751025390625, 2.517790771484375, 2.517456787109375, 2.5185126953125, 2.517084228515625, 2.517465087890625, 2.51748974609375, 2.517200927734375, 2.51684033203125, 2.51730126953125, 2.518183837890625, 2.518331298828125, 2.51782861328125, 2.51742919921875, 2.51755615234375, 2.517507080078125, 2.517507080078125, 2.517161865234375, 2.517621826171875, 2.517966796875, 5.21453759765625, 2.5204541015625, 2.52109814453125, 2.519462890625, 2.518677490234375, 2.519301025390625, 2.518960205078125, 2.516992919921875, 2.517800048828125, 2.517873779296875, 2.51792578125, 2.517770263671875, 2.5189140625, 2.517824462890625, 2.517718994140625, 2.518151123046875, 2.51847998046875, 2.518257568359375, 2.518415283203125, 2.51804052734375, 2.518096923828125, 2.5183427734375, 2.518391845703125, 2.517865478515625, 2.519243896484375, 2.51814501953125, 2.518434814453125, 2.518415283203125, 2.518769775390625, 2.519129150390625, 2.518907958984375, 2.519370849609375, 2.5190185546875, 2.518751220703125, 2.52101416015625, 2.518179931640625, 2.519162841796875, 2.518454345703125, 2.519679931640625, 2.5194833984375, 2.5204951171875, 2.518433837890625, 2.51841650390625, 2.5182412109375, 2.519734375, 2.519425048828125, 2.518444091796875, 2.51785205078125, 2.518681640625, 2.518297607421875, 2.518287353515625, 2.51755517578125, 2.519033935546875, 2.518720458984375, 2.5197587890625, 2.519648193359375, 2.518752197265625, 2.51768212890625, 2.51812255859375, 2.51717626953125, 2.51780908203125, 2.517684326171875, 2.5175439453125, 5.2187802734375, 2.519068603515625, 2.518744140625, 2.51738525390625, 2.518098876953125, 2.51873681640625, 2.519017578125, 2.51888427734375, 2.519688232421875, 2.52031396484375, 2.518892578125, 2.519817138671875, 2.5199248046875, 2.51848388671875, 2.518221923828125, 2.517916748046875, 2.519314453125, 2.518415283203125, 2.517685302734375, 2.51694287109375, 2.51803857421875, 2.52027587890625, 2.520306640625, 2.518614013671875, 2.520572998046875, 2.517498779296875, 2.517350341796875, 2.5175869140625, 2.51862841796875, 2.517562255859375, 2.51831201171875, 2.51706982421875, 2.518307861328125, 2.517770263671875, 2.518127685546875, 2.517791748046875, 2.51879833984375, 2.51784912109375, 2.518008056640625, 2.5185615234375, 2.518908935546875, 2.5175224609375, 2.517482421875, 2.517506103515625, 2.5204541015625, 2.518011962890625, 2.521114501953125, 2.5210244140625, 2.520853515625, 2.52010693359375, 2.52200244140625, 2.52052880859375, 2.52000048828125, 2.51896728515625, 2.519782470703125, 2.51968603515625, 2.51883935546875, 2.51808251953125, 2.51833349609375, 2.517741455078125, 2.51945068359375, 2.518738037109375, 2.51962060546875, 5.21556396484375, 2.51751025390625, 2.517732421875, 2.51755712890625, 2.51782666015625, 2.51806005859375, 2.518541259765625, 2.517211181640625, 2.51755322265625, 2.516893798828125, 2.517453857421875, 2.517432373046875, 2.517993408203125, 2.517221435546875, 2.517614501953125, 2.518161376953125, 2.5184521484375, 2.518592529296875, 2.517885986328125, 2.517688232421875, 2.51909326171875, 2.51841015625, 2.518773681640625, 2.518697998046875, 2.51839892578125, 2.518539306640625, 2.51853515625, 2.51841845703125, 2.51909326171875, 2.5179013671875, 2.5176484375, 2.5175888671875, 2.51825146484375, 2.518151123046875, 2.51841015625, 2.518299560546875, 2.518412353515625, 2.518192138671875, 2.5184072265625, 2.518162353515625, 2.519458740234375, 2.518036376953125, 2.517877685546875, 2.518980712890625, 2.520924072265625, 2.518964111328125, 2.520530029296875, 2.520292236328125, 2.5202412109375, 2.519448486328125, 2.519780517578125, 2.519730224609375, 2.5202646484375, 2.5176298828125, 2.51782763671875, 2.51780908203125, 2.51826171875, 2.51890185546875, 2.5179423828125, 2.518106201171875, 2.518285400390625, 2.5179658203125, 2.518643798828125, 5.21514599609375, 2.51869384765625, 2.518576171875, 2.51751318359375, 2.5187890625, 2.51831298828125, 2.51842138671875, 2.518813720703125, 2.51734619140625, 2.51774267578125, 2.51757568359375, 2.51732177734375, 2.51702783203125, 2.516744140625, 2.5167646484375, 2.517622802734375, 2.516887451171875, 2.5171630859375, 2.517233642578125, 2.517984375, 2.517812255859375, 2.517107666015625, 2.517927978515625, 2.5184912109375, 2.51740478515625, 2.517085205078125, 2.517383056640625, 2.518287353515625, 2.518308837890625, 2.51829248046875, 2.517562255859375, 2.51860888671875, 2.517875732421875, 2.517098388671875, 2.517589111328125, 2.518604736328125, 2.517823486328125, 2.517308349609375, 2.518150146484375, 2.518289306640625, 2.51751220703125, 2.51789208984375, 2.518724609375, 2.5184931640625, 2.5175673828125, 2.51732373046875, 2.517525390625, 2.5192119140625, 2.51820849609375, 2.519125, 2.518769775390625, 2.5183896484375, 2.5181767578125, 2.51797705078125, 2.51743017578125, 2.517621826171875, 2.517073974609375, 2.517191650390625, 2.51754296875, 2.517603271484375, 2.517738525390625, 2.51803857421875, 2.518088623046875, 5.21595068359375, 2.518022216796875, 2.518259765625, 2.517396484375, 2.517515380859375, 2.5171640625, 2.51678515625, 2.51755517578125, 2.51660693359375, 2.51696337890625, 2.5178798828125, 2.51924169921875, 2.518275146484375, 2.516697021484375, 2.51698486328125, 2.517755859375, 2.51724072265625, 2.518010986328125, 2.517244873046875, 2.5173779296875, 2.517291015625, 2.517590087890625, 2.518003662109375, 2.518558837890625, 2.519623779296875, 2.519237548828125, 2.520456298828125, 2.51768115234375, 2.518234130859375, 2.519458740234375, 2.52040283203125, 2.519605224609375, 2.518929443359375, 2.520151123046875, 2.51915869140625, 2.519528564453125, 2.51947119140625, 2.5201142578125, 2.519734375, 2.518724609375, 2.51780517578125, 2.51755224609375, 2.51803857421875, 2.5180732421875, 2.517747802734375, 2.517359619140625, 2.518424560546875, 2.51807421875, 2.518046630859375, 2.51700439453125, 2.51778759765625, 2.517309326171875, 2.51774365234375, 2.51673291015625, 2.517708740234375, 2.517607421875, 2.518066162109375, 2.51755517578125, 2.51816845703125, 2.518012939453125, 2.518370361328125, 2.51797412109375, 2.51844189453125, 5.22497119140625, 2.517222412109375, 2.51845947265625, 2.51675537109375, 2.517399658203125, 2.517277587890625, 2.518365234375, 2.517622802734375, 2.5181572265625, 2.517368896484375, 2.51894580078125, 2.51837548828125, 2.51816845703125, 2.517992431640625, 2.517802001953125, 2.5172060546875, 2.5187685546875, 2.517329833984375, 2.519754638671875, 2.5192744140625, 2.51748046875, 2.516811767578125, 2.517927001953125, 2.51881884765625, 2.5180302734375, 2.516874267578125, 2.518129638671875, 2.517221435546875, 2.517310546875, 2.517367919921875, 2.517562255859375, 2.516991943359375, 2.518096923828125, 2.516927490234375, 2.5179677734375, 2.517698486328125, 2.51718359375, 2.517350341796875, 2.51825244140625, 2.517243896484375, 2.5187900390625, 2.52037109375, 2.519783447265625, 2.51812255859375, 2.51873291015625, 2.5181962890625, 2.5185771484375, 2.518066162109375, 2.518571044921875, 2.51795361328125, 2.51880029296875, 2.5177548828125, 2.518213623046875, 2.51785009765625, 2.519160888671875, 2.518510498046875, 2.51831201171875, 2.51875830078125, 2.51904931640625, 2.51761865234375, 2.5184912109375, 2.51787158203125, 2.519330810546875, 5.22598291015625, 2.518825927734375, 2.518971435546875, 2.51806103515625, 2.518127685546875, 2.518425537109375, 2.51801806640625, 2.516579345703125, 2.51692041015625, 2.517222412109375, 2.517351318359375, 2.517392333984375, 2.51871630859375, 2.518453369140625, 2.518960205078125, 2.51763720703125, 2.517210205078125, 2.517708740234375, 2.517718017578125, 2.517530517578125, 2.51915478515625, 2.518562744140625, 2.51778759765625, 2.517306396484375, 2.5181123046875, 2.518414306640625, 2.520138671875, 2.517626953125, 2.518436767578125, 2.518436767578125, 2.518345703125, 2.517001220703125, 2.51755615234375, 2.518391845703125, 2.518742919921875, 2.51820751953125, 2.517982177734375, 2.52077978515625, 2.5205986328125, 2.51875634765625, 2.518046630859375, 2.5188701171875, 2.5200302734375, 2.517751708984375, 2.51822998046875, 2.51795458984375, 2.518422607421875, 2.520731689453125, 2.5178388671875, 2.518604736328125, 2.518803466796875, 2.517551025390625, 2.517665771484375, 2.518455322265625, 2.5181337890625, 2.516989013671875, 2.517697509765625, 2.518129638671875, 2.517895263671875, 2.517632080078125, 2.51766162109375, 2.518906982421875, 2.519458740234375, 5.22549267578125, 2.51939111328125, 2.518699951171875, 2.51726025390625, 2.517559326171875, 2.51808349609375, 2.5171669921875, 2.51778857421875, 2.517769287109375, 2.5189755859375, 2.520603759765625, 2.517000244140625, 2.5173525390625, 2.517968994140625, 2.517775390625, 2.517918701171875, 2.517655517578125, 2.51848193359375, 2.517267333984375, 2.517482421875, 2.51776708984375, 2.5178828125, 2.5175009765625, 2.517536865234375, 2.518390869140625, 2.51835498046875, 2.5190810546875, 2.519309326171875, 2.5178818359375, 2.51835791015625, 2.51839697265625, 2.51793505859375, 2.517909423828125, 2.517781494140625, 2.517467041015625, 2.517106689453125, 2.51734228515625, 2.518115234375, 2.518010986328125, 2.517520263671875, 2.51814404296875, 2.517705810546875, 2.517486572265625, 2.517609375, 2.51786865234375, 2.518467529296875, 2.51749169921875, 2.517338134765625, 2.51806005859375, 2.5187646484375, 2.518148193359375, 2.51829248046875, 2.51822705078125, 2.518614990234375, 2.518023193359375, 2.517477294921875, 2.51810107421875, 2.518518798828125, 2.517971923828125, 2.517927978515625, 2.518328369140625, 2.5179638671875, 2.51816455078125]",tokens/s,0.39111056758353424,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-1.3B,,cuda,0,42,,,,,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,MB,1562.181632,1957.167104,0.0,1310.72,1163.955712,s,10,1.3245970916748049,0.13245970916748048,0.001266998397567483,0.13200260162353517,0.1341699493408203,0.13443305816650392,0.1346435452270508,"[0.1346961669921875, 0.1341114807128906, 0.1312022705078125, 0.13115029907226564, 0.13112367248535156, 0.1315875244140625, 0.13163551330566406, 0.13236968994140624, 0.13365353393554688, 0.13306694030761718]",tokens/s,1932.6631593031557,kWh,1.5487117942793545e-06,8.486256414471426e-07,6.508118482104666e-06,8.905455917831163e-06,tokens/kWh,28746422.683134936,MB,1562.181632,1959.264256,0.0,1312.817152,1232.77568,s,10,76.92137255859376,7.692137255859374,0.017487914910414803,7.693824951171875,7.702772509765625,7.711682641601563,7.718810747070313,"[7.69504345703125, 7.69082470703125, 7.6926064453125, 7.6866689453125, 7.7205927734375, 7.69639892578125, 7.6467568359375, 7.70079248046875, 7.69208056640625, 7.699607421875]",tokens/s,8.190181467707257,kWh,9.084797721340027e-05,4.979003748630931e-05,0.0003722497123017,0.0005128877270014096,tokens/kWh,122833.9004489902,,s,629,77.98684770965575,0.12398544945891218,0.01575529620495015,0.121744384765625,0.12330782623291016,0.12368689422607422,0.2534359008789062,"[0.12507750701904297, 0.12424604797363281, 0.1234441909790039, 0.12341862487792969, 0.12180786895751954, 0.1224120330810547, 0.12155903625488282, 0.12088832092285157, 0.12079001617431641, 0.12080332946777343, 0.1209518051147461, 0.12134912109375, 0.12099378967285156, 0.12220416259765625, 0.12147408294677735, 0.12154876708984375, 0.12117708587646485, 0.12111360168457032, 0.12086067199707032, 0.12105318450927735, 0.12099174499511718, 0.12216934204101562, 0.12297727966308594, 0.12166143798828125, 0.12153446197509765, 0.12155801391601563, 0.12161023712158203, 0.12131839752197265, 0.12115455627441406, 0.12147609710693359, 0.12320972442626953, 0.12328857421875, 0.12294041442871094, 0.1213460464477539, 0.12115360260009765, 0.12151289367675781, 0.12153343963623046, 0.12244172668457032, 0.12324454498291015, 0.12321791839599609, 0.1221396484375, 0.123504638671875, 0.12190930938720704, 0.12093536376953125, 0.12353228759765625, 0.1231247329711914, 0.12405248260498047, 0.12286566162109375, 0.12216831970214843, 0.1221580810546875, 0.12220928192138672, 0.12256153869628907, 0.12320460510253907, 0.12468940734863282, 0.12308889770507812, 0.1220997085571289, 0.12128972625732422, 0.12146380615234376, 0.12163587188720704, 0.12112380981445313, 0.12155289459228516, 0.12149759674072266, 0.2558975982666016, 0.12277452850341797, 0.12251545715332031, 0.12256665802001954, 0.12305101013183593, 0.12229837036132812, 0.1212968978881836, 0.1239582748413086, 0.12347596740722656, 0.12176076507568359, 0.12155289459228516, 0.12141977691650391, 0.1213685760498047, 0.1208463363647461, 0.12073062133789063, 0.1210040283203125, 0.12351385498046875, 0.12159487915039062, 0.12144640350341797, 0.12170649719238281, 0.12249292755126953, 0.12232396697998046, 0.12123442840576172, 0.12141567993164062, 0.12308889770507812, 0.12184268951416016, 0.1215098876953125, 0.12254208374023437, 0.12142387390136719, 0.12173619079589844, 0.12151910400390625, 0.12153446197509765, 0.12306739044189453, 0.12236492919921875, 0.12201881408691406, 0.12173824310302735, 0.12155699157714844, 0.12209356689453126, 0.12139315032958985, 0.12139520263671875, 0.12346572875976562, 0.12301107025146485, 0.12293836975097656, 0.12192870330810547, 0.12156313323974609, 0.12141056060791015, 0.12382415771484374, 0.12120060729980468, 0.12172902679443359, 0.12317593383789062, 0.12274995422363282, 0.12246323394775391, 0.12149657440185548, 0.12139110565185547, 0.12291788482666016, 0.12123340606689453, 0.12196150207519531, 0.12387631988525391, 0.12276838684082031, 0.12148223876953125, 0.12265267181396484, 0.1214044189453125, 0.12125389099121094, 0.25443635559082034, 0.12313497924804688, 0.12153446197509765, 0.12169830322265625, 0.12147097778320312, 0.12127334594726563, 0.12249088287353516, 0.1221396484375, 0.12196044921875, 0.12192460632324219, 0.12144742584228516, 0.1228226547241211, 0.12275917053222657, 0.12112697601318359, 0.12176787567138672, 0.1217228775024414, 0.12139424133300782, 0.12269356536865235, 0.1223720932006836, 0.12153343963623046, 0.1215478057861328, 0.12162351989746094, 0.12261682891845703, 0.12271308898925781, 0.1215098876953125, 0.12233932495117188, 0.12170342254638672, 0.121238525390625, 0.12113817596435547, 0.12111769866943359, 0.12136653137207032, 0.12165529632568359, 0.1218897933959961, 0.121744384765625, 0.12428594970703125, 0.12338790130615235, 0.12270489501953125, 0.1215129623413086, 0.12190310668945313, 0.12194918060302734, 0.12152114868164063, 0.12212838745117187, 0.12310630035400391, 0.12293427276611328, 0.12179046630859375, 0.12117298889160157, 0.12185906982421875, 0.12301107025146485, 0.1216522216796875, 0.120953857421875, 0.12247654724121093, 0.12268236541748047, 0.12308684539794922, 0.12277657318115234, 0.12169420623779297, 0.12158668518066407, 0.12113510131835938, 0.1211361312866211, 0.1227540512084961, 0.12328550720214844, 0.12320972442626953, 0.12324147033691406, 0.12298242950439453, 0.25302217102050784, 0.1215467529296875, 0.12238642883300781, 0.12331622314453125, 0.12284416198730469, 0.12259225463867188, 0.1225902099609375, 0.12293222045898437, 0.12212531280517579, 0.12088832092285157, 0.12144127655029296, 0.12321894073486328, 0.12279398345947265, 0.12161740875244141, 0.12199628448486328, 0.12130611419677734, 0.12155699157714844, 0.12218367767333985, 0.12152627563476562, 0.12282061004638672, 0.12332236480712891, 0.12172697448730468, 0.1214730224609375, 0.12131743621826171, 0.12206380462646485, 0.12272434997558594, 0.12205158233642578, 0.12277043151855468, 0.12318822479248047, 0.12324352264404297, 0.12150886535644531, 0.12119551849365234, 0.12129280090332031, 0.12111567687988281, 0.1214658203125, 0.12191129302978515, 0.12111974334716796, 0.1216358413696289, 0.12116377258300781, 0.12117708587646485, 0.12161539459228515, 0.1231072998046875, 0.12339097595214844, 0.12407295989990234, 0.12407295989990234, 0.12135116577148437, 0.12155903625488282, 0.12125183868408203, 0.12111154937744141, 0.1215272979736328, 0.12139315032958985, 0.12157440185546875, 0.12285030364990235, 0.12157644653320313, 0.1217976303100586, 0.12137881469726562, 0.12175360107421875, 0.12123750305175782, 0.12148838043212891, 0.12119859313964844, 0.12210585784912109, 0.12211199951171875, 0.12212940979003906, 0.2530303955078125, 0.12125593566894531, 0.12254003143310546, 0.1212252197265625, 0.12286156463623046, 0.12248985290527344, 0.12266598510742187, 0.12236185455322265, 0.12159385681152343, 0.1212590103149414, 0.12165631866455077, 0.12115660858154297, 0.12235878753662109, 0.12386713409423829, 0.1217802276611328, 0.12304691314697265, 0.12239974212646484, 0.12245503997802734, 0.12413849639892578, 0.12299366760253906, 0.12299263763427734, 0.12301107025146485, 0.12142489624023438, 0.12230963134765625, 0.12332236480712891, 0.12175052642822265, 0.12143718719482421, 0.12149247741699219, 0.1212938232421875, 0.12226150512695312, 0.12151193237304687, 0.12162457275390624, 0.12326092529296875, 0.12302438354492187, 0.12452352142333985, 0.12339405059814453, 0.12212735748291016, 0.12276131439208984, 0.12299766540527343, 0.1216911392211914, 0.12096409606933593, 0.12123033905029297, 0.12140953826904297, 0.12123238372802735, 0.12380467224121093, 0.12290969848632813, 0.12300806427001953, 0.12272940826416015, 0.12320665740966796, 0.12299878692626953, 0.12275917053222657, 0.12293119812011719, 0.12306432342529297, 0.12317798614501953, 0.12322406768798828, 0.12217958068847656, 0.1228267822265625, 0.12593353271484375, 0.1234872283935547, 0.12296601867675781, 0.12340940856933594, 0.12347187042236328, 0.12346470642089843, 0.25439436340332033, 0.12301414489746093, 0.1228062744140625, 0.1231431655883789, 0.12312268829345703, 0.12464742279052735, 0.12372991943359375, 0.1234708480834961, 0.12335411071777344, 0.12233523559570313, 0.12217958068847656, 0.12264959716796875, 0.12329881286621094, 0.12281549072265625, 0.12341248321533203, 0.123109375, 0.12312268829345703, 0.12331110382080078, 0.12178943634033203, 0.12153343963623046, 0.12128153228759765, 0.12127027130126954, 0.12139008331298828, 0.12159487915039062, 0.12141875457763672, 0.12109516906738281, 0.12095590209960938, 0.12107469177246094, 0.12224205017089844, 0.1224263687133789, 0.12177005004882813, 0.12150163269042968, 0.12146585845947265, 0.12140953826904297, 0.12113005065917969, 0.12179347229003906, 0.12241817474365234, 0.12146585845947265, 0.1236316146850586, 0.12164096069335938, 0.12152934265136718, 0.12139622497558594, 0.12146688079833984, 0.12121600341796875, 0.12141567993164062, 0.12133478546142579, 0.12168498992919922, 0.1214167709350586, 0.12150675201416015, 0.12333977508544922, 0.12334899139404297, 0.12139826965332032, 0.12266291046142579, 0.12162457275390624, 0.1213675537109375, 0.12148838043212891, 0.123219970703125, 0.12320358276367188, 0.12155494689941407, 0.12110848236083985, 0.12138294219970704, 0.12153238677978516, 0.12358963012695312, 0.25359359741210935, 0.12145458984375, 0.12112588500976562, 0.12119039916992187, 0.12124671936035156, 0.12149964904785156, 0.12119961547851563, 0.12119245147705078, 0.12146688079833984, 0.12120269012451172, 0.12097740936279297, 0.1208616943359375, 0.12124671936035156, 0.12146176147460938, 0.12102349090576171, 0.1214505615234375, 0.12145657348632813, 0.12126924896240235, 0.12115869140625, 0.12115657806396485, 0.12137574768066406, 0.12156928253173828, 0.12129894256591797, 0.1242234878540039, 0.12195740509033202, 0.12128765106201173, 0.12127436828613282, 0.12119142150878906, 0.12085968017578125, 0.12119548797607421, 0.12113203430175781, 0.12153139495849609, 0.12129587554931641, 0.12157234954833984, 0.12127641296386718, 0.12110438537597656, 0.12128870391845703, 0.12145970916748047, 0.12127846527099609, 0.12160921478271484, 0.12154879760742188, 0.1213306884765625, 0.12123238372802735, 0.12116070556640625, 0.12110643005371094, 0.12110031890869141, 0.12115042877197266, 0.12125593566894531, 0.12130406188964844, 0.12108185577392579, 0.12092108917236329, 0.12128562927246093, 0.12140748596191406, 0.12148838043212891, 0.12150784301757812, 0.12131737518310547, 0.12162969970703125, 0.12153958129882812, 0.122281982421875, 0.12196249389648438, 0.12154879760742188, 0.1211883544921875, 0.12114022064208985, 0.25422848510742185, 0.12144435119628906, 0.12121600341796875, 0.12331622314453125, 0.12173926544189453, 0.12114329528808594, 0.1231800308227539, 0.1233438720703125, 0.1232721939086914, 0.12304691314697265, 0.12367155456542969, 0.12309913635253907, 0.12304998779296875, 0.12310630035400391, 0.12295680236816406, 0.12294348907470704, 0.12386918640136718, 0.12152320098876954, 0.12160205078125, 0.121059326171875, 0.12094258880615234, 0.12096717071533203, 0.12145868682861329, 0.12323331451416016, 0.12289020538330078, 0.12314832305908203, 0.1236971206665039, 0.12315955352783203, 0.12311039733886718, 0.12137471771240234, 0.12235366058349609, 0.1222451171875, 0.1222973403930664, 0.12167884826660157, 0.12279296112060546, 0.12148735809326172, 0.12146995544433593, 0.12277760314941406, 0.12156723022460937, 0.1216358413696289, 0.12169728088378906, 0.12312166595458984, 0.12145664215087891, 0.12275507354736329, 0.1232353286743164, 0.12311347198486328, 0.123072509765625, 0.1227171859741211, 0.12111154937744141, 0.12276019287109376, 0.12255232238769531, 0.12235059356689452, 0.12264141082763672, 0.1211514892578125, 0.12123545837402344, 0.12166246032714843, 0.12119347381591797, 0.12130201721191407, 0.12149964904785156, 0.12166246032714843, 0.12141875457763672, 0.12106034851074218, 0.12132147216796875, 0.25745306396484374, 0.12312064361572266, 0.12307865905761718, 0.12312166595458984, 0.12121913909912109, 0.12116063690185547, 0.1212774429321289, 0.12236185455322265, 0.1215498275756836, 0.12132454681396485, 0.12093132781982421, 0.12260454559326171, 0.12201676940917969, 0.12116480255126953, 0.12119449615478516, 0.121206787109375, 0.12122112274169922, 0.12207103729248046, 0.12143001556396485, 0.12134400177001953, 0.12148531341552735, 0.12378009796142578, 0.12321279907226562, 0.12303257751464844, 0.12391117095947266, 0.12308889770507812, 0.12307762908935548, 0.12230758666992188, 0.12212636566162109, 0.12145769500732422, 0.12122207641601562, 0.12131123352050781, 0.12108799743652343, 0.1211156463623047, 0.12251033782958984, 0.12306432342529297, 0.12318310546875, 0.12159795379638672, 0.12140850830078125, 0.12139520263671875, 0.12131839752197265, 0.12117196655273438, 0.12120371246337891, 0.12156723022460937, 0.12148941040039063, 0.12145664215087891, 0.12146892547607421, 0.1215447006225586, 0.12250316619873047, 0.12295782470703125, 0.12217036437988281, 0.12270387268066406, 0.12305919647216797, 0.12331520080566406, 0.12305203247070312, 0.12250521850585938, 0.12303667449951172, 0.12276838684082031, 0.12293427276611328, 0.12293427276611328, 0.12159283447265624, 0.12137062072753907, 0.12141670227050781, 0.2548654022216797, 0.1212416000366211, 0.12151193237304687, 0.12308480072021484, 0.12140338897705077, 0.12150377655029297, 0.12124156951904297, 0.121275390625, 0.12150374603271484, 0.12148838043212891, 0.12146482849121094, 0.12227788543701172, 0.12289740753173828, 0.12292819213867187, 0.12136339569091797, 0.1211822052001953, 0.12195027160644531, 0.12174432373046876, 0.12153241729736328, 0.12099174499511718, 0.12128463745117188, 0.12138390350341798, 0.121385986328125, 0.12258918762207031, 0.1230161895751953, 0.12225638580322265, 0.12275917053222657, 0.12151602935791016, 0.12140850830078125, 0.12134809875488281, 0.12176076507568359, 0.1217791976928711, 0.12272946929931641, 0.12169420623779297, 0.12219187164306641, 0.12145561981201172, 0.12164096069335938, 0.12145254516601563, 0.12175360107421875, 0.12436787414550782, 0.1233602523803711, 0.12332339477539063, 0.1232701416015625, 0.12218675231933594, 0.1233039321899414, 0.12280217742919922, 0.12283596801757812, 0.1221048355102539, 0.12304793548583984, 0.1227509765625, 0.12293023681640625, 0.12202182769775391, 0.12274483489990234, 0.1233070068359375, 0.12290560150146485, 0.12302130889892578, 0.1229496307373047, 0.12324864196777344, 0.12319129943847656, 0.12199935913085938, 0.12175363159179688, 0.12325577545166015, 0.12313600158691407]",tokens/s,8.06546255519598,,,,,,main,False,False -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-8B,meta-llama/Meta-Llama-3-8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1612.562432,7598.505984,0.0,6952.05888,6314.304512,s,10,6.256621520996093,0.6256621520996093,0.00177274849590911,0.6261759033203125,0.6270674194335938,0.6281453430175781,0.6290076818847656,"[0.6292232666015625, 0.6262135009765625, 0.6265690307617188, 0.6241492919921875, 0.6230667114257813, 0.6232349853515625, 0.624854736328125, 0.6261383056640625, 0.6263438110351562, 0.626827880859375]",tokens/s,409.16651125677043,kWh,7.363675038019816e-06,4.0350039173812114e-06,3.4213050246233903e-05,4.561172920163493e-05,tokens/kWh,5612591.420691497,MB,1612.562432,7598.505984,0.0,6952.05888,6464.047616,s,10,369.81373437499997,36.981373437500004,0.03993526863753842,36.962308593749995,37.0309203125,37.048473828125,37.062516640625,"[37.02584375, 37.06602734375, 37.02701953125, 36.95202734375, 36.96666796875, 36.9451328125, 36.9648984375, 36.9521875, 36.95971875, 36.9542109375]",tokens/s,1.7035603100699468,kWh,0.0004362355767852731,0.00023909502275260607,0.0019567083202673705,0.0026320389198052495,tokens/kWh,23935.816270019863,,s,629,374.855053039551,0.5959539793951523,0.07432782764438475,0.5866659545898437,0.589058251953125,0.5894471923828125,1.2107634912109375,"[0.586392578125, 0.5868226318359375, 0.5859829711914063, 0.5863291015625, 0.5865410766601562, 0.5872220458984375, 0.586271728515625, 0.5857536010742187, 0.5860116577148438, 0.585923583984375, 0.5870950317382813, 0.5866148071289062, 0.5868349609375, 0.5866342163085938, 0.5861621704101563, 0.586134521484375, 0.5858928833007813, 0.58690869140625, 0.586186767578125, 0.5873684692382812, 0.5866659545898437, 0.5863311157226563, 0.588506103515625, 0.5890938720703125, 0.5862461547851563, 0.5873582153320313, 0.5887150268554687, 0.5900718383789062, 0.5890580444335938, 0.589464599609375, 0.5892474975585937, 0.5888132934570313, 0.5892208862304688, 0.5892362060546875, 0.58881640625, 0.587177978515625, 0.5861478271484375, 0.5872230224609375, 0.5890713500976562, 0.5897615356445313, 0.5891819458007812, 0.5891215209960937, 0.588368896484375, 0.5868963623046874, 0.5877462768554688, 0.587673583984375, 0.5883515014648437, 0.5891358642578125, 0.5892372436523438, 0.5901947021484375, 0.5882511596679687, 0.5863966674804687, 0.5867079467773437, 0.5862789306640624, 0.5875824584960937, 0.589075439453125, 0.5904906005859375, 0.5885787963867187, 0.5882501220703125, 0.5885009765625, 0.5887518920898438, 0.5892843627929687, 1.21577880859375, 0.5866813354492187, 0.58638232421875, 0.5860689697265625, 0.586250244140625, 0.5862062377929688, 0.5863833618164063, 0.5862236328125, 0.5872701416015625, 0.5891921997070313, 0.5893621826171875, 0.5892301025390625, 0.5891163940429688, 0.589286376953125, 0.58905908203125, 0.5892198486328125, 0.5870059814453125, 0.58844775390625, 0.5890242309570313, 0.5887774658203125, 0.5890150146484375, 0.5887242431640625, 0.5887866821289063, 0.5895270385742187, 0.5885030517578125, 0.5896734619140624, 0.5887754516601562, 0.5896263427734375, 0.5871104125976563, 0.5881671752929688, 0.5891235961914062, 0.5891962890625, 0.5888031005859375, 0.5896325073242188, 0.5887764282226563, 0.5869895629882812, 0.5890662231445313, 0.5892987060546875, 0.5882552490234375, 0.5869424438476563, 0.588790771484375, 0.5888245849609375, 0.5896591186523438, 0.5890518798828125, 0.589486083984375, 0.5889976196289063, 0.5883146362304688, 0.58652978515625, 0.5864765625, 0.5863751831054688, 0.586809326171875, 0.5878477172851563, 0.5889166870117187, 0.589169677734375, 0.5894891357421875, 0.5896304931640625, 0.5890713500976562, 0.5871114501953125, 0.5880750122070313, 0.5888890991210938, 0.588980224609375, 0.588822509765625, 0.588010498046875, 1.2160072021484376, 0.5894573974609375, 0.5897778930664063, 0.5893355712890626, 0.589739013671875, 0.5899202270507813, 0.5896151123046875, 0.58777294921875, 0.5865891723632812, 0.5862645874023438, 0.5884047241210938, 0.5887549438476563, 0.5893632202148438, 0.587030517578125, 0.589475830078125, 0.5881303100585937, 0.588000244140625, 0.5885706176757812, 0.5890109252929687, 0.5895772094726562, 0.5876244506835937, 0.5894738159179688, 0.58935400390625, 0.5891471557617187, 0.589496337890625, 0.5882972412109375, 0.5862020874023437, 0.5883658447265625, 0.58893310546875, 0.589431884765625, 0.5892074584960938, 0.5897041625976562, 0.5888942260742187, 0.5887662353515625, 0.589075439453125, 0.5871063232421875, 0.5874237670898438, 0.586166259765625, 0.5869127807617187, 0.5871524047851563, 0.5860792236328125, 0.5860894775390625, 0.5864212646484375, 0.5861089477539062, 0.5861775512695313, 0.586134521484375, 0.586650634765625, 0.586608642578125, 0.5868236694335938, 0.5863117065429687, 0.5860730590820312, 0.5861652221679687, 0.5863720703125, 0.587325439453125, 0.5869486083984375, 0.5867796630859375, 0.586829833984375, 0.5859512329101563, 0.586598388671875, 0.5858897705078125, 0.5857484741210938, 0.5861038208007813, 0.5859328002929688, 1.21084521484375, 0.5868482666015625, 0.58640283203125, 0.5865072631835937, 0.58753125, 0.5866895141601562, 0.5865697021484375, 0.5866485595703125, 0.5865379638671875, 0.5872005004882812, 0.5859409790039063, 0.5867479248046875, 0.5860208740234375, 0.5864622192382812, 0.5861642456054688, 0.5862113037109375, 0.5866629028320313, 0.5866127319335938, 0.5868892211914063, 0.5860433959960938, 0.5860228881835937, 0.585712646484375, 0.5860034790039063, 0.5866076049804687, 0.5860700073242188, 0.5865840454101563, 0.5865113525390625, 0.5863505859375, 0.5864140625, 0.5859491577148438, 0.586281982421875, 0.5866659545898437, 0.5862092895507812, 0.5860966186523437, 0.586608642578125, 0.5861068725585937, 0.5864765625, 0.585987060546875, 0.5858989868164063, 0.5861160888671875, 0.587757568359375, 0.586156005859375, 0.5871318969726562, 0.5865809936523437, 0.5864468383789062, 0.5861632080078125, 0.5858989868164063, 0.586124267578125, 0.5864806518554687, 0.5860403442382812, 0.5868748779296875, 0.586625, 0.5871697998046875, 0.586534912109375, 0.5867571411132813, 0.5872445678710938, 0.5864386596679687, 0.5876326293945312, 0.588031982421875, 0.5878978271484375, 0.5873828735351563, 0.5863617553710937, 0.5862686767578125, 1.20973828125, 0.5866116943359375, 0.5870663452148438, 0.5871646728515625, 0.586650634765625, 0.5869865112304687, 0.586355712890625, 0.5865973510742187, 0.5867642822265625, 0.5863895263671876, 0.586640380859375, 0.5864683227539063, 0.5873387451171875, 0.587441162109375, 0.5863936157226562, 0.5867008056640625, 0.5865328369140625, 0.5866751708984375, 0.5866547241210938, 0.5867018432617187, 0.5871431884765625, 0.5867120361328125, 0.5885173950195313, 0.58661376953125, 0.5860853881835938, 0.5864765625, 0.5864909057617187, 0.587452392578125, 0.587109375, 0.5869700927734375, 0.5880678100585938, 0.5873899536132813, 0.5867468872070313, 0.5864356079101563, 0.5865267333984375, 0.586555419921875, 0.5870673828125, 0.5869865112304687, 0.5871329345703125, 0.5876347045898438, 0.5866997680664062, 0.586439697265625, 0.5864110107421875, 0.5860280151367188, 0.586935302734375, 0.5874688110351562, 0.5872630004882813, 0.5882040405273438, 0.5861519165039063, 0.5861754760742187, 0.5864959716796875, 0.5864253540039063, 0.5865482177734375, 0.586439697265625, 0.58705615234375, 0.586955810546875, 0.5866649169921875, 0.586872802734375, 0.5867396850585938, 0.5856685791015624, 0.585691162109375, 0.5862932739257812, 0.5861509399414062, 1.2105533447265624, 0.5868963623046874, 0.5862307739257813, 0.5858088989257813, 0.5863147583007813, 0.5863117065429687, 0.5865164794921875, 0.5869424438476563, 0.5864171752929688, 0.5864099731445312, 0.5860372314453125, 0.5859174194335938, 0.5860126953125, 0.5862420654296875, 0.5864284057617187, 0.5860905151367187, 0.5861795654296875, 0.5876797485351563, 0.5864632568359375, 0.5860034790039063, 0.5856358642578126, 0.5858897705078125, 0.5856849975585937, 0.5860556640625, 0.5864069213867188, 0.5858795776367187, 0.5864683227539063, 0.5857034301757813, 0.586197998046875, 0.5860546264648437, 0.5868114013671875, 0.5869946899414062, 0.586625, 0.5865584716796876, 0.5874636840820312, 0.5859491577148438, 0.586603515625, 0.5859368896484375, 0.5866004638671874, 0.585970703125, 0.5859840087890625, 0.5862932739257812, 0.5863259887695312, 0.58724658203125, 0.586335205078125, 0.5863598022460937, 0.5860515747070313, 0.5862676391601562, 0.586872802734375, 0.5865533447265625, 0.5867427978515625, 0.5866065673828125, 0.5869660034179688, 0.5869803466796875, 0.5866997680664062, 0.5868963623046874, 0.5864785766601562, 0.58616015625, 0.5860546264648437, 0.5872752685546875, 0.5869076538085938, 0.5865799560546875, 0.586840087890625, 1.211283447265625, 0.5869813842773437, 0.5866997680664062, 0.5866414184570312, 0.587345947265625, 0.5873807373046875, 0.5871063232421875, 0.5870315551757812, 0.5875353393554688, 0.58697216796875, 0.5863075561523438, 0.586588134765625, 0.5869383544921875, 0.587821044921875, 0.5868165283203125, 0.5868810424804688, 0.5863833618164063, 0.5862512817382812, 0.5872967529296875, 0.5871339721679687, 0.5874821166992188, 0.5877125244140625, 0.5862809448242188, 0.5868349609375, 0.58678271484375, 0.5863117065429687, 0.5862789306640624, 0.586708984375, 0.5875824584960937, 0.5870919799804688, 0.5866690673828125, 0.586181640625, 0.5861775512695313, 0.5859921875, 0.5867694091796875, 0.58703564453125, 0.5866270751953125, 0.586419189453125, 0.5869496459960938, 0.5864642333984375, 0.5868062744140625, 0.5862686767578125, 0.5867919311523437, 0.5862195434570312, 0.58638232421875, 0.5867694091796875, 0.5868318481445313, 0.586829833984375, 0.5861826782226562, 0.586302490234375, 0.5865001220703125, 0.5866393432617187, 0.5861959838867188, 0.5873704833984374, 0.5870489501953124, 0.5865164794921875, 0.5868236694335938, 0.5866116943359375, 0.58705712890625, 0.5863731079101563, 0.58650830078125, 0.5867161865234375, 0.5862952880859374, 1.2128675537109375, 0.586335205078125, 0.5866659545898437, 0.5865216064453125, 0.586155029296875, 0.5867110595703126, 0.587025390625, 0.5866659545898437, 0.5868226318359375, 0.5863649291992188, 0.5859788818359375, 0.5858211669921874, 0.5860321044921875, 0.5860249633789063, 0.5860086059570313, 0.5864939575195313, 0.586608642578125, 0.586387451171875, 0.586119140625, 0.5861437377929688, 0.5861488647460937, 0.586313720703125, 0.5860751342773437, 0.5867427978515625, 0.5866076049804687, 0.5862164306640625, 0.5868421020507812, 0.5864365844726562, 0.5864765625, 0.5864837036132813, 0.5860372314453125, 0.586925048828125, 0.5860485229492187, 0.58665673828125, 0.5867642822265625, 0.5860065307617187, 0.5863987426757813, 0.586060791015625, 0.586392578125, 0.5863106689453125, 0.5877749633789062, 0.58640283203125, 0.5868861694335937, 0.5868216552734375, 0.5870684204101563, 0.586323974609375, 0.5864427490234375, 0.5864703979492187, 0.5862952880859374, 0.586693603515625, 0.5876336669921876, 0.5873316040039063, 0.5868585205078125, 0.58693017578125, 0.5867694091796875, 0.5865830688476562, 0.586429443359375, 0.5870018310546875, 0.5871503295898437, 0.5864939575195313, 0.5877985229492187, 0.586144775390625, 0.5863424072265625, 1.2129935302734376, 0.5862727661132813, 0.5863915405273438, 0.5866475219726562, 0.5876971435546875, 0.5864058837890626, 0.5863065795898438, 0.5865758666992188, 0.5865635986328125, 0.5862164306640625, 0.5869281005859375, 0.586840087890625, 0.5862543334960938, 0.5875742797851562, 0.5865205688476562, 0.5862706909179688, 0.5863649291992188, 0.5861734619140625, 0.5863147583007813, 0.5860198364257813, 0.58655126953125, 0.5865543823242187, 0.58614990234375, 0.5865379638671875, 0.5857679443359375, 0.5859266357421875, 0.58583447265625, 0.5874698486328125, 0.5878701782226563, 0.5867161865234375, 0.5876551513671875, 0.5866875, 0.587071533203125, 0.5868062133789063, 0.586630126953125, 0.5871063232421875, 0.5867059326171875, 0.5871452026367188, 0.5867632446289063, 0.587125732421875, 0.5870151977539062, 0.5868308715820313, 0.5868052368164063, 0.5859778442382813, 0.5877913818359375, 0.5867008056640625, 0.5866905517578125, 0.58863818359375, 0.5863485717773438, 0.5870551147460937, 0.5870684204101563, 0.586407958984375, 0.58616015625, 0.5859154052734376, 0.5867008056640625, 0.5863854370117187, 0.5862307739257813, 0.5860966186523437, 0.5860198364257813, 0.5865277709960938, 0.5865287475585937, 0.5874104614257812, 0.586376220703125, 1.215204345703125, 0.586377197265625, 0.5866434326171875, 0.586534912109375, 0.5863895263671876, 0.5870858154296875, 0.5862635498046875, 0.5872025756835938, 0.586982421875, 0.5865861206054688, 0.5865164794921875, 0.586608642578125, 0.5866710815429688, 0.5860003662109375, 0.5871441650390625, 0.5867550659179688, 0.586144775390625, 0.5870264282226563, 0.5859225463867187, 0.5859358520507812, 0.5861325073242187, 0.5858846435546875, 0.58669873046875, 0.5869383544921875, 0.5876326293945312, 0.587109375, 0.5869526977539062, 0.5863679809570312, 0.5862573852539062, 0.5862011108398437, 0.5859225463867187, 0.586871826171875, 0.5864949951171875, 0.5862635498046875, 0.5871820678710937, 0.5862850341796875, 0.5865062255859375, 0.5861990356445312, 0.5862440795898437, 0.5863117065429687, 0.58606591796875, 0.5864724731445312, 0.5863618774414062, 0.5869076538085938, 0.5863720703125, 0.5866680297851562, 0.5867079467773437, 0.5861099243164063, 0.5866577758789062, 0.5864990844726562, 0.5863792724609375, 0.5876592407226563, 0.586555419921875, 0.5861253051757812, 0.5861632080078125, 0.586450927734375, 0.5867694091796875, 0.5861539916992188, 0.5869639892578125, 0.58669775390625, 0.5874268188476562, 0.586555419921875, 0.5859317626953126]",tokens/s,1.6779819156756426,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,x,x,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-2b,google/gemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -31191,7 +29321,28 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/x/resolve/main/config.json +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/gemma-2b/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status + raise HfHubHTTPError(message, response=response) from e +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66948114-7878a1aa3f47292c3e4ba3d6;46cb3dc6-cd4f-4876-afbd-0570eb64fd52) + +403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. +Cannot access content at: https://huggingface.co/google/gemma-2b/resolve/main/config.json. +If you are trying to create or update content,make sure you have a token with the `write` role. The above exception was the direct cause of the following exception: @@ -31204,25 +29355,9 @@ Traceback (most recent call last): return _hf_hub_download_to_cache_dir( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669492a4-40dc4ff350bca5051c2bcf8d;ca2fda43-1e17-410e-9f7b-07544792c4ae) - -Repository Not Found for url: https://huggingface.co/x/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error + raise LocalEntryNotFoundError( +huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. The above exception was the direct cause of the following exception: @@ -31243,13 +29378,103 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file raise EnvironmentError( -OSError: x is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/gemma-2b is not the path to a directory containing a file named config.json. +Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-7b,tiiuae/falcon-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: FalconForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-12b,EleutherAI/pythia-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward + outputs = self.gpt_neox( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward + outputs = layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward + attention_layer_outputs = self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 545, in forward + query, key, value, present = self._attn_projections_and_rope( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope + qkv = self.query_key_value(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,i,i,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-180B,tiiuae/falcon-180B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -31261,21 +29486,11 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/i/resolve/main/config.json +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json The above exception was the direct cause of the following exception: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn @@ -31286,13 +29501,28 @@ Traceback (most recent call last): response = _request_wrapper( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948ff4-490b5da27371db416ba8b2b0;c8eb74d6-1499-4ace-8392-7542c3b2b752) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status + raise HfHubHTTPError(message, response=response) from e +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-6694992c-36991b736febcbd50013b9de;5294acfb-7118-4eae-870a-baae2b1481b2) -Repository Not Found for url: https://huggingface.co/i/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. +403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. +Cannot access content at: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json. +If you are trying to create or update content,make sure you have a token with the `write` role. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error + raise LocalEntryNotFoundError( +huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. The above exception was the direct cause of the following exception: @@ -31313,45 +29543,13 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file raise EnvironmentError( -OSError: i is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-72B,Qwen/Qwen-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained - model_class = get_class_from_dynamic_module( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module - final_module = get_cached_module_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file - modules_needed = check_imports(resolved_module_file) - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports - raise ImportError( -ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like tiiuae/falcon-180B is not the path to a directory containing a file named config.json. +Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.4b,EleutherAI/pythia-1.4b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,,MB,1591.713792,2250.768384,0.0,1604.32128,1463.693312,s,10,1.2648313903808592,0.12648313903808595,0.0013989604614154947,0.1262478713989258,0.1271006202697754,0.1287280216217041,0.13002994270324708,"[0.1303554229736328, 0.12560326385498047, 0.12551904296875, 0.12673897552490235, 0.12573398590087892, 0.12508892822265624, 0.12599820709228515, 0.1264975357055664, 0.1265692138671875, 0.12672681427001953]",tokens/s,2023.9851884361806,kWh,1.4855278241965507e-06,8.139949754399822e-07,6.45409544104969e-06,8.753618240686224e-06,tokens/kWh,29245049.64245863,MB,1591.713792,2250.768384,0.0,1604.32128,1560.975872,s,10,72.9124365234375,7.291243652343749,0.003929707108860259,7.2908349609375005,7.297245703125,7.2972966796875,7.2973374609375,"[7.297234375, 7.2856533203125, 7.29734765625, 7.29276513671875, 7.29289794921875, 7.29063818359375, 7.29089404296875, 7.29077587890625, 7.28937060546875, 7.284859375]",tokens/s,8.640501264794358,kWh,8.609067341933647e-05,4.718392125277432e-05,0.00037183251274354733,0.0005051071074156582,tokens/kWh,124726.02162011672,,s,629,73.93082885742194,0.11753708880353239,0.015022143769719637,0.11565261077880859,0.11614679260253907,0.11651727142333984,0.24159293273925783,"[0.11554611206054688, 0.11542835235595703, 0.11560959625244141, 0.11652607727050782, 0.11558604431152343, 0.1156341781616211, 0.11573760223388672, 0.1157570571899414, 0.11565670776367187, 0.11562393951416015, 0.11558502197265624, 0.11574476623535156, 0.1157580795288086, 0.11542835235595703, 0.11543961334228516, 0.11608268737792969, 0.1160478744506836, 0.11690393829345704, 0.11582669067382813, 0.11567513275146485, 0.1154303970336914, 0.11542835235595703, 0.1157232666015625, 0.1157694091796875, 0.11561158752441406, 0.11565261077880859, 0.11558297729492187, 0.11557170867919922, 0.11555225372314454, 0.11560857391357422, 0.11558604431152343, 0.11568946838378906, 0.11568537902832031, 0.11553177642822265, 0.1154703369140625, 0.11592601776123047, 0.11566284942626953, 0.11548159790039063, 0.11579289245605469, 0.11569561767578125, 0.11579801940917969, 0.11614924621582032, 0.11590553283691406, 0.1172838363647461, 0.11599565124511718, 0.11589427185058594, 0.11579392242431641, 0.11582054138183594, 0.11560550689697266, 0.11576937866210937, 0.11679228973388672, 0.11623014068603515, 0.115884033203125, 0.11555532836914062, 0.11562290954589843, 0.11581132507324218, 0.11705241394042969, 0.11600486755371094, 0.11588607788085938, 0.115736572265625, 0.11612569427490234, 0.11604176330566406, 0.24190666198730468, 0.11594547271728516, 0.11553177642822265, 0.1155819549560547, 0.1155051498413086, 0.11557990264892579, 0.11673600006103516, 0.11557376098632813, 0.11559117126464843, 0.1155072021484375, 0.11576525115966797, 0.11566079711914062, 0.11590656280517578, 0.115525634765625, 0.11559219360351562, 0.1160847396850586, 0.11556658935546875, 0.1156147232055664, 0.11551641845703126, 0.11533209228515626, 0.11555328369140624, 0.11560147094726562, 0.11554502105712891, 0.11557376098632813, 0.1158809585571289, 0.11545088195800782, 0.11558604431152343, 0.11544985961914063, 0.11559321594238281, 0.11556761932373047, 0.11569868469238281, 0.11571097564697265, 0.11561676788330078, 0.11552051544189453, 0.11553997039794922, 0.11532393646240234, 0.11541606140136719, 0.11545494079589844, 0.11565055847167968, 0.11606527709960937, 0.11634278106689454, 0.1155440673828125, 0.11550105285644531, 0.11538432312011719, 0.11557785797119141, 0.11540582275390625, 0.11706163024902344, 0.11553382110595703, 0.11559321594238281, 0.11543244934082031, 0.11545804595947265, 0.11543142700195312, 0.11540480041503906, 0.11530547332763671, 0.11539667510986328, 0.11571295928955078, 0.11585740661621094, 0.11560447692871094, 0.11563622283935547, 0.11560550689697266, 0.11555430603027343, 0.11554303741455078, 0.1156147232055664, 0.24147865295410156, 0.11553382110595703, 0.11642678070068359, 0.11596393585205078, 0.11609900665283203, 0.11560550689697266, 0.11545906829833984, 0.11533824157714843, 0.11538944244384766, 0.11619737243652344, 0.11612876892089843, 0.11601612854003907, 0.1155758056640625, 0.11589433288574219, 0.1156719970703125, 0.11552870178222656, 0.11574681854248046, 0.11581337738037109, 0.11625574493408203, 0.11572531127929687, 0.11590656280517578, 0.11556454467773437, 0.11557075500488281, 0.1164062042236328, 0.11572736358642578, 0.11559935760498047, 0.1159710693359375, 0.11614105224609375, 0.11683942413330078, 0.11663980865478515, 0.11592697906494141, 0.11562598419189453, 0.11584307098388671, 0.11552973175048828, 0.11597516632080078, 0.11550310516357422, 0.11585126495361328, 0.11633869171142579, 0.11576121520996094, 0.11590239715576171, 0.11548057556152344, 0.11562700653076172, 0.11580518341064452, 0.11599974060058593, 0.11608370971679688, 0.11642265319824219, 0.11600179290771484, 0.11641446685791015, 0.11563212585449219, 0.11547647857666016, 0.11545088195800782, 0.11568032073974609, 0.11588703918457031, 0.11573350524902344, 0.1157201919555664, 0.11566182708740234, 0.11576627349853516, 0.11582566070556641, 0.11572736358642578, 0.11544780731201172, 0.11562393951416015, 0.11546828460693359, 0.11547853088378907, 0.2430136260986328, 0.1159004135131836, 0.11564236450195313, 0.11563827514648438, 0.11565567779541015, 0.11559526062011719, 0.11573350524902344, 0.11556658935546875, 0.1157396469116211, 0.1160284194946289, 0.11578982543945313, 0.11594035339355468, 0.11562290954589843, 0.11544985961914063, 0.11558502197265624, 0.11559117126464843, 0.11605811309814452, 0.11588301086425781, 0.1157949447631836, 0.11583795166015624, 0.11589734649658204, 0.11614617919921875, 0.11590348815917968, 0.1155440673828125, 0.1166714859008789, 0.11601510620117188, 0.11548365020751954, 0.11576012420654297, 0.11538944244384766, 0.11538944244384766, 0.11550617980957031, 0.1161164779663086, 0.11625676727294922, 0.11571814727783203, 0.11565875244140625, 0.1156485137939453, 0.11559117126464843, 0.11533106994628907, 0.11534438323974609, 0.115957763671875, 0.11574066925048829, 0.11546316528320312, 0.11652095794677735, 0.11555532836914062, 0.11549081420898437, 0.11547443389892578, 0.11542630767822265, 0.11534438323974609, 0.11527986907958984, 0.11548365020751954, 0.11580825805664062, 0.1169459228515625, 0.11576729583740235, 0.11597516632080078, 0.11551849365234375, 0.11617174530029296, 0.1161553955078125, 0.11608678436279297, 0.11566079711914062, 0.11565261077880859, 0.11548365020751954, 0.1155758056640625, 0.11557376098632813, 0.2416373748779297, 0.11573760223388672, 0.11561881256103515, 0.11579596710205078, 0.11593830108642578, 0.115810302734375, 0.11552870178222656, 0.11581542205810547, 0.11552665710449218, 0.11582771301269532, 0.1157396469116211, 0.11553791809082031, 0.1157027816772461, 0.11587789154052734, 0.11567513275146485, 0.11574169921875, 0.11559833526611328, 0.11615334320068359, 0.11550822448730469, 0.11546316528320312, 0.11542733001708984, 0.11593523406982421, 0.11576217651367188, 0.11546521759033203, 0.11530751800537109, 0.11534848022460938, 0.11562496185302734, 0.11573248291015625, 0.11568946838378906, 0.11568025970458984, 0.1157570571899414, 0.11558809661865234, 0.11546009826660156, 0.11551436614990235, 0.11556864166259766, 0.11568851470947265, 0.11561977386474609, 0.11564441680908204, 0.11560243225097656, 0.11574374389648437, 0.11693260955810547, 0.11600179290771484, 0.11581951904296875, 0.11551337432861328, 0.11621782684326172, 0.11561574554443359, 0.11616153717041015, 0.11619328308105469, 0.11597926330566406, 0.11552153778076171, 0.11582157135009766, 0.11549798583984375, 0.11565773010253906, 0.11573868560791016, 0.11633657836914063, 0.11591986846923828, 0.11580723571777343, 0.11681075286865235, 0.11580210876464844, 0.11566284942626953, 0.11573554992675782, 0.11571405029296875, 0.11579392242431641, 0.24123802185058593, 0.11577037048339844, 0.11569152069091797, 0.11550924682617188, 0.11548262023925782, 0.11541299438476563, 0.11537100982666015, 0.11548979187011718, 0.11538540649414063, 0.11682399749755859, 0.11572531127929687, 0.11558911895751953, 0.11550003051757812, 0.11544576263427735, 0.11544678497314453, 0.11560755157470703, 0.11546828460693359, 0.11556249237060547, 0.1156485137939453, 0.11555023956298828, 0.11552047729492188, 0.11564236450195313, 0.11559014129638671, 0.11573452758789063, 0.11543859100341797, 0.11551641845703126, 0.11565465545654297, 0.11574988555908203, 0.11569971466064453, 0.11559935760498047, 0.11563724517822266, 0.11556044769287109, 0.11579084777832031, 0.11558399963378906, 0.11560345458984375, 0.11583385467529297, 0.11566182708740234, 0.11573350524902344, 0.11707392120361328, 0.11604377746582031, 0.11578166198730469, 0.11570275115966797, 0.11584614562988281, 0.11643289947509766, 0.11766886138916016, 0.11568742370605468, 0.11568131256103516, 0.1155184326171875, 0.11561779022216796, 0.11559219360351562, 0.1157734375, 0.1157580795288086, 0.11578675079345703, 0.11578163146972656, 0.11558399963378906, 0.1155758056640625, 0.11558399963378906, 0.11569766235351563, 0.11568230438232421, 0.11554412841796875, 0.11554502105712891, 0.11572531127929687, 0.11579392242431641, 0.24222003173828124, 0.11544473266601563, 0.11548876953125, 0.11571814727783203, 0.11562905883789062, 0.1165486068725586, 0.11599871826171874, 0.11563724517822266, 0.11574374389648437, 0.11579801940917969, 0.11553382110595703, 0.11554611206054688, 0.11684249877929688, 0.11557273864746094, 0.11547853088378907, 0.1154877471923828, 0.11573350524902344, 0.11547853088378907, 0.11548876953125, 0.11556556701660156, 0.1155973129272461, 0.11554815673828125, 0.1156280288696289, 0.1164400634765625, 0.115525634765625, 0.11554815673828125, 0.11559321594238281, 0.11538022613525391, 0.11541510772705078, 0.11557574462890625, 0.11551538848876954, 0.11658854675292969, 0.11569561767578125, 0.11581132507324218, 0.11544371032714844, 0.1155594253540039, 0.11566284942626953, 0.11575603485107422, 0.1155072021484375, 0.11597618865966797, 0.11624857330322266, 0.11573554992675782, 0.11539968109130859, 0.11556352233886719, 0.11553997039794922, 0.1154119644165039, 0.11562086486816406, 0.11566899108886719, 0.11578470611572265, 0.11621580505371094, 0.11563520050048828, 0.11619840240478516, 0.11569459533691406, 0.11568230438232421, 0.11591270446777344, 0.11579801940917969, 0.11572531127929687, 0.11583692932128906, 0.11580006408691407, 0.11551436614990235, 0.11591372680664062, 0.11565055847167968, 0.11566796875, 0.2425927734375, 0.11592601776123047, 0.11652812957763672, 0.1160263671875, 0.1156280288696289, 0.1154703369140625, 0.11540684509277344, 0.11567411041259766, 0.11576422119140625, 0.11549388885498046, 0.11578163146972656, 0.11591372680664062, 0.11623423767089844, 0.11559321594238281, 0.11569459533691406, 0.11551744079589844, 0.11644620513916015, 0.1155645751953125, 0.11573654174804687, 0.11594445037841797, 0.11607039642333984, 0.1157232666015625, 0.11550310516357422, 0.11549900817871094, 0.11566694641113281, 0.11567616271972657, 0.11566902160644531, 0.1161082534790039, 0.11594137573242187, 0.11565158081054687, 0.11552153778076171, 0.11549702453613281, 0.11560646057128907, 0.11540275573730469, 0.11600281524658203, 0.11596390533447265, 0.11555123138427735, 0.11542118072509766, 0.11550617980957031, 0.11543654632568359, 0.11562700653076172, 0.11552051544189453, 0.11569356536865234, 0.11555020904541016, 0.11564236450195313, 0.11563622283935547, 0.11566694641113281, 0.11554611206054688, 0.11565567779541015, 0.11542425537109376, 0.11545600128173829, 0.11553587341308594, 0.11576729583740235, 0.11622911834716797, 0.11651174163818359, 0.11568844604492187, 0.11576831817626954, 0.11554713439941407, 0.11568025970458984, 0.11566694641113281, 0.11580620574951171, 0.11560345458984375, 0.11570893096923827, 0.24270541381835936, 0.11573554992675782, 0.1154734115600586, 0.115525634765625, 0.11553279876708984, 0.11555430603027343, 0.11576525115966797, 0.11567922973632813, 0.11552665710449218, 0.11537715148925781, 0.1155041275024414, 0.11540991973876953, 0.11538329315185547, 0.11551641845703126, 0.11542937469482421, 0.11544576263427735, 0.11548365020751954, 0.11621273803710938, 0.11560447692871094, 0.11579801940917969, 0.11566796875, 0.11572531127929687, 0.11551750183105469, 0.1155849609375, 0.11561062622070313, 0.11598028564453125, 0.11561676788330078, 0.11556147003173828, 0.11561676788330078, 0.11551436614990235, 0.11571302032470702, 0.11565875244140625, 0.11572223663330078, 0.11552973175048828, 0.11562290954589843, 0.11551747131347656, 0.11566793823242187, 0.11573760223388672, 0.11573760223388672, 0.11582463836669922, 0.1156147232055664, 0.11548880004882812, 0.1162034912109375, 0.11573350524902344, 0.11611344146728515, 0.11572425842285156, 0.11567616271972657, 0.11576217651367188, 0.11560352325439453, 0.11609388732910156, 0.11659980773925781, 0.11586048126220704, 0.11570381164550782, 0.11573248291015625, 0.11557170867919922, 0.11563827514648438, 0.11605709075927734, 0.1166714859008789, 0.1158123550415039, 0.11569971466064453, 0.11564543914794922, 0.11563629150390625, 0.11554707336425782, 0.24293376159667968, 0.1157570571899414, 0.11543551635742187, 0.11561164855957032, 0.11565161895751953, 0.11541910552978515, 0.11535257720947266, 0.11540790557861329, 0.1153371810913086, 0.11557478332519532, 0.11545394897460938, 0.11548365020751954, 0.11608576202392579, 0.11585740661621094, 0.1155758056640625, 0.11546419525146484, 0.11544882965087891, 0.11567922973632813, 0.11579596710205078, 0.11548467254638672, 0.11567820739746094, 0.11553075408935547, 0.11560447692871094, 0.11557683563232422, 0.11538841247558594, 0.11541709136962891, 0.11647283172607421, 0.11568946838378906, 0.11550924682617188, 0.11575603485107422, 0.11594035339355468, 0.11566387176513672, 0.11554713439941407, 0.11556761932373047, 0.11553997039794922, 0.11574578857421874, 0.1154959716796875, 0.11552867126464844, 0.11542527770996094, 0.11553689575195313, 0.11548262023925782, 0.11609190368652343, 0.11563314819335938, 0.11550105285644531, 0.11568844604492187, 0.1156341781616211, 0.11574681854248046, 0.11630079650878906, 0.11589119720458985, 0.1157027816772461, 0.11557170867919922, 0.11571609497070312, 0.11571916961669922, 0.11559321594238281, 0.1154549789428711, 0.1155389404296875, 0.11564543914794922, 0.11553587341308594, 0.11558604431152343, 0.11541913604736329, 0.11550822448730469, 0.11574272155761718, 0.11551026916503906]",tokens/s,8.507952767756032,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-3B-v1,togethercomputer/RedPajama-INCITE-Base-3B-v1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2276.958208,3364.356096,0.0,2717.908992,2483.645952,s,10,2.418925704956055,0.24189257049560547,0.0014063564969548042,0.2416701126098633,0.24295570678710937,0.24411388549804686,0.24504042846679686,"[0.24527206420898437, 0.24195974731445313, 0.2402183074951172, 0.2404288330078125, 0.24130831909179687, 0.2407073974609375, 0.24138047790527345, 0.24269833374023436, 0.24266143798828124, 0.24229078674316407]",tokens/s,1058.3210533316103,kWh,2.845328939812524e-06,1.5591126709426003e-06,1.357947514928401e-05,1.7983916760039136e-05,tokens/kWh,14234941.332070695,MB,2281.037824,3364.356096,0.0,2717.908992,2632.492032,s,10,138.94498046874997,13.894498046874997,0.004182595458186898,13.892857421875,13.8990578125,13.90156796875,13.903576093749999,"[13.894330078125, 13.904078125, 13.891740234375, 13.8913271484375, 13.8928662109375, 13.8928486328125, 13.890017578125, 13.8911748046875, 13.8985, 13.89809765625]",tokens/s,4.534168833408796,kWh,0.00016402044498967748,8.989529760271189e-05,0.0007398838220653231,0.0009937995646577126,tokens/kWh,63393.06459819053,,s,629,140.89449887084956,0.22399761346716945,0.028708018380316665,0.22048768615722655,0.22092697143554688,0.2211510284423828,0.4614811267089844,"[0.22103858947753907, 0.22030642700195313, 0.2203074493408203, 0.2203627471923828, 0.22044467163085937, 0.2201466827392578, 0.22047232055664062, 0.2204610595703125, 0.22034637451171876, 0.22052249145507813, 0.22052249145507813, 0.2210744323730469, 0.22037094116210937, 0.22095564270019533, 0.2205102081298828, 0.220400634765625, 0.2204180450439453, 0.22016717529296875, 0.22055328369140625, 0.22030943298339845, 0.22044979858398436, 0.2203740234375, 0.22033509826660155, 0.22029107666015624, 0.22042008972167967, 0.220221435546875, 0.22049996948242187, 0.22039552307128907, 0.2202757110595703, 0.2207139892578125, 0.22043545532226563, 0.2203248596191406, 0.22038528442382813, 0.22035661315917968, 0.22044058227539062, 0.2203135986328125, 0.2203863067626953, 0.22037504577636718, 0.22030848693847657, 0.22094744873046876, 0.22068121337890625, 0.22063002014160157, 0.2204917755126953, 0.22049693298339842, 0.22050607299804686, 0.22025112915039063, 0.2205347900390625, 0.22040882873535156, 0.2204559326171875, 0.22036376953125, 0.22044160461425782, 0.22035763549804688, 0.22027468872070313, 0.2205716552734375, 0.22072114562988282, 0.22048255920410156, 0.22129356384277343, 0.22104063415527345, 0.22131712341308593, 0.22103141784667968, 0.22057676696777342, 0.22042828369140624, 0.4625459289550781, 0.22034739685058594, 0.22049996948242187, 0.22023680114746094, 0.22024295043945313, 0.2206351318359375, 0.22068838500976562, 0.220474365234375, 0.22047129821777345, 0.22064947509765626, 0.22041087341308593, 0.22091673278808593, 0.22036787414550782, 0.22061465454101561, 0.22062591552734376, 0.22061363220214844, 0.2205153350830078, 0.2204753875732422, 0.22044979858398436, 0.22052864074707032, 0.22069862365722656, 0.22137957763671876, 0.22033920288085937, 0.22062387084960938, 0.220695556640625, 0.22112973022460938, 0.22057472229003905, 0.2208757781982422, 0.22068634033203124, 0.22061567687988282, 0.220548095703125, 0.22069247436523437, 0.2205368347167969, 0.22067916870117188, 0.22079180908203125, 0.22078463745117188, 0.22062591552734376, 0.2209423370361328, 0.2213263397216797, 0.22097305297851563, 0.22086349487304688, 0.22097613525390625, 0.22042726135253907, 0.2206965789794922, 0.22049996948242187, 0.22054502868652343, 0.22163456726074218, 0.22095359802246095, 0.22068019104003905, 0.2211655731201172, 0.2206842803955078, 0.22073651123046875, 0.22048973083496093, 0.22058706665039063, 0.22057977294921874, 0.22068844604492188, 0.22081939697265626, 0.2213744659423828, 0.2205665283203125, 0.22082252502441407, 0.2207262725830078, 0.22075187683105468, 0.22038937377929688, 0.4611839904785156, 0.22023577880859374, 0.22089727783203125, 0.22050405883789062, 0.22021734619140626, 0.22054400634765625, 0.22038528442382813, 0.2205655059814453, 0.2203248596191406, 0.22023884582519532, 0.22023583984375, 0.22047123718261719, 0.22023577880859374, 0.22024191284179687, 0.2201917419433594, 0.22043443298339843, 0.22027162170410156, 0.2202449951171875, 0.22028492736816407, 0.22072422790527343, 0.220980224609375, 0.2206771240234375, 0.22129458618164063, 0.22060134887695312, 0.2206730194091797, 0.2208123779296875, 0.22065858459472656, 0.22089830017089843, 0.22067507934570313, 0.2204436492919922, 0.22042930603027344, 0.22058087158203124, 0.22041497802734375, 0.22024908447265626, 0.22027162170410156, 0.22030540466308593, 0.22031564331054687, 0.220368896484375, 0.22108876037597655, 0.22054092407226564, 0.22035353088378906, 0.22040576171875, 0.22026138305664061, 0.22044467163085937, 0.2204559326171875, 0.22032179260253906, 0.22044773864746095, 0.22073036193847656, 0.22113075256347656, 0.22058393859863282, 0.22032691955566405, 0.22068531799316407, 0.22055833435058594, 0.22046412658691406, 0.22032383728027344, 0.22034637451171876, 0.22055322265625, 0.22052455139160157, 0.22036480712890624, 0.2204047393798828, 0.22033612060546875, 0.2206771240234375, 0.2206044158935547, 0.4615966796875, 0.22076824951171875, 0.220295166015625, 0.22087271118164062, 0.2203504638671875, 0.22047232055664062, 0.220189697265625, 0.22043238830566406, 0.22019378662109376, 0.22050816345214844, 0.220579833984375, 0.22056346130371093, 0.22019276428222656, 0.2204375, 0.22046617126464843, 0.2205716552734375, 0.22037196350097657, 0.22026649475097657, 0.22035661315917968, 0.22112562561035157, 0.22030950927734375, 0.22041293334960937, 0.2203873291015625, 0.22026853942871094, 0.22054502868652343, 0.22050201416015625, 0.22024806213378906, 0.2203146209716797, 0.22042930603027344, 0.22102117919921874, 0.22032896423339843, 0.22048768615722655, 0.22014976501464845, 0.22047232055664062, 0.22042112731933594, 0.2204569549560547, 0.2205122528076172, 0.22034226989746095, 0.22057778930664063, 0.22053375244140624, 0.220442626953125, 0.22042214965820311, 0.22033203125, 0.22048664855957031, 0.22074981689453124, 0.2204917755126953, 0.22120652770996094, 0.2206904296875, 0.22041497802734375, 0.22121676635742188, 0.2204784698486328, 0.2206033935546875, 0.22039450073242187, 0.22054400634765625, 0.22060850524902345, 0.22071705627441407, 0.22043443298339843, 0.22050816345214844, 0.2202931213378906, 0.2204794921875, 0.22053887939453126, 0.2205982666015625, 0.22036787414550782, 0.46206668090820313, 0.22080613708496094, 0.2205716552734375, 0.22023782348632812, 0.22025421142578125, 0.22019590759277344, 0.22057875061035156, 0.22045901489257813, 0.22017330932617188, 0.22030950927734375, 0.2208921661376953, 0.22050201416015625, 0.22088294982910156, 0.2204538879394531, 0.2203197479248047, 0.22046310424804688, 0.22013133239746094, 0.22019071960449219, 0.2202828826904297, 0.22072320556640626, 0.22030438232421876, 0.2206730194091797, 0.2204559326171875, 0.22029209899902344, 0.22052659606933595, 0.22039657592773437, 0.22047030639648438, 0.22110202026367187, 0.22078463745117188, 0.22039654541015624, 0.22048768615722655, 0.22048153686523436, 0.22034637451171876, 0.22068325805664063, 0.22042623901367187, 0.22046208190917968, 0.2204989471435547, 0.22047129821777345, 0.22049690246582032, 0.22055526733398437, 0.22030848693847657, 0.22025625610351562, 0.2204047393798828, 0.2205102081298828, 0.22039756774902344, 0.22056448364257814, 0.22109797668457032, 0.2207406005859375, 0.22061260986328124, 0.220548095703125, 0.2202931213378906, 0.22047334289550782, 0.22042828369140624, 0.22047334289550782, 0.22030032348632814, 0.22054191589355468, 0.22119935607910157, 0.22169293212890626, 0.2205419464111328, 0.220557373046875, 0.2205152587890625, 0.2205655059814453, 0.22039756774902344, 0.46115838623046873, 0.22026853942871094, 0.22028492736816407, 0.22010981750488282, 0.22020608520507812, 0.22032077026367186, 0.22018765258789064, 0.2204375, 0.2203811798095703, 0.22077133178710937, 0.22063206481933595, 0.22066073608398437, 0.22049075317382813, 0.22043034362792968, 0.22024191284179687, 0.22040882873535156, 0.22035865783691405, 0.2205982666015625, 0.22046514892578126, 0.220400634765625, 0.22039039611816405, 0.2204047393798828, 0.22018048095703124, 0.22042726135253907, 0.22025625610351562, 0.2204016571044922, 0.2204917755126953, 0.22091775512695314, 0.22068736267089845, 0.2210478057861328, 0.22050714111328126, 0.22068022155761718, 0.220601318359375, 0.2203811798095703, 0.22034022521972657, 0.22041497802734375, 0.22021632385253906, 0.22114303588867187, 0.22130073547363283, 0.22058905029296874, 0.22039961242675782, 0.22047027587890625, 0.22025830078125, 0.22062284851074218, 0.2205102081298828, 0.22040780639648438, 0.22047232055664062, 0.22069349670410157, 0.22081024169921876, 0.22071807861328124, 0.22037811279296876, 0.22054502868652343, 0.2205306854248047, 0.22061567687988282, 0.22122189331054687, 0.22058087158203124, 0.22052557373046874, 0.2210048065185547, 0.22053785705566406, 0.22060646057128908, 0.22035865783691405, 0.22059622192382813, 0.220516357421875, 0.46187826538085935, 0.22027877807617188, 0.2201661376953125, 0.22008934020996093, 0.22014874267578124, 0.22040780639648438, 0.220221435546875, 0.22034739685058594, 0.22072422790527343, 0.22045184326171874, 0.2204436798095703, 0.22067196655273438, 0.2206525421142578, 0.22057676696777342, 0.22060032653808595, 0.22078976440429687, 0.22035661315917968, 0.2203740234375, 0.22085427856445314, 0.2204600372314453, 0.220337158203125, 0.22026240539550782, 0.22036480712890624, 0.22081741333007812, 0.22036172485351563, 0.2203177032470703, 0.22025421142578125, 0.22035763549804688, 0.22030335998535155, 0.2207139892578125, 0.22059213256835938, 0.22072525024414064, 0.2207406005859375, 0.22064537048339844, 0.22042008972167967, 0.22125669860839844, 0.22061567687988282, 0.220474365234375, 0.22071807861328124, 0.2205347900390625, 0.2203627471923828, 0.2203146209716797, 0.2203248596191406, 0.22029823303222656, 0.22036376953125, 0.22047232055664062, 0.2202255401611328, 0.22048664855957031, 0.22040576171875, 0.22032179260253906, 0.22034025573730467, 0.2205460205078125, 0.22030950927734375, 0.22042317199707032, 0.22106214904785157, 0.22057267761230467, 0.220516357421875, 0.22052761840820312, 0.2204600372314453, 0.22071705627441407, 0.22034124755859374, 0.2203822021484375, 0.22037196350097657, 0.4634490966796875, 0.22028901672363282, 0.22034124755859374, 0.22013848876953124, 0.22024806213378906, 0.22021836853027343, 0.22028901672363282, 0.22026860046386718, 0.22030227661132812, 0.22021530151367188, 0.22014463806152343, 0.22054911804199218, 0.22034431457519532, 0.2202439727783203, 0.22034226989746095, 0.22027775573730468, 0.22059519958496093, 0.22043852233886718, 0.22060032653808595, 0.2206351318359375, 0.2210744323730469, 0.22051123046875, 0.22054092407226564, 0.2203863067626953, 0.22021427917480468, 0.22092697143554688, 0.22021324157714844, 0.22043136596679688, 0.2202408905029297, 0.22046208190917968, 0.2203074493408203, 0.2203504638671875, 0.2204190673828125, 0.2203514862060547, 0.2202593231201172, 0.2208204803466797, 0.2203146209716797, 0.22043034362792968, 0.22032896423339843, 0.22037196350097657, 0.22022860717773438, 0.22044058227539062, 0.22041293334960937, 0.2202449951171875, 0.22045082092285156, 0.22114303588867187, 0.22066893005371094, 0.2209300537109375, 0.22127410888671875, 0.22070477294921875, 0.2205368347167969, 0.22061158752441407, 0.2204927978515625, 0.22057676696777342, 0.2206525421142578, 0.22057066345214843, 0.22053884887695313, 0.22044467163085937, 0.22082867431640624, 0.22062899780273437, 0.22075289916992188, 0.2207139892578125, 0.2211584014892578, 0.4632709045410156, 0.22081024169921876, 0.22034022521972657, 0.22049996948242187, 0.2202265625, 0.22050099182128907, 0.2203822021484375, 0.2204600372314453, 0.22082150268554687, 0.2206904296875, 0.22041087341308593, 0.22061567687988282, 0.22044979858398436, 0.22075698852539063, 0.22043341064453126, 0.22061465454101561, 0.2210682830810547, 0.22072218322753906, 0.2204805145263672, 0.2206699523925781, 0.22046514892578126, 0.22043238830566406, 0.2206177215576172, 0.22051840209960938, 0.22042726135253907, 0.22032383728027344, 0.22085324096679687, 0.22037709045410156, 0.22035661315917968, 0.22064743041992188, 0.22058802795410157, 0.22054296875, 0.22046310424804688, 0.22043238830566406, 0.2203453369140625, 0.22068736267089845, 0.2204180450439453, 0.22066175842285157, 0.22066073608398437, 0.22049484252929688, 0.22063923645019531, 0.22058700561523437, 0.22040985107421876, 0.22107341003417968, 0.22086553955078125, 0.22104371643066406, 0.22082867431640624, 0.22134066772460936, 0.2208573455810547, 0.22092697143554688, 0.22046310424804688, 0.2206208038330078, 0.22063002014160157, 0.22059111022949218, 0.22057061767578126, 0.22050918579101564, 0.22044671630859375, 0.220727294921875, 0.22051840209960938, 0.22058802795410157, 0.22056243896484376, 0.22115635681152343, 0.22068940734863282, 0.46320025634765627, 0.22056346130371093, 0.22062899780273437, 0.22051840209960938, 0.22040882873535156, 0.22072012329101562, 0.22032691955566405, 0.2210713653564453, 0.22036070251464843, 0.220400634765625, 0.22021324157714844, 0.22049075317382813, 0.22033509826660155, 0.22090547180175782, 0.22041293334960937, 0.22086656188964843, 0.22052761840820312, 0.2203197479248047, 0.22071296691894532, 0.22047232055664062, 0.22075698852539063, 0.22052659606933595, 0.22043238830566406, 0.22035968017578125, 0.22096896362304688, 0.22059928894042968, 0.2214615020751953, 0.2207467498779297, 0.22179942321777343, 0.22081228637695313, 0.22052146911621093, 0.22039961242675782, 0.22029209899902344, 0.2204805145263672, 0.22017433166503905, 0.2204436492919922, 0.2202204132080078, 0.22042930603027344, 0.2203811798095703, 0.22039654541015624, 0.2202408905029297, 0.22037196350097657, 0.22073855590820313, 0.22145228576660156, 0.22041395568847658, 0.22063308715820312, 0.220368896484375, 0.22088499450683594, 0.22040882873535156, 0.22045901489257813, 0.22026649475097657, 0.22042726135253907, 0.22040985107421876, 0.22130482482910158, 0.22058700561523437, 0.22063002014160157, 0.22062693786621093, 0.22053887939453126, 0.22047640991210937, 0.22061158752441407, 0.2204375, 0.22050611877441406, 0.22054911804199218]",tokens/s,4.464333278026493,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-0.5B,Qwen/Qwen1.5-0.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1460.260864,1709.703168,0.0,1063.256064,942.605312,s,10,0.8792122802734375,0.08792122802734374,0.0017793873831683257,0.08834756851196289,0.08902708129882812,0.09042998733520508,0.09155231216430663,"[0.09183289337158203, 0.08871532440185546, 0.08646198272705079, 0.08839430236816406, 0.08854621124267578, 0.08836022186279296, 0.08833491516113282, 0.08542150115966797, 0.08774205017089844, 0.08540287780761718]",tokens/s,2911.6972742962976,kWh,1.0152025072210082e-06,5.56282725791299e-07,2.6184398915211728e-06,4.1899251245334795e-06,tokens/kWh,61098943.869194776,MB,1460.588544,1709.703168,0.0,1063.256064,942.607872,s,10,54.0859736328125,5.40859736328125,0.07705683066534309,5.45104150390625,5.477568017578125,5.481690747070313,5.484988930664063,"[5.4858134765625, 5.457708984375, 5.47665185546875, 5.46595458984375, 5.472109375, 5.4443740234375, 5.39297412109375, 5.29275341796875, 5.29816357421875, 5.29947021484375]",tokens/s,11.648121641981426,kWh,6.466018401433034e-05,3.543631727276219e-05,0.00015379821301947998,0.0002538947143065725,tokens/kWh,248134.35038245353,,s,629,54.78888442230225,0.08710474470954252,0.010581359575427846,0.08675225830078125,0.08761917724609375,0.0884242431640625,0.17260260864257815,"[0.08388607788085937, 0.08398233795166016, 0.08383897399902343, 0.08367718505859376, 0.08453632354736328, 0.0890890884399414, 0.08862201690673828, 0.08834764862060547, 0.08846745300292969, 0.08839679718017578, 0.08905522918701173, 0.08837939453125, 0.08853196716308594, 0.08820326232910156, 0.08852684783935547, 0.08853094482421875, 0.08833126068115234, 0.0883599395751953, 0.08833229064941406, 0.08829747009277343, 0.08771071624755859, 0.08838553619384766, 0.08845721435546874, 0.08875212860107422, 0.08825856018066407, 0.08850534057617188, 0.08816230773925782, 0.08822886657714844, 0.08858009338378907, 0.0882339859008789, 0.08867430114746094, 0.08864665222167968, 0.08844902038574219, 0.08828108978271484, 0.0884295654296875, 0.08401407623291016, 0.08382259368896484, 0.0838635482788086, 0.08400077056884765, 0.08771788787841797, 0.0872069091796875, 0.08849203491210937, 0.08865280151367187, 0.08827187347412109, 0.08736563110351563, 0.08729804992675781, 0.08718950653076171, 0.08671231842041016, 0.08691506958007812, 0.08681779479980468, 0.0866529312133789, 0.086940673828125, 0.08705535888671875, 0.08424960327148437, 0.08400383758544921, 0.08397414398193359, 0.08412364959716796, 0.08525926208496094, 0.08683622741699219, 0.08680038452148438, 0.08671949005126953, 0.08692940521240235, 0.1763768310546875, 0.08659661102294922, 0.08731238555908204, 0.0868884506225586, 0.08696832275390624, 0.08851148986816407, 0.08714854431152344, 0.08598323059082032, 0.08636518096923829, 0.08685465240478515, 0.08704512023925781, 0.08686284637451172, 0.08745779418945313, 0.08453529357910156, 0.0869775390625, 0.08696627044677735, 0.08664575958251954, 0.0876072998046875, 0.08689766693115235, 0.08705535888671875, 0.08679936218261719, 0.0866550064086914, 0.08538006591796875, 0.08647270202636718, 0.08609996795654297, 0.08713215637207031, 0.08740147399902344, 0.08702365112304687, 0.08689250946044921, 0.08694169616699218, 0.08711577606201172, 0.08716902160644531, 0.08723149108886719, 0.0867747802734375, 0.08696012878417969, 0.08699494171142579, 0.0842239990234375, 0.08377855682373046, 0.08404684448242188, 0.08385945892333985, 0.08593510437011719, 0.08742301177978516, 0.08683209228515625, 0.08660889434814453, 0.0867952651977539, 0.08660377502441406, 0.08784178924560547, 0.08544153594970703, 0.08774246215820312, 0.08707891082763672, 0.08705331420898438, 0.08723865509033203, 0.08705843353271485, 0.08711577606201172, 0.08695193481445312, 0.08490188598632813, 0.08705741119384766, 0.08451789093017578, 0.08685260772705078, 0.08724787139892579, 0.08672563171386719, 0.08705638122558594, 0.08634572601318359, 0.1737533416748047, 0.08698675537109375, 0.08697344207763671, 0.08704000091552734, 0.08702982330322266, 0.08781715393066407, 0.08694579315185547, 0.08745369720458984, 0.08681785583496093, 0.08706249237060547, 0.08565961456298828, 0.0864000015258789, 0.0841502685546875, 0.08501248168945312, 0.08692018890380859, 0.08674201965332032, 0.0869222412109375, 0.08693862152099609, 0.0867041244506836, 0.08703385925292968, 0.08675225830078125, 0.086761474609375, 0.08619315338134766, 0.08686489868164063, 0.08680652618408204, 0.08746598052978516, 0.08694783782958984, 0.08730828857421875, 0.08752537536621094, 0.08693350219726563, 0.08705023956298828, 0.08706867218017578, 0.08747212982177735, 0.0880005111694336, 0.08732262420654296, 0.08604876708984376, 0.08707180786132812, 0.08670201873779297, 0.0873164825439453, 0.08682189178466797, 0.08709529876708984, 0.08716492462158203, 0.08606719970703125, 0.08672358703613281, 0.08690790557861328, 0.0867962875366211, 0.08702361297607422, 0.08684031677246094, 0.08695507049560547, 0.08671123504638673, 0.08706867218017578, 0.08863744354248047, 0.08740863800048829, 0.08729503631591796, 0.08682080078125, 0.08690380859375, 0.08818892669677734, 0.08729702758789062, 0.08700415802001953, 0.08678809356689453, 0.0868106231689453, 0.08693657684326171, 0.08690995025634765, 0.17623654174804687, 0.08711167907714844, 0.08703897857666015, 0.08722227478027343, 0.08726322937011718, 0.08703590393066406, 0.08675942230224609, 0.08699088287353515, 0.08680445098876953, 0.08698777770996094, 0.08604876708984376, 0.08687308502197266, 0.08715878295898437, 0.08707379150390625, 0.087108642578125, 0.08752022552490234, 0.08703385925292968, 0.08690995025634765, 0.0869939193725586, 0.08686182403564453, 0.08672665405273437, 0.08708710479736329, 0.086866943359375, 0.08725094604492188, 0.08706047821044922, 0.08675945281982422, 0.08477897644042968, 0.08724479675292969, 0.08646656036376953, 0.086866943359375, 0.08677273559570313, 0.08715058898925782, 0.08593714904785156, 0.08755712127685547, 0.08769945526123046, 0.08737586975097657, 0.0873512954711914, 0.08723763275146484, 0.08681779479980468, 0.08708710479736329, 0.08671129608154297, 0.08673894500732422, 0.08689766693115235, 0.0878828125, 0.08707987213134766, 0.08682710266113282, 0.08714435577392578, 0.08673996734619141, 0.08677581024169922, 0.08577126312255859, 0.08668160247802735, 0.08681574249267578, 0.0868136978149414, 0.08693555450439452, 0.08668364715576173, 0.0859504623413086, 0.08378470611572265, 0.08481996917724609, 0.08730931091308594, 0.08659455871582031, 0.08389631652832032, 0.08560025787353516, 0.08680038452148438, 0.17275801086425782, 0.08369971466064453, 0.08384204864501953, 0.08377139282226563, 0.08545689392089843, 0.08574976348876953, 0.08727859497070313, 0.08688025665283203, 0.0867799072265625, 0.08705741119384766, 0.08711580657958984, 0.08679933166503906, 0.0867962875366211, 0.08704307556152344, 0.08686386871337891, 0.08696320343017579, 0.08698880004882813, 0.08742403411865235, 0.0870973129272461, 0.08734207916259766, 0.08837529754638672, 0.08715980529785156, 0.08705023956298828, 0.086793212890625, 0.0869744644165039, 0.08696217346191407, 0.08680550384521485, 0.08711167907714844, 0.08749362945556641, 0.08701235198974609, 0.08706150054931641, 0.08685772705078125, 0.08689766693115235, 0.08696115112304688, 0.0865955810546875, 0.08719564819335937, 0.08694989013671875, 0.08730931091308594, 0.08871324920654297, 0.08721711730957031, 0.08766668701171874, 0.08723865509033203, 0.08547942352294922, 0.088416259765625, 0.08738614654541016, 0.08706454467773438, 0.08716083526611328, 0.08708815765380859, 0.08697238159179688, 0.08681676483154296, 0.08706559753417968, 0.0872499237060547, 0.08688639831542969, 0.08803123474121094, 0.0873512954711914, 0.08714649963378907, 0.08679936218261719, 0.08706047821044922, 0.08689254760742188, 0.08732466888427734, 0.0865843505859375, 0.08680239868164062, 0.08697548675537109, 0.1747763214111328, 0.08670310211181641, 0.08710451507568359, 0.08699903869628907, 0.08693657684326171, 0.08607334136962891, 0.0869969940185547, 0.08681574249267578, 0.08696627044677735, 0.08683827209472657, 0.08736153411865234, 0.08679219055175781, 0.08696012878417969, 0.086830078125, 0.0871352310180664, 0.08736870574951172, 0.08679424285888672, 0.08719462585449218, 0.08674508666992188, 0.08693862152099609, 0.08799231719970703, 0.08773529815673828, 0.08741171264648437, 0.08712397003173829, 0.08704512023925781, 0.08727654266357422, 0.08699903869628907, 0.08696729278564454, 0.0868853759765625, 0.08697344207763671, 0.08712499237060548, 0.08712499237060548, 0.0865771484375, 0.08749158477783203, 0.08688127899169922, 0.08696524810791016, 0.08687923431396484, 0.08711475372314453, 0.08697856140136719, 0.08686489868164063, 0.08696832275390624, 0.0843724822998047, 0.08361881256103515, 0.08333516693115234, 0.08410316467285156, 0.08653314971923828, 0.0870778579711914, 0.08714342498779297, 0.08421171569824219, 0.08394239807128906, 0.08393215942382813, 0.08404377746582031, 0.08362393951416015, 0.08348060607910156, 0.08413180541992188, 0.08405094146728516, 0.08691302490234375, 0.08714854431152344, 0.08712191772460938, 0.08708812713623047, 0.08714649963378907, 0.08697241973876953, 0.08708812713623047, 0.175857666015625, 0.08723865509033203, 0.08733695983886719, 0.08694886779785156, 0.08750080108642579, 0.08700927734375, 0.0869959716796875, 0.08687718200683593, 0.08966963195800781, 0.0872069091796875, 0.08702873229980469, 0.0869713897705078, 0.08688333129882812, 0.08693247985839844, 0.08705228424072266, 0.08724275207519532, 0.0872847671508789, 0.08704819488525391, 0.08684848022460938, 0.08682803344726563, 0.08715570831298829, 0.08688742065429687, 0.08504934692382812, 0.08777011108398437, 0.08640819549560547, 0.08897232055664063, 0.08616751861572265, 0.0871905288696289, 0.0890224609375, 0.0864686050415039, 0.08654438018798828, 0.08633036804199219, 0.08477593231201172, 0.08412876892089843, 0.08437452697753907, 0.08408985900878906, 0.08387686157226562, 0.08403353881835937, 0.08393318176269532, 0.08396185302734376, 0.08435302734375, 0.08403558349609375, 0.08378470611572265, 0.0841338882446289, 0.08378470611572265, 0.08367820739746094, 0.08367922973632813, 0.0835563507080078, 0.08376831817626954, 0.08383078765869141, 0.08380723571777343, 0.0837734375, 0.08563814544677735, 0.08487833404541016, 0.08407552337646484, 0.0837580795288086, 0.0836485137939453, 0.08376012420654297, 0.08358809661865234, 0.08362290954589843, 0.08371814727783203, 0.08357478332519531, 0.08497869110107421, 0.1696030731201172, 0.08372121429443359, 0.08371916961669922, 0.0837918701171875, 0.08386457824707032, 0.08376319885253906, 0.08395263671875, 0.08374784088134765, 0.08342527770996094, 0.08687206268310547, 0.08412262725830078, 0.08380416107177735, 0.08415436553955079, 0.0838440933227539, 0.08380316925048828, 0.08431715393066407, 0.08392499542236329, 0.08376319885253906, 0.08381747436523437, 0.08540467071533203, 0.08532991790771484, 0.08402022552490235, 0.084421630859375, 0.0841195526123047, 0.08383897399902343, 0.08380623626708984, 0.08381231689453125, 0.08393830108642578, 0.08379705810546875, 0.08394233703613281, 0.08370175933837891, 0.08405811309814454, 0.08380210876464844, 0.0837734375, 0.08362290954589843, 0.08380006408691407, 0.08357478332519531, 0.08359935760498047, 0.08378470611572265, 0.0834549789428711, 0.08362188720703125, 0.08369152069091797, 0.08387686157226562, 0.08376627349853516, 0.08377961730957031, 0.0838430404663086, 0.08387686157226562, 0.08553778839111328, 0.0837232666015625, 0.08371916961669922, 0.08374476623535156, 0.08370073699951172, 0.08382259368896484, 0.08384921264648437, 0.08401203155517578, 0.08357990264892579, 0.08365055847167968, 0.08378575897216797, 0.08367919921875, 0.08369055938720703, 0.0851127700805664, 0.08426700592041016, 0.08618905639648437, 0.1722030029296875, 0.08384819030761718, 0.08397721862792969, 0.0837570571899414, 0.08369664001464844, 0.0834549789428711, 0.08403865814208984, 0.08388505554199219, 0.08392908477783204, 0.08388198089599609, 0.08392704010009766, 0.08387379455566406, 0.0837027816772461, 0.08390860748291015, 0.08369254302978515, 0.08369766235351563, 0.08587161254882812, 0.0840478744506836, 0.08396288299560548, 0.08394649505615234, 0.08418099212646485, 0.08524288177490234, 0.08649318695068359, 0.0840816650390625, 0.08387174224853515, 0.08375603485107422, 0.08405811309814454, 0.08390758514404296, 0.0839393310546875, 0.08409497833251953, 0.08389836883544922, 0.08448000335693359, 0.08434893035888671, 0.08451583862304687, 0.0842639389038086, 0.08398745727539063, 0.08408370971679688, 0.08378880310058594, 0.08385740661621094, 0.08418406677246094, 0.08394035339355468, 0.08402124786376954, 0.08522137451171875, 0.08547840118408204, 0.08503705596923829, 0.08401510620117188, 0.08397516632080078, 0.08380723571777343, 0.08466022491455077, 0.0840079345703125, 0.08379193878173828, 0.08372525024414063, 0.08389631652832032, 0.0839393310546875, 0.08357071685791016, 0.08390652465820313, 0.08391577911376953, 0.0837550048828125, 0.08391474914550781, 0.08372633361816406, 0.08374476623535156, 0.08390758514404296, 0.0837550048828125, 0.1732474822998047, 0.08425472259521484, 0.0840273895263672, 0.08414924621582032, 0.08400179290771484, 0.08393830108642578, 0.08408268737792969, 0.08393727874755859, 0.08398745727539063, 0.08395468902587891, 0.08501862335205078, 0.08602214050292968, 0.08572313690185547, 0.08382463836669922, 0.08390962982177734, 0.08375296020507812, 0.08380928039550781, 0.0840263671875, 0.08383385467529297, 0.08391986846923828, 0.08388505554199219, 0.083666015625, 0.08356137847900391, 0.08396697235107421, 0.08387481689453125, 0.08371916961669922, 0.08389119720458985, 0.08397926330566406, 0.0838656005859375, 0.08394751739501953, 0.08407244873046875, 0.0837232666015625, 0.08388813018798828, 0.08374578857421874, 0.08396185302734376, 0.08385330963134766, 0.08368434906005859, 0.08367206573486329, 0.08419328308105468, 0.08365875244140625, 0.08380825805664062, 0.08445235443115234, 0.0841533432006836, 0.08358707427978515, 0.0837027816772461, 0.08361472320556641, 0.08509645080566407, 0.08371302032470704, 0.08371097564697266, 0.08373248291015625, 0.08388198089599609, 0.08400691223144531, 0.08375910186767578, 0.08609996795654297, 0.08662732696533203, 0.08376422119140625, 0.08392396545410157, 0.08380006408691407, 0.08389119720458985, 0.0837754898071289, 0.0837734375, 0.0838175048828125, 0.08397615814208985]",tokens/s,11.480430869002337,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-7B,Qwen/Qwen-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,TencentARC/Mistral_Pro_8B_v0.1,TencentARC/Mistral_Pro_8B_v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -31361,27 +29559,56 @@ ImportError: This modeling file requires the following packages that were not fo ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained - model_class = get_class_from_dynamic_module( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module - final_module = get_cached_module_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file - modules_needed = check_imports(resolved_module_file) - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports - raise ImportError( -ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 1200, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 976, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 718, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 613, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-14B,Qwen/Qwen2-beta-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,3905.671168,12732.33408,0.0,12085.886976,11337.501696,s,10,10.970613281250001,1.097061328125,0.0017840508518984434,1.097439453125,1.0989015869140624,1.0993332397460938,1.0996785620117187,"[1.0981041259765625, 1.099764892578125, 1.0942474365234376, 1.09466943359375, 1.09612890625, 1.0954654541015625, 1.0967747802734376, 1.0988056640625, 1.098486328125, 1.098166259765625]",tokens/s,233.35067369253872,kWh,1.2926500191291174e-05,7.083296092205274e-06,6.255157781898113e-05,8.256137410247758e-05,tokens/kWh,3100723.5863376665,MB,3909.746688,12732.33408,0.0,12085.886976,11686.806016,s,10,636.987296875,63.6987296875,0.008792231338471245,63.69969140625,63.70640390625,63.70996171875,63.71280796875,"[63.682359375, 63.687671875, 63.70561328125, 63.70497265625, 63.69943359375, 63.69994921875, 63.70396484375, 63.71351953125, 63.6979921875, 63.6918203125]",tokens/s,0.9890307123716925,kWh,0.0007521740069488685,0.00041225789324771534,0.003629864737222821,0.0047942966374194046,tokens/kWh,13140.613684244328,,s,629,645.8482131958002,1.0267857125529425,0.13035148276579694,1.0110596313476563,1.01170830078125,1.0120460571289063,2.107026708984375,"[1.0111242065429686, 1.0104995727539063, 1.0103193359375, 1.0103952026367187, 1.0104954223632812, 1.0104678955078126, 1.0100704956054687, 1.0106204223632813, 1.0101810913085938, 1.0110658569335937, 1.0104442749023437, 1.0103756713867187, 1.0101524658203125, 1.0103828735351563, 1.0101749877929687, 1.0103490600585938, 1.0100950927734376, 1.0109429931640626, 1.0103602905273437, 1.0109215698242187, 1.0110667724609375, 1.0112665405273438, 1.0110863647460937, 1.01104638671875, 1.0108724365234374, 1.0105343017578126, 1.0103214111328125, 1.010872314453125, 1.0106912841796876, 1.0113380737304687, 1.01102490234375, 1.011188720703125, 1.0115625, 1.0118072509765625, 1.011420166015625, 1.0109522094726562, 1.010282470703125, 1.0109522094726562, 1.0106019897460938, 1.0113290405273438, 1.0105897216796875, 1.0110146484375, 1.0105538330078125, 1.0109419555664063, 1.0105497436523438, 1.0111878051757812, 1.0105476684570311, 1.0111273193359376, 1.0112327880859375, 1.0111181640625, 1.0113422241210936, 1.0108223266601561, 1.0107902221679688, 1.0107567749023438, 1.0107431030273437, 1.0107125854492187, 1.0108497924804687, 1.0110812377929688, 1.0113054809570312, 1.011472412109375, 1.010951171875, 1.011072998046875, 2.110793701171875, 1.0105712890625, 1.0109173583984374, 1.0111078491210939, 1.0105538940429688, 1.0114539184570313, 1.0104873046875, 1.0103736572265625, 1.01060302734375, 1.0104473876953124, 1.0103705444335938, 1.0103173217773438, 1.0103797607421876, 1.0106593017578125, 1.0105569458007813, 1.0109276123046875, 1.0109112548828125, 1.0105016479492188, 1.0110904541015624, 1.0104453125, 1.0106286010742187, 1.0105743408203125, 1.0106060791015625, 1.0110525512695312, 1.0107782592773438, 1.0118408813476563, 1.0113218383789062, 1.0111395874023437, 1.0107064208984375, 1.010524169921875, 1.0105466918945312, 1.0102415161132812, 1.010682861328125, 1.0110791625976563, 1.0108632202148438, 1.01125830078125, 1.0108221435546876, 1.0107473754882812, 1.0111160278320312, 1.0105282592773437, 1.0108026733398439, 1.0104678344726563, 1.0108098754882813, 1.0106849365234376, 1.0112696533203125, 1.0114283447265624, 1.01136181640625, 1.01125634765625, 1.0113484497070313, 1.0112225341796874, 1.0113013916015625, 1.0110914306640626, 1.0109788208007813, 1.011293212890625, 1.0114918212890625, 1.0115665893554688, 1.0111375122070312, 1.0111918334960937, 1.0110986328125, 1.0106838989257811, 1.011178466796875, 1.01096142578125, 1.0111539306640625, 2.106599365234375, 1.0114857177734375, 1.0112235717773437, 1.011198974609375, 1.01125732421875, 1.010946044921875, 1.0106123657226562, 1.010948974609375, 1.0108016357421874, 1.0105702514648438, 1.011140625, 1.0107391967773438, 1.0105272216796874, 1.010386962890625, 1.0104515991210938, 1.010242431640625, 1.0104063720703125, 1.010171875, 1.0105518188476563, 1.0103695068359375, 1.01096142578125, 1.0108364868164061, 1.0114160766601563, 1.0112081909179687, 1.0110771484375, 1.01035107421875, 1.0108743896484376, 1.01146728515625, 1.0117959594726562, 1.0120355834960937, 1.012463623046875, 1.0119403686523438, 1.01194140625, 1.0119802856445312, 1.011323974609375, 1.0110104370117188, 1.0110330810546875, 1.0113382568359375, 1.0116249389648437, 1.0108795166015625, 1.01194140625, 1.0112030639648437, 1.0113484497070313, 1.011093505859375, 1.0115000610351563, 1.0112604370117189, 1.0109788208007813, 1.0104954833984374, 1.011493896484375, 1.01127783203125, 1.0117058715820313, 1.0108528442382811, 1.0114898071289062, 1.0111221923828124, 1.0114129638671876, 1.011178466796875, 1.0114631958007811, 1.0113863525390625, 1.0115481567382814, 1.01125732421875, 1.0124105834960937, 1.0113810424804688, 1.0117324829101562, 2.10709814453125, 1.0106634521484374, 1.0110371704101562, 1.0109081420898438, 1.0120171508789062, 1.0121226196289062, 1.011262451171875, 1.0106112060546875, 1.0108251953125, 1.0108651733398437, 1.0108108520507812, 1.0108057861328126, 1.0110238647460938, 1.0108446655273438, 1.01113037109375, 1.0110238647460938, 1.0114150390625, 1.01075146484375, 1.0109603881835938, 1.0105835571289064, 1.010745361328125, 1.0105211181640625, 1.0108262329101563, 1.01054052734375, 1.0108231811523438, 1.0112245483398437, 1.0115286865234374, 1.0111610717773438, 1.0113402709960937, 1.0108292846679687, 1.0113024291992188, 1.0110156860351562, 1.011251220703125, 1.0109337768554687, 1.0112122802734376, 1.0112041015625, 1.0106275634765625, 1.0104483642578126, 1.0109224853515626, 1.0123694458007813, 1.0121512451171875, 1.0115277099609374, 1.011831787109375, 1.0113003540039063, 1.0119905395507813, 1.0121932983398438, 1.01144677734375, 1.0107801513671875, 1.011119140625, 1.0112194213867187, 1.0110924682617188, 1.0110105590820313, 1.0112767944335936, 1.0110873413085937, 1.0113557739257812, 1.0116627807617187, 1.0114488525390626, 1.01161474609375, 1.0121482543945313, 1.0110945434570313, 1.0111918334960937, 1.0114703369140625, 1.011420166015625, 2.107243408203125, 1.011304443359375, 1.0116792602539062, 1.0110904541015624, 1.0111897583007812, 1.0108170166015624, 1.0107166748046874, 1.010555908203125, 1.0108446655273438, 1.0105784301757812, 1.0112839965820313, 1.0110791625976563, 1.011198974609375, 1.0106951904296875, 1.0111498413085938, 1.0108477172851562, 1.0110279541015625, 1.0106736450195313, 1.01078125, 1.0110596313476563, 1.0108917846679688, 1.0110576782226564, 1.0108016357421874, 1.01058251953125, 1.0113638305664063, 1.01103515625, 1.0112214965820312, 1.0109030151367187, 1.0114221801757812, 1.01172021484375, 1.011646484375, 1.0109634399414062, 1.0110392456054687, 1.01072998046875, 1.0113239135742187, 1.0107545776367188, 1.0113812255859376, 1.0107801513671875, 1.0113116455078126, 1.011267578125, 1.0112327880859375, 1.0109522094726562, 1.0110904541015624, 1.0106736450195313, 1.0117355346679688, 1.0115389404296875, 1.0110474243164063, 1.0108436279296875, 1.01097265625, 1.0110955810546876, 1.011800048828125, 1.0115277099609374, 1.0110167236328125, 1.0107422485351563, 1.0111610717773438, 1.0109552612304689, 1.01119384765625, 1.0112645263671876, 1.0109450073242188, 1.0111027221679687, 1.0116802368164062, 1.0114508666992188, 1.0115563354492187, 2.106843017578125, 1.01136181640625, 1.0113515625, 1.0108784790039063, 1.0107105102539062, 1.0108948364257813, 1.0118154296875, 1.0109542236328124, 1.0106787719726562, 1.0108887329101564, 1.0112225341796874, 1.0112604370117189, 1.0115020751953125, 1.010966552734375, 1.0110965576171875, 1.0111488037109375, 1.0121779174804688, 1.01123583984375, 1.0113885498046875, 1.011718017578125, 1.0113597412109374, 1.0111610717773438, 1.0113341674804688, 1.0110709838867187, 1.01110986328125, 1.0114406127929687, 1.0113106079101561, 1.0103971557617188, 1.0105989379882812, 1.0106224365234375, 1.010735107421875, 1.0104473876953124, 1.010703369140625, 1.0104063720703125, 1.01077099609375, 1.0111979370117188, 1.01096240234375, 1.0108262329101563, 1.011472412109375, 1.011409912109375, 1.0115133666992187, 1.0109255981445313, 1.0116690063476563, 1.0109921264648438, 1.0113484497070313, 1.011146728515625, 1.0115604248046874, 1.0110126342773438, 1.0111477661132813, 1.0111273193359376, 1.01097265625, 1.0108907470703126, 1.0107822265625, 1.0106972045898437, 1.0111293334960938, 1.011146728515625, 1.0112236938476562, 1.0110370483398436, 1.0111190795898437, 1.0111826171875, 1.01117236328125, 1.0109869995117187, 1.0112276611328126, 2.108168212890625, 1.0113248901367187, 1.0116497192382812, 1.0111066284179688, 1.0111590576171876, 1.010862060546875, 1.0108671875, 1.0107658081054687, 1.0111181030273437, 1.010798583984375, 1.0113054809570312, 1.0110842895507812, 1.01054052734375, 1.0102753295898437, 1.0105231323242188, 1.0106941528320312, 1.0107473754882812, 1.0110699462890624, 1.01083544921875, 1.0106234741210938, 1.0105692138671876, 1.0113546142578125, 1.0107955322265625, 1.01106689453125, 1.011330078125, 1.0107811889648437, 1.010820068359375, 1.0105374755859375, 1.0116658935546874, 1.011794921875, 1.0121381225585937, 1.0115756225585937, 1.0113126220703126, 1.0110075073242188, 1.0110658569335937, 1.01071875, 1.0106624145507812, 1.0105538330078125, 1.0108600463867188, 1.0104791259765624, 1.0111047973632812, 1.010713623046875, 1.0108712768554688, 1.0103910522460937, 1.0111826171875, 1.0108528442382811, 1.0117273559570312, 1.0112481079101563, 1.0113095703125, 1.0112542724609375, 1.0117642211914062, 1.0118338623046874, 1.0117969970703125, 1.0115205078125, 1.0120662841796875, 1.0122158203125, 1.011726318359375, 1.0116546630859375, 1.011726318359375, 1.0113873901367187, 1.0115338134765626, 1.0122117309570313, 1.0120550537109374, 2.11171728515625, 1.0110648193359375, 1.0112655639648438, 1.011040283203125, 1.0112337646484375, 1.011103759765625, 1.0117447509765625, 1.011694580078125, 1.0115451049804687, 1.0108006591796874, 1.0108999633789062, 1.0106654663085937, 1.0113208618164062, 1.0110341186523437, 1.0105753784179687, 1.0110699462890624, 1.0127493286132812, 1.0114774780273437, 1.0117990112304687, 1.0114754638671875, 1.01243701171875, 1.0126602172851562, 1.0127821044921874, 1.012316162109375, 1.0116639404296874, 1.0120989990234375, 1.0121307983398438, 1.0107197265625, 1.0107975463867187, 1.0107320556640624, 1.0111702880859375, 1.0104524536132813, 1.0106388549804688, 1.01058251953125, 1.0108671875, 1.0108385009765626, 1.0115369262695313, 1.0105947875976562, 1.010924560546875, 1.0109214477539064, 1.0113648681640626, 1.0106675415039061, 1.0112532348632812, 1.0106183471679688, 1.0113659057617188, 1.0111826171875, 1.0120530395507812, 1.0109584350585938, 1.0110103759765625, 1.0113085327148437, 1.0110975952148438, 1.0110146484375, 1.01137109375, 1.0108394775390626, 1.0119804077148438, 1.01148046875, 1.0113474731445313, 1.0114826049804688, 1.0118276977539062, 1.0114006958007813, 1.011209228515625, 1.0110105590820313, 1.0114006958007813, 2.110498779296875, 1.0119219360351563, 1.01136181640625, 1.0108313598632812, 1.0110064697265626, 1.0115112915039062, 1.0112849731445313, 1.011282958984375, 1.0111334228515625, 1.01097265625, 1.011146728515625, 1.0113351440429688, 1.0111365356445312, 1.010808837890625, 1.010713623046875, 1.0107698974609376, 1.0108856201171874, 1.0107218017578126, 1.01076171875, 1.0107422485351563, 1.0111477661132813, 1.011072998046875, 1.01098291015625, 1.0104760131835937, 1.0106972045898437, 1.01064501953125, 1.0107012939453126, 1.010724853515625, 1.0107740478515626, 1.0106009521484376, 1.010820068359375, 1.0108784790039063, 1.0107863159179689, 1.0108590698242188, 1.01104736328125, 1.0110914306640626, 1.0109132690429687, 1.0108549194335938, 1.0113065795898437, 1.0108507690429687, 1.0111047973632812, 1.0121011352539062, 1.0114979858398438, 1.0112440185546876, 1.0114396362304687, 1.0111139526367188, 1.0110658569335937, 1.01098291015625, 1.011177490234375, 1.0114918212890625, 1.0113802490234376, 1.0121666259765625, 1.0110453491210938, 1.0111324462890625, 1.0114744262695312, 1.0106736450195313, 1.0109685668945312, 1.0110310668945313, 1.0110238647460938, 1.0108549194335938, 1.0109911499023438, 1.0115542602539063, 1.010951171875, 2.10921875, 1.0104708862304688, 1.0106941528320312, 1.0109368286132812, 1.0107924194335938, 1.0110361328125, 1.0113505249023438, 1.0111631469726563, 1.010882568359375, 1.011051513671875, 1.0112184448242187, 1.0114017333984375, 1.0117243041992188, 1.0111027221679687, 1.0108477172851562, 1.0110914306640626, 1.0114437255859374, 1.01085595703125, 1.0109983520507813, 1.0107094116210937, 1.0110496215820313, 1.010912109375, 1.0108661499023437, 1.010777099609375, 1.0107576904296875, 1.0106285400390624, 1.0111324462890625, 1.011009521484375, 1.01085693359375, 1.0107545776367188, 1.0111273193359376, 1.010572265625, 1.0108016357421874, 1.0107443237304687, 1.0111344604492187, 1.010861083984375, 1.0115419921875, 1.0107218017578126, 1.0108344116210937, 1.0103900146484375, 1.0109389038085939, 1.0106685180664063, 1.0109644775390625, 1.0104258422851562, 1.0109030151367187, 1.0110167236328125, 1.0119915771484376, 1.011103759765625, 1.0113802490234376, 1.0111365356445312, 1.0113638305664063, 1.0108446655273438, 1.0109859619140624, 1.01060400390625, 1.0110167236328125, 1.0108129272460937, 1.0115399780273437, 1.0108231811523438, 1.0112481079101563, 1.0108765869140626, 1.0110595703125, 1.0108630981445312, 1.0109900512695313]",tokens/s,0.9739130451218064,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-7b,google/recurrentgemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,m,m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -31393,7 +29620,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/google/recurrentgemma-7b/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/m/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -31420,9 +29647,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948216-2de7a4964a6a23231ae7f83f;92c8aeb9-9cc7-41d1-b668-691f8b6b77cc) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948c4b-56e9a1be339f2285213886dd;24438d7c-1431-4b02-af49-71e675c3fedd) -Repository Not Found for url: https://huggingface.co/google/recurrentgemma-7b/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/m/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -31447,12 +29674,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: google/recurrentgemma-7b is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: m is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-rw-1b,tiiuae/falcon-rw-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1513.762816,1825.046528,0.0,1178.599424,1091.247104,s,10,1.2350289306640625,0.12350289306640624,0.0006278590763107522,0.12335015869140625,0.12446991119384765,0.12452100448608398,0.12456187911987306,"[0.12457209777832032, 0.12258493041992187, 0.123223388671875, 0.12296672058105469, 0.12311740875244141, 0.12295513916015625, 0.1234769287109375, 0.12388646697998047, 0.12445855712890624, 0.12378729248046876]",tokens/s,2072.8259366551956,kWh,1.4517080513280905e-06,7.954704248798562e-07,6.551292503901485e-06,8.798470980109433e-06,tokens/kWh,29095964.580520324,MB,1513.762816,1825.046528,0.0,1178.599424,1159.734784,s,10,69.32218505859375,6.932218505859375,0.003149777960520474,6.933029541015625,6.935241162109374,6.935911108398438,6.936447065429688,"[6.93331884765625, 6.93092578125, 6.9333740234375, 6.9281669921875, 6.932740234375, 6.934138671875, 6.93509228515625, 6.93250244140625, 6.9253447265625, 6.9365810546875]",tokens/s,9.087999743047627,kWh,8.183205577456532e-05,4.4849814286347e-05,0.00036005222300090266,0.000486734093061815,tokens/kWh,129434.12203508627,,s,629,70.322675743103,0.11180075634833549,0.014707892425374562,0.10997555541992188,0.11031490783691406,0.11055718231201171,0.23335628784179688,"[0.10998989105224609, 0.11027967834472656, 0.11003801727294922, 0.11055718231201171, 0.11002572631835937, 0.10997555541992188, 0.10988441467285157, 0.11009740447998047, 0.10994892883300782, 0.1100421142578125, 0.10996940612792969, 0.11002470397949218, 0.11002470397949218, 0.11015475463867187, 0.10990592193603516, 0.10996428680419922, 0.10994073486328125, 0.10987417602539062, 0.10995712280273437, 0.10995814514160156, 0.1099161605834961, 0.10992947387695312, 0.11009024047851562, 0.1098045425415039, 0.1099530258178711, 0.10990898895263672, 0.10999091339111328, 0.1099161605834961, 0.10990386962890625, 0.10983321380615234, 0.10983936309814453, 0.10992025756835938, 0.10994380950927735, 0.11009740447998047, 0.11012198638916015, 0.11004415893554688, 0.11021311950683593, 0.11015270233154296, 0.10997555541992188, 0.10997042846679687, 0.1100769271850586, 0.10993254089355468, 0.11002880096435547, 0.10997248077392578, 0.1100738525390625, 0.10994585418701172, 0.10987519836425781, 0.11011788940429687, 0.11002674865722656, 0.11031449890136719, 0.11004313659667969, 0.10998271942138672, 0.1100400619506836, 0.11014860534667968, 0.11063295745849609, 0.10996736145019531, 0.10992845153808593, 0.10991410827636719, 0.11014860534667968, 0.1098608627319336, 0.11007590484619141, 0.10992332458496094, 0.23466700744628907, 0.10985779571533204, 0.10981171417236328, 0.1099315185546875, 0.10995507049560548, 0.10985472106933594, 0.10984754943847656, 0.10977689361572265, 0.10997862243652344, 0.1100738525390625, 0.11007488250732422, 0.10998169708251954, 0.11045171356201172, 0.11078348541259765, 0.11011686706542968, 0.10994380950927735, 0.10991513824462891, 0.10980556488037109, 0.10991718292236329, 0.10992332458496094, 0.10974310302734375, 0.10984857940673828, 0.10985164642333985, 0.10992947387695312, 0.11002572631835937, 0.11035648345947266, 0.11005951690673828, 0.10994073486328125, 0.10990694427490234, 0.1097676773071289, 0.10987827301025391, 0.10998374176025391, 0.10983628845214843, 0.10985164642333985, 0.10997555541992188, 0.11007590484619141, 0.10993049621582031, 0.10982195281982422, 0.10988543701171875, 0.11021414184570312, 0.11008614349365234, 0.11017420959472657, 0.10999193572998046, 0.10999603271484375, 0.1100400619506836, 0.10992127990722657, 0.11122073364257813, 0.10994790649414063, 0.1098946533203125, 0.10998067474365235, 0.11016397094726563, 0.11005030059814454, 0.10995097351074219, 0.10986803436279297, 0.10994483184814453, 0.11000115203857422, 0.10993663787841797, 0.1098629150390625, 0.10973286437988282, 0.11027046203613282, 0.10998169708251954, 0.11012403106689453, 0.11069951629638672, 0.2334771270751953, 0.109949951171875, 0.10998374176025391, 0.109949951171875, 0.11041484832763672, 0.11017215728759766, 0.11003084564208984, 0.1100421142578125, 0.11011174774169921, 0.11004927825927735, 0.10999603271484375, 0.11010457611083985, 0.10996121978759765, 0.1101322250366211, 0.10993869018554688, 0.11010150146484375, 0.11002470397949218, 0.1104005126953125, 0.11045171356201172, 0.11004927825927735, 0.11002982330322265, 0.11002470397949218, 0.10999193572998046, 0.10997042846679687, 0.10986803436279297, 0.1099315185546875, 0.10996018981933593, 0.11003699493408203, 0.10990592193603516, 0.11009228515625, 0.10992537689208984, 0.11011686706542968, 0.11002572631835937, 0.10996121978759765, 0.1100738525390625, 0.11009945678710938, 0.1099683837890625, 0.10994278717041016, 0.11000012969970703, 0.10996940612792969, 0.11009638214111328, 0.11007590484619141, 0.10986803436279297, 0.11006259155273437, 0.10995507049560548, 0.10999501037597656, 0.10975743865966797, 0.11042304229736329, 0.11009535980224609, 0.1101465606689453, 0.11001651000976563, 0.11085004425048828, 0.11017932891845703, 0.11005542755126953, 0.11006463623046875, 0.10995097351074219, 0.10983526611328125, 0.11001036834716797, 0.10994278717041016, 0.11001856231689452, 0.11001139068603516, 0.11006976318359375, 0.1099315185546875, 0.23315866088867188, 0.10991718292236329, 0.10996428680419922, 0.10990898895263672, 0.10994687652587891, 0.10980659484863281, 0.11001344299316407, 0.10984243011474609, 0.1099192352294922, 0.10988441467285157, 0.10989568328857421, 0.10988543701171875, 0.11012300872802734, 0.10975027465820313, 0.10980352020263671, 0.10992742156982421, 0.10989055633544922, 0.10984754943847656, 0.10997657775878907, 0.10991001892089844, 0.10981273651123047, 0.109844482421875, 0.10982809448242188, 0.1099530258178711, 0.11010150146484375, 0.110129150390625, 0.10988031768798828, 0.10981785583496094, 0.10985779571533204, 0.10993561553955078, 0.10999910736083984, 0.10990694427490234, 0.10990796661376953, 0.10995097351074219, 0.11003801727294922, 0.10986803436279297, 0.10986393737792968, 0.10978406524658203, 0.10994175720214844, 0.10994585418701172, 0.11002674865722656, 0.1098967056274414, 0.10996121978759765, 0.10992947387695312, 0.11166207885742188, 0.11004415893554688, 0.11000012969970703, 0.10999807739257812, 0.10993459320068359, 0.11005235290527343, 0.10998169708251954, 0.11006668853759766, 0.11001651000976563, 0.11010150146484375, 0.11001548767089844, 0.10998579406738282, 0.10998271942138672, 0.1099653091430664, 0.10990386962890625, 0.11008306884765626, 0.10987110137939453, 0.10999807739257812, 0.10995916748046874, 0.23322726440429686, 0.10992332458496094, 0.11020185852050782, 0.11035545349121094, 0.10995814514160156, 0.10994175720214844, 0.10995507049560548, 0.10988441467285157, 0.10981273651123047, 0.10998374176025391, 0.10985574340820313, 0.10997452545166016, 0.10989772796630859, 0.10986803436279297, 0.11038003540039062, 0.11002880096435547, 0.11003494262695312, 0.11040563201904297, 0.1099653091430664, 0.11018342590332031, 0.11008819580078125, 0.11007488250732422, 0.10995916748046874, 0.10976461029052734, 0.11010047912597656, 0.1102008285522461, 0.11007488250732422, 0.10994483184814453, 0.11033497619628906, 0.11017727661132813, 0.1098629150390625, 0.10993561553955078, 0.11003699493408203, 0.11001241302490235, 0.11000627136230469, 0.10999295806884765, 0.11002162933349609, 0.11002265930175781, 0.10992230224609376, 0.10989158630371093, 0.1097359390258789, 0.10989977264404296, 0.11002674865722656, 0.10999910736083984, 0.10985779571533204, 0.1099683837890625, 0.10974720001220703, 0.109876220703125, 0.10991001892089844, 0.10994790649414063, 0.10997452545166016, 0.11035135650634766, 0.11020697784423829, 0.11008409881591796, 0.110060546875, 0.10996326446533203, 0.11019058990478516, 0.11144703674316406, 0.10995097351074219, 0.10988646697998047, 0.11015679931640625, 0.11033395385742187, 0.11005542755126953, 0.23340646362304687, 0.11011686706542968, 0.11028275299072265, 0.11017420959472657, 0.11006259155273437, 0.1100738525390625, 0.11010867309570313, 0.11038105773925781, 0.10999091339111328, 0.10990284729003906, 0.109949951171875, 0.11034009552001953, 0.10992845153808593, 0.10986495971679687, 0.1099192352294922, 0.1098946533203125, 0.10980556488037109, 0.1097553939819336, 0.11004518127441407, 0.11012300872802734, 0.10977996826171875, 0.10986393737792968, 0.10984038543701172, 0.10991718292236329, 0.1098936309814453, 0.10987519836425781, 0.10983116912841796, 0.1099130859375, 0.11000934600830078, 0.1101690902709961, 0.11019468688964844, 0.10981478118896484, 0.1098608627319336, 0.10990796661376953, 0.11005542755126953, 0.10980352020263671, 0.10990284729003906, 0.10992845153808593, 0.11151667022705078, 0.10988748931884766, 0.11004108428955078, 0.11066572570800781, 0.11073741149902344, 0.11011788940429687, 0.1100206069946289, 0.10988748931884766, 0.11012198638916015, 0.11024691009521484, 0.1098967056274414, 0.1100052490234375, 0.11016089630126953, 0.11015782165527344, 0.11018956756591797, 0.11015065765380859, 0.110060546875, 0.11035648345947266, 0.1099335708618164, 0.1101629409790039, 0.10992639923095703, 0.11004108428955078, 0.10989158630371093, 0.11015372467041015, 0.11010047912597656, 0.23385498046875, 0.10988851165771485, 0.11034111785888671, 0.10995097351074219, 0.10985574340820313, 0.11010662078857422, 0.11007078552246094, 0.10991820526123047, 0.10985984039306641, 0.10997248077392578, 0.10986393737792968, 0.11004723358154297, 0.11019468688964844, 0.1100052490234375, 0.11016397094726563, 0.1102387237548828, 0.11004518127441407, 0.11020902252197265, 0.1100943374633789, 0.10998989105224609, 0.11055513763427735, 0.11010253143310547, 0.10998169708251954, 0.11044454193115234, 0.11019570922851563, 0.1099653091430664, 0.10991513824462891, 0.11001753234863282, 0.10987007904052734, 0.1103984603881836, 0.10986188507080077, 0.10991104125976563, 0.11026534271240235, 0.11026534271240235, 0.11053056335449218, 0.11001753234863282, 0.11013529968261719, 0.11008716583251953, 0.11022541046142578, 0.10997657775878907, 0.10988236999511719, 0.11003494262695312, 0.11012198638916015, 0.11003187561035156, 0.1098260498046875, 0.11009945678710938, 0.10990898895263672, 0.11006771087646484, 0.1099161605834961, 0.10987827301025391, 0.1099130859375, 0.11001036834716797, 0.11009843444824219, 0.1100021743774414, 0.11010355377197266, 0.11002572631835937, 0.11081318664550781, 0.11031654357910156, 0.10989875030517578, 0.11011993408203125, 0.10990898895263672, 0.11030118560791016, 0.10994483184814453, 0.23407717895507812, 0.11024076843261718, 0.10993766021728515, 0.11036876678466796, 0.11012403106689453, 0.10995200347900391, 0.11002674865722656, 0.1097349090576172, 0.10983219146728515, 0.10998681640625, 0.10994380950927735, 0.10989158630371093, 0.1099192352294922, 0.10996736145019531, 0.10994892883300782, 0.10987725067138672, 0.1102376937866211, 0.10967346954345703, 0.11009945678710938, 0.11035238647460938, 0.10991820526123047, 0.10983628845214843, 0.10993561553955078, 0.10991513824462891, 0.10991718292236329, 0.11002982330322265, 0.10980352020263671, 0.10987315368652344, 0.10994380950927735, 0.10986803436279297, 0.10989158630371093, 0.10974515533447265, 0.10991513824462891, 0.10988851165771485, 0.11000627136230469, 0.10975743865966797, 0.10976255798339844, 0.10985472106933594, 0.10994483184814453, 0.10986905670166015, 0.11017011260986329, 0.11067801666259766, 0.11012812805175781, 0.1102387237548828, 0.11023974609375, 0.11021209716796875, 0.11020697784423829, 0.11080191802978516, 0.11018956756591797, 0.11028173065185547, 0.11045887756347657, 0.11006873321533203, 0.11001548767089844, 0.11007180786132813, 0.10984960174560547, 0.1098045425415039, 0.10983936309814453, 0.10996018981933593, 0.1098270721435547, 0.1103984603881836, 0.11062681579589843, 0.11046092987060546, 0.1100206069946289, 0.23471104431152343, 0.10992947387695312, 0.10997350311279297, 0.10981990051269531, 0.11024486541748046, 0.11018342590332031, 0.10990796661376953, 0.10981171417236328, 0.11014348602294922, 0.11026739501953126, 0.10997760009765625, 0.10999705505371093, 0.1097492446899414, 0.10981785583496094, 0.10969292449951172, 0.10985574340820313, 0.10983116912841796, 0.11017215728759766, 0.10983116912841796, 0.11038310241699219, 0.11015577697753906, 0.10982911682128907, 0.10989977264404296, 0.10992845153808593, 0.10990694427490234, 0.10996940612792969, 0.109949951171875, 0.10994892883300782, 0.10998681640625, 0.10987007904052734, 0.11038105773925781, 0.11008409881591796, 0.11003289794921875, 0.10989568328857421, 0.1100021743774414, 0.10995814514160156, 0.1100400619506836, 0.11009945678710938, 0.10990284729003906, 0.10982297515869141, 0.10980863952636719, 0.10979840087890624, 0.10979328155517579, 0.10987725067138672, 0.10977484893798828, 0.10974412536621093, 0.10975641632080078, 0.10971238708496094, 0.10985062408447266, 0.10984243011474609, 0.10988339233398438, 0.10988031768798828, 0.10987519836425781, 0.10985062408447266, 0.10984550476074219, 0.10994175720214844, 0.10979737854003906, 0.10983219146728515, 0.10980659484863281, 0.10979942321777343, 0.10972467041015625, 0.10989977264404296, 0.10978406524658203, 0.23415501403808595, 0.11078553771972656, 0.11036672210693359, 0.11091149139404297, 0.11072921752929688, 0.11045990753173827, 0.11007794952392579, 0.10978508758544922, 0.10992537689208984, 0.1098792953491211, 0.10985574340820313, 0.10979122924804688, 0.10985164642333985, 0.1100738525390625, 0.1099653091430664, 0.10994483184814453, 0.11005235290527343, 0.10987315368652344, 0.11015270233154296, 0.10990080261230468, 0.10979532623291016, 0.10991001892089844, 0.10990489959716797, 0.11083776092529297, 0.11055718231201171, 0.10991104125976563, 0.1105827865600586, 0.11010765075683594, 0.11010969543457032, 0.10981683349609375, 0.11006771087646484, 0.11014144134521485, 0.11008102416992188, 0.10999501037597656, 0.10991104125976563, 0.10976051330566407, 0.10998579406738282, 0.11004518127441407, 0.10994278717041016, 0.10981478118896484, 0.11005644989013671, 0.10996736145019531, 0.10994278717041016, 0.10976051330566407, 0.10995404815673829, 0.10989260864257812, 0.11064320373535157, 0.1107957763671875, 0.11001856231689452, 0.11012710571289062, 0.11023359680175782, 0.11013632202148438, 0.10996428680419922, 0.1100021743774414, 0.11024384307861328, 0.10992435455322265, 0.10974002838134765, 0.11081215667724609, 0.11024076843261718, 0.11022643280029297, 0.1098967056274414, 0.11006361389160156, 0.10993561553955078]",tokens/s,8.944483317128187,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-70B,meta-llama/Meta-Llama-3-70B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-72B,Qwen/Qwen1.5-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -31491,10 +29717,10 @@ ChildProcessError: Traceback (most recent call last): self._buffers[key] = fn(buf) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-65b,huggyllama/llama-65b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-70b-hf,meta-llama/Llama-2-70b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -31533,10 +29759,10 @@ ChildProcessError: Traceback (most recent call last): self._buffers[key] = fn(buf) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 86.00 MiB. GPU +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 112.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,l,l,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-13b-hf,meta-llama/Llama-2-13b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -31544,70 +29770,58 @@ torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 86.00 MiB. GP File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/l/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694919b-5b27d2c22e7a588847b7b749;69efa352-6180-4411-ab7d-4ccc409e27f8) - -Repository Not Found for url: https://huggingface.co/l/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file - raise EnvironmentError( -OSError: l is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 614, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-4.5B,facebook/xglm-4.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,3047.755776,4521.984,0.0,3875.536896,3575.121408,s,10,3.925874938964844,0.3925874938964844,0.0032003814064900295,0.39131011962890627,0.3974839904785156,0.39779729309082035,0.39804793518066406,"[0.398110595703125, 0.3898521728515625, 0.39046603393554685, 0.39330859375, 0.38967181396484374, 0.38878271484375, 0.39181430053710936, 0.3956484069824219, 0.39741436767578125, 0.3908059387207031]",tokens/s,652.0839404718809,kWh,4.606836531152074e-06,2.5243247530642504e-06,1.9845015875998338e-05,2.697617716021466e-05,tokens/kWh,9489854.640247436,MB,3047.755776,4521.984,0.0,3875.536896,3800.975872,s,10,231.19119335937498,23.119119335937498,0.024652283207228468,23.1104677734375,23.1560455078125,23.16491630859375,23.17201294921875,"[23.104484375, 23.106837890625, 23.11409765625, 23.1257734375, 23.09865234375, 23.091490234375, 23.10330859375, 23.173787109375, 23.15407421875, 23.1186875]",tokens/s,2.7250172934602097,kWh,0.0002730506428477602,0.00014965489141425045,0.0011581440098478151,0.0015808495441098258,tokens/kWh,39851.989858702975,,s,629,234.351453125,0.3725778269077901,0.04661763996043978,0.3668070373535156,0.3683815368652344,0.36919970703125,0.7562686254882812,"[0.3660308532714844, 0.3664025573730469, 0.36736306762695314, 0.3682928771972656, 0.3671849060058594, 0.366424072265625, 0.36691455078125, 0.36642098999023437, 0.3666820983886719, 0.36670053100585936, 0.3671910400390625, 0.3671593017578125, 0.3675473937988281, 0.367383544921875, 0.36641281127929687, 0.3659335632324219, 0.366244873046875, 0.3652311096191406, 0.3665745849609375, 0.3662633056640625, 0.3673968505859375, 0.36597760009765623, 0.3667660827636719, 0.3654379577636719, 0.3664527282714844, 0.3673671569824219, 0.36636468505859376, 0.3656898498535156, 0.3663196105957031, 0.3655997314453125, 0.36726272583007813, 0.36568780517578126, 0.3668695068359375, 0.36599508666992187, 0.3665059204101562, 0.3655762023925781, 0.36666366577148435, 0.36643328857421875, 0.3669176330566406, 0.3657113647460937, 0.36776141357421877, 0.3660533752441406, 0.36670053100585936, 0.36581787109375, 0.36618853759765624, 0.3657318420410156, 0.36655206298828125, 0.3656663818359375, 0.36818527221679687, 0.36655206298828125, 0.3670487060546875, 0.366587890625, 0.3682109375, 0.3672012939453125, 0.3683788757324219, 0.3662612609863281, 0.36835430908203126, 0.3673917541503906, 0.3714969482421875, 0.36665652465820314, 0.3664425048828125, 0.36596124267578123, 0.7560806274414062, 0.36733746337890627, 0.36763238525390624, 0.3667384338378906, 0.3690987548828125, 0.3665008544921875, 0.3659049072265625, 0.3675392150878906, 0.36642611694335936, 0.36708966064453125, 0.36646810913085937, 0.3664025573730469, 0.3674142761230469, 0.36601959228515624, 0.36743270874023437, 0.36704461669921873, 0.36616806030273436, 0.36657357788085937, 0.3658526611328125, 0.3659263916015625, 0.3657093200683594, 0.3664773254394531, 0.3665899658203125, 0.3660308532714844, 0.36575845336914065, 0.3663247375488281, 0.3659059143066406, 0.36675994873046874, 0.3660185546875, 0.3673917541503906, 0.36654180908203127, 0.36684698486328127, 0.367072265625, 0.3671255187988281, 0.36628070068359375, 0.3660789794921875, 0.36613528442382814, 0.3671644287109375, 0.3661455383300781, 0.36799591064453124, 0.36629299926757813, 0.36816485595703125, 0.36593869018554687, 0.3678883972167969, 0.3660892028808594, 0.3684013977050781, 0.36708865356445314, 0.36752896118164063, 0.36656741333007814, 0.3682099304199219, 0.36648345947265626, 0.36751565551757814, 0.3659735107421875, 0.3680624694824219, 0.3659202575683594, 0.3667906494140625, 0.36607489013671873, 0.3667957763671875, 0.36641485595703127, 0.36750439453125, 0.36619058227539064, 0.36707431030273435, 0.36645068359375, 0.7576248168945312, 0.3653406677246094, 0.3671552124023437, 0.3671224365234375, 0.3667906494140625, 0.3663052673339844, 0.36621209716796876, 0.36776141357421877, 0.3668439025878906, 0.36665139770507815, 0.3658373107910156, 0.36659506225585936, 0.36775115966796873, 0.36711117553710937, 0.36632986450195315, 0.36725247192382815, 0.36715213012695314, 0.36897998046875, 0.3676968994140625, 0.3678535766601562, 0.366065673828125, 0.367072265625, 0.36664523315429687, 0.3668899841308594, 0.366271484375, 0.3664445495605469, 0.3664271240234375, 0.366392333984375, 0.36568576049804685, 0.36705279541015623, 0.36768154907226563, 0.36760678100585936, 0.36624383544921874, 0.3671849060058594, 0.36741018676757814, 0.36703640747070315, 0.36581375122070314, 0.36656536865234374, 0.3663052673339844, 0.36876492309570313, 0.366455810546875, 0.3671715698242187, 0.36698419189453124, 0.3677542419433594, 0.36644046020507814, 0.36671795654296874, 0.36616293334960937, 0.36698828125, 0.3662899169921875, 0.36686746215820315, 0.3674449768066406, 0.36675994873046874, 0.366519287109375, 0.3665111083984375, 0.36600628662109375, 0.36778289794921876, 0.3663800354003906, 0.36820684814453125, 0.3660175476074219, 0.36745419311523436, 0.3680143432617187, 0.3678023681640625, 0.3672965087890625, 0.76101123046875, 0.36763442993164064, 0.3688806457519531, 0.3682867126464844, 0.3672862854003906, 0.36792831420898436, 0.36681729125976564, 0.36853555297851565, 0.36648446655273437, 0.36719000244140626, 0.3671961669921875, 0.3679938659667969, 0.3675965576171875, 0.3683921813964844, 0.3668418579101563, 0.3667855224609375, 0.36585470581054685, 0.36641998291015626, 0.3668428649902344, 0.3661527099609375, 0.3681187744140625, 0.3663144836425781, 0.367393798828125, 0.36705484008789063, 0.36674969482421876, 0.36767642211914064, 0.3666595764160156, 0.36638516235351565, 0.3659837341308594, 0.3676375122070312, 0.36701901245117186, 0.36602264404296875, 0.36724429321289065, 0.36727194213867187, 0.3677163391113281, 0.36646194458007814, 0.3668899841308594, 0.36752896118164063, 0.3668070373535156, 0.36688385009765623, 0.3675699157714844, 0.36781158447265627, 0.3655679931640625, 0.3665203247070313, 0.3669176330566406, 0.3664250793457031, 0.36553421020507815, 0.3678494567871094, 0.367056884765625, 0.3667271728515625, 0.3659151306152344, 0.36611276245117186, 0.3676180419921875, 0.3684751281738281, 0.3661475830078125, 0.3675002746582031, 0.3667466125488281, 0.36979815673828126, 0.3675893859863281, 0.3668500366210937, 0.36594073486328127, 0.3664721984863281, 0.3660421142578125, 0.7563417358398438, 0.36537957763671874, 0.3666237487792969, 0.3666851806640625, 0.36812799072265623, 0.3660308532714844, 0.3663882141113281, 0.3670702209472656, 0.3671562194824219, 0.3671490478515625, 0.3683932189941406, 0.36664523315429687, 0.3658895263671875, 0.36612710571289064, 0.36652340698242186, 0.3672749938964844, 0.3655301208496094, 0.366635009765625, 0.3657994384765625, 0.36625100708007813, 0.36786483764648437, 0.3671715698242187, 0.36642816162109376, 0.3672166442871094, 0.3667108459472656, 0.36772549438476565, 0.36702822875976565, 0.367720458984375, 0.3670384521484375, 0.3671142272949219, 0.3670169677734375, 0.369112060546875, 0.36612506103515624, 0.3668643798828125, 0.3657052307128906, 0.3660328979492187, 0.3655086059570313, 0.3667589111328125, 0.3669944458007813, 0.36692889404296875, 0.3655577697753906, 0.3665080261230469, 0.36726373291015624, 0.36662066650390623, 0.3658455505371094, 0.36661654663085935, 0.365918212890625, 0.368047119140625, 0.3663114318847656, 0.36607794189453124, 0.36666778564453123, 0.36623870849609375, 0.36541131591796877, 0.36611993408203125, 0.36540826416015626, 0.36666470336914064, 0.3660861511230469, 0.3677306823730469, 0.3666360168457031, 0.36710296630859374, 0.366376953125, 0.3661721496582031, 0.36556698608398436, 0.75503515625, 0.36811160278320315, 0.3666186218261719, 0.3668746337890625, 0.36598681640625, 0.36689202880859373, 0.3665131530761719, 0.36666983032226563, 0.3660205993652344, 0.3664025573730469, 0.3666462707519531, 0.3671009216308594, 0.3655587768554687, 0.3668203430175781, 0.36630117797851564, 0.36666366577148435, 0.36585574340820315, 0.36627865600585935, 0.3661414489746094, 0.36637799072265625, 0.36607998657226565, 0.3658045349121094, 0.3679395751953125, 0.36621517944335935, 0.36576153564453123, 0.3663124389648437, 0.3655833740234375, 0.3661219787597656, 0.3678760986328125, 0.36634521484375, 0.36614862060546877, 0.3665377197265625, 0.3658229675292969, 0.36720025634765624, 0.3659571228027344, 0.36605746459960936, 0.36572467041015627, 0.36643429565429686, 0.3677470703125, 0.3671142272949219, 0.36663092041015627, 0.36711935424804687, 0.3663636474609375, 0.36681625366210935, 0.3660943298339844, 0.36676812744140624, 0.36628582763671874, 0.3674306640625, 0.3657963562011719, 0.36687359619140625, 0.36616293334960937, 0.3663595581054688, 0.3658577880859375, 0.367494140625, 0.3659980773925781, 0.3674224548339844, 0.3666606140136719, 0.3666483154296875, 0.36678964233398437, 0.367278076171875, 0.3672596435546875, 0.36691558837890625, 0.3659898986816406, 0.7581112060546875, 0.36696063232421877, 0.36686541748046875, 0.3666217041015625, 0.3667189636230469, 0.36658688354492186, 0.36612606811523435, 0.3663329162597656, 0.36610763549804687, 0.3663811340332031, 0.3662243347167969, 0.3669329833984375, 0.3673456726074219, 0.3678023681640625, 0.36764877319335937, 0.3677501525878906, 0.3669678039550781, 0.3668746337890625, 0.3683153991699219, 0.36921240234375, 0.368362548828125, 0.36775827026367186, 0.3663052673339844, 0.3672483825683594, 0.36686746215820315, 0.36620184326171873, 0.36589157104492187, 0.36683877563476563, 0.36737841796875, 0.36710400390625, 0.3661424560546875, 0.36658074951171876, 0.365517822265625, 0.36632781982421875, 0.36605645751953125, 0.366856201171875, 0.36679168701171877, 0.3667793884277344, 0.3662469177246094, 0.36760064697265626, 0.36884786987304685, 0.3667568664550781, 0.3658803100585937, 0.36786996459960936, 0.3664742431640625, 0.3666083984375, 0.36686541748046875, 0.367140869140625, 0.3666790466308594, 0.36664422607421876, 0.365802490234375, 0.36675277709960935, 0.365348876953125, 0.36615576171875, 0.3656755065917969, 0.36651724243164063, 0.3666483154296875, 0.3665623168945312, 0.3659253845214844, 0.36593869018554687, 0.3652372436523437, 0.36640359497070313, 0.3656540222167969, 0.7624765625, 0.36612710571289064, 0.3665633239746094, 0.36761907958984374, 0.36593048095703123, 0.36634112548828124, 0.3662571411132812, 0.3672842102050781, 0.3657646179199219, 0.368606201171875, 0.36768359375, 0.3676794738769531, 0.36858981323242185, 0.3683133544921875, 0.369396728515625, 0.36714599609375, 0.36760577392578125, 0.3668357238769531, 0.3677470703125, 0.3677235107421875, 0.36642098999023437, 0.36621209716796876, 0.3658362731933594, 0.36801739501953123, 0.3667783813476562, 0.3668715515136719, 0.3696394348144531, 0.369375244140625, 0.3691806640625, 0.3698810729980469, 0.37041253662109375, 0.36909466552734377, 0.3689021301269531, 0.3667169189453125, 0.36602264404296875, 0.3657953186035156, 0.3676252136230469, 0.36923904418945314, 0.3685191650390625, 0.3708651428222656, 0.3690188903808594, 0.370050048828125, 0.36955239868164064, 0.366551025390625, 0.3658076171875, 0.3684198303222656, 0.3685857238769531, 0.3687065734863281, 0.36557516479492186, 0.3663943786621094, 0.3689195556640625, 0.3698083801269531, 0.3692380065917969, 0.3681546325683594, 0.3669350280761719, 0.36759039306640623, 0.3672842102050781, 0.3702108154296875, 0.3688243103027344, 0.36716030883789064, 0.36670465087890625, 0.36789248657226564, 0.3689768981933594, 0.7654307861328125, 0.367162353515625, 0.369691650390625, 0.3691734924316406, 0.370017333984375, 0.368702392578125, 0.36607794189453124, 0.36709375, 0.3667589111328125, 0.36747161865234373, 0.3679764404296875, 0.3669626770019531, 0.3658486022949219, 0.36790267944335936, 0.3670026245117187, 0.36758526611328124, 0.3668479919433594, 0.36762625122070314, 0.36738970947265626, 0.36922470092773435, 0.36768768310546873, 0.36928103637695314, 0.3660902404785156, 0.36697601318359374, 0.36616705322265625, 0.3675197448730469, 0.36707635498046876, 0.3673385009765625, 0.3668746337890625, 0.36747161865234373, 0.36656536865234374, 0.36796722412109373, 0.36610662841796876, 0.3665213317871094, 0.365781005859375, 0.36651007080078124, 0.36767025756835936, 0.3668213806152344, 0.36538470458984373, 0.3673118591308594, 0.365907958984375, 0.3671910400390625, 0.3668971557617188, 0.3673313293457031, 0.3669053344726563, 0.3664783935546875, 0.36691961669921874, 0.36783718872070315, 0.36801126098632814, 0.36738970947265626, 0.36602264404296875, 0.36634521484375, 0.3659909057617188, 0.36675787353515626, 0.3704688720703125, 0.37160037231445314, 0.370060302734375, 0.3701022644042969, 0.36780850219726563, 0.36857342529296877, 0.3668899841308594, 0.36739788818359376, 0.3669186706542969, 0.7624959716796875, 0.366529541015625, 0.367541259765625, 0.3666298828125, 0.367783935546875, 0.36849972534179687, 0.36857550048828125, 0.36766720581054685, 0.3665428466796875, 0.367025146484375, 0.3665684509277344, 0.3679231872558594, 0.3658014831542969, 0.3674449768066406, 0.36611276245117186, 0.367678466796875, 0.3667189636230469, 0.3687383117675781, 0.36729037475585935, 0.3665848388671875, 0.36641177368164063, 0.36767333984375, 0.3674972229003906, 0.36638516235351565, 0.3664025573730469, 0.36736306762695314, 0.3676334228515625, 0.3689072570800781, 0.3667712097167969, 0.3672862854003906, 0.3658874816894531, 0.36724429321289065, 0.3662274475097656, 0.3670732727050781, 0.3663523864746094, 0.3670425720214844, 0.3662489624023437, 0.36671282958984375, 0.3670978698730469, 0.3670241394042969, 0.3659970703125, 0.3673231506347656, 0.3663739013671875, 0.3662264404296875, 0.36703436279296875, 0.36681729125976564, 0.3661414489746094, 0.3668623352050781, 0.366129150390625, 0.367130615234375, 0.36584756469726565, 0.3665489807128906, 0.3668070373535156, 0.3673395080566406, 0.3674347534179688, 0.3669698486328125, 0.36617010498046876, 0.3672535095214844, 0.36757708740234374, 0.3671152648925781, 0.3667189636230469, 0.3670374450683594, 0.3659479064941406]",tokens/s,2.684002986166677,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-110B,Qwen/Qwen1.5-110B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-7b,stabilityai/stablelm-base-alpha-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -31617,39 +29831,58 @@ If this is a private repository, make sure to pass a token having permission to ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 32.00 MiB. GPU + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward + outputs = self.gpt_neox( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward + outputs = layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward + attention_layer_outputs = self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 545, in forward + query, key, value, present = self._attn_projections_and_rope( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope + qkv = self.query_key_value(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,8,8,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-72B,Qwen/Qwen-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -31657,74 +29890,28 @@ torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 32.00 MiB. GP File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/8/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694924f-3b04e21119c6c72c3d6c0267;30325367-f9c9-4612-be1a-4512abe6b463) - -Repository Not Found for url: https://huggingface.co/8/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file - raise EnvironmentError( -OSError: 8 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained + model_class = get_class_from_dynamic_module( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module + final_module = get_cached_module_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file + modules_needed = check_imports(resolved_module_file) + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports + raise ImportError( +ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/rho-math-1b-v0.1,microsoft/rho-math-1b-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1441.001472,1646.788608,0.0,1000.341504,901.382144,s,10,1.2824376068115233,0.12824376068115234,0.0013381948349874154,0.12786808013916018,0.12959590759277345,0.1305943862915039,0.13139316925048827,"[0.13159286499023437, 0.12686815643310548, 0.1274053421020508, 0.1281833953857422, 0.12710332489013673, 0.12755276489257814, 0.12878483581542968, 0.12818998718261718, 0.1273829116821289, 0.1293740234375]",tokens/s,1996.1984788989712,kWh,1.5084334378001057e-06,8.263029694510034e-07,5.418130213543536e-06,7.752866620794645e-06,tokens/kWh,33020044.394077398,MB,1441.001472,1646.788608,0.0,1000.341504,932.76416,s,10,76.77896875,7.677896875,0.023249628538630225,7.67915625,7.703863232421875,7.706249243164062,7.708158051757812,"[7.64836474609375, 7.62882421875, 7.67977490234375, 7.69081591796875, 7.67853759765625, 7.7033330078125, 7.70863525390625, 7.67114794921875, 7.67421923828125, 7.69531591796875]",tokens/s,8.205371995179345,kWh,9.095814451596237e-05,4.985198124346679e-05,0.0003132890969742542,0.00045409922273368346,tokens/kWh,138736.19871168057,,s,629,77.8087404022218,0.12370228998763382,0.015267564948821125,0.12151500701904297,0.12351795043945313,0.12392367401123047,0.24871362792968751,"[0.12091289520263672, 0.12134502410888671, 0.1254635543823242, 0.12273868560791015, 0.12172492980957031, 0.12116480255126953, 0.12129894256591797, 0.12113715362548828, 0.12124364471435548, 0.12089241790771485, 0.12106547546386719, 0.12196761322021485, 0.12150886535644531, 0.12106854248046875, 0.12139520263671875, 0.12140544128417968, 0.12128768157958984, 0.12113919830322266, 0.12091187286376953, 0.12113407897949219, 0.1221427230834961, 0.12104601287841797, 0.12148633575439453, 0.12152934265136718, 0.1209886703491211, 0.12108493041992187, 0.12132966613769532, 0.1210931167602539, 0.12157440185546875, 0.12151500701904297, 0.12138393402099609, 0.12142899322509766, 0.12107263946533203, 0.12096717071533203, 0.12105113220214844, 0.1210091552734375, 0.12110643005371094, 0.12125798034667969, 0.12106854248046875, 0.12104908752441407, 0.12095283508300782, 0.12088114929199219, 0.12084735870361328, 0.12105830383300781, 0.12114125061035157, 0.12377804565429687, 0.12163993835449219, 0.12108595275878906, 0.12111154937744141, 0.12169010925292968, 0.12106240081787109, 0.12132556915283203, 0.12277247619628906, 0.12324864196777344, 0.12130406188964844, 0.12083404541015624, 0.12118937683105468, 0.12106240081787109, 0.1208463363647461, 0.1210245132446289, 0.12098560333251954, 0.12108799743652343, 0.2477936706542969, 0.12073062133789063, 0.12093030548095703, 0.12108595275878906, 0.12114227294921875, 0.12072959899902344, 0.12111666870117188, 0.12076544189453126, 0.12109209442138671, 0.12101427459716797, 0.12082688140869141, 0.12099072265625, 0.12134092712402343, 0.12110028839111328, 0.12076236724853516, 0.12246937561035157, 0.12178125, 0.12127129364013672, 0.12102041625976563, 0.12081561279296875, 0.12112179565429687, 0.12079513549804688, 0.12220722961425781, 0.12136243438720704, 0.12094873809814453, 0.12121804809570312, 0.12110131072998047, 0.12102553558349609, 0.12125389099121094, 0.12094258880615234, 0.12103270721435547, 0.12157030487060547, 0.12122316741943359, 0.1208832015991211, 0.12120269012451172, 0.12115455627441406, 0.12125081634521484, 0.12102861022949218, 0.1209169921875, 0.12092518615722657, 0.12124262237548829, 0.1210808334350586, 0.12104806518554688, 0.12156313323974609, 0.12109209442138671, 0.12071321868896484, 0.12101837158203126, 0.12109721374511719, 0.12089241790771485, 0.1209139175415039, 0.1210613784790039, 0.12095283508300782, 0.12115455627441406, 0.12093030548095703, 0.12107366180419922, 0.1208770523071289, 0.12091187286376953, 0.12103679656982422, 0.12085862731933594, 0.12101427459716797, 0.12090982055664062, 0.12072550201416016, 0.12163686370849609, 0.25078988647460937, 0.12208128356933594, 0.12245606231689453, 0.12228813171386718, 0.12169420623779297, 0.12159283447265624, 0.12156620788574218, 0.12150067138671874, 0.12323635101318359, 0.12156723022460937, 0.12253695678710938, 0.12134194946289062, 0.12189183807373047, 0.12104499053955078, 0.12240998077392579, 0.12145868682861329, 0.12170240020751953, 0.12159999847412109, 0.1212907485961914, 0.12119961547851563, 0.12125183868408203, 0.12093644714355468, 0.12158975982666016, 0.1212252197265625, 0.12197376251220703, 0.12266598510742187, 0.12199116516113281, 0.12252272033691407, 0.12169821166992187, 0.12251750183105468, 0.12150272369384765, 0.12135321807861328, 0.12139315032958985, 0.12348518371582032, 0.12360601806640625, 0.12340531158447265, 0.12198707580566406, 0.12240486145019532, 0.12276121520996094, 0.12286975860595703, 0.1258751983642578, 0.12238240051269532, 0.12162143707275391, 0.1215283203125, 0.12173107147216797, 0.12092723083496094, 0.12131942749023437, 0.12141260528564453, 0.12081356811523437, 0.12177101135253907, 0.12151705932617188, 0.12153241729736328, 0.12177305603027344, 0.12143001556396485, 0.1215836181640625, 0.1209692153930664, 0.12140850830078125, 0.12112588500976562, 0.1214576644897461, 0.12091085052490234, 0.12239871978759766, 0.1221212158203125, 0.12117196655273438, 0.25012428283691407, 0.12173414611816406, 0.12145049285888672, 0.12212838745117187, 0.12329779052734376, 0.12234649658203126, 0.12200857543945312, 0.12356403350830078, 0.12401152038574219, 0.12281446075439453, 0.12228300476074219, 0.12225945281982421, 0.12321791839599609, 0.1226219482421875, 0.1216880645751953, 0.12208537292480469, 0.12178636932373046, 0.122355712890625, 0.12368793487548828, 0.12342374420166016, 0.1231800308227539, 0.1235077133178711, 0.1234524154663086, 0.12143923187255859, 0.1212968978881836, 0.12111052703857422, 0.12108185577392579, 0.12117913818359374, 0.12229325103759765, 0.12225638580322265, 0.12117196655273438, 0.12148838043212891, 0.12117196655273438, 0.1209886703491211, 0.12110131072998047, 0.121565185546875, 0.12196659088134766, 0.12180480194091797, 0.1214382095336914, 0.12103884887695313, 0.1212221450805664, 0.12177510070800782, 0.1223034896850586, 0.12251136016845703, 0.12103372955322265, 0.12178125, 0.12100198364257812, 0.12146482849121094, 0.12118016052246093, 0.12082892608642579, 0.121312255859375, 0.1234698257446289, 0.12242534637451172, 0.12148735809326172, 0.12146790313720703, 0.12168396759033204, 0.12169216156005859, 0.12237516784667969, 0.12246527862548828, 0.12407603454589844, 0.1232701416015625, 0.1230223388671875, 0.1217976303100586, 0.24860671997070313, 0.12128256225585937, 0.121275390625, 0.12294041442871094, 0.12173926544189453, 0.12173004913330078, 0.12162873840332031, 0.12132447814941406, 0.12121600341796875, 0.12143103790283204, 0.12095078277587891, 0.12180377960205079, 0.12157952117919922, 0.12169216156005859, 0.12112179565429687, 0.12152320098876954, 0.12086579132080078, 0.12098252868652344, 0.12098047637939453, 0.12137574768066406, 0.12174646759033203, 0.12155900573730469, 0.12151193237304687, 0.12159999847412109, 0.12110540771484375, 0.121670654296875, 0.12152217864990235, 0.12107469177246094, 0.12170137786865234, 0.12137165069580078, 0.12135935974121094, 0.12147097778320312, 0.12331520080566406, 0.1227540512084961, 0.1215498275756836, 0.12133171081542969, 0.12187238311767579, 0.12289638519287109, 0.12396749114990234, 0.12359884643554687, 0.12377497863769531, 0.1236858901977539, 0.12344831848144532, 0.12326502227783204, 0.12415385437011718, 0.12243865966796875, 0.12206182098388672, 0.12256665802001954, 0.12256153869628907, 0.12152934265136718, 0.12154163360595703, 0.12200857543945312, 0.12149555206298829, 0.12161023712158203, 0.12224614715576172, 0.12173312377929688, 0.1210224609375, 0.12114022064208985, 0.12110438537597656, 0.1216542739868164, 0.12151398468017578, 0.1216204833984375, 0.12237004852294922, 0.24945152282714844, 0.12142694091796875, 0.12127232360839844, 0.12121907043457031, 0.12172697448730468, 0.12396646118164062, 0.1225902099609375, 0.12338483428955078, 0.12398796844482422, 0.12242227172851562, 0.12293631744384766, 0.12390502166748046, 0.12467814636230469, 0.12454605102539062, 0.12382822418212891, 0.12355379486083984, 0.12169728088378906, 0.12186624145507813, 0.12168396759033204, 0.12192768096923828, 0.12244377899169921, 0.1223526382446289, 0.12162764739990234, 0.1217228775024414, 0.12147097778320312, 0.12159078216552735, 0.1216215057373047, 0.12143309020996093, 0.12141465759277344, 0.12173312377929688, 0.12229631805419922, 0.12157337951660156, 0.12169830322265625, 0.12177817535400391, 0.12134502410888671, 0.12178329467773437, 0.1214607391357422, 0.12167884826660157, 0.12179558563232422, 0.12148326110839844, 0.12133785247802735, 0.12141158294677734, 0.12147814178466797, 0.12156723022460937, 0.121670654296875, 0.12136140441894532, 0.12141875457763672, 0.12145868682861329, 0.12202496337890625, 0.12198502349853516, 0.12148429107666016, 0.1211678695678711, 0.12209049224853516, 0.12175667572021484, 0.12315750122070312, 0.1227315216064453, 0.1232210235595703, 0.12416713714599609, 0.12378214263916015, 0.12348108673095703, 0.12337356567382812, 0.12387942504882812, 0.12446208190917969, 0.2528962554931641, 0.12143718719482421, 0.12210176086425781, 0.12319334411621094, 0.12263116455078125, 0.12150784301757812, 0.12382720184326172, 0.12240589141845704, 0.12118323516845703, 0.12321485137939453, 0.1212907485961914, 0.12293119812011719, 0.12185600280761719, 0.12230451202392578, 0.12115968322753906, 0.12163276672363281, 0.12134092712402343, 0.12267520141601562, 0.1209169921875, 0.12166963195800781, 0.1208616943359375, 0.12096511840820312, 0.12128562927246093, 0.12440268707275391, 0.12370124816894532, 0.12368694305419922, 0.12331721496582031, 0.12332236480712891, 0.12322611236572266, 0.12365824127197265, 0.12440985870361328, 0.1228779525756836, 0.121491455078125, 0.12277964782714844, 0.12328857421875, 0.12425523376464843, 0.12316365051269532, 0.12288307189941407, 0.12309913635253907, 0.1242460174560547, 0.1239900131225586, 0.12403404998779297, 0.12373197174072266, 0.12393062591552734, 0.1235763168334961, 0.12192972564697266, 0.12147814178466797, 0.12157234954833984, 0.12149964904785156, 0.12162457275390624, 0.12195123291015625, 0.12152934265136718, 0.12136447906494141, 0.12115865325927734, 0.1212200927734375, 0.1212938232421875, 0.12141465759277344, 0.12101734161376954, 0.12137983703613281, 0.12099174499511718, 0.12123955535888672, 0.12125389099121094, 0.12133273315429688, 0.24995942687988282, 0.12144742584228516, 0.12333875274658203, 0.12174336242675782, 0.12292915344238281, 0.12289024353027343, 0.12305101013183593, 0.12317286682128906, 0.12351487731933594, 0.12141567993164062, 0.12154163360595703, 0.12127436828613282, 0.12144435119628906, 0.12115968322753906, 0.12119142150878906, 0.121849853515625, 0.12192972564697266, 0.12124877166748046, 0.12119551849365234, 0.12158566284179688, 0.12136243438720704, 0.1219583969116211, 0.12119245147705078, 0.12171263885498047, 0.12150169372558593, 0.12132761383056641, 0.12123442840576172, 0.12193587493896485, 0.12132659149169922, 0.12116377258300781, 0.12158566284179688, 0.12126924896240235, 0.12131635284423828, 0.12112076568603515, 0.12137574768066406, 0.12258201599121094, 0.12156825256347656, 0.12157337951660156, 0.12132966613769532, 0.12138905334472656, 0.12101427459716797, 0.12355891418457031, 0.12150784301757812, 0.12143103790283204, 0.12133683013916016, 0.12091596984863281, 0.12126207733154297, 0.12289024353027343, 0.12268339538574219, 0.12567449951171875, 0.1217976303100586, 0.12148326110839844, 0.12115455627441406, 0.12108697509765624, 0.12136038208007813, 0.12146892547607421, 0.1212200927734375, 0.12286054229736328, 0.12166451263427734, 0.12133785247802735, 0.1213829116821289, 0.12138700866699219, 0.12124569702148437, 0.24875520324707032, 0.12118118286132812, 0.12122726440429688, 0.1210931167602539, 0.12280934143066406, 0.1244927978515625, 0.12353024291992187, 0.12354764556884766, 0.12378112030029297, 0.12381798553466797, 0.12268851470947266, 0.12156416320800781, 0.12156313323974609, 0.12137062072753907, 0.12162252807617188, 0.12152524566650391, 0.12139520263671875, 0.12147917175292969, 0.12140338897705077, 0.12144435119628906, 0.12111154937744141, 0.12134502410888671, 0.12145254516601563, 0.12136140441894532, 0.12134809875488281, 0.12144332885742187, 0.12182937622070313, 0.12134092712402343, 0.12142694091796875, 0.12099378967285156, 0.12107981109619141, 0.12137677001953125, 0.12088524627685547, 0.12261273956298828, 0.12443750762939453, 0.12207820892333984, 0.12129280090332031, 0.12143718719482421, 0.12140646362304687, 0.12147711944580078, 0.12159385681152343, 0.12174336242675782, 0.1218243179321289, 0.12172179412841796, 0.12106547546386719, 0.1214750747680664, 0.12177203369140625, 0.12269875335693359, 0.12165017700195313, 0.12121907043457031, 0.12128665924072266, 0.12140748596191406, 0.12142899322509766, 0.1210439682006836, 0.12137471771240234, 0.12203622436523437, 0.12110848236083985, 0.12105216217041016, 0.12070809936523437, 0.12304691314697265, 0.12252262115478516, 0.12272537231445313, 0.12301721954345703, 0.25320652770996094, 0.12138803100585938, 0.12191948699951172, 0.12489830780029297, 0.12382514953613281, 0.12366745758056641, 0.12364390563964844, 0.12391324615478516, 0.1236274871826172, 0.12293836975097656, 0.12138086700439453, 0.12145868682861329, 0.12145561981201172, 0.12148531341552735, 0.1216358413696289, 0.12158668518066407, 0.12107981109619141, 0.12146482849121094, 0.12212019348144532, 0.12342272186279298, 0.12273356628417968, 0.12340838623046875, 0.1230417938232422, 0.12280012512207031, 0.121997314453125, 0.1230387191772461, 0.1221560287475586, 0.12209356689453126, 0.12225433349609376, 0.12141567993164062, 0.12371968078613281, 0.12368895721435547, 0.12325888061523438, 0.12346470642089843, 0.1220495376586914, 0.12130815887451171, 0.12168089294433594, 0.12150169372558593, 0.12148121643066406, 0.12139315032958985, 0.12125389099121094, 0.12131123352050781, 0.1211156463623047, 0.12303667449951172, 0.12199116516113281, 0.12166553497314453, 0.1215989761352539, 0.12130406188964844, 0.12145254516601563, 0.12136243438720704, 0.1214331512451172, 0.12362643432617187, 0.12173107147216797, 0.12140748596191406, 0.12129177856445313, 0.12127334594726563, 0.12132249450683594, 0.12149964904785156, 0.12110438537597656, 0.12128460693359375, 0.12160307312011719, 0.12139417266845703, 0.121133056640625]",tokens/s,8.083924720390927,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-7b-hf,meta-llama/Llama-2-7b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2001.69472,5480.382464,0.0,4833.93536,4503.41376,s,10,5.738609375,0.5738609375000001,0.0014211968686511217,0.5739980163574219,0.575327734375,0.5758431579589843,0.5762554968261718,"[0.5748433227539063, 0.5763585815429687, 0.5723970336914063, 0.5719782104492187, 0.5729453125, 0.57201806640625, 0.5736748046875, 0.5743212280273438, 0.5752131958007812, 0.574859619140625]",tokens/s,446.1011079012499,kWh,6.756110654936897e-06,3.7020347229372414e-06,3.163201604633459e-05,4.209016142420872e-05,tokens/kWh,6082181.472764753,MB,2003.341312,5480.382464,0.0,4833.93536,4688.700416,s,10,334.8389140625,33.48389140625,0.006002777931550277,33.4837109375,33.491801171875004,33.4921896484375,33.4925004296875,"[33.49171484375, 33.492578125, 33.48669921875, 33.4832421875, 33.47827734375, 33.4841796875, 33.4782109375, 33.47846875, 33.4750390625, 33.49050390625]",tokens/s,1.8815017417073754,kWh,0.000395271455562777,0.00021664300892132815,0.0018250813026564506,0.0024369957671405555,tokens/kWh,25851.501610903877,,s,629,339.4681906738281,0.539695056715148,0.0682067154879699,0.5314457397460938,0.5320167358398438,0.5323411499023437,1.1045171826171876,"[0.5315440673828125, 0.5327882080078125, 0.5320939331054687, 0.531873779296875, 0.5308590087890624, 0.5313822631835937, 0.530882568359375, 0.5313515625, 0.530988037109375, 0.531061767578125, 0.530872314453125, 0.5314385986328125, 0.5312184448242188, 0.531462158203125, 0.531262451171875, 0.5317355346679687, 0.5311897583007813, 0.5321195678710937, 0.5312982788085937, 0.5320591430664062, 0.5310802001953125, 0.531641357421875, 0.5311631469726562, 0.5312388916015625, 0.5309296875, 0.5314119873046875, 0.5308661499023437, 0.53139453125, 0.5312368774414062, 0.5312471313476562, 0.5308395385742187, 0.5312962646484375, 0.5309542236328125, 0.531441650390625, 0.531462158203125, 0.532063232421875, 0.5323673706054688, 0.5327810668945312, 0.5322188720703125, 0.5317089233398438, 0.5315245971679687, 0.531757080078125, 0.5315543212890625, 0.5318953247070313, 0.5315266723632812, 0.5318656005859375, 0.5314826049804687, 0.53178369140625, 0.5316423950195313, 0.5318696899414063, 0.5316649169921875, 0.53180517578125, 0.531388427734375, 0.5319229736328125, 0.5317713623046875, 0.5329234008789062, 0.5328568115234374, 0.5318778686523438, 0.531589111328125, 0.5319567260742187, 0.5317099609375, 0.5322915649414063, 1.1084400634765625, 0.53127783203125, 0.5318246459960938, 0.53123583984375, 0.5316290283203124, 0.531357666015625, 0.5316055297851563, 0.5315020751953125, 0.531830810546875, 0.5315850219726562, 0.532305908203125, 0.5320980224609375, 0.5330299072265625, 0.5324052734375, 0.5326130981445313, 0.53216357421875, 0.5326397705078125, 0.5320242919921875, 0.5325066528320312, 0.532401123046875, 0.5316433715820312, 0.5314949340820313, 0.5316167602539063, 0.5315225830078125, 0.5317222290039062, 0.5312593994140625, 0.5317662963867188, 0.5315317993164063, 0.5316321411132813, 0.5320345458984375, 0.5328107299804687, 0.5314774780273438, 0.531272705078125, 0.530861083984375, 0.53119384765625, 0.5307944946289063, 0.5313526000976563, 0.530988037109375, 0.5313013916015625, 0.530966552734375, 0.5314918212890625, 0.5308528442382813, 0.5315717163085938, 0.53110888671875, 0.5315563354492188, 0.530924560546875, 0.533138427734375, 0.531162109375, 0.5319669799804687, 0.5311057739257813, 0.5323171997070313, 0.53113037109375, 0.5316034545898437, 0.5314006958007812, 0.5314744262695312, 0.5310115966796874, 0.5314641723632813, 0.53139453125, 0.5315348510742187, 0.5311682739257813, 0.53148876953125, 0.5309757690429687, 0.5314242553710937, 1.1040880126953125, 0.5311743774414063, 0.5314990234375, 0.531357666015625, 0.53203662109375, 0.5313760986328125, 0.531758056640625, 0.5313689575195313, 0.53195263671875, 0.5313187866210938, 0.5315809326171875, 0.5311826171875, 0.5317130126953125, 0.5317140502929687, 0.5317130126953125, 0.5313382568359375, 0.5315819702148438, 0.53187890625, 0.5318358764648438, 0.531926025390625, 0.5318963012695312, 0.5314027709960938, 0.53145703125, 0.531620849609375, 0.5316331787109375, 0.5310167236328125, 0.5312348022460938, 0.5310382080078125, 0.5314088745117187, 0.5308682250976563, 0.5315399780273438, 0.5312174072265625, 0.5312706298828125, 0.5310443725585937, 0.5318563842773437, 0.531294189453125, 0.5317816162109374, 0.5314345092773437, 0.5318461303710937, 0.5316024169921875, 0.5316915283203125, 0.5309102172851563, 0.531857421875, 0.5316290283203124, 0.5315747680664062, 0.5310914306640625, 0.5317744750976563, 0.5314283447265625, 0.53144677734375, 0.5316792602539062, 0.5314396362304687, 0.531156982421875, 0.5315000610351562, 0.5313597412109375, 0.531751953125, 0.5312440185546875, 0.5317304077148437, 0.5317755126953125, 0.5315819702148438, 0.531620849609375, 0.5316690063476562, 0.5314795532226563, 0.531746826171875, 1.10517041015625, 0.5310320434570313, 0.5314959106445313, 0.531240966796875, 0.5316321411132813, 0.5310750732421875, 0.5315758056640625, 0.5309490966796875, 0.5315245971679687, 0.531431396484375, 0.5313065185546875, 0.5310504760742187, 0.53180517578125, 0.5314457397460938, 0.5317089233398438, 0.53155224609375, 0.5318389892578125, 0.53121435546875, 0.5315266723632812, 0.5316557006835938, 0.5317037963867187, 0.5315112915039063, 0.5319659423828125, 0.5315870971679687, 0.5313024291992188, 0.5310637817382813, 0.53197412109375, 0.5312553100585937, 0.5316925659179688, 0.5314713745117188, 0.53150927734375, 0.5313689575195313, 0.531694580078125, 0.5312471313476562, 0.5318174438476563, 0.5313341674804688, 0.5315020751953125, 0.5311109008789062, 0.5313853149414063, 0.5311262817382812, 0.53142529296875, 0.531198974609375, 0.53186767578125, 0.5312348022460938, 0.5325199584960938, 0.5314805908203125, 0.5316055297851563, 0.531357666015625, 0.5316454467773437, 0.5315297241210938, 0.5319075927734375, 0.5314221801757812, 0.5315809326171875, 0.531282958984375, 0.531325927734375, 0.5312184448242188, 0.5315061645507813, 0.5310894165039063, 0.5316116333007812, 0.5311078491210938, 0.5315430297851562, 0.5313955688476563, 0.5316587524414063, 1.10468408203125, 0.5308170166015626, 0.5314140014648437, 0.5310218505859375, 0.53187890625, 0.5309481201171875, 0.5317294311523437, 0.5310084838867187, 0.5319915771484375, 0.530977783203125, 0.5312849731445313, 0.5309696044921876, 0.531294189453125, 0.5310863647460937, 0.5315205078125, 0.5311488037109375, 0.531873779296875, 0.5310392456054688, 0.5315072021484375, 0.531240966796875, 0.53151025390625, 0.531162109375, 0.531541015625, 0.5314877319335938, 0.5313935546875, 0.5315809326171875, 0.5316167602539063, 0.531219482421875, 0.53136279296875, 0.5309470825195313, 0.5313136596679687, 0.5309798583984375, 0.5316341552734375, 0.5309798583984375, 0.5316966552734375, 0.5313157348632812, 0.531535888671875, 0.5310628051757813, 0.5316270141601562, 0.5313607788085938, 0.5316013793945312, 0.5313177490234375, 0.5321758422851562, 0.53148876953125, 0.5317089233398438, 0.53140478515625, 0.5316423950195313, 0.5311181030273437, 0.5316239624023438, 0.5310228271484375, 0.5313597412109375, 0.5311314086914063, 0.5313966064453125, 0.5312317504882812, 0.531378173828125, 0.5308600463867188, 0.5313966064453125, 0.5326162109375, 0.5314959106445313, 0.5313351440429688, 0.5318082275390625, 0.5313423461914063, 0.5320233154296875, 1.1039805908203124, 0.530788330078125, 0.5315082397460937, 0.5307863159179688, 0.53119384765625, 0.5309398803710937, 0.5312583618164063, 0.5307330322265625, 0.5312890625, 0.5308733520507812, 0.5311170654296875, 0.5309942016601562, 0.5312973022460937, 0.5311661987304688, 0.5314498291015625, 0.5309091796875, 0.532263916015625, 0.531462158203125, 0.5319485473632812, 0.531884033203125, 0.531937255859375, 0.5315133666992188, 0.532031494140625, 0.5308630981445313, 0.5312614135742187, 0.5308876953125, 0.5313873901367188, 0.5314078979492187, 0.5316280517578125, 0.531314697265625, 0.53157373046875, 0.5310853271484375, 0.5314744262695312, 0.5311897583007813, 0.5319854125976563, 0.53146728515625, 0.5319290771484375, 0.5310658569335938, 0.533580810546875, 0.5315614624023437, 0.5317345581054688, 0.5312808837890625, 0.531472412109375, 0.531282958984375, 0.5319321899414062, 0.5314600830078124, 0.53201611328125, 0.5309706420898438, 0.5315635375976563, 0.53127783203125, 0.5316904907226563, 0.5316259765625, 0.5321615600585937, 0.5318072509765625, 0.5314979858398438, 0.5314017333984375, 0.5320017700195312, 0.5319782104492188, 0.5316690063476562, 0.5314088745117187, 0.5318072509765625, 0.5312388916015625, 0.531979248046875, 1.1056363525390625, 0.5310975952148438, 0.5316484985351563, 0.5309685668945312, 0.5316218872070313, 0.5310679321289062, 0.53184716796875, 0.5311968994140625, 0.5316198120117187, 0.5313331298828124, 0.53146728515625, 0.5315911865234375, 0.5316013793945312, 0.5314119873046875, 0.5317488403320313, 0.5311682739257813, 0.5313904418945312, 0.5310167236328125, 0.5313966064453125, 0.5309951782226563, 0.5314457397460938, 0.5311436767578125, 0.5312788696289062, 0.5310361328125, 0.5313966064453125, 0.5309634399414063, 0.531441650390625, 0.5314631958007813, 0.5321011352539062, 0.5310320434570313, 0.53186865234375, 0.5309337768554687, 0.5312890625, 0.5309788208007813, 0.53139453125, 0.53129931640625, 0.5314539794921875, 0.5309747314453125, 0.5315932006835937, 0.5313382568359375, 0.5317478637695312, 0.5309747314453125, 0.53136279296875, 0.5310310668945313, 0.5313843383789062, 0.5313546142578125, 0.531884033203125, 0.5320816650390625, 0.5317007446289063, 0.5317181396484375, 0.5314928588867187, 0.531162109375, 0.53182568359375, 0.5310238647460938, 0.5315983276367188, 0.5310853271484375, 0.5314877319335938, 0.5318953247070313, 0.5316690063476562, 0.5312655639648437, 0.531473388671875, 0.5310628051757813, 0.5314242553710937, 1.1063428955078125, 0.5311477661132813, 0.5320335083007812, 0.5312921752929688, 0.5317335205078125, 0.530977783203125, 0.5313136596679687, 0.5312286987304687, 0.5314478149414062, 0.5310218505859375, 0.5314529418945313, 0.5309644775390625, 0.5314129638671875, 0.5308477172851562, 0.5313074951171874, 0.5311713256835937, 0.5313065185546875, 0.5310802001953125, 0.531578857421875, 0.5314457397460938, 0.5317069091796875, 0.53136279296875, 0.531314697265625, 0.531267578125, 0.5314457397460938, 0.5310955810546875, 0.5312737426757812, 0.53108837890625, 0.5317027587890625, 0.5308856201171875, 0.5313976440429687, 0.5313341674804688, 0.5313167114257813, 0.5309122314453125, 0.5314457397460938, 0.5309849853515625, 0.5314765014648437, 0.5310156860351563, 0.5319966430664063, 0.5313443603515625, 0.5320386352539063, 0.531367919921875, 0.5315552978515625, 0.530850830078125, 0.5315706787109375, 0.5309685668945312, 0.5314590454101562, 0.5309583129882812, 0.5313720092773437, 0.5309685668945312, 0.5319751586914062, 0.531578857421875, 0.5315164184570312, 0.5312655639648437, 0.5314447631835938, 0.5310504760742187, 0.5314877319335938, 0.5322485961914063, 0.5322516479492188, 0.531857421875, 0.5321328735351563, 0.5316331787109375, 0.531778564453125, 1.1072911376953125, 0.5309224853515625, 0.5317345581054688, 0.5315655517578125, 0.531462158203125, 0.53136279296875, 0.5313065185546875, 0.530951171875, 0.5313351440429688, 0.5309603881835937, 0.53127783203125, 0.5310310668945313, 0.5318154296875, 0.531683349609375, 0.5316904907226563, 0.5310494995117188, 0.5312767944335938, 0.5310556030273438, 0.5316259765625, 0.53110986328125, 0.5314088745117187, 0.5309767456054687, 0.5314846801757812, 0.5312081909179688, 0.5313607788085938, 0.5309849853515625, 0.53131982421875, 0.5310699462890625, 0.5314191284179688, 0.5309747314453125, 0.5317734375, 0.531103759765625, 0.5316280517578125, 0.5309747314453125, 0.531689453125, 0.531009521484375, 0.5314703369140625, 0.53123583984375, 0.53159423828125, 0.5309818725585937, 0.5314191284179688, 0.5310842895507812, 0.5318082275390625, 0.531125244140625, 0.5315932006835937, 0.531051513671875, 0.5314324340820312, 0.5311846313476563, 0.5314447631835938, 0.5312880859375, 0.5315921630859375, 0.5316597900390625, 0.5315440673828125, 0.53146826171875, 0.53159423828125, 0.5313331298828124, 0.5315133666992188, 0.5311201171875, 0.5314662475585937, 0.5311539306640625, 0.5316423950195313, 0.531114990234375, 0.5314866943359375, 1.1065169677734374, 0.5308661499023437, 0.5313402709960937, 0.5308170166015626, 0.5315850219726562, 0.5312532348632812, 0.5315512084960937, 0.53100341796875, 0.5315338134765625, 0.531156982421875, 0.5314345092773437, 0.5309490966796875, 0.5311846313476563, 0.5308651733398437, 0.5314539794921875, 0.5309276123046875, 0.531431396484375, 0.5310126342773438, 0.5312388916015625, 0.5309061279296875, 0.531294189453125, 0.5308026733398438, 0.531325927734375, 0.5314857177734374, 0.5316792602539062, 0.5311539306640625, 0.5321492309570313, 0.5309573364257812, 0.5314765014648437, 0.5313320922851562, 0.5315184936523437, 0.5314457397460938, 0.5313597412109375, 0.530850830078125, 0.5313320922851562, 0.531251220703125, 0.5314334716796875, 0.5309030151367188, 0.531431396484375, 0.531162109375, 0.5314017333984375, 0.53098291015625, 0.5322833862304688, 0.532005859375, 0.5324338989257813, 0.53241650390625, 0.5326049194335938, 0.5322711181640625, 0.5329356689453125, 0.5318450927734375, 0.5316024169921875, 0.5314273071289063, 0.5318809814453125, 0.53153076171875, 0.5320017700195312, 0.5319137573242188, 0.5322250366210938, 0.5320192260742187, 0.5323571166992187, 0.5319556884765625, 0.53264794921875, 0.5321123657226563, 0.5325609130859374]",tokens/s,1.8528982016001712,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-13b-hf,meta-llama/Llama-2-13b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,3001.430016,9299.296256,0.0,8652.849152,8210.185216,s,10,11.016480834960937,1.1016480834960938,0.0021733642538701277,1.1017757568359374,1.103871484375,1.1043791625976562,1.1047853051757812,"[1.1037586669921875, 1.1048868408203125, 1.09813720703125, 1.0993441162109374, 1.10018701171875, 1.0994322509765626, 1.101841796875, 1.101709716796875, 1.1036807861328124, 1.10350244140625]",tokens/s,232.3791089324831,kWh,1.2973552644252778e-05,7.108400666602392e-06,6.117329893860212e-05,8.12552522494573e-05,tokens/kWh,3150565.568537876,MB,3002.59328,9299.296256,0.0,8652.849152,8503.104,s,10,641.81039453125,64.18103945312501,0.013566927048965604,64.180421875,64.20006953125001,64.202245703125,64.20398664062499,"[64.180421875, 64.1733046875, 64.15237109375, 64.17387890625, 64.17909765625, 64.204421875, 64.1840859375, 64.180421875, 64.1828046875, 64.1995859375]",tokens/s,0.9815983121621521,kWh,0.0007575022853910923,0.00041517883106595037,0.0035625019055547965,0.004735183022011839,tokens/kWh,13304.659969242997,,s,629,650.7052465209968,1.0345075461383086,0.13087387967036276,1.0186967163085938,1.0195488891601563,1.0197336059570312,2.11880048828125,"[1.0175508422851562, 1.0181458129882812, 1.0181683349609374, 1.0183413696289063, 1.0181898193359376, 1.0181119995117187, 1.0183444213867188, 1.018092529296875, 1.0177116088867189, 1.0180689697265626, 1.0175825805664063, 1.0178242797851562, 1.0176737060546874, 1.0177935180664062, 1.0175949096679688, 1.017802734375, 1.018124267578125, 1.01833935546875, 1.0179113159179687, 1.0183004150390624, 1.0186444702148438, 1.0186260375976564, 1.0186373291015625, 1.0180352172851563, 1.0180280151367187, 1.0180382690429688, 1.019072509765625, 1.0186967163085938, 1.0191267700195312, 1.0186731567382812, 1.0187960205078126, 1.0190377197265625, 1.0188656616210938, 1.01879296875, 1.0181878051757813, 1.0191165161132814, 1.0185533447265624, 1.0191687622070313, 1.0184427490234376, 1.0186332397460938, 1.0186659545898438, 1.01909912109375, 1.0189649658203126, 1.0186096801757814, 1.0187254028320312, 1.0194135131835937, 1.01941455078125, 1.0202962036132812, 1.019704345703125, 1.0197586059570312, 1.0201170043945313, 1.0203515014648437, 1.0195978393554688, 1.020099609375, 1.0194329833984375, 1.020137451171875, 1.0197483520507813, 1.0200903930664063, 1.01933056640625, 1.01880419921875, 1.019261962890625, 1.0196900024414062, 2.1243330078125, 1.0192138061523437, 1.0183055419921876, 1.0189486083984376, 1.0191370239257813, 1.0183291015625, 1.01895166015625, 1.0190971069335937, 1.019052001953125, 1.0191104125976562, 1.018608642578125, 1.0190632934570312, 1.0185861206054687, 1.0184775390625, 1.0194800415039063, 1.0183649291992187, 1.0192107543945312, 1.0193479614257812, 1.01952001953125, 1.0189434814453124, 1.01899365234375, 1.019052001953125, 1.0188851318359375, 1.0190868530273438, 1.0185226440429687, 1.0191022338867188, 1.0190540771484375, 1.0195435791015626, 1.0188001098632813, 1.0175877075195312, 1.01774951171875, 1.017987060546875, 1.0180618286132812, 1.018218505859375, 1.0183157958984375, 1.0183516235351562, 1.018313720703125, 1.0178468017578124, 1.0180331420898439, 1.018102783203125, 1.018229736328125, 1.0181058349609375, 1.0183147583007812, 1.018461181640625, 1.0184550170898437, 1.017839599609375, 1.0192803955078125, 1.0181570434570313, 1.01834033203125, 1.018218505859375, 1.0189649658203126, 1.0185697021484375, 1.01888818359375, 1.0182881469726563, 1.0184069213867188, 1.0182307739257812, 1.0182891235351563, 1.0182410278320313, 1.0186854248046875, 1.0180198364257813, 1.0185799560546875, 1.0184140625, 1.0185236206054689, 2.1177333984375, 1.01767578125, 1.0179533081054688, 1.01821337890625, 1.0182543334960938, 1.0181304321289062, 1.0179686279296876, 1.0175242309570312, 1.0182492065429687, 1.0181949462890625, 1.0180792236328124, 1.017970703125, 1.0186107177734376, 1.0181621704101562, 1.0177321166992188, 1.017511962890625, 1.0179542846679688, 1.0180269775390625, 1.0183741455078126, 1.0180157470703124, 1.0179850463867188, 1.0181283569335937, 1.0180433959960937, 1.0179522705078126, 1.0176942138671874, 1.0177587280273437, 1.0178385620117187, 1.0181632080078125, 1.018629150390625, 1.0183321533203125, 1.0186834106445313, 1.01846630859375, 1.018461181640625, 1.018250244140625, 1.01829638671875, 1.01803515625, 1.01867724609375, 1.0185482177734375, 1.0195558471679687, 1.0182451171875, 1.0182113037109375, 1.0181283569335937, 1.0183987426757812, 1.0187427978515624, 1.0183946533203125, 1.0181652221679687, 1.018517578125, 1.0183423461914063, 1.0193663940429687, 1.0184171752929687, 1.0185789184570313, 1.0189977416992186, 1.0188840942382813, 1.0188493041992188, 1.01865673828125, 1.0181990356445312, 1.018498046875, 1.0186240234375, 1.0186342163085937, 1.0180474853515624, 1.0181181640625, 1.0185072631835939, 1.0182072143554688, 2.11782666015625, 1.0176593627929686, 1.0179297485351562, 1.0178068237304687, 1.0177402954101562, 1.0177413330078124, 1.0181898193359376, 1.0177003784179688, 1.0179614868164062, 1.0176676025390625, 1.0177188110351563, 1.0182338256835937, 1.0195701904296874, 1.01842431640625, 1.0179614868164062, 1.0182686767578124, 1.0188646240234376, 1.0179307250976561, 1.0180372314453126, 1.0181652221679687, 1.01809765625, 1.0183987426757812, 1.0185236206054689, 1.0191226806640625, 1.0184785766601563, 1.0190673828125, 1.0196029663085937, 1.0190448608398437, 1.0190960693359374, 1.0191595458984375, 1.0192824096679687, 1.0184365844726562, 1.0186434326171876, 1.0191533813476563, 1.0193930053710938, 1.0196664428710938, 1.019341796875, 1.01850830078125, 1.0184909057617189, 1.018365966796875, 1.0184058837890626, 1.019093994140625, 1.0190244140625, 1.0187202758789062, 1.0190602416992187, 1.0189383544921875, 1.0194821166992187, 1.0181652221679687, 1.0186793212890626, 1.0183731079101563, 1.0187816772460938, 1.01879296875, 1.0193489990234375, 1.018956787109375, 1.019167724609375, 1.0183106689453125, 1.0189916381835937, 1.0191524047851563, 1.0189639892578124, 1.0186598510742189, 1.0192609252929687, 1.0185523071289062, 1.0191390991210938, 2.1198623046875, 1.0184703979492187, 1.018693603515625, 1.0184253540039063, 1.018598388671875, 1.017944091796875, 1.0177741088867187, 1.0175641479492188, 1.0179666748046876, 1.017946044921875, 1.0179491577148438, 1.0177464599609376, 1.0178068237304687, 1.0175989990234375, 1.0180106201171875, 1.0180372314453126, 1.0184130859375, 1.0181887817382813, 1.0183567504882813, 1.0175958862304688, 1.0183536376953124, 1.0183270263671875, 1.0187335815429688, 1.0194104614257813, 1.01911962890625, 1.0193428344726563, 1.0188841552734376, 1.0194349975585937, 1.0187448120117188, 1.018265625, 1.018481689453125, 1.0187151489257813, 1.0190418090820312, 1.0186414184570312, 1.0186311645507813, 1.019009033203125, 1.0189557495117187, 1.01874072265625, 1.0184427490234376, 1.01905615234375, 1.0199142456054688, 1.0191533813476563, 1.0189649658203126, 1.019109375, 1.0186588134765624, 1.0195548095703124, 1.0190469360351562, 1.0197084350585937, 1.0191718139648438, 1.019072509765625, 1.0192210083007813, 1.0191072998046875, 1.0190694580078126, 1.0184151000976562, 1.0187469482421876, 1.0190745239257812, 1.0195794067382813, 1.0200555419921875, 1.0184437866210938, 1.0190847778320313, 1.01943505859375, 1.0188318481445313, 1.0186168212890625, 2.11917919921875, 1.0183997192382812, 1.02013232421875, 1.0196019287109375, 1.018566650390625, 1.018514404296875, 1.0180843505859376, 1.0178980102539064, 1.018302490234375, 1.0179512329101563, 1.0179932250976562, 1.017970703125, 1.0190079956054687, 1.0196439208984376, 1.0198763427734374, 1.0188820190429688, 1.0180269775390625, 1.0179645385742186, 1.0182420654296875, 1.0186547241210937, 1.019009033203125, 1.0187325439453125, 1.0195947265625, 1.01844482421875, 1.0194401245117188, 1.0188646240234376, 1.0188635864257813, 1.0188073120117187, 1.0185891723632812, 1.0188493041992188, 1.0184304809570313, 1.0185359497070312, 1.0193643798828125, 1.0190960693359374, 1.0195015869140625, 1.0195343627929687, 1.0197268676757814, 1.0195292358398438, 1.0212003784179688, 1.0190858154296876, 1.0195117797851563, 1.0193694458007811, 1.0198139038085938, 1.0197166137695313, 1.0198231201171875, 1.0193295288085937, 1.0196602783203126, 1.01909912109375, 1.0193510131835937, 1.0191390991210938, 1.019315185546875, 1.01920361328125, 1.0198876342773437, 1.019504638671875, 1.0197114868164063, 1.0195404663085939, 1.0196654052734375, 1.019725830078125, 1.0191769409179687, 1.019283447265625, 1.0189865112304688, 1.0192742309570313, 1.0197012329101562, 2.120995849609375, 1.0189475708007814, 1.0187919311523437, 1.0181539916992188, 1.0187530517578125, 1.019020263671875, 1.0189700927734375, 1.0192455444335937, 1.0192025756835938, 1.018956787109375, 1.0191503295898436, 1.0182103271484375, 1.0184130859375, 1.01810791015625, 1.0181693725585939, 1.018672119140625, 1.0189906005859375, 1.0192138061523437, 1.0188738403320312, 1.0185830688476563, 1.0189445190429687, 1.0188543701171875, 1.0183229370117188, 1.0181427001953125, 1.0185963745117188, 1.0190100708007812, 1.0193192749023436, 1.0195661010742187, 1.0191524047851563, 1.0190028686523438, 1.0189066162109375, 1.018893310546875, 1.0182830200195312, 1.01808740234375, 1.01798095703125, 1.018049560546875, 1.0186854248046875, 1.0191216430664063, 1.0186157836914063, 1.019087890625, 1.019009033203125, 1.018883056640625, 1.0186516723632812, 1.018503173828125, 1.018767333984375, 1.0181427001953125, 1.0188851318359375, 1.0190079956054687, 1.0191380615234376, 1.0195916748046876, 1.018988525390625, 1.0186444702148438, 1.0186322021484375, 1.0188236694335937, 1.0185963745117188, 1.0187489013671875, 1.0191278076171875, 1.0186588134765624, 1.0191104125976562, 1.0196490478515625, 1.019409423828125, 1.0184796142578125, 1.0184622192382813, 2.120321044921875, 1.018513427734375, 1.0190059814453125, 1.0185799560546875, 1.0189691162109376, 1.0192957153320312, 1.0182420654296875, 1.0181099243164062, 1.018471435546875, 1.0179880981445313, 1.01793994140625, 1.0180792236328124, 1.0191585083007813, 1.0183577880859376, 1.0186967163085938, 1.019025390625, 1.018302490234375, 1.0182195434570311, 1.0180986938476562, 1.0181119995117187, 1.018119140625, 1.0185779418945313, 1.0192568359375, 1.01869775390625, 1.0190448608398437, 1.0191011962890626, 1.0185687255859375, 1.0183587646484376, 1.0186629028320313, 1.018440673828125, 1.0184990844726562, 1.0189854736328126, 1.0192864990234376, 1.0188861694335938, 1.0186168212890625, 1.0193828125, 1.019452392578125, 1.018482666015625, 1.0182092895507813, 1.0185973510742188, 1.0184847412109375, 1.0187908935546874, 1.0185379638671874, 1.0185676879882812, 1.0197432250976564, 1.0195404663085939, 1.0186229858398437, 1.0183670043945312, 1.01861376953125, 1.0180689697265626, 1.019240478515625, 1.0194298706054687, 1.0187018432617188, 1.0183311157226562, 1.0196664428710938, 1.01880322265625, 1.019241455078125, 1.01879296875, 1.0191953735351562, 1.0192783203125, 1.0192066650390625, 1.0193878784179689, 1.0188646240234376, 2.12357421875, 1.019025390625, 1.0193284912109375, 1.0185912475585936, 1.0186680297851562, 1.0185154418945312, 1.0190069580078125, 1.0191072998046875, 1.0187960205078126, 1.0190796508789062, 1.0191022338867188, 1.01871923828125, 1.0191728515625, 1.0182952880859375, 1.0185615234375, 1.0188533935546875, 1.01926806640625, 1.0197380981445312, 1.0183946533203125, 1.019536376953125, 1.0187807006835938, 1.0187202758789062, 1.0181488647460937, 1.01829736328125, 1.0191585083007813, 1.0188114013671874, 1.0189260864257812, 1.0182645874023437, 1.0184970092773438, 1.01850830078125, 1.0195537719726562, 1.0186332397460938, 1.018650634765625, 1.018513427734375, 1.0189107055664062, 1.0193633422851562, 1.0195169067382812, 1.0182993774414062, 1.0184263916015626, 1.019188232421875, 1.0184898681640624, 1.0184581298828126, 1.018377197265625, 1.0180526123046876, 1.018682373046875, 1.019114501953125, 1.01926708984375, 1.018660888671875, 1.0182830200195312, 1.0192527465820314, 1.0191104125976562, 1.0186793212890626, 1.0189076538085937, 1.0181212158203126, 1.0184489135742187, 1.0176378784179687, 1.0188114013671874, 1.01772900390625, 1.0189046020507813, 1.0190069580078125, 1.0186148071289063, 1.0183670043945312, 1.019093017578125, 2.122827880859375, 1.0188871459960938, 1.0193141479492187, 1.0191267700195312, 1.0201989135742187, 1.018756103515625, 1.0183936157226563, 1.0180618286132812, 1.0186639404296876, 1.018534912109375, 1.0186199340820312, 1.0191769409179687, 1.0182215576171876, 1.0179891357421875, 1.0194401245117188, 1.019241455078125, 1.019087890625, 1.0191400756835938, 1.0193930053710938, 1.0193981323242187, 1.0194821166992187, 1.0188114013671874, 1.0183598022460938, 1.0190151977539061, 1.0194656982421875, 1.0182840576171874, 1.0186342163085937, 1.0182359008789061, 1.0182963256835937, 1.018186767578125, 1.0188738403320312, 1.0185728149414062, 1.0182052001953126, 1.018392578125, 1.019826171875, 1.018545166015625, 1.0191267700195312, 1.0181467895507812, 1.0188943481445312, 1.0193899536132813, 1.0195814208984375, 1.0194718627929686, 1.0192506713867187, 1.0194667358398437, 1.0197903442382812, 1.0192322387695312, 1.0195476684570313, 1.0191769409179687, 1.0188554077148437, 1.0196582641601561, 1.0197176513671875, 1.019526123046875, 1.0196561889648437, 1.0197647094726563, 1.0200924072265625, 1.0190786743164062, 1.019673583984375, 1.0185328369140625, 1.0187786254882814, 1.0190172119140626, 1.019193359375, 1.0191861572265626, 1.0196377563476562]",tokens/s,0.966643504663527,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mistral-7B-v0.1,mistralai/Mistral-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2173.579264,6201.802752,0.0,5555.355648,5274.11712,s,10,6.188704040527344,0.6188704040527343,0.001630006512575581,0.6182249450683593,0.6205656127929687,0.6214197998046874,0.6221031494140624,"[0.6199492797851562, 0.6180035400390625, 0.6172139282226563, 0.6179977416992187, 0.618110595703125, 0.6165477905273438, 0.6183392944335937, 0.6222739868164062, 0.61989208984375, 0.6203757934570312]",tokens/s,413.65687924896486,kWh,7.2883394029405375e-06,3.9920504876135965e-06,3.5213917060001095e-05,4.649430695055522e-05,tokens/kWh,5506050.456290174,MB,2173.579264,6201.802752,0.0,5555.355648,5324.909056,s,10,366.72262109375004,36.672262109375005,0.03669260702690663,36.653501953125,36.74228671875,36.744877734375,36.746950546875006,"[36.7417109375, 36.74746875, 36.65041015625, 36.64756640625, 36.6498203125, 36.6483046875, 36.65363671875, 36.6533671875, 36.662453125, 36.6678828125]",tokens/s,1.7179196585174519,kWh,0.0004329811916251978,0.000237312961880707,0.002063029955978196,0.0027333241094841007,tokens/kWh,23048.858267997675,,s,629,371.7092334594727,0.5909526764061569,0.0735102746996128,0.581843994140625,0.5835925537109375,0.584360986328125,1.1999008935546875,"[0.5815029907226562, 0.58220849609375, 0.58231396484375, 0.5818121948242188, 0.581771240234375, 0.581728271484375, 0.581939208984375, 0.5820538940429687, 0.5821102294921875, 0.581634033203125, 0.5816616821289062, 0.5819156494140625, 0.581291015625, 0.5822781372070313, 0.5820303344726563, 0.5819361572265624, 0.581734375, 0.5818613891601563, 0.5819801635742188, 0.582466552734375, 0.5818736572265625, 0.581818359375, 0.5841039428710938, 0.58378955078125, 0.584427490234375, 0.58435791015625, 0.5840650024414062, 0.5840220336914063, 0.584052734375, 0.584026123046875, 0.5835888671875, 0.5834075927734375, 0.583383056640625, 0.5840967407226563, 0.5844940795898438, 0.5843302612304687, 0.5861007080078126, 0.5830584106445312, 0.5844940795898438, 0.5844203491210938, 0.5834240112304687, 0.58357861328125, 0.5838602294921875, 0.5845339965820312, 0.5830901489257813, 0.5837598876953125, 0.5830502319335937, 0.58431591796875, 0.5842994995117188, 0.5837005004882813, 0.5831137084960938, 0.5829529418945313, 0.5845821533203125, 0.5848340454101563, 0.5842728881835938, 0.5823283081054688, 0.5856133422851563, 0.5826621704101562, 0.5840762939453125, 0.5840148315429687, 0.5838244018554688, 0.583173095703125, 1.2010567626953126, 0.5827809448242187, 0.58383154296875, 0.58437939453125, 0.5838694458007813, 0.58402099609375, 0.5823805541992187, 0.5836072998046875, 0.5824061279296875, 0.5832857666015625, 0.5830154418945312, 0.5828423461914063, 0.5844193115234375, 0.583710693359375, 0.5833215942382812, 0.5818582763671875, 0.5821634521484375, 0.5816187133789062, 0.5839032592773438, 0.5848248291015625, 0.5831044921875, 0.5835745239257812, 0.5840752563476562, 0.58448486328125, 0.5853388671875, 0.5839749145507812, 0.5822197875976562, 0.5817006225585938, 0.581855224609375, 0.5835755615234375, 0.5830338745117187, 0.5852354736328125, 0.584363037109375, 0.5837445068359375, 0.58349365234375, 0.58421142578125, 0.585006103515625, 0.5831065673828125, 0.5816985473632813, 0.5817743530273437, 0.5817098388671875, 0.5845473022460937, 0.5823252563476562, 0.5827501831054688, 0.5815951538085937, 0.5826806030273437, 0.5863434448242187, 0.5844859008789063, 0.5844592895507813, 0.584052734375, 0.5841151733398438, 0.5830891723632813, 0.5820047607421875, 0.5847992553710938, 0.5855047607421875, 0.582703125, 0.5821572875976563, 0.5824225463867188, 0.5825310668945313, 0.58260888671875, 0.5822177124023438, 0.5819852905273437, 0.5815715942382812, 1.1993958740234374, 0.5825433349609375, 0.5819463500976563, 0.5820119018554688, 0.581875732421875, 0.5813340454101562, 0.5827901611328125, 0.5819699096679688, 0.581412841796875, 0.5816166381835938, 0.5814906616210938, 0.5816627197265625, 0.5826836547851563, 0.5817589721679688, 0.5819658203125, 0.5817825317382812, 0.5814906616210938, 0.5817098388671875, 0.582255615234375, 0.5815142211914063, 0.5814528198242187, 0.5813032836914063, 0.5811845092773438, 0.5815469970703125, 0.5824461059570313, 0.5814261474609375, 0.58144970703125, 0.5815429077148437, 0.5813892822265625, 0.5822146606445312, 0.5814312744140625, 0.581739501953125, 0.5815429077148437, 0.5813053588867187, 0.5817047119140625, 0.58222900390625, 0.5819566040039063, 0.5814466552734375, 0.5814537963867188, 0.5814927368164062, 0.581306396484375, 0.5819422607421875, 0.581738525390625, 0.5812838134765625, 0.5814528198242187, 0.5814886474609375, 0.5819361572265624, 0.5819166870117187, 0.5818040161132813, 0.5816985473632813, 0.5815736083984375, 0.5821388549804688, 0.5815367431640625, 0.582192138671875, 0.5816207275390625, 0.5815726318359375, 0.5814241333007812, 0.5814957885742188, 0.582708251953125, 0.581718017578125, 0.58149169921875, 0.5818613891601563, 0.5822637939453125, 1.2004178466796875, 0.5815613403320312, 0.5825177612304687, 0.5818429565429688, 0.5822146606445312, 0.5813770141601563, 0.5820886840820313, 0.5818121948242188, 0.5816586303710938, 0.5821511840820313, 0.58155517578125, 0.582277099609375, 0.5820498046875, 0.5820149536132813, 0.5815562133789063, 0.5816012573242187, 0.58168115234375, 0.5823037719726563, 0.5814323120117187, 0.5812920532226562, 0.5816371459960937, 0.5818091430664063, 0.5820221557617188, 0.5824839477539062, 0.5814835205078125, 0.581549072265625, 0.5811885986328125, 0.5815357666015625, 0.5823446655273438, 0.5814722290039063, 0.5815715942382812, 0.5821900634765625, 0.5817610473632813, 0.5821563110351563, 0.5818327026367187, 0.5814814453125, 0.5814220581054688, 0.5811742553710938, 0.5813903198242187, 0.5816350708007813, 0.581591064453125, 0.5814251708984375, 0.5813258056640624, 0.5812254638671875, 0.5822904052734375, 0.5816094970703125, 0.58172314453125, 0.58190234375, 0.5816903686523438, 0.581370849609375, 0.5813626708984375, 0.5817210693359375, 0.581518310546875, 0.5814149169921875, 0.5811558227539062, 0.581285888671875, 0.5823262939453125, 0.5823775024414063, 0.5814466552734375, 0.5813217163085938, 0.5813084106445312, 0.581475341796875, 0.5812244262695313, 1.2000972900390625, 0.5818818359375, 0.5816494140625, 0.5814087524414062, 0.5819525146484374, 0.5813268432617188, 0.5813104858398438, 0.5814395141601563, 0.5813831787109375, 0.5815377807617188, 0.5815398559570313, 0.5813851928710938, 0.5812265014648438, 0.5813248291015625, 0.581285888671875, 0.5814814453125, 0.58180712890625, 0.58216650390625, 0.5817006225585938, 0.581665771484375, 0.581285888671875, 0.5814927368164062, 0.5819913940429687, 0.5817118530273437, 0.58148046875, 0.5813248291015625, 0.5815654296875, 0.5814271850585937, 0.5818184204101563, 0.581286865234375, 0.5811497192382813, 0.58169140625, 0.5815244750976563, 0.5822689208984375, 0.5820487670898438, 0.5819586791992187, 0.5819259033203125, 0.5818101806640625, 0.582055908203125, 0.5828423461914063, 0.5817907104492187, 0.5819053955078125, 0.5818429565429688, 0.5818910522460937, 0.5818316650390625, 0.5823355102539063, 0.5815357666015625, 0.5818480834960937, 0.5816524658203125, 0.5814456176757813, 0.5823866577148438, 0.5815685424804687, 0.5816985473632813, 0.5815982055664063, 0.5815838623046875, 0.5819381713867188, 0.5823416137695312, 0.5835530395507813, 0.5818255615234375, 0.581444580078125, 0.5817507934570313, 0.58191259765625, 0.5820006103515625, 1.1981956787109376, 0.5812254638671875, 0.58144873046875, 0.5819668579101562, 0.5815818481445313, 0.5812940673828125, 0.5811456298828125, 0.5813626708984375, 0.5811497192382813, 0.58141796875, 0.5813995361328125, 0.5813135375976562, 0.58134423828125, 0.58155517578125, 0.5815787353515625, 0.5828638916015625, 0.5816575927734375, 0.5815111694335937, 0.5813616943359375, 0.5820538940429687, 0.5820927734375, 0.5819678955078125, 0.5817692260742188, 0.5816145629882813, 0.5816954956054687, 0.5814374389648438, 0.5818951416015625, 0.5821614379882812, 0.5817313232421875, 0.5813452758789063, 0.581381103515625, 0.5819310302734375, 0.5822279663085937, 0.5815029907226562, 0.5817210693359375, 0.5818112182617188, 0.5817722778320312, 0.5819627685546875, 0.583836669921875, 0.5821726684570312, 0.5814364013671875, 0.5819780883789063, 0.5817313232421875, 0.5815214233398438, 0.5822955322265625, 0.5814681396484375, 0.5818040161132813, 0.58149169921875, 0.5819668579101562, 0.5824163818359375, 0.5818613891601563, 0.5814384765625, 0.581412841796875, 0.5816555786132812, 0.58149169921875, 0.5826007080078125, 0.5815326538085938, 0.5814886474609375, 0.5814763793945312, 0.5815326538085938, 0.5814620361328126, 0.5819299926757813, 0.5814906616210938, 1.2004239501953125, 0.5820057373046875, 0.5815797729492187, 0.5823160400390625, 0.5817426147460938, 0.5813114624023438, 0.5819115600585938, 0.5817979125976562, 0.5821522216796875, 0.5816882934570312, 0.5816770629882813, 0.581875732421875, 0.5819259033203125, 0.5819658203125, 0.582761474609375, 0.582223876953125, 0.5820333862304687, 0.5817845458984375, 0.5826467895507812, 0.5818388061523437, 0.5823938598632813, 0.5820436401367187, 0.581734375, 0.5818245239257812, 0.5811896362304687, 0.5817927856445313, 0.5819688720703124, 0.5817190551757813, 0.5813688354492188, 0.5810667724609375, 0.5812234497070312, 0.581843994140625, 0.5815643920898438, 0.58111181640625, 0.5813903198242187, 0.5819085083007812, 0.58183984375, 0.582118408203125, 0.5814773559570312, 0.5814302978515625, 0.5815347290039062, 0.581191650390625, 0.5816688842773438, 0.5815234375, 0.5817190551757813, 0.5818490600585937, 0.5814508056640625, 0.5813779907226563, 0.5813463134765625, 0.5819893798828125, 0.581802978515625, 0.5817333984375, 0.5816944580078125, 0.58290380859375, 0.582845458984375, 0.5820845947265625, 0.5818582763671875, 0.5815060424804688, 0.5813718872070313, 0.5813084106445312, 0.58233447265625, 0.58221875, 0.582023193359375, 1.2042802734375, 0.5814743041992188, 0.5829151000976562, 0.581739501953125, 0.582096923828125, 0.5818674926757812, 0.5823180541992188, 0.5825535888671876, 0.581813232421875, 0.5818327026367187, 0.5814989013671875, 0.5814200439453125, 0.58134326171875, 0.5823580322265625, 0.5821480712890625, 0.5814957885742188, 0.581401611328125, 0.58191357421875, 0.5817169799804688, 0.5821388549804688, 0.5816801147460937, 0.581734375, 0.58136474609375, 0.5820723266601563, 0.5818541870117188, 0.5822105712890625, 0.5819094848632812, 0.5814200439453125, 0.5814589233398437, 0.5813892822265625, 0.5821788330078125, 0.5815685424804687, 0.5816401977539063, 0.5814948120117187, 0.5815224609375, 0.58134326171875, 0.5816104736328125, 0.5815562133789063, 0.5814251708984375, 0.5814835205078125, 0.5819678955078125, 0.5815869140625, 0.5825003662109375, 0.5818951416015625, 0.5816432495117188, 0.5817241821289062, 0.5819412231445312, 0.5827870483398437, 0.5818347778320313, 0.5818951416015625, 0.5817241821289062, 0.5815101318359375, 0.5815992431640625, 0.5828341674804688, 0.58174462890625, 0.5817559204101562, 0.5814732666015625, 0.5818153076171875, 0.5818726196289062, 0.5815941162109375, 0.5818357543945313, 0.5814814453125, 0.581423095703125, 1.20260302734375, 0.5818193969726563, 0.581865478515625, 0.581950439453125, 0.5817681884765625, 0.5818214111328125, 0.5814395141601563, 0.5819514770507812, 0.5817221069335937, 0.5816934204101563, 0.5817293090820312, 0.581970947265625, 0.5828628540039062, 0.5817088012695313, 0.5820282592773437, 0.5821061401367188, 0.5815398559570313, 0.5825218505859375, 0.5821337890625, 0.5817528076171875, 0.5816156005859375, 0.5817528076171875, 0.5815244750976563, 0.5816012573242187, 0.5817876586914063, 0.5815234375, 0.5816299438476562, 0.5816361083984375, 0.58243994140625, 0.5818275756835938, 0.581982177734375, 0.5820805053710938, 0.5815951538085937, 0.5817456665039062, 0.5822423095703125, 0.5822945556640625, 0.5821808471679687, 0.5818050537109375, 0.58201806640625, 0.5817753295898438, 0.5820897216796875, 0.5823733520507812, 0.5820651245117188, 0.5818265380859375, 0.581950439453125, 0.5819739990234375, 0.5821327514648438, 0.5821265869140625, 0.5822382202148437, 0.5820354614257812, 0.5818521728515625, 0.582096923828125, 0.5824255981445312, 0.5819852905273437, 0.58187060546875, 0.581559326171875, 0.5813483276367187, 0.5814466552734375, 0.5824675903320312, 0.5822116088867187, 0.582044677734375, 0.5817651977539062, 0.5824183959960938, 1.2028917236328125, 0.5816196899414062, 0.5820651245117188, 0.58216650390625, 0.5816453247070312, 0.5824542846679688, 0.58161767578125, 0.5813831787109375, 0.5814927368164062, 0.5813555297851563, 0.5818265380859375, 0.5822269287109375, 0.5816893310546875, 0.5816524658203125, 0.5816483764648438, 0.582150146484375, 0.5817559204101562, 0.5817753295898438, 0.5819832153320312, 0.58170263671875, 0.5822689208984375, 0.58190234375, 0.5830420532226562, 0.5826693115234375, 0.5818050537109375, 0.5818674926757812, 0.5821439819335937, 0.5822811889648437, 0.582197265625, 0.5828679809570313, 0.5820733642578125, 0.5823170776367188, 0.582361083984375, 0.5818163452148437, 0.5824215087890625, 0.5816258544921875, 0.5819381713867188, 0.5818787841796875, 0.5817630615234375, 0.5824501953125, 0.5823272705078125, 0.5820313720703125, 0.5818060913085937, 0.5822310180664062, 0.58191259765625, 0.5820538940429687, 0.5824081420898437, 0.5817354125976563, 0.5822463989257812, 0.5826129760742188, 0.5819381713867188, 0.5827451171875, 0.58174462890625, 0.5820057373046875, 0.5819617309570313, 0.581875732421875, 0.5822545776367187, 0.5817784423828125, 0.5824000244140625, 0.5813032836914063, 0.5822054443359375, 0.5817518310546875, 0.5821992797851563]",tokens/s,1.6921828767769354,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-32B,Qwen/Qwen1.5-32B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,4421.566464,24111.480832,0.0,23465.033728,21691.057664,s,10,26.201972412109374,2.6201972412109376,0.0014392080916773324,2.620363525390625,2.621498388671875,2.622221728515625,2.622800400390625,"[2.62030126953125, 2.620416259765625, 2.620310791015625, 2.621337646484375, 2.620593017578125, 2.619945556640625, 2.622945068359375, 2.618053466796875, 2.6175732421875, 2.62049609375]",tokens/s,97.70256833095829,kWh,3.092599951558643e-05,1.6948578058490964e-05,0.00015162839908040572,0.00019950297665448312,tokens/kWh,1283188.874135765,MB,4421.566464,24111.480832,0.0,23465.033728,21890.213376,s,10,1554.3346406249998,155.43346406249998,0.013784362336340894,155.428859375,155.4548328125,155.45787734375,155.46031296875,"[155.44153125, 155.42890625, 155.45415625, 155.426875, 155.41909375, 155.416984375, 155.4288125, 155.42403125, 155.460921875, 155.433328125]",tokens/s,0.4053181236099044,kWh,0.0018348197203377882,0.0010056435987538315,0.008919082301926796,0.011759545621018413,tokens/kWh,5357.349852650515,,s,629,1575.449455322266,2.504689118159405,0.3111804707409938,2.46706884765625,2.4683868164062504,2.4691709960937502,5.086480859375,"[2.467560546875, 2.468384765625, 2.46702587890625, 2.467464111328125, 2.46763427734375, 2.468833251953125, 2.467610595703125, 2.46744580078125, 2.467310546875, 2.4678994140625, 2.46620263671875, 2.466724853515625, 2.46737109375, 2.46790234375, 2.466193359375, 2.46736279296875, 2.4661279296875, 2.467852294921875, 2.469380126953125, 2.468475830078125, 2.467101806640625, 2.46930322265625, 2.4674384765625, 2.46818505859375, 2.46793115234375, 2.468096923828125, 2.466873291015625, 2.466653076171875, 2.466144287109375, 2.467576904296875, 2.466427978515625, 2.46687744140625, 2.467862548828125, 2.468832275390625, 2.46677001953125, 2.46746533203125, 2.4666767578125, 2.467177490234375, 2.4664228515625, 2.466610107421875, 2.466058349609375, 2.46723388671875, 2.470784912109375, 2.466979736328125, 2.466400146484375, 2.4673740234375, 2.467078125, 2.466891845703125, 2.46717041015625, 2.467664794921875, 2.4676455078125, 2.467311767578125, 2.4667421875, 2.46812060546875, 2.467968017578125, 2.467040283203125, 2.466512939453125, 2.4665068359375, 2.467083251953125, 2.466418701171875, 2.465967041015625, 2.466157470703125, 5.087494140625, 2.466189208984375, 2.466884521484375, 2.46639501953125, 2.46648828125, 2.466607177734375, 2.467287109375, 2.46839599609375, 2.46702587890625, 2.467313720703125, 2.467323974609375, 2.467330078125, 2.466697265625, 2.46641455078125, 2.4657080078125, 2.46809912109375, 2.46658984375, 2.467029052734375, 2.46753076171875, 2.468769775390625, 2.467987548828125, 2.468222900390625, 2.4690595703125, 2.469578857421875, 2.46847900390625, 2.4680283203125, 2.46656298828125, 2.46801513671875, 2.46639013671875, 2.4670986328125, 2.46615234375, 2.46773974609375, 2.4667216796875, 2.46727685546875, 2.4663193359375, 2.46763525390625, 2.46688671875, 2.467874755859375, 2.46723779296875, 2.46824853515625, 2.466218017578125, 2.466986083984375, 2.46668505859375, 2.4669931640625, 2.4665302734375, 2.465965087890625, 2.468173828125, 2.467091552734375, 2.4666787109375, 2.466904052734375, 2.466720703125, 2.466922607421875, 2.46651806640625, 2.466711669921875, 2.46662158203125, 2.4666767578125, 2.466606201171875, 2.466504638671875, 2.46702294921875, 2.467114990234375, 2.46698291015625, 2.466469970703125, 2.46719384765625, 5.0873857421875, 2.46711181640625, 2.4676669921875, 2.4682373046875, 2.46677294921875, 2.465900634765625, 2.466285400390625, 2.46675244140625, 2.4686142578125, 2.467852294921875, 2.468147216796875, 2.469138427734375, 2.468021240234375, 2.46839501953125, 2.467322998046875, 2.46803857421875, 2.4694794921875, 2.467284912109375, 2.467267578125, 2.46729736328125, 2.471918701171875, 2.4674765625, 2.467620849609375, 2.468518798828125, 2.46965966796875, 2.468581298828125, 2.467287109375, 2.4676025390625, 2.46909130859375, 2.4678798828125, 2.466585693359375, 2.46625390625, 2.468111328125, 2.466431884765625, 2.4665302734375, 2.46625390625, 2.46766796875, 2.46662646484375, 2.46632763671875, 2.466314208984375, 2.468085693359375, 2.467567626953125, 2.47077490234375, 2.466901123046875, 2.46776416015625, 2.466997314453125, 2.468117431640625, 2.471785400390625, 2.468166748046875, 2.46658154296875, 2.467800048828125, 2.4673310546875, 2.46755029296875, 2.466908203125, 2.4666357421875, 2.4657724609375, 2.4668466796875, 2.46647509765625, 2.46641455078125, 2.4653935546875, 2.46607861328125, 2.465657958984375, 2.46717041015625, 5.08862353515625, 2.46618017578125, 2.46677001953125, 2.465965087890625, 2.4666962890625, 2.46651806640625, 2.466512939453125, 2.4657919921875, 2.46704833984375, 2.466091064453125, 2.4665322265625, 2.466198486328125, 2.466378662109375, 2.4663388671875, 2.466697265625, 2.4661689453125, 2.467324951171875, 2.46691748046875, 2.46706884765625, 2.46692041015625, 2.466785400390625, 2.467284912109375, 2.467230712890625, 2.4668681640625, 2.4700732421875, 2.46681396484375, 2.466840576171875, 2.46628857421875, 2.4691845703125, 2.469140380859375, 2.468798583984375, 2.46765869140625, 2.4666748046875, 2.46800390625, 2.466842529296875, 2.46696044921875, 2.46841552734375, 2.46970166015625, 2.468170654296875, 2.467095458984375, 2.46616259765625, 2.468423583984375, 2.46754296875, 2.467493896484375, 2.469568603515625, 2.467686279296875, 2.467119140625, 2.46765576171875, 2.4675615234375, 2.46753076171875, 2.46786962890625, 2.467504150390625, 2.466217041015625, 2.46670751953125, 2.466275390625, 2.46649951171875, 2.465642578125, 2.4665927734375, 2.466114501953125, 2.46563134765625, 2.466107421875, 2.466840576171875, 2.46594775390625, 5.0872607421875, 2.466586669921875, 2.467085205078125, 2.466087890625, 2.46624658203125, 2.468030517578125, 2.466228271484375, 2.46631201171875, 2.465871826171875, 2.466620361328125, 2.466470947265625, 2.4659375, 2.465469482421875, 2.467073974609375, 2.467386474609375, 2.466375732421875, 2.46649658203125, 2.469547119140625, 2.46750634765625, 2.466642822265625, 2.46601123046875, 2.466673583984375, 2.466423828125, 2.466227294921875, 2.466232421875, 2.467124267578125, 2.466873291015625, 2.46641162109375, 2.466154541015625, 2.46636962890625, 2.466863037109375, 2.46698291015625, 2.467325927734375, 2.46662744140625, 2.4677744140625, 2.466999267578125, 2.467263427734375, 2.466723876953125, 2.46856201171875, 2.46679150390625, 2.466046875, 2.46635107421875, 2.46673828125, 2.467541015625, 2.4671416015625, 2.467443603515625, 2.466511962890625, 2.467031982421875, 2.46706787109375, 2.4669921875, 2.468369384765625, 2.467056640625, 2.46666455078125, 2.467033203125, 2.468075439453125, 2.468128662109375, 2.466417724609375, 2.471729248046875, 2.467071044921875, 2.466891845703125, 2.46647509765625, 2.466440185546875, 2.46868798828125, 5.08691357421875, 2.466028564453125, 2.4677333984375, 2.467010498046875, 2.467205078125, 2.4664013671875, 2.4672451171875, 2.4667392578125, 2.46585546875, 2.466406494140625, 2.46685693359375, 2.4661708984375, 2.4663828125, 2.46592822265625, 2.466884521484375, 2.466239501953125, 2.46583203125, 2.465574951171875, 2.46738330078125, 2.467092529296875, 2.4664677734375, 2.467158935546875, 2.467737548828125, 2.4660244140625, 2.4675830078125, 2.46628662109375, 2.467053466796875, 2.4666142578125, 2.46684375, 2.466788330078125, 2.467851318359375, 2.46658056640625, 2.468338623046875, 2.467275634765625, 2.46681201171875, 2.466661376953125, 2.466303955078125, 2.46763720703125, 2.473092041015625, 2.46727685546875, 2.467389404296875, 2.467167236328125, 2.467786865234375, 2.4663837890625, 2.4663388671875, 2.465721435546875, 2.467124267578125, 2.4679638671875, 2.46670751953125, 2.46626416015625, 2.467136474609375, 2.466255859375, 2.4674990234375, 2.466595947265625, 2.466490478515625, 2.4665712890625, 2.46690087890625, 2.466754638671875, 2.4670341796875, 2.467210205078125, 2.467547119140625, 2.467244140625, 2.466747314453125, 5.09081201171875, 2.467222412109375, 2.46835205078125, 2.467926025390625, 2.4673740234375, 2.467116943359375, 2.46747021484375, 2.467093505859375, 2.466975830078125, 2.46742626953125, 2.4675400390625, 2.467567626953125, 2.4670546875, 2.467200927734375, 2.467986328125, 2.46847900390625, 2.468297607421875, 2.466345947265625, 2.467420166015625, 2.468263916015625, 2.46740283203125, 2.466755615234375, 2.467157958984375, 2.471689208984375, 2.467622802734375, 2.4668671875, 2.467239013671875, 2.46835205078125, 2.467516357421875, 2.46651904296875, 2.466069580078125, 2.46681591796875, 2.466124755859375, 2.465919921875, 2.465881103515625, 2.46696240234375, 2.46622607421875, 2.46639208984375, 2.465967041015625, 2.46714990234375, 2.466946044921875, 2.466486328125, 2.465672119140625, 2.466734130859375, 2.466515869140625, 2.46664404296875, 2.4666142578125, 2.4672265625, 2.466231201171875, 2.46652001953125, 2.4661728515625, 2.46692041015625, 2.466157470703125, 2.46626611328125, 2.46582470703125, 2.466809814453125, 2.467745849609375, 2.4677080078125, 2.466193359375, 2.4672470703125, 2.467043212890625, 2.47162060546875, 2.4657490234375, 5.08459130859375, 2.46683544921875, 2.46649755859375, 2.467766357421875, 2.467400634765625, 2.467850341796875, 2.467080078125, 2.46782470703125, 2.466931640625, 2.46681298828125, 2.466908203125, 2.467493896484375, 2.466670654296875, 2.46761767578125, 2.467306396484375, 2.46744873046875, 2.46968310546875, 2.467335205078125, 2.466291748046875, 2.46672900390625, 2.4669912109375, 2.468328369140625, 2.466957275390625, 2.46684375, 2.467378173828125, 2.4669912109375, 2.467179443359375, 2.46784521484375, 2.468820068359375, 2.466711669921875, 2.465966064453125, 2.465700927734375, 2.4670791015625, 2.46738427734375, 2.467485595703125, 2.4666328125, 2.4676455078125, 2.466926513671875, 2.46613720703125, 2.46624755859375, 2.4671220703125, 2.46669921875, 2.465594482421875, 2.46590771484375, 2.466947021484375, 2.466668701171875, 2.466886474609375, 2.46719189453125, 2.46757080078125, 2.466482177734375, 2.46595068359375, 2.46605712890625, 2.467263427734375, 2.466189208984375, 2.467197998046875, 2.46523095703125, 2.466417724609375, 2.466122802734375, 2.467242919921875, 2.466663330078125, 2.46723388671875, 2.466820068359375, 2.472427490234375, 5.0853681640625, 2.46607568359375, 2.46763818359375, 2.466788330078125, 2.467725341796875, 2.466460693359375, 2.467099609375, 2.46757177734375, 2.46760546875, 2.466769775390625, 2.46808056640625, 2.46717236328125, 2.468547607421875, 2.46778369140625, 2.4672236328125, 2.466810791015625, 2.467812255859375, 2.468862060546875, 2.467946533203125, 2.467600341796875, 2.46891015625, 2.46693994140625, 2.46805810546875, 2.46829052734375, 2.469150634765625, 2.468052978515625, 2.4687646484375, 2.467143798828125, 2.467037109375, 2.466817138671875, 2.468148193359375, 2.467322998046875, 2.467407958984375, 2.468336669921875, 2.468115478515625, 2.4671845703125, 2.4663388671875, 2.4676884765625, 2.467588134765625, 2.466388916015625, 2.466503662109375, 2.466964599609375, 2.4676494140625, 2.466975830078125, 2.466547607421875, 2.46734033203125, 2.467566650390625, 2.467642333984375, 2.466969482421875, 2.468360107421875, 2.467146728515625, 2.466821044921875, 2.466783203125, 2.46778466796875, 2.46734130859375, 2.467453857421875, 2.467220458984375, 2.468514892578125, 2.467493896484375, 2.4675439453125, 2.467715087890625, 2.47457275390625, 2.468958251953125, 5.0886162109375, 2.467864501953125, 2.469477294921875, 2.468490234375, 2.4670166015625, 2.467751953125, 2.46676171875, 2.466572265625, 2.467084228515625, 2.467091552734375, 2.4673525390625, 2.4678388671875, 2.46633154296875, 2.467618896484375, 2.46672900390625, 2.466831298828125, 2.4672685546875, 2.467834716796875, 2.46698193359375, 2.467683349609375, 2.46766796875, 2.46748974609375, 2.46799560546875, 2.4667822265625, 2.4664052734375, 2.467306396484375, 2.469897216796875, 2.46721630859375, 2.46658251953125, 2.46739453125, 2.467197998046875, 2.468125732421875, 2.466786376953125, 2.467189697265625, 2.467324951171875, 2.467589111328125, 2.46772314453125, 2.468556884765625, 2.466018310546875, 2.466438232421875, 2.467070068359375, 2.466093017578125, 2.466754638671875, 2.46706884765625, 2.46609521484375, 2.467577880859375, 2.46765771484375, 2.468675537109375, 2.46646875, 2.466482177734375, 2.466712646484375, 2.465977294921875, 2.46544384765625, 2.466545654296875, 2.466736083984375, 2.467407958984375, 2.466906005859375, 2.466165771484375, 2.46822900390625, 2.4675185546875, 2.466716552734375, 2.4658984375, 2.466937744140625]",tokens/s,0.3992511456810495,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,r,r,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,0,0,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -31736,7 +29923,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/r/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/0/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -31763,9 +29950,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669490f6-54ff6a371973c24632aecd5c;051c96c8-4369-4d30-b801-0f3cd954464d) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669494e8-0a566c5b19e6b2165a2bc06a;a878e53e-764f-4e93-bff1-470e428c5181) -Repository Not Found for url: https://huggingface.co/r/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/0/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -31790,14 +29977,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: r is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: 0 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-564M,facebook/xglm-564M,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1510.83008,1619.525632,0.0,973.078528,855.737856,s,10,0.7501975097656249,0.07501975097656251,0.003494001966293861,0.0744185905456543,0.07687975234985352,0.0807021327972412,0.08376003715515137,"[0.08452451324462891, 0.0724151382446289, 0.07226691436767578, 0.07602333068847657, 0.07370025634765626, 0.072499267578125, 0.07526127624511719, 0.07513692474365234, 0.07233955383300782, 0.07603033447265625]",tokens/s,3412.4346811012333,kWh,8.781473283414488e-07,4.811843592162606e-07,2.329853715734e-06,3.6891854032917087e-06,tokens/kWh,69392012.60299407,MB,1510.83008,1619.525632,0.0,973.078528,915.411456,s,10,44.923669921875,4.492366992187501,0.05186865648995985,4.49665234375,4.532765380859375,4.566419799804687,4.593343334960937,"[4.4801484375, 4.46079150390625, 4.396806640625, 4.52528662109375, 4.43945751953125, 4.50497265625, 4.49965625, 4.4936484375, 4.52282763671875, 4.60007421875]",tokens/s,14.023787484317472,kWh,5.2254403288717625e-05,2.8638463246623156e-05,0.00013152905892685864,0.00021242192546219938,tokens/kWh,296579.5544076776,,s,629,45.51549240112303,0.07236167313374095,0.008872551278845286,0.07199948883056641,0.07308881988525391,0.07345274963378906,0.1417435186767578,"[0.07422156524658204, 0.07438028717041016, 0.07465984344482422, 0.07427993774414063, 0.070793212890625, 0.07357952117919922, 0.07368294525146485, 0.07249817657470703, 0.07192473602294921, 0.0720373764038086, 0.07181107330322266, 0.07195545959472656, 0.07189401245117187, 0.07177318572998047, 0.07202201843261719, 0.07179264068603515, 0.07144448089599609, 0.07195033264160157, 0.07206502532958985, 0.0718704605102539, 0.07257292938232422, 0.07203839874267579, 0.07174246215820312, 0.07193804931640625, 0.0720373764038086, 0.07203123474121094, 0.07179058837890626, 0.07161753845214844, 0.07207730865478515, 0.06936883544921875, 0.06907904052734375, 0.06904524993896484, 0.06900326538085938, 0.0691599349975586, 0.0692305908203125, 0.0704000015258789, 0.07194111633300782, 0.07188582611083984, 0.07171788787841797, 0.07179673767089843, 0.0721244125366211, 0.07180902099609375, 0.07232717132568359, 0.06903193664550782, 0.06900838470458984, 0.0690483169555664, 0.07060889434814453, 0.07242137908935548, 0.06946304321289062, 0.06903091430664063, 0.06926335906982421, 0.06909337615966797, 0.06909645080566407, 0.06918144226074219, 0.06912204742431641, 0.0692152328491211, 0.06930022430419921, 0.06917120361328125, 0.06931763458251954, 0.06909951782226563, 0.06903091430664063, 0.06910975646972656, 0.14174925231933594, 0.07115980529785157, 0.07259852600097656, 0.07286988830566406, 0.07273677062988282, 0.07269068908691406, 0.06918656158447266, 0.07026585388183594, 0.07330303955078125, 0.06960230255126953, 0.06916505432128907, 0.0694824981689453, 0.07036313629150391, 0.0726292495727539, 0.07242649841308593, 0.07292723083496094, 0.07256371307373047, 0.0725749740600586, 0.07288422393798828, 0.0727930908203125, 0.06923571014404296, 0.07285657501220703, 0.07292825317382813, 0.07260671997070313, 0.06921318054199219, 0.06922649383544922, 0.06944051361083985, 0.06901862335205078, 0.06910873413085937, 0.0694814682006836, 0.06917938995361328, 0.0691435546875, 0.06913843536376953, 0.06960230255126953, 0.07092428588867188, 0.07321907043457031, 0.07265586853027343, 0.07284429168701172, 0.07265996551513672, 0.07249919891357422, 0.0727388153076172, 0.06851993560791016, 0.06896537780761719, 0.06924390411376953, 0.06928793334960938, 0.06909951782226563, 0.06925926208496094, 0.06904115295410156, 0.06911590576171875, 0.07245005035400391, 0.07256063842773437, 0.07257087707519531, 0.0727162857055664, 0.0725555191040039, 0.07245414733886718, 0.06913638305664062, 0.06932685089111328, 0.06927565002441406, 0.06910566711425781, 0.06935040283203125, 0.06927974700927735, 0.06926643371582031, 0.06896947479248047, 0.1415485382080078, 0.06951423645019532, 0.06943334197998047, 0.06925619506835938, 0.06917324829101562, 0.06899097442626953, 0.06922752380371094, 0.06912000274658203, 0.06899199676513672, 0.06969446563720703, 0.07301529693603516, 0.06934323120117188, 0.06960537719726563, 0.07306034851074218, 0.07241011047363281, 0.07290675354003906, 0.07274700927734375, 0.0726476821899414, 0.07265996551513672, 0.0726824951171875, 0.07269068908691406, 0.06931763458251954, 0.06954188537597657, 0.06927257537841797, 0.06938623809814454, 0.06953062438964844, 0.06952960205078125, 0.06926233673095702, 0.06965862274169922, 0.06954803466796874, 0.06898995208740234, 0.06898892974853515, 0.0695767059326172, 0.06904729461669921, 0.06909030151367188, 0.0691230697631836, 0.06926131439208984, 0.06881587219238282, 0.06911795043945312, 0.0690145263671875, 0.069106689453125, 0.06901760101318359, 0.06876467132568359, 0.06921625518798828, 0.06918246459960938, 0.06903091430664063, 0.0689797134399414, 0.06893158721923828, 0.0690544662475586, 0.06931865692138672, 0.06913433837890624, 0.0691619873046875, 0.06918758392333985, 0.06922956848144532, 0.06901248168945312, 0.06939955139160156, 0.0690708465576172, 0.06908415985107422, 0.06909747314453125, 0.06877798461914063, 0.0688721923828125, 0.06958284759521484, 0.07407615661621093, 0.14876364135742187, 0.0725524444580078, 0.06927769470214844, 0.07208243560791015, 0.07297433471679687, 0.0731176986694336, 0.07251251220703125, 0.0712273941040039, 0.07263846588134766, 0.07023104095458985, 0.07284735870361328, 0.07289651489257812, 0.07278694152832031, 0.07275827026367188, 0.0733675537109375, 0.07290982055664062, 0.07269888305664063, 0.06938419342041016, 0.07068057250976563, 0.07282994842529297, 0.07284838104248047, 0.07352217864990235, 0.07396147155761719, 0.07278694152832031, 0.0727224349975586, 0.07267123413085938, 0.07291801452636719, 0.07321497344970704, 0.07286579132080079, 0.0730408935546875, 0.06961766052246093, 0.07272755432128906, 0.07313715362548828, 0.07269990539550782, 0.07287091064453124, 0.07342694091796875, 0.07279821014404297, 0.07299993896484375, 0.07290777587890625, 0.07300505828857422, 0.07294976043701172, 0.07384166717529297, 0.07301222229003906, 0.07304806518554688, 0.07300096130371093, 0.06921318054199219, 0.06943846130371094, 0.07083724975585938, 0.07355596923828125, 0.07319039916992187, 0.06939443206787109, 0.06938111877441407, 0.06927155303955078, 0.0692520980834961, 0.06911283111572265, 0.06944153594970703, 0.06942515563964843, 0.06953266906738281, 0.06910975646972656, 0.06917017364501953, 0.06945382690429687, 0.0691568603515625, 0.0722903060913086, 0.1428500518798828, 0.07174861145019532, 0.07272755432128906, 0.07288422393798828, 0.07220531463623046, 0.07277977752685547, 0.07296819305419922, 0.07285759735107422, 0.0730439682006836, 0.06917120361328125, 0.06948044586181641, 0.06915174102783203, 0.06912921905517579, 0.06931148529052734, 0.06940672302246094, 0.06928179168701172, 0.07211110687255859, 0.07298047637939453, 0.07278079986572265, 0.07271218872070312, 0.07268966674804687, 0.06976306915283204, 0.0731504669189453, 0.07382220458984375, 0.07313919830322266, 0.07456563568115235, 0.0726456298828125, 0.07287091064453124, 0.07290777587890625, 0.072595458984375, 0.06927974700927735, 0.06974668884277344, 0.06926131439208984, 0.06974668884277344, 0.0696094741821289, 0.0693565444946289, 0.06932173156738282, 0.06926541137695312, 0.06931763458251954, 0.06929203033447266, 0.06896025848388672, 0.0688875503540039, 0.0692838363647461, 0.06925107574462891, 0.06969344329833985, 0.06929510498046874, 0.06936064147949218, 0.06916607666015626, 0.06940364837646484, 0.06927667236328125, 0.0688721923828125, 0.06915071868896484, 0.06949273681640625, 0.06910361480712891, 0.06893260955810547, 0.06888857269287109, 0.06916710662841796, 0.06919065856933594, 0.06913433837890624, 0.06897663879394532, 0.06965760040283203, 0.06907596588134765, 0.06904524993896484, 0.14172877502441406, 0.06887628936767579, 0.06923980712890625, 0.06865408325195313, 0.06912102508544922, 0.06938317108154297, 0.06938521575927735, 0.06910771179199218, 0.06913843536376953, 0.06909951782226563, 0.07147007751464844, 0.07286374664306641, 0.07196057891845703, 0.07204454040527344, 0.07199948883056641, 0.07233126068115234, 0.07187763214111328, 0.07217971038818359, 0.07222169494628906, 0.07219097900390625, 0.07204966735839843, 0.07197491455078125, 0.07207833862304687, 0.07198822021484375, 0.0723394546508789, 0.07189299011230468, 0.0720547866821289, 0.07195750427246093, 0.0719288330078125, 0.07224626922607422, 0.0721981430053711, 0.0721295394897461, 0.07224729919433594, 0.07194624328613282, 0.07236812591552734, 0.07330508422851563, 0.07221247863769531, 0.07189094543457031, 0.07187763214111328, 0.0722503662109375, 0.07257292938232422, 0.07226982116699218, 0.07204761505126953, 0.07212134552001953, 0.07196876525878906, 0.07214694213867187, 0.07219404602050782, 0.07190940856933593, 0.07228310394287109, 0.0723609619140625, 0.07222476959228516, 0.07254732513427735, 0.07211724853515625, 0.07198617553710937, 0.07232102203369141, 0.0694302749633789, 0.06944563293457032, 0.06930226898193359, 0.06912000274658203, 0.07197286224365235, 0.07240499114990234, 0.07262515258789062, 0.07231488037109375, 0.1474877471923828, 0.07206195068359375, 0.07203635406494141, 0.0718704605102539, 0.07204147338867188, 0.07205785369873047, 0.07204249572753907, 0.07156735992431641, 0.0718551025390625, 0.07209369659423828, 0.07219404602050782, 0.07199334716796875, 0.07205683135986328, 0.0719974365234375, 0.07223910522460937, 0.07229440307617188, 0.0720373764038086, 0.07192985534667969, 0.07207218933105469, 0.07226060485839844, 0.07216844940185548, 0.07213158416748047, 0.07198822021484375, 0.07197695922851563, 0.07198515319824218, 0.07197901153564454, 0.07212748718261719, 0.07194111633300782, 0.07195136260986328, 0.07207936096191406, 0.07236505889892578, 0.07226982116699218, 0.06943231964111328, 0.06955929565429687, 0.069607421875, 0.06953164672851563, 0.07322624206542969, 0.07243981170654297, 0.07254937744140624, 0.07196979522705078, 0.07131033325195313, 0.07205785369873047, 0.07247872161865235, 0.07209471893310547, 0.07210291290283204, 0.06919782257080079, 0.06972108459472656, 0.06934835052490235, 0.06924082946777343, 0.06914765167236328, 0.06955519866943359, 0.06937907409667969, 0.06931148529052734, 0.06938829040527343, 0.06970674896240234, 0.06969548797607422, 0.06920089721679687, 0.07203942108154297, 0.07206809234619141, 0.07200972747802735, 0.07209779357910157, 0.07210291290283204, 0.07222681427001953, 0.14453248596191406, 0.06921011352539062, 0.0692326431274414, 0.06925312042236328, 0.06934220886230469, 0.07179571533203125, 0.07198617553710937, 0.07202098846435546, 0.07208243560791015, 0.07199436950683594, 0.07232921600341796, 0.07199027252197265, 0.07135231781005859, 0.07213772583007813, 0.07198207855224609, 0.07201996612548828, 0.07227597045898437, 0.0715315170288086, 0.07204863739013671, 0.0719319076538086, 0.07195442962646484, 0.0720148468017578, 0.07350169372558593, 0.07210291290283204, 0.07235584259033204, 0.07218790435791016, 0.07257804870605469, 0.07216844940185548, 0.07202713775634766, 0.07208550262451172, 0.07201689910888671, 0.0721786880493164, 0.07204557037353515, 0.07207218933105469, 0.0721070098876953, 0.0719482879638672, 0.07234662628173828, 0.07192985534667969, 0.07208345794677734, 0.07192371368408203, 0.07228108978271484, 0.07198925018310547, 0.07188787078857421, 0.07216639709472657, 0.07209062194824219, 0.07224217224121093, 0.07236914825439453, 0.07234559631347656, 0.07200768280029297, 0.07227903747558594, 0.07189913940429687, 0.06916403198242188, 0.06938009643554688, 0.0693903350830078, 0.06937190246582031, 0.06929714965820312, 0.06908108520507812, 0.06912102508544922, 0.06940876770019531, 0.06922752380371094, 0.06929100799560547, 0.06920191955566406, 0.06866534423828125, 0.14497279357910156, 0.07190630340576172, 0.07215411376953125, 0.07193702697753906, 0.07205785369873047, 0.07186431884765625, 0.07196672058105469, 0.07226060485839844, 0.07261901092529296, 0.07256473541259766, 0.0723609619140625, 0.07218585968017578, 0.07166259002685547, 0.07175373077392579, 0.0723773422241211, 0.0719626235961914, 0.07179878234863281, 0.072015869140625, 0.0722001953125, 0.07199641418457031, 0.07210495758056641, 0.07236300659179687, 0.07228006744384766, 0.07196672058105469, 0.07183257293701172, 0.07211519622802734, 0.07188480377197265, 0.07188070678710938, 0.07184076690673828, 0.07201689910888671, 0.07219404602050782, 0.07205068969726562, 0.07195442962646484, 0.07184076690673828, 0.07215513610839844, 0.07230873870849609, 0.07222067260742188, 0.07214284515380859, 0.07292928314208984, 0.07242649841308593, 0.07191654205322266, 0.07287398529052734, 0.07126732635498047, 0.07227391815185547, 0.07001599884033204, 0.07193292999267578, 0.07222681427001953, 0.07207218933105469, 0.07356108856201173, 0.07293440246582031, 0.07190835571289063, 0.07186943817138672, 0.06945689392089843, 0.06953164672851563, 0.06899814605712891, 0.06878720092773437, 0.06898278045654296, 0.06849638366699219, 0.06950809478759766, 0.07029452514648438, 0.07316889953613281, 0.07317708587646485, 0.07281254577636719, 0.14895103454589845, 0.07272550201416016, 0.07273779296875, 0.07310028839111328, 0.07281459045410156, 0.07278899383544922, 0.0730245132446289, 0.07308595275878907, 0.07223705291748046, 0.072880126953125, 0.07315660858154296, 0.07311974334716796, 0.07316172790527344, 0.07296717071533203, 0.07294464111328125, 0.07245823669433593, 0.07288217926025391, 0.07276441955566407, 0.07286784362792968, 0.07301734161376953, 0.07289548492431641, 0.07284735870361328, 0.07271321868896484, 0.07318630218505859, 0.07307878112792969, 0.07253504180908203, 0.07293644714355468, 0.07297843170166016, 0.07267430114746094, 0.07276748657226563, 0.07329894256591797, 0.07337881469726562, 0.0731668472290039, 0.07399219512939453, 0.07357746887207031, 0.07269580841064453, 0.0729169921875, 0.07252992248535156, 0.07297126770019531, 0.07306240081787109, 0.07285964965820313, 0.07280947113037109, 0.07383859252929688, 0.07331942749023437, 0.07286271667480469, 0.07300812530517578, 0.07352012634277344, 0.07395225524902344, 0.073385986328125, 0.07318630218505859, 0.07355289459228516, 0.07336959838867188, 0.07346995544433593, 0.0732938232421875, 0.07325389099121093, 0.07335321807861328, 0.07319347381591797, 0.0742266845703125, 0.0733337631225586, 0.0729722900390625, 0.0729200668334961, 0.07297740936279297, 0.0695920639038086]",tokens/s,13.819470400466983,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-2.7B,,cuda,0,42,,,,,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,MB,2236.862464,2932.342784,0.0,2285.89568,2082.706944,s,10,2.5091812438964842,0.25091812438964844,0.0016359490817563227,0.25024176025390626,0.25317278594970705,0.2535381980895996,0.25383052780151366,"[0.25309158325195313, 0.2539036102294922, 0.24987110900878906, 0.24888946533203124, 0.2497696075439453, 0.24914796447753906, 0.2504080047607422, 0.25179104614257813, 0.25223333740234377, 0.2500755157470703]",tokens/s,1020.253122897013,kWh,2.948670335578402e-06,1.6157431971317612e-06,1.3066561943753649e-05,1.763097547646381e-05,tokens/kWh,14519899.953450851,MB,2238.38208,2959.60576,0.0,2313.158656,2180.685312,s,10,143.8805810546875,14.38805810546875,0.011353783216855234,14.382828125,14.40145888671875,14.403668896484376,14.405436904296876,"[14.4009677734375, 14.40587890625, 14.39833203125, 14.3805361328125, 14.374423828125, 14.3830166015625, 14.400140625, 14.373748046875, 14.3808974609375, 14.3826396484375]",tokens/s,4.378631191102458,kWh,0.000169606630340582,9.295822156634463e-05,0.0007504743544440634,0.0010130392063509902,tokens/kWh,62189.10344736671,,s,629,145.90565167236326,0.2319644700673502,0.029875164751919897,0.22824755859375,0.22927770080566406,0.22946876831054688,0.47820606079101563,"[0.22992076110839843, 0.22815129089355468, 0.22794752502441407, 0.22817485046386718, 0.2277969970703125, 0.22800997924804686, 0.22908108520507814, 0.22838169860839844, 0.2285506591796875, 0.2286049346923828, 0.22830694580078126, 0.22801516723632811, 0.22815020751953125, 0.22767308044433593, 0.22776422119140624, 0.2276741180419922, 0.22829362487792967, 0.22767205810546876, 0.22779493713378907, 0.2277058563232422, 0.22765670776367186, 0.22813594055175782, 0.22820147705078125, 0.2283335723876953, 0.2275809326171875, 0.22812364196777343, 0.2283008575439453, 0.22861715698242188, 0.2281564178466797, 0.22812979125976562, 0.2289090576171875, 0.2288476104736328, 0.22834585571289062, 0.22857522583007814, 0.2290155487060547, 0.22790553283691406, 0.22831922912597657, 0.22821784973144532, 0.22858444213867188, 0.2286612548828125, 0.22839808654785157, 0.22902169799804686, 0.22916812133789063, 0.22946917724609375, 0.22901350402832032, 0.22913536071777343, 0.22909747314453124, 0.229138427734375, 0.22936679077148436, 0.22892851257324218, 0.22936268615722658, 0.22932582092285156, 0.22920909118652344, 0.22904730224609374, 0.2291425323486328, 0.22898892211914063, 0.22877183532714843, 0.2286202850341797, 0.229064697265625, 0.22876876831054688, 0.2292131805419922, 0.22902476501464844, 0.48329931640625, 0.2282854461669922, 0.228822021484375, 0.2279741516113281, 0.22834687805175782, 0.22893157958984375, 0.22888038635253907, 0.22889677429199218, 0.22806629943847656, 0.22842678833007812, 0.22791778564453125, 0.22817791748046876, 0.22819737243652344, 0.228274169921875, 0.22817791748046876, 0.2278656005859375, 0.22779391479492186, 0.22778982543945311, 0.22769561767578125, 0.22855783081054687, 0.2280273895263672, 0.22766490173339843, 0.2277734375, 0.2279331817626953, 0.22785125732421874, 0.2278594512939453, 0.227852294921875, 0.2281492462158203, 0.2276505584716797, 0.22739762878417968, 0.22808883666992188, 0.22794650268554686, 0.22817485046386718, 0.228094970703125, 0.22861415100097657, 0.22928793334960937, 0.22927769470214843, 0.22896333312988282, 0.22915072631835937, 0.22908006286621094, 0.22935040283203126, 0.22938829040527345, 0.22915583801269532, 0.22902578735351561, 0.22928282165527344, 0.22933914184570312, 0.23262924194335938, 0.22968319702148438, 0.22875648498535156, 0.22789529418945312, 0.2278666229248047, 0.2295767059326172, 0.22941900634765625, 0.22929306030273439, 0.22928282165527344, 0.22947532653808594, 0.2292490234375, 0.22923365783691407, 0.22946815490722655, 0.22925106811523438, 0.22942207336425782, 0.22925315856933592, 0.2293155517578125, 0.4786954345703125, 0.22789324951171874, 0.22778778076171874, 0.22853427124023437, 0.2276505584716797, 0.22818611145019532, 0.22808677673339844, 0.22816160583496095, 0.22942201232910156, 0.22774887084960938, 0.22915277099609374, 0.2292162628173828, 0.22927772521972656, 0.22797821044921876, 0.2286940155029297, 0.22868377685546876, 0.22756658935546875, 0.22776832580566406, 0.22760652160644532, 0.22787379455566406, 0.2284400634765625, 0.22826905822753907, 0.22876876831054688, 0.22959616088867188, 0.22788198852539063, 0.22754815673828124, 0.2290493469238281, 0.22905958557128905, 0.22827314758300782, 0.22785842895507813, 0.22869094848632812, 0.2282854461669922, 0.22885580444335937, 0.22893157958984375, 0.2289971160888672, 0.22875340270996095, 0.22852301025390626, 0.22836224365234375, 0.22938829040527345, 0.2279147491455078, 0.22865306091308593, 0.22844825744628905, 0.22864588928222657, 0.22837759399414062, 0.2290636749267578, 0.2289213409423828, 0.22904115295410157, 0.23109939575195312, 0.22880665588378907, 0.22881996154785156, 0.2284707794189453, 0.229232666015625, 0.22840829467773438, 0.2283520050048828, 0.23005081176757813, 0.22963821411132812, 0.22803654479980467, 0.22828851318359375, 0.22792909240722656, 0.22795878601074218, 0.22777548217773438, 0.22785331726074218, 0.22797004699707032, 0.47824075317382814, 0.22801408386230468, 0.22845132446289063, 0.22803660583496094, 0.22865408325195313, 0.22791679382324218, 0.22993101501464844, 0.22821376037597657, 0.22777548217773438, 0.2276874237060547, 0.22872781372070314, 0.22810418701171875, 0.22863462829589845, 0.2276290588378906, 0.22807244873046875, 0.2276546630859375, 0.22767514038085937, 0.22787481689453126, 0.22811648559570313, 0.22791270446777342, 0.22781336975097657, 0.22764236450195313, 0.2276822967529297, 0.22771916198730469, 0.22807347106933593, 0.22767718505859375, 0.22773248291015624, 0.2274396209716797, 0.2276177978515625, 0.2276126708984375, 0.22771405029296876, 0.2276884460449219, 0.22757273864746094, 0.22881689453125, 0.22877593994140624, 0.22816461181640624, 0.22797311401367187, 0.22859878540039064, 0.22825677490234375, 0.22843699645996093, 0.22875750732421876, 0.22935040283203126, 0.22820352172851563, 0.22832333374023436, 0.23120999145507812, 0.22912101745605468, 0.22907904052734376, 0.22970060729980468, 0.22873907470703125, 0.22823014831542968, 0.22959414672851564, 0.22853219604492186, 0.22784101867675782, 0.22805708312988282, 0.22899507141113282, 0.2288885803222656, 0.227852294921875, 0.2276669464111328, 0.2279219207763672, 0.22771916198730469, 0.22784921264648436, 0.2281492462158203, 0.22833561706542968, 0.47811685180664065, 0.22757478332519532, 0.2276433868408203, 0.227662841796875, 0.22771510314941407, 0.22770684814453124, 0.22767001342773438, 0.2279884796142578, 0.22770176696777344, 0.2278707275390625, 0.22784512329101564, 0.22757171630859374, 0.22767922973632812, 0.22853836059570312, 0.22817181396484376, 0.22842568969726562, 0.22801408386230468, 0.2303057861328125, 0.22843084716796874, 0.22846669006347656, 0.22829670715332032, 0.227631103515625, 0.22766796875, 0.22799462890625, 0.22806732177734376, 0.22791270446777342, 0.22781747436523436, 0.22777548217773438, 0.22781234741210937, 0.22849331665039063, 0.22844009399414061, 0.22815536499023437, 0.22805509948730468, 0.22854751586914063, 0.22936679077148436, 0.2276741180419922, 0.22772940063476563, 0.22759014892578125, 0.22804173278808593, 0.22774169921875, 0.22859373474121095, 0.22844819641113281, 0.22795266723632812, 0.22765052795410157, 0.22817893981933593, 0.22788096618652343, 0.2275768280029297, 0.227915771484375, 0.22789631652832032, 0.22774783325195314, 0.22783692932128907, 0.22787890625, 0.22841958618164063, 0.22780006408691406, 0.22799154663085938, 0.2284862060546875, 0.22839187622070312, 0.23194111633300782, 0.22911180114746094, 0.22951731872558595, 0.22850355529785157, 0.22849740600585938, 0.22812570190429687, 0.47752294921875, 0.2276556854248047, 0.22764544677734375, 0.22774169921875, 0.22828953552246095, 0.22794444274902342, 0.22778880310058594, 0.2285332489013672, 0.22908927917480468, 0.2287073211669922, 0.2291087341308594, 0.22870118713378906, 0.22815948486328125, 0.22893466186523437, 0.2281328582763672, 0.22798233032226561, 0.22857215881347656, 0.22788812255859375, 0.2276177978515625, 0.22820658874511718, 0.22790963745117188, 0.2278912353515625, 0.22779286193847656, 0.22789631652832032, 0.2286622772216797, 0.2280079345703125, 0.22793728637695312, 0.22807142639160155, 0.22804888916015625, 0.2280335388183594, 0.22812159729003906, 0.2278830108642578, 0.2276884460449219, 0.22792807006835938, 0.22778675842285157, 0.22810009765625, 0.22793215942382813, 0.22936473083496095, 0.23167283630371094, 0.22877081298828125, 0.22863258361816408, 0.22877593994140624, 0.22783282470703126, 0.2277181396484375, 0.22791270446777342, 0.22783183288574219, 0.22780720520019532, 0.22802841186523437, 0.2279536590576172, 0.2279619140625, 0.22795872497558595, 0.22792909240722656, 0.22810009765625, 0.22938214111328126, 0.22828031921386718, 0.228242431640625, 0.2287636413574219, 0.22942311096191406, 0.22908114624023437, 0.22857618713378905, 0.22855372619628905, 0.22922035217285155, 0.2285117492675781, 0.4789893188476563, 0.22813900756835936, 0.22828134155273438, 0.22873292541503906, 0.2284707794189453, 0.22896640014648437, 0.22858956909179687, 0.2285096893310547, 0.22846669006347656, 0.22824858093261718, 0.2286878662109375, 0.2290083770751953, 0.22912716674804687, 0.22828851318359375, 0.22853836059570312, 0.228384765625, 0.22901145935058595, 0.2284523468017578, 0.22929306030273439, 0.22884352111816406, 0.2288916473388672, 0.22799874877929688, 0.22763005065917968, 0.2294476776123047, 0.22789324951171874, 0.22849740600585938, 0.2280437774658203, 0.22870835876464843, 0.228890625, 0.228600830078125, 0.22893466186523437, 0.22901248168945312, 0.22887936401367187, 0.22905445861816406, 0.2291025848388672, 0.22861824035644532, 0.2289040069580078, 0.22949267578125, 0.22833255004882813, 0.22794650268554686, 0.2277928924560547, 0.2285117492675781, 0.2278656005859375, 0.22826905822753907, 0.22805914306640626, 0.22932992553710937, 0.2291025848388672, 0.2288046112060547, 0.22843597412109376, 0.22823526000976563, 0.2282977294921875, 0.22911488342285155, 0.22893772888183594, 0.2283100128173828, 0.22832127380371095, 0.22796287536621093, 0.22796389770507813, 0.22786151123046874, 0.22802024841308594, 0.22792703247070312, 0.2290247344970703, 0.2290872344970703, 0.2293729248046875, 0.48112127685546874, 0.22774476623535156, 0.22767205810546876, 0.22760140991210936, 0.22770790100097657, 0.228706298828125, 0.22839602661132813, 0.22828953552246095, 0.22751437377929687, 0.22827008056640624, 0.22855577087402343, 0.22760858154296876, 0.22853733825683595, 0.2290882568359375, 0.22853427124023437, 0.22787174987792969, 0.22959922790527343, 0.22843597412109376, 0.22793830871582033, 0.22853427124023437, 0.22780621337890625, 0.22782566833496093, 0.2280755157470703, 0.22808781433105468, 0.22815948486328125, 0.22787686157226564, 0.22864691162109374, 0.2278481903076172, 0.22766387939453125, 0.22787174987792969, 0.22767514038085937, 0.22795161437988282, 0.22794650268554686, 0.22880563354492187, 0.22775808715820312, 0.22767514038085937, 0.22767718505859375, 0.2277734375, 0.22772122192382813, 0.22761984252929687, 0.2289653778076172, 0.22932582092285156, 0.2285506591796875, 0.22796083068847656, 0.2276986846923828, 0.22787583923339844, 0.2282608642578125, 0.2280263671875, 0.22794137573242187, 0.2278461456298828, 0.22779391479492186, 0.22773248291015624, 0.2276259765625, 0.22793215942382813, 0.22887014770507813, 0.2283756103515625, 0.22759724426269531, 0.22863462829589845, 0.22802841186523437, 0.228279296875, 0.22952755737304686, 0.22824755859375, 0.2283223114013672, 0.4810905456542969, 0.22825372314453124, 0.22767202758789062, 0.22804582214355468, 0.22862745666503906, 0.227810302734375, 0.22774989318847655, 0.22795980834960938, 0.22772940063476563, 0.22866943359375, 0.22906982421875, 0.2284390411376953, 0.22901657104492187, 0.22875852966308594, 0.22855270385742188, 0.22873805236816405, 0.22831513977050782, 0.22964530944824219, 0.2282782745361328, 0.228890625, 0.22893772888183594, 0.22941389465332032, 0.22863871765136717, 0.22856192016601562, 0.2286868438720703, 0.22785536193847655, 0.22773554992675782, 0.22780723571777345, 0.22774887084960938, 0.22783795166015625, 0.2286028747558594, 0.2292316131591797, 0.22855474853515625, 0.2284277801513672, 0.22815129089355468, 0.22762086486816407, 0.22760345458984374, 0.2294599609375, 0.228251708984375, 0.22796998596191406, 0.22916300964355468, 0.22799667358398437, 0.22786355590820312, 0.2276986846923828, 0.22783282470703126, 0.22780621337890625, 0.22774681091308593, 0.22811955261230468, 0.22787890625, 0.22774374389648439, 0.2275000305175781, 0.22767001342773438, 0.2276884460449219, 0.22773554992675782, 0.2278778839111328, 0.22794650268554686, 0.22774476623535156, 0.22773452758789062, 0.22781234741210937, 0.22782975769042968, 0.22782054138183594, 0.22786151123046874, 0.22886604309082031, 0.4816783447265625, 0.22901145935058595, 0.22866943359375, 0.2290145263671875, 0.22938316345214843, 0.22859571838378906, 0.22785023498535156, 0.22841139221191406, 0.22864895629882812, 0.2287615966796875, 0.22899302673339844, 0.2279720916748047, 0.2287073211669922, 0.22850355529785157, 0.22853631591796875, 0.22866021728515626, 0.22911077880859376, 0.22943026733398436, 0.22803558349609376, 0.22808781433105468, 0.2292725830078125, 0.22914457702636717, 0.22839295959472655, 0.22797314453125, 0.22791267395019532, 0.22795161437988282, 0.22988902282714843, 0.2280447998046875, 0.22778163146972658, 0.2276444091796875, 0.2277928924560547, 0.2285015106201172, 0.22870835876464843, 0.22830181884765624, 0.22769766235351563, 0.22775193786621092, 0.22775091552734375, 0.22768333435058594, 0.22769664001464843, 0.22772633361816405, 0.22788607788085938, 0.22782054138183594, 0.22759837341308595, 0.22872572326660157, 0.2291568603515625, 0.22867762756347657, 0.228094970703125, 0.2280990753173828, 0.22783795166015625, 0.2277724151611328, 0.22763827514648438, 0.2278164520263672, 0.22774681091308593, 0.2276433868408203, 0.2277181396484375, 0.22805708312988282, 0.2277232666015625, 0.228068359375, 0.2278154296875, 0.2276864013671875, 0.22811546325683593, 0.22927462768554688, 0.2289459228515625]",tokens/s,4.311005041891343,,,,,,main,False,False -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-410m,EleutherAI/pythia-410m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1390.702592,1340.604416,0.0,694.157312,598.499328,s,10,0.6226632919311523,0.062266329193115234,0.002317832326909016,0.06196879959106445,0.06357897109985351,0.06612861976623535,0.06816833869934083,"[0.06867826843261719, 0.06029948806762695, 0.06301238250732422, 0.06221964645385742, 0.06201440048217773, 0.06192319869995117, 0.06178224182128906, 0.06027980804443359, 0.06031568145751953, 0.06213817596435547]",tokens/s,4111.3713192571795,kWh,7.181983443623039e-07,3.9353970671072603e-07,2.1138383914060147e-06,3.2255764424790445e-06,tokens/kWh,79365658.99621,MB,1391.030272,1340.604416,0.0,694.157312,659.032576,s,10,37.91430688476563,3.791430688476563,0.033463632163375424,3.808232421875,3.8238944580078122,3.8254893432617187,3.8267652514648436,"[3.8235400390625, 3.807294921875, 3.809169921875, 3.815871337890625, 3.827084228515625, 3.813744140625, 3.745643798828125, 3.73081494140625, 3.753345703125, 3.7877978515625]",tokens/s,16.616418754924958,kWh,4.459946840148583e-05,2.4442959093412353e-05,0.00012145201046119378,0.00019049443795609197,tokens/kWh,330718.3174267859,,s,629,38.408798217773445,0.06106327220631707,0.007411049818688859,0.06058700942993164,0.06105620422363281,0.061356236267089845,0.1198044711303711,"[0.05935715103149414, 0.059200511932373044, 0.06025625610351563, 0.06658048248291015, 0.06115430450439453, 0.06075187301635742, 0.06081740951538086, 0.06116556930541992, 0.06187519836425781, 0.060846080780029295, 0.0618015022277832, 0.061259742736816405, 0.06081024169921875, 0.06082559967041016, 0.06123110580444336, 0.06096486282348633, 0.06082559967041016, 0.06090752029418945, 0.06103142547607422, 0.05951590347290039, 0.05919027328491211, 0.060930049896240235, 0.06138163375854492, 0.06130278396606445, 0.0615464973449707, 0.061396991729736325, 0.06103859329223633, 0.060919807434082034, 0.06081228637695312, 0.06087680053710937, 0.06095257568359375, 0.06107648086547852, 0.06047641754150391, 0.05975551986694336, 0.060652542114257815, 0.060800033569335936, 0.06089315032958984, 0.060319744110107425, 0.06068940734863281, 0.06150451278686524, 0.06105190277099609, 0.061037567138671874, 0.059990016937255856, 0.060765182495117184, 0.06077849578857422, 0.06057881546020508, 0.060082176208496096, 0.0589219856262207, 0.059184127807617185, 0.05976166534423828, 0.060783649444580076, 0.06094025421142578, 0.06090854263305664, 0.060641281127929686, 0.05964799880981445, 0.05914112091064453, 0.05936537551879883, 0.06067507171630859, 0.06081740951538086, 0.060158977508544924, 0.06099660873413086, 0.05982624053955078, 0.11980588531494141, 0.06112768173217773, 0.06088294219970703, 0.060576766967773435, 0.06073548889160156, 0.06021529769897461, 0.06116966247558594, 0.06180044937133789, 0.06070483016967773, 0.05943494415283203, 0.059440128326416014, 0.060862464904785155, 0.060211200714111325, 0.05941452789306641, 0.06035456085205078, 0.060521472930908204, 0.06083174514770508, 0.06059929656982422, 0.060902400970458986, 0.06084096145629883, 0.06026649475097656, 0.05905920028686523, 0.059622398376464845, 0.06106521606445312, 0.06076313781738281, 0.05981081771850586, 0.05929369735717773, 0.059216896057128904, 0.061050880432128904, 0.06076620864868164, 0.059224063873291016, 0.06019583892822265, 0.06055321502685547, 0.060796928405761716, 0.061064193725585934, 0.06083071899414062, 0.060793857574462894, 0.05939507293701172, 0.058877952575683595, 0.05913702392578125, 0.05904793548583984, 0.05907865524291992, 0.06065049743652344, 0.06088294219970703, 0.06102732849121094, 0.06089215850830078, 0.06101504135131836, 0.060728321075439455, 0.06069760131835938, 0.060909599304199216, 0.06107542419433594, 0.060761089324951174, 0.06076416015625, 0.060911617279052734, 0.06071091079711914, 0.06042009735107422, 0.06087372970581055, 0.06067302322387695, 0.06060851287841797, 0.060984321594238285, 0.06090956878662109, 0.06082867050170898, 0.060943359375, 0.12434432220458984, 0.059063297271728515, 0.05924863815307617, 0.059273216247558595, 0.059202560424804686, 0.0593807373046875, 0.05934284973144531, 0.06072115325927734, 0.060693504333496094, 0.06077439880371094, 0.0608798713684082, 0.05987430572509766, 0.05933158493041992, 0.05966438293457031, 0.05923430252075195, 0.06037811279296875, 0.060916736602783204, 0.06084505462646484, 0.060793857574462894, 0.06016204833984375, 0.06031257629394531, 0.060813312530517576, 0.06093008041381836, 0.06087472152709961, 0.06037811279296875, 0.06069964981079102, 0.06112972640991211, 0.06072524642944336, 0.060851200103759766, 0.06091468811035156, 0.0610334701538086, 0.0608901138305664, 0.06094847869873047, 0.06083071899414062, 0.060846080780029295, 0.06088806533813477, 0.06078566360473633, 0.06029625701904297, 0.06034220886230469, 0.06101094436645508, 0.06097919845581055, 0.061350910186767575, 0.05945548629760742, 0.05929779052734375, 0.059101184844970706, 0.059858943939208986, 0.05947903823852539, 0.05919948959350586, 0.059469825744628904, 0.06209024047851563, 0.06109183883666992, 0.06083071899414062, 0.06089318466186523, 0.06092083358764649, 0.06089113616943359, 0.06088601684570313, 0.06026956939697266, 0.06099763107299805, 0.06088499069213867, 0.06075494384765625, 0.06154547119140625, 0.0613570556640625, 0.06097919845581055, 0.12348928070068359, 0.060916736602783204, 0.060777473449707034, 0.0607303695678711, 0.06054297637939453, 0.06096694564819336, 0.06082352066040039, 0.060835838317871094, 0.06073855972290039, 0.060864513397216796, 0.05947903823852539, 0.059015167236328124, 0.059270145416259766, 0.05909404754638672, 0.05935817718505859, 0.05992550277709961, 0.06107955169677735, 0.061110271453857425, 0.06092083358764649, 0.06084505462646484, 0.06058803176879883, 0.06083891296386719, 0.06079487991333008, 0.060827648162841794, 0.060832767486572265, 0.06084403228759765, 0.06105702209472656, 0.06056345748901367, 0.06058598327636719, 0.06076006317138672, 0.06095462417602539, 0.0609617919921875, 0.06127206420898437, 0.05955788803100586, 0.06099967956542969, 0.06095667266845703, 0.06068633651733398, 0.060887039184570314, 0.06139187240600586, 0.061454334259033204, 0.06054912185668945, 0.06096281433105469, 0.06029414367675781, 0.06135500717163086, 0.062328830718994144, 0.06116147232055664, 0.0603770866394043, 0.05916262435913086, 0.059469825744628904, 0.0593438720703125, 0.05933055877685547, 0.05895884704589844, 0.05933670425415039, 0.06046003341674805, 0.06081024169921875, 0.06076620864868164, 0.061451263427734375, 0.06086348724365234, 0.06087168121337891, 0.06075699234008789, 0.060631038665771485, 0.0605296630859375, 0.06076006317138672, 0.12325580596923828, 0.060826625823974606, 0.06067612838745117, 0.06101910400390625, 0.06079283142089844, 0.06072115325927734, 0.06085529708862305, 0.06092902374267578, 0.0608983039855957, 0.060955646514892575, 0.06091059112548828, 0.060889087677001956, 0.06080716705322266, 0.059873279571533204, 0.05963673782348633, 0.06089932632446289, 0.061224960327148435, 0.06137139129638672, 0.06110105514526367, 0.06112870407104492, 0.06075699234008789, 0.0609249267578125, 0.0607457275390625, 0.06121267318725586, 0.060843006134033206, 0.06098124694824219, 0.061001728057861325, 0.06096588897705078, 0.06096895980834961, 0.06099558258056641, 0.06101708984375, 0.06083174514770508, 0.06094643020629883, 0.06118297576904297, 0.06099148941040039, 0.06102937698364258, 0.06078771209716797, 0.06082457733154297, 0.059865089416503904, 0.060216320037841796, 0.059087871551513675, 0.05941452789306641, 0.06077439880371094, 0.06028083038330078, 0.06068121719360352, 0.06069760131835938, 0.06096691131591797, 0.06012416076660156, 0.06075494384765625, 0.06013849639892578, 0.06086963272094727, 0.060609535217285154, 0.06098739242553711, 0.06088294219970703, 0.06077337646484375, 0.06087782287597656, 0.060805118560791016, 0.06075801467895508, 0.060829696655273435, 0.060837886810302735, 0.060200958251953124, 0.060911617279052734, 0.06101094436645508, 0.1231247329711914, 0.060744705200195315, 0.06079897689819336, 0.0600002555847168, 0.059115520477294924, 0.0603351058959961, 0.06076620864868164, 0.060727294921875, 0.060744705200195315, 0.060527614593505856, 0.06128844833374023, 0.06094438552856445, 0.060677120208740234, 0.06176768112182617, 0.062110721588134764, 0.0609249267578125, 0.060832767486572265, 0.060432384490966794, 0.06098636627197265, 0.06112972640991211, 0.060895233154296874, 0.062491649627685546, 0.060980224609375, 0.06099558258056641, 0.06110310363769531, 0.06090956878662109, 0.060767230987548826, 0.06076211166381836, 0.06077542495727539, 0.06094847869873047, 0.06072115325927734, 0.06075392150878906, 0.060911617279052734, 0.06179123306274414, 0.06146355056762695, 0.06151174545288086, 0.05984864044189453, 0.0592097282409668, 0.059241470336914064, 0.0594442253112793, 0.05915238571166992, 0.05912063980102539, 0.059140094757080076, 0.05916159820556641, 0.05927219009399414, 0.059033599853515625, 0.059902976989746094, 0.06051942443847656, 0.060739585876464844, 0.06076313781738281, 0.060609535217285154, 0.059551742553710936, 0.05947699356079102, 0.06035257720947266, 0.060338111877441404, 0.06081126403808594, 0.06072524642944336, 0.060757022857666015, 0.06074979019165039, 0.060472320556640625, 0.06065459060668945, 0.06086656188964844, 0.06003609466552735, 0.12312576293945313, 0.06074060821533203, 0.06058700942993164, 0.060955646514892575, 0.060897281646728516, 0.060668926239013675, 0.05904793548583984, 0.059138046264648435, 0.0591984977722168, 0.059074527740478514, 0.05915545654296875, 0.05922918319702149, 0.05921279907226563, 0.05931417465209961, 0.05925068664550781, 0.05924665451049805, 0.05927315139770508, 0.062034942626953124, 0.06089625549316406, 0.05932646560668945, 0.05910630416870117, 0.05935615921020508, 0.059224063873291016, 0.0590909423828125, 0.05909299087524414, 0.05916159820556641, 0.05918105697631836, 0.05901004791259765, 0.05914828872680664, 0.05935718536376953, 0.059216896057128904, 0.05914214324951172, 0.05914214324951172, 0.05903564834594727, 0.05917388916015625, 0.059701248168945314, 0.05926399993896484, 0.05921177673339844, 0.059167774200439456, 0.05920764923095703, 0.05906227111816406, 0.05908992004394531, 0.059063297271728515, 0.05934694290161133, 0.05926707077026367, 0.05919027328491211, 0.05903462219238281, 0.0592988166809082, 0.05978316879272461, 0.06010367965698242, 0.05926502227783203, 0.059202560424804686, 0.05930092620849609, 0.05915334320068359, 0.059085823059082034, 0.059358207702636716, 0.05939199829101562, 0.05905929565429688, 0.05903247833251953, 0.05921382522583008, 0.059084800720214846, 0.05944319915771484, 0.059240447998046876, 0.11974553680419922, 0.059086910247802736, 0.05899875259399414, 0.05906224060058594, 0.059066368103027345, 0.059218944549560545, 0.05904281616210937, 0.05910220718383789, 0.05922304153442383, 0.059017215728759766, 0.05900185775756836, 0.05915750503540039, 0.059101184844970706, 0.05916262435913086, 0.05922099304199219, 0.059033599853515625, 0.05897625732421875, 0.05926604843139648, 0.059210750579833986, 0.059121662139892575, 0.05920358276367187, 0.05924556732177735, 0.059066368103027345, 0.05899776077270508, 0.05931008148193359, 0.06076620864868164, 0.059312126159667966, 0.059284481048583984, 0.059046913146972656, 0.05910425567626953, 0.059017215728759766, 0.05894041442871094, 0.05906227111816406, 0.05915955352783203, 0.059063297271728515, 0.05913600158691406, 0.05902233505249024, 0.059099136352539064, 0.059030529022216796, 0.05913497543334961, 0.0589035530090332, 0.05907353591918945, 0.059066368103027345, 0.058962944030761716, 0.059486209869384764, 0.059453441619873044, 0.058998783111572264, 0.058987518310546876, 0.05903564834594727, 0.05900185775756836, 0.05933977508544922, 0.05908070373535156, 0.059009025573730466, 0.06041702270507812, 0.05994598388671875, 0.058993663787841794, 0.05916262435913086, 0.059085823059082034, 0.05953638458251953, 0.05912473678588867, 0.05950054550170898, 0.060255264282226564, 0.05989884948730469, 0.11980083465576172, 0.059218944549560545, 0.05915238571166992, 0.059079681396484375, 0.05905715179443359, 0.059115520477294924, 0.05936025619506836, 0.0590643196105957, 0.05912575912475586, 0.05918207931518555, 0.06097919845581055, 0.059486209869384764, 0.05931622314453125, 0.059044864654541014, 0.05903363037109375, 0.059218910217285155, 0.059025409698486325, 0.05917491149902344, 0.05916364669799805, 0.05909401702880859, 0.0590489616394043, 0.05904076766967774, 0.059096065521240235, 0.059121662139892575, 0.05902438354492188, 0.05902131271362305, 0.05898854446411133, 0.05910015869140625, 0.059300865173339844, 0.05925785446166992, 0.06097612762451172, 0.060662784576416016, 0.060878849029541014, 0.06074060821533203, 0.06073446273803711, 0.06080412673950195, 0.06049481582641601, 0.06058700942993164, 0.060581886291503906, 0.0608092155456543, 0.059243518829345705, 0.059063297271728515, 0.05907251358032226, 0.05892403030395508, 0.05899776077270508, 0.05919744110107422, 0.05904793548583984, 0.059481086730957033, 0.05923942565917969, 0.05914419174194336, 0.05912985610961914, 0.059145217895507814, 0.05928550338745117, 0.059261951446533206, 0.05939199829101562, 0.05910323333740235, 0.05878988647460937, 0.059832321166992185, 0.061055999755859375, 0.060690433502197265, 0.06087174224853516, 0.06086547088623047, 0.060862464904785155, 0.12235059356689452, 0.05892607879638672, 0.05911859130859375, 0.05902950286865234, 0.05892403030395508, 0.058929153442382816, 0.05973811340332031, 0.059853824615478515, 0.058992641448974606, 0.059038719177246096, 0.05915545654296875, 0.05913190460205078, 0.058912769317626956, 0.05937152099609375, 0.060902400970458986, 0.06070272064208984, 0.06099353790283203, 0.060695552825927736, 0.059014144897460936, 0.05908172988891602, 0.05928140640258789, 0.059154430389404294, 0.06019583892822265, 0.06073241424560547, 0.0606668815612793, 0.060614654541015625, 0.06086252975463867, 0.06079072189331055, 0.06075801467895508, 0.06062899017333984, 0.06069247817993164, 0.060826625823974606, 0.061156352996826174, 0.06073241424560547, 0.06075392150878906, 0.060655616760253904, 0.06082252883911133, 0.06071705627441406, 0.060818431854248046, 0.060819454193115234, 0.06071091079711914, 0.06072012710571289, 0.0607723503112793, 0.061059070587158204, 0.06127308654785156, 0.060447742462158206, 0.05913907241821289, 0.05907251358032226, 0.06083174514770508, 0.06084505462646484, 0.06077644729614258, 0.060709888458251954, 0.0603054084777832, 0.059133953094482425, 0.05898342514038086, 0.06038323211669922, 0.06078668975830078, 0.059170848846435545, 0.060978145599365235, 0.06088601684570313, 0.06031568145751953, 0.05907247924804687, 0.05908889770507812]",tokens/s,16.3764561555309,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,0,0,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-7b,google/gemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -31809,21 +29993,11 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/0/resolve/main/config.json +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/gemma-7b/resolve/main/config.json The above exception was the direct cause of the following exception: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn @@ -31834,95 +30008,13 @@ Traceback (most recent call last): response = _request_wrapper( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669494c4-56dde3854d36ea97282aa5c4;24779085-20a3-4e9d-9a98-3929db5b97e3) - -Repository Not Found for url: https://huggingface.co/0/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file - raise EnvironmentError( -OSError: 0 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-6B-nl,Salesforce/codegen-6B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1400.639488,6094.848,0.0,5448.400896,5215.942144,s,10,5.915999877929687,0.5915999877929687,0.0028828720813889874,0.5905971069335938,0.5921576904296875,0.5961826965332031,0.5994027014160156,"[0.6002077026367187, 0.5907606201171876, 0.5909608764648437, 0.5905933227539063, 0.5902119140625, 0.5906008911132813, 0.5904852294921875, 0.5912632446289062, 0.5904329223632813, 0.590483154296875]",tokens/s,432.7248229923689,kWh,6.983380516370138e-06,3.826209227811299e-06,3.1648620090131334e-05,4.2458209834312766e-05,tokens/kWh,6029458.166017933,MB,1400.967168,6094.848,0.0,5448.400896,5405.644288,s,10,341.33091015625,34.133091015625,0.0089451948085196,34.130179687500004,34.14430546875,34.149687890625,34.153993828125,"[34.13034765625, 34.1351484375, 34.13001171875, 34.128140625, 34.12757421875, 34.12398828125, 34.13193359375, 34.1255859375, 34.143109375, 34.1550703125]",tokens/s,1.8457162280193342,kWh,0.00040300285582741096,0.00022088092240917615,0.0018324814267682385,0.002456365205004826,tokens/kWh,25647.65201511484,,s,629,346.1052627563478,0.5502468406301234,0.07016038395822202,0.5417257080078125,0.5423982788085937,0.54271630859375,1.1323166894531251,"[0.5417594604492187, 0.5414471435546875, 0.5411215209960938, 0.5414297485351562, 0.5414563598632812, 0.541576171875, 0.5412239379882813, 0.5414502563476562, 0.5416427612304687, 0.54096484375, 0.54148095703125, 0.5411840209960938, 0.5414339599609375, 0.5409760131835938, 0.5409024047851563, 0.5412208862304687, 0.5413017578125, 0.5412515869140625, 0.5410549926757813, 0.5412177734375, 0.5411133422851563, 0.54131201171875, 0.5422049560546875, 0.5416530151367187, 0.54127001953125, 0.5410795288085938, 0.5415239868164062, 0.5422069702148438, 0.5421731567382813, 0.5426155395507812, 0.542755859375, 0.541576171875, 0.5415362548828125, 0.5411993408203125, 0.5416642456054688, 0.541591552734375, 0.541427734375, 0.5414830322265625, 0.5413529663085938, 0.5414666137695312, 0.5418700561523437, 0.5421414184570312, 0.5417953491210937, 0.5417728271484376, 0.5417267456054687, 0.5425919799804687, 0.5420779418945313, 0.5423953857421875, 0.542466064453125, 0.5427732543945313, 0.5427783813476562, 0.5423319091796875, 0.5419212646484375, 0.5422335815429687, 0.5419622192382813, 0.542166015625, 0.542202880859375, 0.5419612426757813, 0.541928466796875, 0.5428971557617187, 0.5427886352539063, 0.542540771484375, 1.132921875, 0.5414379272460937, 0.541675537109375, 0.5412976684570312, 0.5413980102539062, 0.541432861328125, 0.5411819458007813, 0.5411235961914063, 0.5415782470703125, 0.5412136840820313, 0.5412894897460937, 0.5412925415039063, 0.5418301391601562, 0.541549560546875, 0.5421035766601563, 0.5417698974609375, 0.5415985717773437, 0.5415782470703125, 0.5415618286132813, 0.5418792724609375, 0.5416151123046875, 0.5421527099609375, 0.5418721313476562, 0.5414307861328125, 0.5414574584960937, 0.5414255981445313, 0.5418076171875, 0.5416806640625, 0.5416058959960938, 0.5413232421875, 0.5415167846679687, 0.5413140869140625, 0.5417481689453125, 0.5427220458984375, 0.5421270751953124, 0.541823974609375, 0.54205029296875, 0.5420144653320312, 0.5415424194335937, 0.541971435546875, 0.5416202392578126, 0.541264892578125, 0.5415219116210938, 0.541216796875, 0.5416058959960938, 0.541259765625, 0.5414993896484375, 0.5412925415039063, 0.5416744995117188, 0.5412996826171875, 0.5416222534179688, 0.5422120971679687, 0.5429841918945313, 0.542635009765625, 0.5428388061523437, 0.542835693359375, 0.5432268676757812, 0.5427363891601562, 0.5429586181640625, 0.5425602416992188, 0.5428838500976563, 0.5426534423828125, 0.5426380615234375, 1.1323843994140625, 0.5415637817382812, 0.5415362548828125, 0.541212646484375, 0.5413027954101562, 0.54141748046875, 0.54186083984375, 0.542003173828125, 0.5418147583007813, 0.5417257080078125, 0.5426544799804688, 0.5414871215820313, 0.5419520263671875, 0.5414297485351562, 0.5414932250976563, 0.5413765258789063, 0.5414635620117187, 0.5415690307617187, 0.5419008178710938, 0.5413099365234375, 0.5413130493164062, 0.5413457641601562, 0.5415126953125, 0.541191162109375, 0.541591552734375, 0.5423012084960938, 0.5414676513671876, 0.5414563598632812, 0.5417738037109375, 0.541896728515625, 0.5416048583984375, 0.5420687255859375, 0.5419673461914063, 0.5420953369140625, 0.541780029296875, 0.541761474609375, 0.5418792724609375, 0.5419478759765625, 0.54186083984375, 0.5423062744140625, 0.54225, 0.5419407348632812, 0.542171142578125, 0.5424015502929688, 0.5422223510742188, 0.5414348754882813, 0.5414635620117187, 0.54171337890625, 0.5415720825195313, 0.5418065795898438, 0.5415321655273437, 0.54148095703125, 0.5417645874023438, 0.54140625, 0.5415218505859375, 0.5416734619140625, 0.5417164916992188, 0.5417820434570313, 0.5417778930664062, 0.54166015625, 0.5416734619140625, 0.5428797607421875, 0.542571533203125, 1.1325224609375, 0.5419622192382813, 0.541770751953125, 0.5419089965820313, 0.5416908569335938, 0.5413734130859374, 0.5414747924804687, 0.5413980102539062, 0.5412987060546876, 0.5413621826171875, 0.5414256591796875, 0.5414717407226562, 0.5418414306640625, 0.5414390258789062, 0.5416283569335938, 0.5422162475585938, 0.5423297729492188, 0.5422459106445312, 0.5416038208007813, 0.5418384399414062, 0.5420675659179688, 0.5416325073242187, 0.5418936157226563, 0.54164892578125, 0.5416837158203125, 0.5414542846679687, 0.5416089477539062, 0.541623291015625, 0.541696044921875, 0.5414962768554688, 0.5420676879882812, 0.5414850463867188, 0.5416734619140625, 0.5414481811523437, 0.5424260864257813, 0.5415341796875, 0.5418352661132813, 0.5416427612304687, 0.5419017944335938, 0.5418506469726563, 0.5419898681640625, 0.541454345703125, 0.5417994384765625, 0.5414666137695312, 0.541697021484375, 0.5416581420898438, 0.5419612426757813, 0.5414061889648437, 0.5416857299804687, 0.5413396606445312, 0.5420892333984375, 0.5414430541992188, 0.5420545654296876, 0.5417859497070312, 0.5416704711914062, 0.5413395385742188, 0.5417564086914063, 0.5420462036132813, 0.5418311767578124, 0.5419110107421875, 0.5419161376953125, 0.5414850463867188, 0.541528076171875, 1.131968505859375, 0.5414400024414062, 0.5414932250976563, 0.5411287231445312, 0.541296630859375, 0.5412792358398437, 0.5417031860351562, 0.5415956420898438, 0.5414348754882813, 0.5413161010742188, 0.5413847045898438, 0.541760498046875, 0.5419417724609376, 0.5416417236328125, 0.5418035278320312, 0.54144921875, 0.54145947265625, 0.5413785400390625, 0.541380615234375, 0.5414000854492188, 0.5414727783203125, 0.5413887939453125, 0.5414727783203125, 0.5413324584960938, 0.5414451293945313, 0.54200830078125, 0.541663330078125, 0.5414224853515625, 0.5416151123046875, 0.5414993896484375, 0.54185986328125, 0.5417636108398437, 0.5419540405273438, 0.5416038208007813, 0.5418005981445313, 0.541447021484375, 0.541686767578125, 0.5417062377929688, 0.5416693725585937, 0.5417902221679688, 0.5416990966796875, 0.5416304931640625, 0.5417277221679687, 0.5417277221679687, 0.5418322143554688, 0.5419100341796875, 0.5417410888671875, 0.5418536987304687, 0.5424578247070313, 0.5422274780273437, 0.5421045532226563, 0.5419489135742187, 0.5420206298828125, 0.5418895263671875, 0.541897705078125, 0.5418690795898438, 0.5419857788085938, 0.5421117553710938, 0.54192333984375, 0.5418588256835938, 0.5421434936523437, 0.5418905639648437, 0.5424384155273437, 1.1324405517578124, 0.5413406982421874, 0.5414522705078125, 0.5422376708984376, 0.5428193359375, 0.541686767578125, 0.5414686889648438, 0.5414215698242187, 0.541285400390625, 0.5416571044921875, 0.5415997314453125, 0.5419386596679687, 0.5416673583984375, 0.541638671875, 0.5414850463867188, 0.5416683349609375, 0.5423175659179688, 0.5418322143554688, 0.5414451904296875, 0.5412515258789062, 0.5415239868164062, 0.542023681640625, 0.541918212890625, 0.5417359619140625, 0.541549560546875, 0.5413662719726563, 0.5415792846679688, 0.5414010620117188, 0.5414441528320313, 0.5412525634765625, 0.54166015625, 0.5412556762695313, 0.541591552734375, 0.5411932373046875, 0.541432861328125, 0.5416161499023437, 0.5414912109375, 0.5413294067382812, 0.541365234375, 0.5413304443359375, 0.5423472900390625, 0.541759521484375, 0.5416038208007813, 0.5411983642578125, 0.5415557250976563, 0.5414194946289063, 0.5415966796875, 0.54135498046875, 0.5417625732421875, 0.5416345825195312, 0.5418465576171875, 0.541486083984375, 0.5419673461914063, 0.541765625, 0.542076904296875, 0.5416171264648437, 0.5418035278320312, 0.5415731201171875, 0.541892578125, 0.54164892578125, 0.5422459106445312, 0.5417850952148437, 0.5420390625, 1.132142578125, 0.5416161499023437, 0.541454345703125, 0.5413867797851563, 0.5415997314453125, 0.541613037109375, 0.5415372924804688, 0.5415844116210937, 0.5418772583007813, 0.5416714477539063, 0.5416253662109375, 0.5415557250976563, 0.5419458618164062, 0.5417195434570312, 0.5419008178710938, 0.541591552734375, 0.5416642456054688, 0.5415946044921875, 0.5415925903320312, 0.5416468505859375, 0.541644775390625, 0.5415782470703125, 0.5415966796875, 0.541538330078125, 0.541675537109375, 0.5414788818359375, 0.5420431518554687, 0.5420267333984375, 0.5419776000976563, 0.5416171264648437, 0.541822998046875, 0.54211376953125, 0.5417615356445312, 0.5421096801757812, 0.5417891845703126, 0.5419161376953125, 0.541697021484375, 0.5416591186523437, 0.5419724731445312, 0.5416560668945313, 0.54164892578125, 0.5418291015625, 0.5418055419921874, 0.541601806640625, 0.5418721313476562, 0.54198681640625, 0.5417297973632812, 0.5416796264648438, 0.5417349243164062, 0.5415823364257812, 0.5425029296875, 0.542382080078125, 0.5421414184570312, 0.5416663208007813, 0.5417011108398437, 0.54160302734375, 0.5418053588867188, 0.5416949462890625, 0.5418045654296875, 0.5421281127929688, 0.5423175659179688, 0.5419632568359375, 0.542244873046875, 1.1331278076171876, 0.5414716186523437, 0.54160791015625, 0.54152294921875, 0.5418578491210938, 0.5414696655273438, 0.5420236206054687, 0.5413458862304688, 0.5417337646484375, 0.5414185180664063, 0.5415403442382812, 0.5418291015625, 0.5415823974609375, 0.5414583740234375, 0.541802490234375, 0.541475830078125, 0.5415629272460938, 0.5419693603515625, 0.5415751953125, 0.5413673095703125, 0.5415239868164062, 0.5413990478515625, 0.5414297485351562, 0.5419171752929688, 0.542044189453125, 0.5415536499023438, 0.5416273803710937, 0.5416406860351562, 0.5414400024414062, 0.541470703125, 0.5419960327148438, 0.5414901733398437, 0.5415792846679688, 0.5415465087890625, 0.5416714477539063, 0.5413161010742188, 0.5425889282226563, 0.5413949584960938, 0.5415833740234375, 0.541106201171875, 0.5417615356445312, 0.5417666625976563, 0.541760498046875, 0.5414307861328125, 0.5415894775390625, 0.5413898315429687, 0.5415833740234375, 0.5412874145507812, 0.5417349243164062, 0.5415741577148437, 0.5416611938476562, 0.5413416748046875, 0.5422161865234375, 0.5416673583984375, 0.5423308715820313, 0.5420431518554687, 0.5420534057617188, 0.5417984008789063, 0.5419888916015625, 0.5413898315429687, 0.5425121459960938, 0.541970458984375, 0.5419970092773437, 1.13246826171875, 0.5414359130859375, 0.5415659790039062, 0.54150244140625, 0.5414912719726562, 0.5414020385742188, 0.541581298828125, 0.5415567626953125, 0.5416243286132812, 0.5418076171875, 0.5416089477539062, 0.5414696655273438, 0.5415587768554687, 0.541931640625, 0.542152587890625, 0.541929443359375, 0.541939697265625, 0.54158642578125, 0.5415321655273437, 0.5415823364257812, 0.5417267456054687, 0.5416222534179688, 0.54167041015625, 0.54148095703125, 0.5416376342773438, 0.5415116577148438, 0.5416591186523437, 0.5424230346679687, 0.5425469360351562, 0.5417778930664062, 0.5417523193359375, 0.5418987426757812, 0.5419951171875, 0.5423696899414062, 0.5424568481445312, 0.5426206665039063, 0.542086181640625, 0.541823974609375, 0.54186083984375, 0.5420349731445312, 0.5424475708007812, 0.5419776000976563, 0.5422203369140625, 0.5420625, 0.542244873046875, 0.5426073608398437, 0.5429688110351563, 0.5421936645507812, 0.542075927734375, 0.5420676879882812, 0.5423175659179688, 0.5427466430664063, 0.5428531494140625, 0.542118896484375, 0.5421475830078125, 0.542002197265625, 0.5421066284179688, 0.5419857788085938, 0.5419765625, 0.5419990844726562, 0.5420123901367188, 0.5418936157226563, 0.5418700561523437, 1.1330999755859374, 0.5421752319335937, 0.5420472412109375, 0.5415352172851563, 0.541517822265625, 0.5416509399414062, 0.54187109375, 0.5422120971679687, 0.5417625732421875, 0.5419806518554687, 0.5415413818359375, 0.54137548828125, 0.5424609375, 0.5421240234375, 0.54167041015625, 0.5416581420898438, 0.5418803100585937, 0.5415997314453125, 0.5424701538085938, 0.5428551635742187, 0.5424916381835938, 0.542624755859375, 0.542044189453125, 0.54175537109375, 0.541865966796875, 0.54215576171875, 0.5419192504882813, 0.5422418212890625, 0.54240869140625, 0.5427630004882813, 0.543088623046875, 0.5421854858398437, 0.5420318603515625, 0.5419612426757813, 0.5423749389648438, 0.541897705078125, 0.5418147583007813, 0.5428131713867187, 0.542508056640625, 0.5420390625, 0.5422202758789062, 0.542045166015625, 0.542202880859375, 0.5423974609375, 0.5422069702148438, 0.541749267578125, 0.5420185546875, 0.5419468994140625, 0.5423267822265625, 0.5417062377929688, 0.5420277709960938, 0.5420349731445312, 0.5422673950195313, 0.5421270751953124, 0.5421915893554687, 0.5427077026367187, 0.5426472778320313, 0.542382080078125, 0.54236572265625, 0.542023681640625, 0.5423565063476562, 0.542160888671875, 0.5429483642578125]",tokens/s,1.8173661821571478,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-70b-hf,meta-llama/Llama-2-70b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 112.00 MiB. GPU + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status + raise HfHubHTTPError(message, response=response) from e +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-6694816c-6ff1b14d48c00850208281c1;3413ef81-8cc1-4aa5-9667-1b9ab447b385) -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,2,2,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/2/resolve/main/config.json +403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. +Cannot access content at: https://huggingface.co/google/gemma-7b/resolve/main/config.json. +If you are trying to create or update content,make sure you have a token with the `write` role. The above exception was the direct cause of the following exception: @@ -31935,25 +30027,9 @@ Traceback (most recent call last): return _hf_hub_download_to_cache_dir( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694934c-552c89d22edaa57c5d86bf4f;e5416f28-8c5b-4dea-ab57-2ffa4c6dbce2) - -Repository Not Found for url: https://huggingface.co/2/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error + raise LocalEntryNotFoundError( +huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. The above exception was the direct cause of the following exception: @@ -31974,13 +30050,13 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file raise EnvironmentError( -OSError: 2 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/gemma-7b is not the path to a directory containing a file named config.json. +Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,a,a,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,x,x,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -31992,7 +30068,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/a/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/x/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -32019,9 +30095,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949147-39661df06dc372185a19cac3;64568921-0650-4593-88c7-3037a39950ba) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669492c7-4cbb4c04048d833714ff54fd;c39c59af-d66a-4757-8f72-a5dde1a8815d) -Repository Not Found for url: https://huggingface.co/a/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/x/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -32046,15 +30122,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: a is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: x is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-350m,facebook/opt-350m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1308.95872,1044.905984,0.0,398.45888,290.479104,s,10,0.7298112030029297,0.07298112030029298,0.0019203205238493336,0.07210595321655273,0.07568494338989258,0.07613730201721192,0.07649918891906739,"[0.07658966064453125, 0.07404208374023437, 0.0716014404296875, 0.07261046600341797, 0.07435145568847656, 0.07145033264160157, 0.07128550720214843, 0.07136418914794922, 0.07093164825439453, 0.07558441925048828]",tokens/s,3507.7565121862385,kWh,8.692573962940111e-07,4.763112833442766e-07,2.233504646279191e-06,3.579073325917479e-06,tokens/kWh,71526894.44672821,MB,1309.261824,1044.905984,0.0,398.45888,337.28256,s,10,45.10692724609375,4.510692724609375,0.02785183557667033,4.507988037109375,4.524690771484375,4.5543905517578125,4.578150375976563,"[4.4999814453125, 4.51792333984375, 4.49663525390625, 4.50728076171875, 4.5086953125, 4.47609033203125, 4.5180908203125, 4.4837802734375, 4.514359375, 4.58409033203125]",tokens/s,13.966812604255988,kWh,5.335015537424221e-05,2.9239079429191457e-05,0.0001294696562717161,0.00021205889107514978,tokens/kWh,297087.2840114681,,s,629,45.688359863281214,0.07263650216737877,0.008731184173797845,0.07209983825683594,0.0731078628540039,0.07340298156738281,0.14137104125976563,"[0.07185408020019532, 0.07194009399414063, 0.07217356872558593, 0.07269068908691406, 0.07360717010498047, 0.0735498275756836, 0.07288934326171875, 0.07259142303466797, 0.07237420654296875, 0.07188172912597657, 0.07213568115234376, 0.0719452133178711, 0.07213875579833984, 0.07207730865478515, 0.07207014465332032, 0.0719257583618164, 0.06970162963867188, 0.06967910766601562, 0.0696995849609375, 0.07190425872802735, 0.07216028594970703, 0.07225545501708984, 0.07087206268310547, 0.06890290832519531, 0.06927776336669922, 0.06949574279785156, 0.06937395477294922, 0.06961663818359375, 0.06992694091796875, 0.07223088073730469, 0.07267635345458984, 0.07262620544433594, 0.07189091491699219, 0.07197593688964844, 0.07230976104736328, 0.07216025543212891, 0.07246540832519531, 0.07132262420654296, 0.07190016174316406, 0.07246745300292969, 0.07053619384765625, 0.06935552215576171, 0.06963097381591797, 0.07147932434082031, 0.06940361785888671, 0.0716410903930664, 0.07243264007568359, 0.07219302368164063, 0.07221145629882812, 0.07042355346679688, 0.06942002868652344, 0.06980608367919922, 0.06986752319335937, 0.07069696044921875, 0.0722165756225586, 0.0733306884765625, 0.07286374664306641, 0.07210086059570313, 0.07077069091796875, 0.07022796630859375, 0.07062940979003907, 0.07200457763671875, 0.14657945251464843, 0.07262617492675781, 0.07222579193115235, 0.07230054473876953, 0.07205580902099609, 0.07209779357910157, 0.07216537475585938, 0.07003648376464844, 0.07229849243164063, 0.07284019470214843, 0.07227597045898437, 0.07243981170654297, 0.07234457397460937, 0.07199948883056641, 0.07222169494628906, 0.07268147277832031, 0.07375667572021484, 0.07214591979980468, 0.07202201843261719, 0.07222271728515625, 0.07206604766845703, 0.0720025634765625, 0.07187251281738281, 0.0722913589477539, 0.072248291015625, 0.07194624328613282, 0.07201999664306641, 0.07205987548828124, 0.07217356872558593, 0.0712837142944336, 0.06940569305419922, 0.06932991790771484, 0.06942310333251953, 0.06952140808105468, 0.06934835052490235, 0.06939238739013671, 0.06940774536132813, 0.06954188537597657, 0.06909951782226563, 0.0694824981689453, 0.06964530944824218, 0.06932991790771484, 0.07233843231201172, 0.07286271667480469, 0.06985113525390625, 0.06934528350830078, 0.07116902160644531, 0.0729722900390625, 0.0716072998046875, 0.07257907104492188, 0.0729917449951172, 0.07322112274169922, 0.07285657501220703, 0.07319859313964844, 0.07252787017822265, 0.07272038269042969, 0.07294668579101563, 0.0729886703491211, 0.07285350036621094, 0.07272959899902344, 0.07295283508300782, 0.07268556976318359, 0.07238143920898438, 0.1415720977783203, 0.0693934097290039, 0.06967814636230468, 0.06940972900390625, 0.06931148529052734, 0.06929817962646484, 0.06965049743652343, 0.0701173095703125, 0.07237427520751953, 0.07200054168701171, 0.07237423706054688, 0.07208857727050781, 0.07215309143066406, 0.07220838165283203, 0.07202713775634766, 0.0719810562133789, 0.07221862030029297, 0.07206092834472656, 0.07223705291748046, 0.07211007690429687, 0.07236300659179687, 0.07231590270996094, 0.07095603179931641, 0.0694814682006836, 0.06937395477294922, 0.06936780548095703, 0.07176601409912109, 0.07184486389160157, 0.0720343017578125, 0.07231897735595703, 0.07199129486083984, 0.07193299102783203, 0.0723834228515625, 0.07228825378417969, 0.07213260650634766, 0.07228108978271484, 0.07208448028564453, 0.07200153350830078, 0.07205990600585938, 0.07209983825683594, 0.07197491455078125, 0.07196057891845703, 0.0720547866821289, 0.073133056640625, 0.07183769226074219, 0.07257807922363281, 0.0721899185180664, 0.07195340728759765, 0.0722677764892578, 0.07214284515380859, 0.07201487731933594, 0.06975177764892578, 0.06966681671142579, 0.06874931335449219, 0.06921011352539062, 0.06935346984863282, 0.06987059020996093, 0.07226265716552735, 0.07209164428710937, 0.07197081756591797, 0.07196057891845703, 0.0713338851928711, 0.07061196899414063, 0.1456865234375, 0.0722279052734375, 0.07271212768554687, 0.07285043334960938, 0.0725432357788086, 0.07223500823974609, 0.0720865249633789, 0.07014915466308594, 0.06968726348876954, 0.06959820556640625, 0.06964019012451172, 0.0694681625366211, 0.07034880065917969, 0.07004876708984376, 0.06967193603515626, 0.06940160369873047, 0.07108914947509766, 0.07227597045898437, 0.07151821136474609, 0.06967501068115234, 0.06957772827148437, 0.0698071060180664, 0.07123967742919922, 0.07210086059570313, 0.07223603057861328, 0.07214284515380859, 0.07249510192871093, 0.07254835510253907, 0.07294361877441406, 0.07138508605957031, 0.07067545318603516, 0.07234969329833985, 0.07242546844482421, 0.07169741058349609, 0.07204966735839843, 0.06960543823242188, 0.06955718231201172, 0.07074406433105469, 0.07213772583007813, 0.07239683532714844, 0.07193702697753906, 0.07239676666259766, 0.0722012176513672, 0.07219200134277344, 0.07279411315917969, 0.07149260711669922, 0.07210393524169922, 0.07228211212158203, 0.07218380737304687, 0.07210598754882812, 0.07205171203613281, 0.07216435241699219, 0.07028326416015625, 0.06974668884277344, 0.07239577484130859, 0.07243673706054687, 0.07223094177246094, 0.07230358123779297, 0.07244390106201172, 0.07284838104248047, 0.07209062194824219, 0.072163330078125, 0.07201894378662109, 0.14699827575683594, 0.07176294708251953, 0.0707747802734375, 0.0720343017578125, 0.0722135009765625, 0.07226268768310547, 0.0720823974609375, 0.07234976196289063, 0.07255648040771484, 0.07198515319824218, 0.07197798156738282, 0.07256678771972656, 0.07222476959228516, 0.07208755493164062, 0.07251971435546875, 0.07147618865966797, 0.06935346984863282, 0.06952550506591797, 0.06944051361083985, 0.06955213165283203, 0.06944255828857422, 0.06934323120117188, 0.07061299133300782, 0.07203533172607422, 0.07238861083984376, 0.07203225708007813, 0.07213568115234376, 0.0720374755859375, 0.07249091339111328, 0.0709017562866211, 0.06946304321289062, 0.07154790496826172, 0.07224217224121093, 0.07243673706054687, 0.07215615844726563, 0.07217459106445312, 0.07221247863769531, 0.07201894378662109, 0.07098880004882813, 0.06991667175292969, 0.07119564819335937, 0.07190630340576172, 0.0721786880493164, 0.07199334716796875, 0.06973235321044922, 0.06972415924072266, 0.06972930908203125, 0.06958694458007812, 0.06966268920898437, 0.07221145629882812, 0.07257907104492188, 0.07218688201904297, 0.07213772583007813, 0.07218380737304687, 0.07208345794677734, 0.07205068969726562, 0.07378431701660157, 0.07249612426757812, 0.07221862030029297, 0.0720650863647461, 0.07227897644042969, 0.07233740997314453, 0.07240601348876953, 0.1438771514892578, 0.07196463775634766, 0.07234867095947266, 0.07229952239990234, 0.07298047637939453, 0.07293030548095703, 0.07180902099609375, 0.07185408020019532, 0.07234047698974609, 0.07194316864013672, 0.07218278503417969, 0.07320985412597657, 0.07245516967773437, 0.07180287933349609, 0.07000985717773438, 0.0729917449951172, 0.07227187347412109, 0.07225958251953125, 0.07234047698974609, 0.07209677124023438, 0.07210393524169922, 0.07231283569335938, 0.07199436950683594, 0.07164825439453125, 0.06944358062744141, 0.0694302749633789, 0.06980812835693359, 0.06952652740478515, 0.06984703826904297, 0.07122022247314454, 0.07212850952148438, 0.06986752319335937, 0.06965248107910156, 0.06977843475341797, 0.06978047943115234, 0.06932173156738282, 0.0697364501953125, 0.0695572509765625, 0.06944153594970703, 0.07092131042480469, 0.07262095642089844, 0.07213362884521485, 0.0723927001953125, 0.0719974365234375, 0.07194422149658203, 0.0721714859008789, 0.07187967681884766, 0.0721244125366211, 0.07195852661132812, 0.07079424285888672, 0.06962790679931641, 0.06972518157958985, 0.06952345275878906, 0.06946918487548828, 0.06943539428710938, 0.06939238739013671, 0.06983372497558593, 0.06957260894775391, 0.06938521575927735, 0.06923776245117187, 0.07017164611816407, 0.06932582092285157, 0.06944461059570313, 0.1413570556640625, 0.06928076934814453, 0.07196774291992188, 0.0723220443725586, 0.07226573181152343, 0.07199231719970703, 0.07206502532958985, 0.07222476959228516, 0.07213875579833984, 0.06940057373046875, 0.06947840118408204, 0.07286784362792968, 0.07213260650634766, 0.0724295654296875, 0.07200563049316407, 0.07263334655761719, 0.07273677062988282, 0.07225856018066407, 0.0693411865234375, 0.0695367660522461, 0.07020543670654297, 0.07206809234619141, 0.07203020477294922, 0.0722001953125, 0.07224012756347656, 0.07218688201904297, 0.07218694305419922, 0.07206291198730469, 0.07192678070068359, 0.0715857925415039, 0.07136051177978515, 0.0714076156616211, 0.07242240142822266, 0.07221453094482422, 0.07244499206542969, 0.07197689819335938, 0.07119974517822265, 0.07206297302246094, 0.0721981430053711, 0.0724316177368164, 0.07192473602294921, 0.07172608184814454, 0.06988082885742188, 0.06962483215332031, 0.07035497283935546, 0.06945276641845703, 0.06980198669433593, 0.07191449737548829, 0.07256678771972656, 0.07234457397460937, 0.07288422393798828, 0.07266918182373047, 0.07230668640136718, 0.07237324523925781, 0.0723978271484375, 0.07207526397705079, 0.07200057220458984, 0.07223903656005859, 0.07222172546386718, 0.07205680084228516, 0.0722012176513672, 0.07250841522216797, 0.07297948455810546, 0.14137648010253906, 0.06947328186035157, 0.069607421875, 0.06972518157958985, 0.07188377380371094, 0.07261798095703124, 0.07253196716308594, 0.07225138854980469, 0.0723763198852539, 0.07227289581298828, 0.0724869155883789, 0.0720404510498047, 0.07224832153320312, 0.0722790756225586, 0.07235478210449219, 0.07247462463378906, 0.07243059539794922, 0.07224217224121093, 0.07231999969482422, 0.07176908874511718, 0.07236198425292968, 0.07177011108398437, 0.06941900634765626, 0.0709969940185547, 0.07273983764648438, 0.07211827087402344, 0.07241318511962891, 0.07507456207275391, 0.07245209503173829, 0.07226681518554688, 0.07216531372070313, 0.07257190704345703, 0.07180902099609375, 0.07219200134277344, 0.07004978942871094, 0.06961151885986328, 0.06961663818359375, 0.06986041259765625, 0.06977324676513671, 0.06963404846191407, 0.06956646728515625, 0.06976614379882813, 0.06975692749023438, 0.06940774536132813, 0.07025663757324219, 0.06947020721435547, 0.07162265777587891, 0.07189810943603515, 0.07244185638427734, 0.07230054473876953, 0.07227497863769532, 0.07341053009033204, 0.07264460754394532, 0.07066521453857422, 0.06972415924072266, 0.0694620132446289, 0.06928281402587891, 0.06948761749267578, 0.0691251220703125, 0.06890598297119141, 0.06905343627929687, 0.06960025787353516, 0.06945689392089843, 0.14089112854003907, 0.0694128646850586, 0.069570556640625, 0.06914662170410156, 0.06950399780273438, 0.07003545379638672, 0.06975794982910156, 0.06944870758056641, 0.070181884765625, 0.06986444854736328, 0.069607421875, 0.0728453140258789, 0.07321395111083985, 0.07279718780517579, 0.07399935913085938, 0.07330099487304688, 0.07279718780517579, 0.07354777526855469, 0.07338188934326172, 0.073301025390625, 0.07308284759521484, 0.0729917449951172, 0.07306854248046875, 0.0727388153076172, 0.07293440246582031, 0.0727357406616211, 0.07297023773193359, 0.07296102142333985, 0.07303270721435547, 0.07281462097167969, 0.07316886138916015, 0.073059326171875, 0.0725074234008789, 0.07300093078613282, 0.07273785400390625, 0.07161849975585938, 0.06959820556640625, 0.06925823974609376, 0.06970883178710938, 0.06981629180908203, 0.06969036865234375, 0.06949683380126953, 0.06930738830566406, 0.06938419342041016, 0.06971298980712891, 0.0707419204711914, 0.07269376373291016, 0.07251353454589844, 0.07328562927246093, 0.06910873413085937, 0.06949581146240234, 0.06906163024902344, 0.07005286407470702, 0.07312281799316406, 0.07338393402099609, 0.07292108917236328, 0.07231078338623047, 0.07324467468261718, 0.07336345672607422, 0.07308595275878907, 0.07299993896484375, 0.07279001617431641, 0.07310745239257813, 0.14934938049316407, 0.07343206024169922, 0.07323033905029297, 0.07366553497314453, 0.07251865386962891, 0.07295795440673829, 0.07302963256835937, 0.073480224609375, 0.07338902282714843, 0.07340748596191406, 0.0733655014038086, 0.07314534759521485, 0.07351602935791016, 0.07292825317382813, 0.07283715057373047, 0.07243465423583985, 0.07391846466064453, 0.07298047637939453, 0.07312384033203125, 0.07325183868408203, 0.07271321868896484, 0.07309209442138671, 0.07304192352294922, 0.07337062072753907, 0.0729354248046875, 0.07303884887695312, 0.07325081634521484, 0.0731668472290039, 0.07339622497558594, 0.07318016052246094, 0.07310028839111328, 0.07337574768066406, 0.07324774169921874, 0.07300300598144531, 0.07360620880126953, 0.0735692138671875, 0.07393798065185547, 0.07294355010986328, 0.07357542419433594, 0.07405875396728516, 0.07427174377441406, 0.07364198303222656, 0.07310950469970703, 0.07334912109375, 0.0739277114868164, 0.07357746887207031, 0.07303472137451172, 0.07309414672851562, 0.07331635284423828, 0.07301529693603516, 0.0722135009765625, 0.07023104095458985, 0.07103794860839843, 0.06991667175292969, 0.0706355209350586, 0.0701685791015625, 0.06987264251708984, 0.0711445083618164, 0.0702627182006836, 0.0697343978881836, 0.06988800048828125, 0.07153561401367188, 0.07306034851074218]",tokens/s,13.767182754693582,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/phi-1_5,microsoft/phi-1_5,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1358.589952,2103.967744,0.0,1457.52064,1272.881664,s,10,1.3631298065185549,0.1363129806518555,0.0008682167068706195,0.13635552215576174,0.1370564453125,0.13756546936035158,0.13797268859863282,"[0.13807449340820313, 0.13481919860839844, 0.13663923645019532, 0.13648768615722656, 0.1363610534667969, 0.13634999084472657, 0.13634962463378905, 0.1369433288574219, 0.13605657958984374, 0.13504861450195313]",tokens/s,1878.030975302537,kWh,1.5893511683852586e-06,8.706513991564859e-07,6.58916082688051e-06,9.049163394422252e-06,tokens/kWh,28289908.010479063,MB,1358.589952,2103.967744,0.0,1457.52064,1369.424896,s,10,80.1509423828125,8.01509423828125,0.04758558328935424,8.03790185546875,8.060850390625001,8.06196572265625,8.06285798828125,"[7.943890625, 7.97273681640625, 8.0463369140625, 8.0606025390625, 8.06037841796875, 8.0630810546875, 8.0572548828125, 8.029466796875, 7.960978515625, 7.9562158203125]",tokens/s,7.860169590907975,kWh,9.384463308144499e-05,5.143388635707014e-05,0.00037368961561811727,0.0005189681350566323,tokens/kWh,121394.73648632616,,s,629,81.24969168090827,0.12917280076455995,0.016234788877661135,0.127678466796875,0.12822896728515623,0.12854743347167968,0.26253706176757813,"[0.12623462677001954, 0.12626534271240233, 0.12749107360839843, 0.12655411529541016, 0.12602880096435548, 0.12595507049560548, 0.12608409881591798, 0.125949951171875, 0.12577792358398437, 0.1258967056274414, 0.12588851165771484, 0.12596736145019533, 0.12578099060058595, 0.1260912628173828, 0.12604723358154296, 0.12598169708251952, 0.12593971252441405, 0.12601139068603515, 0.12579634857177735, 0.12603392028808594, 0.12579840087890626, 0.12579532623291015, 0.1258967056274414, 0.1258086395263672, 0.1257297897338867, 0.12582093048095702, 0.1259315185546875, 0.12595609283447265, 0.12572783660888673, 0.12588227081298828, 0.12573081970214844, 0.12737945556640626, 0.1259468765258789, 0.12588646697998046, 0.12581478118896483, 0.12592435455322265, 0.1258792953491211, 0.1258588180541992, 0.12746444702148438, 0.12731187438964844, 0.12609945678710938, 0.12609843444824217, 0.12581478118896483, 0.12597452545166016, 0.12607078552246093, 0.12630118560791015, 0.12647833251953125, 0.12594483184814453, 0.12569087982177735, 0.12633702087402343, 0.12602880096435548, 0.1259898910522461, 0.126023681640625, 0.12634214019775392, 0.12730879974365233, 0.12593357086181642, 0.1258250274658203, 0.12601036834716797, 0.1260175323486328, 0.12602060699462891, 0.1258598403930664, 0.1257185287475586, 0.2625024108886719, 0.12606771087646484, 0.1269903335571289, 0.12595507049560548, 0.12662681579589843, 0.1257164764404297, 0.12573081970214844, 0.12580966186523437, 0.1257676773071289, 0.12584345245361328, 0.12604723358154296, 0.12586700439453125, 0.125876220703125, 0.12575027465820313, 0.12595507049560548, 0.12601856231689454, 0.12643840026855468, 0.12581068420410157, 0.12602265930175782, 0.12638412475585936, 0.12576153564453124, 0.12624486541748048, 0.12597964477539061, 0.12647833251953125, 0.12601856231689454, 0.12584652709960936, 0.12577792358398437, 0.12563763427734376, 0.12597145843505858, 0.1260359649658203, 0.12596121978759767, 0.1258055648803711, 0.12600422668457031, 0.1259345932006836, 0.12581273651123046, 0.12602674865722657, 0.12610355377197266, 0.12577279663085938, 0.12581375885009766, 0.12614963531494142, 0.1260062713623047, 0.12613426971435546, 0.1257359390258789, 0.1258567657470703, 0.12633190155029297, 0.1259694061279297, 0.12657254028320314, 0.12820480346679688, 0.12799180603027344, 0.12775526428222655, 0.127710205078125, 0.127857666015625, 0.1278545913696289, 0.12770918273925783, 0.12889190673828124, 0.1281597442626953, 0.12789145660400392, 0.12811878967285156, 0.12782284545898437, 0.128, 0.12832972717285157, 0.12828466796875, 0.12807577514648438, 0.26479617309570314, 0.12780953979492188, 0.1277501449584961, 0.12807475280761718, 0.12764979553222655, 0.1277470703125, 0.12904141235351563, 0.12810957336425782, 0.12779315185546875, 0.12776959991455078, 0.12783103942871094, 0.128247802734375, 0.1280174102783203, 0.12772045135498047, 0.12871270751953126, 0.12824371337890625, 0.12798976135253906, 0.12790579223632811, 0.12783103942871094, 0.12777574157714844, 0.1258086395263672, 0.12573798370361328, 0.12613222503662108, 0.12614860534667968, 0.12590592193603517, 0.12583219146728516, 0.12566630554199218, 0.12582093048095702, 0.12807679748535156, 0.1276159973144531, 0.12811672973632812, 0.1279078369140625, 0.1277327346801758, 0.12819967651367187, 0.12767539215087892, 0.1281658935546875, 0.12766515350341798, 0.12815565490722655, 0.12822528076171874, 0.12830618286132814, 0.12780748748779297, 0.1277286376953125, 0.12833279418945312, 0.1282723846435547, 0.12803890991210937, 0.12805836486816408, 0.12844236755371094, 0.12783411407470704, 0.12770611572265625, 0.12779724884033203, 0.1281546173095703, 0.1276159973144531, 0.12784230041503905, 0.12783206176757814, 0.12786688232421875, 0.128142333984375, 0.12768051147460938, 0.12766822052001953, 0.12811264038085937, 0.1277491226196289, 0.12756582641601563, 0.1288970184326172, 0.1281495056152344, 0.26441317749023435, 0.12781977844238282, 0.12796927642822264, 0.12775628662109376, 0.12817613220214844, 0.12858061218261718, 0.12771942138671874, 0.12783513641357422, 0.1279508514404297, 0.12757606506347657, 0.12777369689941406, 0.12777164459228516, 0.12801126098632812, 0.12763545227050782, 0.12789043426513672, 0.1276436462402344, 0.1276559371948242, 0.12776959991455078, 0.1282856903076172, 0.12782080078125, 0.12882330322265625, 0.1280614471435547, 0.12808090209960937, 0.12776959991455078, 0.1277675552368164, 0.12821708679199217, 0.12763033294677734, 0.12757708740234375, 0.1277347869873047, 0.12844032287597656, 0.12804812622070313, 0.12764979553222655, 0.12763545227050782, 0.12835430908203124, 0.12770918273925783, 0.12769075012207032, 0.12814131164550782, 0.1277491226196289, 0.12796934509277344, 0.1278842239379883, 0.12797337341308593, 0.1286594543457031, 0.12793036651611328, 0.12776448059082032, 0.12818226623535156, 0.12790886688232422, 0.12799488067626952, 0.12788121795654298, 0.1278054428100586, 0.12845158386230468, 0.12768870544433594, 0.12787404632568358, 0.12859596252441408, 0.1280563201904297, 0.1278013458251953, 0.12784435272216796, 0.12770508575439454, 0.12821197509765625, 0.12766719818115235, 0.12801228332519532, 0.12829901123046875, 0.1277675552368164, 0.12806965637207032, 0.2643558044433594, 0.12766515350341798, 0.12768051147460938, 0.12765286254882813, 0.12751462554931642, 0.12763545227050782, 0.12779519653320312, 0.12767129516601564, 0.12799078369140626, 0.1276590042114258, 0.1277655029296875, 0.12870144653320312, 0.12818226623535156, 0.12776242828369141, 0.1278699493408203, 0.1276272659301758, 0.128184326171875, 0.12763545227050782, 0.12879769897460938, 0.12881100463867187, 0.12820684814453126, 0.12788735961914063, 0.1276211166381836, 0.12761087799072265, 0.12819456481933594, 0.12811878967285156, 0.12794572448730468, 0.12788735961914063, 0.12781465911865234, 0.12768563079833983, 0.1276211166381836, 0.12834815979003905, 0.12801945495605468, 0.1278720016479492, 0.12835430908203124, 0.1289707489013672, 0.12773990631103516, 0.12778495788574218, 0.12773990631103516, 0.1278167037963867, 0.12815155029296876, 0.12765081787109375, 0.1277675552368164, 0.12948786926269532, 0.12794265747070313, 0.1282826232910156, 0.1276600341796875, 0.12820378112792968, 0.12769792175292968, 0.1278238754272461, 0.12797235107421875, 0.12779212951660157, 0.12791193389892577, 0.12792217254638671, 0.12759859466552734, 0.12793548583984374, 0.12773580932617187, 0.12768563079833983, 0.12795597076416015, 0.12788633728027343, 0.12800306701660155, 0.1278238754272461, 0.127710205078125, 0.264237060546875, 0.12841676330566407, 0.12879667663574218, 0.12799590301513672, 0.12780032348632814, 0.12786688232421875, 0.1277480926513672, 0.12770201873779297, 0.1276231689453125, 0.12800204467773438, 0.12798976135253906, 0.12791295623779297, 0.12839730834960938, 0.1277163543701172, 0.12764569854736327, 0.12788428497314452, 0.12782284545898437, 0.12786585235595704, 0.12791705322265626, 0.12781362915039063, 0.12769792175292968, 0.12772147369384765, 0.12825599670410157, 0.1278382110595703, 0.12759859466552734, 0.12937522888183595, 0.1279283218383789, 0.12773990631103516, 0.127857666015625, 0.12759859466552734, 0.12825804138183594, 0.1278167037963867, 0.12803482055664062, 0.12878028869628907, 0.128005126953125, 0.1279477767944336, 0.12773785400390625, 0.12787814331054687, 0.12846284484863282, 0.12783001708984376, 0.12776345825195312, 0.12814437866210937, 0.12812594604492186, 0.1279324188232422, 0.12761395263671876, 0.12771737670898436, 0.128427001953125, 0.12770508575439454, 0.1278883819580078, 0.12929638671875, 0.1278699493408203, 0.12793856048583985, 0.12772147369384765, 0.12795597076416015, 0.12789965057373046, 0.1279477767944336, 0.127678466796875, 0.1288642578125, 0.12818534851074218, 0.1278371810913086, 0.12756070709228515, 0.1280880584716797, 0.1277829132080078, 0.26441522216796876, 0.12775321960449218, 0.1284147186279297, 0.12843110656738282, 0.12777062225341798, 0.12808601379394532, 0.12776242828369141, 0.12883660888671875, 0.12807986450195313, 0.1278924789428711, 0.12769280242919923, 0.1283819580078125, 0.12761497497558594, 0.12829286193847655, 0.1278545913696289, 0.12783411407470704, 0.12800921630859374, 0.12785151672363282, 0.12760985565185548, 0.1278935012817383, 0.127604736328125, 0.12804197692871094, 0.12766207885742187, 0.1277276153564453, 0.12755661010742186, 0.12782284545898437, 0.12766310119628907, 0.12764876556396484, 0.1277317123413086, 0.1276006393432617, 0.12769280242919923, 0.12792729949951173, 0.12772249603271485, 0.1276211166381836, 0.1279477767944336, 0.12771942138671874, 0.12809625244140624, 0.12782080078125, 0.12788121795654298, 0.1286420440673828, 0.12810751342773438, 0.12785151672363282, 0.12791603088378906, 0.12781362915039063, 0.1283072052001953, 0.12790271759033203, 0.1278935012817383, 0.12861235046386718, 0.1277870101928711, 0.12774092864990233, 0.12795699310302736, 0.1275709457397461, 0.12798976135253906, 0.12764262390136719, 0.128, 0.12771942138671874, 0.12753817749023438, 0.12765081787109375, 0.12802047729492189, 0.12789657592773437, 0.1276610565185547, 0.12777369689941406, 0.12768972778320312, 0.2650091552734375, 0.12773990631103516, 0.1276764144897461, 0.12778598022460938, 0.1281781768798828, 0.12770611572265625, 0.12761190032958986, 0.12885093688964844, 0.12839730834960938, 0.12804608154296876, 0.12754431915283204, 0.12804301452636718, 0.128110595703125, 0.12830003356933595, 0.1278771209716797, 0.1279293441772461, 0.12791705322265626, 0.1275125732421875, 0.12755865478515624, 0.12813107299804688, 0.12789657592773437, 0.12766413116455078, 0.12822528076171874, 0.12799488067626952, 0.1279774703979492, 0.12805223083496095, 0.1276610565185547, 0.12801023864746094, 0.12790271759033203, 0.12759347534179688, 0.12863999938964843, 0.1278760986328125, 0.12768768310546874, 0.127783935546875, 0.12769075012207032, 0.12832972717285157, 0.127678466796875, 0.12767948913574217, 0.12722994995117187, 0.1263267822265625, 0.12628173065185547, 0.1263114242553711, 0.12657766723632813, 0.12635852813720702, 0.12587315368652344, 0.12590592193603517, 0.12597657775878907, 0.12586598205566407, 0.1257543716430664, 0.1258301467895508, 0.12576563262939452, 0.12673535919189452, 0.12682342529296875, 0.12621414184570312, 0.12802662658691405, 0.12777574157714844, 0.12764569854736327, 0.12707532501220703, 0.12799078369140626, 0.12770816040039062, 0.12756787109375, 0.12807475280761718, 0.12647731018066405, 0.262550537109375, 0.1261670379638672, 0.12625305938720705, 0.12649779510498046, 0.12646707153320313, 0.12611174774169923, 0.12602777862548828, 0.12611993408203126, 0.12626739501953124, 0.12624588775634765, 0.12608512115478515, 0.12602572631835937, 0.12627763366699218, 0.12701081848144533, 0.12849766540527344, 0.12709273529052734, 0.12640460968017578, 0.1259356155395508, 0.12617932891845704, 0.12601856231689454, 0.12573184204101562, 0.1274439697265625, 0.1281474609375, 0.12596428680419922, 0.12658790588378907, 0.12630016326904298, 0.12737535858154297, 0.1271398391723633, 0.12651622772216797, 0.12802867126464842, 0.127494140625, 0.12671385955810546, 0.12621517181396485, 0.12586495971679687, 0.125949951171875, 0.12607692718505858, 0.12581990051269532, 0.1269585952758789, 0.12647628784179688, 0.1260400619506836, 0.1257011184692383, 0.1262888946533203, 0.12585062408447265, 0.1261506576538086, 0.1261619186401367, 0.12615885162353516, 0.12634521484375, 0.1262909469604492, 0.1259857940673828, 0.12619468688964844, 0.1256785888671875, 0.1258751983642578, 0.12573184204101562, 0.12563251495361327, 0.1259898910522461, 0.12623462677001954, 0.12567244720458984, 0.12609228515625, 0.12659916687011719, 0.12599807739257812, 0.12612505340576172, 0.1267558364868164, 0.12647731018066405, 0.2608926696777344, 0.12610150146484375, 0.1264158706665039, 0.12645785522460937, 0.126740478515625, 0.12682240295410158, 0.1262356491088867, 0.1261957092285156, 0.1260359649658203, 0.12633805084228517, 0.12569292449951172, 0.1258086395263672, 0.12725145721435546, 0.12759859466552734, 0.12629708862304687, 0.1263790054321289, 0.12595916748046876, 0.12631346893310547, 0.12617113494873047, 0.12567961883544923, 0.12705587005615235, 0.12577689361572267, 0.1257011184692383, 0.12581581115722656, 0.12577792358398437, 0.1261629409790039, 0.1258905563354492, 0.12567244720458984, 0.1256079330444336, 0.1280921630859375, 0.1263073272705078, 0.12712857818603515, 0.12635340881347656, 0.1265233917236328, 0.12599603271484375, 0.1261506576538086, 0.1261844482421875, 0.1280061492919922, 0.12627763366699218, 0.12625305938720705, 0.12565094757080078, 0.12626022338867188, 0.12611686706542968, 0.12614860534667968, 0.12619161224365236, 0.12624486541748048, 0.12653772735595703, 0.12628070068359376, 0.1262581787109375, 0.12623872375488282, 0.12604415893554688, 0.12649472045898438, 0.12680703735351562, 0.12633395385742188, 0.1260031967163086, 0.12610867309570312, 0.1264230422973633, 0.12621107482910157, 0.12615679931640625, 0.12624486541748048, 0.1259898910522461, 0.12594892883300782, 0.1265080337524414]",tokens/s,7.741567838438954,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-2.7b,facebook/opt-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2119.368704,2816.999424,0.0,2170.55232,1927.744512,s,10,2.4524682617187503,0.245246826171875,0.001090999616645648,0.2451712341308594,0.24625067138671874,0.24669122314453126,0.24704366455078125,"[0.24615277099609376, 0.24713177490234375, 0.24369766235351562, 0.24442691040039063, 0.244733154296875, 0.243721435546875, 0.24478985595703126, 0.2455526123046875, 0.24614064025878907, 0.24612144470214845]",tokens/s,1043.8463322684916,kWh,2.8755634550064334e-06,1.5756288392757208e-06,1.2476319504855795e-05,1.6927511799137947e-05,tokens/kWh,15123309.499807118,MB,2119.368704,2816.999424,0.0,2170.55232,2031.983104,s,10,142.79050195312502,14.279050195312502,0.0031195370707275648,14.27847802734375,14.28149794921875,14.284002392578124,14.286005947265625,"[14.2787724609375, 14.2797041015625, 14.28094140625, 14.27818359375, 14.2772841796875, 14.2808662109375, 14.2747421875, 14.275935546875, 14.2775654296875, 14.2865068359375]",tokens/s,4.412058164812777,kWh,0.00016860610004691852,9.240989681349414e-05,0.0007205406280193562,0.000981556624879769,tokens/kWh,64183.76525930624,,s,629,144.7668543243408,0.23015398143774374,0.029166744118704197,0.22656614685058593,0.22702059936523436,0.22731673583984374,0.47147623168945313,"[0.228210693359375, 0.2264954833984375, 0.2263234558105469, 0.2265917510986328, 0.22652210998535155, 0.2266122283935547, 0.22653952026367188, 0.22631117248535157, 0.22642892456054686, 0.22647091674804687, 0.22641664123535157, 0.22648934936523438, 0.2270392303466797, 0.22645555114746094, 0.22661325073242186, 0.22698086547851562, 0.22665011596679688, 0.22659788513183593, 0.2262640686035156, 0.22631219482421874, 0.22640025329589844, 0.22692658996582032, 0.22699212646484376, 0.22696038818359374, 0.22650674438476562, 0.22637158203125, 0.2266552276611328, 0.22633882141113282, 0.22646173095703126, 0.2265814666748047, 0.22644224548339845, 0.22677912902832031, 0.22628044128417968, 0.22633573913574218, 0.2265681915283203, 0.226693115234375, 0.22634597778320312, 0.2265016326904297, 0.2263531494140625, 0.22655078125, 0.22668800354003907, 0.2267904052734375, 0.22690406799316407, 0.2266306610107422, 0.2264575958251953, 0.22657638549804687, 0.22662553405761718, 0.22665113830566405, 0.22651187133789064, 0.22652723693847657, 0.22627635192871093, 0.22631219482421874, 0.22654464721679687, 0.22648934936523438, 0.2266378173828125, 0.22687333679199218, 0.22802943420410157, 0.2267176971435547, 0.2265917510986328, 0.22732595825195312, 0.2264842224121094, 0.22659481811523438, 0.47421746826171873, 0.22658047485351562, 0.22655282592773437, 0.22653030395507812, 0.22670950317382813, 0.22652517700195313, 0.22650469970703124, 0.22647705078125, 0.22634803771972656, 0.2266787872314453, 0.22657125854492188, 0.22652621459960937, 0.22686515808105467, 0.2263900146484375, 0.22639718627929686, 0.22662553405761718, 0.22654975891113283, 0.22652928161621094, 0.2263838653564453, 0.22636647033691407, 0.2263582763671875, 0.22654975891113283, 0.22638899230957032, 0.2263961639404297, 0.22621388244628907, 0.22636749267578124, 0.22646170043945313, 0.22642381286621094, 0.22654156494140626, 0.2262988739013672, 0.22632652282714844, 0.2261411895751953, 0.2261012420654297, 0.22648838806152344, 0.22639097595214844, 0.2262917175292969, 0.22649856567382812, 0.2264145965576172, 0.22670130920410156, 0.2264453125, 0.227240966796875, 0.22686003112792968, 0.22684364318847655, 0.22670335388183593, 0.2264524841308594, 0.2268170166015625, 0.22824140930175782, 0.2270392303466797, 0.22767205810546876, 0.22691123962402343, 0.22711602783203125, 0.22689286804199219, 0.22666029357910156, 0.2267361297607422, 0.2266439666748047, 0.22683135986328126, 0.22709965515136718, 0.22691226196289063, 0.22731365966796874, 0.22672998046875, 0.22711911010742186, 0.22663475036621095, 0.22664601135253906, 0.47127346801757813, 0.2265681915283203, 0.226840576171875, 0.22668389892578125, 0.22649650573730468, 0.22704742431640626, 0.22672998046875, 0.22683135986328126, 0.22644326782226562, 0.2265743408203125, 0.226555908203125, 0.22665933227539062, 0.22649754333496094, 0.22686720275878905, 0.22685696411132814, 0.2270627899169922, 0.22701158142089845, 0.22654360961914063, 0.227631103515625, 0.22625177001953126, 0.2269306945800781, 0.226946044921875, 0.2268231658935547, 0.2272542724609375, 0.2273054656982422, 0.22650982666015626, 0.22637158203125, 0.22674432373046874, 0.22774681091308593, 0.22656512451171876, 0.22653132629394532, 0.22656101989746094, 0.22630706787109375, 0.22627430725097655, 0.22650367736816407, 0.2263654327392578, 0.2271293487548828, 0.2264596405029297, 0.2263173065185547, 0.2265753631591797, 0.22677912902832031, 0.22655282592773437, 0.22645350646972656, 0.2264954833984375, 0.22634597778320312, 0.22660403442382812, 0.226482177734375, 0.22736895751953126, 0.22658149719238282, 0.22649037170410155, 0.22647296142578124, 0.2265016326904297, 0.22649650573730468, 0.22651187133789064, 0.22654464721679687, 0.22644224548339845, 0.22651084899902343, 0.22658662414550781, 0.22652210998535155, 0.22644940185546875, 0.2268712921142578, 0.226334716796875, 0.22724812316894533, 0.4715550842285156, 0.22658047485351562, 0.22659788513183593, 0.22659075927734376, 0.2265425567626953, 0.22664601135253906, 0.22673306274414062, 0.22659481811523438, 0.2266234893798828, 0.22643096923828124, 0.2263951416015625, 0.22653439331054687, 0.22656716918945313, 0.22648626708984376, 0.2264842224121094, 0.2265323486328125, 0.22739251708984376, 0.22662757873535155, 0.22650778198242189, 0.22635621643066406, 0.22640025329589844, 0.22646783447265625, 0.2263951416015625, 0.2265374755859375, 0.22659071350097656, 0.22637158203125, 0.22640229797363282, 0.22639820861816407, 0.2262640686035156, 0.22646578979492188, 0.22665728759765624, 0.22639411926269531, 0.2265692138671875, 0.22644940185546875, 0.22637055969238282, 0.22653132629394532, 0.22651084899902343, 0.22662042236328125, 0.226440185546875, 0.22653952026367188, 0.2264248352050781, 0.22653132629394532, 0.22682112121582032, 0.22637464904785157, 0.22807859802246094, 0.22658047485351562, 0.22653543090820313, 0.22662144470214843, 0.2265364532470703, 0.22637158203125, 0.2266941375732422, 0.2265016326904297, 0.22764134216308593, 0.2268037109375, 0.22737408447265625, 0.2267689666748047, 0.22669818115234375, 0.22641868591308595, 0.2270064697265625, 0.226808837890625, 0.22760447692871094, 0.2266941375732422, 0.22663475036621095, 0.4716912536621094, 0.226555908203125, 0.22654669189453125, 0.22630400085449218, 0.22651904296875, 0.22646885681152343, 0.2263726043701172, 0.2264627227783203, 0.226376708984375, 0.22640956115722657, 0.22651280212402344, 0.2264944610595703, 0.22653030395507812, 0.22637055969238282, 0.22640538024902343, 0.22671359252929688, 0.22652825927734374, 0.22724607849121095, 0.2267904052734375, 0.22637464904785157, 0.2265006103515625, 0.2266173400878906, 0.2275594177246094, 0.22663168334960937, 0.22695526123046875, 0.22644326782226562, 0.2264453125, 0.22670541381835937, 0.22647193908691407, 0.2264842224121094, 0.22652928161621094, 0.22634495544433594, 0.22692658996582032, 0.2264575958251953, 0.22655078125, 0.22647705078125, 0.22659584045410155, 0.22641151428222656, 0.22638490295410157, 0.2264320068359375, 0.22686924743652342, 0.22668185424804688, 0.226555908203125, 0.22660096740722657, 0.2265364532470703, 0.22648013305664064, 0.22652006530761717, 0.22684774780273437, 0.22667674255371092, 0.2264524841308594, 0.2264145965576172, 0.22648320007324219, 0.2265518035888672, 0.22661631774902344, 0.22665216064453125, 0.22664909362792968, 0.22723379516601563, 0.22827008056640624, 0.22659890747070313, 0.22667776489257813, 0.22666752624511718, 0.22652517700195313, 0.22685696411132814, 0.47040716552734374, 0.2265364532470703, 0.22670335388183593, 0.22675152587890626, 0.22674327087402343, 0.22674124145507812, 0.22666854858398439, 0.2265016326904297, 0.22641664123535157, 0.226408447265625, 0.22644837951660157, 0.22657331848144532, 0.22669926452636718, 0.22673817443847658, 0.22666648864746095, 0.22652006530761717, 0.22712115478515624, 0.2267709503173828, 0.22682829284667969, 0.2264514617919922, 0.22717543029785156, 0.22672691345214843, 0.22699417114257814, 0.22659379577636718, 0.22670541381835937, 0.22654464721679687, 0.22634701538085938, 0.22648320007324219, 0.226376708984375, 0.22674330139160156, 0.2265518035888672, 0.22656716918945313, 0.22633882141113282, 0.22662144470214843, 0.22681292724609375, 0.22643609619140626, 0.22689791870117187, 0.22637055969238282, 0.22802841186523437, 0.22646885681152343, 0.22660301208496095, 0.22652006530761717, 0.22687744140625, 0.226482177734375, 0.22646476745605468, 0.22653132629394532, 0.2266787872314453, 0.22718771362304688, 0.22725325012207032, 0.22660914611816407, 0.22652517700195313, 0.2265364532470703, 0.2266623992919922, 0.2268590087890625, 0.2265999298095703, 0.2266439666748047, 0.22733311462402345, 0.2267484130859375, 0.22656101989746094, 0.22658047485351562, 0.22690713500976561, 0.22647296142578124, 0.2265333709716797, 0.4723138427734375, 0.22668698120117187, 0.22651699829101563, 0.22642994689941406, 0.22652006530761717, 0.22658355712890624, 0.22648832702636718, 0.22646067810058593, 0.22636134338378905, 0.2262917175292969, 0.22641766357421875, 0.22637362670898437, 0.226440185546875, 0.22636851501464844, 0.2264944610595703, 0.2264596405029297, 0.22644122314453125, 0.22647398376464845, 0.22640127563476561, 0.22637977600097656, 0.22642892456054686, 0.22646067810058593, 0.22642994689941406, 0.22729216003417968, 0.2265856018066406, 0.22656614685058593, 0.22651187133789064, 0.22686924743652342, 0.22699212646484376, 0.22667776489257813, 0.22668083190917968, 0.22647091674804687, 0.226440185546875, 0.2262794189453125, 0.22660198974609375, 0.22650778198242189, 0.227240966796875, 0.22670130920410156, 0.2265927734375, 0.22639820861816407, 0.22648524475097656, 0.22650265502929687, 0.22666444396972657, 0.2264637451171875, 0.22673306274414062, 0.2266306610107422, 0.2264524841308594, 0.22670541381835937, 0.22680677795410156, 0.22637773132324218, 0.22640333557128905, 0.22649754333496094, 0.22653030395507812, 0.22647602844238282, 0.2265180206298828, 0.2267105255126953, 0.2264811553955078, 0.2263408660888672, 0.22684159851074218, 0.226840576171875, 0.227162109375, 0.22650572204589844, 0.22680064392089844, 0.47229953002929687, 0.22655386352539061, 0.22669209289550782, 0.22669107055664062, 0.22653849792480468, 0.226914306640625, 0.22678323364257813, 0.22689485168457033, 0.2268078155517578, 0.22660812377929687, 0.22647296142578124, 0.22665318298339843, 0.22659584045410155, 0.2267166748046875, 0.22655897521972657, 0.22654566955566408, 0.2271068115234375, 0.22682009887695312, 0.22680575561523436, 0.22656204223632812, 0.2264217529296875, 0.22652108764648438, 0.22662553405761718, 0.22673408508300782, 0.22695730590820312, 0.22662757873535155, 0.2265364532470703, 0.22667570495605469, 0.2265743408203125, 0.22657125854492188, 0.22663679504394532, 0.2263592987060547, 0.22638490295410157, 0.22639411926269531, 0.2264514617919922, 0.22640640258789063, 0.22657125854492188, 0.22636134338378905, 0.22635008239746093, 0.22646681213378905, 0.2263756866455078, 0.22643507385253905, 0.226661376953125, 0.22654054260253906, 0.2264842224121094, 0.2266480712890625, 0.22652621459960937, 0.22654054260253906, 0.22649958801269532, 0.22644326782226562, 0.22654156494140626, 0.2265886688232422, 0.22666546630859374, 0.22688870239257813, 0.2266972198486328, 0.22649856567382812, 0.22649958801269532, 0.22640847778320314, 0.22657020568847655, 0.22655078125, 0.2271825866699219, 0.22659686279296876, 0.22644224548339845, 0.4732682189941406, 0.2267166748046875, 0.22669004821777344, 0.2266112060546875, 0.22709043884277344, 0.2265323486328125, 0.2266306610107422, 0.2265927734375, 0.22674636840820311, 0.22685285949707032, 0.22652723693847657, 0.2264954833984375, 0.22642381286621094, 0.22641253662109376, 0.22645452880859376, 0.2264248352050781, 0.22657125854492188, 0.22701670837402343, 0.22656716918945313, 0.2264268798828125, 0.22636441040039063, 0.22659379577636718, 0.22651596069335939, 0.22646476745605468, 0.22653543090820313, 0.22654873657226562, 0.22635110473632813, 0.2264453125, 0.22657740783691407, 0.22701568603515626, 0.22657331848144532, 0.226808837890625, 0.22729318237304688, 0.226840576171875, 0.22669004821777344, 0.22642994689941406, 0.22665216064453125, 0.226408447265625, 0.2264637451171875, 0.22659071350097656, 0.22760140991210936, 0.2266787872314453, 0.22653952026367188, 0.2264842224121094, 0.22630911254882813, 0.22652825927734374, 0.22639820861816407, 0.22657023620605468, 0.22674330139160156, 0.2271262664794922, 0.22665728759765624, 0.2265333709716797, 0.22666444396972657, 0.22674227905273436, 0.22675149536132813, 0.2265364532470703, 0.22639820861816407, 0.22652210998535155, 0.2266112060546875, 0.22665113830566405, 0.22656614685058593, 0.2264627227783203, 0.22642073059082032, 0.4729661560058594, 0.22653132629394532, 0.22665420532226563, 0.22658566284179688, 0.22666950988769533, 0.22666035461425782, 0.2266480712890625, 0.2267525177001953, 0.22648934936523438, 0.2266399688720703, 0.2264431610107422, 0.22651187133789064, 0.22709657287597657, 0.22754713439941407, 0.22637055969238282, 0.22647091674804687, 0.22653439331054687, 0.22654975891113283, 0.2265999298095703, 0.22654360961914063, 0.22677197265625, 0.22703718566894532, 0.2268784637451172, 0.22653543090820313, 0.22652210998535155, 0.22646681213378905, 0.2276433868408203, 0.2268784637451172, 0.2265886688232422, 0.22731878662109375, 0.2269306945800781, 0.22686822509765625, 0.22654464721679687, 0.22657945251464845, 0.2267484130859375, 0.22667263793945314, 0.22669209289550782, 0.22645350646972656, 0.22654566955566408, 0.22655282592773437, 0.22689996337890625, 0.2264698944091797, 0.22683544921875, 0.22653952026367188, 0.22666035461425782, 0.22665420532226563, 0.22662655639648438, 0.2269420166015625, 0.2271200714111328, 0.2266972198486328, 0.22657331848144532, 0.22654368591308593, 0.22663877868652343, 0.22703616333007812, 0.22663372802734374, 0.22663270568847657, 0.22767308044433593, 0.22783692932128907, 0.22670130920410156, 0.2265927734375, 0.2266378173828125, 0.22650469970703124, 0.22659584045410155]",tokens/s,4.344917232163973,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-13b,huggyllama/llama-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,3015.59808,9299.296256,0.0,8652.849152,8210.185216,s,10,11.00354541015625,1.100354541015625,0.0021995629105345756,1.10037060546875,1.1026337646484374,1.103404345703125,1.104020810546875,"[1.1041749267578125, 1.1024625244140625, 1.0971700439453125, 1.0986126708984374, 1.0993076171875, 1.097432861328125, 1.099380126953125, 1.101361083984375, 1.1021866455078124, 1.1014569091796875]",tokens/s,232.65228656548507,kWh,1.2965490321318309e-05,7.10465502763327e-06,5.986921456200278e-05,7.993935991095436e-05,tokens/kWh,3202427.443566751,MB,3016.822784,9299.296256,0.0,8652.849152,8503.104,s,10,641.11232421875,64.11123242187502,0.005190298699693196,64.11128124999999,64.116784765625,64.1185056640625,64.11988238281249,"[64.1162265625, 64.11091796875, 64.10715234375, 64.11164453125, 64.1140703125, 64.10447265625, 64.1202265625, 64.106796875, 64.1044140625, 64.11640234375]",tokens/s,0.9826671180712498,kWh,0.0007569437074826825,0.00041487128047605436,0.0034860815944185997,0.004657896582377336,tokens/kWh,13525.418369818235,,s,629,649.9943001708987,1.0333772657724936,0.13070199113792613,1.0176091918945311,1.0182221801757814,1.0184349731445312,2.1165633984375,"[1.0176849975585938, 1.0179225463867188, 1.0177464599609376, 1.0181263427734375, 1.01766552734375, 1.0177433471679687, 1.0174985961914063, 1.0180587768554688, 1.0172999877929687, 1.0173552856445311, 1.017459716796875, 1.0184939575195313, 1.017143310546875, 1.0182799072265625, 1.0176931762695312, 1.0179122924804687, 1.0178191528320313, 1.0179092407226562, 1.0176112670898438, 1.0177853393554688, 1.0181171264648436, 1.0180086059570312, 1.0171443481445313, 1.0179840087890626, 1.0173839111328125, 1.0177720336914062, 1.0175538940429687, 1.0174218139648437, 1.0173317260742187, 1.0178887939453125, 1.0179092407226562, 1.0181570434570313, 1.0174976196289063, 1.0177576904296874, 1.017449462890625, 1.017692138671875, 1.0180843505859376, 1.0179747924804687, 1.0176112670898438, 1.0182471923828125, 1.0175887451171874, 1.017427978515625, 1.0171924438476563, 1.0172886962890626, 1.0171688842773436, 1.0173245239257813, 1.0170091552734375, 1.0176368408203125, 1.0171146240234374, 1.0184765625, 1.0177085571289062, 1.017554931640625, 1.0172211303710939, 1.0182522583007811, 1.017290771484375, 1.0179625244140624, 1.0176573486328124, 1.0178734130859375, 1.0176276245117188, 1.0185001220703125, 1.0183004150390624, 1.0180914916992188, 2.120390625, 1.0169886474609375, 1.0174678955078125, 1.0169763793945312, 1.017365478515625, 1.0172262573242188, 1.0176307373046876, 1.017291748046875, 1.0174207763671874, 1.017438232421875, 1.0176419677734374, 1.01682275390625, 1.0177566528320312, 1.0169026489257813, 1.0171187133789064, 1.0169517822265626, 1.0179747924804687, 1.0175006713867187, 1.0174310302734375, 1.0172119140625, 1.018013671875, 1.0172262573242188, 1.0173501586914062, 1.0170921020507813, 1.0172692260742187, 1.0172661743164062, 1.01758154296875, 1.0180413208007812, 1.017764892578125, 1.0175068359375, 1.0178314208984376, 1.0169129028320312, 1.0174238891601564, 1.01768701171875, 1.0177402954101562, 1.0183987426757812, 1.01777099609375, 1.0177843017578125, 1.0177607421875, 1.0173163452148437, 1.0173081665039063, 1.017702392578125, 1.0177484741210938, 1.0175764770507814, 1.01732763671875, 1.018228759765625, 1.018945556640625, 1.0175508422851562, 1.0177587280273437, 1.0177536010742188, 1.0183505859375, 1.0178427124023437, 1.01798095703125, 1.0178457641601562, 1.0182246704101563, 1.0184437866210938, 1.0184017944335937, 1.0174044189453124, 1.01778125, 1.0175907592773437, 1.0179645385742186, 1.0172713012695314, 1.0177116088867189, 2.116588623046875, 1.0172682495117187, 1.017439208984375, 1.0171781005859375, 1.0176378784179687, 1.0172579956054688, 1.0172876586914064, 1.0171351318359374, 1.017439208984375, 1.0174095458984376, 1.0178488159179688, 1.017796630859375, 1.0178846435546876, 1.0169200439453125, 1.0174443359375, 1.0173378295898436, 1.0173532104492187, 1.0172938232421875, 1.0175784912109376, 1.0172467041015625, 1.0177372436523437, 1.01789697265625, 1.0177136840820313, 1.0170101928710937, 1.01732763671875, 1.0172815551757812, 1.0176215209960937, 1.0174166870117187, 1.0176153564453125, 1.017275390625, 1.0179368896484375, 1.0172160034179687, 1.0177505493164063, 1.0171678466796874, 1.01737060546875, 1.01718017578125, 1.0172098388671875, 1.0171494140625, 1.0173306884765625, 1.0171054077148438, 1.0177413330078124, 1.017786376953125, 1.0182041625976563, 1.0170777587890625, 1.0175405883789062, 1.0175836181640625, 1.0175068359375, 1.017169921875, 1.0173778076171875, 1.0175529174804687, 1.0178037719726563, 1.0177454223632814, 1.0187315063476563, 1.01823486328125, 1.0180054931640625, 1.0178140258789063, 1.0181683349609374, 1.017670654296875, 1.0181611328125, 1.0182564086914063, 1.0183587646484376, 1.0175396118164062, 1.0181222534179688, 2.11649853515625, 1.0170214233398438, 1.0172620849609375, 1.0174719848632812, 1.0172548828125, 1.0174484252929688, 1.017628662109375, 1.0173849487304687, 1.0173992919921875, 1.0177689819335938, 1.0176215209960937, 1.01728564453125, 1.0174402465820314, 1.0171627807617187, 1.0172057495117188, 1.0171904296875, 1.0177679443359375, 1.0173214721679686, 1.0170664672851562, 1.0171207885742188, 1.0171893920898438, 1.0169364624023438, 1.0172098388671875, 1.0170009765625, 1.0171842651367187, 1.01760205078125, 1.0179368896484375, 1.0174985961914063, 1.0172743530273438, 1.0170787963867187, 1.0172272338867188, 1.0170316772460937, 1.0173040771484374, 1.0175529174804687, 1.0179287109375, 1.0178242797851562, 1.0183321533203125, 1.01816015625, 1.0178682861328125, 1.0174054565429687, 1.0174771118164063, 1.0178682861328125, 1.0177188110351563, 1.017955322265625, 1.0186710815429687, 1.0180361938476563, 1.018166259765625, 1.017849853515625, 1.0181478271484374, 1.0177095947265624, 1.017891845703125, 1.0177259521484374, 1.0180966186523437, 1.0177996826171876, 1.0185390014648437, 1.0180700073242188, 1.0183905029296876, 1.0182389526367188, 1.0185400390625, 1.0179686279296876, 1.0179194946289063, 1.0175518798828125, 1.0181058349609375, 2.11787255859375, 1.017354248046875, 1.0174566650390624, 1.017512939453125, 1.0176153564453125, 1.0173112182617188, 1.0177638549804688, 1.0170715942382813, 1.017206787109375, 1.0171371459960938, 1.0176399536132812, 1.0181683349609374, 1.0179246215820312, 1.017238525390625, 1.0177177734375, 1.01699072265625, 1.01747509765625, 1.0175672607421875, 1.0181283569335937, 1.01778125, 1.01810791015625, 1.018156005859375, 1.018429443359375, 1.0175344848632812, 1.0176460571289063, 1.0172333984375, 1.0177321166992188, 1.01758154296875, 1.0172559204101563, 1.0175887451171874, 1.0181652221679687, 1.0181017456054688, 1.0174576416015626, 1.0177464599609376, 1.017849853515625, 1.0172507934570312, 1.0176378784179687, 1.0174627685546875, 1.0175211791992187, 1.017702392578125, 1.0177321166992188, 1.01766552734375, 1.0176245727539062, 1.017238525390625, 1.0175139770507813, 1.0173101806640625, 1.0175518798828125, 1.01707568359375, 1.0175723266601562, 1.0176614379882813, 1.018265625, 1.0177587280273437, 1.0177955932617186, 1.017280517578125, 1.0177669067382813, 1.01758056640625, 1.0177003784179688, 1.0202439575195312, 1.0180403442382813, 1.0180946044921875, 1.0176676025390625, 1.0172211303710939, 1.0179778442382812, 2.115203125, 1.0167890014648437, 1.0172354736328124, 1.0170439453125, 1.0171873168945313, 1.0175703125, 1.0176470947265626, 1.0175744018554687, 1.0177515258789063, 1.0173716430664062, 1.0174197998046874, 1.0172938232421875, 1.0174003295898437, 1.0167725830078125, 1.0175344848632812, 1.0169354248046876, 1.017470947265625, 1.017322509765625, 1.017417724609375, 1.0173368530273437, 1.0175313720703125, 1.0170009765625, 1.0170460205078125, 1.0174044189453124, 1.017523193359375, 1.0177791748046876, 1.0174197998046874, 1.0170818481445312, 1.0176419677734374, 1.0173101806640625, 1.0176409301757812, 1.0174095458984376, 1.0175293579101563, 1.0173173828125, 1.0182144165039062, 1.0182215576171876, 1.0176747436523437, 1.01743310546875, 1.0186895141601562, 1.0174781494140626, 1.0176266479492186, 1.0174013671875, 1.0175191040039062, 1.0173880615234374, 1.017828369140625, 1.0177105712890624, 1.0176378784179687, 1.0176849975585938, 1.017650146484375, 1.0173193969726562, 1.0175958862304688, 1.017544677734375, 1.01745458984375, 1.0172119140625, 1.017970703125, 1.0179348754882813, 1.017543701171875, 1.0179287109375, 1.0183065795898438, 1.017802734375, 1.0182492065429687, 1.0176123046875, 1.0174044189453124, 2.1172890625, 1.0174003295898437, 1.0177330932617188, 1.0177269897460937, 1.0172897338867188, 1.0172108764648438, 1.0175191040039062, 1.0172661743164062, 1.0171361083984376, 1.0175949096679688, 1.0182318115234374, 1.0174924926757813, 1.0179317626953126, 1.0172047119140626, 1.017650146484375, 1.017218017578125, 1.0178754272460937, 1.017364501953125, 1.017511962890625, 1.0177156982421875, 1.0180003662109376, 1.0175949096679688, 1.01768603515625, 1.0176327514648438, 1.0180106201171875, 1.0180044555664063, 1.0175570068359374, 1.0175354614257812, 1.0178191528320313, 1.0182748413085938, 1.0180044555664063, 1.0177034301757812, 1.0174884033203124, 1.0172713012695314, 1.0173092041015626, 1.01715966796875, 1.0175641479492188, 1.0176747436523437, 1.0178734130859375, 1.0186076049804687, 1.0178191528320313, 1.017248779296875, 1.0178734130859375, 1.0178088989257812, 1.0177566528320312, 1.0173737182617189, 1.0184867553710937, 1.0182072143554688, 1.018197998046875, 1.0183782348632813, 1.0181672973632812, 1.0175877075195312, 1.0179911499023437, 1.0176522216796875, 1.0181212158203126, 1.017575439453125, 1.0183485717773437, 1.01770751953125, 1.0183301391601562, 1.0184693603515624, 1.0186875, 1.0184386596679686, 1.0182625122070312, 2.120072265625, 1.017439208984375, 1.0174781494140626, 1.0172333984375, 1.0177269897460937, 1.0175928344726564, 1.0170654907226562, 1.0174505004882812, 1.0172559204101563, 1.0168995971679688, 1.0167019653320313, 1.0168186645507813, 1.0172682495117187, 1.0168565673828125, 1.0178058471679687, 1.0173900756835939, 1.0174361572265624, 1.0177945556640624, 1.0173880615234374, 1.0177044677734375, 1.0172129516601562, 1.0170511474609376, 1.0175641479492188, 1.0171637573242187, 1.0182041625976563, 1.0174515380859375, 1.0173992919921875, 1.017302001953125, 1.01718017578125, 1.0170521850585938, 1.017697265625, 1.0175518798828125, 1.0177699584960938, 1.0171688842773436, 1.0180577392578125, 1.0177750854492187, 1.0180413208007812, 1.0171555786132813, 1.0174617309570313, 1.0173552856445311, 1.0172088623046875, 1.0174453735351563, 1.0177587280273437, 1.0179358520507813, 1.017807861328125, 1.0180464477539062, 1.01760205078125, 1.01793994140625, 1.01802392578125, 1.0177402954101562, 1.01783349609375, 1.01783447265625, 1.0175006713867187, 1.017565185546875, 1.0181806030273437, 1.01722314453125, 1.0179891357421875, 1.0179143676757811, 1.0177699584960938, 1.018265625, 1.018239990234375, 1.0177269897460937, 1.01764404296875, 2.12052685546875, 1.0178191528320313, 1.0170664672851562, 1.0168914184570312, 1.016933349609375, 1.0168248291015625, 1.0170194091796876, 1.0169968872070312, 1.0170706176757813, 1.01739111328125, 1.0174085083007813, 1.0172446899414063, 1.01743408203125, 1.0172498168945312, 1.0173173828125, 1.0169630737304687, 1.0172764282226563, 1.017670654296875, 1.0172395629882813, 1.0175570068359374, 1.01774951171875, 1.0171514892578124, 1.0176829223632813, 1.0178232421875, 1.0177474365234376, 1.0177638549804688, 1.0182195434570311, 1.0177802124023438, 1.01798193359375, 1.0181058349609375, 1.0178447265625, 1.0170623779296875, 1.017565185546875, 1.01713818359375, 1.017654296875, 1.0177515258789063, 1.0174115600585938, 1.0176266479492186, 1.01768603515625, 1.0180618286132812, 1.0176409301757812, 1.01743408203125, 1.0178948974609374, 1.0173562622070313, 1.0175979614257813, 1.0175078125, 1.0172713012695314, 1.0172344360351562, 1.0179164428710938, 1.0178744506835937, 1.0179573974609375, 1.01726513671875, 1.017871337890625, 1.0172272338867188, 1.017660400390625, 1.01722314453125, 1.0177474365234376, 1.0172640991210937, 1.0182471923828125, 1.0183259887695313, 1.0176481323242188, 1.0172948608398438, 1.0174535522460937, 2.119248779296875, 1.0171259155273438, 1.0173378295898436, 1.0171361083984376, 1.0176768188476562, 1.0173480834960937, 1.0173060913085938, 1.0175313720703125, 1.0172876586914064, 1.0169313354492187, 1.0169517822265626, 1.0170767211914062, 1.016911865234375, 1.0168883056640625, 1.0176091918945311, 1.0169405517578125, 1.0172006225585937, 1.0173839111328125, 1.0174832763671875, 1.0169149169921874, 1.0174115600585938, 1.017101318359375, 1.0171627807617187, 1.0175191040039062, 1.0177177734375, 1.0175150146484375, 1.0177362060546875, 1.0174299926757813, 1.0178037719726563, 1.0174238891601564, 1.0178887939453125, 1.0173532104492187, 1.0172507934570312, 1.01740234375, 1.0190120849609374, 1.0181201782226563, 1.018503173828125, 1.0183167724609374, 1.0181693725585939, 1.0181580810546875, 1.0182164306640624, 1.0177146606445313, 1.0178099365234374, 1.0184202270507812, 1.0194851684570312, 1.019615234375, 1.0187745361328124, 1.018102783203125, 1.0178682861328125, 1.01852978515625, 1.018186767578125, 1.017744384765625, 1.0179573974609375, 1.0179799194335937, 1.0177484741210938, 1.01732861328125, 1.0178109741210937, 1.0174668579101562, 1.017786376953125, 1.017491455078125, 1.0179041137695313, 1.0180321044921874, 1.0186588134765624]",tokens/s,0.9677007934294523,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-7b,tiiuae/falcon-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm2-20b,internlm/internlm2-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -32064,37 +30136,117 @@ If this is a private repository, make sure to pass a token having permission to ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3724, in from_pretrained - hf_quantizer.preprocess_model( - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 182, in preprocess_model - return self._process_model_before_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 85, in _process_model_before_weight_loading - model, has_been_replaced = replace_with_awq_linear( - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear - _, has_been_replaced = replace_with_awq_linear( - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear - _, has_been_replaced = replace_with_awq_linear( - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear - _, has_been_replaced = replace_with_awq_linear( - [Previous line repeated 1 more time] - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 166, in replace_with_awq_linear - model._modules[name] = target_cls( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemm.py"", line 101, in __init__ - assert self.in_features % self.group_size == 0 -AssertionError + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/dc0130882132de7cb2eb1fa54ba5294b8c922076/modeling_internlm2.py"", line 1204, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/dc0130882132de7cb2eb1fa54ba5294b8c922076/modeling_internlm2.py"", line 1004, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/dc0130882132de7cb2eb1fa54ba5294b8c922076/modeling_internlm2.py"", line 738, in forward + hidden_states, self_attn_weights, present_key_value = self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/dc0130882132de7cb2eb1fa54ba5294b8c922076/modeling_internlm2.py"", line 625, in forward + qkv_states = self.wqkv(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward + outputs = self.gpt_neox( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward + outputs = layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward + attention_layer_outputs = self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 545, in forward + query, key, value, present = self._attn_projections_and_rope( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope + qkv = self.query_key_value(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-MoE-A2.7B,Qwen/Qwen1.5-MoE-A2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-6.7b,facebook/opt-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -32114,29 +30266,16 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3724, in from_pretrained - hf_quantizer.preprocess_model( - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 182, in preprocess_model - return self._process_model_before_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 85, in _process_model_before_weight_loading - model, has_been_replaced = replace_with_awq_linear( - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear - _, has_been_replaced = replace_with_awq_linear( - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear - _, has_been_replaced = replace_with_awq_linear( - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear - _, has_been_replaced = replace_with_awq_linear( - [Previous line repeated 1 more time] - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 166, in replace_with_awq_linear - model._modules[name] = target_cls( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemm.py"", line 102, in __init__ - assert out_features % (32 // self.w_bit) == 0 -AssertionError + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-7b,huggyllama/llama-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1938.939904,5480.382464,0.0,4833.93536,4503.41376,s,10,5.748573669433593,0.5748573669433594,0.0017742246285147622,0.5745578002929688,0.5774038818359375,0.5778909057617188,0.5782805249023437,"[0.5783779296875, 0.577295654296875, 0.57393994140625, 0.573126220703125, 0.5733052978515625, 0.5724807739257812, 0.5741940307617187, 0.5749215698242187, 0.5756366577148437, 0.5752955932617188]",tokens/s,445.32785821499897,kWh,6.7656206220020495e-06,3.7063076173277895e-06,3.206590528233145e-05,4.2537833521661295e-05,tokens/kWh,6018172.0319545325,MB,1940.045824,5480.382464,0.0,4833.93536,4688.700416,s,10,334.972359375,33.49723593750001,0.0033039843001841955,33.498505859375,33.500188281250004,33.500191796875,33.500194609375,"[33.5001953125, 33.49962890625, 33.4886484375, 33.4951328125, 33.496859375, 33.49850390625, 33.49586328125, 33.5001875, 33.49883203125, 33.4985078125]",tokens/s,1.8807521945257513,kWh,0.0003954924626188515,0.00021676498843461862,0.0018363540061190774,0.0024486114571725475,tokens/kWh,25728.867605948046,,s,629,339.6100241088865,0.5399205470729518,0.06828609533356728,0.531684326171875,0.532189599609375,0.5323219116210938,1.1051400146484376,"[0.5314457397460938, 0.5318953247070313, 0.5313341674804688, 0.5320222778320313, 0.53230078125, 0.5322966918945312, 0.532052978515625, 0.5319219360351563, 0.5317222290039062, 0.5324605712890625, 0.5316915283203125, 0.5319751586914062, 0.5320540161132813, 0.532116455078125, 0.5318584594726562, 0.5316935424804687, 0.5311477661132813, 0.5319874267578125, 0.5314037475585938, 0.5320007934570312, 0.5313106079101563, 0.5315860595703125, 0.5312788696289062, 0.5318707275390625, 0.5317847290039063, 0.5322864379882812, 0.5312890625, 0.5320038452148438, 0.5311918334960938, 0.5317908325195313, 0.53142529296875, 0.5319515991210938, 0.5317119750976562, 0.5320806274414063, 0.5313812255859375, 0.53172119140625, 0.5311549682617187, 0.532105224609375, 0.5318379516601562, 0.5316167602539063, 0.5311580200195313, 0.5316771850585937, 0.5315532836914062, 0.532158447265625, 0.531968017578125, 0.5320550537109375, 0.5314191284179688, 0.5322158203125, 0.5313853149414063, 0.5317304077148437, 0.5311661987304688, 0.5319700317382813, 0.5315399780273438, 0.5316935424804687, 0.531431396484375, 0.5315706787109375, 0.53121435546875, 0.5316372680664062, 0.5313402709960937, 0.531820556640625, 0.5316812744140625, 0.532168701171875, 1.109749755859375, 0.531346435546875, 0.5321318359375, 0.5310955810546875, 0.5315061645507813, 0.531493896484375, 0.5316331787109375, 0.5316638793945313, 0.5315604248046875, 0.531146728515625, 0.5316085815429688, 0.5309306640625, 0.5317273559570312, 0.5312214965820312, 0.5316608276367187, 0.5313013916015625, 0.5319352416992188, 0.5315829467773437, 0.5317447509765625, 0.5317273559570312, 0.53187890625, 0.5315963134765626, 0.53159423828125, 0.5313740844726562, 0.532463623046875, 0.5318870849609375, 0.5320325317382812, 0.5313720092773437, 0.531726318359375, 0.5309389038085938, 0.5318615112304688, 0.5310996704101563, 0.5315245971679687, 0.5312379150390625, 0.5315072021484375, 0.5316474609375, 0.5321410522460938, 0.5322495727539063, 0.5316792602539062, 0.5317243041992188, 0.5318717651367187, 0.531431396484375, 0.5317796020507812, 0.5316239624023438, 0.5317867431640625, 0.5317509155273438, 0.533918701171875, 0.5316608276367187, 0.5317805786132812, 0.5316536254882812, 0.5319649047851562, 0.531599365234375, 0.531768310546875, 0.5318400268554687, 0.5323099975585938, 0.5319802856445313, 0.5322926025390625, 0.5316300659179688, 0.532094970703125, 0.5318133544921875, 0.531968017578125, 0.5319454956054688, 0.5321953125, 1.106044921875, 0.5311734008789063, 0.5317723999023437, 0.5311109008789062, 0.5316505737304688, 0.5316710205078125, 0.5314662475585937, 0.531103759765625, 0.5316044921875, 0.531599365234375, 0.5319229736328125, 0.5315625, 0.5319280395507813, 0.5312767944335938, 0.5315369262695312, 0.5314559936523438, 0.531651611328125, 0.5313187866210938, 0.5317222290039062, 0.5312973022460937, 0.5317273559570312, 0.5311549682617187, 0.531431396484375, 0.531472412109375, 0.532068359375, 0.5310628051757813, 0.5315819702148438, 0.5311876831054687, 0.5319567260742187, 0.5312583618164063, 0.5321011352539062, 0.5313074951171874, 0.5321062622070313, 0.531146728515625, 0.5314539794921875, 0.5311528930664062, 0.5316218872070313, 0.531188720703125, 0.531778564453125, 0.53129931640625, 0.53172021484375, 0.53125634765625, 0.5316557006835938, 0.5312962646484375, 0.5317734375, 0.531356689453125, 0.5318450927734375, 0.5314447631835938, 0.5319024658203125, 0.531715087890625, 0.5318553466796875, 0.5314600830078124, 0.5316638793945313, 0.5312317504882812, 0.5315184936523437, 0.5314949340820313, 0.5321676635742187, 0.5318441162109375, 0.5320765380859375, 0.5313792114257813, 0.5318953247070313, 0.5314150390625, 0.53174169921875, 1.1051417236328125, 0.531535888671875, 0.5323489379882812, 0.5317929077148438, 0.53146728515625, 0.5314027709960938, 0.5317069091796875, 0.5312337646484375, 0.5317662963867188, 0.531146728515625, 0.5315819702148438, 0.531715087890625, 0.5320007934570312, 0.531135498046875, 0.5316823120117188, 0.5312440185546875, 0.531652587890625, 0.5312808837890625, 0.53197314453125, 0.53145703125, 0.5322874755859375, 0.5318850708007813, 0.5318379516601562, 0.5312071533203125, 0.531473388671875, 0.531135498046875, 0.531435546875, 0.5312982788085937, 0.5317243041992188, 0.5311580200195313, 0.5318113403320313, 0.5314652099609375, 0.5317734375, 0.53153076171875, 0.5319024658203125, 0.5314232177734375, 0.5322066040039063, 0.5310986328125, 0.5315245971679687, 0.53191064453125, 0.5318922119140626, 0.53157275390625, 0.5320130615234375, 0.5313024291992188, 0.5326827392578125, 0.5315870971679687, 0.5319966430664063, 0.5312655639648437, 0.5317652587890624, 0.5317560424804687, 0.532094970703125, 0.5314744262695312, 0.5314744262695312, 0.5314232177734375, 0.5318430786132813, 0.531373046875, 0.5317376098632812, 0.5314959106445313, 0.53226904296875, 0.5319168090820312, 0.5326305541992188, 0.5315430297851562, 0.5318215942382812, 1.1051356201171876, 0.5312973022460937, 0.5315819702148438, 0.5314774780273438, 0.531794921875, 0.5313423461914063, 0.5317007446289063, 0.5312061157226563, 0.532337646484375, 0.5311897583007813, 0.5318450927734375, 0.5311968994140625, 0.5319700317382813, 0.5320519409179687, 0.5319915771484375, 0.531267578125, 0.5318911743164062, 0.531177490234375, 0.5319485473632812, 0.5313751220703125, 0.5316874389648437, 0.5312163696289063, 0.5318246459960938, 0.5318041381835937, 0.5321021728515625, 0.5312501831054688, 0.5314898071289063, 0.5313935546875, 0.5318809814453125, 0.5312296752929687, 0.5316013793945312, 0.5316351928710937, 0.5323223266601562, 0.5317406616210938, 0.5318369140625, 0.5311907958984375, 0.5315348510742187, 0.5314457397460938, 0.531673095703125, 0.53165771484375, 0.5315717163085938, 0.531652587890625, 0.5317069091796875, 0.5313167114257813, 0.53161474609375, 0.5311897583007813, 0.5315440673828125, 0.5312553100585937, 0.5322280883789062, 0.5312880859375, 0.5325035400390625, 0.5322506103515625, 0.5319270629882813, 0.5315594482421875, 0.53212158203125, 0.5314180908203125, 0.5320048828125, 0.5329141845703125, 0.5321277465820312, 0.5319035034179688, 0.5321103515625, 0.5317222290039062, 0.5319536743164063, 1.104712646484375, 0.531314697265625, 0.531794921875, 0.531409912109375, 0.5321390380859375, 0.5317406616210938, 0.5324042358398438, 0.5315665893554687, 0.531862548828125, 0.5314232177734375, 0.5315747680664062, 0.5311682739257813, 0.5318154296875, 0.53142529296875, 0.5318092651367188, 0.5314898071289063, 0.5318870849609375, 0.531378173828125, 0.53172119140625, 0.5311692504882812, 0.531430419921875, 0.5313966064453125, 0.531857421875, 0.5313710327148438, 0.5323397216796875, 0.5316075439453125, 0.5323120727539062, 0.5317294311523437, 0.5321543579101562, 0.5312010498046875, 0.5318461303710937, 0.5319188232421875, 0.532210693359375, 0.5314221801757812, 0.5321881713867187, 0.5314324340820312, 0.5315921630859375, 0.5312501831054688, 0.5330370483398438, 0.531240966796875, 0.5315143432617188, 0.5314150390625, 0.5320355834960937, 0.531736572265625, 0.532005859375, 0.5315584106445312, 0.5322998046875, 0.5318276977539063, 0.5317406616210938, 0.53136279296875, 0.5315768432617187, 0.531726318359375, 0.5317335205078125, 0.5318584594726562, 0.5316566772460938, 0.531314697265625, 0.5316884765625, 0.5317488403320313, 0.5318338623046875, 0.5312901000976562, 0.53187890625, 0.5315584106445312, 0.5323212890625, 1.1061114501953124, 0.5317314453125, 0.5319290771484375, 0.531072998046875, 0.5316290283203124, 0.5314488525390625, 0.5314508666992187, 0.5313126220703125, 0.5319659423828125, 0.5314447631835938, 0.5315645141601563, 0.5322833862304688, 0.5317775268554688, 0.5313228759765625, 0.5322045288085937, 0.53157373046875, 0.5320222778320313, 0.53178369140625, 0.5322998046875, 0.5316710205078125, 0.5317069091796875, 0.531219482421875, 0.5317181396484375, 0.5315245971679687, 0.531736572265625, 0.5315369262695312, 0.53231103515625, 0.5319618530273438, 0.5321339111328125, 0.5312696533203125, 0.5317406616210938, 0.53157275390625, 0.5317908325195313, 0.5312593994140625, 0.5319639282226563, 0.5313003540039063, 0.5317816162109374, 0.5313792114257813, 0.531936279296875, 0.5312071533203125, 0.5314293823242188, 0.5310996704101563, 0.531589111328125, 0.5313955688476563, 0.53193115234375, 0.5313556518554687, 0.5319588012695312, 0.531583984375, 0.532021240234375, 0.5315205078125, 0.5315798950195313, 0.5314150390625, 0.5316608276367187, 0.53139453125, 0.5319014282226563, 0.5313863525390625, 0.5320611572265626, 0.5318748168945312, 0.5321339111328125, 0.5318461303710937, 0.5317355346679687, 0.5316792602539062, 0.5318819580078125, 1.1075174560546874, 0.531072021484375, 0.5316382446289063, 0.5312890625, 0.53142529296875, 0.531535888671875, 0.5324411010742187, 0.5314232177734375, 0.5321287841796875, 0.5315972900390625, 0.5322034912109375, 0.5314857177734374, 0.5315389404296875, 0.531357666015625, 0.5317713623046875, 0.5311488037109375, 0.5317294311523437, 0.5311682739257813, 0.531652587890625, 0.5319782104492188, 0.5317386474609375, 0.5313341674804688, 0.5316669311523438, 0.5313074951171874, 0.5316454467773437, 0.5311918334960938, 0.5317662963867188, 0.5315706787109375, 0.5321380004882813, 0.5316188354492187, 0.5322280883789062, 0.5312737426757812, 0.5317304077148437, 0.5311057739257813, 0.5317775268554688, 0.5316751098632813, 0.5317723999023437, 0.5313269653320313, 0.532220947265625, 0.531409912109375, 0.531726318359375, 0.5313054809570312, 0.5317427368164063, 0.5314866943359375, 0.5319229736328125, 0.5314406127929687, 0.532294677734375, 0.5323673706054688, 0.5322874755859375, 0.5322711181640625, 0.5320068969726562, 0.5316044921875, 0.5322977294921875, 0.531583984375, 0.5319116821289063, 0.5315798950195313, 0.532516845703125, 0.5323622436523437, 0.5323622436523437, 0.5315491943359375, 0.5319935913085938, 0.5320017700195312, 0.531962890625, 1.1080765380859374, 0.5319547119140625, 0.5317703857421875, 0.53150927734375, 0.5314652099609375, 0.5311805419921874, 0.53163623046875, 0.5313218383789062, 0.531493896484375, 0.531631103515625, 0.5318482055664062, 0.5316925659179688, 0.5316792602539062, 0.5311713256835937, 0.53180517578125, 0.5314037475585938, 0.531620849609375, 0.5318748168945312, 0.5327401123046875, 0.5320171508789062, 0.5328353271484375, 0.5319864501953125, 0.5319833374023437, 0.5312788696289062, 0.53235302734375, 0.5315451049804687, 0.5321615600585937, 0.5315635375976563, 0.5320089721679687, 0.5313218383789062, 0.5321666259765625, 0.5312501831054688, 0.5315911865234375, 0.5312686157226563, 0.5321390380859375, 0.531409912109375, 0.531768310546875, 0.5311641845703124, 0.5316935424804687, 0.5315829467773437, 0.5322066040039063, 0.5317447509765625, 0.5320120239257813, 0.5312399291992187, 0.5316751098632813, 0.5313863525390625, 0.5317621459960937, 0.531684326171875, 0.5316658935546875, 0.5314549560546875, 0.5319035034179688, 0.531262451171875, 0.5315963134765626, 0.5311375122070312, 0.5317283935546875, 0.5315194702148438, 0.5318932495117188, 0.532084716796875, 0.5324154663085937, 0.5319188232421875, 0.5318717651367187, 0.5313474731445312, 0.5320181884765625, 1.10763720703125, 0.5311539306640625, 0.5317109985351562, 0.5316484985351563, 0.5316484985351563, 0.5312767944335938, 0.5317509155273438, 0.5310279541015624, 0.5314611206054688, 0.5312849731445313, 0.53146728515625, 0.5310648193359375, 0.5322076416015625, 0.53161572265625, 0.5324257202148438, 0.5314857177734374, 0.5316536254882812, 0.5312450561523437, 0.5317069091796875, 0.5315901489257813, 0.5321072387695313, 0.5315020751953125, 0.531820556640625, 0.5321041870117188, 0.5318809814453125, 0.5312317504882812, 0.532041748046875, 0.5315451049804687, 0.5318154296875, 0.5316792602539062, 0.5321062622070313, 0.5322495727539063, 0.5319905395507812, 0.531694580078125, 0.5317621459960937, 0.5315451049804687, 0.5317488403320313, 0.5312747802734376, 0.5321328735351563, 0.531746826171875, 0.5318154296875, 0.5317119750976562, 0.531684326171875, 0.5313290405273438, 0.5314979858398438, 0.5311682739257813, 0.5318164672851563, 0.5316884765625, 0.53195263671875, 0.5318246459960938, 0.532116455078125, 0.5315665893554687, 0.5320376586914063, 0.5314426879882812, 0.5319772338867188, 0.5315123291015625, 0.53215234375, 0.53184716796875, 0.5321748657226563, 0.5318123779296875, 0.5321236572265625, 0.5316618041992187, 0.5318829956054687]",tokens/s,1.8521243642629592,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,,MB,1767.067648,22129.672192,0.0,21483.225088,20799.168,s,10,28.05056616210938,2.805056616210938,0.0027095714336187707,2.804907958984375,2.8082408447265625,2.808313903808594,2.808372351074219,"[2.805282470703125, 2.808224609375, 2.803196533203125, 2.80234619140625, 2.80277294921875, 2.800419677734375, 2.804533447265625, 2.80722705078125, 2.80817626953125, 2.808386962890625]",tokens/s,91.26375507735885,kWh,3.3081144508388305e-05,1.8129723654910774e-05,0.00015725384802519894,0.000208464716188498,tokens/kWh,1228025.5607789264,MB,1772.261376,22129.672192,0.0,21483.225088,20902.144,s,10,1667.162484375,166.71624843749996,0.015085835868376713,166.71732031250002,166.73279531249997,166.73349140624998,166.73404828124998,"[166.730125, 166.715734375, 166.68440625, 166.724703125, 166.7341875, 166.71721875, 166.708265625, 166.717421875, 166.69778125, 166.732640625]",tokens/s,0.377887581987055,kWh,0.0019678901955319777,0.0010785770549249355,0.009270038554913802,0.012316505805370715,tokens/kWh,5115.087103074991,,s,629,1689.7617126464822,2.686425616290118,0.33327430639158717,2.64620947265625,2.6474256835937497,2.647894970703125,5.4507228125000005,"[2.646453369140625, 2.646373291015625, 2.64631591796875, 2.6454580078125, 2.646531982421875, 2.647617431640625, 2.64826171875, 2.647658447265625, 2.647793701171875, 2.64637646484375, 2.64711376953125, 2.64620947265625, 2.646602783203125, 2.646426513671875, 2.64635498046875, 2.64557568359375, 2.644958251953125, 2.647402587890625, 2.64601904296875, 2.646287353515625, 2.647202880859375, 2.64688525390625, 2.646246337890625, 2.646867919921875, 2.64715478515625, 2.647743408203125, 2.646212646484375, 2.647287841796875, 2.648404052734375, 2.64638671875, 2.64559912109375, 2.647835693359375, 2.648161376953125, 2.6474189453125, 2.647456787109375, 2.6468076171875, 2.646687744140625, 2.64502880859375, 2.646285400390625, 2.646274169921875, 2.64652490234375, 2.64616455078125, 2.64710546875, 2.6460908203125, 2.646740966796875, 2.645139404296875, 2.646036376953125, 2.646411376953125, 2.64627099609375, 2.64452197265625, 2.64525830078125, 2.647901123046875, 2.64601806640625, 2.645980224609375, 2.64719677734375, 2.64639990234375, 2.64538720703125, 2.645042236328125, 2.64540576171875, 2.646120361328125, 2.646118408203125, 2.64612353515625, 5.45506494140625, 2.64526025390625, 2.6462626953125, 2.64690576171875, 2.646042724609375, 2.64546826171875, 2.646393798828125, 2.647192626953125, 2.644919189453125, 2.644935791015625, 2.645579833984375, 2.647086181640625, 2.646035400390625, 2.644955078125, 2.645644287109375, 2.645537841796875, 2.644991943359375, 2.645560302734375, 2.646414306640625, 2.645199951171875, 2.646506591796875, 2.646548583984375, 2.64702880859375, 2.64570166015625, 2.644788330078125, 2.64700732421875, 2.646330322265625, 2.64543017578125, 2.645243896484375, 2.646043701171875, 2.645831787109375, 2.6459453125, 2.64614697265625, 2.64631494140625, 2.64669091796875, 2.646116455078125, 2.647741455078125, 2.6478857421875, 2.645671875, 2.647362548828125, 2.646822998046875, 2.648393798828125, 2.647374755859375, 2.64627294921875, 2.646519775390625, 2.645937255859375, 2.6523720703125, 2.647458740234375, 2.646916015625, 2.6467646484375, 2.644612060546875, 2.645245849609375, 2.64698779296875, 2.646232177734375, 2.645567626953125, 2.645909423828125, 2.64679541015625, 2.64620947265625, 2.645465087890625, 2.646067138671875, 2.6467060546875, 2.6458798828125, 2.6457109375, 5.4513837890625, 2.647235595703125, 2.645803955078125, 2.64654443359375, 2.64496533203125, 2.64464892578125, 2.645158935546875, 2.646266845703125, 2.64560546875, 2.646096923828125, 2.64475537109375, 2.64629052734375, 2.644760498046875, 2.64480859375, 2.6463427734375, 2.64760009765625, 2.645761962890625, 2.645760986328125, 2.646381591796875, 2.646036376953125, 2.64513134765625, 2.646679443359375, 2.6458369140625, 2.6495498046875, 2.646917236328125, 2.644770751953125, 2.645843017578125, 2.644592529296875, 2.6452919921875, 2.6457333984375, 2.64617578125, 2.64542822265625, 2.645474365234375, 2.644977783203125, 2.6475703125, 2.645327880859375, 2.64601611328125, 2.64604052734375, 2.644948974609375, 2.645347412109375, 2.64539453125, 2.64572314453125, 2.645024658203125, 2.64540771484375, 2.64523681640625, 2.64541796875, 2.644529052734375, 2.649079833984375, 2.645666748046875, 2.646816650390625, 2.645528564453125, 2.645729248046875, 2.6472724609375, 2.646464599609375, 2.644356201171875, 2.644589599609375, 2.64574267578125, 2.645088134765625, 2.6443017578125, 2.644094970703125, 2.64595556640625, 2.645572509765625, 2.644812744140625, 5.4503955078125, 2.645255126953125, 2.645544921875, 2.64656884765625, 2.648037353515625, 2.645263427734375, 2.64638671875, 2.6460732421875, 2.6460478515625, 2.645971923828125, 2.645147705078125, 2.646581298828125, 2.6468291015625, 2.64502880859375, 2.645927978515625, 2.64683935546875, 2.64574365234375, 2.645297119140625, 2.64578662109375, 2.645689453125, 2.64529296875, 2.645930908203125, 2.64618798828125, 2.64557373046875, 2.645583984375, 2.64784375, 2.6465341796875, 2.645923828125, 2.648280029296875, 2.647232421875, 2.64726220703125, 2.646688720703125, 2.646456298828125, 2.647128173828125, 2.64785009765625, 2.6451201171875, 2.645867431640625, 2.645412841796875, 2.647185302734375, 2.644790283203125, 2.645506103515625, 2.64781005859375, 2.6459228515625, 2.64651171875, 2.6510693359375, 2.647773193359375, 2.6475908203125, 2.648330322265625, 2.646329345703125, 2.64608349609375, 2.64578759765625, 2.64604150390625, 2.646233154296875, 2.647012451171875, 2.644991943359375, 2.6461533203125, 2.646445068359375, 2.6459423828125, 2.646255615234375, 2.647103515625, 2.64721826171875, 2.6459013671875, 2.646496337890625, 5.45085009765625, 2.646131591796875, 2.647123046875, 2.64625244140625, 2.6469755859375, 2.645900146484375, 2.64694384765625, 2.6482001953125, 2.647193603515625, 2.646340576171875, 2.646576171875, 2.647742431640625, 2.645885986328125, 2.64563916015625, 2.645662841796875, 2.646833251953125, 2.64673291015625, 2.648217529296875, 2.645130126953125, 2.648642578125, 2.64700732421875, 2.6464482421875, 2.645592041015625, 2.646584228515625, 2.64501953125, 2.64555224609375, 2.64648388671875, 2.6452490234375, 2.646088623046875, 2.64539453125, 2.646591552734375, 2.645818359375, 2.6455, 2.645107666015625, 2.647025634765625, 2.64500830078125, 2.647201904296875, 2.6471865234375, 2.647762939453125, 2.6468916015625, 2.646411376953125, 2.645792724609375, 2.647160888671875, 2.64576611328125, 2.645645263671875, 2.646044677734375, 2.647015380859375, 2.64671435546875, 2.645159912109375, 2.646703125, 2.646371337890625, 2.646978515625, 2.6460908203125, 2.648290283203125, 2.646096923828125, 2.646834228515625, 2.6468515625, 2.654116943359375, 2.646571044921875, 2.646265869140625, 2.647033935546875, 2.645507080078125, 2.64506884765625, 5.44818896484375, 2.646950927734375, 2.64728466796875, 2.64570068359375, 2.647045166015625, 2.645780517578125, 2.64650341796875, 2.647185302734375, 2.647396240234375, 2.64726416015625, 2.645887939453125, 2.646220947265625, 2.646308837890625, 2.6452724609375, 2.645916748046875, 2.6456513671875, 2.64530029296875, 2.645833740234375, 2.64532275390625, 2.646921142578125, 2.645572509765625, 2.646182861328125, 2.646026123046875, 2.646593505859375, 2.646531005859375, 2.646508544921875, 2.646131591796875, 2.647275634765625, 2.646612060546875, 2.646274169921875, 2.645583984375, 2.646960205078125, 2.647244873046875, 2.6451845703125, 2.6467060546875, 2.646052001953125, 2.64616650390625, 2.645667724609375, 2.652001220703125, 2.64635693359375, 2.645919677734375, 2.646162353515625, 2.64641845703125, 2.645307373046875, 2.644989013671875, 2.646035400390625, 2.645531494140625, 2.645157958984375, 2.645906494140625, 2.645951416015625, 2.646036376953125, 2.645796875, 2.64467041015625, 2.645960693359375, 2.64549267578125, 2.64652294921875, 2.64587255859375, 2.647626708984375, 2.646477783203125, 2.646447021484375, 2.646128662109375, 2.64745263671875, 2.646246337890625, 5.45296484375, 2.646928466796875, 2.647333984375, 2.646259765625, 2.64629443359375, 2.64618701171875, 2.6448466796875, 2.646443115234375, 2.646686767578125, 2.6447626953125, 2.64540576171875, 2.64494287109375, 2.645835693359375, 2.645675048828125, 2.64589404296875, 2.64648095703125, 2.64646044921875, 2.646432861328125, 2.646467529296875, 2.645669921875, 2.64584814453125, 2.6454580078125, 2.64523486328125, 2.650271728515625, 2.647341064453125, 2.64589306640625, 2.64591064453125, 2.64768505859375, 2.64700830078125, 2.64631201171875, 2.645865478515625, 2.647047119140625, 2.646507568359375, 2.64665087890625, 2.647560302734375, 2.645760986328125, 2.645769287109375, 2.645876708984375, 2.645303466796875, 2.646839111328125, 2.646023193359375, 2.645792724609375, 2.64610400390625, 2.646148193359375, 2.646067138671875, 2.64551416015625, 2.645665771484375, 2.64494482421875, 2.645905517578125, 2.645917724609375, 2.645688232421875, 2.64422705078125, 2.64477587890625, 2.64602001953125, 2.646118408203125, 2.645832763671875, 2.64635888671875, 2.646981689453125, 2.645694580078125, 2.6462197265625, 2.6456484375, 2.647057373046875, 2.646053955078125, 5.45440771484375, 2.64606103515625, 2.64624853515625, 2.645525390625, 2.6462197265625, 2.646288330078125, 2.64601806640625, 2.6458369140625, 2.6465341796875, 2.64682080078125, 2.6460498046875, 2.645517333984375, 2.646379638671875, 2.645887939453125, 2.645572509765625, 2.645886962890625, 2.6497626953125, 2.645772216796875, 2.64593603515625, 2.64641748046875, 2.64673681640625, 2.645414794921875, 2.644895751953125, 2.6456689453125, 2.646624267578125, 2.64646142578125, 2.645294921875, 2.646984619140625, 2.646635498046875, 2.64559619140625, 2.644748291015625, 2.64690576171875, 2.64658642578125, 2.645821533203125, 2.6462392578125, 2.647307373046875, 2.64610205078125, 2.647371826171875, 2.64780078125, 2.64745263671875, 2.646867919921875, 2.64559814453125, 2.646322265625, 2.6461328125, 2.6461328125, 2.6467666015625, 2.64734619140625, 2.647150634765625, 2.6465341796875, 2.646138916015625, 2.645937255859375, 2.64439697265625, 2.645222412109375, 2.646958984375, 2.646992919921875, 2.647083984375, 2.64567822265625, 2.646795166015625, 2.645927978515625, 2.646295654296875, 2.64530224609375, 2.646948974609375, 2.646352783203125, 5.45413623046875, 2.646625244140625, 2.6464501953125, 2.647415771484375, 2.64749462890625, 2.64658837890625, 2.645314453125, 2.647509033203125, 2.647132080078125, 2.64675537109375, 2.646547607421875, 2.646182861328125, 2.64610302734375, 2.6463896484375, 2.646077392578125, 2.64599853515625, 2.646762451171875, 2.64707080078125, 2.646077392578125, 2.64540576171875, 2.646277099609375, 2.64477392578125, 2.645159912109375, 2.6459638671875, 2.64671240234375, 2.646478759765625, 2.645445556640625, 2.646115234375, 2.646445068359375, 2.645536865234375, 2.64454443359375, 2.646118408203125, 2.645505126953125, 2.644704345703125, 2.6460517578125, 2.64701953125, 2.645275634765625, 2.64492431640625, 2.645380126953125, 2.645751708984375, 2.64485888671875, 2.64445654296875, 2.645286865234375, 2.646550537109375, 2.646221923828125, 2.645315673828125, 2.6454169921875, 2.64634375, 2.645382080078125, 2.6473984375, 2.646042724609375, 2.64547119140625, 2.644828125, 2.64538720703125, 2.646898681640625, 2.646388671875, 2.64596484375, 2.6477158203125, 2.64626171875, 2.6452685546875, 2.645350341796875, 2.6460498046875, 2.644905029296875, 5.4557060546875, 2.64730419921875, 2.64740966796875, 2.646350830078125, 2.645677978515625, 2.6465546875, 2.64831689453125, 2.64722119140625, 2.646279052734375, 2.645445556640625, 2.646408203125, 2.646245361328125, 2.646921142578125, 2.64698974609375, 2.646667236328125, 2.646288330078125, 2.64876953125, 2.647458740234375, 2.645729248046875, 2.645494873046875, 2.646150146484375, 2.6453955078125, 2.6452890625, 2.6467861328125, 2.647785400390625, 2.646699951171875, 2.65012744140625, 2.64613671875, 2.646697998046875, 2.6466845703125, 2.646642578125, 2.6476943359375, 2.64681787109375, 2.645788818359375, 2.646158203125, 2.647160888671875, 2.645675048828125, 2.64652490234375, 2.64439306640625, 2.64669189453125, 2.646427734375, 2.64625146484375, 2.646435791015625, 2.645409912109375, 2.646538330078125, 2.64618505859375, 2.6468310546875, 2.647814208984375, 2.645505126953125, 2.645622802734375, 2.6466826171875, 2.646696044921875, 2.6457548828125, 2.6469130859375, 2.6469990234375, 2.64591259765625, 2.64690185546875, 2.64622705078125, 2.64720703125, 2.646657958984375, 2.645370849609375, 2.645916748046875, 2.646266845703125]",tokens/s,0.3722418346281902,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-2b,google/recurrentgemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-14B,Qwen/Qwen2-beta-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -32144,77 +30283,58 @@ AssertionError File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status - raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-669481a9-5155662c5726c493241271e2;0705f56b-e52c-41fd-8d8e-723918dbbe14) - -403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json. -If you are trying to create or update content,make sure you have a token with the `write` role. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error - raise LocalEntryNotFoundError( -huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file - raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/recurrentgemma-2b is not the path to a directory containing a file named config.json. -Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1221, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1023, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 763, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 650, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-30b,facebook/opt-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,5984.595968,19933.954048,0.0,19287.506944,18376.399872,s,10,24.56320629882812,2.456320629882813,0.001691664801696018,2.4561865234375,2.4583423828125,2.4586625244140623,2.4589186376953127,"[2.456571533203125, 2.458982666015625, 2.4545791015625, 2.455032470703125, 2.454942626953125, 2.453741943359375, 2.455801513671875, 2.458271240234375, 2.45821728515625, 2.45706591796875]",tokens/s,104.22092168489151,kWh,2.8975297907988232e-05,1.5879395596475657e-05,0.00013865674981416998,0.00018351144331863386,tokens/kWh,1395008.3731590684,MB,5988.143104,19933.954048,0.0,19287.506944,18871.04,s,10,1458.421484375,145.84214843750001,0.012211079453744932,145.84282812499998,145.852815625,145.8578921875,145.8619534375,"[145.82440625, 145.837078125, 145.840359375, 145.8516875, 145.845296875, 145.8391875, 145.86296875, 145.8513125, 145.82034375, 145.84884375]",tokens/s,0.43197388872119064,kWh,0.001721854172928466,0.000943728472916573,0.008154870135002046,0.010820452780847084,tokens/kWh,5822.307187691273,,s,629,1478.2121892089838,2.350098869966589,0.29170661243792756,2.3148583984375,2.3159804199218748,2.3165888183593752,4.76929474609375,"[2.31657470703125, 2.316729248046875, 2.31575048828125, 2.31400439453125, 2.31361328125, 2.314355712890625, 2.31430859375, 2.313990234375, 2.314439697265625, 2.31400439453125, 2.314337158203125, 2.31450830078125, 2.3143525390625, 2.313754638671875, 2.3145595703125, 2.314746826171875, 2.313860107421875, 2.314616943359375, 2.31397998046875, 2.314455078125, 2.314322021484375, 2.315072509765625, 2.314198974609375, 2.314560546875, 2.31431689453125, 2.314648681640625, 2.314249267578125, 2.3142431640625, 2.31486767578125, 2.314310546875, 2.31423681640625, 2.314349609375, 2.31522509765625, 2.314227783203125, 2.314047607421875, 2.314390380859375, 2.31465380859375, 2.31459130859375, 2.3147294921875, 2.31495263671875, 2.31514306640625, 2.314708984375, 2.314705810546875, 2.314702880859375, 2.31510009765625, 2.314967041015625, 2.314390625, 2.3144326171875, 2.31436279296875, 2.3152353515625, 2.31499169921875, 2.31524560546875, 2.314324951171875, 2.3151728515625, 2.31494970703125, 2.314418212890625, 2.315260009765625, 2.3155927734375, 2.314987548828125, 2.3148759765625, 2.314437744140625, 2.314975341796875, 4.77530908203125, 2.315552734375, 2.313754638671875, 2.31431787109375, 2.314470458984375, 2.31491064453125, 2.313483154296875, 2.3140751953125, 2.314690673828125, 2.313935791015625, 2.31429541015625, 2.313943115234375, 2.3145830078125, 2.314388427734375, 2.3144130859375, 2.314663818359375, 2.314819580078125, 2.31438134765625, 2.31452978515625, 2.313989013671875, 2.314265625, 2.31451025390625, 2.31416015625, 2.313996337890625, 2.314390625, 2.314997802734375, 2.31469970703125, 2.31465380859375, 2.314850341796875, 2.315021240234375, 2.31556396484375, 2.314933349609375, 2.315074462890625, 2.314526611328125, 2.31516162109375, 2.314416015625, 2.31450634765625, 2.3146474609375, 2.31455322265625, 2.314646484375, 2.315080810546875, 2.314736572265625, 2.315146240234375, 2.316416015625, 2.316883056640625, 2.317212646484375, 2.317498291015625, 2.316708984375, 2.314590087890625, 2.31486669921875, 2.314609619140625, 2.314794921875, 2.3152783203125, 2.314463134765625, 2.31488720703125, 2.3152783203125, 2.3158486328125, 2.315106201171875, 2.31514208984375, 2.315134033203125, 2.314939453125, 2.31448974609375, 2.31490966796875, 4.76900048828125, 2.314322998046875, 2.31459423828125, 2.314704833984375, 2.3145400390625, 2.314397705078125, 2.315212890625, 2.315070556640625, 2.3151708984375, 2.314818603515625, 2.31474072265625, 2.314556396484375, 2.314756103515625, 2.314300537109375, 2.314501220703125, 2.314758056640625, 2.31469580078125, 2.314715087890625, 2.314291259765625, 2.313954345703125, 2.3144990234375, 2.3141162109375, 2.314789794921875, 2.3138662109375, 2.314201171875, 2.31396044921875, 2.314891357421875, 2.313994140625, 2.3142041015625, 2.31410595703125, 2.31444384765625, 2.314310546875, 2.3143935546875, 2.3148564453125, 2.314733642578125, 2.314330078125, 2.31438134765625, 2.3142685546875, 2.3148154296875, 2.315052978515625, 2.31476318359375, 2.31545751953125, 2.315313232421875, 2.315279296875, 2.315707275390625, 2.314758056640625, 2.3152158203125, 2.31581689453125, 2.315241455078125, 2.3146220703125, 2.315763671875, 2.3165615234375, 2.31669873046875, 2.3161025390625, 2.31678759765625, 2.31653173828125, 2.316707763671875, 2.3152138671875, 2.31585693359375, 2.314685546875, 2.315296875, 2.3153837890625, 2.315890625, 4.7694091796875, 2.314258544921875, 2.3142666015625, 2.31421435546875, 2.314051513671875, 2.314406982421875, 2.314616943359375, 2.314188720703125, 2.31503662109375, 2.31619287109375, 2.31446533203125, 2.313934814453125, 2.315040771484375, 2.314817626953125, 2.315828125, 2.3156357421875, 2.316775390625, 2.314610595703125, 2.31668017578125, 2.31729052734375, 2.31545556640625, 2.315461669921875, 2.315554931640625, 2.31465576171875, 2.314517578125, 2.3154697265625, 2.31606689453125, 2.314260498046875, 2.314863525390625, 2.314272705078125, 2.314649658203125, 2.3157421875, 2.315529296875, 2.3159091796875, 2.314768310546875, 2.3160771484375, 2.315504638671875, 2.314666015625, 2.314771484375, 2.315051025390625, 2.3154248046875, 2.314206298828125, 2.314478515625, 2.31497021484375, 2.315460693359375, 2.314807373046875, 2.31501708984375, 2.315440185546875, 2.315284423828125, 2.31450634765625, 2.314502197265625, 2.314387451171875, 2.314957763671875, 2.3149384765625, 2.314912841796875, 2.314670166015625, 2.3156572265625, 2.316516357421875, 2.3157412109375, 2.315861083984375, 2.315828125, 2.315040771484375, 2.3151728515625, 4.7702314453125, 2.31434033203125, 2.314682373046875, 2.313740234375, 2.314062744140625, 2.31486767578125, 2.314884033203125, 2.314498046875, 2.314965087890625, 2.314472412109375, 2.314133544921875, 2.31417041015625, 2.313879638671875, 2.313923583984375, 2.314146728515625, 2.314799072265625, 2.3140986328125, 2.314390625, 2.315798583984375, 2.31642822265625, 2.315537353515625, 2.316564453125, 2.314660888671875, 2.313965576171875, 2.314789794921875, 2.31402294921875, 2.314662841796875, 2.314347412109375, 2.315102294921875, 2.3144150390625, 2.315137939453125, 2.31604833984375, 2.315811767578125, 2.3149404296875, 2.31493115234375, 2.315124755859375, 2.3152158203125, 2.314859619140625, 2.315197509765625, 2.314984375, 2.315462646484375, 2.31446533203125, 2.3143095703125, 2.31438037109375, 2.31520556640625, 2.31512158203125, 2.314987548828125, 2.314483642578125, 2.31514208984375, 2.314712158203125, 2.31526513671875, 2.314966064453125, 2.314924072265625, 2.314987548828125, 2.31532958984375, 2.31476318359375, 2.3151298828125, 2.315618408203125, 2.316012451171875, 2.317046875, 2.316642333984375, 2.317076416015625, 2.317365234375, 4.7678056640625, 2.314080322265625, 2.31505908203125, 2.315978759765625, 2.315252685546875, 2.31602392578125, 2.3155966796875, 2.31449609375, 2.31440087890625, 2.31406396484375, 2.31448583984375, 2.314968017578125, 2.314263671875, 2.31400146484375, 2.314314697265625, 2.314521484375, 2.3153408203125, 2.31357861328125, 2.3147294921875, 2.31446728515625, 2.315052978515625, 2.314033203125, 2.314588134765625, 2.314469482421875, 2.31505517578125, 2.3144765625, 2.3147109375, 2.31465478515625, 2.315134033203125, 2.31459521484375, 2.31478466796875, 2.314600341796875, 2.314883056640625, 2.315136962890625, 2.315252685546875, 2.31488818359375, 2.315322265625, 2.31524755859375, 2.31511767578125, 2.3150263671875, 2.3153603515625, 2.315388916015625, 2.31535009765625, 2.31446826171875, 2.31495068359375, 2.31469775390625, 2.315263916015625, 2.314312744140625, 2.3146865234375, 2.314904541015625, 2.31448974609375, 2.314483642578125, 2.314174560546875, 2.314915771484375, 2.314462158203125, 2.3165869140625, 2.317093994140625, 2.31678759765625, 2.315781005859375, 2.315177978515625, 2.315336669921875, 2.31464453125, 2.31521484375, 4.770552734375, 2.314354736328125, 2.31482568359375, 2.313882568359375, 2.31376171875, 2.313788330078125, 2.315693115234375, 2.31585986328125, 2.31478271484375, 2.315926513671875, 2.3154453125, 2.315216796875, 2.314701904296875, 2.315554931640625, 2.31552197265625, 2.315801513671875, 2.316396484375, 2.314292236328125, 2.314648681640625, 2.31490771484375, 2.315061279296875, 2.3164384765625, 2.316370849609375, 2.316866455078125, 2.31659521484375, 2.31632080078125, 2.315591796875, 2.31587646484375, 2.3159716796875, 2.315903076171875, 2.315663330078125, 2.31596240234375, 2.316310546875, 2.314661865234375, 2.315462646484375, 2.31440380859375, 2.31526611328125, 2.315337646484375, 2.315576416015625, 2.31480419921875, 2.314577880859375, 2.316158935546875, 2.316590087890625, 2.31474072265625, 2.314672119140625, 2.315419677734375, 2.315107421875, 2.315031494140625, 2.314947509765625, 2.31512158203125, 2.31507861328125, 2.315275146484375, 2.31488916015625, 2.314337158203125, 2.315274169921875, 2.315357177734375, 2.314990478515625, 2.314895263671875, 2.315843505859375, 2.315281494140625, 2.315041748046875, 2.314649658203125, 2.3151708984375, 4.7742177734375, 2.314451904296875, 2.314017822265625, 2.316307373046875, 2.31636376953125, 2.315851806640625, 2.3162041015625, 2.315658203125, 2.315419677734375, 2.315569091796875, 2.31410693359375, 2.3144345703125, 2.3141181640625, 2.3143701171875, 2.314511474609375, 2.314544189453125, 2.31514208984375, 2.314577880859375, 2.314501220703125, 2.314337158203125, 2.315443115234375, 2.314441650390625, 2.314269775390625, 2.3141171875, 2.31440380859375, 2.315146240234375, 2.31492919921875, 2.314220458984375, 2.31446533203125, 2.3145595703125, 2.314896484375, 2.3150439453125, 2.314417236328125, 2.31532861328125, 2.315260009765625, 2.315807861328125, 2.31515234375, 2.315829345703125, 2.315790283203125, 2.3159296875, 2.31573193359375, 2.315969482421875, 2.316851318359375, 2.3155537109375, 2.314724365234375, 2.3145625, 2.315716552734375, 2.31531005859375, 2.315375732421875, 2.315345947265625, 2.31587744140625, 2.31564599609375, 2.315336669921875, 2.3145, 2.31510107421875, 2.31535400390625, 2.314984375, 2.31453076171875, 2.3153857421875, 2.314976318359375, 2.315102294921875, 2.31464453125, 2.31491064453125, 4.77313525390625, 2.31535205078125, 2.314526611328125, 2.3150869140625, 2.315890625, 2.314620849609375, 2.3140322265625, 2.313732177734375, 2.31478466796875, 2.31486669921875, 2.3156357421875, 2.31585986328125, 2.314743896484375, 2.314322021484375, 2.3139072265625, 2.31398291015625, 2.314142822265625, 2.31423388671875, 2.31518408203125, 2.31429833984375, 2.314175537109375, 2.3156572265625, 2.3145810546875, 2.313807861328125, 2.314330078125, 2.31499169921875, 2.314958740234375, 2.3144365234375, 2.3145185546875, 2.31440185546875, 2.315052978515625, 2.314460205078125, 2.3145419921875, 2.3140576171875, 2.314851318359375, 2.314546142578125, 2.314408935546875, 2.31389892578125, 2.31480419921875, 2.31436279296875, 2.3144580078125, 2.314177490234375, 2.314638427734375, 2.3145419921875, 2.31480322265625, 2.314745849609375, 2.314291259765625, 2.31537255859375, 2.31572265625, 2.31389599609375, 2.313974853515625, 2.314586181640625, 2.314895263671875, 2.314090576171875, 2.314375244140625, 2.314859619140625, 2.3148583984375, 2.3144326171875, 2.314412109375, 2.314270751953125, 2.31518115234375, 2.314324951171875, 2.314473388671875, 4.7714609375, 2.31414794921875, 2.313611328125, 2.314270751953125, 2.314892333984375, 2.31461572265625, 2.315198486328125, 2.3143720703125, 2.314142822265625, 2.31568701171875, 2.315873291015625, 2.31440478515625, 2.314210205078125, 2.31602587890625, 2.316198974609375, 2.31553857421875, 2.315966552734375, 2.31545947265625, 2.31545849609375, 2.31590185546875, 2.31619287109375, 2.31564599609375, 2.316030029296875, 2.315187255859375, 2.314642333984375, 2.313966552734375, 2.3152138671875, 2.31450830078125, 2.315548583984375, 2.314388427734375, 2.315707275390625, 2.3161650390625, 2.31663623046875, 2.316718994140625, 2.315875244140625, 2.315216796875, 2.31624609375, 2.315987060546875, 2.315421630859375, 2.315747314453125, 2.314558349609375, 2.313786376953125, 2.313956298828125, 2.3144541015625, 2.3148984375, 2.314367919921875, 2.31458203125, 2.315187255859375, 2.31473046875, 2.314349609375, 2.314651611328125, 2.31442626953125, 2.315454345703125, 2.31490771484375, 2.314850341796875, 2.315431884765625, 2.31543798828125, 2.314609619140625, 2.31511767578125, 2.314015625, 2.31457177734375, 2.314642333984375, 2.31451953125]",tokens/s,0.4255140125292758,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-160m,EleutherAI/pythia-160m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1303.977984,1030.22592,0.0,383.778816,312.280064,s,10,0.30782016181945804,0.030782016181945804,0.001617235684294077,0.030563695907592774,0.031164259910583494,0.03323989057540893,0.03490039510726929,"[0.03531552124023438, 0.03054502487182617, 0.030670495986938478, 0.029116479873657227, 0.030544319152832032, 0.02917731285095215, 0.030620607376098632, 0.030559423446655274, 0.030567968368530273, 0.030703008651733397]",tokens/s,8316.544260351227,kWh,3.557098667864181e-07,1.9491237936146868e-07,8.339715507108577e-07,1.3845937968587447e-06,tokens/kWh,184891771.5656334,MB,1303.977984,1030.22592,0.0,383.778816,347.090432,s,10,18.765849975585937,1.8765849975585938,0.01629298714952931,1.8788928833007814,1.8852921142578125,1.8978253173828123,1.9078518798828124,"[1.9103585205078124, 1.8825069580078124, 1.879499267578125, 1.8580986328125, 1.8786011962890625, 1.8434554443359374, 1.8807445068359374, 1.8754886474609376, 1.8791845703125, 1.8779122314453125]",tokens/s,33.5716208335684,kWh,2.201072483317281e-05,1.2059537590589184e-05,4.825437327548859e-05,8.232463569925058e-05,tokens/kWh,765263.0280703872,,s,629,19.00581683158875,0.030215925010474952,0.003670631507539437,0.02977996826171875,0.03002470397949219,0.03029995498657227,0.05998026794433601,"[0.03094118309020996, 0.03138150405883789, 0.03138355255126953, 0.031524864196777344, 0.030980096817016602, 0.03207884979248047, 0.032363521575927735, 0.03149004745483398, 0.03120844841003418, 0.031268863677978515, 0.03084492874145508, 0.032194561004638675, 0.031160320281982422, 0.03057868766784668, 0.030236671447753907, 0.03517747116088867, 0.030717952728271485, 0.030108671188354492, 0.03002470397949219, 0.029833215713500977, 0.029899776458740233, 0.02977177619934082, 0.02977791976928711, 0.02977382469177246, 0.030176256179809572, 0.0299683837890625, 0.029740032196044923, 0.02977894401550293, 0.029844480514526366, 0.029732864379882814, 0.02974412727355957, 0.029797376632690428, 0.029791231155395507, 0.029726720809936522, 0.029648895263671874, 0.029749248504638674, 0.02977791976928711, 0.029949951171875, 0.02977996826171875, 0.02976255989074707, 0.02981990432739258, 0.029797376632690428, 0.0297728328704834, 0.02997039985656738, 0.029839359283447265, 0.029833215713500977, 0.029870080947875976, 0.02978508758544922, 0.02968780708312988, 0.029784063339233398, 0.02979327964782715, 0.029755392074584962, 0.02972774314880371, 0.029976640701293945, 0.02982700729370117, 0.029852672576904295, 0.029896703720092774, 0.029731840133666993, 0.029747200012207032, 0.02983628845214844, 0.029772800445556642, 0.029739007949829102, 0.06072115325927734, 0.029829120635986327, 0.02977689552307129, 0.029834239959716798, 0.030591999053955078, 0.03021414375305176, 0.029755392074584962, 0.02983628845214844, 0.02980352020263672, 0.029842432022094727, 0.029707263946533204, 0.029665279388427734, 0.029698047637939453, 0.02979430389404297, 0.029593599319458007, 0.02993152046203613, 0.0301527042388916, 0.029792255401611328, 0.029764608383178712, 0.029861888885498046, 0.03102822494506836, 0.030027776718139648, 0.02980147171020508, 0.030087167739868165, 0.02975129508972168, 0.030086143493652344, 0.029826047897338868, 0.02974617576599121, 0.030042112350463866, 0.029730815887451172, 0.029899776458740233, 0.029838336944580077, 0.02994790458679199, 0.02980659294128418, 0.02976972770690918, 0.029682687759399414, 0.02978816032409668, 0.029817855834960938, 0.029734912872314452, 0.029831167221069335, 0.02974208068847656, 0.02978508758544922, 0.029848575592041016, 0.029800447463989257, 0.029785120010375976, 0.029689823150634766, 0.03014553642272949, 0.029886463165283202, 0.03018035125732422, 0.029938688278198244, 0.02973695945739746, 0.030068735122680663, 0.02973695945739746, 0.029897727966308595, 0.0297891845703125, 0.0298024959564209, 0.02995814323425293, 0.02976051139831543, 0.02976870346069336, 0.02997555160522461, 0.029975584030151367, 0.029692895889282228, 0.029708288192749024, 0.061895679473876954, 0.030073856353759764, 0.02974412727355957, 0.029680639266967773, 0.029848575592041016, 0.029882368087768556, 0.029543424606323244, 0.02978713607788086, 0.029755392074584962, 0.029875200271606447, 0.029856767654418945, 0.029831167221069335, 0.029770751953125, 0.02977791976928711, 0.02973695945739746, 0.029897727966308595, 0.030079999923706056, 0.029894655227661132, 0.029703168869018554, 0.0297574405670166, 0.029837312698364257, 0.029813760757446288, 0.029814783096313476, 0.029743167877197267, 0.029764543533325194, 0.029707263946533204, 0.02977791976928711, 0.029730815887451172, 0.030044160842895507, 0.029833215713500977, 0.02974617576599121, 0.029815807342529296, 0.029740032196044923, 0.029815807342529296, 0.029816831588745117, 0.029799423217773437, 0.029713407516479492, 0.0297891845703125, 0.02983628845214844, 0.029896703720092774, 0.029834239959716798, 0.0297574405670166, 0.029868032455444334, 0.029748224258422853, 0.029849599838256836, 0.02977382469177246, 0.02986604881286621, 0.029807552337646485, 0.030026752471923827, 0.02976255989074707, 0.02976972770690918, 0.029892608642578124, 0.029701120376586915, 0.02976870346069336, 0.02976255989074707, 0.029797376632690428, 0.02977177619934082, 0.029867008209228517, 0.029808639526367187, 0.02974515151977539, 0.029740032196044923, 0.029821952819824218, 0.030018560409545897, 0.05799935913085937, 0.028490751266479493, 0.028519424438476562, 0.028368896484375, 0.028404735565185548, 0.02834022331237793, 0.028285951614379884, 0.02834739112854004, 0.028308479309082032, 0.028387327194213868, 0.028321792602539062, 0.028298240661621094, 0.028923904418945313, 0.031113216400146484, 0.030136320114135744, 0.02981990432739258, 0.029868032455444334, 0.029728832244873046, 0.02970515251159668, 0.029386751174926756, 0.0297523193359375, 0.029822975158691405, 0.02971238327026367, 0.02978508758544922, 0.02980352020263672, 0.02977484893798828, 0.029677600860595704, 0.029713375091552734, 0.029651968002319336, 0.02973798370361328, 0.029881343841552735, 0.029772800445556642, 0.02979532814025879, 0.029672447204589843, 0.029861888885498046, 0.029646848678588866, 0.029551616668701174, 0.029764608383178712, 0.02973695945739746, 0.029662208557128908, 0.02970419120788574, 0.029772800445556642, 0.02975436782836914, 0.02972876739501953, 0.02979430389404297, 0.029699071884155274, 0.02981888008117676, 0.029753376007080078, 0.02983011245727539, 0.029718528747558592, 0.029489152908325194, 0.029640703201293944, 0.029736991882324218, 0.02938057518005371, 0.029748224258422853, 0.029775871276855468, 0.02980659294128418, 0.029814783096313476, 0.029716512680053712, 0.029680608749389648, 0.02979635238647461, 0.029783039093017577, 0.02978816032409668, 0.06087680053710937, 0.029916160583496092, 0.030342144012451173, 0.029867008209228517, 0.029744159698486327, 0.029726688385009765, 0.02975846481323242, 0.029857791900634766, 0.0297891845703125, 0.029784063339233398, 0.02979020881652832, 0.029849599838256836, 0.029449216842651366, 0.02939084815979004, 0.029541376113891602, 0.029874176025390626, 0.029816831588745117, 0.029724672317504884, 0.029915136337280275, 0.029921279907226563, 0.029829120635986327, 0.029734912872314452, 0.02981888008117676, 0.02980147171020508, 0.029860864639282225, 0.029874176025390626, 0.029817855834960938, 0.029855743408203125, 0.029718528747558592, 0.029854719161987304, 0.029833215713500977, 0.02995199966430664, 0.02972979164123535, 0.02980147171020508, 0.029864959716796875, 0.030071807861328126, 0.029874208450317383, 0.02984239959716797, 0.02975027275085449, 0.02978508758544922, 0.029832191467285156, 0.029860864639282225, 0.02976255989074707, 0.029702144622802733, 0.029920255661010742, 0.02975948715209961, 0.02994790458679199, 0.02977382469177246, 0.02973388862609863, 0.029643775939941407, 0.029703168869018554, 0.029852672576904295, 0.029839359283447265, 0.02983628845214844, 0.029784063339233398, 0.029769792556762695, 0.029781951904296874, 0.02998784065246582, 0.02981068801879883, 0.02998784065246582, 0.0297574405670166, 0.029809696197509766, 0.029711328506469726, 0.05807513427734375, 0.02834329605102539, 0.028271615982055662, 0.02834329605102539, 0.028402687072753906, 0.028421119689941408, 0.028279808044433592, 0.028318719863891603, 0.028318719863891603, 0.02834022331237793, 0.02835148811340332, 0.02838118362426758, 0.02836172866821289, 0.028310527801513673, 0.02832793617248535, 0.02815795135498047, 0.028197887420654297, 0.02831667137145996, 0.028222463607788087, 0.028233728408813476, 0.028296192169189452, 0.028251136779785156, 0.028318719863891603, 0.02973798370361328, 0.030136320114135744, 0.029817855834960938, 0.029731840133666993, 0.02978099250793457, 0.02972979164123535, 0.029930496215820314, 0.029886463165283202, 0.029709312438964845, 0.029739007949829102, 0.029848575592041016, 0.02972774314880371, 0.02976870346069336, 0.029648895263671874, 0.029732864379882814, 0.029813760757446288, 0.029820928573608397, 0.029755392074584962, 0.029713407516479492, 0.029643775939941407, 0.02977996826171875, 0.029856767654418945, 0.029802528381347657, 0.029723615646362306, 0.029940736770629882, 0.029823007583618163, 0.029761503219604492, 0.02976972770690918, 0.029691904067993165, 0.02968783950805664, 0.02980246353149414, 0.029711360931396483, 0.029895679473876953, 0.029684736251831056, 0.029894655227661132, 0.029791231155395507, 0.029692928314208986, 0.029740032196044923, 0.029820928573608397, 0.030217216491699218, 0.06100377655029297, 0.029852672576904295, 0.02978508758544922, 0.029661184310913087, 0.029660160064697266, 0.02972368049621582, 0.029649887084960937, 0.02981171226501465, 0.02997555160522461, 0.02975846481323242, 0.02975846481323242, 0.029682687759399414, 0.029800447463989257, 0.02975129508972168, 0.030038015365600586, 0.02983526420593262, 0.02981888008117676, 0.029861888885498046, 0.029864959716796875, 0.029840383529663086, 0.030003200531005858, 0.0307906551361084, 0.03020697593688965, 0.029899776458740233, 0.02975846481323242, 0.02978508758544922, 0.029917184829711913, 0.02975129508972168, 0.029702144622802733, 0.02978713607788086, 0.02976972770690918, 0.02976665687561035, 0.029708288192749024, 0.029823999404907226, 0.029826047897338868, 0.02983628845214844, 0.03013222312927246, 0.03099545669555664, 0.030038015365600586, 0.029878271102905272, 0.029697023391723632, 0.02977791976928711, 0.029929471969604493, 0.029862911224365234, 0.029932544708251952, 0.029714431762695313, 0.02996940803527832, 0.02980659294128418, 0.02976051139831543, 0.02951372718811035, 0.029684736251831056, 0.029820928573608397, 0.02977996826171875, 0.029778976440429688, 0.029754335403442383, 0.029816831588745117, 0.02976563262939453, 0.029755456924438477, 0.02987615966796875, 0.029709312438964845, 0.029723743438720703, 0.029749151229858398, 0.02977382469177246, 0.06091059112548828, 0.03012403106689453, 0.0297574405670166, 0.029799423217773437, 0.02974515151977539, 0.02982809638977051, 0.029861888885498046, 0.029743104934692382, 0.02978201675415039, 0.029713407516479492, 0.029759519577026366, 0.029883359909057616, 0.02977484893798828, 0.02979532814025879, 0.029874176025390626, 0.029875200271606447, 0.029850624084472657, 0.02984351921081543, 0.02972358322143555, 0.029660160064697266, 0.02992742347717285, 0.02974515151977539, 0.02968780708312988, 0.029831167221069335, 0.029741056442260744, 0.029732864379882814, 0.029642751693725586, 0.029642751693725586, 0.029895679473876953, 0.029628416061401368, 0.029723648071289063, 0.029618175506591796, 0.029715456008911133, 0.029864959716796875, 0.029732864379882814, 0.02978201675415039, 0.029748224258422853, 0.029813760757446288, 0.02982707214355469, 0.0297574405670166, 0.029854719161987304, 0.02972876739501953, 0.029657087326049804, 0.029668352127075196, 0.029611007690429687, 0.029412351608276367, 0.02972876739501953, 0.029885440826416015, 0.029694976806640624, 0.02976870346069336, 0.029775871276855468, 0.02993152046203613, 0.02977894401550293, 0.029700096130371095, 0.02977382469177246, 0.029710336685180663, 0.029688831329345702, 0.029684736251831056, 0.029700096130371095, 0.02970419120788574, 0.029667327880859375, 0.029730815887451172, 0.029863935470581054, 0.060827648162841794, 0.02976563262939453, 0.029716480255126954, 0.029770751953125, 0.02973388862609863, 0.02977689552307129, 0.02975846481323242, 0.029849599838256836, 0.0298024959564209, 0.029850624084472657, 0.029688831329345702, 0.029731840133666993, 0.029740032196044923, 0.029731840133666993, 0.029859840393066408, 0.02975027275085449, 0.029707263946533204, 0.029718528747558592, 0.02973388862609863, 0.029772800445556642, 0.029853696823120116, 0.02976563262939453, 0.029611007690429687, 0.02977996826171875, 0.02979430389404297, 0.029807615280151366, 0.029343807220458984, 0.029495231628417967, 0.029894655227661132, 0.03171123123168945, 0.030046207427978516, 0.03002470397949219, 0.029706239700317383, 0.02974412727355957, 0.029679616928100585, 0.029911039352416992, 0.02976051139831543, 0.029823999404907226, 0.029944831848144532, 0.02991926383972168, 0.029790176391601562, 0.02977382469177246, 0.029692928314208986, 0.029726720809936522, 0.029773855209350587, 0.029737951278686524, 0.02981990432739258, 0.029906944274902345, 0.029869056701660155, 0.029907968521118163, 0.029767679214477538, 0.02978201675415039, 0.02968780708312988, 0.02976563262939453, 0.029872127532958984, 0.02996428871154785, 0.02977689552307129, 0.02996326446533203, 0.029944831848144532, 0.029889568328857422, 0.029706207275390625, 0.029854719161987304, 0.029902847290039062, 0.06100787353515625, 0.029770816802978516, 0.029812671661376952, 0.02975027275085449, 0.029656063079833983, 0.029666303634643554, 0.02972979164123535, 0.0297256965637207, 0.029929471969604493, 0.029775871276855468, 0.029690879821777344, 0.029693952560424806, 0.02958028793334961, 0.029640703201293944, 0.02977996826171875, 0.029739007949829102, 0.03000115203857422, 0.029897727966308595, 0.029840383529663086, 0.029814783096313476, 0.0297523193359375, 0.029708288192749024, 0.02975027275085449, 0.02981068801879883, 0.029732864379882814, 0.029838336944580077, 0.029718528747558592, 0.02970419120788574, 0.0297205753326416, 0.029740032196044923, 0.02974617576599121, 0.02969599914550781, 0.029757503509521485, 0.0298853759765625, 0.02979840087890625, 0.029700096130371095, 0.029752351760864257, 0.02980656051635742, 0.02973695945739746, 0.029663232803344725, 0.02972159957885742, 0.030027776718139648, 0.029971519470214845, 0.029904832839965822, 0.029829120635986327, 0.02974412727355957, 0.030027776718139648, 0.029853696823120116, 0.029837312698364257, 0.029840383529663086, 0.029850624084472657, 0.02986911964416504, 0.030047168731689455, 0.030050304412841795, 0.029815807342529296, 0.029775871276855468, 0.02998784065246582, 0.029890560150146486, 0.02975334358215332, 0.029883392333984377, 0.02983526420593262, 0.029847551345825195, 0.02976972770690918]",tokens/s,33.09513111557333,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-7b,stabilityai/stablelm-base-alpha-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1435.398144,8196.194304,0.0,7549.7472,6940.714496,s,10,6.101695007324219,0.6101695007324219,0.0005946945898735176,0.610120330810547,0.6105357299804687,0.6111274536132812,0.6116008325195312,"[0.6117191772460937, 0.6094563598632813, 0.6096676025390625, 0.609661865234375, 0.6102354736328125, 0.6099964599609375, 0.6100880737304688, 0.610152587890625, 0.6103131713867187, 0.6104042358398437]",tokens/s,419.55554922477825,kWh,7.199752165211573e-06,3.945167113402825e-06,3.557207094129864e-05,4.671699021991304e-05,tokens/kWh,5479805.07294925,MB,1435.398144,8196.194304,0.0,7549.7472,7094.0672,s,10,359.3025859375,35.93025859375,0.004744165567684035,35.92844140625,35.93707578125,35.938278125,35.93924,"[35.92640625, 35.93118359375, 35.93375390625, 35.9282890625, 35.93948046875, 35.93680859375, 35.92859375, 35.92646484375, 35.927859375, 35.92374609375]",tokens/s,1.753396787713594,kWh,0.00042417653058966,0.00023248355862878645,0.0021270168535728984,0.002783676942791345,tokens/kWh,22631.93656977539,,s,629,364.2223344116213,0.5790498162346918,0.0724714604302608,0.570292236328125,0.5706096801757813,0.570741552734375,1.1803278564453126,"[0.570017822265625, 0.5699727172851563, 0.5701652221679687, 0.5702686767578125, 0.5701201782226563, 0.5703833618164063, 0.5702440795898438, 0.5700086059570313, 0.5700679931640625, 0.5700485229492187, 0.5702072143554687, 0.5704335327148438, 0.5702359008789063, 0.5702522583007813, 0.5702430419921874, 0.5702123413085938, 0.5699952392578125, 0.5701222534179687, 0.570018798828125, 0.5700730590820312, 0.5700311279296875, 0.5700730590820312, 0.5705441284179688, 0.5700914916992188, 0.5701908569335937, 0.570039306640625, 0.5701427001953125, 0.5701519165039063, 0.570018798828125, 0.5704693603515625, 0.5701949462890625, 0.5705523071289063, 0.5700341796875, 0.570376220703125, 0.5702338256835937, 0.5700792236328125, 0.5701652221679687, 0.5701939086914063, 0.5703106689453125, 0.5701212158203125, 0.570377197265625, 0.5703854370117187, 0.5702174682617187, 0.57017138671875, 0.5701898193359375, 0.570281982421875, 0.5704048461914063, 0.5703516235351562, 0.5703372802734376, 0.5703587646484375, 0.570261474609375, 0.5706219482421875, 0.570228759765625, 0.5703167724609375, 0.5704724731445312, 0.570250244140625, 0.570260498046875, 0.5705205688476562, 0.5706659545898437, 0.5705738525390625, 0.5702584228515625, 0.5703618774414062, 1.180654541015625, 0.5706793212890625, 0.5700546264648437, 0.5700679931640625, 0.5699635009765625, 0.5702379760742188, 0.5699317626953125, 0.570335205078125, 0.5702041625976563, 0.5703126831054688, 0.5702020874023438, 0.57031884765625, 0.5707837524414062, 0.5704570922851563, 0.5700587768554688, 0.5700219116210937, 0.5701283569335938, 0.5701038208007813, 0.570292236328125, 0.5705799560546875, 0.5701365966796875, 0.5702850341796875, 0.5703014526367187, 0.5703843994140625, 0.5703741455078125, 0.570166259765625, 0.57010791015625, 0.5701795654296875, 0.5702543334960938, 0.5704069213867188, 0.5702564086914063, 0.5703895263671875, 0.5704017944335937, 0.5704888305664062, 0.5703884887695313, 0.5702901611328125, 0.5705441284179688, 0.5706096801757813, 0.5703915405273438, 0.5703915405273438, 0.5706311645507812, 0.5706148071289062, 0.5704232788085938, 0.5703792724609374, 0.5704356079101562, 0.5703280639648437, 0.5702430419921874, 0.5703812866210938, 0.5702645874023438, 0.5704130859375, 0.5704847412109375, 0.5704356079101562, 0.57042431640625, 0.5707622680664063, 0.5705584716796875, 0.5703618774414062, 0.5702379760742188, 0.5702461547851563, 0.5704683227539062, 0.5704161376953125, 0.5703577880859375, 0.5702789306640625, 0.570260498046875, 1.1801353759765625, 0.5700740966796874, 0.569970703125, 0.5700802612304687, 0.5700914916992188, 0.570197021484375, 0.5702625122070313, 0.57080322265625, 0.570260498046875, 0.5700802612304687, 0.5700341796875, 0.5702266845703124, 0.5705256958007813, 0.5703792724609374, 0.5704345703125, 0.570514404296875, 0.5704652709960938, 0.5702963256835938, 0.5707018432617188, 0.5703864135742187, 0.57019189453125, 0.5703259887695312, 0.5704099731445312, 0.5703536376953126, 0.5701396484375, 0.5705430908203125, 0.5701375732421875, 0.5701621704101563, 0.5701939086914063, 0.5704110107421875, 0.5704468383789062, 0.5702154541015625, 0.5702461547851563, 0.5703546752929688, 0.5702359008789063, 0.57044580078125, 0.5702901611328125, 0.5705093383789063, 0.5704324951171875, 0.5704232788085938, 0.5704314575195313, 0.570387451171875, 0.5705912475585937, 0.5705697021484375, 0.5704417114257813, 0.5703413696289062, 0.5704591064453125, 0.57055126953125, 0.5703720703125, 0.5705902099609375, 0.5705113525390625, 0.5704478759765625, 0.5705379638671875, 0.5709127807617187, 0.570514404296875, 0.5705072631835938, 0.5707048950195313, 0.5702860717773437, 0.5703311157226563, 0.5702573852539062, 0.5707479248046875, 0.570392578125, 0.5701949462890625, 1.1800667724609375, 0.5705154418945313, 0.5700843505859375, 0.5702154541015625, 0.5700464477539062, 0.5703096313476562, 0.570397705078125, 0.570355712890625, 0.5701539916992188, 0.5700249633789063, 0.5699932250976563, 0.5700464477539062, 0.5700894775390625, 0.57014990234375, 0.5704530029296875, 0.5702830200195312, 0.5701437377929688, 0.5704365844726562, 0.5703106689453125, 0.5702205200195313, 0.5703505859375, 0.5701375732421875, 0.5701458129882813, 0.5701437377929688, 0.570576904296875, 0.5702389526367188, 0.5702512817382812, 0.5702799072265625, 0.5704345703125, 0.570302490234375, 0.5701304321289062, 0.5706710815429688, 0.570281982421875, 0.5702225952148438, 0.5702225952148438, 0.5704365844726562, 0.570186767578125, 0.570102783203125, 0.5702564086914063, 0.5701857299804688, 0.57017138671875, 0.5702359008789063, 0.570239990234375, 0.5702092895507812, 0.5701734619140625, 0.5702164306640625, 0.5704601440429687, 0.570261474609375, 0.5702410278320312, 0.5704693603515625, 0.5702573852539062, 0.5701826782226562, 0.5703209228515626, 0.5703567504882813, 0.5702246704101562, 0.57021337890625, 0.5702625122070313, 0.5704263916015625, 0.5704110107421875, 0.5707018432617188, 0.5706383056640625, 0.5707294921875, 0.5706885375976563, 1.1809197998046874, 0.5703690185546875, 0.5707325439453125, 0.5704867553710937, 0.570355712890625, 0.57044482421875, 0.5706455078125, 0.5701949462890625, 0.5700352172851563, 0.5702830200195312, 0.5702727661132813, 0.5703720703125, 0.5707427978515625, 0.5703864135742187, 0.5704652709960938, 0.5703075561523437, 0.5703997192382813, 0.57046630859375, 0.5704171752929688, 0.570387451171875, 0.5707837524414062, 0.5702307739257813, 0.5702277221679688, 0.5705277709960938, 0.5703301391601563, 0.5702706909179688, 0.5701836547851562, 0.5702860717773437, 0.5702338256835937, 0.5703905029296875, 0.5705430908203125, 0.5707396850585937, 0.5704151000976563, 0.570481689453125, 0.5704909057617188, 0.5703987426757813, 0.5704140625, 0.5709854736328125, 0.5703946533203125, 0.5703843994140625, 0.5704007568359375, 0.5707048950195313, 0.5705410766601563, 0.570271728515625, 0.5703301391601563, 0.5703751831054688, 0.5703905029296875, 0.5704356079101562, 0.570440673828125, 0.5706219482421875, 0.570377197265625, 0.5703679809570312, 0.5704591064453125, 0.5703720703125, 0.570461181640625, 0.5709004516601562, 0.5705205688476562, 0.5705410766601563, 0.5705912475585937, 0.570640380859375, 0.5711124267578125, 0.5708656616210938, 0.5706577758789062, 1.1808399658203126, 0.5708021850585937, 0.5704427490234375, 0.5701908569335937, 0.5700781860351563, 0.5701417236328125, 0.5700914916992188, 0.5700802612304687, 0.5703956298828124, 0.5703792724609374, 0.570260498046875, 0.5703670043945313, 0.570735595703125, 0.5702215576171875, 0.570071044921875, 0.5703117065429687, 0.5704857788085937, 0.5703362426757812, 0.5710018310546875, 0.570376220703125, 0.570514404296875, 0.5702471923828125, 0.5702748413085937, 0.5703157958984375, 0.5701990356445312, 0.5703075561523437, 0.5709547729492187, 0.5701570434570312, 0.5700372314453125, 0.5704427490234375, 0.5703782348632812, 0.5703587646484375, 0.5703833618164063, 0.5702738037109375, 0.57059228515625, 0.5702174682617187, 0.570513427734375, 0.570365966796875, 0.570503173828125, 0.5704345703125, 0.570229736328125, 0.5707151489257812, 0.5703434448242187, 0.5710581665039063, 0.5702789306640625, 0.5702758178710937, 0.57023486328125, 0.5705379638671875, 0.5704007568359375, 0.570302490234375, 0.5705543823242187, 0.5705687255859375, 0.570534912109375, 0.5706015014648438, 0.5708339233398437, 0.5707653198242187, 0.5704918823242188, 0.570392578125, 0.5703731079101563, 0.5703987426757813, 0.5705912475585937, 0.5709179077148437, 0.5703670043945313, 1.1807825927734374, 0.5701509399414062, 0.5701007080078125, 0.5700905151367187, 0.5701478271484375, 0.5702461547851563, 0.5700157470703126, 0.57044580078125, 0.570102783203125, 0.5701734619140625, 0.57012939453125, 0.5702072143554687, 0.5703987426757813, 0.5702000732421875, 0.5708021850585937, 0.57046630859375, 0.570323974609375, 0.5701529541015625, 0.5706157836914062, 0.5701539916992188, 0.5702246704101562, 0.570071044921875, 0.57004541015625, 0.570197998046875, 0.5702573852539062, 0.5706096801757813, 0.570081298828125, 0.5700628662109375, 0.57021337890625, 0.5700740966796874, 0.5700669555664063, 0.5701386108398437, 0.5707857666015625, 0.5702532958984375, 0.5702543334960938, 0.5701437377929688, 0.5706444702148438, 0.570166259765625, 0.570166259765625, 0.5702123413085938, 0.570260498046875, 0.5701417236328125, 0.5706701049804688, 0.5704171752929688, 0.5703782348632812, 0.5703321533203125, 0.5704345703125, 0.5704058837890625, 0.5704703979492187, 0.5707151489257812, 0.5706455078125, 0.5702062377929688, 0.5701334838867187, 0.5703731079101563, 0.5704519653320312, 0.5702543334960938, 0.5702492065429687, 0.5701478271484375, 0.5702041625976563, 0.5701406860351562, 0.5706015014648438, 0.5703741455078125, 0.5703331909179687, 1.1804027099609375, 0.5701099243164063, 0.570060791015625, 0.5707489013671875, 0.570060791015625, 0.5700116577148437, 0.57004541015625, 0.570176513671875, 0.5700474853515625, 0.5701836547851562, 0.57000244140625, 0.570007568359375, 0.57016015625, 0.5703587646484375, 0.5702225952148438, 0.5700638427734375, 0.5701898193359375, 0.5701396484375, 0.5701703491210938, 0.5700423583984375, 0.5705799560546875, 0.5704273681640625, 0.570176513671875, 0.5700433959960938, 0.5704765625, 0.5706629028320312, 0.570208251953125, 0.5702266845703124, 0.5704099731445312, 0.5703434448242187, 0.5707540283203125, 0.5704099731445312, 0.5702256469726562, 0.570092529296875, 0.570076171875, 0.5700700073242188, 0.570123291015625, 0.5702697143554688, 0.5704888305664062, 0.5702543334960938, 0.5701212158203125, 0.5701160888671875, 0.57030859375, 0.5702307739257813, 0.57025537109375, 0.5702860717773437, 0.5701652221679687, 0.5702532958984375, 0.5705809936523437, 0.5704335327148438, 0.5703147583007813, 0.5702205200195313, 0.5703004150390625, 0.5702901611328125, 0.5703424072265625, 0.570323974609375, 0.57051953125, 0.570292236328125, 0.5702225952148438, 0.5703424072265625, 0.5705471801757812, 0.5703259887695312, 0.5703372802734376, 1.180564453125, 0.570250244140625, 0.5700833129882813, 0.570123291015625, 0.5700126953125, 0.5700361938476562, 0.570144775390625, 0.5701990356445312, 0.57012939453125, 0.570377197265625, 0.5702850341796875, 0.5701099243164063, 0.5703854370117187, 0.5702758178710937, 0.57021337890625, 0.5702860717773437, 0.5702338256835937, 0.57029833984375, 0.5704212646484375, 0.5705707397460937, 0.570218505859375, 0.57014990234375, 0.5701017456054688, 0.5704498901367188, 0.5705891723632812, 0.5702011108398437, 0.5701519165039063, 0.5703117065429687, 0.5702676391601562, 0.57019189453125, 0.570197998046875, 0.5702072143554687, 0.57019189453125, 0.5701068725585937, 0.5702052001953125, 0.5701652221679687, 0.5702225952148438, 0.5702748413085937, 0.5703250122070312, 0.5701754760742187, 0.5702564086914063, 0.57019189453125, 0.5701898193359375, 0.5701693725585938, 0.5705338745117188, 0.5704939575195312, 0.5702215576171875, 0.5701632080078125, 0.5703229370117188, 0.5706946411132813, 0.5702041625976563, 0.5702686767578125, 0.5705799560546875, 0.570397705078125, 0.5707550659179688, 0.5704202270507812, 0.5704949951171875, 0.5702778930664063, 0.5703250122070312, 0.5701703491210938, 0.5702062377929688, 0.5706311645507812, 0.57051953125, 1.1806351318359376, 0.5705595092773438, 0.5698693237304687, 0.5699307250976563, 0.570076171875, 0.5700352172851563, 0.5700628662109375, 0.5699164428710938, 0.5702594604492187, 0.57012939453125, 0.5700106201171875, 0.5700147094726562, 0.570076171875, 0.570018798828125, 0.5700126953125, 0.570271728515625, 0.5703526611328125, 0.5701048583984375, 0.5700587768554688, 0.5703884887695313, 0.570144775390625, 0.569975830078125, 0.5700567016601562, 0.5700003662109375, 0.5700485229492187, 0.5704652709960938, 0.570113037109375, 0.570461181640625, 0.5703075561523437, 0.5700106201171875, 0.5700986938476562, 0.570166259765625, 0.5703301391601563, 0.5704437866210937, 0.5701642456054687, 0.5700781860351563, 0.5700567016601562, 0.5701621704101563, 0.570197998046875, 0.570197021484375, 0.5700966186523437, 0.5701263427734375, 0.570017822265625, 0.5705093383789063, 0.57034033203125, 0.5703987426757813, 0.5703218994140625, 0.5703485717773438, 0.5702573852539062, 0.57031884765625, 0.5704970092773437, 0.570545166015625, 0.5701683349609376, 0.5701437377929688, 0.57034033203125, 0.5705051879882812, 0.5702041625976563, 0.5704263916015625, 0.5704058837890625, 0.5704570922851563, 0.5706854248046875, 0.5703546752929688, 0.5704683227539062]",tokens/s,1.7269671312609398,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,m,m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-110B,Qwen/Qwen1.5-110B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -32222,77 +30342,70 @@ Checkout your internet connection or see how to run the library in offline mode File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/m/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948c2a-59aef85712156b732b4173de;1d74bf77-9e91-488e-9a34-a6e2b55a3aa0) - -Repository Not Found for url: https://huggingface.co/m/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file - raise EnvironmentError( -OSError: m is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 32.00 MiB. GPU + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-564M,facebook/xglm-564M,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: XGLMForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-3b-4e1t,stabilityai/stablelm-3b-4e1t,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2110.81216,2911.371264,0.0,2264.92416,2140.859392,s,10,2.5174565429687497,0.25174565429687495,0.002151641767107536,0.250954475402832,0.2536562973022461,0.2552590721130371,0.2565412919616699,"[0.25686184692382813, 0.2507518005371094, 0.24988601684570313, 0.2505283203125, 0.2511571502685547, 0.24977813720703124, 0.24948822021484374, 0.2533001251220703, 0.25277372741699217, 0.25293119812011716]",tokens/s,1016.8993809049352,kWh,2.9486055983114377e-06,1.615695148140686e-06,1.3450261437707742e-05,1.801456218415987e-05,tokens/kWh,14210725.599820558,MB,2113.232896,2911.371264,0.0,2264.92416,2246.908928,s,10,147.68545214843752,14.768545214843751,0.008287027024456562,14.7677890625,14.7791720703125,14.7827984375,14.785699531250001,"[14.7716796875, 14.761337890625, 14.760306640625, 14.757224609375, 14.7783662109375, 14.769251953125, 14.7864248046875, 14.7672763671875, 14.7652822265625, 14.7683017578125]",tokens/s,4.265823009884493,kWh,0.0001741533532096603,9.545023489099372e-05,0.0007804473459020919,0.0010500509340027457,tokens/kWh,59997.08962673545,,s,629,149.7085112609864,0.23801035176627394,0.029876551877239144,0.2342451171875,0.23526665954589845,0.2357182434082031,0.48483614379882817,"[0.23634022521972656, 0.23580979919433595, 0.23378636169433595, 0.2359173126220703, 0.23436288452148438, 0.2340474853515625, 0.23413555908203126, 0.23381607055664064, 0.23380070495605468, 0.23397683715820314, 0.23489945983886718, 0.23450828552246095, 0.23392665100097657, 0.2347868194580078, 0.23529164123535157, 0.2351278076171875, 0.23502951049804688, 0.23457279968261718, 0.23408128356933594, 0.2355589141845703, 0.2354534454345703, 0.23438336181640626, 0.23522406005859375, 0.23521279907226564, 0.23508070373535156, 0.23463629150390625, 0.23408230590820311, 0.2338928680419922, 0.23402598571777344, 0.23431475830078125, 0.2341826629638672, 0.2337505340576172, 0.23392562866210936, 0.23407513427734375, 0.23401370239257813, 0.23463833618164062, 0.2346096649169922, 0.234144775390625, 0.23394610595703125, 0.2363443145751953, 0.2340720672607422, 0.23385702514648438, 0.23410585021972657, 0.233997314453125, 0.23401370239257813, 0.23508172607421876, 0.23504486083984374, 0.23416934204101564, 0.23398399353027344, 0.2338693084716797, 0.23474688720703124, 0.23387954711914063, 0.23373619079589844, 0.23434751892089845, 0.23412428283691405, 0.23393894958496095, 0.2339563446044922, 0.23393997192382812, 0.23378125, 0.23382528686523438, 0.23372799682617187, 0.23389593505859374, 0.4848691101074219, 0.23401983642578125, 0.23492710876464845, 0.23426150512695312, 0.2343546905517578, 0.2339911651611328, 0.2339113006591797, 0.23409356689453126, 0.23416627502441406, 0.23411199951171874, 0.2339788818359375, 0.23402496337890624, 0.23383450317382812, 0.23386317443847657, 0.234029052734375, 0.2345779266357422, 0.23393177795410156, 0.23390617370605468, 0.234102783203125, 0.234682373046875, 0.2339594268798828, 0.23381196594238282, 0.2337935333251953, 0.23399935913085937, 0.23403213500976563, 0.23468646240234375, 0.23564390563964843, 0.2349363250732422, 0.23442739868164061, 0.2346414031982422, 0.23534591674804686, 0.23548109436035156, 0.23447039794921876, 0.23574732971191406, 0.23480320739746094, 0.2339983367919922, 0.23404850769042967, 0.23442739868164061, 0.23391641235351562, 0.2341724090576172, 0.23490765380859374, 0.2338805694580078, 0.23490252685546875, 0.23385600280761717, 0.23409561157226563, 0.2344857635498047, 0.2364610595703125, 0.23387852478027343, 0.23375360107421875, 0.23386521911621094, 0.2337822723388672, 0.2338170928955078, 0.23385804748535155, 0.23377407836914063, 0.23408230590820311, 0.2339430389404297, 0.234102783203125, 0.2338928680419922, 0.2352168884277344, 0.2338314208984375, 0.23406898498535156, 0.23446630859375, 0.23422157287597656, 0.4860119018554688, 0.2341160888671875, 0.2342451171875, 0.2343505859375, 0.2357442626953125, 0.23456153869628907, 0.23385906982421875, 0.2339041290283203, 0.2340095977783203, 0.23387545776367188, 0.23382733154296875, 0.2345359344482422, 0.23387750244140626, 0.23376690673828124, 0.23402598571777344, 0.23404544067382813, 0.2340095977783203, 0.23381503295898437, 0.23389695739746094, 0.23463833618164062, 0.23435673522949219, 0.23512678527832032, 0.2348257293701172, 0.2361292724609375, 0.23491583251953124, 0.23533772277832032, 0.23424716186523437, 0.23495065307617188, 0.233818115234375, 0.2338734130859375, 0.23402496337890624, 0.23422872924804689, 0.2353070068359375, 0.23398912048339843, 0.23424000549316407, 0.23436390686035155, 0.23477760314941407, 0.23421133422851562, 0.23425331115722656, 0.23424409484863282, 0.23404544067382813, 0.2338621368408203, 0.23387135314941407, 0.2337925109863281, 0.23464857482910156, 0.23441407775878906, 0.2338365478515625, 0.2360289306640625, 0.23435264587402344, 0.23396249389648438, 0.23382424926757814, 0.23385600280761717, 0.23380787658691407, 0.2338191375732422, 0.23494041442871094, 0.23401164245605469, 0.2339215393066406, 0.2339051513671875, 0.23380685424804687, 0.23376588439941406, 0.23408639526367186, 0.23465472412109376, 0.23369830322265625, 0.48475137329101564, 0.23387852478027343, 0.23382937622070313, 0.23382220458984376, 0.23377714538574218, 0.23383244323730468, 0.23383244323730468, 0.23393792724609375, 0.23368499755859376, 0.233818115234375, 0.23384474182128906, 0.23382118225097656, 0.2341908416748047, 0.23382220458984376, 0.2341754913330078, 0.2348564453125, 0.23380685424804687, 0.23420314025878905, 0.23381094360351562, 0.23416831970214844, 0.23417855834960938, 0.2338488311767578, 0.2338140106201172, 0.23392256164550781, 0.23402803039550782, 0.2338140106201172, 0.234967041015625, 0.23461068725585937, 0.2341754913330078, 0.23411097717285156, 0.23385906982421875, 0.23410995483398436, 0.23426661682128908, 0.23414886474609375, 0.23437004089355468, 0.2345041961669922, 0.23398809814453125, 0.23385292053222656, 0.23385906982421875, 0.23410995483398436, 0.2341386260986328, 0.23388978576660155, 0.2344837188720703, 0.23398809814453125, 0.23559475708007813, 0.2338191375732422, 0.2342256622314453, 0.23473458862304689, 0.23459942626953126, 0.23494554138183593, 0.23424000549316407, 0.23441714477539063, 0.23474380493164063, 0.23442842102050782, 0.23444992065429687, 0.2339368896484375, 0.23582514953613282, 0.2339532775878906, 0.23572274780273436, 0.2348922882080078, 0.23533465576171875, 0.23438438415527343, 0.23461785888671874, 0.4860794982910156, 0.23520664978027345, 0.23465676879882813, 0.23474688720703124, 0.23444070434570313, 0.23441510009765626, 0.23433421325683593, 0.23486770629882814, 0.23470387268066406, 0.23463424682617187, 0.23388978576660155, 0.23490663146972657, 0.23415705871582032, 0.23375666809082032, 0.23418675231933594, 0.23416114807128907, 0.23495986938476562, 0.23515545654296874, 0.23488922119140626, 0.2340095977783203, 0.23481138610839844, 0.23467724609375, 0.23522201538085938, 0.23416831970214844, 0.23409767150878907, 0.23391949462890624, 0.2341826629638672, 0.2353428497314453, 0.23429426574707032, 0.23422361755371093, 0.23447756958007812, 0.23421542358398437, 0.2339983367919922, 0.23531520080566407, 0.2346967010498047, 0.2343055419921875, 0.23412838745117187, 0.23422976684570312, 0.23411712646484376, 0.2343055419921875, 0.2340843505859375, 0.234566650390625, 0.23416934204101564, 0.2340843505859375, 0.23419596862792968, 0.23391232299804687, 0.23488613891601562, 0.23576576232910157, 0.23572377014160156, 0.23397683715820314, 0.23519743347167968, 0.23507557678222657, 0.2344837188720703, 0.23419187927246093, 0.23482879638671875, 0.234134521484375, 0.23423487854003905, 0.23815577697753906, 0.2349475860595703, 0.234608642578125, 0.23501414489746095, 0.2343126983642578, 0.23413145446777345, 0.484052978515625, 0.23418675231933594, 0.23383552551269532, 0.233818115234375, 0.2337884216308594, 0.23386009216308593, 0.23376998901367188, 0.23425535583496093, 0.23407923889160157, 0.23388365173339845, 0.23385702514648438, 0.23382528686523438, 0.2338170928955078, 0.23406182861328126, 0.2349547576904297, 0.2348021697998047, 0.2346516418457031, 0.23388160705566408, 0.23406387329101563, 0.23462911987304688, 0.23546675109863283, 0.2349168701171875, 0.23516160583496093, 0.23408741760253907, 0.23404135131835938, 0.23388876342773438, 0.2348124084472656, 0.23441407775878906, 0.23469465637207032, 0.23460762023925782, 0.23387443542480468, 0.23417446899414063, 0.23448883056640624, 0.23504998779296876, 0.23461068725585937, 0.2344058837890625, 0.2338805694580078, 0.23380274963378905, 0.23606375122070314, 0.23502951049804688, 0.2342696990966797, 0.2343864288330078, 0.23570431518554688, 0.23431884765625, 0.23458610534667967, 0.23478271484375, 0.23399320983886718, 0.23410176086425782, 0.23421235656738282, 0.2348636169433594, 0.23454310607910156, 0.23408026123046874, 0.2343055419921875, 0.23477145385742187, 0.23488204956054687, 0.23403724670410156, 0.23455743408203125, 0.2344806365966797, 0.23533567810058595, 0.23407411193847658, 0.23458099365234375, 0.2344069061279297, 0.2347008056640625, 0.4853893127441406, 0.23457997131347658, 0.23390719604492188, 0.23476838684082033, 0.23429324340820312, 0.23598899841308593, 0.2341908416748047, 0.23444070434570313, 0.23391641235351562, 0.23489126586914064, 0.23460453796386718, 0.2361405487060547, 0.23541043090820313, 0.2344110107421875, 0.23417958068847655, 0.23468031311035156, 0.23411302185058594, 0.23393075561523438, 0.23403724670410156, 0.23467213439941406, 0.23507046508789062, 0.2341273651123047, 0.23511961364746095, 0.23591935729980468, 0.23496397399902344, 0.23582514953613282, 0.23585279846191406, 0.234498046875, 0.23445606994628906, 0.2352015380859375, 0.23556710815429688, 0.23550361633300781, 0.23390719604492188, 0.2345175018310547, 0.23411814880371093, 0.23459738159179688, 0.2349291534423828, 0.23403826904296876, 0.2339665985107422, 0.2354534454345703, 0.23551487731933593, 0.2355968017578125, 0.2346639404296875, 0.23512371826171874, 0.23418060302734375, 0.23528550720214844, 0.2347694091796875, 0.2348185577392578, 0.23459327697753907, 0.2342686767578125, 0.2342451171875, 0.23486463928222656, 0.23477247619628908, 0.23453797912597657, 0.23439974975585937, 0.2347448272705078, 0.2346782684326172, 0.23409767150878907, 0.2341160888671875, 0.2345482177734375, 0.2349998016357422, 0.23420620727539063, 0.23429632568359374, 0.487478271484375, 0.23422157287597656, 0.2341580810546875, 0.2345779266357422, 0.23406285095214843, 0.23428608703613282, 0.23372492980957033, 0.23382118225097656, 0.23385498046875, 0.23446015930175781, 0.23385804748535155, 0.2345359344482422, 0.2342328338623047, 0.23421644592285157, 0.23417446899414063, 0.23571148681640625, 0.23593370056152344, 0.23512165832519533, 0.23528550720214844, 0.23476223754882813, 0.23465983581542968, 0.2345216064453125, 0.2348072967529297, 0.23432908630371094, 0.23471615600585938, 0.23378125, 0.2351810607910156, 0.2338682861328125, 0.23424716186523437, 0.23442431640625, 0.23430758666992188, 0.23453388977050782, 0.2349547576904297, 0.2341376037597656, 0.2346414031982422, 0.2344806365966797, 0.23443865966796876, 0.23413555908203126, 0.23448268127441407, 0.23451443481445314, 0.23403929138183593, 0.23566233825683594, 0.23403622436523439, 0.23466085815429688, 0.23410687255859375, 0.23414579772949218, 0.2337955780029297, 0.23434034729003905, 0.23408741760253907, 0.23395840454101563, 0.23467520141601564, 0.23385292053222656, 0.234287109375, 0.23367372131347655, 0.23419801330566406, 0.23389695739746094, 0.23498240661621095, 0.23478067016601561, 0.23465061950683594, 0.2337198028564453, 0.2345113525390625, 0.23452978515625, 0.23437619018554687, 0.48710348510742185, 0.23419290161132814, 0.23404953002929688, 0.23400653076171876, 0.23467213439941406, 0.23747993469238282, 0.23400857543945314, 0.2344908752441406, 0.23426559448242187, 0.23419903564453126, 0.23388978576660155, 0.23458099365234375, 0.23397273254394532, 0.23450009155273438, 0.23396044921875, 0.23411712646484376, 0.23380787658691407, 0.23464755249023436, 0.23406387329101563, 0.23385292053222656, 0.23458201599121092, 0.23409971618652345, 0.2341406707763672, 0.23461273193359375, 0.23395840454101563, 0.23406080627441406, 0.2345912322998047, 0.2337884216308594, 0.23409356689453126, 0.23391743469238283, 0.23382424926757814, 0.23414988708496093, 0.2346895294189453, 0.2340044860839844, 0.23400344848632812, 0.23432704162597656, 0.23545549011230468, 0.234819580078125, 0.23408332824707032, 0.23495884704589845, 0.234134521484375, 0.23427583312988282, 0.23382528686523438, 0.23380992126464845, 0.23423078918457033, 0.23484005737304686, 0.23429119873046875, 0.23448678588867186, 0.23548927307128906, 0.23426559448242187, 0.23432908630371094, 0.23404953002929688, 0.23414579772949218, 0.23459942626953126, 0.23440896606445313, 0.23396351623535155, 0.23510426330566406, 0.23443251037597657, 0.23493734741210937, 0.23475814819335938, 0.23529983520507813, 0.23406387329101563, 0.23430758666992188, 0.48767181396484377, 0.23440896606445313, 0.23380992126464845, 0.23463116455078126, 0.23454617309570314, 0.23481651306152343, 0.23389797973632812, 0.23491993713378906, 0.2345707550048828, 0.23445504760742186, 0.23386317443847657, 0.234925048828125, 0.23413349914550782, 0.23387443542480468, 0.23547187805175782, 0.2346229705810547, 0.23446015930175781, 0.2339246063232422, 0.23416831970214844, 0.23383244323730468, 0.23388365173339845, 0.23380685424804687, 0.23409152221679688, 0.23424000549316407, 0.23371160888671874, 0.23394508361816407, 0.23730380249023436, 0.23463526916503907, 0.2349864959716797, 0.2340843505859375, 0.23448678588867186, 0.234819580078125, 0.23532952880859376, 0.23434547424316407, 0.23549746704101562, 0.2339911651611328, 0.2340966339111328, 0.2338170928955078, 0.23386624145507812, 0.2344622039794922, 0.2341201934814453, 0.234745849609375, 0.2340843505859375, 0.23513189697265624, 0.23424307250976562, 0.23459225463867187, 0.23526194763183594, 0.23420109558105467, 0.23379148864746094, 0.23442124938964845, 0.2343987274169922, 0.2351595458984375, 0.23452774047851563, 0.23387852478027343, 0.233818115234375, 0.23384780883789064, 0.23484825134277343, 0.234134521484375, 0.2350243835449219, 0.2341396484375, 0.23421029663085938, 0.23383450317382812, 0.23446015930175781]",tokens/s,4.2014979288884025,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-125m,,cuda,0,42,,,,,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,MB,1310.69952,921.174016,0.0,274.726912,220.646912,s,10,0.36048070526123044,0.03604807052612304,0.0010977874344766398,0.03588955307006836,0.036477619552612306,0.03779876155853271,0.03885567516326904,"[0.03911990356445313, 0.03553478240966797, 0.03469347381591797, 0.035817951202392576, 0.036184032440185546, 0.035873409271240234, 0.03543529510498047, 0.03591993713378906, 0.03590569686889648, 0.03599622344970703]",tokens/s,7101.628360787961,kWh,4.1762897090252873e-07,2.2884077887720709e-07,9.141624902616015e-07,1.5606322400413373e-06,tokens/kWh,164036083.2179266,MB,1311.0272,921.174016,0.0,274.726912,250.723328,s,10,21.866080322265628,2.186608032226563,0.01854961703991556,2.191078857421875,2.2041080810546876,2.2073608032226564,2.2099629809570316,"[2.1803974609375, 2.17111474609375, 2.154228759765625, 2.200171142578125, 2.210613525390625, 2.181986572265625, 2.161680419921875, 2.20071923828125, 2.20338525390625, 2.201783203125]",tokens/s,28.81174818325753,kWh,2.578141039891902e-05,1.4128932798644376e-05,5.28597971955373e-05,9.27701403931007e-05,tokens/kWh,679097.8188999841,,s,629,22.151173107147223,0.03521649142630718,0.004356343174673542,0.03486105728149414,0.035241778564453125,0.03557929000854492,0.07092830078125002,"[0.03474124908447265, 0.03529420852661133, 0.03632339096069336, 0.03650860977172852, 0.036083713531494144, 0.037152767181396484, 0.03645132827758789, 0.036311038970947264, 0.03472588729858399, 0.0354252815246582, 0.03531980895996094, 0.03479657745361328, 0.03465929412841797, 0.03616358566284179, 0.035585025787353515, 0.03515903854370117, 0.03486105728149414, 0.034651134490966795, 0.034900993347167966, 0.03449958419799805, 0.03328102493286133, 0.03349708938598633, 0.033560577392578124, 0.03324620819091797, 0.033328128814697267, 0.033255424499511715, 0.033754112243652344, 0.033223743438720706, 0.03327481460571289, 0.033438720703125, 0.0335175666809082, 0.03376332855224609, 0.03339468765258789, 0.03345305633544922, 0.03355033493041992, 0.034203647613525394, 0.03342233657836914, 0.03335372924804687, 0.0336732177734375, 0.03367116928100586, 0.03360870361328125, 0.03362508773803711, 0.03436441421508789, 0.03604377746582031, 0.03504127883911133, 0.03473920059204102, 0.0348037109375, 0.03472895812988281, 0.03472895812988281, 0.03479865646362305, 0.03479955291748047, 0.03479449462890625, 0.03474739074707031, 0.03478220748901367, 0.0347064323425293, 0.034907135009765625, 0.03474431991577148, 0.03473715209960938, 0.03485388946533203, 0.034683902740478514, 0.035019775390625, 0.0350750732421875, 0.0711178207397461, 0.0347955207824707, 0.034948097229003904, 0.03439616012573242, 0.03447808074951172, 0.03496755218505859, 0.034920448303222655, 0.0348590087890625, 0.034699264526367186, 0.0346163215637207, 0.03491430282592774, 0.03490304183959961, 0.03508019256591797, 0.034423809051513675, 0.03472793579101562, 0.03449446487426758, 0.03476377487182617, 0.03476582336425781, 0.03468902587890625, 0.03387494277954101, 0.0342210578918457, 0.034008094787597656, 0.03374998474121094, 0.03369062423706055, 0.033459201812744144, 0.03354937744140625, 0.03469715118408203, 0.03489484786987305, 0.03487027359008789, 0.03510067367553711, 0.03503513717651367, 0.03503923034667969, 0.03469619369506836, 0.03455590438842773, 0.03517852783203125, 0.03441353607177734, 0.03464704132080078, 0.03492659378051758, 0.034506752014160154, 0.03476070404052734, 0.03487846374511719, 0.03493478393554687, 0.03499212646484375, 0.034945056915283206, 0.035192798614501954, 0.03450265502929688, 0.03448524856567383, 0.03455487823486328, 0.034563072204589845, 0.03503104019165039, 0.03474431991577148, 0.03377872085571289, 0.03339875030517578, 0.03340800094604492, 0.03347558212280274, 0.03381350326538086, 0.033650688171386715, 0.033535999298095705, 0.033334270477294925, 0.03363123321533203, 0.03390771102905273, 0.03361996841430664, 0.03386880111694336, 0.06886093139648437, 0.03341823959350586, 0.03395993423461914, 0.03393228912353516, 0.03374387359619141, 0.03333529663085937, 0.0334919662475586, 0.03423027038574219, 0.03382476806640625, 0.03374387359619141, 0.0336824951171875, 0.033724353790283206, 0.03363532638549805, 0.033941505432128906, 0.03381760025024414, 0.033503231048583985, 0.03344998550415039, 0.033301502227783206, 0.033445888519287106, 0.033957889556884766, 0.03387801742553711, 0.03366092681884766, 0.03360153579711914, 0.03381043243408203, 0.033825790405273434, 0.03360870361328125, 0.03370703887939453, 0.03348271942138672, 0.03366502380371094, 0.03378995132446289, 0.03319193649291992, 0.03369267272949219, 0.03357900619506836, 0.033358848571777344, 0.0341104621887207, 0.03495731353759766, 0.03543961715698242, 0.03482316970825195, 0.034435073852539064, 0.034557952880859374, 0.034900993347167966, 0.034678783416748044, 0.03517542266845703, 0.03521023941040039, 0.035046398162841795, 0.03481702423095703, 0.03453235244750977, 0.03470131301879883, 0.03486412811279297, 0.03474739074707031, 0.03477196884155274, 0.03457843017578125, 0.034781185150146485, 0.03486310577392578, 0.035125247955322264, 0.03486617660522461, 0.03496243286132812, 0.03503513717651367, 0.03523891067504883, 0.03469823837280273, 0.0339128303527832, 0.03414220809936523, 0.035117088317871095, 0.0711659164428711, 0.03465318298339844, 0.03465727996826172, 0.03458355331420898, 0.034283519744873044, 0.034304000854492187, 0.03577958297729492, 0.03595161437988281, 0.03544473648071289, 0.03500543975830078, 0.03521843338012695, 0.03495935821533203, 0.0349194221496582, 0.0354252815246582, 0.03515903854370117, 0.0349306869506836, 0.03492454528808594, 0.036211711883544925, 0.03564441680908203, 0.03498086547851562, 0.034841598510742186, 0.034941951751708986, 0.03537612915039062, 0.034994174957275394, 0.0350382080078125, 0.03486105728149414, 0.03484672164916992, 0.03494297790527344, 0.03524095916748047, 0.03526041412353516, 0.03520614242553711, 0.03488153457641602, 0.03502796936035156, 0.03500543975830078, 0.03404185485839844, 0.033903617858886716, 0.03378073501586914, 0.03472281646728516, 0.03411251068115234, 0.03379097747802735, 0.03348787307739258, 0.0343633918762207, 0.03492659378051758, 0.03500339126586914, 0.03493788909912109, 0.03485590362548828, 0.034895870208740236, 0.034948097229003904, 0.03518771362304687, 0.034479103088378905, 0.03459174346923828, 0.035253280639648436, 0.034963424682617185, 0.034976768493652347, 0.03491843032836914, 0.034911201477050784, 0.035046398162841795, 0.03507199859619141, 0.03536383819580078, 0.03499929428100586, 0.03523379135131836, 0.03531161499023437, 0.03527679824829102, 0.07160934448242187, 0.0352624626159668, 0.03535769653320313, 0.03481087875366211, 0.03554921722412109, 0.034968544006347656, 0.03489491271972656, 0.034890689849853516, 0.03483238220214844, 0.034993152618408206, 0.035932159423828124, 0.03508838272094727, 0.03496755218505859, 0.03476377487182617, 0.03488358306884766, 0.03527884674072266, 0.03521228790283203, 0.035040256500244144, 0.03476684951782227, 0.03499622344970703, 0.03482316970825195, 0.03518259048461914, 0.03503411102294922, 0.036178943634033206, 0.039564289093017575, 0.035097599029541016, 0.03457843017578125, 0.03505561447143555, 0.034756607055664065, 0.0350013427734375, 0.03477811050415039, 0.035004417419433595, 0.03501772689819336, 0.0348671989440918, 0.03473100662231445, 0.0349224967956543, 0.03482931137084961, 0.03578777694702148, 0.0350115852355957, 0.03483443069458008, 0.03486412811279297, 0.03486207962036133, 0.034938880920410156, 0.03505561447143555, 0.035004417419433595, 0.034887680053710936, 0.034531326293945314, 0.03493580627441406, 0.03510067367553711, 0.03492454528808594, 0.034887680053710936, 0.03578879928588867, 0.034974720001220705, 0.03519180679321289, 0.034850879669189455, 0.03495315170288086, 0.035060768127441404, 0.034809825897216796, 0.03377766418457031, 0.03550620651245117, 0.034968544006347656, 0.034915328979492184, 0.03489177703857422, 0.07134719848632813, 0.03493273544311523, 0.03501465606689453, 0.03539148712158203, 0.03512319946289062, 0.034813953399658204, 0.03508019256591797, 0.03486515045166016, 0.035079166412353514, 0.03493580627441406, 0.034939903259277344, 0.034925567626953126, 0.03743027114868164, 0.034576385498046876, 0.03397836685180664, 0.03377356719970703, 0.03403878402709961, 0.03371724700927734, 0.03380223846435547, 0.03486310577392578, 0.03486412811279297, 0.03496243286132812, 0.03475046539306641, 0.03492659378051758, 0.03499622344970703, 0.034783233642578126, 0.033949695587158206, 0.033876991271972655, 0.03427123260498047, 0.03477811050415039, 0.03472076797485352, 0.034127872467041014, 0.03329740905761719, 0.0333834228515625, 0.03379814529418945, 0.03392409515380859, 0.03363532638549805, 0.03386982345581055, 0.03498086547851562, 0.034928638458251955, 0.03496345520019531, 0.03495423889160156, 0.03523891067504883, 0.03508838272094727, 0.034769920349121096, 0.03489279937744141, 0.03482624053955078, 0.034955265045166016, 0.03508838272094727, 0.03486412811279297, 0.03486515045166016, 0.03471769714355469, 0.034560001373291016, 0.034579456329345705, 0.03481292724609375, 0.03479244613647461, 0.034802688598632815, 0.03475254440307617, 0.03517948913574219, 0.03433884811401367, 0.033702880859375, 0.03359539031982422, 0.034111488342285154, 0.07044096374511719, 0.03437670516967774, 0.03483238220214844, 0.0348671989440918, 0.03470438385009766, 0.035230720520019534, 0.034816001892089846, 0.03467366409301758, 0.0347770881652832, 0.03501055908203125, 0.03429580688476563, 0.03443609619140625, 0.03509964752197266, 0.03524505615234375, 0.0347248649597168, 0.034753536224365236, 0.03496345520019531, 0.03496448135375976, 0.034770942687988284, 0.034799617767333986, 0.03484467315673828, 0.03481190490722656, 0.034353153228759765, 0.034062335968017575, 0.03349094390869141, 0.033584129333496096, 0.033587200164794925, 0.034141185760498044, 0.0347740478515625, 0.0345906867980957, 0.0344268798828125, 0.03489484786987305, 0.03420979309082031, 0.03364352035522461, 0.03377356719970703, 0.033686527252197264, 0.033290241241455076, 0.0337520637512207, 0.03401932907104492, 0.03371417617797851, 0.03375513458251953, 0.033691646575927735, 0.03370809555053711, 0.03350316619873047, 0.03325439834594727, 0.03360255813598633, 0.033860607147216795, 0.03376230239868164, 0.033691646575927735, 0.033783809661865234, 0.033797119140625, 0.03425177764892578, 0.03381452941894531, 0.033791999816894534, 0.033675262451171875, 0.03391385650634766, 0.034165760040283204, 0.03502899169921875, 0.03486822509765625, 0.034702335357666016, 0.035046398162841795, 0.03521535873413086, 0.034825214385986326, 0.07150080108642579, 0.03484364700317383, 0.034351104736328124, 0.03453747177124023, 0.035064830780029296, 0.03482931137084961, 0.03483238220214844, 0.03492659378051758, 0.034974720001220705, 0.03501465606689453, 0.034869247436523435, 0.034830337524414064, 0.034277374267578126, 0.034797569274902344, 0.03501363372802734, 0.03530342483520508, 0.0351016960144043, 0.03491635131835937, 0.03483238220214844, 0.03484672164916992, 0.03495116806030273, 0.03500646209716797, 0.03499827194213867, 0.03480678558349609, 0.03486207962036133, 0.03505152130126953, 0.034784255981445314, 0.034783233642578126, 0.034835456848144535, 0.03493580627441406, 0.034770942687988284, 0.035037185668945314, 0.035019775390625, 0.0342476806640625, 0.03505049514770508, 0.034315265655517575, 0.03477913665771484, 0.034791454315185544, 0.0353023681640625, 0.03562700653076172, 0.03510374450683594, 0.03493580627441406, 0.035156993865966796, 0.03526144027709961, 0.03488256072998047, 0.034933761596679686, 0.03517337417602539, 0.0348590087890625, 0.0352911376953125, 0.035888126373291016, 0.03522048187255859, 0.03506073760986328, 0.03483955383300781, 0.03486105728149414, 0.03498400115966797, 0.03498387145996094, 0.03485494232177734, 0.03438998413085938, 0.03479244613647461, 0.03507712173461914, 0.03500339126586914, 0.03471257781982422, 0.03476684951782227, 0.07122022247314454, 0.03482316970825195, 0.03523276901245117, 0.034941951751708986, 0.03477196884155274, 0.034991104125976565, 0.03495731353759766, 0.034939903259277344, 0.03488153457641602, 0.034900993347167966, 0.0347955207824707, 0.0350300178527832, 0.03487948989868164, 0.03520614242553711, 0.035297279357910154, 0.03513651275634765, 0.03494297790527344, 0.0349378547668457, 0.034948097229003904, 0.03488051223754883, 0.03481497573852539, 0.03454873657226563, 0.03495935821533203, 0.035062782287597655, 0.035043327331542966, 0.0349306869506836, 0.03497881698608398, 0.034909183502197266, 0.03493791961669922, 0.03483539199829101, 0.034869247436523435, 0.035031105041503904, 0.03493983840942383, 0.03483340835571289, 0.03487744140625, 0.03489484786987305, 0.03516108703613281, 0.03484364700317383, 0.034969600677490234, 0.035146751403808595, 0.035194881439208986, 0.03479244613647461, 0.03557068634033203, 0.03522969436645508, 0.035337215423583986, 0.03480473709106445, 0.03436236953735351, 0.033745918273925785, 0.03496755218505859, 0.03541401672363281, 0.03512934494018555, 0.035163135528564454, 0.0348487663269043, 0.03500339126586914, 0.03484467315673828, 0.03498495864868164, 0.03576115036010742, 0.03517030334472656, 0.03490816116333008, 0.034825214385986326, 0.0347586555480957, 0.03516723251342774, 0.035053569793701174, 0.07151315307617187, 0.03519071960449219, 0.03483852767944336, 0.03482419204711914, 0.03502592086791992, 0.03529216003417969, 0.035125247955322264, 0.034872318267822264, 0.034939903259277344, 0.0347658576965332, 0.03481699371337891, 0.03497267150878906, 0.03488665771484375, 0.034958335876464845, 0.035007488250732424, 0.03504537582397461, 0.03489382553100586, 0.03520716857910156, 0.034988033294677735, 0.034874366760253905, 0.03459481430053711, 0.03430297470092773, 0.0346879997253418, 0.03478732681274414, 0.03508736038208008, 0.0354856948852539, 0.034981952667236325, 0.0348732795715332, 0.03489382553100586, 0.03475558471679688, 0.03478732681274414, 0.03488358306884766, 0.03473920059204102, 0.03476172637939453, 0.034685951232910156, 0.035111934661865234, 0.03508736038208008, 0.03526553726196289, 0.03492147064208984, 0.03475763320922851, 0.034767871856689454, 0.03482316970825195, 0.03498092651367188, 0.03539142227172851, 0.03607961654663086, 0.03499008178710938, 0.03491123199462891, 0.034990142822265625, 0.03488249588012695, 0.03484467315673828, 0.03486207962036133, 0.0349378547668457, 0.034953216552734374, 0.03488051223754883, 0.03490816116333008, 0.0349378547668457, 0.03494604873657227, 0.03508838272094727, 0.03482726287841797, 0.03486003112792969, 0.03481702423095703, 0.034729984283447264, 0.0349224967956543]",tokens/s,28.395787300179112,,,,,,main,False,False -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2,openai-community/gpt2,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1260.384256,1005.060096,0.0,358.612992,318.913024,s,20,0.1778504323959351,0.008892521619796753,0.00029352442906368934,0.008754608154296874,0.00910248613357544,0.009169697380065919,0.009785504264831543,"[0.009939455986022949, 0.008732735633850098, 0.008714752197265625, 0.009129183769226074, 0.008936767578125, 0.00906287956237793, 0.008935744285583497, 0.008770496368408202, 0.008699071884155274, 0.00863708782196045, 0.009064096450805664, 0.009099519729614258, 0.009006879806518554, 0.008716704368591309, 0.008663392066955567, 0.009004608154296875, 0.008722240447998048, 0.008636159896850586, 0.008738719940185546, 0.008639936447143554]",tokens/s,28788.234760102965,kWh,1.0174500456220489e-07,5.575151129166093e-08,2.1683886616880275e-07,3.743353820226686e-07,tokens/kWh,683878714.9019684,MB,1260.384256,1005.060096,0.0,358.612992,328.809472,s,20,10.067610046386722,0.5033805023193361,0.00995087263393504,0.5025519256591797,0.5155266967773438,0.5156778381347656,0.5160263879394532,"[0.499431884765625, 0.5143662109375, 0.516113525390625, 0.5138157348632812, 0.515512451171875, 0.5115390319824219, 0.49984701538085935, 0.4923589782714844, 0.49069613647460936, 0.5090225524902344, 0.5124207153320313, 0.5156549072265625, 0.4935624084472656, 0.49096063232421877, 0.5048639221191407, 0.5133187255859375, 0.49067050170898435, 0.5002399291992188, 0.491751953125, 0.4914628295898438]",tokens/s,125.15383434544286,kWh,5.837131539873614e-06,3.1984816083411113e-06,9.866002533436888e-06,1.8901615681651614e-05,tokens/kWh,3333048.4050184162,,s,1259,10.226770932674393,0.008122931638343454,0.0011308170692653316,0.007988224029541016,0.008203213119506836,0.00825251808166504,0.016815533714294433,"[0.008956928253173829, 0.009018367767333984, 0.008947711944580078, 0.009010175704956054, 0.009335807800292969, 0.008112128257751466, 0.007797760009765625, 0.007737343788146973, 0.007766016006469726, 0.007806975841522217, 0.007930880069732665, 0.007813119888305664, 0.0077608962059021, 0.007756800174713135, 0.007740416049957275, 0.007768064022064209, 0.00773529577255249, 0.007709760189056397, 0.007721920013427735, 0.007746560096740723, 0.00775270414352417, 0.00799232006072998, 0.00784281587600708, 0.008203264236450195, 0.008260607719421387, 0.008042495727539062, 0.008059904098510743, 0.007980031967163086, 0.007763967990875244, 0.007751679897308349, 0.007723008155822754, 0.007699456214904785, 0.007764992237091065, 0.007706624031066894, 0.007740416049957275, 0.00783462381362915, 0.007773183822631836, 0.007748608112335205, 0.0077199358940124516, 0.007729152202606201, 0.007729152202606201, 0.007724031925201416, 0.007738368034362793, 0.007704576015472412, 0.0077199358940124516, 0.007832575798034667, 0.007963647842407226, 0.007987199783325195, 0.007905280113220215, 0.0077916159629821775, 0.007706624031066894, 0.007709695816040039, 0.007702527999877929, 0.007707647800445557, 0.007707647800445557, 0.007699456214904785, 0.007712768077850342, 0.007755775928497314, 0.007730175971984863, 0.007721983909606934, 0.007711743831634522, 0.007840799808502196, 0.01680175971984863, 0.007746560096740723, 0.0077547521591186525, 0.00769536018371582, 0.00773632001876831, 0.008111104011535645, 0.008331263542175293, 0.008501248359680176, 0.008590335845947266, 0.008962047576904298, 0.008557600021362305, 0.007902175903320312, 0.007857151985168457, 0.008179712295532226, 0.008134655952453614, 0.008121343612670898, 0.008165375709533691, 0.008182784080505372, 0.00821452808380127, 0.00810086441040039, 0.00818073558807373, 0.008142848014831543, 0.008248319625854492, 0.0081725435256958, 0.008225791931152344, 0.008181759834289551, 0.008154111862182617, 0.008155136108398438, 0.008208383560180664, 0.008145952224731445, 0.008171487808227539, 0.008196096420288086, 0.008184831619262695, 0.008133631706237793, 0.008138751983642578, 0.008140800476074218, 0.008171520233154296, 0.008120320320129394, 0.008166399955749512, 0.008168448448181152, 0.008184831619262695, 0.008118271827697754, 0.00819711971282959, 0.008182784080505372, 0.008133631706237793, 0.008169471740722656, 0.008173567771911621, 0.008208383560180664, 0.008178688049316407, 0.008148991584777832, 0.008138751983642578, 0.008224767684936523, 0.00830668830871582, 0.008169471740722656, 0.008211456298828124, 0.008210432052612305, 0.008233983993530274, 0.008142848014831543, 0.008143872261047362, 0.008169471740722656, 0.008142848014831543, 0.008184831619262695, 0.008094719886779785, 0.016881664276123046, 0.007815167903900147, 0.008175616264343261, 0.008177696228027343, 0.0081561279296875, 0.008162303924560547, 0.008211456298828124, 0.008211456298828124, 0.0081725435256958, 0.008175616264343261, 0.008283136367797851, 0.008204287528991699, 0.008184831619262695, 0.008186880111694337, 0.008223744392395019, 0.008196096420288086, 0.008203264236450195, 0.008229887962341309, 0.008166399955749512, 0.008252415657043457, 0.008163328170776368, 0.008248319625854492, 0.008264703750610352, 0.00818892765045166, 0.00819814395904541, 0.008241151809692383, 0.008165439605712891, 0.0082042236328125, 0.008162303924560547, 0.008232959747314453, 0.008151040077209473, 0.008152128219604492, 0.008161215782165528, 0.008182784080505372, 0.008133631706237793, 0.008158207893371582, 0.008237055778503418, 0.008202239990234375, 0.008193023681640625, 0.008161279678344726, 0.008217599868774414, 0.008156160354614257, 0.00819711971282959, 0.008166399955749512, 0.008308735847473145, 0.008174592018127442, 0.00821350383758545, 0.00821555233001709, 0.008237055778503418, 0.008190976142883302, 0.00820633602142334, 0.008167424201965333, 0.008225791931152344, 0.008162303924560547, 0.008162303924560547, 0.008168448448181152, 0.00820633602142334, 0.00830463981628418, 0.008229887962341309, 0.008415231704711914, 0.0081725435256958, 0.008143872261047362, 0.008152064323425292, 0.01761075210571289, 0.008202239990234375, 0.008141823768615723, 0.008071167945861817, 0.007961599826812745, 0.008018943786621094, 0.008046591758728027, 0.008005632400512695, 0.00840294361114502, 0.008124416351318359, 0.00820531177520752, 0.008201215744018555, 0.00818073558807373, 0.008185855865478516, 0.00819200038909912, 0.008175616264343261, 0.008318976402282715, 0.008154111862182617, 0.00820531177520752, 0.008134655952453614, 0.008143872261047362, 0.008136704444885253, 0.008194047927856446, 0.008137727737426758, 0.008143872261047362, 0.008171520233154296, 0.008257599830627441, 0.008203200340270996, 0.008194047927856446, 0.00821555233001709, 0.008195072174072266, 0.008143872261047362, 0.007998464107513427, 0.008034303665161132, 0.007986176013946533, 0.007982079982757568, 0.008018943786621094, 0.008036352157592774, 0.008148991584777832, 0.008135680198669434, 0.008142848014831543, 0.008236031532287597, 0.008143872261047362, 0.008142848014831543, 0.008132608413696289, 0.00819200038909912, 0.008179712295532226, 0.008140800476074218, 0.008145983695983888, 0.008236991882324218, 0.0081725435256958, 0.008146944046020508, 0.00818892765045166, 0.008175616264343261, 0.008162303924560547, 0.0081725435256958, 0.00821555233001709, 0.008113151550292968, 0.008209407806396484, 0.008227840423583984, 0.008196096420288086, 0.008126463890075684, 0.008157183647155761, 0.017464319229125978, 0.008184831619262695, 0.00818073558807373, 0.008165375709533691, 0.00821555233001709, 0.008167424201965333, 0.008129535675048828, 0.008302592277526855, 0.008182784080505372, 0.00830361557006836, 0.008194047927856446, 0.008250368118286134, 0.008151040077209473, 0.008257535934448243, 0.008231936454772949, 0.008444928169250488, 0.008429568290710449, 0.00829849624633789, 0.008167424201965333, 0.008171520233154296, 0.008143903732299805, 0.008130528450012208, 0.008302592277526855, 0.008113151550292968, 0.008168448448181152, 0.008145919799804687, 0.008143872261047362, 0.008110079765319824, 0.008140800476074218, 0.008116224288940429, 0.008160256385803222, 0.008153087615966797, 0.00813158416748047, 0.008157183647155761, 0.008136704444885253, 0.008124416351318359, 0.008236031532287597, 0.008158207893371582, 0.008129535675048828, 0.008147968292236327, 0.008122367858886719, 0.008253439903259278, 0.008128512382507324, 0.00810905647277832, 0.008117247581481933, 0.008118271827697754, 0.008119296073913575, 0.008129535675048828, 0.008126463890075684, 0.008141823768615723, 0.008165375709533691, 0.00819200038909912, 0.008229887962341309, 0.008130559921264649, 0.008218624114990235, 0.008133631706237793, 0.008155136108398438, 0.00820531177520752, 0.00811520004272461, 0.008147968292236327, 0.008153087615966797, 0.008163328170776368, 0.008157247543334962, 0.01752979278564453, 0.008169471740722656, 0.008134655952453614, 0.008151040077209473, 0.008130559921264649, 0.008232959747314453, 0.00812339210510254, 0.008141823768615723, 0.008133631706237793, 0.008141823768615723, 0.008154175758361816, 0.00810591983795166, 0.008169471740722656, 0.008153087615966797, 0.008141823768615723, 0.008200223922729493, 0.008241120338439942, 0.008136704444885253, 0.008132608413696289, 0.008174592018127442, 0.008144895553588867, 0.008146944046020508, 0.008145919799804687, 0.008146976470947266, 0.008175583839416503, 0.007980031967163086, 0.007983104228973388, 0.00800051212310791, 0.007997439861297608, 0.00799948787689209, 0.008101887702941894, 0.00801689624786377, 0.008174592018127442, 0.0081397762298584, 0.008117247581481933, 0.008122367858886719, 0.008126463890075684, 0.008122367858886719, 0.008138751983642578, 0.008155136108398438, 0.008119296073913575, 0.008136704444885253, 0.00807423973083496, 0.007927807807922363, 0.007958528041839599, 0.007939072132110595, 0.008014847755432129, 0.007986176013946533, 0.007945216178894043, 0.007932928085327149, 0.007987199783325195, 0.008179712295532226, 0.008140800476074218, 0.008185855865478516, 0.008138751983642578, 0.008184831619262695, 0.008138751983642578, 0.008258560180664062, 0.008273920059204102, 0.008167424201965333, 0.008194047927856446, 0.008145919799804687, 0.008177663803100586, 0.01745510482788086, 0.008202239990234375, 0.008157183647155761, 0.00818380832672119, 0.00870195198059082, 0.008116224288940429, 0.00800153636932373, 0.008036352157592774, 0.007977983951568603, 0.00793497610092163, 0.007962624073028564, 0.007925759792327881, 0.00794316816329956, 0.007910399913787843, 0.007746560096740723, 0.007692287921905518, 0.007689216136932373, 0.0076871681213378906, 0.007707647800445557, 0.007682047843933106, 0.0076912641525268555, 0.007675903797149658, 0.0076984319686889645, 0.007768064022064209, 0.007718912124633789, 0.007701504230499268, 0.007781375885009765, 0.007845888137817383, 0.007806975841522217, 0.007817215919494629, 0.007786496162414551, 0.00787660789489746, 0.007799808025360107, 0.0077814397811889644, 0.007800767898559571, 0.007912447929382324, 0.007824384212493896, 0.007813119888305664, 0.007792640209197998, 0.007946239948272706, 0.007815167903900147, 0.007805952072143555, 0.00778547191619873, 0.007804927825927735, 0.007789567947387695, 0.007865344047546387, 0.007772160053253174, 0.007777279853820801, 0.007775231838226319, 0.007806975841522217, 0.007789567947387695, 0.007932928085327149, 0.007971839904785156, 0.009268223762512207, 0.00830463981628418, 0.008198207855224609, 0.008211392402648926, 0.008195072174072266, 0.008028160095214844, 0.008003583908081055, 0.008034303665161132, 0.008128512382507324, 0.008179712295532226, 0.016935935974121095, 0.00780185604095459, 0.007796735763549805, 0.007805952072143555, 0.007813119888305664, 0.007988224029541016, 0.008045568466186523, 0.007916543960571289, 0.007796735763549805, 0.007798783779144287, 0.007809023857116699, 0.007804927825927735, 0.007792640209197998, 0.007812096118927002, 0.00781824016571045, 0.00780083179473877, 0.007870463848114014, 0.007792640209197998, 0.007804927825927735, 0.007790656089782715, 0.007819200038909912, 0.007790592193603516, 0.007794688224792481, 0.007809023857116699, 0.007795711994171142, 0.007768064022064209, 0.007797760009765625, 0.007795711994171142, 0.007795711994171142, 0.007813119888305664, 0.007798783779144287, 0.007802879810333252, 0.007819263935089112, 0.007811071872711181, 0.007840767860412597, 0.007812096118927002, 0.007788544178009033, 0.007775231838226319, 0.0077916159629821775, 0.007782400131225586, 0.00781004810333252, 0.00780185604095459, 0.007778304100036621, 0.007794688224792481, 0.007767039775848389, 0.007796735763549805, 0.0077916159629821775, 0.007797760009765625, 0.007821311950683594, 0.0077844481468200685, 0.007780352115631104, 0.007840767860412597, 0.0077844481468200685, 0.007767136096954346, 0.0077935681343078616, 0.007836671829223632, 0.007762944221496582, 0.007809023857116699, 0.007853055953979492, 0.007787519931793213, 0.007774208068847656, 0.007829504013061523, 0.00781824016571045, 0.01681612777709961, 0.007815199851989746, 0.007830495834350587, 0.007776256084442139, 0.007788544178009033, 0.007783423900604248, 0.007771135807037354, 0.007827455997467042, 0.007795711994171142, 0.007773183822631836, 0.007782400131225586, 0.007808000087738037, 0.00780083179473877, 0.007798783779144287, 0.007873536109924317, 0.007805952072143555, 0.00780083179473877, 0.007847936153411865, 0.0077844481468200685, 0.007780352115631104, 0.0077916159629821775, 0.007790592193603516, 0.007822336196899414, 0.007794688224792481, 0.007888895988464355, 0.007833600044250488, 0.007797760009765625, 0.007749631881713868, 0.007869440078735352, 0.007769087791442871, 0.007812096118927002, 0.00780083179473877, 0.007803904056549072, 0.007812096118927002, 0.007794688224792481, 0.007811071872711181, 0.007814144134521485, 0.007817215919494629, 0.007795711994171142, 0.007819263935089112, 0.007755775928497314, 0.007792640209197998, 0.007717887878417969, 0.007688223838806152, 0.007795680046081543, 0.007675903797149658, 0.007663616180419922, 0.007669760227203369, 0.007685120105743408, 0.007670783996582031, 0.007699456214904785, 0.007779327869415284, 0.007753791809082031, 0.00776800012588501, 0.007794688224792481, 0.007774208068847656, 0.0077916479110717776, 0.0077833919525146485, 0.007789567947387695, 0.0077506561279296875, 0.007809023857116699, 0.007776256084442139, 0.007787519931793213, 0.016747520446777343, 0.007830527782440186, 0.00781004810333252, 0.007762944221496582, 0.007786496162414551, 0.00778547191619873, 0.007792640209197998, 0.007819263935089112, 0.007789567947387695, 0.007815167903900147, 0.0077844481468200685, 0.007814144134521485, 0.007829504013061523, 0.007815167903900147, 0.008204287528991699, 0.008175616264343261, 0.008138751983642578, 0.008138751983642578, 0.008143872261047362, 0.008132608413696289, 0.008127488136291505, 0.008151040077209473, 0.008156160354614257, 0.008147968292236327, 0.00820736026763916, 0.008129535675048828, 0.008166399955749512, 0.008173600196838379, 0.00812335968017578, 0.008141823768615723, 0.008167424201965333, 0.008120320320129394, 0.008144895553588867, 0.008153087615966797, 0.008212479591369629, 0.008155136108398438, 0.008140800476074218, 0.008129535675048828, 0.008145919799804687, 0.00811520004272461, 0.008171520233154296, 0.008128512382507324, 0.008159232139587403, 0.008104960441589355, 0.008134655952453614, 0.008156160354614257, 0.008217599868774414, 0.008228863716125488, 0.008134655952453614, 0.008118271827697754, 0.008137727737426758, 0.008124447822570801, 0.008145888328552247, 0.00819711971282959, 0.008179743766784668, 0.008160223960876465, 0.008161279678344726, 0.008132608413696289, 0.00820531177520752, 0.008125439643859863, 0.008132608413696289, 0.008161312103271484, 0.008129504203796387, 0.017510400772094727, 0.00813161563873291, 0.008154080390930176, 0.008121343612670898, 0.008201215744018555, 0.008152095794677735, 0.008171487808227539, 0.008169471740722656, 0.008168448448181152, 0.008137727737426758, 0.008147968292236327, 0.008148991584777832, 0.008154111862182617, 0.008139840126037598, 0.008128447532653809, 0.00813158416748047, 0.008137727737426758, 0.008121343612670898, 0.008233983993530274, 0.008128512382507324, 0.008145919799804687, 0.008157183647155761, 0.00813158416748047, 0.008204287528991699, 0.008161279678344726, 0.007993343830108643, 0.00791756820678711, 0.007980031967163086, 0.007956480026245117, 0.007964672088623047, 0.007927807807922363, 0.008011775970458984, 0.008147968292236327, 0.008133631706237793, 0.00818380832672119, 0.008170495986938477, 0.008175616264343261, 0.008127488136291505, 0.008137727737426758, 0.008146944046020508, 0.008140800476074218, 0.008151040077209473, 0.008162303924560547, 0.008179712295532226, 0.008148991584777832, 0.008124416351318359, 0.008137727737426758, 0.008125439643859863, 0.008153087615966797, 0.008114175796508789, 0.008143872261047362, 0.008122367858886719, 0.008156160354614257, 0.008160256385803222, 0.008135680198669434, 0.008086527824401855, 0.008153087615966797, 0.008133631706237793, 0.0081725435256958, 0.0081725435256958, 0.00819200038909912, 0.008133631706237793, 0.008163328170776368, 0.017588224411010742, 0.008179712295532226, 0.008193023681640625, 0.00818380832672119, 0.008154111862182617, 0.008151040077209473, 0.008155136108398438, 0.008173567771911621, 0.008159232139587403, 0.008130559921264649, 0.008146944046020508, 0.008140800476074218, 0.008162336349487305, 0.008166367530822755, 0.008170495986938477, 0.008184831619262695, 0.008157183647155761, 0.008153087615966797, 0.00813158416748047, 0.008167424201965333, 0.008148991584777832, 0.008136704444885253, 0.008152064323425292, 0.008177663803100586, 0.008147968292236327, 0.008144895553588867, 0.008175616264343261, 0.008174592018127442, 0.008225791931152344, 0.008175616264343261, 0.008150015830993652, 0.008158207893371582, 0.008162303924560547, 0.008164352416992187, 0.008138751983642578, 0.008152064323425292, 0.008166399955749512, 0.008134655952453614, 0.008158207893371582, 0.008156160354614257, 0.008137727737426758, 0.00818073558807373, 0.008144895553588867, 0.008691712379455567, 0.008336383819580078, 0.008157183647155761, 0.008369152069091796, 0.00819814395904541, 0.008178688049316407, 0.008175616264343261, 0.008190976142883302, 0.008163328170776368, 0.008146944046020508, 0.00818182373046875, 0.008277952194213867, 0.008161279678344726, 0.00819814395904541, 0.008154111862182617, 0.008211456298828124, 0.008153087615966797, 0.008143872261047362, 0.00818380832672119, 0.008178688049316407, 0.017306623458862306, 0.007987199783325195, 0.00799948787689209, 0.007954432010650634, 0.007939072132110595, 0.008583168029785156, 0.008274944305419921, 0.008042495727539062, 0.008291328430175781, 0.008148991584777832, 0.007989247798919678, 0.007942143917083741, 0.007837696075439453, 0.007702527999877929, 0.007700479984283447, 0.007751679897308349, 0.007745535850524903, 0.007712768077850342, 0.007682047843933106, 0.007650303840637207, 0.007663616180419922, 0.007663616180419922, 0.007679999828338623, 0.00780083179473877, 0.007711743831634522, 0.007683072090148926, 0.007688191890716553, 0.007677951812744141, 0.007696415901184082, 0.007775199890136719, 0.007783423900604248, 0.007798783779144287, 0.007811071872711181, 0.007773183822631836, 0.007781375885009765, 0.0077844481468200685, 0.007805952072143555, 0.007782400131225586, 0.007778304100036621, 0.007778304100036621, 0.0078438401222229, 0.007774208068847656, 0.007861248016357422, 0.007822336196899414, 0.00785203218460083, 0.007787519931793213, 0.00779366397857666, 0.007774208068847656, 0.007798783779144287, 0.0077608962059021, 0.00780185604095459, 0.0077916159629821775, 0.00780083179473877, 0.007935999870300293, 0.007792640209197998, 0.007762944221496582, 0.007783423900604248, 0.007781375885009765, 0.007789567947387695, 0.007780352115631104, 0.00781004810333252, 0.0077844481468200685, 0.007790592193603516, 0.01681510353088379, 0.00780185604095459, 0.0077916159629821775, 0.007786496162414551, 0.00780185604095459, 0.007774208068847656, 0.007781375885009765, 0.007767039775848389, 0.007797760009765625, 0.008054783821105957, 0.007769120216369629, 0.007801824092864991, 0.007887872219085693, 0.007806975841522217, 0.00780185604095459, 0.007796735763549805, 0.007758848190307617, 0.007686143875122071, 0.007758848190307617, 0.007764992237091065, 0.007665664196014404, 0.007762944221496582, 0.007830527782440186, 0.0076984319686889645, 0.007705599784851074, 0.007775231838226319, 0.007783423900604248, 0.0077506561279296875, 0.007763967990875244, 0.007799808025360107, 0.007774208068847656, 0.0077844481468200685, 0.007889920234680176, 0.007813119888305664, 0.00785203218460083, 0.007798816204071045, 0.007802847862243652, 0.0077619199752807615, 0.0077608962059021, 0.007812096118927002, 0.007770112037658691, 0.007820288181304931, 0.007809023857116699, 0.007751679897308349, 0.007801919937133789, 0.007790527820587158, 0.00778547191619873, 0.007769087791442871, 0.007772160053253174, 0.007780352115631104, 0.007766016006469726, 0.007772160053253174, 0.007797760009765625, 0.007746560096740723, 0.007767039775848389, 0.007792640209197998, 0.007804927825927735, 0.00780188798904419, 0.007841760158538819, 0.007790592193603516, 0.007799808025360107, 0.00780185604095459, 0.007794688224792481, 0.016740352630615234, 0.007783423900604248, 0.00780185604095459, 0.007804927825927735, 0.007759871959686279, 0.007790592193603516, 0.007788544178009033, 0.007780352115631104, 0.007831615924835205, 0.007797696113586426, 0.007781407833099365, 0.007782368183135986, 0.007770112037658691, 0.007808000087738037, 0.007779327869415284, 0.007780352115631104, 0.007817279815673829, 0.007812032222747803, 0.008190976142883302, 0.008184831619262695, 0.008161279678344726, 0.008177727699279784, 0.008145855903625489, 0.0081397762298584, 0.008135680198669434, 0.008153087615966797, 0.008148991584777832, 0.008147968292236327, 0.0081397762298584, 0.008167424201965333, 0.008143903732299805, 0.008128479957580566, 0.008156160354614257, 0.008138751983642578, 0.008133631706237793, 0.008155136108398438, 0.008153087615966797, 0.008138751983642578, 0.008173567771911621, 0.008208383560180664, 0.008002559661865234, 0.00800972843170166, 0.007980031967163086, 0.008076288223266602, 0.00808448028564453, 0.007964672088623047, 0.008034303665161132, 0.007988224029541016, 0.007964672088623047, 0.007987199783325195, 0.00799948787689209, 0.007969791889190675, 0.007956480026245117, 0.007990272045135497, 0.00797388792037964, 0.00794316816329956, 0.008023039817810058, 0.008061951637268066, 0.008179743766784668, 0.008191967964172363, 0.0081725435256958, 0.008150015830993652, 0.008185855865478516, 0.017484800338745117, 0.008162303924560547, 0.008151040077209473, 0.008169471740722656, 0.008161279678344726, 0.008167424201965333, 0.008156160354614257, 0.008194047927856446, 0.008224767684936523, 0.008291328430175781, 0.008148991584777832, 0.008154111862182617, 0.008160256385803222, 0.00816438388824463, 0.008163295745849609, 0.008171520233154296, 0.008177663803100586, 0.0081725435256958, 0.008231936454772949, 0.008153087615966797, 0.008132608413696289, 0.008309760093688966, 0.008117247581481933, 0.007990272045135497, 0.007979008197784423, 0.007970816135406494, 0.007997439861297608, 0.00799232006072998, 0.00801587200164795, 0.007982079982757568, 0.008145983695983888, 0.008135616302490234, 0.008164352416992187, 0.008163328170776368, 0.008165375709533691, 0.008184831619262695, 0.008158207893371582, 0.008155136108398438, 0.008176639556884765, 0.008182784080505372, 0.008145919799804687, 0.008140800476074218, 0.008156160354614257, 0.008150015830993652, 0.008135680198669434, 0.0081397762298584, 0.008142848014831543, 0.008136704444885253, 0.0081080322265625, 0.008219648361206054, 0.008170495986938477, 0.008157183647155761, 0.008315903663635254, 0.00819711971282959, 0.008167424201965333, 0.008058879852294922, 0.007974912166595459, 0.008057855606079101, 0.00821350383758545, 0.008169471740722656, 0.008144895553588867, 0.008160256385803222, 0.008122367858886719, 0.01683046340942383, 0.00781004810333252, 0.007808000087738037, 0.00778547191619873, 0.007855103969573975, 0.007806975841522217, 0.007795711994171142, 0.007780352115631104, 0.007798783779144287, 0.007795711994171142, 0.0077916159629821775, 0.007814144134521485, 0.007811071872711181, 0.007796735763549805, 0.007827455997467042, 0.007817215919494629, 0.007875584125518798, 0.007839744091033935, 0.007795711994171142, 0.007805952072143555, 0.007778304100036621, 0.0077916159629821775, 0.007786496162414551, 0.007789567947387695, 0.007786496162414551, 0.0077916159629821775, 0.007804927825927735, 0.007798783779144287, 0.007790592193603516, 0.007811071872711181, 0.007797760009765625, 0.007786496162414551, 0.007812096118927002, 0.007651328086853027, 0.007665664196014404, 0.007666687965393066, 0.007665664196014404, 0.007659520149230957, 0.007679999828338623, 0.007675903797149658, 0.007781375885009765, 0.007795711994171142, 0.007799808025360107, 0.007756800174713135, 0.007774208068847656, 0.0077578239440917966, 0.007971839904785156, 0.007782400131225586, 0.007790592193603516, 0.007787519931793213, 0.007797760009765625, 0.007782400131225586, 0.00779366397857666, 0.007764992237091065, 0.007797760009765625, 0.007774208068847656, 0.007792640209197998, 0.007769087791442871, 0.007784512042999268, 0.007765952110290527, 0.007788544178009033, 0.007747583866119385, 0.007840767860412597, 0.016747520446777343, 0.007811071872711181, 0.007816192150115966, 0.007752768039703369, 0.007791552066802978, 0.007802879810333252, 0.007780352115631104, 0.0077916159629821775, 0.007798783779144287, 0.00780185604095459, 0.007831552028656007, 0.007783423900604248, 0.007788544178009033, 0.007796735763549805, 0.007817215919494629, 0.007794688224792481, 0.007841792106628418, 0.007812096118927002, 0.007792640209197998, 0.007789567947387695, 0.007776256084442139, 0.00780185604095459, 0.007771135807037354, 0.007783423900604248, 0.007767039775848389, 0.007773183822631836, 0.007803904056549072, 0.007847936153411865, 0.007794688224792481, 0.007759903907775879, 0.007892960071563721, 0.007931903839111328, 0.007790592193603516, 0.00786636781692505, 0.007941120147705078, 0.008167424201965333, 0.007970816135406494, 0.007970816135406494, 0.007945216178894043, 0.007967743873596191, 0.007945216178894043, 0.007947264194488525, 0.007963647842407226, 0.007942143917083741, 0.008156160354614257, 0.008130559921264649, 0.008107071876525878, 0.00812947177886963, 0.008143872261047362, 0.008111104011535645, 0.008150015830993652, 0.008143872261047362, 0.008136704444885253, 0.008132608413696289, 0.008125439643859863, 0.008134655952453614, 0.008170495986938477, 0.00810905647277832, 0.008399871826171875, 0.008129535675048828, 0.008162303924560547, 0.008132608413696289, 0.008134655952453614, 0.01683251190185547, 0.007788544178009033, 0.007817215919494629, 0.007799808025360107, 0.007805952072143555, 0.007803904056549072, 0.007779327869415284, 0.0077916159629821775, 0.007804927825927735, 0.007817215919494629, 0.007822336196899414, 0.007809023857116699, 0.007855103969573975, 0.007806975841522217, 0.007815167903900147, 0.00784281587600708, 0.007825407981872558, 0.007775231838226319, 0.007829504013061523, 0.007797760009765625, 0.007817215919494629, 0.0077916159629821775, 0.00780185604095459, 0.007789567947387695, 0.0077844481468200685, 0.007764992237091065, 0.007797760009765625, 0.007780352115631104, 0.007777279853820801, 0.007769087791442871, 0.007795711994171142, 0.007806975841522217, 0.007773183822631836, 0.007780416011810303, 0.007806911945343018, 0.007809023857116699, 0.007812096118927002, 0.007888895988464355, 0.007832575798034667, 0.007770112037658691, 0.00778547191619873, 0.007788544178009033, 0.007790592193603516, 0.007799808025360107, 0.007798783779144287, 0.007837696075439453, 0.007821311950683594, 0.00779366397857666, 0.00778547191619873, 0.0077844481468200685, 0.007777279853820801, 0.007804992198944091, 0.007788479804992676, 0.007777279853820801, 0.00781004810333252, 0.007784480094909668, 0.007799776077270508, 0.007783423900604248, 0.007840767860412597, 0.007831552028656007, 0.007805952072143555, 0.007767039775848389, 0.007812096118927002, 0.016696319580078126, 0.007795711994171142, 0.007797760009765625, 0.007806975841522217, 0.007748640060424804, 0.0077833919525146485, 0.007792640209197998, 0.007804927825927735, 0.007803904056549072, 0.007797760009765625, 0.0077742719650268554, 0.007868351936340333, 0.007813119888305664, 0.007794688224792481, 0.007806975841522217, 0.00780083179473877, 0.007832575798034667, 0.007783423900604248, 0.007816192150115966, 0.007777279853820801, 0.007782400131225586, 0.007778304100036621, 0.007790592193603516, 0.007867392063140868, 0.0077916159629821775, 0.007799808025360107, 0.007783423900604248, 0.007789567947387695, 0.007783423900604248, 0.007789567947387695, 0.00778547191619873, 0.007780352115631104, 0.007875584125518798, 0.007797760009765625, 0.00778547191619873, 0.007756800174713135, 0.007773183822631836, 0.007787519931793213, 0.007767039775848389, 0.007811071872711181, 0.00779366397857666, 0.007770112037658691, 0.007783423900604248, 0.00781004810333252, 0.007797760009765625, 0.007773183822631836, 0.007773183822631836, 0.007782400131225586, 0.007844863891601562, 0.007785535812377929, 0.007792575836181641, 0.007806975841522217, 0.00781824016571045, 0.007796735763549805, 0.00778547191619873, 0.007778304100036621, 0.007828479766845703, 0.007777279853820801, 0.007858176231384278, 0.007815167903900147, 0.0077608962059021, 0.00781004810333252, 0.007812096118927002]",tokens/s,123.10826245041925,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-j-6b,,cuda,0,42,,,,,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,MB,2082.578432,5566.365696,0.0,4919.918592,4635.53792,s,10,5.0974686889648435,0.5097468688964844,0.002523113409812242,0.5091204681396484,0.5118887878417968,0.5140431793212891,0.5157666925048828,"[0.5161975708007812, 0.508827880859375, 0.5094269104003907, 0.508350830078125, 0.5081865539550782, 0.5073575439453125, 0.5094130554199219, 0.5110750427246094, 0.5072232666015625, 0.5114100341796874]",tokens/s,502.2100489880333,kWh,5.994651640454928e-06,3.28480666631549e-06,2.7987258500894452e-05,3.726671680766487e-05,tokens/kWh,6869400.417569034,MB,2082.578432,5566.365696,0.0,4919.918592,4794.464768,s,10,295.3985,29.53985,0.004666201106872227,29.538681640625,29.5469361328125,29.54772978515625,29.548364707031247,"[29.534837890625, 29.546759765625, 29.542654296875, 29.540826171875, 29.5363359375, 29.535224609375, 29.54083984375, 29.5359609375, 29.5485234375, 29.536537109375]",tokens/s,2.132712251416307,kWh,0.0003485870901164082,0.0001910528620806053,0.0016025825737317144,0.002142222525928728,tokens/kWh,29408.709523623045,,s,629,299.5096441345215,0.47616795569876236,0.06052059742525611,0.46878207397460936,0.46948126220703124,0.4697759826660156,0.977483603515625,"[0.4688783264160156, 0.46847384643554685, 0.46878515625, 0.4694343566894531, 0.4695541687011719, 0.46879034423828125, 0.4688465270996094, 0.46848306274414064, 0.46828851318359377, 0.4686806945800781, 0.46836428833007815, 0.4685475769042969, 0.4686540832519531, 0.46948455810546874, 0.4689162292480469, 0.46845745849609377, 0.4684011535644531, 0.4683714599609375, 0.4684134521484375, 0.46870220947265623, 0.468790283203125, 0.4682076110839844, 0.4684062805175781, 0.46837042236328125, 0.469607421875, 0.46908721923828123, 0.4688885803222656, 0.4687656860351562, 0.4693012390136719, 0.4686929931640625, 0.46864382934570314, 0.468430908203125, 0.4682413330078125, 0.4685291442871094, 0.46904525756835935, 0.4706498413085938, 0.46837042236328125, 0.4685875244140625, 0.4687718505859375, 0.4685537414550781, 0.46882406616210937, 0.46856805419921876, 0.4686806945800781, 0.46866943359375, 0.4686581726074219, 0.4682403869628906, 0.4695777893066406, 0.4685884704589844, 0.4686663818359375, 0.4685537414550781, 0.46855987548828126, 0.4685066223144531, 0.4687831115722656, 0.46864794921875, 0.4684666748046875, 0.4691046447753906, 0.46919476318359377, 0.4684984436035156, 0.4691128234863281, 0.4691221008300781, 0.46927557373046874, 0.46959002685546875, 0.977623046875, 0.46814208984375, 0.4683407287597656, 0.46863873291015623, 0.46877490234375, 0.46880459594726565, 0.4687513732910156, 0.46857113647460935, 0.468421630859375, 0.46894284057617186, 0.4688281555175781, 0.46850765991210935, 0.4687431640625, 0.4691404724121094, 0.4699504699707031, 0.46978561401367186, 0.46937701416015626, 0.4690975341796875, 0.4691311950683594, 0.47030169677734374, 0.4690933837890625, 0.4689039306640625, 0.4690298767089844, 0.46860595703125, 0.4687359924316406, 0.4692275085449219, 0.46936166381835936, 0.46901248168945314, 0.46843902587890623, 0.46878106689453125, 0.46938113403320314, 0.46973849487304686, 0.46935861206054685, 0.4687390441894531, 0.4685845031738281, 0.46890591430664064, 0.46899813842773436, 0.4688281555175781, 0.4687083435058594, 0.4687564697265625, 0.4687308654785156, 0.4687615966796875, 0.4689858703613281, 0.4688762817382813, 0.46893264770507814, 0.46929302978515625, 0.46915994262695315, 0.4696995849609375, 0.4688701477050781, 0.4687912902832031, 0.4691885986328125, 0.46969558715820314, 0.4696114196777344, 0.4692490234375, 0.46899301147460937, 0.46896435546875, 0.4694558715820312, 0.46925927734375, 0.4685393981933594, 0.4686530456542969, 0.46877902221679685, 0.4687155151367188, 0.46934527587890623, 0.9787330322265625, 0.468917236328125, 0.46886502075195313, 0.46889984130859375, 0.4691875915527344, 0.4684267578125, 0.46861004638671877, 0.46856500244140625, 0.46833560180664063, 0.4684933166503906, 0.4683735046386719, 0.4683263854980469, 0.4683735046386719, 0.468236328125, 0.46872265625, 0.4684236755371094, 0.46842572021484374, 0.46854452514648437, 0.46859982299804687, 0.4687155151367188, 0.46844732666015626, 0.4685188293457031, 0.4686991577148438, 0.46980194091796873, 0.46855987548828126, 0.4690032653808594, 0.46884454345703125, 0.4687575073242187, 0.4688609313964844, 0.4688558044433594, 0.4689459228515625, 0.46866329956054686, 0.4685557861328125, 0.46875238037109374, 0.4686827392578125, 0.46909747314453126, 0.46889984130859375, 0.4689756164550781, 0.46924798583984373, 0.46901144409179685, 0.4689469299316406, 0.46897048950195314, 0.46984909057617186, 0.4700190734863281, 0.4696781005859375, 0.469550048828125, 0.4697763977050781, 0.47159500122070314, 0.46917837524414063, 0.4684482421875, 0.4692193298339844, 0.46906060791015625, 0.4689141845703125, 0.46894284057617186, 0.468885498046875, 0.469064697265625, 0.46948043823242186, 0.4687861633300781, 0.4690513916015625, 0.46873907470703124, 0.46875341796875, 0.4690708618164062, 0.46917938232421874, 0.9775615844726563, 0.46874624633789064, 0.46858853149414065, 0.4686796875, 0.46987161254882814, 0.46889370727539065, 0.4687656860351562, 0.468790283203125, 0.4687278137207031, 0.46867864990234376, 0.4685322265625, 0.46837454223632813, 0.4686530456542969, 0.46875955200195313, 0.46893466186523436, 0.468706298828125, 0.4689858703613281, 0.46853018188476564, 0.46881585693359373, 0.46894796752929685, 0.4691353454589844, 0.46871038818359373, 0.46851071166992186, 0.468632568359375, 0.46843902587890623, 0.46874725341796875, 0.468890625, 0.4688670654296875, 0.46844723510742187, 0.468490234375, 0.4689090576171875, 0.46941900634765626, 0.46909030151367187, 0.4689100952148437, 0.4687175598144531, 0.46938113403320314, 0.4690616455078125, 0.4687718505859375, 0.46904730224609376, 0.4689336242675781, 0.4687933349609375, 0.46920501708984375, 0.46855471801757814, 0.4687718505859375, 0.47131646728515625, 0.4688424987792969, 0.46912005615234376, 0.4692090148925781, 0.4688189392089844, 0.4685926513671875, 0.4688619384765625, 0.46930743408203124, 0.4693247680664063, 0.4690636901855469, 0.46892135620117187, 0.4687145690917969, 0.4691373291015625, 0.4687145080566406, 0.4686673889160156, 0.46867352294921877, 0.46872677612304686, 0.4689254455566406, 0.46927871704101565, 0.9772830810546875, 0.46864077758789063, 0.4684922790527344, 0.46857421875, 0.46906878662109375, 0.4690033264160156, 0.46841543579101563, 0.4685895690917969, 0.46849639892578127, 0.468279296875, 0.46869912719726564, 0.4685619201660156, 0.4687575073242187, 0.46905242919921875, 0.46849432373046873, 0.46846875, 0.46872576904296875, 0.46877490234375, 0.4686592102050781, 0.4684892272949219, 0.4687974548339844, 0.46863565063476564, 0.4685844421386719, 0.46846157836914065, 0.46825778198242185, 0.4684994506835938, 0.4686448669433594, 0.46830081176757815, 0.46856805419921876, 0.4685209655761719, 0.46874929809570315, 0.4689264526367187, 0.46845541381835937, 0.4686520385742188, 0.46867770385742186, 0.46937490844726565, 0.46933709716796873, 0.4687554626464844, 0.4690616455078125, 0.46915789794921875, 0.46891213989257813, 0.46888754272460936, 0.4687278137207031, 0.46915277099609376, 0.4688332824707031, 0.4693790588378906, 0.46926437377929686, 0.46878515625, 0.4690831298828125, 0.46895718383789065, 0.4689776611328125, 0.4690616455078125, 0.46907391357421874, 0.46851788330078126, 0.46869195556640625, 0.4686376953125, 0.46900634765625, 0.4722012023925781, 0.4687718505859375, 0.4688670654296875, 0.46880459594726565, 0.468642822265625, 0.4693155822753906, 0.9763594360351563, 0.46846771240234375, 0.46886502075195313, 0.4687083740234375, 0.4689837646484375, 0.4684646301269531, 0.4687247314453125, 0.46836224365234375, 0.4683929748535156, 0.4685619201660156, 0.46836737060546874, 0.4687503356933594, 0.46857830810546874, 0.46878411865234376, 0.4683345947265625, 0.468358154296875, 0.46845849609375, 0.4687032470703125, 0.4686520385742188, 0.4686458740234375, 0.46885784912109374, 0.46872677612304686, 0.4685823974609375, 0.46873095703125, 0.4685475158691406, 0.468790283203125, 0.46927053833007815, 0.46861822509765627, 0.46847589111328125, 0.46836224365234375, 0.470181884765625, 0.4690575256347656, 0.4688353271484375, 0.4692449340820313, 0.4685137939453125, 0.46857217407226565, 0.46875238037109374, 0.46873190307617185, 0.4689664001464844, 0.4691271667480469, 0.4686090087890625, 0.4692101135253906, 0.4687974548339844, 0.469317626953125, 0.4686315612792969, 0.46899917602539065, 0.4692490234375, 0.4690309143066406, 0.4687646789550781, 0.46850253295898436, 0.4687083435058594, 0.46883941650390626, 0.46927871704101565, 0.4686152038574219, 0.4694292297363281, 0.4691435546875, 0.46974566650390626, 0.4686940307617187, 0.468969482421875, 0.46890188598632815, 0.46895001220703125, 0.4687564697265625, 0.46904730224609376, 0.9786060791015625, 0.46841650390625, 0.4683786315917969, 0.46915994262695315, 0.46917938232421874, 0.4692777099609375, 0.46883636474609375, 0.468716552734375, 0.46857318115234375, 0.4691128234863281, 0.468600830078125, 0.4694783935546875, 0.46952960205078126, 0.4696739807128906, 0.4687196044921875, 0.46852505493164065, 0.46841854858398435, 0.4683591613769531, 0.4683100280761719, 0.4684431457519531, 0.4690411376953125, 0.4687923278808594, 0.4687216491699219, 0.46836224365234375, 0.4686090087890625, 0.4691363830566406, 0.46857113647460935, 0.46862335205078126, 0.46869094848632814, 0.4686581726074219, 0.4694435729980469, 0.4694640502929687, 0.46918450927734373, 0.46924288940429687, 0.4694343566894531, 0.4690462646484375, 0.469317626953125, 0.46890188598632815, 0.46938323974609375, 0.4693267822265625, 0.46866329956054686, 0.4690370483398438, 0.468864013671875, 0.4687575073242187, 0.4686438598632813, 0.46876776123046876, 0.46984698486328125, 0.4690380859375, 0.46935552978515627, 0.46853836059570314, 0.46839910888671876, 0.46874008178710935, 0.46875955200195313, 0.4687667236328125, 0.4688209838867187, 0.4691302490234375, 0.46921624755859376, 0.4689674377441406, 0.46906777954101564, 0.46867864990234376, 0.46859161376953123, 0.46864794921875, 0.4688332824707031, 0.980326416015625, 0.468701171875, 0.46863360595703124, 0.468738037109375, 0.46885989379882814, 0.4684267578125, 0.468389892578125, 0.46853839111328127, 0.46828131103515624, 0.4683601989746094, 0.46820352172851565, 0.467962890625, 0.4681553955078125, 0.4686499938964844, 0.4686612548828125, 0.4687503356933594, 0.46850253295898436, 0.4680570983886719, 0.4683458557128906, 0.46834994506835936, 0.46889471435546876, 0.46862130737304686, 0.4687196044921875, 0.46831512451171875, 0.4685035400390625, 0.4694077453613281, 0.4687421569824219, 0.4688087158203125, 0.4701829528808594, 0.4684830322265625, 0.4688619384765625, 0.4692244567871094, 0.46869094848632814, 0.4689715270996094, 0.46905548095703126, 0.4686315612792969, 0.468864013671875, 0.4689029235839844, 0.46895001220703125, 0.46892340087890627, 0.46898687744140627, 0.469212158203125, 0.46885272216796875, 0.4688230285644531, 0.46921624755859376, 0.46866943359375, 0.46926849365234374, 0.46906777954101564, 0.469248046875, 0.4691763000488281, 0.46952960205078126, 0.4694057006835938, 0.46893157958984377, 0.4688035888671875, 0.4690667419433594, 0.4687615966796875, 0.4690288696289063, 0.46915890502929686, 0.46848818969726563, 0.4687585144042969, 0.4686315612792969, 0.4686049194335937, 0.46867352294921877, 0.9793843383789063, 0.4697733154296875, 0.46955825805664064, 0.46915890502929686, 0.46897869873046877, 0.4683345947265625, 0.46859982299804687, 0.468316162109375, 0.46864694213867186, 0.4686110534667969, 0.46845745849609377, 0.46816357421875, 0.4684892272949219, 0.46949169921875, 0.46866842651367185, 0.46861312866210936, 0.4686090087890625, 0.4685424499511719, 0.46886605834960937, 0.4688752746582031, 0.46871353149414063, 0.4691127624511719, 0.46852615356445315, 0.46842361450195313, 0.46897665405273437, 0.4689141845703125, 0.4685926513671875, 0.46885989379882814, 0.468421630859375, 0.4683888549804687, 0.46856600952148436, 0.4689182739257812, 0.46858547973632814, 0.46870220947265623, 0.4691896362304688, 0.46975283813476565, 0.46981631469726565, 0.4697753601074219, 0.470096923828125, 0.469834716796875, 0.46959820556640625, 0.4698542175292969, 0.46952243041992187, 0.4697272338867188, 0.4697907104492188, 0.4687656860351562, 0.4691937255859375, 0.46966680908203123, 0.46944461059570314, 0.46914764404296877, 0.469760009765625, 0.4693544921875, 0.46949993896484377, 0.4696063537597656, 0.46877694702148437, 0.4688281555175781, 0.4692244567871094, 0.468706298828125, 0.4684646301269531, 0.46868582153320315, 0.4686725158691406, 0.46858547973632814, 0.4686612548828125, 0.9803509521484375, 0.46829159545898436, 0.4681697387695313, 0.4690083923339844, 0.46880972290039064, 0.46866329956054686, 0.4685547485351563, 0.46837042236328125, 0.468105224609375, 0.4683243713378906, 0.46842364501953127, 0.4681779174804688, 0.4683816833496094, 0.4685599365234375, 0.4682454528808594, 0.46819635009765626, 0.46841036987304685, 0.46834994506835936, 0.468537353515625, 0.46845849609375, 0.46887115478515623, 0.46867352294921877, 0.46852197265625, 0.46868377685546875, 0.46900018310546876, 0.46878207397460936, 0.4686499938964844, 0.4685537414550781, 0.46879437255859374, 0.4684031982421875, 0.4687779846191406, 0.4690032653808594, 0.4684912719726563, 0.46856298828125, 0.46899917602539065, 0.4696033020019531, 0.4696708984375, 0.469855224609375, 0.4690411376953125, 0.468674560546875, 0.46875442504882814, 0.469359619140625, 0.4701552734375, 0.469064697265625, 0.46861312866210936, 0.4686315612792969, 0.4697047119140625, 0.4690083923339844, 0.46888754272460936, 0.46868582153320315, 0.469073974609375, 0.4693411254882813, 0.4695132141113281, 0.46920089721679686, 0.46941696166992186, 0.46919271850585936, 0.46985626220703125, 0.46913946533203127, 0.46915789794921875, 0.4686253967285156, 0.46875955200195313, 0.468642822265625, 0.4691517333984375]",tokens/s,2.1000993200656053,,,,,,main,False,False -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-16B-nl,Salesforce/codegen-16B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1736.183808,12352.749568,0.0,11706.302464,11035.465216,s,10,13.024343627929689,1.3024343627929689,0.002338564901261307,1.30185107421875,1.3038882202148436,1.3064520446777343,1.3085031042480468,"[1.309015869140625, 1.3033184814453125, 1.3003494873046875, 1.3011973876953125, 1.3011253662109374, 1.300955810546875, 1.301638427734375, 1.302063720703125, 1.3022261962890624, 1.302452880859375]",tokens/s,196.55501061184225,kWh,1.5360654360718197e-05,8.415124671664671e-06,7.215477994602094e-05,9.593055897840379e-05,tokens/kWh,2668596.9802139024,MB,1736.183808,12352.749568,0.0,11706.302464,11329.172992,s,10,763.3166562499999,76.331665625,0.01404827179512581,76.33404687500001,76.34705,76.34801328125,76.34878390625,"[76.3116171875, 76.3329609375, 76.3489765625, 76.3411171875, 76.3468359375, 76.331546875, 76.3441953125, 76.3351328125, 76.31521875, 76.3090546875]",tokens/s,0.8253455428249735,kWh,0.0009011750282347202,0.0004939259724664952,0.0042084087556131695,0.005603509756314386,tokens/kWh,11242.953566558468,,s,629,773.821041748047,1.2302401299650985,0.15462762199250651,1.21159375,1.2122087890625,1.2124819091796875,2.513270859375,"[1.2114217529296876, 1.2109813232421875, 1.2112762451171875, 1.2113695068359376, 1.2109967041015626, 1.21078369140625, 1.210820556640625, 1.2114083251953125, 1.211473876953125, 1.2109915771484374, 1.2110264892578124, 1.211177001953125, 1.2111329345703126, 1.2108482666015625, 1.210894287109375, 1.2108328857421875, 1.2114595947265625, 1.21109912109375, 1.2110377197265625, 1.2114605712890625, 1.21109814453125, 1.2109107666015626, 1.2113837890625, 1.211439208984375, 1.2113089599609375, 1.2114852294921874, 1.2108953857421876, 1.211968505859375, 1.2109854736328125, 1.2114114990234375, 1.211503662109375, 1.2115701904296876, 1.2111954345703124, 1.212129150390625, 1.211504638671875, 1.2116378173828124, 1.21143701171875, 1.211441162109375, 1.2110633544921876, 1.21100390625, 1.210900390625, 1.2119766845703126, 1.21135302734375, 1.211661376953125, 1.21140625, 1.211376708984375, 1.21117578125, 1.211125732421875, 1.2112117919921874, 1.2114166259765624, 1.2111329345703126, 1.2116644287109375, 1.2111021728515625, 1.211261962890625, 1.2113489990234374, 1.2112978515625, 1.211167724609375, 1.211284423828125, 1.2117083740234376, 1.2115958251953125, 1.2114329833984374, 1.2118804931640625, 2.514330810546875, 1.210652587890625, 1.2109178466796875, 1.21115234375, 1.210639404296875, 1.2111728515625, 1.2111964111328124, 1.2109495849609375, 1.210982421875, 1.210829833984375, 1.211577392578125, 1.2116376953125, 1.2123822021484374, 1.2119183349609375, 1.2111278076171874, 1.2120401611328124, 1.2116695556640624, 1.2114871826171876, 1.2117001953125, 1.2118865966796875, 1.211429931640625, 1.2113817138671874, 1.21173095703125, 1.2116612548828125, 1.211536376953125, 1.211513916015625, 1.2119930419921876, 1.2118671875, 1.2117279052734375, 1.211217041015625, 1.2116253662109375, 1.211358154296875, 1.211610107421875, 1.21132958984375, 1.2115968017578125, 1.2115753173828125, 1.212295166015625, 1.211431884765625, 1.211931640625, 1.21170947265625, 1.21185791015625, 1.2116807861328125, 1.211569091796875, 1.2115169677734374, 1.2117945556640626, 1.211475830078125, 1.2115762939453125, 1.2120863037109375, 1.211937744140625, 1.2119654541015625, 1.2116817626953125, 1.2118035888671874, 1.212337158203125, 1.2117073974609376, 1.2118385009765624, 1.2118773193359376, 1.21191015625, 1.2120863037109375, 1.21194091796875, 1.212105712890625, 1.2121497802734376, 1.2118917236328124, 1.211799560546875, 2.513431640625, 1.2114862060546876, 1.2116961669921875, 1.2118785400390626, 1.2121865234375, 1.2122286376953124, 1.2120013427734375, 1.2121025390625, 1.21226953125, 1.211442138671875, 1.2113643798828124, 1.2111483154296876, 1.2115557861328126, 1.2120247802734374, 1.2112076416015625, 1.2115435791015625, 1.2116663818359374, 1.2110797119140626, 1.2113746337890625, 1.2114166259765624, 1.2112281494140624, 1.2118333740234375, 1.211620361328125, 1.2116275634765625, 1.211684814453125, 1.2115281982421875, 1.212507080078125, 1.2123299560546874, 1.211989990234375, 1.2121068115234375, 1.212232666015625, 1.2115784912109375, 1.21185888671875, 1.211282470703125, 1.211768798828125, 1.2113284912109374, 1.2114544677734376, 1.2116142578125, 1.2119736328125, 1.21160400390625, 1.2118660888671875, 1.211783203125, 1.211763671875, 1.21185888671875, 1.211821044921875, 1.211894775390625, 1.212494873046875, 1.2119080810546874, 1.2119388427734374, 1.2123709716796875, 1.211740234375, 1.2130374755859374, 1.212662841796875, 1.212389404296875, 1.21267919921875, 1.2124569091796875, 1.212505126953125, 1.212078125, 1.2119132080078125, 1.2119111328125, 1.2119111328125, 1.2122039794921875, 1.212859375, 2.513799072265625, 1.2114248046875, 1.211298828125, 1.2112598876953125, 1.2111002197265626, 1.211157470703125, 1.2119388427734374, 1.2117012939453125, 1.211177001953125, 1.21225927734375, 1.2121456298828126, 1.212099609375, 1.2122501220703126, 1.212095458984375, 1.2122705078125, 1.212464111328125, 1.21236474609375, 1.21200439453125, 1.211461669921875, 1.21135107421875, 1.2123013916015626, 1.2120933837890624, 1.2120391845703125, 1.2125921630859375, 1.2116397705078126, 1.21157421875, 1.2111861572265625, 1.21097216796875, 1.2113848876953126, 1.2114390869140625, 1.21153125, 1.211658203125, 1.2115947265625, 1.2115711669921876, 1.2116275634765625, 1.211242431640625, 1.21172998046875, 1.2113121337890624, 1.2114923095703125, 1.211609130859375, 1.2118292236328125, 1.2115927734375, 1.21164794921875, 1.2114503173828124, 1.2116920166015626, 1.2116182861328124, 1.2114801025390625, 1.211564208984375, 1.21261865234375, 1.2118896484375, 1.211937744140625, 1.2124937744140625, 1.2117872314453124, 1.2115753173828125, 1.2119429931640624, 1.211613037109375, 1.212316650390625, 1.211663330078125, 1.2121661376953126, 1.2119859619140625, 1.2116695556640624, 1.2118455810546875, 1.2117862548828124, 2.5132001953125, 1.21116162109375, 1.2113070068359375, 1.2113653564453124, 1.211356201171875, 1.2111585693359375, 1.21143505859375, 1.211683837890625, 1.2116121826171875, 1.2118189697265624, 1.2116448974609375, 1.21178515625, 1.2120279541015626, 1.21154052734375, 1.211658203125, 1.211451416015625, 1.21213134765625, 1.2125296630859375, 1.2122440185546874, 1.212705810546875, 1.2123677978515626, 1.2122071533203125, 1.2123084716796875, 1.2123751220703125, 1.2121220703125, 1.2126556396484376, 1.2121026611328125, 1.21187841796875, 1.212506103515625, 1.21231982421875, 1.212422119140625, 1.2116009521484374, 1.2117115478515625, 1.2120238037109374, 1.2117667236328125, 1.2115660400390624, 1.2122071533203125, 1.211494384765625, 1.211684814453125, 1.21158251953125, 1.211788330078125, 1.2116644287109375, 1.211957275390625, 1.2114073486328125, 1.211895751953125, 1.2115875244140626, 1.2115179443359374, 1.211845703125, 1.2115126953125, 1.2115343017578124, 1.2121968994140624, 1.2115262451171875, 1.211950927734375, 1.2120555419921875, 1.211916259765625, 1.2119879150390624, 1.2116162109375, 1.2115435791015625, 1.212336181640625, 1.2118609619140626, 1.21176171875, 1.211826171875, 1.2119696044921875, 2.513016845703125, 1.2115302734375, 1.21221533203125, 1.211273193359375, 1.211552734375, 1.21154248046875, 1.211378662109375, 1.2118077392578126, 1.2109425048828124, 1.2108125, 1.211199462890625, 1.2112393798828125, 1.2109864501953125, 1.2110008544921875, 1.2113499755859376, 1.21132958984375, 1.211335693359375, 1.2113797607421875, 1.211218994140625, 1.21196240234375, 1.211410400390625, 1.2120770263671874, 1.2116243896484375, 1.2119141845703125, 1.2118671875, 1.211895751953125, 1.2114534912109376, 1.2118670654296875, 1.211398193359375, 1.2112353515625, 1.21159375, 1.2112230224609375, 1.211525146484375, 1.211252685546875, 1.2116796875, 1.21173095703125, 1.2115252685546876, 1.21129150390625, 1.211832275390625, 1.211515869140625, 1.21154052734375, 1.21152001953125, 1.2113541259765626, 1.211916259765625, 1.211999267578125, 1.211557861328125, 1.2116612548828125, 1.2116644287109375, 1.211683837890625, 1.2118814697265625, 1.2116859130859374, 1.21154248046875, 1.212590087890625, 1.211631591796875, 1.21187841796875, 1.2120863037109375, 1.211619384765625, 1.2120166015625, 1.2119869384765625, 1.2120177001953125, 1.2121640625, 1.211704345703125, 1.211842529296875, 2.51329833984375, 1.2113704833984376, 1.2111278076171874, 1.21133056640625, 1.2119141845703125, 1.2111728515625, 1.2112230224609375, 1.2113807373046874, 1.2113182373046876, 1.211325439453125, 1.2114288330078125, 1.211557861328125, 1.211810791015625, 1.2117626953125, 1.21128759765625, 1.2117484130859375, 1.21141650390625, 1.2113756103515625, 1.2116080322265625, 1.211427978515625, 1.2113477783203126, 1.2119552001953124, 1.211189208984375, 1.2114248046875, 1.211610107421875, 1.21135205078125, 1.2119481201171876, 1.2117523193359374, 1.211484130859375, 1.2121180419921875, 1.21152099609375, 1.2116326904296875, 1.211673583984375, 1.2113121337890624, 1.2119869384765625, 1.2122685546875, 1.2123853759765626, 1.2128603515625, 1.2124027099609376, 1.2125235595703125, 1.2127314453125, 1.2127191162109374, 1.212885986328125, 1.2127242431640626, 1.2118333740234375, 1.211953125, 1.2121129150390626, 1.2117801513671875, 1.212015625, 1.211763671875, 1.2117012939453125, 1.2120667724609375, 1.21187939453125, 1.2117197265625, 1.2119981689453125, 1.21179443359375, 1.2120340576171875, 1.212147705078125, 1.21187841796875, 1.2120791015625, 1.21209033203125, 1.211905029296875, 1.2124200439453126, 2.514125732421875, 1.2114227294921875, 1.211292724609375, 1.211658203125, 1.2115589599609375, 1.2113983154296875, 1.2119888916015624, 1.2113704833984376, 1.211610107421875, 1.211758544921875, 1.2114852294921874, 1.21145654296875, 1.211821044921875, 1.2112169189453126, 1.2116602783203125, 1.211989990234375, 1.2113223876953125, 1.2115517578125, 1.2113489990234374, 1.2112762451171875, 1.2118035888671874, 1.211737060546875, 1.2115977783203125, 1.2129249267578126, 1.21261767578125, 1.2122420654296875, 1.211623291015625, 1.2114923095703125, 1.212148681640625, 1.2119019775390625, 1.21175146484375, 1.2118385009765624, 1.2116920166015626, 1.2118294677734376, 1.21165185546875, 1.2111922607421874, 1.2113212890625, 1.2114442138671875, 1.211694091796875, 1.21236474609375, 1.212018798828125, 1.211768798828125, 1.211747314453125, 1.2114288330078125, 1.2113223876953125, 1.2116746826171876, 1.21150048828125, 1.21159375, 1.21177294921875, 1.21147802734375, 1.212080078125, 1.21192138671875, 1.2113746337890625, 1.2114554443359375, 1.2115548095703126, 1.21162646484375, 1.211575439453125, 1.2113038330078125, 1.211806640625, 1.2116695556640624, 1.211400146484375, 1.2115343017578124, 1.2114677734375, 2.5139150390625, 1.2104947509765625, 1.2104796142578125, 1.2110601806640624, 1.210818603515625, 1.21080419921875, 1.2113817138671874, 1.2107110595703126, 1.2115599365234375, 1.210962890625, 1.21103466796875, 1.2109844970703125, 1.2109957275390626, 1.210639404296875, 1.210967041015625, 1.210735595703125, 1.211298828125, 1.2114892578125, 1.210882080078125, 1.2117001953125, 1.211292724609375, 1.2112998046875, 1.211736083984375, 1.2114698486328126, 1.2116868896484374, 1.212020751953125, 1.2116572265625, 1.2118538818359375, 1.211252685546875, 1.2111072998046875, 1.211619384765625, 1.2111688232421876, 1.211368408203125, 1.2118763427734376, 1.2112978515625, 1.211556884765625, 1.211440185546875, 1.2111011962890625, 1.21163671875, 1.2113223876953125, 1.2111298828125, 1.2116162109375, 1.2110653076171876, 1.2111217041015625, 1.211494384765625, 1.211451416015625, 1.2114759521484375, 1.21181689453125, 1.2115538330078126, 1.2116080322265625, 1.211831298828125, 1.211515869140625, 1.21173193359375, 1.211282470703125, 1.2113018798828126, 1.21145654296875, 1.2112281494140624, 1.2112547607421875, 1.2116612548828125, 1.21142578125, 1.21210986328125, 1.2116920166015626, 1.2119910888671874, 2.51358935546875, 1.21063427734375, 1.211430908203125, 1.210544189453125, 1.2111871337890625, 1.21103564453125, 1.2112589111328125, 1.2109700927734375, 1.2114503173828124, 1.2111072998046875, 1.21147802734375, 1.210945556640625, 1.2111922607421874, 1.211684814453125, 1.2114554443359375, 1.2112486572265626, 1.2119346923828125, 1.2112281494140624, 1.2114483642578124, 1.2110079345703124, 1.2108524169921875, 1.2109935302734376, 1.2109833984375, 1.2113858642578126, 1.2111492919921876, 1.210892333984375, 1.2111124267578126, 1.2112025146484375, 1.2109700927734375, 1.211509765625, 1.21159375, 1.2114063720703125, 1.211040771484375, 1.21109814453125, 1.210799072265625, 1.210892333984375, 1.210966064453125, 1.210841064453125, 1.2113079833984375, 1.21124560546875, 1.2112608642578124, 1.2112496337890626, 1.2110306396484376, 1.2115035400390626, 1.211241455078125, 1.2117279052734375, 1.2114945068359375, 1.2111419677734374, 1.2113212890625, 1.211431884765625, 1.2111728515625, 1.2113961181640625, 1.211167724609375, 1.210883056640625, 1.21160498046875, 1.211494384765625, 1.2115814208984375, 1.2117698974609374, 1.2115025634765626, 1.2116275634765625, 1.2118814697265625, 1.211230224609375, 1.21170947265625]",tokens/s,0.8128494394247809,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-6.7b,facebook/opt-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2022.883328,5539.10272,0.0,4892.655616,4542.741504,s,10,5.694402282714844,0.5694402282714843,0.0022278964552512335,0.5688670349121093,0.5707117797851562,0.5731342102050782,0.5750721545410157,"[0.575556640625, 0.5690338134765625, 0.5678692626953125, 0.5687002563476562, 0.5676268920898437, 0.5674249267578125, 0.5684844970703125, 0.5696422119140625, 0.5701734619140625, 0.5698903198242188]",tokens/s,449.56430418883286,kWh,6.703966662839608e-06,3.6734817678128214e-06,3.077389807590622e-05,4.115134650655865e-05,tokens/kWh,6220938.601831633,MB,2022.883328,5539.10272,0.0,4892.655616,4726.280192,s,10,334.554328125,33.4554328125,0.012952548332308819,33.45466796875,33.46486484375,33.476350390625,33.485538828125,"[33.4878359375, 33.44866796875, 33.443125, 33.44916015625, 33.43737890625, 33.4588671875, 33.4546875, 33.4623125, 33.4546484375, 33.45764453125]",tokens/s,1.8831022259697452,kWh,0.00039510093122168826,0.00021654957452975094,0.0018051211817500937,0.0024167716875015325,tokens/kWh,26067.832690116305,,s,629,339.1397302856444,0.5391728621393395,0.06755475317116652,0.53097265625,0.5316083862304688,0.5317822387695312,1.09872478515625,"[0.5310126342773438, 0.53113037109375, 0.5317058715820312, 0.530935791015625, 0.5307023315429688, 0.531651611328125, 0.5313556518554687, 0.53151025390625, 0.5312081909179688, 0.5308344116210938, 0.5306572875976563, 0.531704833984375, 0.5313720092773437, 0.5314744262695312, 0.5315502319335937, 0.5319423828125, 0.5314641723632813, 0.53194140625, 0.5313074951171874, 0.53119384765625, 0.5315758056640625, 0.5314529418945313, 0.5310607299804687, 0.5313535766601563, 0.5317161254882813, 0.531689453125, 0.53146826171875, 0.531725341796875, 0.5313976440429687, 0.53174169921875, 0.5316290283203124, 0.5319515991210938, 0.5317816162109374, 0.5313218383789062, 0.5316331787109375, 0.5317826538085938, 0.5314375610351563, 0.5311324462890625, 0.5311549682617187, 0.5317427368164063, 0.5311119384765625, 0.5312276611328125, 0.5314365234375, 0.5316792602539062, 0.5316904907226563, 0.5320693969726562, 0.531862548828125, 0.5321605224609375, 0.5318092651367188, 0.5320345458984375, 0.5320376586914063, 0.531989501953125, 0.5317529296875, 0.5317816162109374, 0.532279296875, 0.531968994140625, 0.531651611328125, 0.5318492431640625, 0.5322158203125, 0.5313269653320313, 0.5311262817382812, 0.5317109985351562, 1.100517333984375, 0.531336181640625, 0.5311201171875, 0.5306900634765624, 0.5306705932617187, 0.5307289428710937, 0.5306470336914062, 0.5307658081054687, 0.530572265625, 0.5306316528320313, 0.5310679321289062, 0.5309183959960937, 0.5307955322265625, 0.5309910888671875, 0.5315430297851562, 0.531473388671875, 0.5305477294921875, 0.5311221923828126, 0.5307709350585937, 0.530966552734375, 0.5305128784179688, 0.5308323974609375, 0.5309839477539062, 0.5310494995117188, 0.5307473754882812, 0.5309757690429687, 0.5309235229492187, 0.5309337768554687, 0.53066650390625, 0.5311743774414063, 0.53091943359375, 0.5312245483398438, 0.5310628051757813, 0.5319270629882813, 0.5310371704101563, 0.5307791137695312, 0.5309276123046875, 0.530777099609375, 0.5308047485351562, 0.5308313598632812, 0.530946044921875, 0.5307647705078125, 0.5308211059570312, 0.5306654663085938, 0.530524169921875, 0.5307432861328125, 0.5308251953125, 0.53072998046875, 0.530977783203125, 0.5311867065429687, 0.5309869995117188, 0.5312542724609375, 0.5314273071289063, 0.5308969116210938, 0.5310075073242188, 0.5313853149414063, 0.5306746826171875, 0.53089892578125, 0.5307893676757812, 0.5309020385742188, 0.5307484130859375, 0.5309389038085938, 0.5306982421875, 1.0987735595703125, 0.5308344116210938, 0.530502685546875, 0.5315389404296875, 0.5309573364257812, 0.5307207641601562, 0.530703369140625, 0.531072021484375, 0.5305855712890625, 0.5308221435546875, 0.530577392578125, 0.530745361328125, 0.5306163330078125, 0.5306101684570312, 0.5306142578125, 0.5307074584960938, 0.5306920776367188, 0.530682861328125, 0.5304330444335937, 0.5306326904296875, 0.5307760620117188, 0.5308211059570312, 0.5306358032226562, 0.53072998046875, 0.5306920776367188, 0.5310648193359375, 0.5310341186523437, 0.5307627563476562, 0.530850830078125, 0.5307586669921875, 0.5305743408203125, 0.530819091796875, 0.5308047485351562, 0.5305784301757812, 0.5307218017578125, 0.5306890258789062, 0.5307053833007812, 0.5306900634765624, 0.5304514770507812, 0.5309265747070312, 0.5308579711914062, 0.5307044067382812, 0.5306583251953125, 0.530681884765625, 0.5314078979492187, 0.5308272705078125, 0.53083544921875, 0.5314437255859376, 0.5309910888671875, 0.5313760986328125, 0.5309757690429687, 0.5308323974609375, 0.5307709350585937, 0.5311876831054687, 0.5309788208007813, 0.5310750732421875, 0.5309757690429687, 0.5311590576171875, 0.530819091796875, 0.5316198120117187, 0.5310689086914062, 0.5308856201171875, 0.530956298828125, 1.099652099609375, 0.5306685180664062, 0.5309573364257812, 0.5311047973632812, 0.5308251953125, 0.530680908203125, 0.5306971435546874, 0.5309389038085938, 0.5305805053710938, 0.5308150024414062, 0.530714599609375, 0.5305753784179688, 0.530609130859375, 0.5306388549804687, 0.5310023803710937, 0.5311734008789063, 0.5306429443359375, 0.5309942016601562, 0.5309910888671875, 0.5308006591796876, 0.5307330322265625, 0.5312122802734375, 0.5308692626953125, 0.53094091796875, 0.5309368286132813, 0.5310699462890625, 0.531135498046875, 0.5310894165039063, 0.5310156860351563, 0.5310453491210938, 0.5309798583984375, 0.5312214965820312, 0.5310709838867187, 0.5311631469726562, 0.5312348022460938, 0.5308098754882813, 0.5313177490234375, 0.5314129638671875, 0.5311539306640625, 0.5311221923828126, 0.5308692626953125, 0.5309265747070312, 0.5310023803710937, 0.5306695556640625, 0.5307924194335938, 0.5308477172851562, 0.5312583618164063, 0.5308375244140625, 0.5306859741210938, 0.5308375244140625, 0.5310238647460938, 0.5310392456054688, 0.5313167114257813, 0.5309163818359375, 0.530735107421875, 0.5309808349609375, 0.5313843383789062, 0.53096240234375, 0.530924560546875, 0.5308661499023437, 0.5307893676757812, 0.5308641357421875, 0.5307678833007813, 1.098599365234375, 0.5306071166992188, 0.5305692138671875, 0.5305211181640626, 0.53089794921875, 0.5305497436523438, 0.5308221435546875, 0.5307658081054687, 0.5307996215820312, 0.530661376953125, 0.5306900634765624, 0.5311692504882812, 0.530609130859375, 0.5308006591796876, 0.5306644287109376, 0.5308375244140625, 0.5307730102539062, 0.5307525024414063, 0.5305477294921875, 0.5310003051757812, 0.53079345703125, 0.5306757202148438, 0.5304637451171875, 0.5307637939453125, 0.5306132202148437, 0.530956298828125, 0.530988037109375, 0.5308764038085938, 0.5306808471679687, 0.5308743896484375, 0.5307279663085938, 0.5307576293945313, 0.5310965576171875, 0.5306583251953125, 0.53056103515625, 0.5305681762695312, 0.530555908203125, 0.5308845825195313, 0.5308344116210938, 0.5308221435546875, 0.530787353515625, 0.5306757202148438, 0.5306941528320313, 0.5308262329101563, 0.5310812377929688, 0.530934814453125, 0.5305538330078124, 0.5308098754882813, 0.5308231811523437, 0.5310986328125, 0.5306429443359375, 0.530845703125, 0.5307422485351563, 0.5307197265625, 0.530492431640625, 0.5308323974609375, 0.5305548706054688, 0.53087744140625, 0.5306767578125, 0.5308753662109374, 0.5305855712890625, 0.5308129272460937, 0.5303736572265625, 1.098567626953125, 0.5309030151367188, 0.5317017822265625, 0.5314866943359375, 0.531140625, 0.5313515625, 0.5313720092773437, 0.530951171875, 0.5308917846679687, 0.530724853515625, 0.5307863159179688, 0.5310587158203125, 0.530777099609375, 0.530819091796875, 0.53087744140625, 0.5309696044921876, 0.5308897094726562, 0.5310904541015625, 0.531515380859375, 0.5310259399414062, 0.5307739868164062, 0.5312061157226563, 0.5318901977539062, 0.5310761108398437, 0.5309962158203125, 0.5314529418945313, 0.5309951782226563, 0.5310013427734375, 0.5313760986328125, 0.5313331298828124, 0.5312849731445313, 0.5316055297851563, 0.5308313598632812, 0.5314816284179688, 0.531324951171875, 0.5315655517578125, 0.5319567260742187, 0.5317283935546875, 0.5308856201171875, 0.5309910888671875, 0.5312266235351563, 0.53136279296875, 0.5310289916992188, 0.5309757690429687, 0.530524169921875, 0.5308047485351562, 0.5308436279296875, 0.5307371215820312, 0.5306552124023437, 0.5307576293945313, 0.530914306640625, 0.530629638671875, 0.530746337890625, 0.5308231811523437, 0.5308712768554688, 0.5312450561523437, 0.5309327392578125, 0.53103515625, 0.5309214477539063, 0.5310279541015624, 0.5311580200195313, 0.5310894165039063, 0.5313126220703125, 1.0993970947265626, 0.5308150024414062, 0.53054052734375, 0.53062451171875, 0.5311447143554687, 0.5309869995117188, 0.5307893676757812, 0.5311334228515625, 0.5309542236328125, 0.5308313598632812, 0.5310842895507812, 0.5308108520507813, 0.5306603393554687, 0.531177490234375, 0.5307023315429688, 0.5314396362304687, 0.5306491088867188, 0.5312952270507812, 0.5308108520507813, 0.530840576171875, 0.5308078002929687, 0.5307863159179688, 0.5308047485351562, 0.5311262817382812, 0.53103515625, 0.5310740356445313, 0.5309634399414063, 0.531051513671875, 0.5307965698242187, 0.5314877319335938, 0.530746337890625, 0.5310259399414062, 0.5311201171875, 0.5307340698242188, 0.5309931640625, 0.5309593505859375, 0.5321942749023437, 0.5316433715820312, 0.5312388916015625, 0.530872314453125, 0.5307698974609375, 0.5307975463867187, 0.53082421875, 0.5306982421875, 0.5306019897460937, 0.5307197265625, 0.5305917358398438, 0.5307258911132813, 0.53085693359375, 0.531398681640625, 0.53166796875, 0.5317969970703125, 0.531862548828125, 0.5320745239257813, 0.5316608276367187, 0.5313966064453125, 0.5307791137695312, 0.53075048828125, 0.5309102172851563, 0.5311057739257813, 0.5310842895507812, 0.5312010498046875, 0.5308037109375, 1.1007191162109375, 0.53106689453125, 0.5309931640625, 0.5313853149414063, 0.5308897094726562, 0.5309972534179688, 0.5310842895507812, 0.531324951171875, 0.5306767578125, 0.5316229248046875, 0.5309573364257812, 0.530756591796875, 0.5307310180664062, 0.53082421875, 0.5305927734375, 0.5316853637695312, 0.5315819702148438, 0.5312542724609375, 0.5311344604492187, 0.531040283203125, 0.5308897094726562, 0.5313392944335937, 0.5316823120117188, 0.53125634765625, 0.5309573364257812, 0.5317652587890624, 0.531435546875, 0.531162109375, 0.5312890625, 0.5313095703125, 0.5313320922851562, 0.5313013916015625, 0.5311661987304688, 0.531324951171875, 0.5308743896484375, 0.53102490234375, 0.5308999633789062, 0.53098291015625, 0.5310023803710937, 0.5311641845703124, 0.5315082397460937, 0.5309317016601562, 0.5308917846679687, 0.5309010009765625, 0.5306695556640625, 0.531409912109375, 0.5308856201171875, 0.531504150390625, 0.5308948364257813, 0.5309337768554687, 0.5309696044921876, 0.5308682250976563, 0.5308712768554688, 0.5310637817382813, 0.5310596923828125, 0.530924560546875, 0.5309398803710937, 0.5311754150390625, 0.5311918334960938, 0.5315389404296875, 0.5313822631835937, 0.5316004028320312, 0.5323612060546875, 1.101580322265625, 0.5309798583984375, 0.5314283447265625, 0.53097265625, 0.5306849365234375, 0.53102490234375, 0.5308344116210938, 0.5312901000976562, 0.5309429931640625, 0.5312133178710937, 0.53045556640625, 0.5307914428710937, 0.53096142578125, 0.5311590576171875, 0.531051513671875, 0.5311539306640625, 0.5308795166015625, 0.5314437255859376, 0.5311702880859375, 0.5311856689453125, 0.5311795043945312, 0.5310105590820312, 0.5306644287109376, 0.530904052734375, 0.5307525024414063, 0.530788330078125, 0.5305599975585937, 0.5308651733398437, 0.5308682250976563, 0.5307955322265625, 0.5306275634765625, 0.5308323974609375, 0.53082421875, 0.5314150390625, 0.5311631469726562, 0.53131982421875, 0.5312214965820312, 0.5309327392578125, 0.5311282958984375, 0.5312542724609375, 0.530845703125, 0.5310156860351563, 0.53068798828125, 0.5308897094726562, 0.5308231811523437, 0.5310628051757813, 0.531072021484375, 0.5317027587890625, 0.5310494995117188, 0.5310187377929687, 0.5309296875, 0.531330078125, 0.5311447143554687, 0.53096044921875, 0.5310719604492188, 0.531030029296875, 0.5310156860351563, 0.53125634765625, 0.5312440185546875, 0.5312337646484375, 0.5311641845703124, 0.5312235717773437, 0.530788330078125, 1.10097412109375, 0.5311385498046876, 0.5308712768554688, 0.5309481201171875, 0.5307709350585937, 0.5306480712890626, 0.5311713256835937, 0.5311160278320313, 0.5307095336914063, 0.5308487548828125, 0.53075048828125, 0.5309020385742188, 0.5306849365234375, 0.5309808349609375, 0.53065625, 0.5309685668945312, 0.5306695556640625, 0.5307422485351563, 0.5307944946289063, 0.53087744140625, 0.53075048828125, 0.5307781372070313, 0.5308733520507812, 0.5309255981445312, 0.5307822265625, 0.531041259765625, 0.5312808837890625, 0.5311181030273437, 0.531198974609375, 0.5309603881835937, 0.5314375610351563, 0.5310955810546875, 0.5312604370117188, 0.5309583129882812, 0.5311651611328125, 0.530998291015625, 0.53083544921875, 0.5311876831054687, 0.531009521484375, 0.531167236328125, 0.5306757202148438, 0.531293212890625, 0.5311754150390625, 0.53102490234375, 0.5311047973632812, 0.5315072021484375, 0.531167236328125, 0.5316218872070313, 0.5310310668945313, 0.531662841796875, 0.5310525512695312, 0.5312481079101562, 0.5310341186523437, 0.5309962158203125, 0.5309798583984375, 0.5312184448242188, 0.5310965576171875, 0.5310013427734375, 0.5311498413085938, 0.53165771484375, 0.5311181030273437, 0.531272705078125, 0.5313116455078125]",tokens/s,1.8546927529553001,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1392.545792,6237.454336,0.0,5591.007232,5346.100736,s,10,5.702087280273438,0.5702087280273438,0.0032758876463017,0.5691306762695312,0.5706701721191406,0.5753404876708984,0.5790767401123047,"[0.5800108032226563, 0.5690457763671875, 0.56963232421875, 0.5686717529296875, 0.5691049194335938, 0.5689085083007812, 0.5691564331054687, 0.5690445556640625, 0.5692649536132812, 0.5692472534179688]",tokens/s,448.9584031546493,kWh,6.730608862859232e-06,3.6874586645353704e-06,3.2089053449001976e-05,4.2507120976396576e-05,tokens/kWh,6022520.32411586,MB,1392.545792,6237.454336,0.0,5591.007232,5555.34336,s,10,329.95942187500003,32.995942187500006,0.00677698481578348,32.996611328125,33.003900390625,33.0066337890625,33.008820507812494,"[32.98758984375, 32.99876953125, 32.99800390625, 33.00329296875, 32.98576171875, 32.99270703125, 32.99606640625, 32.99070703125, 32.99715625, 33.0093671875]",tokens/s,1.9093256874436688,kWh,0.0003894760356291577,0.00021346548665747832,0.001836931469543996,0.002439872991830632,tokens/kWh,25821.016180326347,,s,629,334.5575883178707,0.5318880577390637,0.0676032283856282,0.5236981811523438,0.5243047729492187,0.52448828125,1.092699482421875,"[0.5232855224609375, 0.5235804443359375, 0.5231001586914062, 0.5230325927734375, 0.52342578125, 0.5232117919921875, 0.5233387451171875, 0.52324658203125, 0.523146240234375, 0.5234544677734375, 0.5234892578125, 0.523303955078125, 0.5232906494140624, 0.52303564453125, 0.5235220336914063, 0.5233828125, 0.5234381103515625, 0.5232639770507812, 0.523114501953125, 0.5234656982421875, 0.5235753173828125, 0.5235343627929687, 0.5234656982421875, 0.52356298828125, 0.5236715698242187, 0.523630615234375, 0.523747314453125, 0.5236019287109375, 0.5239511108398438, 0.5234032592773438, 0.5237637329101562, 0.5235281982421875, 0.5234298706054688, 0.5238978271484375, 0.523704345703125, 0.5234800415039063, 0.523568115234375, 0.5234032592773438, 0.5236162719726563, 0.523826171875, 0.5237114868164062, 0.5236602783203125, 0.5236776733398437, 0.5234022827148438, 0.5235650024414062, 0.5239142456054687, 0.5236613159179687, 0.5238640747070312, 0.5236664428710938, 0.5236551513671875, 0.5237268676757812, 0.523779052734375, 0.5245716552734375, 0.5238753051757813, 0.5239859008789063, 0.5239797973632813, 0.52379443359375, 0.5241487426757813, 0.5243228149414062, 0.5239275512695313, 0.5239859008789063, 0.5239849243164062, 1.092547607421875, 0.5234862060546875, 0.5234585571289062, 0.523430908203125, 0.523419677734375, 0.5231114501953125, 0.52326806640625, 0.5233162231445313, 0.5237933959960938, 0.5237329711914063, 0.5236541137695313, 0.5234268188476563, 0.5234974975585938, 0.5239500732421875, 0.5236981811523438, 0.5235404663085937, 0.5233397827148437, 0.5233663940429687, 0.5233930053710938, 0.523251708984375, 0.5238825073242187, 0.5233387451171875, 0.52321484375, 0.5236510620117187, 0.5232701416015625, 0.523261962890625, 0.5234851684570313, 0.52385791015625, 0.5233141479492187, 0.5233141479492187, 0.5237933959960938, 0.5236162719726563, 0.5235394287109375, 0.5236039428710938, 0.5236265258789062, 0.523404296875, 0.524432373046875, 0.5245040893554688, 0.5246044311523438, 0.52440576171875, 0.5234370727539063, 0.523509765625, 0.5242644653320313, 0.5239736328125, 0.5239613647460938, 0.5238251342773438, 0.5239859008789063, 0.5239480590820312, 0.5240678100585937, 0.5244600219726563, 0.5235599365234375, 0.5235322875976562, 0.5239992065429687, 0.5245665283203125, 0.5246177368164062, 0.5242409057617188, 0.5239818115234375, 0.5243668212890625, 0.5246289672851563, 0.5246351318359375, 0.524642333984375, 0.5243975830078125, 0.5244672241210937, 1.093401611328125, 0.5240750122070312, 0.5239552001953125, 0.52360498046875, 0.523466796875, 0.5243002319335938, 0.5241241455078125, 0.5247160034179688, 0.5239346923828125, 0.5236541137695313, 0.5237217407226562, 0.5237616577148437, 0.5244815063476562, 0.524211181640625, 0.5238456420898437, 0.5239695434570313, 0.5239244995117187, 0.5236213989257813, 0.5235159301757812, 0.5238743286132812, 0.5235824584960938, 0.5235179443359375, 0.52333056640625, 0.5233848266601563, 0.5233059692382812, 0.5234913330078125, 0.5241917724609375, 0.5241712646484376, 0.523509765625, 0.523978759765625, 0.524326904296875, 0.5240657958984375, 0.5243740234375, 0.5234913330078125, 0.523325439453125, 0.5236459350585938, 0.5237012329101562, 0.5237268676757812, 0.5233213500976562, 0.5239797973632813, 0.52371044921875, 0.524242919921875, 0.523598876953125, 0.5236613159179687, 0.5237073974609375, 0.523826171875, 0.5238538208007812, 0.5235712280273438, 0.523441162109375, 0.5235732421875, 0.523472900390625, 0.5238896484375, 0.5235292358398438, 0.5239623413085938, 0.5240350952148437, 0.5237391357421874, 0.5234851684570313, 0.5235486450195312, 0.5237903442382813, 0.5235435791015625, 0.5234749145507812, 0.5236244506835938, 0.5238026123046875, 1.0924083251953125, 0.5236694946289062, 0.52347802734375, 0.5234851684570313, 0.5235445556640625, 0.5234339599609374, 0.5239521484375, 0.52405859375, 0.5237380981445312, 0.5242726440429688, 0.5238128662109375, 0.5241282348632812, 0.5237278442382812, 0.524042236328125, 0.523821044921875, 0.523958251953125, 0.5236961059570312, 0.5237063598632813, 0.5236746215820313, 0.5236930541992187, 0.5239552001953125, 0.5237145385742188, 0.5233878784179687, 0.5233551635742187, 0.5233059692382812, 0.5233325805664063, 0.523447265625, 0.5242828979492188, 0.523799560546875, 0.5240350952148437, 0.5233172607421875, 0.523683837890625, 0.5236930541992187, 0.52356298828125, 0.5234247436523437, 0.5236224365234375, 0.5233048706054687, 0.5234401245117187, 0.5237933959960938, 0.5242378540039062, 0.5238743286132812, 0.5239449462890625, 0.5243023071289062, 0.5239142456054687, 0.5239797973632813, 0.5242982177734375, 0.5239521484375, 0.5240166625976562, 0.5240678100585937, 0.5244170532226563, 0.5238589477539063, 0.5242276000976562, 0.5240964965820313, 0.523994140625, 0.5239715576171875, 0.5243576049804688, 0.5245450439453125, 0.5247354736328125, 0.5245726928710938, 0.5245236206054688, 0.5238475952148437, 0.523821044921875, 0.5236725463867188, 1.0934261474609375, 0.52333056640625, 0.5229783325195313, 0.5233264770507813, 0.523093994140625, 0.5231533813476562, 0.5235353393554687, 0.5235691528320312, 0.5232783203125, 0.5233970947265625, 0.52322509765625, 0.5232906494140624, 0.5234452514648438, 0.5239552001953125, 0.5232609252929687, 0.5235496826171875, 0.5232435302734375, 0.5234022216796875, 0.5231646728515625, 0.52375244140625, 0.5232578735351563, 0.5234319458007812, 0.52356298828125, 0.5234237670898437, 0.523451416015625, 0.5234012451171876, 0.5241415405273437, 0.5235762939453125, 0.523673583984375, 0.5237974853515625, 0.52398388671875, 0.52423681640625, 0.5239766845703125, 0.5234073486328125, 0.5233756103515625, 0.5234616088867188, 0.5233121337890625, 0.5233397827148437, 0.5239388427734375, 0.5235742797851562, 0.5236398315429688, 0.52368896484375, 0.5234555053710938, 0.5237698364257812, 0.5233592529296875, 0.523894775390625, 0.5234401245117187, 0.5235117797851563, 0.523404296875, 0.5233878784179687, 0.5234124755859375, 0.5239408569335937, 0.52353125, 0.5234237670898437, 0.5235128784179688, 0.523874267578125, 0.5239234619140625, 0.5243146362304687, 0.5239275512695313, 0.5238773803710938, 0.5242818603515625, 0.523810791015625, 0.523821044921875, 1.0930257568359374, 0.5232107543945312, 0.52316162109375, 0.5232630004882812, 0.5232639770507812, 0.5235537719726563, 0.5244201049804688, 0.5233796997070312, 0.5232916259765625, 0.523272216796875, 0.52347802734375, 0.5233551635742187, 0.5237022705078125, 0.523598876953125, 0.5238466796875, 0.524136474609375, 0.5237606201171875, 0.5238057250976562, 0.523778076171875, 0.5240791015625, 0.5236336669921875, 0.5233408203125, 0.5235425415039062, 0.5236541137695313, 0.523335693359375, 0.5239746704101562, 0.5234063110351562, 0.5233428344726563, 0.523420654296875, 0.5235691528320312, 0.523378662109375, 0.5238292236328125, 0.523472900390625, 0.5234135131835937, 0.5238937377929688, 0.52394189453125, 0.523778076171875, 0.52375244140625, 0.5239193725585938, 0.5237340087890625, 0.5233941040039063, 0.5235650024414062, 0.5234503784179687, 0.5236265258789062, 0.5240217895507813, 0.52352001953125, 0.5239121704101563, 0.5239193725585938, 0.5238906860351562, 0.5238906860351562, 0.524147705078125, 0.5241671752929687, 0.5243658447265624, 0.5237421875, 0.5238804321289062, 0.5237001953125, 0.523598876953125, 0.5240176391601562, 0.5237852172851563, 0.52413232421875, 0.5235875854492188, 0.52364697265625, 0.52398388671875, 1.0928189697265625, 0.5236561889648438, 0.5236930541992187, 0.5234370727539063, 0.5235292358398438, 0.523916259765625, 0.5238763427734375, 0.5241989135742188, 0.52381591796875, 0.5243770751953125, 0.5241866455078125, 0.5241456909179687, 0.5243525390625, 0.5239951171875, 0.5239971923828125, 0.524368896484375, 0.5239060668945312, 0.524020751953125, 0.5241405639648438, 0.5238804321289062, 0.52356201171875, 0.5234821166992187, 0.5237688598632813, 0.5234370727539063, 0.5234564819335937, 0.523536376953125, 0.5236070556640625, 0.5234503784179687, 0.5238599853515625, 0.5234083862304687, 0.5233295288085937, 0.523884521484375, 0.5232977905273437, 0.5238272094726563, 0.5236193237304687, 0.5233909912109375, 0.5233141479492187, 0.5239879760742188, 0.5235762939453125, 0.5241558837890625, 0.5236766967773437, 0.5239725952148437, 0.5236613159179687, 0.52408935546875, 0.5242327270507813, 0.5238917236328124, 0.5234862060546875, 0.5241200561523438, 0.5234708251953125, 0.523630615234375, 0.5242705688476562, 0.5235712280273438, 0.5233428344726563, 0.52341455078125, 0.5233182983398438, 0.52377294921875, 0.5237073974609375, 0.5236223754882813, 0.5232424926757813, 0.5235609741210937, 0.523462646484375, 0.523536376953125, 0.5239029541015625, 1.092758544921875, 0.5232230224609375, 0.5236244506835938, 0.5231585083007813, 0.5233715209960937, 0.5235814208984375, 0.5233612670898438, 0.523536376953125, 0.523325439453125, 0.5234390869140625, 0.52335205078125, 0.52364697265625, 0.5233899536132812, 0.5232977905273437, 0.5235599365234375, 0.5235517578125, 0.5233920288085937, 0.52366845703125, 0.5234319458007812, 0.523514892578125, 0.5232752685546875, 0.5237012329101562, 0.5237196655273437, 0.5233766479492188, 0.5236971435546875, 0.52352099609375, 0.5235537719726563, 0.523345947265625, 0.5235455932617188, 0.52406884765625, 0.5242286376953125, 0.524389404296875, 0.5235241088867187, 0.5232578735351563, 0.5233694458007813, 0.523747314453125, 0.5242389526367187, 0.523600830078125, 0.5237022705078125, 0.5236387939453125, 0.5238128662109375, 0.5234390869140625, 0.5237319946289063, 0.5238507690429688, 0.5233745727539062, 0.5234442138671875, 0.5238927612304688, 0.523767822265625, 0.523869140625, 0.523968505859375, 0.5244630737304687, 0.5236377563476563, 0.52392138671875, 0.5233858642578125, 0.5234381103515625, 0.5237340087890625, 0.5240494384765625, 0.52394189453125, 0.5239357299804688, 0.5239705810546875, 0.5242203979492187, 0.5239931030273437, 0.5242460327148437, 1.093507080078125, 0.523989013671875, 0.5240360717773438, 0.5239337158203125, 0.5234032592773438, 0.5238927612304688, 0.5234606323242188, 0.5235845336914062, 0.5233848266601563, 0.5233233642578125, 0.5231104125976562, 0.5241026611328125, 0.5236070556640625, 0.523736083984375, 0.523272216796875, 0.5247611083984375, 0.5243330688476563, 0.5240186767578126, 0.524157958984375, 0.5240443115234374, 0.523978759765625, 0.5238374633789062, 0.5240657958984375, 0.5238599853515625, 0.5237462768554687, 0.5236694946289062, 0.523599853515625, 0.52335205078125, 0.5244129028320312, 0.5246812133789063, 0.524706787109375, 0.524564453125, 0.5243494262695313, 0.524263427734375, 0.5238323364257812, 0.523388916015625, 0.5234790649414063, 0.5235701904296876, 0.5234329833984375, 0.52348828125, 0.5235302124023438, 0.5233008422851563, 0.5235025634765625, 0.52366748046875, 0.523378662109375, 0.5235241088867187, 0.523799560546875, 0.5239378051757813, 0.5237391357421874, 0.5240770263671874, 0.5232752685546875, 0.5233377075195312, 0.5234656982421875, 0.5238057250976562, 0.5232496337890625, 0.5235005493164062, 0.52366845703125, 0.52352099609375, 0.5235978393554688, 0.5234442138671875, 0.5232630004882812, 0.523420654296875, 0.5245173950195312, 1.092947998046875, 0.52453271484375, 0.5243463745117187, 0.5242276000976562, 0.5244682006835938, 0.524368896484375, 0.5243944702148438, 0.5240617065429688, 0.5243750610351563, 0.5239592895507813, 0.5239234619140625, 0.52438525390625, 0.5242869873046875, 0.5240463256835938, 0.5240596313476562, 0.524732421875, 0.5245419311523437, 0.5243187255859375, 0.5240545043945313, 0.524000244140625, 0.5237412109375, 0.5240115356445313, 0.5239132080078125, 0.5242838745117188, 0.5240617065429688, 0.524099609375, 0.5238660888671876, 0.5240678100585937, 0.5237862548828125, 0.5238876342773438, 0.5237872924804687, 0.5241005859375, 0.5238323364257812, 0.523931640625, 0.5241927490234375, 0.5244938354492188, 0.5244067993164062, 0.5234135131835937, 0.523315185546875, 0.52359375, 0.5232455444335937, 0.5234421997070312, 0.5235281982421875, 0.5233162231445313, 0.523388916015625, 0.523452392578125, 0.5235916748046875, 0.5241804809570313, 0.5237412109375, 0.52387939453125, 0.5238538208007812, 0.5236848754882812, 0.523737060546875, 0.5239080810546874, 0.5241026611328125, 0.5244927978515626, 0.5238046875, 0.5238814697265625, 0.5236787109375, 0.5235701904296876, 0.5235640258789063, 0.524210205078125, 0.5235947265625]",tokens/s,1.8800948535125506,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm2-20b,internlm/internlm2-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,4144.504832,15760.621568,0.0,15114.174464,14045.205504,s,10,15.963228881835938,1.5963228881835938,0.0014829914244840832,1.5958744506835938,1.5984191040039064,1.5985000183105469,1.5985647497558595,"[1.595896728515625, 1.598401123046875, 1.5945810546875, 1.5952257080078125, 1.5950601806640625, 1.5945120849609375, 1.5958521728515624, 1.5975928955078125, 1.5975260009765626, 1.5985809326171876]",tokens/s,160.36855820021125,kWh,1.8825581471125285e-05,1.0316417645935872e-05,8.981001629239093e-05,0.00011895201540945208,tokens/kWh,2152128.310889114,MB,4144.504832,15760.621568,0.0,15114.174464,14169.857024,s,10,928.8058671874999,92.88058671875,0.004527086516632578,92.879125,92.88628203124999,92.886953515625,92.887490703125,"[92.8758671875, 92.88065625, 92.887625, 92.8848203125, 92.8846328125, 92.875515625, 92.87759375, 92.8768203125, 92.876203125, 92.8861328125]",tokens/s,0.6782902889144009,kWh,0.0010964920105205644,0.0006009745227833628,0.005288325397323612,0.006985791930627541,tokens/kWh,9018.304671198623,,s,629,941.6992608642577,1.4971371396888042,0.1896008283998211,1.4742733154296874,1.4748571533203125,1.4750364013671875,3.06951080078125,"[1.473944580078125, 1.47329638671875, 1.4738431396484375, 1.47358203125, 1.47386572265625, 1.4748426513671875, 1.47376123046875, 1.4739620361328125, 1.47388720703125, 1.47437158203125, 1.474060302734375, 1.4738883056640626, 1.4746326904296876, 1.473596435546875, 1.4739219970703126, 1.474044921875, 1.474198486328125, 1.4741043701171874, 1.4745589599609374, 1.4744586181640624, 1.4741165771484375, 1.4748856201171876, 1.474040771484375, 1.473933349609375, 1.474250732421875, 1.4747626953125, 1.4741483154296875, 1.4741063232421876, 1.47391796875, 1.47371826171875, 1.4743121337890626, 1.4736240234375, 1.474345947265625, 1.4741422119140626, 1.47420263671875, 1.473943603515625, 1.474134033203125, 1.474208740234375, 1.473671142578125, 1.474809814453125, 1.473850341796875, 1.47422314453125, 1.4740899658203126, 1.4746153564453126, 1.474150390625, 1.474164794921875, 1.474740234375, 1.4742220458984374, 1.474397216796875, 1.47470947265625, 1.4741094970703126, 1.474333740234375, 1.4749337158203124, 1.4750013427734374, 1.4743634033203126, 1.47471875, 1.4743265380859376, 1.4740859375, 1.4744422607421874, 1.4750106201171875, 1.4745364990234375, 1.4744473876953126, 3.072501708984375, 1.4742149658203125, 1.47382275390625, 1.4743377685546875, 1.4739732666015626, 1.4742138671875, 1.473607666015625, 1.473517578125, 1.4735635986328126, 1.4740213623046876, 1.47407568359375, 1.474303955078125, 1.474218017578125, 1.4742906494140624, 1.4739681396484374, 1.4741094970703126, 1.47432958984375, 1.47487744140625, 1.474449462890625, 1.474229248046875, 1.474135009765625, 1.474888671875, 1.4737879638671876, 1.4744893798828125, 1.4746142578125, 1.474745361328125, 1.4743009033203125, 1.4740203857421874, 1.4740869140625, 1.4739189453125, 1.474797607421875, 1.4739200439453124, 1.474556884765625, 1.4741739501953126, 1.4747054443359375, 1.4741309814453125, 1.4740633544921875, 1.4746910400390625, 1.4741361083984375, 1.4743233642578124, 1.474419677734375, 1.4740213623046876, 1.47390673828125, 1.4743306884765626, 1.4746715087890625, 1.474198486328125, 1.474620361328125, 1.47437255859375, 1.4746910400390625, 1.474514892578125, 1.4745426025390624, 1.47401220703125, 1.4740531005859374, 1.47437158203125, 1.475441650390625, 1.4746439208984374, 1.474841552734375, 1.47451904296875, 1.474598876953125, 1.474634765625, 1.4747381591796875, 1.4739384765625, 1.473933349609375, 3.0693232421875, 1.473892333984375, 1.474171875, 1.4738431396484375, 1.474007080078125, 1.4742384033203124, 1.47473095703125, 1.4749234619140625, 1.473754150390625, 1.4738544921875, 1.474039794921875, 1.47367529296875, 1.47413916015625, 1.47485693359375, 1.4745743408203125, 1.474783203125, 1.475303466796875, 1.474924560546875, 1.4741279296875, 1.4751273193359375, 1.4750792236328125, 1.474249755859375, 1.4747965087890624, 1.474628662109375, 1.4746798095703124, 1.47464599609375, 1.475072021484375, 1.4749490966796874, 1.474650146484375, 1.474839599609375, 1.4745999755859376, 1.47433984375, 1.474587646484375, 1.4739671630859374, 1.47449853515625, 1.47369580078125, 1.4738216552734376, 1.4743746337890624, 1.474156494140625, 1.47430712890625, 1.4742518310546875, 1.474651123046875, 1.4738739013671875, 1.474051025390625, 1.4744114990234376, 1.474198486328125, 1.474423828125, 1.4742803955078125, 1.4740162353515625, 1.473574951171875, 1.4743848876953125, 1.4738145751953124, 1.47405419921875, 1.4739793701171875, 1.475199951171875, 1.4745067138671875, 1.4744473876953126, 1.4743388671875, 1.474714599609375, 1.4745006103515625, 1.4744422607421874, 1.4752808837890625, 1.474572265625, 3.06950341796875, 1.4739578857421876, 1.4735145263671876, 1.4739886474609376, 1.4746470947265624, 1.4735728759765625, 1.4737674560546874, 1.4742681884765625, 1.4737213134765625, 1.47318994140625, 1.47401318359375, 1.47386474609375, 1.47394970703125, 1.4739599609375, 1.4740623779296875, 1.474145263671875, 1.4742425537109376, 1.4741483154296875, 1.4742333984375, 1.4738831787109374, 1.474155517578125, 1.4743111572265626, 1.474144287109375, 1.4746112060546874, 1.4750372314453124, 1.4743541259765625, 1.4747115478515624, 1.4738729248046876, 1.474272216796875, 1.47419140625, 1.4745753173828124, 1.4750064697265626, 1.47466650390625, 1.4748436279296875, 1.474193359375, 1.4741329345703125, 1.4744525146484375, 1.4744913330078124, 1.4748323974609374, 1.4744207763671875, 1.4753935546875, 1.4751805419921875, 1.474482177734375, 1.4740582275390626, 1.4748548583984376, 1.474802734375, 1.4744371337890625, 1.4744453125, 1.4744443359375, 1.4745057373046875, 1.4743941650390624, 1.4749481201171875, 1.47416162109375, 1.47437255859375, 1.4748753662109375, 1.474218994140625, 1.47468798828125, 1.4740306396484375, 1.4754232177734374, 1.474871337890625, 1.4750535888671874, 1.474193359375, 1.47433984375, 3.0700166015625, 1.474471923828125, 1.4742957763671876, 1.474418701171875, 1.4738094482421875, 1.473839111328125, 1.4741832275390625, 1.47508935546875, 1.474249755859375, 1.474166748046875, 1.4742117919921875, 1.47376953125, 1.474102294921875, 1.4737879638671876, 1.4748671875, 1.4747493896484376, 1.474883544921875, 1.4746419677734375, 1.4745159912109376, 1.4746552734375, 1.474293701171875, 1.4748323974609374, 1.4744105224609374, 1.474787353515625, 1.47443408203125, 1.4740316162109375, 1.4738883056640626, 1.47376953125, 1.47512939453125, 1.47419140625, 1.4745528564453125, 1.4741678466796875, 1.47439208984375, 1.4739793701171875, 1.4745281982421874, 1.47403466796875, 1.4748272705078125, 1.474185302734375, 1.4739229736328125, 1.4739056396484376, 1.473829833984375, 1.474093017578125, 1.4740869140625, 1.474112548828125, 1.4749757080078125, 1.4745753173828124, 1.4741094970703126, 1.4738267822265625, 1.4748529052734376, 1.4741513671875, 1.473798095703125, 1.47447607421875, 1.474387939453125, 1.4741156005859375, 1.4746163330078126, 1.474620361328125, 1.4744791259765626, 1.4744678955078125, 1.4747166748046876, 1.4750802001953125, 1.4745999755859376, 1.4739814453125, 1.4747626953125, 3.069513671875, 1.47412890625, 1.4743746337890624, 1.4740838623046875, 1.4746378173828125, 1.4743603515625, 1.4743265380859376, 1.4740521240234374, 1.474298828125, 1.474333740234375, 1.47361279296875, 1.4742005615234375, 1.4735267333984374, 1.473796142578125, 1.4742364501953125, 1.47390869140625, 1.473765380859375, 1.4739835205078125, 1.4745712890625, 1.4740101318359375, 1.4739835205078125, 1.4743961181640626, 1.474408447265625, 1.4742752685546876, 1.4744114990234376, 1.4744586181640624, 1.4740623779296875, 1.4737520751953126, 1.47413916015625, 1.4744801025390626, 1.4740203857421874, 1.474050048828125, 1.47420361328125, 1.4737581787109375, 1.4745753173828124, 1.474017333984375, 1.474734130859375, 1.47439208984375, 1.4745015869140625, 1.4748160400390624, 1.474017333984375, 1.473838134765625, 1.4741207275390624, 1.473882080078125, 1.4738841552734374, 1.47435107421875, 1.4739732666015626, 1.4739046630859376, 1.4738043212890626, 1.4740582275390626, 1.4742333984375, 1.4741370849609374, 1.4745313720703126, 1.47392822265625, 1.4746859130859375, 1.4744012451171875, 1.4736475830078124, 1.4745435791015624, 1.4739937744140625, 1.4749501953125, 1.4744842529296875, 1.474662353515625, 1.474905029296875, 3.070246826171875, 1.4750576171875, 1.4738739013671875, 1.4734581298828124, 1.4737919921875, 1.474293701171875, 1.4743428955078124, 1.47382275390625, 1.47458154296875, 1.47357080078125, 1.474060302734375, 1.4740726318359374, 1.4753177490234375, 1.473629150390625, 1.4743223876953124, 1.4743489990234375, 1.473955810546875, 1.4739876708984374, 1.4747186279296876, 1.4738134765625, 1.4743214111328125, 1.4742047119140624, 1.4742978515625, 1.4737418212890625, 1.4734571533203125, 1.473523681640625, 1.473606689453125, 1.473850341796875, 1.4743746337890624, 1.4742579345703124, 1.4741832275390625, 1.474040771484375, 1.4740684814453124, 1.4739732666015626, 1.4740592041015625, 1.474809814453125, 1.4747279052734374, 1.4743153076171875, 1.4744268798828124, 1.474154541015625, 1.4741319580078125, 1.473996826171875, 1.4746644287109374, 1.4744012451171875, 1.4747647705078124, 1.474788330078125, 1.4744166259765625, 1.474029541015625, 1.4741083984375, 1.4744698486328125, 1.47449853515625, 1.473933349609375, 1.475099609375, 1.4742476806640625, 1.474344970703125, 1.47441455078125, 1.47498388671875, 1.4740675048828125, 1.4742537841796874, 1.4744873046875, 1.474292724609375, 1.47422509765625, 1.4751826171875, 3.072003173828125, 1.47430908203125, 1.4742056884765624, 1.474298828125, 1.4740029296875, 1.47441357421875, 1.4743634033203126, 1.473666015625, 1.4739056396484376, 1.4738585205078125, 1.4737633056640624, 1.47390771484375, 1.474503662109375, 1.4742467041015626, 1.47406640625, 1.4739844970703124, 1.474124755859375, 1.4739844970703124, 1.47361279296875, 1.474107421875, 1.473881103515625, 1.47378076171875, 1.474008056640625, 1.4745169677734375, 1.474460693359375, 1.474466796875, 1.4740469970703125, 1.4737305908203124, 1.47407666015625, 1.4743223876953124, 1.4743223876953124, 1.4740029296875, 1.4749521484375, 1.474461669921875, 1.4740694580078124, 1.4741329345703125, 1.47427734375, 1.474609130859375, 1.4740633544921875, 1.474460693359375, 1.474523193359375, 1.4746634521484374, 1.4743521728515625, 1.4738759765625, 1.4742733154296874, 1.4747269287109375, 1.474681884765625, 1.474302001953125, 1.4744627685546876, 1.4744678955078125, 1.4744381103515625, 1.474345947265625, 1.4741944580078126, 1.4742548828125, 1.4745078125, 1.4744801025390626, 1.47441455078125, 1.47418115234375, 1.4743223876953124, 1.4743634033203126, 1.4744627685546876, 1.4740469970703125, 1.4741370849609374, 3.0712216796875, 1.4734315185546876, 1.4745855712890625, 1.47361279296875, 1.473840087890625, 1.4741380615234374, 1.4739364013671874, 1.4736414794921875, 1.473987548828125, 1.4741053466796874, 1.4739149169921875, 1.47364453125, 1.4739620361328125, 1.47382373046875, 1.473976318359375, 1.474334716796875, 1.4739261474609375, 1.473628173828125, 1.4737264404296875, 1.4739302978515625, 1.4734212646484375, 1.4736036376953126, 1.4741319580078125, 1.47426513671875, 1.474302978515625, 1.4739517822265624, 1.4746705322265625, 1.47380126953125, 1.4740101318359375, 1.4745528564453125, 1.4744248046875, 1.47426513671875, 1.4744791259765626, 1.4744033203125, 1.4740244140625, 1.474103271484375, 1.4746705322265625, 1.4742518310546875, 1.474093017578125, 1.474193359375, 1.4737838134765624, 1.473976318359375, 1.474071533203125, 1.47503515625, 1.4746429443359375, 1.4743326416015625, 1.4748948974609375, 1.473871826171875, 1.4741412353515626, 1.474756591796875, 1.474630615234375, 1.474577392578125, 1.474472900390625, 1.474883544921875, 1.4748580322265625, 1.47447705078125, 1.4747811279296874, 1.47460400390625, 1.4745589599609374, 1.4746265869140625, 1.4749808349609375, 1.4749000244140624, 1.474957275390625, 3.07293701171875, 1.4741534423828124, 1.473850341796875, 1.474186279296875, 1.4741903076171874, 1.47452001953125, 1.4740736083984376, 1.474038818359375, 1.474935791015625, 1.4743348388671875, 1.473924072265625, 1.4737950439453125, 1.474008056640625, 1.4743111572265626, 1.474093017578125, 1.4743223876953124, 1.4741851806640625, 1.4741422119140626, 1.4739793701171875, 1.474102294921875, 1.4738380126953126, 1.4738585205078125, 1.4744945068359374, 1.4743634033203126, 1.474292724609375, 1.4741781005859376, 1.4750125732421875, 1.4740316162109375, 1.4740899658203126, 1.473870849609375, 1.47460302734375, 1.4747423095703125, 1.4751129150390625, 1.4748599853515625, 1.474618408203125, 1.475168212890625, 1.4755379638671875, 1.4745087890625, 1.474472900390625, 1.474514892578125, 1.474840576171875, 1.47443603515625, 1.4743101806640626, 1.4746552734375, 1.4748037109375, 1.4745220947265625, 1.4747740478515625, 1.4746317138671876, 1.4742313232421875, 1.4737684326171876, 1.4743951416015626, 1.474081787109375, 1.4740859375, 1.47426611328125, 1.474807861328125, 1.47405615234375, 1.4741063232421876, 1.474302978515625, 1.4747801513671874, 1.4749112548828125, 1.4753310546875, 1.4741790771484375, 1.4742220458984374]",tokens/s,0.6679414821062154,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,t,t,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,t,t,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -32331,7 +30444,7 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669490a4-289526393e0256c03402fba1;52d95121-eb62-4f8b-acd8-276858c6fc61) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669490c6-227ed1d3643fef5743285def;b6987a35-3757-4f11-a09a-1c25c34296b6) Repository Not Found for url: https://huggingface.co/t/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. @@ -32361,8 +30474,128 @@ Traceback (most recent call last): OSError: t is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-66b,facebook/opt-66b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neox-20b,EleutherAI/gpt-neox-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward + outputs = self.gpt_neox( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward + outputs = layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward + attention_layer_outputs = self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 545, in forward + query, key, value, present = self._attn_projections_and_rope( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope + qkv = self.query_key_value(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 614, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-72B,Qwen/Qwen2-beta-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -32401,10 +30634,128 @@ ChildProcessError: Traceback (most recent call last): self._buffers[key] = fn(buf) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 162.00 MiB. GPU +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-7B,Qwen/Qwen1.5-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1221, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1023, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 763, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 650, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-32B,Qwen/Qwen1.5-32B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1221, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1023, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 763, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 650, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,.,.,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-40b,tiiuae/falcon-40b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -32416,24 +30767,205 @@ ChildProcessError: Traceback (most recent call last): report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 373, in cached_file - raise EnvironmentError( -OSError: . does not appear to have a file named config.json. Checkout 'https://huggingface.co/./tree/None' for available files. + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: FalconForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-160m,EleutherAI/pythia-160m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward + outputs = self.gpt_neox( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward + outputs = layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward + attention_layer_outputs = self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 545, in forward + query, key, value, present = self._attn_projections_and_rope( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope + qkv = self.query_key_value(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.3b,EleutherAI/pythia-1.3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward + outputs = self.gpt_neox( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward + outputs = layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward + attention_layer_outputs = self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 545, in forward + query, key, value, present = self._attn_projections_and_rope( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope + qkv = self.query_key_value(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-1.8B,Qwen/Qwen1.5-1.8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1221, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1023, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 763, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 650, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mixtral-8x7B-v0.1,mistralai/Mixtral-8x7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-6B-nl,Salesforce/codegen-6B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -32453,29 +30985,46 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: CodeGenForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2,openai-community/gpt2,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.42.3,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,1217.482752,1002.962944,0.0,356.51584,319.013888,s,25,0.17377513599395752,0.006951005439758301,0.00021285069119682677,0.006859776020050049,0.007271795177459717,0.007306099033355713,0.0075682175064086905,"[0.007650239944458008, 0.007234623908996582, 0.00704527997970581, 0.00680460786819458, 0.0068609600067138675, 0.00677836799621582, 0.00682473611831665, 0.0068039679527282714, 0.00680291223526001, 0.00730847978591919, 0.006837952136993408, 0.006873439788818359, 0.006928832054138184, 0.006819744110107422, 0.00691267204284668, 0.006827583789825439, 0.006859776020050049, 0.0067794880867004395, 0.007181856155395508, 0.006854944229125977, 0.006890560150146484, 0.007296576023101807, 0.006809375762939453, 0.0068458237648010255, 0.006942336082458496]",tokens/s,36829.20438181985,kWh,8.181268208831889e-08,4.482922321235986e-08,1.7226448838091112e-07,2.9890639368158985e-07,tokens/kWh,856455416.8510163,MB,1217.482752,1002.962944,0.0,356.51584,319.016448,s,25,10.10318005371094,0.4041272021484375,0.009041377880648377,0.4006143493652344,0.4117974182128906,0.42338720092773435,0.4344844934082031,"[0.4373000183105469, 0.40733187866210935, 0.398733154296875, 0.40750152587890626, 0.39825311279296877, 0.39877890014648437, 0.3988628234863281, 0.3992034606933594, 0.3991992492675781, 0.4000351257324219, 0.40367324829101564, 0.4066448059082031, 0.3984886474609375, 0.40342138671875, 0.398855224609375, 0.40221279907226565, 0.39863790893554685, 0.40269754028320315, 0.40168536376953123, 0.400095458984375, 0.41466134643554686, 0.42556866455078124, 0.4007449951171875, 0.4006143493652344, 0.3999790649414062]",tokens/s,155.89151055676734,kWh,4.884634116620386e-06,2.676530817879685e-06,8.197834800282627e-06,1.57589997347827e-05,tokens/kWh,3997715.6583706676,,s,1574,10.262640651226052,0.006520102065581985,0.0009050603008066671,0.006338560104370118,0.00674856972694397,0.006865920066833496,0.013484024801254272,"[0.007161856174468994, 0.007085055828094483, 0.007062528133392334, 0.007070720195770264, 0.007012351989746094, 0.007053311824798584, 0.007062528133392334, 0.0070563840866088865, 0.006840320110321045, 0.006719488143920899, 0.006717440128326416, 0.006799359798431396, 0.006890495777130127, 0.00695091199874878, 0.007017471790313721, 0.006897664070129395, 0.006813695907592773, 0.006865920066833496, 0.006972415924072266, 0.006919167995452881, 0.007156735897064209, 0.007051263809204102, 0.007244800090789795, 0.007097343921661377, 0.007085055828094483, 0.006964223861694336, 0.007008255958557129, 0.006976511955261231, 0.006994944095611572, 0.007102464199066162, 0.007038976192474365, 0.007131135940551757, 0.007008255958557129, 0.006998015880584717, 0.007203839778900147, 0.007073791980743408, 0.006860799789428711, 0.006910975933074951, 0.00684441614151001, 0.006865920066833496, 0.007029759883880615, 0.006725632190704346, 0.006808576107025147, 0.006915071964263916, 0.006789120197296142, 0.006917119979858399, 0.0069027838706970214, 0.006814720153808594, 0.006814720153808594, 0.006810624122619629, 0.006862847805023193, 0.006988800048828125, 0.006908927917480469, 0.006994944095611572, 0.006842368125915528, 0.006897664070129395, 0.006791168212890625, 0.006790143966674805, 0.00674508810043335, 0.006684703826904297, 0.006531040191650391, 0.006618112087249756, 0.014370880126953124, 0.0063681921958923336, 0.006546432018280029, 0.006509568214416504, 0.006533120155334473, 0.006860799789428711, 0.007010303974151612, 0.007018496036529541, 0.007047167778015137, 0.007074816226959229, 0.007166975975036621, 0.00690176010131836, 0.006707200050354004, 0.0066344962120056155, 0.006568960189819336, 0.006534143924713135, 0.006561791896820069, 0.006558720111846924, 0.006511616230010986, 0.0067010560035705566, 0.006788095951080322, 0.006545407772064209, 0.006509568214416504, 0.006351871967315674, 0.006299647808074951, 0.006319104194641113, 0.00628223991394043, 0.006306816101074219, 0.006300672054290772, 0.006300672054290772, 0.006296576023101807, 0.00628223991394043, 0.006319104194641113, 0.006301695823669433, 0.006296576023101807, 0.006310912132263183, 0.0062975997924804685, 0.006304768085479737, 0.006388735771179199, 0.006313983917236328, 0.006319104194641113, 0.006331391811370849, 0.0063211522102355954, 0.0063170561790466305, 0.0063170561790466305, 0.006303743839263916, 0.00638259220123291, 0.00636518383026123, 0.006313983917236328, 0.006325247764587402, 0.00628326416015625, 0.006310912132263183, 0.006277120113372803, 0.0063272957801818845, 0.006428671836853027, 0.006278143882751465, 0.0062791681289672855, 0.006275072097778321, 0.006331391811370849, 0.006308864116668702, 0.006355967998504639, 0.0063498239517211915, 0.006298624038696289, 0.013892607688903809, 0.006338560104370118, 0.00633241605758667, 0.006295551776885986, 0.006328320026397705, 0.006322175979614258, 0.0063272957801818845, 0.0063211522102355954, 0.006300672054290772, 0.006311935901641846, 0.006307839870452881, 0.006341631889343262, 0.006340608119964599, 0.006306816101074219, 0.006341631889343262, 0.006344704151153564, 0.006358016014099121, 0.006377471923828125, 0.006352896213531494, 0.006426623821258545, 0.0063201279640197755, 0.006329343795776367, 0.006344704151153564, 0.006325247764587402, 0.006337535858154297, 0.006296576023101807, 0.006323200225830078, 0.006301695823669433, 0.006308864116668702, 0.006310912132263183, 0.006325247764587402, 0.006304768085479737, 0.0062975997924804685, 0.006305791854858398, 0.006301695823669433, 0.006342656135559082, 0.006316031932830811, 0.006303743839263916, 0.006358016014099121, 0.006293504238128662, 0.006315008163452148, 0.006322175979614258, 0.006298624038696289, 0.00632422399520874, 0.0062975997924804685, 0.006325247764587402, 0.006288383960723877, 0.006312960147857666, 0.006315008163452148, 0.006295551776885986, 0.006311935901641846, 0.006301695823669433, 0.006325247764587402, 0.006293504238128662, 0.0063211522102355954, 0.006302720069885254, 0.0062904319763183595, 0.006305791854858398, 0.006285312175750732, 0.006319104194641113, 0.006338560104370118, 0.00633241605758667, 0.006375423908233643, 0.013460479736328124, 0.006305791854858398, 0.006343679904937744, 0.0064174079895019534, 0.006359039783477783, 0.006333439826965332, 0.0063170561790466305, 0.006281216144561768, 0.006622208118438721, 0.007672832012176513, 0.006605823993682861, 0.006567935943603515, 0.006624256134033203, 0.006543360233306885, 0.00667955207824707, 0.006597631931304931, 0.006343679904937744, 0.00688640022277832, 0.006688767910003662, 0.006556672096252441, 0.0065474557876586915, 0.0065372161865234375, 0.006567935943603515, 0.006726655960083008, 0.0066406397819519045, 0.0066109437942504885, 0.0065484800338745115, 0.0065413122177124024, 0.00652185583114624, 0.0065372161865234375, 0.006788095951080322, 0.006560768127441406, 0.006540287971496582, 0.0065136637687683106, 0.006331391811370849, 0.006393856048583985, 0.006346752166748047, 0.006338560104370118, 0.006342656135559082, 0.006304768085479737, 0.0063272957801818845, 0.006326272010803223, 0.006331391811370849, 0.006339583873748779, 0.0063569917678833006, 0.006328320026397705, 0.006371327877044678, 0.006300672054290772, 0.0063539199829101565, 0.006316031932830811, 0.006328320026397705, 0.006304768085479737, 0.006306816101074219, 0.006319104194641113, 0.006328320026397705, 0.006313983917236328, 0.006358016014099121, 0.006299647808074951, 0.006330368041992188, 0.006501376152038574, 0.006432767868041992, 0.006360064029693604, 0.006348832130432129, 0.013516799926757812, 0.006293471813201904, 0.006299647808074951, 0.006329343795776367, 0.006289408206939697, 0.00633241605758667, 0.006273024082183838, 0.0063201279640197755, 0.006305791854858398, 0.00638259220123291, 0.006294528007507324, 0.0063211522102355954, 0.006328320026397705, 0.0063272957801818845, 0.006346752166748047, 0.0063211522102355954, 0.006312960147857666, 0.006315008163452148, 0.006305791854858398, 0.0063272957801818845, 0.006289408206939697, 0.0063211522102355954, 0.00632422399520874, 0.006295551776885986, 0.006330368041992188, 0.0063498239517211915, 0.006306816101074219, 0.006306816101074219, 0.006326272010803223, 0.006323200225830078, 0.006312960147857666, 0.006309887886047363, 0.006310912132263183, 0.006360064029693604, 0.006258687973022461, 0.006284287929534912, 0.006301695823669433, 0.006298624038696289, 0.006306816101074219, 0.006318079948425293, 0.006322175979614258, 0.006351871967315674, 0.0062873601913452145, 0.006339583873748779, 0.006326272010803223, 0.006333439826965332, 0.006313983917236328, 0.006310912132263183, 0.006318079948425293, 0.006341631889343262, 0.006322175979614258, 0.006299647808074951, 0.00632422399520874, 0.00632422399520874, 0.006331391811370849, 0.0063170561790466305, 0.006294528007507324, 0.0063539199829101565, 0.006312960147857666, 0.006299647808074951, 0.0062975997924804685, 0.006338560104370118, 0.006319168090820312, 0.01340614414215088, 0.006311935901641846, 0.006323200225830078, 0.006355999946594238, 0.00633135986328125, 0.006343679904937744, 0.0063498239517211915, 0.006369279861450195, 0.006363135814666748, 0.006346752166748047, 0.00633241605758667, 0.006344704151153564, 0.006348800182342529, 0.006411263942718506, 0.006337535858154297, 0.006418432235717773, 0.006323200225830078, 0.006343679904937744, 0.006329343795776367, 0.006344704151153564, 0.006339583873748779, 0.006340608119964599, 0.006330368041992188, 0.006295551776885986, 0.006338560104370118, 0.006329343795776367, 0.0063201279640197755, 0.0062904319763183595, 0.006266880035400391, 0.006289408206939697, 0.006308864116668702, 0.006259712219238281, 0.006337535858154297, 0.006352896213531494, 0.006319104194641113, 0.0063211522102355954, 0.006328320026397705, 0.006312960147857666, 0.00636518383026123, 0.006388735771179199, 0.0063272957801818845, 0.00628326416015625, 0.006223872184753418, 0.006244351863861084, 0.006242303848266601, 0.006238207817077636, 0.006235136032104492, 0.0062566399574279785, 0.006309887886047363, 0.006315008163452148, 0.006336512088775635, 0.00639081621170044, 0.006297567844390869, 0.006319104194641113, 0.006313983917236328, 0.006340608119964599, 0.006328320026397705, 0.006330368041992188, 0.006351903915405273, 0.006374368190765381, 0.0063498239517211915, 0.006360064029693604, 0.00633241605758667, 0.013469696044921875, 0.006311935901641846, 0.006293504238128662, 0.006331391811370849, 0.006334464073181153, 0.006310912132263183, 0.006326272010803223, 0.0063272957801818845, 0.00638156795501709, 0.006342656135559082, 0.006334464073181153, 0.006344704151153564, 0.00636518383026123, 0.006340608119964599, 0.006334464073181153, 0.006351871967315674, 0.006343679904937744, 0.006312960147857666, 0.006351871967315674, 0.006352896213531494, 0.0063201279640197755, 0.006334464073181153, 0.006289408206939697, 0.006362112045288086, 0.006307839870452881, 0.006327328205108643, 0.006322144031524658, 0.006310912132263183, 0.0063508481979370115, 0.006309887886047363, 0.006326272010803223, 0.006333439826965332, 0.006322175979614258, 0.006336512088775635, 0.006384640216827392, 0.006313983917236328, 0.006315008163452148, 0.006278143882751465, 0.0062761597633361815, 0.006254528045654297, 0.006288383960723877, 0.006246399879455566, 0.006261760234832763, 0.006240287780761719, 0.006336480140686035, 0.006230016231536865, 0.006334464073181153, 0.006394879817962646, 0.006505472183227539, 0.00638976001739502, 0.006295551776885986, 0.0063201279640197755, 0.006348800182342529, 0.006309887886047363, 0.006375423908233643, 0.006319104194641113, 0.0063170561790466305, 0.006329343795776367, 0.006340608119964599, 0.006336512088775635, 0.006313983917236328, 0.006338592052459717, 0.006318048000335693, 0.013455360412597657, 0.006302720069885254, 0.006360064029693604, 0.006343679904937744, 0.006346752166748047, 0.006370304107666015, 0.006325247764587402, 0.006345727920532227, 0.006362112045288086, 0.006364160060882569, 0.0063569917678833006, 0.006355967998504639, 0.006345727920532227, 0.006354944229125976, 0.006330368041992188, 0.0063805441856384275, 0.0063836159706115725, 0.006315008163452148, 0.006299647808074951, 0.006347775936126709, 0.006311935901641846, 0.006330368041992188, 0.006341631889343262, 0.006298624038696289, 0.006344704151153564, 0.006330368041992188, 0.006343679904937744, 0.006323200225830078, 0.006336512088775635, 0.006328320026397705, 0.0063170561790466305, 0.0063170561790466305, 0.006330368041992188, 0.006330368041992188, 0.006394879817962646, 0.006308864116668702, 0.006305791854858398, 0.006295551776885986, 0.006309887886047363, 0.0063539199829101565, 0.006307839870452881, 0.006311935901641846, 0.006302720069885254, 0.006334464073181153, 0.006329343795776367, 0.006315008163452148, 0.006329343795776367, 0.006288383960723877, 0.006344704151153564, 0.006310912132263183, 0.00632422399520874, 0.006366208076477051, 0.00632422399520874, 0.006312960147857666, 0.006316031932830811, 0.006348800182342529, 0.006302752017974853, 0.006309855937957764, 0.006347775936126709, 0.0063591041564941405, 0.006312895774841309, 0.006313983917236328, 0.006325247764587402, 0.013421567916870117, 0.006292511940002441, 0.006318048000335693, 0.006284287929534912, 0.006250495910644531, 0.006252543926239014, 0.006280191898345947, 0.006240255832672119, 0.006270976066589356, 0.006243328094482422, 0.0062904319763183595, 0.006310912132263183, 0.006348800182342529, 0.006377471923828125, 0.006347775936126709, 0.00642252779006958, 0.006299647808074951, 0.006330368041992188, 0.006294528007507324, 0.006319104194641113, 0.006306816101074219, 0.006306816101074219, 0.006318079948425293, 0.006300672054290772, 0.0063621759414672855, 0.0063303041458129886, 0.006376448154449463, 0.006406144142150879, 0.0063170561790466305, 0.006346752166748047, 0.006323200225830078, 0.006330368041992188, 0.006340608119964599, 0.006315008163452148, 0.0063498239517211915, 0.006342656135559082, 0.0063211841583251955, 0.0063119039535522465, 0.006316031932830811, 0.00633241605758667, 0.006310912132263183, 0.006460415840148926, 0.006318079948425293, 0.006337535858154297, 0.006360064029693604, 0.0064430079460144046, 0.006536191940307618, 0.006398975849151611, 0.006340608119964599, 0.006355967998504639, 0.0063170561790466305, 0.006344704151153564, 0.00636518383026123, 0.006319104194641113, 0.006340608119964599, 0.006302752017974853, 0.006353888034820556, 0.006312960147857666, 0.006333439826965332, 0.006303743839263916, 0.006307839870452881, 0.0063211522102355954, 0.006323200225830078, 0.01428889560699463, 0.006546432018280029, 0.006489088058471679, 0.0063498239517211915, 0.006318079948425293, 0.006313983917236328, 0.0063805441856384275, 0.006336512088775635, 0.006339583873748779, 0.0063201279640197755, 0.006329376220703125, 0.006326240062713623, 0.006334464073181153, 0.006346752166748047, 0.006326272010803223, 0.0063201279640197755, 0.006313983917236328, 0.006366208076477051, 0.0063498239517211915, 0.006326272010803223, 0.006313983917236328, 0.006326272010803223, 0.00643891191482544, 0.006305791854858398, 0.0063498239517211915, 0.006306816101074219, 0.006340608119964599, 0.006342656135559082, 0.006311935901641846, 0.006330368041992188, 0.006341631889343262, 0.006312960147857666, 0.00637337589263916, 0.006372352123260498, 0.006325247764587402, 0.0063211522102355954, 0.006334464073181153, 0.006326272010803223, 0.006309887886047363, 0.006345727920532227, 0.006329343795776367, 0.0063201279640197755, 0.006338560104370118, 0.006288383960723877, 0.00633241605758667, 0.0062975997924804685, 0.00638976001739502, 0.006305791854858398, 0.006336512088775635, 0.006323232173919678, 0.006334432125091553, 0.006340608119964599, 0.006363135814666748, 0.006351871967315674, 0.0063569917678833006, 0.006334464073181153, 0.006330368041992188, 0.006323200225830078, 0.006329343795776367, 0.006364160060882569, 0.006340608119964599, 0.006334464073181153, 0.0063272957801818845, 0.013492223739624023, 0.006341631889343262, 0.006325247764587402, 0.006338560104370118, 0.006329343795776367, 0.006358016014099121, 0.006339583873748779, 0.006348800182342529, 0.006317088127136231, 0.0063385281562805176, 0.006312960147857666, 0.006460415840148926, 0.006345727920532227, 0.006306816101074219, 0.0063569917678833006, 0.006334464073181153, 0.006325247764587402, 0.006328320026397705, 0.006423552036285401, 0.0063211522102355954, 0.0062975997924804685, 0.0063211522102355954, 0.006293504238128662, 0.006333439826965332, 0.006340608119964599, 0.006329343795776367, 0.006336512088775635, 0.006751232147216797, 0.006744063854217529, 0.006584320068359375, 0.006546432018280029, 0.006568960189819336, 0.006556672096252441, 0.006502399921417237, 0.0065372161865234375, 0.0065484800338745115, 0.006604800224304199, 0.006407167911529541, 0.006342656135559082, 0.006358016014099121, 0.006330368041992188, 0.006316031932830811, 0.006340608119964599, 0.006311935901641846, 0.00633241605758667, 0.006843391895294189, 0.006594560146331787, 0.006560768127441406, 0.006575136184692383, 0.00657097578048706, 0.006406144142150879, 0.006315008163452148, 0.006339583873748779, 0.006425600051879882, 0.00631606388092041, 0.006355936050415039, 0.006302720069885254, 0.006333439826965332, 0.006330368041992188, 0.006310912132263183, 0.006344704151153564, 0.006304768085479737, 0.00632422399520874, 0.013517824172973633, 0.006319104194641113, 0.0063272957801818845, 0.006360064029693604, 0.006333439826965332, 0.006336512088775635, 0.006340608119964599, 0.006329376220703125, 0.0063190717697143555, 0.006325247764587402, 0.006354944229125976, 0.006652927875518798, 0.006550528049468994, 0.006894591808319092, 0.007411712169647216, 0.00676966381072998, 0.006558720111846924, 0.006564864158630371, 0.00657203197479248, 0.006564864158630371, 0.006553599834442139, 0.006526976108551025, 0.0065771517753601075, 0.006519807815551758, 0.006375487804412842, 0.0063640961647033695, 0.006352896213531494, 0.006599679946899414, 0.007201824188232422, 0.006801375865936279, 0.006573056221008301, 0.006560768127441406, 0.00657203197479248, 0.0065443840026855465, 0.006584320068359375, 0.006487040042877197, 0.00633241605758667, 0.006322175979614258, 0.006316031932830811, 0.006342656135559082, 0.006313983917236328, 0.006331391811370849, 0.006385663986206055, 0.006342656135559082, 0.0063272957801818845, 0.0063272957801818845, 0.006329343795776367, 0.006335487842559814, 0.006326272010803223, 0.006342656135559082, 0.006322175979614258, 0.006335487842559814, 0.006309887886047363, 0.006319104194641113, 0.0063498239517211915, 0.006487040042877197, 0.006425600051879882, 0.006259712219238281, 0.006260735988616943, 0.006341631889343262, 0.006240255832672119, 0.006289408206939697, 0.006339583873748779, 0.013595647811889648, 0.006301695823669433, 0.006333439826965332, 0.006332448005676269, 0.006330336093902588, 0.006393856048583985, 0.006316031932830811, 0.006339615821838379, 0.006336480140686035, 0.006328320026397705, 0.00632422399520874, 0.006351871967315674, 0.0063498239517211915, 0.00633241605758667, 0.006335487842559814, 0.0063539199829101565, 0.006325247764587402, 0.006341631889343262, 0.006333439826965332, 0.006296576023101807, 0.006244351863861084, 0.006275072097778321, 0.006264832019805908, 0.006278175830841065, 0.006272992134094238, 0.006284287929534912, 0.006363135814666748, 0.006260799884796143, 0.006269887924194336, 0.006291456222534179, 0.0062638077735900875, 0.006261760234832763, 0.006247424125671387, 0.006252543926239014, 0.006237184047698975, 0.006264832019805908, 0.006304768085479737, 0.006328320026397705, 0.006347775936126709, 0.0063170561790466305, 0.006343679904937744, 0.006329343795776367, 0.006323200225830078, 0.006340608119964599, 0.006342656135559082, 0.006339583873748779, 0.006310912132263183, 0.006434815883636475, 0.006296576023101807, 0.006354944229125976, 0.006343679904937744, 0.006335487842559814, 0.006327360153198242, 0.0063303041458129886, 0.006334464073181153, 0.006331391811370849, 0.0063569917678833006, 0.006370304107666015, 0.006347775936126709, 0.006333439826965332, 0.006337535858154297, 0.00637337589263916, 0.006334464073181153, 0.013480992317199706, 0.006344672203063965, 0.006305791854858398, 0.006325247764587402, 0.006315008163452148, 0.006780928134918213, 0.006604800224304199, 0.0064880638122558594, 0.006434815883636475, 0.00674508810043335, 0.006551551818847656, 0.006560768127441406, 0.006512639999389648, 0.006592512130737305, 0.0065484800338745115, 0.006518784046173095, 0.006519807815551758, 0.006523903846740723, 0.0066119680404663084, 0.006687744140625, 0.006440959930419922, 0.006462463855743408, 0.00636518383026123, 0.00632422399520874, 0.006336512088775635, 0.006351935863494873, 0.0063190398216247555, 0.006347775936126709, 0.006333439826965332, 0.006401023864746094, 0.00632422399520874, 0.0063539199829101565, 0.006335487842559814, 0.006344704151153564, 0.006339583873748779, 0.006370304107666015, 0.006326272010803223, 0.006358016014099121, 0.006305791854858398, 0.0063201279640197755, 0.006310912132263183, 0.006348800182342529, 0.006328320026397705, 0.006316031932830811, 0.00633241605758667, 0.006330368041992188, 0.006334464073181153, 0.006315008163452148, 0.006323200225830078, 0.006348800182342529, 0.006326272010803223, 0.006346752166748047, 0.006348800182342529, 0.006311935901641846, 0.006339583873748779, 0.006360064029693604, 0.006325247764587402, 0.0063211522102355954, 0.00636518383026123, 0.006392831802368164, 0.006339583873748779, 0.0063610877990722655, 0.00632422399520874, 0.013540351867675781, 0.006294528007507324, 0.006346784114837647, 0.0063190717697143555, 0.006322175979614258, 0.006318143844604492, 0.006336448192596436, 0.006330368041992188, 0.006304800033569336, 0.006304736137390137, 0.0063201279640197755, 0.0063211522102355954, 0.006341631889343262, 0.006293504238128662, 0.00632531213760376, 0.006310848236083985, 0.006334464073181153, 0.006269951820373535, 0.006328320026397705, 0.00633241605758667, 0.00628223991394043, 0.006334464073181153, 0.006303743839263916, 0.006250495910644531, 0.006364160060882569, 0.006275072097778321, 0.0062576642036437985, 0.006276095867156982, 0.006346752166748047, 0.006319104194641113, 0.006334464073181153, 0.0063170561790466305, 0.006335487842559814, 0.006313983917236328, 0.006299647808074951, 0.0063498239517211915, 0.006301695823669433, 0.006285312175750732, 0.006333439826965332, 0.0062863359451293946, 0.006316031932830811, 0.006321216106414795, 0.006377408027648926, 0.006296576023101807, 0.006331391811370849, 0.006308864116668702, 0.006268928050994873, 0.006316031932830811, 0.006401023864746094, 0.006326272010803223, 0.006296576023101807, 0.006296607971191406, 0.006377439975738525, 0.006331391811370849, 0.006369279861450195, 0.006347775936126709, 0.006293504238128662, 0.006319104194641113, 0.006311935901641846, 0.006312992095947266, 0.006487008094787598, 0.006515711784362793, 0.006510591983795166, 0.013452287673950195, 0.006305791854858398, 0.006318079948425293, 0.006391808032989502, 0.006322175979614258, 0.00636518383026123, 0.006310912132263183, 0.0063569917678833006, 0.0063201279640197755, 0.006331391811370849, 0.006322175979614258, 0.006305791854858398, 0.006565887928009034, 0.0065484800338745115, 0.006464511871337891, 0.006369279861450195, 0.006304768085479737, 0.006328320026397705, 0.006302720069885254, 0.00652288007736206, 0.007012351989746094, 0.0067010560035705566, 0.006529024124145508, 0.006529024124145508, 0.0065669121742248536, 0.0065146880149841305, 0.00653926420211792, 0.0065075201988220215, 0.006550591945648193, 0.006313920021057129, 0.006303743839263916, 0.006319104194641113, 0.006298624038696289, 0.006364160060882569, 0.006334464073181153, 0.006319104194641113, 0.00632422399520874, 0.0062975997924804685, 0.006300672054290772, 0.006318079948425293, 0.0063201279640197755, 0.0063201279640197755, 0.006302720069885254, 0.006309887886047363, 0.006307839870452881, 0.006312960147857666, 0.006323200225830078, 0.006401023864746094, 0.006326272010803223, 0.006338560104370118, 0.006336512088775635, 0.006387712001800537, 0.006303743839263916, 0.006336512088775635, 0.006313983917236328, 0.006333439826965332, 0.006329343795776367, 0.006337535858154297, 0.006342656135559082, 0.00638156795501709, 0.00633241605758667, 0.006315040111541748, 0.006309855937957764, 0.013497344017028809, 0.006302720069885254, 0.006315008163452148, 0.006342656135559082, 0.006315008163452148, 0.006334464073181153, 0.006326335906982422, 0.006322112083435059, 0.006367231845855713, 0.006358016014099121, 0.006346752166748047, 0.006345727920532227, 0.006331391811370849, 0.006331391811370849, 0.006337535858154297, 0.006345727920532227, 0.006319104194641113, 0.006386688232421875, 0.006334464073181153, 0.006318079948425293, 0.006345727920532227, 0.006341631889343262, 0.006328320026397705, 0.006334464073181153, 0.006312960147857666, 0.006343679904937744, 0.006319104194641113, 0.0063610877990722655, 0.0063508481979370115, 0.006362112045288086, 0.0063201279640197755, 0.006326272010803223, 0.0063211522102355954, 0.006331391811370849, 0.006364160060882569, 0.006342656135559082, 0.006310912132263183, 0.006311935901641846, 0.006280191898345947, 0.006360064029693604, 0.006337535858154297, 0.006312960147857666, 0.0063201279640197755, 0.006312960147857666, 0.006343679904937744, 0.006327328205108643, 0.006301663875579834, 0.006334464073181153, 0.006305791854858398, 0.0063539199829101565, 0.0064143362045288085, 0.006309887886047363, 0.006245376110076905, 0.006255616188049316, 0.006254591941833496, 0.006255616188049316, 0.006240255832672119, 0.0062638077735900875, 0.006262784004211426, 0.006278143882751465, 0.006312992095947266, 0.0063426241874694825, 0.006305856227874756, 0.01340614414215088, 0.006302720069885254, 0.006305791854858398, 0.0063211522102355954, 0.0063170561790466305, 0.006343679904937744, 0.0063508801460266115, 0.006350815773010254, 0.0063201279640197755, 0.006344704151153564, 0.00632422399520874, 0.0063508481979370115, 0.006339583873748779, 0.006406144142150879, 0.006337567806243897, 0.006387712001800537, 0.006362080097198486, 0.006352896213531494, 0.006338560104370118, 0.006344704151153564, 0.00632422399520874, 0.0063610877990722655, 0.006364160060882569, 0.006329376220703125, 0.006345695972442627, 0.006303743839263916, 0.006372352123260498, 0.006337567806243897, 0.006364128112792969, 0.006333439826965332, 0.006366208076477051, 0.006344704151153564, 0.006319104194641113, 0.006370304107666015, 0.006338560104370118, 0.0063201279640197755, 0.006329343795776367, 0.006341631889343262, 0.006319104194641113, 0.006330368041992188, 0.006354944229125976, 0.0063272957801818845, 0.006315008163452148, 0.0066007041931152345, 0.006546432018280029, 0.006738944053649902, 0.006557695865631104, 0.006524928092956543, 0.006536191940307618, 0.006527999877929688, 0.006543360233306885, 0.006398975849151611, 0.006448128223419189, 0.0064174079895019534, 0.0064440321922302245, 0.00642252779006958, 0.00674508810043335, 0.0064245758056640625, 0.006312960147857666, 0.00659660816192627, 0.006308864116668702, 0.006351871967315674, 0.006323200225830078, 0.01407487964630127, 0.006498303890228272, 0.006504447937011719, 0.006511616230010986, 0.006335487842559814, 0.006337535858154297, 0.00633241605758667, 0.006330368041992188, 0.006345727920532227, 0.006343679904937744, 0.006303743839263916, 0.006342656135559082, 0.006318079948425293, 0.006326272010803223, 0.0065372161865234375, 0.006330368041992188, 0.006326272010803223, 0.006296576023101807, 0.006329343795776367, 0.0063201279640197755, 0.00642252779006958, 0.006347775936126709, 0.0063170561790466305, 0.006331391811370849, 0.006313983917236328, 0.006509568214416504, 0.006408192157745361, 0.006396927833557129, 0.006461440086364746, 0.006453279972076416, 0.006560736179351807, 0.00658022403717041, 0.006363135814666748, 0.006343679904937744, 0.006319104194641113, 0.006352896213531494, 0.0063508481979370115, 0.006307839870452881, 0.006355967998504639, 0.006301695823669433, 0.006461440086364746, 0.006372352123260498, 0.0063272957801818845, 0.006330368041992188, 0.006311935901641846, 0.006353983879089356, 0.006327231884002685, 0.006333439826965332, 0.006345727920532227, 0.006343711853027343, 0.006314976215362549, 0.006315008163452148, 0.006340608119964599, 0.006330368041992188, 0.006329343795776367, 0.00633241605758667, 0.006293504238128662, 0.0064778242111206055, 0.006379519939422608, 0.0064143362045288085, 0.006352896213531494, 0.006323200225830078, 0.006345727920532227, 0.013510656356811524, 0.006329343795776367, 0.0063498239517211915, 0.006369279861450195, 0.006328320026397705, 0.006329343795776367, 0.006338560104370118, 0.006334464073181153, 0.00633241605758667, 0.006352896213531494, 0.006333439826965332, 0.006334464073181153, 0.006310912132263183, 0.006340608119964599, 0.006319104194641113, 0.006363135814666748, 0.006328320026397705, 0.006396927833557129, 0.006310976028442382, 0.006320064067840576, 0.006322175979614258, 0.006333439826965332, 0.0063569917678833006, 0.006348800182342529, 0.006336512088775635, 0.00636518383026123, 0.0063170561790466305, 0.006370304107666015, 0.006337535858154297, 0.006319104194641113, 0.006343679904937744, 0.006306816101074219, 0.006325247764587402, 0.006348800182342529, 0.006403071880340576, 0.006317088127136231, 0.0063088321685791015, 0.006296576023101807, 0.0062863359451293946, 0.006355967998504639, 0.006301695823669433, 0.006302720069885254, 0.006884352207183838, 0.006543360233306885, 0.006334464073181153, 0.006312960147857666, 0.006244351863861084, 0.006259712219238281, 0.006464511871337891, 0.006301695823669433, 0.006336512088775635, 0.006325247764587402, 0.0063170561790466305, 0.006323200225830078, 0.0063211522102355954, 0.006377471923828125, 0.006358016014099121, 0.0063201279640197755, 0.006338560104370118, 0.006419456005096436, 0.006295551776885986, 0.0063498239517211915, 0.006305791854858398, 0.01360588836669922, 0.006304768085479737, 0.006354944229125976, 0.006362112045288086, 0.006316031932830811, 0.006354944229125976, 0.006359039783477783, 0.006298624038696289, 0.006371327877044678, 0.0062975997924804685, 0.006362112045288086, 0.006355967998504639, 0.0063211522102355954, 0.0063539199829101565, 0.006401023864746094, 0.0063610877990722655, 0.006323200225830078, 0.006273024082183838, 0.00628223991394043, 0.006284287929534912, 0.006296576023101807, 0.0062638077735900875, 0.006296576023101807, 0.006262784004211426, 0.006427648067474365, 0.006280191898345947, 0.0066744318008422855, 0.006758399963378906, 0.006755328178405762, 0.006774784088134766, 0.006759424209594727, 0.006770688056945801, 0.00675328016281128, 0.006772736072540283, 0.006731776237487793, 0.006763519763946534, 0.006755328178405762, 0.006714367866516113, 0.006740992069244385, 0.006760447978973389, 0.006731776237487793, 0.006770688056945801, 0.0067573761940002445, 0.006760447978973389, 0.00674508810043335, 0.006729728221893311, 0.006708223819732666, 0.006865920066833496, 0.0067338237762451176, 0.006766592025756836, 0.006737919807434082, 0.006740992069244385, 0.00676255989074707, 0.006774720191955567, 0.00673689603805542, 0.006719520092010498, 0.0067563199996948245, 0.006774784088134766, 0.0067348480224609375, 0.006752255916595459, 0.006765567779541016, 0.006732800006866455, 0.006765567779541016, 0.014397439956665039, 0.006789120197296142, 0.006740992069244385, 0.0067276802062988285, 0.006724607944488525, 0.0067420158386230465, 0.006754303932189941, 0.006752255916595459, 0.006779903888702392, 0.006766592025756836, 0.006743040084838867, 0.0067573761940002445, 0.0067348480224609375, 0.006758399963378906, 0.006743040084838867, 0.0067123198509216305, 0.006767615795135498, 0.006750207901000976, 0.006730751991271973, 0.006774784088134766, 0.006812672138214112, 0.006665215969085693, 0.006649856090545654, 0.006617087841033936, 0.006638591766357422, 0.006654975891113281, 0.006780928134918213, 0.006782976150512696, 0.006779903888702392, 0.006785024166107178, 0.006751232147216797, 0.006788095951080322, 0.006807551860809326, 0.0067573761940002445, 0.006766592025756836, 0.006796319961547851, 0.00674505615234375, 0.006772736072540283, 0.0067645440101623535, 0.006721536159515381, 0.006851583957672119, 0.006762527942657471, 0.006697951793670654, 0.006729728221893311, 0.0067420158386230465, 0.006713344097137451, 0.006731776237487793, 0.006715392112731934, 0.006747136116027832, 0.006749184131622315, 0.006752255916595459, 0.006717440128326416, 0.006750207901000976, 0.006791168212890625, 0.006750207901000976, 0.006779903888702392, 0.0067645440101623535, 0.006738944053649902, 0.006758399963378906, 0.006912000179290771, 0.006724607944488525, 0.006773759841918945, 0.006763519763946534, 0.013530112266540528, 0.006345727920532227, 0.0063170561790466305, 0.006359039783477783, 0.006333439826965332, 0.006370304107666015, 0.006370304107666015, 0.006379519939422608, 0.006368256092071533, 0.0063805441856384275, 0.006341631889343262, 0.006358016014099121, 0.006344704151153564, 0.0063211522102355954, 0.00638156795501709, 0.006335487842559814, 0.006391808032989502, 0.00642252779006958, 0.006322175979614258, 0.006392831802368164, 0.006301695823669433, 0.006359039783477783, 0.006363135814666748, 0.006309887886047363, 0.006370304107666015, 0.00636518383026123, 0.006360064029693604, 0.006386688232421875, 0.006343679904937744, 0.006367231845855713, 0.006369279861450195, 0.006313983917236328, 0.006338560104370118, 0.006354944229125976, 0.00632422399520874, 0.0063508481979370115, 0.006384640216827392, 0.0063211522102355954, 0.006386688232421875, 0.006351871967315674, 0.006351871967315674, 0.006378496170043945, 0.006369279861450195, 0.006348800182342529, 0.00637337589263916, 0.006308864116668702, 0.0064839677810668945, 0.006396927833557129, 0.006362112045288086, 0.006402048110961914, 0.006303743839263916, 0.0063610877990722655, 0.0063508481979370115, 0.006330368041992188, 0.006325247764587402, 0.006348800182342529, 0.006334464073181153, 0.0063539199829101565, 0.006338560104370118, 0.006326272010803223, 0.006387712001800537, 0.006339583873748779, 0.006343679904937744, 0.013538304328918458, 0.006334496021270752, 0.006407135963439941, 0.006395904064178467, 0.006368256092071533, 0.0063498239517211915, 0.00637440013885498, 0.006375423908233643, 0.006309887886047363, 0.006363135814666748, 0.006335487842559814, 0.006386720180511475, 0.00638153600692749, 0.006355967998504639, 0.006352896213531494, 0.0063610877990722655, 0.0063498239517211915, 0.0063836159706115725, 0.006298624038696289, 0.006358016014099121, 0.006367231845855713, 0.006318079948425293, 0.006386688232421875, 0.006346752166748047, 0.006466559886932373, 0.006360064029693604, 0.006313983917236328, 0.0063211522102355954, 0.006377503871917724, 0.006327263832092285, 0.006360064029693604, 0.006348800182342529, 0.006319104194641113, 0.006355967998504639, 0.006342656135559082, 0.006358016014099121, 0.006360064029693604, 0.006295551776885986, 0.006362112045288086, 0.00637337589263916, 0.006303743839263916, 0.0063508481979370115, 0.006303743839263916, 0.006331391811370849, 0.006330368041992188, 0.006351871967315674, 0.006379519939422608, 0.006376448154449463, 0.006451200008392334, 0.006346752166748047, 0.0063170561790466305, 0.006354944229125976, 0.006319104194641113, 0.006318079948425293, 0.0063539199829101565, 0.006364160060882569, 0.006310912132263183, 0.00638259220123291, 0.006332448005676269, 0.006410208225250244, 0.006378496170043945, 0.006313983917236328, 0.006360064029693604, 0.01355673599243164, 0.00633241605758667, 0.006386688232421875, 0.006322175979614258, 0.0063569917678833006, 0.006319104194641113, 0.006343679904937744, 0.006360064029693604, 0.0063272957801818845, 0.006340608119964599, 0.006322175979614258, 0.00632422399520874, 0.006339583873748779, 0.006323200225830078, 0.006388735771179199, 0.006362112045288086, 0.0063170561790466305, 0.0063170561790466305, 0.006334464073181153, 0.006347775936126709, 0.006336512088775635, 0.006436863899230957, 0.006338592052459717, 0.006329311847686768, 0.006319104194641113, 0.006368319988250732, 0.006369215965270996, 0.006333439826965332, 0.0063805441856384275, 0.006359039783477783, 0.006359039783477783, 0.006351903915405273, 0.006307871818542481, 0.006354879856109619, 0.006315072059631347, 0.006333375930786133, 0.006370304107666015, 0.006306816101074219, 0.006340640068054199, 0.006353888034820556, 0.006315008163452148, 0.006436863899230957, 0.006376448154449463, 0.006310912132263183, 0.006344704151153564, 0.006329343795776367, 0.006336512088775635, 0.0063591041564941405, 0.006338496208190918, 0.006379519939422608, 0.006348800182342529, 0.006337535858154297, 0.006375423908233643, 0.006312960147857666, 0.006331391811370849, 0.006339583873748779, 0.0062975997924804685, 0.0063539199829101565, 0.006330368041992188, 0.006308864116668702, 0.006453248023986816, 0.00632422399520874, 0.006330368041992188]",tokens/s,153.3718322108413,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-14B,Qwen/Qwen-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained + model_class = get_class_from_dynamic_module( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module + final_module = get_cached_module_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file + modules_needed = check_imports(resolved_module_file) + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports + raise ImportError( +ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-72B,Qwen/Qwen2-beta-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-7B,Qwen/Qwen-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -32493,31 +31042,18 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained + model_class = get_class_from_dynamic_module( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module + final_module = get_cached_module_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file + modules_needed = check_imports(resolved_module_file) + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports + raise ImportError( +ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-180B,tiiuae/falcon-180B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,v,v,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -32529,11 +31065,21 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/v/resolve/main/config.json The above exception was the direct cause of the following exception: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn @@ -32544,28 +31090,13 @@ Traceback (most recent call last): response = _request_wrapper( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status - raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66949933-1b77766b705eb5a433c7f9ef;8b47ed0d-68a3-43c9-bc4d-82b9241e1b47) - -403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json. -If you are trying to create or update content,make sure you have a token with the `write` role. - -The above exception was the direct cause of the following exception: + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694948b-3a42593a022553ab6e8816a4;83b705e0-c1b2-4fd0-ab11-c897f8600238) -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error - raise LocalEntryNotFoundError( -huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. +Repository Not Found for url: https://huggingface.co/v/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. The above exception was the direct cause of the following exception: @@ -32586,13 +31117,13 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like tiiuae/falcon-180B is not the path to a directory containing a file named config.json. -Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. +OSError: v is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-4B,Qwen/Qwen1.5-4B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-125m,EleutherAI/gpt-neo-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -32612,22 +31143,16 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation + config = cls._check_and_enable_sdpa( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + raise ValueError( +ValueError: GPTNeoForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm-20b,internlm/internlm-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,.,.,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -32639,28 +31164,24 @@ ChildProcessError: Traceback (most recent call last): report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3710, in from_pretrained - model = cls(config, *model_args, **model_kwargs) - File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 906, in __init__ - self.model = InternLMModel(config) - File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 729, in __init__ - self.layers = nn.ModuleList([InternLMDecoderLayer(config) for _ in range(config.num_hidden_layers)]) - File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 729, in - self.layers = nn.ModuleList([InternLMDecoderLayer(config) for _ in range(config.num_hidden_layers)]) - File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 545, in __init__ - self.self_attn = INTERNLM_ATTENTION_CLASSES[config.attn_implementation](config=config) -KeyError: 'sdpa' + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 373, in cached_file + raise EnvironmentError( +OSError: . does not appear to have a file named config.json. Checkout 'https://huggingface.co/./tree/None' for available files. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-1_6b,stabilityai/stablelm-2-1_6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/phi-1_5,microsoft/phi-1_5,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -32694,8 +31215,8 @@ ChildProcessError: Traceback (most recent call last): self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,1,1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,s,s,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -32707,7 +31228,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/1/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/s/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -32734,9 +31255,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669495c2-2020169116cf5c8a72628056;0d20cce6-94d9-4d7a-b675-b3e90e52a5bc) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948cd9-239d09731d5c160c64cbd31a;6d714113-4cf7-4041-9e7d-d7dc44ebb53d) -Repository Not Found for url: https://huggingface.co/1/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/s/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -32761,11 +31282,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: 1 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: s is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-1.8B,Qwen/Qwen1.5-1.8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -32799,8 +31320,8 @@ ChildProcessError: Traceback (most recent call last): self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-66b,facebook/opt-66b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -32818,24 +31339,31 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 162.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,s,s,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,i,i,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -32847,7 +31375,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/s/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/i/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -32874,9 +31402,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948cf5-14674d57480a8ec364baf34f;f2fe8072-c785-4e38-b61e-b7213914da04) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949002-26fdf5626dc5efa91db5ec71;22bfa71f-82db-4115-acfb-e8f0138cbf69) -Repository Not Found for url: https://huggingface.co/s/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/i/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -32901,11 +31429,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: s is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: i is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,TencentARC/Mistral_Pro_8B_v0.1,TencentARC/Mistral_Pro_8B_v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-6.7b,EleutherAI/pythia-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -32939,8 +31467,8 @@ ChildProcessError: Traceback (most recent call last): self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-12b,EleutherAI/pythia-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-0.5B,Qwen/Qwen1.5-0.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -32974,8 +31502,8 @@ ChildProcessError: Traceback (most recent call last): self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/polyglot-ko-12.8b,EleutherAI/polyglot-ko-12.8b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-16B-nl,Salesforce/codegen-16B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -33009,8 +31537,8 @@ ChildProcessError: Traceback (most recent call last): self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-3b,stabilityai/stablelm-base-alpha-3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-j-6b,EleutherAI/gpt-j-6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -33044,8 +31572,9 @@ ChildProcessError: Traceback (most recent call last): self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,/,/,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2-large,openai-community/gpt2-large,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1254.875136,2645.03296,0.0,1998.585856,1692.285952,s,10,0.24200246238708498,0.0242002462387085,0.000612125689531125,0.024116847991943358,0.02477244110107422,0.025168700790405275,0.025485708541870117,"[0.025564960479736328, 0.023542015075683594, 0.024684383392333985, 0.023764448165893556, 0.024505792617797853, 0.02447939109802246, 0.023851680755615234, 0.024382015228271485, 0.02353171157836914, 0.023696063995361328]",tokens/s,10578.40475980471,kWh,2.807038850191559e-07,1.537483499955637e-07,8.364053933254355e-07,1.270857628340155e-06,tokens/kWh,201438771.9687823,MB,1255.440384,2645.03296,0.0,1998.585856,1740.091904,s,10,13.98928271484375,1.398928271484375,0.009250422421391818,1.3987031860351564,1.4114088623046874,1.4117007690429688,1.4119342944335938,"[1.4011539306640626, 1.41199267578125, 1.4039649658203126, 1.3913382568359376, 1.411343994140625, 1.4078441162109374, 1.3920347900390626, 1.39625244140625, 1.3845965576171875, 1.388760986328125]",tokens/s,45.034474807741184,kWh,1.6551164256870412e-05,9.07002460188642e-06,3.349914985287281e-05,5.912033871162965e-05,tokens/kWh,1065623.1234955217,,s,629,14.182389726638794,0.022547519438217475,0.0029122915922720257,0.022378463745117188,0.022657024002075195,0.02286632957458496,0.04563361907958984,"[0.02266111946105957, 0.022467584609985353, 0.022542335510253905, 0.02246451187133789, 0.022589439392089843, 0.022599679946899414, 0.022360063552856444, 0.02248806381225586, 0.02263039970397949, 0.022633472442626954, 0.02250547218322754, 0.02248294448852539, 0.022863872528076173, 0.023409664154052736, 0.023657472610473632, 0.023362560272216795, 0.023547903060913086, 0.023163904190063478, 0.02222591972351074, 0.02307379150390625, 0.02348646354675293, 0.022845439910888672, 0.02269491195678711, 0.022561792373657227, 0.02246451187133789, 0.022376447677612304, 0.022429695129394533, 0.02270207977294922, 0.022359039306640623, 0.02206208038330078, 0.021753856658935547, 0.021375999450683594, 0.02146406364440918, 0.021550079345703126, 0.0216944637298584, 0.021514240264892577, 0.021566463470458985, 0.02152448081970215, 0.021552127838134767, 0.021534719467163087, 0.021593088150024413, 0.02186649513244629, 0.022435840606689454, 0.02308095932006836, 0.02249113655090332, 0.021839872360229492, 0.021519359588623048, 0.021755903244018555, 0.02161667251586914, 0.021600223541259764, 0.02187264060974121, 0.022023168563842774, 0.021592063903808592, 0.021515264511108398, 0.021596160888671875, 0.021569536209106444, 0.021582847595214845, 0.021592063903808592, 0.02168422317504883, 0.022158336639404298, 0.02163609504699707, 0.02167193603515625, 0.04547686386108398, 0.021605375289916993, 0.021596160888671875, 0.021605375289916993, 0.021635072708129883, 0.022408191680908202, 0.022987775802612305, 0.022617088317871094, 0.022552576065063477, 0.02248089599609375, 0.022358015060424806, 0.0216627197265625, 0.02272768020629883, 0.022161407470703123, 0.021736448287963867, 0.021808128356933593, 0.021787647247314454, 0.021617664337158202, 0.022231039047241212, 0.02268876838684082, 0.022399999618530272, 0.022468608856201173, 0.02253004837036133, 0.02234982490539551, 0.022375423431396483, 0.022451200485229493, 0.02247270393371582, 0.022508544921875, 0.025584640502929686, 0.023030784606933592, 0.023574527740478517, 0.022610944747924806, 0.02266726493835449, 0.02264473533630371, 0.022552576065063477, 0.022425600051879883, 0.022433792114257813, 0.022609920501708985, 0.022460447311401368, 0.022352863311767578, 0.02246963119506836, 0.022428672790527345, 0.022574079513549804, 0.022376447677612304, 0.02248908805847168, 0.0224849910736084, 0.02279734420776367, 0.02256585693359375, 0.022495231628417968, 0.02246246337890625, 0.02231091117858887, 0.021749759674072267, 0.02169036865234375, 0.021618688583374023, 0.0221214714050293, 0.022444032669067384, 0.022716415405273437, 0.022600704193115235, 0.02253824043273926, 0.022766592025756836, 0.022545408248901368, 0.022372352600097657, 0.02264678382873535, 0.04748287963867188, 0.02241535949707031, 0.02246553611755371, 0.022574079513549804, 0.022425600051879883, 0.02245529556274414, 0.02246963119506836, 0.022468608856201173, 0.022520832061767578, 0.0224901123046875, 0.022559743881225586, 0.022330368041992187, 0.022426624298095704, 0.0227194881439209, 0.022578176498413087, 0.02250649642944336, 0.02247372817993164, 0.022339584350585938, 0.022377504348754882, 0.022376415252685546, 0.022382591247558595, 0.022501375198364256, 0.02234060859680176, 0.022625280380249024, 0.022508544921875, 0.022467584609985353, 0.022540288925170897, 0.022409215927124023, 0.022548479080200197, 0.022412288665771486, 0.022406143188476564, 0.02249830436706543, 0.022558719635009765, 0.02249318313598633, 0.022424575805664062, 0.022597631454467772, 0.022608896255493165, 0.022436864852905275, 0.02167091178894043, 0.02172211265563965, 0.02166374397277832, 0.021729280471801758, 0.02165247917175293, 0.021629951477050782, 0.02152448081970215, 0.021518335342407227, 0.021576704025268553, 0.022010879516601564, 0.02165657615661621, 0.02165247917175293, 0.021729280471801758, 0.021611520767211914, 0.02169139289855957, 0.02255564880371094, 0.02243891143798828, 0.022483968734741212, 0.0224849910736084, 0.022394880294799805, 0.02249932861328125, 0.022280191421508787, 0.022421503067016603, 0.022451200485229493, 0.02246143913269043, 0.045770751953125, 0.021746688842773438, 0.021728256225585937, 0.021703680038452147, 0.021639167785644533, 0.021617664337158202, 0.02170163154602051, 0.02166067123413086, 0.021626880645751953, 0.02168422317504883, 0.02163711929321289, 0.021738496780395508, 0.02183475112915039, 0.021724159240722657, 0.021720064163208007, 0.021741567611694337, 0.02190540885925293, 0.022610944747924806, 0.02248089599609375, 0.021700607299804688, 0.02162073516845703, 0.02164735984802246, 0.02163609504699707, 0.02162483215332031, 0.021567487716674806, 0.02170675277709961, 0.021619712829589844, 0.021646335601806642, 0.021635072708129883, 0.02166988754272461, 0.021695487976074217, 0.021622783660888673, 0.02164121627807617, 0.02167398452758789, 0.02165043258666992, 0.02211123275756836, 0.023779327392578126, 0.022837247848510742, 0.022750207901000977, 0.022556671142578123, 0.022378496170043945, 0.022426624298095704, 0.022381568908691408, 0.02231500816345215, 0.02289254379272461, 0.022403072357177735, 0.022542335510253905, 0.022353919982910156, 0.022362112045288086, 0.022404096603393556, 0.022500352859497072, 0.02253107261657715, 0.02250444793701172, 0.022428672790527345, 0.022418432235717774, 0.02233241653442383, 0.022389759063720704, 0.022434816360473633, 0.022420480728149415, 0.022503423690795898, 0.02242355155944824, 0.022587392807006838, 0.02253004837036133, 0.04750950241088867, 0.02255462455749512, 0.02245529556274414, 0.02269388771057129, 0.022742015838623047, 0.02252390480041504, 0.022503423690795898, 0.02253107261657715, 0.022559743881225586, 0.022559743881225586, 0.02245734405517578, 0.02246963119506836, 0.022397951126098634, 0.02254643249511719, 0.022470687866210936, 0.022647775650024415, 0.02243891143798828, 0.02228326416015625, 0.022187007904052734, 0.02170982360839844, 0.02269388771057129, 0.022635520935058592, 0.022399007797241213, 0.022482912063598634, 0.022408191680908202, 0.022483968734741212, 0.0225167350769043, 0.02253004837036133, 0.02247372817993164, 0.0224849910736084, 0.02231808090209961, 0.0224532470703125, 0.02246246337890625, 0.02240716743469238, 0.022417407989501953, 0.022451200485229493, 0.02234163284301758, 0.022402048110961914, 0.022230016708374024, 0.022042623519897463, 0.0220579833984375, 0.022452255249023438, 0.022406112670898436, 0.022346752166748047, 0.022376447677612304, 0.02267852783203125, 0.02265088081359863, 0.0224768009185791, 0.022940671920776368, 0.022603776931762694, 0.0219238395690918, 0.021757951736450197, 0.0216944637298584, 0.02168217658996582, 0.021613567352294923, 0.022289407730102538, 0.02246963119506836, 0.02243174362182617, 0.022377471923828125, 0.0224399356842041, 0.022323200225830078, 0.02244915199279785, 0.022559743881225586, 0.047440895080566405, 0.022466560363769532, 0.022579200744628908, 0.022544384002685547, 0.022822912216186524, 0.023026687622070312, 0.022591487884521484, 0.02247372817993164, 0.022510623931884764, 0.022584287643432618, 0.022615039825439453, 0.02259660720825195, 0.022487039566040038, 0.022495231628417968, 0.022602752685546876, 0.0225218563079834, 0.02249728012084961, 0.022600704193115235, 0.02282700729370117, 0.022567935943603516, 0.02230271911621094, 0.02247270393371582, 0.022608896255493165, 0.022347776412963868, 0.022796287536621093, 0.02242767906188965, 0.02233852767944336, 0.022391807556152343, 0.022312959671020507, 0.02224844741821289, 0.02244710350036621, 0.022391807556152343, 0.02162892723083496, 0.022434816360473633, 0.022419456481933595, 0.023061504364013673, 0.023794687271118165, 0.02291814422607422, 0.02275328063964844, 0.0224737606048584, 0.022846431732177735, 0.022739967346191405, 0.0224399356842041, 0.022252544403076172, 0.02245529556274414, 0.022370304107666016, 0.022350847244262697, 0.022475776672363282, 0.021917695999145507, 0.021703680038452147, 0.0216494083404541, 0.021736448287963867, 0.021687295913696288, 0.02165452766418457, 0.02166374397277832, 0.02164735984802246, 0.021622783660888673, 0.021659648895263672, 0.02165350341796875, 0.021634048461914062, 0.021605375289916993, 0.021601280212402343, 0.021582847595214845, 0.04577996826171875, 0.021742591857910155, 0.02168012809753418, 0.022021120071411132, 0.02241535949707031, 0.022448160171508788, 0.022464479446411133, 0.022429695129394533, 0.02190540885925293, 0.02169139289855957, 0.02166169548034668, 0.021618688583374023, 0.02166988754272461, 0.021708799362182618, 0.02167705535888672, 0.021703680038452147, 0.02170675277709961, 0.021603328704833984, 0.022540288925170897, 0.022359039306640623, 0.022375455856323244, 0.022378463745117188, 0.022406143188476564, 0.02274508857727051, 0.022146047592163084, 0.021757951736450197, 0.022359039306640623, 0.022399999618530272, 0.022748159408569335, 0.022377471923828125, 0.022382591247558595, 0.022356000900268555, 0.022352863311767578, 0.022393856048583984, 0.021725183486938478, 0.021651456832885742, 0.021613567352294923, 0.021739519119262696, 0.021606399536132814, 0.021602304458618164, 0.021587968826293946, 0.021557247161865235, 0.021554176330566405, 0.021601280212402343, 0.021581823348999024, 0.021748735427856446, 0.02166476821899414, 0.021607423782348634, 0.021644287109375, 0.022733823776245117, 0.02239897537231445, 0.022427648544311524, 0.02243174362182617, 0.022390783309936522, 0.02250444793701172, 0.02248908805847168, 0.022656000137329102, 0.02255462455749512, 0.02251571273803711, 0.02247372817993164, 0.02249932861328125, 0.022417407989501953, 0.02246143913269043, 0.04679884719848633, 0.021774335861206053, 0.0216944637298584, 0.022240255355834963, 0.022406143188476564, 0.02237238311767578, 0.022376415252685546, 0.022520832061767578, 0.022566911697387695, 0.022358015060424806, 0.02244915199279785, 0.02204876708984375, 0.02246348762512207, 0.02243071937561035, 0.022529024124145508, 0.02246553611755371, 0.022758399963378906, 0.022568960189819336, 0.02242355155944824, 0.02242252731323242, 0.022395904541015626, 0.022386688232421875, 0.022372352600097657, 0.022389759063720704, 0.02205695915222168, 0.02208563232421875, 0.02240716743469238, 0.022379520416259766, 0.02263039970397949, 0.02286796760559082, 0.022436864852905275, 0.022495231628417968, 0.02264473533630371, 0.0224768009185791, 0.02244915199279785, 0.022459392547607423, 0.02164735984802246, 0.021584896087646483, 0.02171494483947754, 0.02163199996948242, 0.021613567352294923, 0.02165452766418457, 0.021562368392944335, 0.02166374397277832, 0.021953535079956055, 0.022040576934814454, 0.021609472274780273, 0.021794815063476563, 0.021734432220458986, 0.022769632339477538, 0.02245631980895996, 0.021619712829589844, 0.022328319549560546, 0.02252390480041504, 0.02247987174987793, 0.02167296028137207, 0.02163711929321289, 0.021740543365478517, 0.021622783660888673, 0.022252544403076172, 0.021740543365478517, 0.021704704284667968, 0.021771263122558594, 0.04554956817626953, 0.021817344665527344, 0.021734399795532225, 0.021558271408081055, 0.021544960021972655, 0.021627904891967774, 0.021627904891967774, 0.02165555191040039, 0.021766143798828123, 0.021760000228881835, 0.021741567611694337, 0.02191974449157715, 0.02168627166748047, 0.021700607299804688, 0.021734399795532225, 0.021758975982666014, 0.021625856399536132, 0.02186444854736328, 0.021780479431152345, 0.02165247917175293, 0.02168217658996582, 0.021432319641113282, 0.02170675277709961, 0.021590015411376954, 0.021515264511108398, 0.021569536209106444, 0.021545984268188476, 0.021519359588623048, 0.021651456832885742, 0.021586944580078125, 0.022597631454467772, 0.023916543960571288, 0.022725664138793945, 0.022460384368896483, 0.022580223083496095, 0.022452224731445314, 0.02228121566772461, 0.02166886329650879, 0.021551103591918946, 0.021612543106079102, 0.02163711929321289, 0.021565439224243164, 0.021635072708129883, 0.021566463470458985, 0.022394912719726563, 0.022438880920410156, 0.022375423431396483, 0.022433792114257813, 0.022394880294799805, 0.022401023864746093, 0.02226380729675293, 0.02230886459350586, 0.02188697624206543, 0.021750783920288085, 0.02182963180541992, 0.023613439559936524, 0.02305843162536621, 0.022502399444580077, 0.022609920501708985, 0.0224768009185791, 0.02185932731628418, 0.02165452766418457, 0.021748735427856446, 0.045666305541992185, 0.0216494083404541, 0.0216944637298584, 0.02168217658996582, 0.02166886329650879, 0.021585920333862304, 0.02225971221923828, 0.022445056915283205, 0.022372352600097657, 0.02244812774658203, 0.02245631980895996, 0.022335487365722655, 0.022558719635009765, 0.022304767608642577, 0.0224532470703125, 0.0224849910736084, 0.02243071937561035, 0.021595136642456055, 0.021551103591918946, 0.0217262077331543, 0.021611520767211914, 0.021566463470458985, 0.021792768478393554, 0.021699583053588867, 0.021734399795532225, 0.02164838409423828, 0.02206515121459961, 0.02191564750671387, 0.021738496780395508, 0.02163609504699707, 0.02168524742126465, 0.021646335601806642, 0.021615615844726564, 0.02164019203186035, 0.02167705535888672, 0.021550079345703126, 0.02182963180541992, 0.02245529556274414, 0.02269388771057129, 0.0224901123046875, 0.022406143188476564, 0.022425600051879883, 0.02234880065917969, 0.022487039566040038, 0.022495231628417968, 0.022410240173339844, 0.022487039566040038, 0.022525951385498046, 0.02243174362182617, 0.022336511611938475, 0.02234060859680176, 0.022337535858154296, 0.02232524871826172, 0.022363136291503907, 0.021784576416015625, 0.021576704025268553, 0.0216760311126709, 0.02170675277709961, 0.021560319900512694, 0.0216627197265625, 0.02201907157897949, 0.02225868797302246, 0.022460416793823244]",tokens/s,44.35077671138517,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -33057,24 +31586,30 @@ ChildProcessError: Traceback (most recent call last): report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 373, in cached_file - raise EnvironmentError( -OSError: / does not appear to have a file named config.json. Checkout 'https://huggingface.co///tree/None' for available files. + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-70m,EleutherAI/pythia-70m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mistral-7B-v0.1,mistralai/Mistral-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -33108,8 +31643,8 @@ ChildProcessError: Traceback (most recent call last): self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-2b,google/gemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,r,r,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -33121,11 +31656,21 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/gemma-2b/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/r/resolve/main/config.json The above exception was the direct cause of the following exception: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn @@ -33136,28 +31681,13 @@ Traceback (most recent call last): response = _request_wrapper( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status - raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-6694811b-0dd7ab7e6f4beb8f4a7871bb;0eee426c-63cc-4c8b-b34a-3af47f69d6f9) - -403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/google/gemma-2b/resolve/main/config.json. -If you are trying to create or update content,make sure you have a token with the `write` role. - -The above exception was the direct cause of the following exception: + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949103-5bc42b867a3e578b301bdf84;3bd5d13b-68ab-4200-896c-05d44122967b) -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error - raise LocalEntryNotFoundError( -huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. +Repository Not Found for url: https://huggingface.co/r/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. The above exception was the direct cause of the following exception: @@ -33178,42 +31708,13 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/gemma-2b is not the path to a directory containing a file named config.json. -Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciLM-7B,Deci/DeciLM-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: DeciLMForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` +OSError: r is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,databricks/dbrx-base,databricks/dbrx-base,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,l,l,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -33225,11 +31726,21 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/l/resolve/main/config.json The above exception was the direct cause of the following exception: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn @@ -33240,28 +31751,13 @@ Traceback (most recent call last): response = _request_wrapper( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status - raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66947b45-3ab3dc9f5668660522884602;84cef30c-c870-4aa7-80ff-9cad99d8710b) - -403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json. -If you are trying to create or update content,make sure you have a token with the `write` role. - -The above exception was the direct cause of the following exception: + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669491a9-55c60cf979dcb5c619ce3f4d;4df3d572-31f2-4b1f-9406-8d3163b1d5a4) -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error - raise LocalEntryNotFoundError( -huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. +Repository Not Found for url: https://huggingface.co/l/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. The above exception was the direct cause of the following exception: @@ -33282,13 +31778,13 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like databricks/dbrx-base is not the path to a directory containing a file named config.json. -Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. +OSError: l is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-7.5B,facebook/xglm-7.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,a,a,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -33296,28 +31792,69 @@ Checkout your internet connection or see how to run the library in offline mode File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/a/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949155-7056511327fcda72778b4f6c;a5810a58-112b-4c8c-b677-59d406d81771) + +Repository Not Found for url: https://huggingface.co/a/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: XGLMForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + raise EnvironmentError( +OSError: a is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,B,B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,1,1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -33329,7 +31866,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/B/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/1/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -33356,9 +31893,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669493e1-057546d81e5e67da3c9b6320;98b57586-874e-4539-8e6a-aa20ea0103aa) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669495a3-42ea630c2d33350a7418178a;234132d0-87ad-4257-8d61-0454a01b01c7) -Repository Not Found for url: https://huggingface.co/B/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/1/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -33383,11 +31920,46 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: B is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: 1 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-14B,Qwen/Qwen1.5-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-7b,huggyllama/llama-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-2.7b,EleutherAI/pythia-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -33421,8 +31993,78 @@ ChildProcessError: Traceback (most recent call last): self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,B,B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/B/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669493bc-3ee307762ecae6cf22723ec7;4f7372f1-7bff-440c-8066-9015ee974461) + +Repository Not Found for url: https://huggingface.co/B/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + raise EnvironmentError( +OSError: B is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-30b,huggyllama/llama-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -33456,8 +32098,8 @@ ChildProcessError: Traceback (most recent call last): self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,v,v,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,2,2,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -33469,7 +32111,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/v/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/2/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -33496,9 +32138,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949493-47ff0fe300b4d32926f9c0ec;18b0c9e6-9652-4091-acd4-53bc4eb7f644) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694935a-35f42d024bb07a2971d6deef;ee9a5760-9924-4384-8bd7-8625ad6ae447) -Repository Not Found for url: https://huggingface.co/v/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/2/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -33523,11 +32165,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: v is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: 2 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.3b,EleutherAI/pythia-1.3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-350m,facebook/opt-350m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -33561,8 +32203,8 @@ ChildProcessError: Traceback (most recent call last): self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-40b,tiiuae/falcon-40b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-MoE-A2.7B,Qwen/Qwen1.5-MoE-A2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -33580,18 +32222,24 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: FalconForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neox-20b,EleutherAI/gpt-neox-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-70B,meta-llama/Meta-Llama-3-70B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -33611,22 +32259,29 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-13b,facebook/opt-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/polyglot-ko-12.8b,EleutherAI/polyglot-ko-12.8b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -33646,17 +32301,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2-large,openai-community/gpt2-large,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.42.3,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,1240.674304,2645.03296,0.0,1998.585856,1692.386816,s,10,0.18838963317871094,0.018838963317871094,0.000668527770232222,0.01876473617553711,0.019819794464111327,0.020010393524169924,0.0201628727722168,"[0.020200992584228517, 0.018689184188842772, 0.018129568099975586, 0.018872800827026366, 0.018840288162231444, 0.018487136840820314, 0.01897756767272949, 0.018571807861328126, 0.01977743911743164, 0.01784284782409668]",tokens/s,13588.858138343114,kWh,2.1014254247072237e-07,1.1514753753080715e-07,6.21637013718738e-07,9.469270937202676e-07,tokens/kWh,270348162.70198005,MB,1241.542656,2645.03296,0.0,1998.585856,1714.454528,s,10,11.323864135742188,1.1323864135742188,0.011448048499887543,1.1325510864257813,1.1412751220703123,1.1484743530273438,1.1542337377929688,"[1.155673583984375, 1.1301966552734375, 1.125267822265625, 1.13967529296875, 1.1369483642578124, 1.1275675048828124, 1.134905517578125, 1.137067626953125, 1.128013916015625, 1.1085478515625]",tokens/s,55.634719071866414,kWh,1.3173522658266065e-05,7.218674734789249e-06,2.631794009349133e-05,4.6710137486546655e-05,tokens/kWh,1348743.6216205768,,s,629,11.47224270248413,0.018238859622391305,0.0022825385783415146,0.017979391098022462,0.018243788528442384,0.01849487419128418,0.036483277893066435,"[0.01969254493713379, 0.019286016464233398, 0.018386943817138672, 0.01817087936401367, 0.018189311981201172, 0.018092031478881835, 0.017952768325805665, 0.01804902458190918, 0.01804287910461426, 0.018106367111206053, 0.018114559173583983, 0.018313215255737304, 0.01825279998779297, 0.018108415603637695, 0.018390016555786134, 0.018233343124389647, 0.01801215934753418, 0.018094079971313477, 0.018000896453857423, 0.018353151321411132, 0.018100223541259765, 0.018144256591796876, 0.01808896064758301, 0.018141183853149414, 0.018148351669311523, 0.0180633602142334, 0.01801625633239746, 0.018678783416748047, 0.021622783660888673, 0.02020147132873535, 0.01885593605041504, 0.018364416122436524, 0.01823744010925293, 0.018144287109375, 0.01806947135925293, 0.018033664703369142, 0.01805619239807129, 0.018111488342285157, 0.01805721664428711, 0.01799782371520996, 0.018125823974609375, 0.018130943298339842, 0.018159616470336915, 0.018207744598388673, 0.01799065589904785, 0.01802956771850586, 0.017930240631103517, 0.018335744857788085, 0.018184192657470705, 0.01800294494628906, 0.018115583419799804, 0.01796403121948242, 0.017979391098022462, 0.01794767951965332, 0.017952735900878907, 0.01824358367919922, 0.01883443260192871, 0.018513919830322266, 0.019216384887695313, 0.018311168670654295, 0.018207744598388673, 0.018132991790771484, 0.03711590576171875, 0.018126848220825196, 0.018250751495361327, 0.018081792831420897, 0.01820057678222656, 0.018028543472290038, 0.018085887908935547, 0.01806540870666504, 0.018287616729736327, 0.01806438446044922, 0.018077695846557617, 0.01805721664428711, 0.01807257652282715, 0.01805619239807129, 0.018027519226074217, 0.01808793640136719, 0.01816268730163574, 0.017923072814941408, 0.017959936141967774, 0.017911808013916015, 0.017880064010620117, 0.017904640197753906, 0.017917951583862304, 0.017812480926513673, 0.017854463577270507, 0.017885183334350584, 0.01789952087402344, 0.017932287216186525, 0.017929216384887696, 0.017934335708618163, 0.017915903091430666, 0.017862655639648437, 0.017945600509643556, 0.01789952087402344, 0.017789951324462892, 0.01761689567565918, 0.017846271514892577, 0.017707008361816406, 0.01761484718322754, 0.01819443130493164, 0.017971200942993162, 0.017912832260131836, 0.018914304733276367, 0.018008064270019532, 0.017911808013916015, 0.01794867134094238, 0.017984512329101563, 0.017914880752563478, 0.01775923156738281, 0.01762611198425293, 0.017617919921875, 0.017911808013916015, 0.017870847702026366, 0.017944576263427735, 0.017878015518188475, 0.01788313674926758, 0.01760358428955078, 0.017565696716308594, 0.017853439331054686, 0.017912832260131836, 0.017679359436035155, 0.01764352035522461, 0.017670143127441407, 0.0357386245727539, 0.01742438316345215, 0.017318912506103516, 0.017556480407714844, 0.018902015686035157, 0.018452512741088868, 0.018180063247680664, 0.018086912155151368, 0.017971200942993162, 0.01794047927856445, 0.017310720443725586, 0.017369087219238282, 0.017303552627563477, 0.017358848571777344, 0.017308671951293944, 0.017299455642700197, 0.017254400253295898, 0.017160192489624023, 0.017280000686645508, 0.017236991882324217, 0.01718681526184082, 0.01723494338989258, 0.017777664184570312, 0.018258943557739257, 0.017957887649536132, 0.018033664703369142, 0.01795686340332031, 0.018017280578613282, 0.017992704391479493, 0.018125823974609375, 0.018062335968017578, 0.01807257652282715, 0.018371583938598633, 0.018070528030395508, 0.01819340705871582, 0.01804902458190918, 0.017950719833374023, 0.01796505546569824, 0.01794047927856445, 0.01800601577758789, 0.01795996856689453, 0.017928159713745118, 0.017942527770996093, 0.01794047927856445, 0.017959936141967774, 0.017950719833374023, 0.017957887649536132, 0.01839414405822754, 0.01804489517211914, 0.01803468894958496, 0.018081792831420897, 0.01798246383666992, 0.01798963165283203, 0.017976320266723633, 0.018009088516235353, 0.017979391098022462, 0.017935359954833984, 0.01799577522277832, 0.0180633602142334, 0.017704959869384765, 0.017729536056518554, 0.017947647094726564, 0.01823539161682129, 0.03723571014404297, 0.01800499153137207, 0.01802137565612793, 0.018008064270019532, 0.01804800033569336, 0.01798041534423828, 0.018050048828125, 0.018017280578613282, 0.018017280578613282, 0.01801625633239746, 0.01802649688720703, 0.017946624755859376, 0.018349056243896485, 0.018127872467041017, 0.018093088150024413, 0.018162656784057617, 0.018086912155151368, 0.017929216384887696, 0.018070528030395508, 0.018010112762451173, 0.018086912155151368, 0.018000896453857423, 0.018121728897094725, 0.01808896064758301, 0.01804800033569336, 0.018101247787475586, 0.01803775978088379, 0.01799884796142578, 0.018012191772460936, 0.018047967910766603, 0.01800704002380371, 0.01801420783996582, 0.018051071166992186, 0.01809516716003418, 0.018114559173583983, 0.018010047912597655, 0.017934335708618163, 0.018033664703369142, 0.018043903350830077, 0.01803980827331543, 0.01802137565612793, 0.01807360076904297, 0.01805619239807129, 0.01800294494628906, 0.01850060844421387, 0.01800294494628906, 0.018044927597045898, 0.01801215934753418, 0.01780735969543457, 0.017903615951538086, 0.018132991790771484, 0.01822105598449707, 0.018119680404663087, 0.018314239501953124, 0.018135040283203126, 0.019092479705810548, 0.018257919311523436, 0.01820057678222656, 0.018122751235961913, 0.018153472900390624, 0.018118656158447266, 0.018137088775634767, 0.018069503784179687, 0.03716403198242187, 0.018043903350830077, 0.018045984268188476, 0.0180930233001709, 0.01803059196472168, 0.018078720092773438, 0.018091007232666014, 0.01803468894958496, 0.01803264045715332, 0.01808896064758301, 0.018115583419799804, 0.01807974433898926, 0.01805721664428711, 0.0182609920501709, 0.01886720085144043, 0.01839411163330078, 0.018025472640991212, 0.018324480056762696, 0.018110464096069336, 0.017944576263427735, 0.019140607833862306, 0.018117631912231445, 0.01798963165283203, 0.0179814395904541, 0.01799782371520996, 0.017936384201049805, 0.017999872207641602, 0.017979391098022462, 0.01804902458190918, 0.018182144165039063, 0.01805721664428711, 0.017922048568725587, 0.017914880752563478, 0.01790771293640137, 0.017983488082885742, 0.017889280319213868, 0.017697792053222656, 0.017358848571777344, 0.017933311462402343, 0.017617919921875, 0.017758207321166994, 0.017855487823486327, 0.018168832778930662, 0.018528255462646484, 0.018096128463745118, 0.01825279998779297, 0.018225151062011717, 0.018009088516235353, 0.017928192138671875, 0.01790771293640137, 0.01789030456542969, 0.017947647094726564, 0.018000896453857423, 0.017963008880615236, 0.017904640197753906, 0.017999872207641602, 0.017941503524780272, 0.018561023712158203, 0.017903615951538086, 0.017975296020507812, 0.017901567459106444, 0.017920000076293945, 0.0176363525390625, 0.036772865295410156, 0.01801215934753418, 0.017957887649536132, 0.017976320266723633, 0.017951744079589844, 0.01795686340332031, 0.017892351150512697, 0.017918975830078124, 0.017987583160400392, 0.01798246383666992, 0.0179835205078125, 0.017826784133911134, 0.017147903442382813, 0.017548288345336914, 0.017847295761108398, 0.017969152450561524, 0.018092031478881835, 0.017920000076293945, 0.01825382423400879, 0.018135040283203126, 0.018070528030395508, 0.0178606071472168, 0.017378303527832033, 0.01724723243713379, 0.017333248138427734, 0.01743974494934082, 0.017967103958129883, 0.01782476806640625, 0.017868799209594728, 0.017937408447265626, 0.017921024322509766, 0.01763737678527832, 0.017697792053222656, 0.017699840545654297, 0.01781657600402832, 0.01763942337036133, 0.0176680965423584, 0.017870847702026366, 0.018321407318115233, 0.017889280319213868, 0.017992704391479493, 0.01799065589904785, 0.017797119140625, 0.01782374382019043, 0.017903615951538086, 0.017903615951538086, 0.017949695587158202, 0.01796403121948242, 0.01800396728515625, 0.017991680145263672, 0.0180316162109375, 0.0180633602142334, 0.018183168411254884, 0.017985536575317384, 0.017979391098022462, 0.017993728637695314, 0.017938432693481447, 0.017954816818237306, 0.017943552017211914, 0.017901567459106444, 0.018130943298339842, 0.017933311462402343, 0.018486272811889647, 0.03722956848144531, 0.01803980827331543, 0.01794047927856445, 0.018132991790771484, 0.018092031478881835, 0.018223104476928712, 0.01792207908630371, 0.01806230354309082, 0.018544639587402344, 0.01904844856262207, 0.018386943817138672, 0.01824460792541504, 0.01803468894958496, 0.01803775978088379, 0.018050048828125, 0.018197504043579102, 0.01807974433898926, 0.017966079711914062, 0.017991680145263672, 0.017913856506347657, 0.017904640197753906, 0.017971200942993162, 0.017966079711914062, 0.018096128463745118, 0.01803775978088379, 0.01800396728515625, 0.018041856765747072, 0.01805414390563965, 0.01805721664428711, 0.018181119918823242, 0.01798246383666992, 0.01801318359375, 0.017979391098022462, 0.01784832000732422, 0.01763430404663086, 0.017954816818237306, 0.017957887649536132, 0.01799782371520996, 0.017955839157104494, 0.017955839157104494, 0.017897472381591797, 0.017986560821533205, 0.0179814395904541, 0.017994752883911135, 0.017902591705322265, 0.017938432693481447, 0.017884191513061524, 0.017903583526611328, 0.018058240890502928, 0.018147327423095702, 0.017924095153808595, 0.017313791275024415, 0.017262592315673828, 0.017283071517944337, 0.01724313545227051, 0.01841868782043457, 0.018120704650878908, 0.018076671600341796, 0.01804902458190918, 0.017914880752563478, 0.018092031478881835, 0.018143232345581056, 0.01803059196472168, 0.037408767700195314, 0.018696191787719727, 0.018634752273559572, 0.018241535186767577, 0.018098175048828127, 0.017975296020507812, 0.01807155227661133, 0.01803468894958496, 0.018076671600341796, 0.01801420783996582, 0.018050048828125, 0.01805516815185547, 0.018017280578613282, 0.01805516815185547, 0.01799884796142578, 0.018074623107910158, 0.018207744598388673, 0.017936384201049805, 0.017967103958129883, 0.01798041534423828, 0.01808896064758301, 0.018104320526123048, 0.017953792572021485, 0.017905664443969727, 0.01802444839477539, 0.01810534477233887, 0.018036735534667968, 0.017945600509643556, 0.018009088516235353, 0.017758207321166994, 0.017710079193115236, 0.01790771293640137, 0.017830911636352538, 0.017674240112304687, 0.017918975830078124, 0.017930240631103517, 0.017897472381591797, 0.017970176696777345, 0.017894399642944335, 0.017925119400024413, 0.01785753631591797, 0.017978368759155275, 0.01784524726867676, 0.01762713623046875, 0.01818623924255371, 0.0182476806640625, 0.017957887649536132, 0.01804595184326172, 0.01788313674926758, 0.018009088516235353, 0.01800294494628906, 0.017983488082885742, 0.0180633602142334, 0.017942527770996093, 0.017999872207641602, 0.01803980827331543, 0.01800601577758789, 0.01803468894958496, 0.01803980827331543, 0.017936384201049805, 0.017760255813598632, 0.01760870361328125, 0.020915199279785156, 0.03822387313842773, 0.017963008880615236, 0.017894399642944335, 0.017931264877319338, 0.018061311721801757, 0.017958911895751953, 0.017924095153808595, 0.017893375396728514, 0.017904640197753906, 0.0178657283782959, 0.017979391098022462, 0.017985536575317384, 0.01798963165283203, 0.018050048828125, 0.017963008880615236, 0.017953792572021485, 0.017947647094726564, 0.018153472900390624, 0.017994752883911135, 0.017887231826782226, 0.017880064010620117, 0.017892351150512697, 0.017903615951538086, 0.017954816818237306, 0.017916927337646483, 0.017955839157104494, 0.017898496627807618, 0.017864704132080078, 0.01788211250305176, 0.017979391098022462, 0.01789132881164551, 0.017946624755859376, 0.017966079711914062, 0.017938432693481447, 0.017761280059814453, 0.01759539222717285, 0.01756876754760742, 0.017901567459106444, 0.017921024322509766, 0.01789030456542969, 0.017916927337646483, 0.017934335708618163, 0.017902591705322265, 0.017913856506347657, 0.018020351409912108, 0.017938432693481447, 0.017943552017211914, 0.01785958480834961, 0.017953792572021485, 0.017912832260131836, 0.01795686340332031, 0.01790771293640137, 0.017918975830078124, 0.01789952087402344, 0.017983488082885742, 0.01819443130493164, 0.017913856506347657, 0.017915903091430666, 0.01796505546569824, 0.017887231826782226, 0.01768448066711426, 0.017138687133789063, 0.017300479888916014, 0.03538022232055664, 0.017307647705078123, 0.017283071517944337, 0.01721241569519043, 0.017349632263183593, 0.017378303527832033, 0.017240095138549804, 0.017227743148803713, 0.01722777557373047, 0.017311744689941407, 0.017301504135131835, 0.017290239334106446, 0.017257471084594727, 0.017282047271728516, 0.01723904037475586, 0.017351680755615235, 0.017242111206054688, 0.017192960739135742, 0.017285120010375975, 0.01720832061767578, 0.017253376007080077, 0.017376256942749024, 0.017876991271972655, 0.017971200942993162, 0.017885183334350584, 0.01787392044067383, 0.01839206314086914, 0.01800704002380371, 0.017971200942993162, 0.018276351928710938, 0.017876991271972655, 0.017870847702026366, 0.017926143646240233, 0.017906688690185548, 0.01783500862121582, 0.017947647094726564, 0.017884159088134767, 0.017943552017211914, 0.01803878402709961, 0.018421760559082033, 0.01859993553161621, 0.018069503784179687, 0.017920000076293945, 0.017926143646240233, 0.01790771293640137, 0.017934335708618163, 0.017869855880737303, 0.017647584915161132, 0.01760358428955078, 0.0176312313079834, 0.01762816047668457, 0.017338367462158204, 0.017317888259887695, 0.017361919403076173, 0.017257471084594727, 0.017260543823242186, 0.017282047271728516, 0.017294336318969726, 0.017277952194213866, 0.01724825668334961, 0.017250303268432618, 0.01740492820739746, 0.017288192749023438]",tokens/s,54.82798928790097,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-72B,Qwen/Qwen1.5-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-65b,huggyllama/llama-65b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -33695,10 +32355,80 @@ ChildProcessError: Traceback (most recent call last): self._buffers[key] = fn(buf) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 86.00 MiB. GPU + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-14B,Qwen/Qwen1.5-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-12b,stabilityai/stablelm-2-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,M,M,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,8,8,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -33710,7 +32440,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/M/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/8/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -33737,9 +32467,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948fca-43cc037e15d3884f71859cb8;2a60cb70-b6a3-4ec8-8e6f-187c49c6c685) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694925d-0baf58ab1d166f8b78697d37;233f7997-9e86-437a-8c02-e00df324e39b) -Repository Not Found for url: https://huggingface.co/M/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/8/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -33764,11 +32494,116 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: M is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: 8 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-7b,google/gemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-8B,meta-llama/Meta-Llama-3-8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/rho-math-1b-v0.1,microsoft/rho-math-1b-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-70m,EleutherAI/pythia-70m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,databricks/dbrx-base,databricks/dbrx-base,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -33780,7 +32615,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/gemma-7b/resolve/main/config.json +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -33797,10 +32632,10 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66948173-0fc09be31629c0fa1e00a691;78481430-3770-441c-b657-eca5ac09d6ac) +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66947b27-2f11209560e5e59808fcd139;2cdc5181-f4ba-4dac-967f-6415cd5a6ecf) 403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/google/gemma-7b/resolve/main/config.json. +Cannot access content at: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json. If you are trying to create or update content,make sure you have a token with the `write` role. The above exception was the direct cause of the following exception: @@ -33839,11 +32674,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/gemma-7b is not the path to a directory containing a file named config.json. +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like databricks/dbrx-base is not the path to a directory containing a file named config.json. Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-2.7b,EleutherAI/pythia-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-2.7B,EleutherAI/gpt-neo-2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -33877,8 +32712,8 @@ ChildProcessError: Traceback (most recent call last): self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-7B,Qwen/Qwen1.5-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-2.7b,facebook/opt-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -33912,8 +32747,43 @@ ChildProcessError: Traceback (most recent call last): self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,-,-,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciLM-7B,Deci/DeciLM-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-7b,google/recurrentgemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -33921,13 +32791,42 @@ NameError: name 'exl_ext' is not defined File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/google/recurrentgemma-7b/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 106, in _inner_fn - validate_repo_id(arg_value) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 160, in validate_repo_id - raise HFValidationError( -huggingface_hub.errors.HFValidationError: Repo id must use alphanumeric chars or '-', '_', '.', '--' and '..' are forbidden, '-' and '.' cannot start or end the name, max length is 96: '-'. + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948229-737bac1f473f50945bc8d0b0;117f7788-2c0d-4053-84e3-d75d8bf7d799) + +Repository Not Found for url: https://huggingface.co/google/recurrentgemma-7b/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. The above exception was the direct cause of the following exception: @@ -33948,41 +32847,13 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 466, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: Incorrect path_or_model_id: '-'. Please provide either the path to a local folder or the repo_id of a model on the Hub. - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-125m,facebook/opt-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` +OSError: google/recurrentgemma-7b is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-6.7b,EleutherAI/pythia-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -34016,37 +32887,8 @@ ChildProcessError: Traceback (most recent call last): self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-14B,Qwen/Qwen-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained - model_class = get_class_from_dynamic_module( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module - final_module = get_cached_module_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file - modules_needed = check_imports(resolved_module_file) - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports - raise ImportError( -ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-12b,stabilityai/stablelm-2-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-4B,Qwen/Qwen1.5-4B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -34080,8 +32922,8 @@ ChildProcessError: Traceback (most recent call last): self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-30b,huggyllama/llama-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-4.5B,facebook/xglm-4.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -34115,8 +32957,8 @@ ChildProcessError: Traceback (most recent call last): self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-3b-4e1t,stabilityai/stablelm-3b-4e1t,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -34136,16 +32978,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: GPTNeoForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-8B,meta-llama/Meta-Llama-3-8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-30b,facebook/opt-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -34179,8 +33027,8 @@ ChildProcessError: Traceback (most recent call last): self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,x,x,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-2b,google/recurrentgemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -34192,21 +33040,11 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/x/resolve/main/config.json +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json The above exception was the direct cause of the following exception: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn @@ -34217,83 +33055,28 @@ Traceback (most recent call last): response = _request_wrapper( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669492ce-3d98ae233f66e68119bd3167;d20df17a-c04b-40ff-853f-c6accd1abacb) - -Repository Not Found for url: https://huggingface.co/x/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file - raise EnvironmentError( -OSError: x is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,i,i,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/i/resolve/main/config.json - -The above exception was the direct cause of the following exception: + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status + raise HfHubHTTPError(message, response=response) from e +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-669481bd-5fab551753c2656905cd0985;2c272794-392b-4766-991d-adfa098a50b1) -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694901f-2e15a68418ddccc2779299bf;2a2fa148-e713-4bf1-8808-c10e9fbc56ce) +403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. +Cannot access content at: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json. +If you are trying to create or update content,make sure you have a token with the `write` role. -Repository Not Found for url: https://huggingface.co/i/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error + raise LocalEntryNotFoundError( +huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. The above exception was the direct cause of the following exception: @@ -34314,13 +33097,13 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file raise EnvironmentError( -OSError: i is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/recurrentgemma-2b is not the path to a directory containing a file named config.json. +Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-72B,Qwen/Qwen-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mixtral-8x7B-v0.1,mistralai/Mixtral-8x7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -34338,18 +33121,31 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained - model_class = get_class_from_dynamic_module( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module - final_module = get_cached_module_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file - modules_needed = check_imports(resolved_module_file) - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports - raise ImportError( -ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.4b,EleutherAI/pythia-1.4b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-125m,facebook/opt-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -34383,8 +33179,8 @@ ChildProcessError: Traceback (most recent call last): self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-3B-v1,togethercomputer/RedPajama-INCITE-Base-3B-v1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm-20b,internlm/internlm-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -34402,7 +33198,7 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained hf_quantizer.postprocess_model(model) @@ -34418,8 +33214,8 @@ ChildProcessError: Traceback (most recent call last): self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-0.5B,Qwen/Qwen1.5-0.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-7.5B,facebook/xglm-7.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -34453,37 +33249,8 @@ ChildProcessError: Traceback (most recent call last): self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-7B,Qwen/Qwen-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained - model_class = get_class_from_dynamic_module( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module - final_module = get_cached_module_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file - modules_needed = check_imports(resolved_module_file) - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports - raise ImportError( -ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-14B,Qwen/Qwen2-beta-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-3B-v1,togethercomputer/RedPajama-INCITE-Base-3B-v1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -34517,8 +33284,8 @@ ChildProcessError: Traceback (most recent call last): self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-7b,google/recurrentgemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,M,M,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -34530,7 +33297,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/google/recurrentgemma-7b/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/M/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -34557,9 +33324,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948251-4fd60f9855ebf2762d8a5603;0013c02f-4384-491c-98d7-d611f6809796) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948faf-59dd5cc513544b7d10041dee;286a7608-1bce-4738-8491-75c34ff23312) -Repository Not Found for url: https://huggingface.co/google/recurrentgemma-7b/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/M/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -34584,11 +33351,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: google/recurrentgemma-7b is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: M is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-rw-1b,tiiuae/falcon-rw-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-3b,stabilityai/stablelm-base-alpha-3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -34606,18 +33373,24 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: FalconForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-70B,meta-llama/Meta-Llama-3-70B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-13b,huggyllama/llama-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -34637,29 +33410,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-65b,huggyllama/llama-65b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-7b-hf,meta-llama/Llama-2-7b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -34679,29 +33445,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 86.00 MiB. GPU + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,l,l,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,-,-,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -34709,42 +33468,13 @@ torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 86.00 MiB. GP File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/l/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669491c6-16e5cc07103660a311ab2310;d3f549f5-adbc-4caa-962c-5405faa4a87a) - -Repository Not Found for url: https://huggingface.co/l/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 106, in _inner_fn + validate_repo_id(arg_value) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 160, in validate_repo_id + raise HFValidationError( +huggingface_hub.errors.HFValidationError: Repo id must use alphanumeric chars or '-', '_', '.', '--' and '..' are forbidden, '-' and '.' cannot start or end the name, max length is 96: '-'. The above exception was the direct cause of the following exception: @@ -34765,13 +33495,12 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 466, in cached_file raise EnvironmentError( -OSError: l is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` +OSError: Incorrect path_or_model_id: '-'. Please provide either the path to a local folder or the repo_id of a model on the Hub. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-4.5B,facebook/xglm-4.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-410m,EleutherAI/pythia-410m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -34791,16 +33520,51 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: XGLMForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,/,/,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 373, in cached_file + raise EnvironmentError( +OSError: / does not appear to have a file named config.json. Checkout 'https://huggingface.co///tree/None' for available files. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-110B,Qwen/Qwen1.5-110B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-13b,facebook/opt-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -34820,29 +33584,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 32.00 MiB. GPU + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,8,8,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.4b,EleutherAI/pythia-1.4b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -34850,69 +33607,34 @@ torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 32.00 MiB. GP File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/8/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949279-179e332e37ddb64d1199134d;65b6f76d-0b6a-441d-8027-7987328985dc) - -Repository Not Found for url: https://huggingface.co/8/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file - raise EnvironmentError( -OSError: 8 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/rho-math-1b-v0.1,microsoft/rho-math-1b-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-1_6b,stabilityai/stablelm-2-1_6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -34946,8 +33668,8 @@ ChildProcessError: Traceback (most recent call last): self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-7b-hf,meta-llama/Llama-2-7b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-rw-1b,tiiuae/falcon-rw-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -34965,7 +33687,7 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained hf_quantizer.postprocess_model(model) @@ -34981,8 +33703,83 @@ ChildProcessError: Traceback (most recent call last): self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-13b-hf,meta-llama/Llama-2-13b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-2b,google/gemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/gemma-2b/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status + raise HfHubHTTPError(message, response=response) from e +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-669480ff-6c65b85b439f9c476f1d69e8;83ed4b0a-083f-438d-916d-9a7838613487) + +403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. +Cannot access content at: https://huggingface.co/google/gemma-2b/resolve/main/config.json. +If you are trying to create or update content,make sure you have a token with the `write` role. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error + raise LocalEntryNotFoundError( +huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file + raise EnvironmentError( +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/gemma-2b is not the path to a directory containing a file named config.json. +Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-7b,tiiuae/falcon-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -35000,7 +33797,7 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained hf_quantizer.postprocess_model(model) @@ -35016,8 +33813,8 @@ ChildProcessError: Traceback (most recent call last): self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mistral-7B-v0.1,mistralai/Mistral-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-12b,EleutherAI/pythia-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -35051,8 +33848,83 @@ ChildProcessError: Traceback (most recent call last): self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-32B,Qwen/Qwen1.5-32B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-180B,tiiuae/falcon-180B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status + raise HfHubHTTPError(message, response=response) from e +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66949914-19bd13bd77fc0356180fdfa7;cbcd402d-5497-4d3b-95ac-74a99c35ada3) + +403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. +Cannot access content at: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json. +If you are trying to create or update content,make sure you have a token with the `write` role. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error + raise LocalEntryNotFoundError( +huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file + raise EnvironmentError( +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like tiiuae/falcon-180B is not the path to a directory containing a file named config.json. +Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,TencentARC/Mistral_Pro_8B_v0.1,TencentARC/Mistral_Pro_8B_v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -35086,8 +33958,8 @@ ChildProcessError: Traceback (most recent call last): self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,r,r,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,m,m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -35099,7 +33971,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/r/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/m/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -35126,9 +33998,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694911f-054c52293cb3ecb65d01522b;bd28ec7e-e9ad-4bd5-9d84-b99e74b5434c) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948c37-134fabb91c0cd58328069fde;b3b530aa-5ad1-434d-b422-e7ac6fc493fd) -Repository Not Found for url: https://huggingface.co/r/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/m/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -35153,11 +34025,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: r is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: m is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-564M,facebook/xglm-564M,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-72B,Qwen/Qwen1.5-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -35177,16 +34049,29 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: XGLMForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-2.7B,EleutherAI/gpt-neo-2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-70b-hf,meta-llama/Llama-2-70b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -35206,16 +34091,64 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: GPTNeoForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 112.00 MiB. GPU + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-13b-hf,meta-llama/Llama-2-13b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-410m,EleutherAI/pythia-410m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-7b,stabilityai/stablelm-base-alpha-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -35249,8 +34182,37 @@ ChildProcessError: Traceback (most recent call last): self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,0,0,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-72B,Qwen/Qwen-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained + model_class = get_class_from_dynamic_module( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module + final_module = get_cached_module_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file + modules_needed = check_imports(resolved_module_file) + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports + raise ImportError( +ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,0,0,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -35289,7 +34251,7 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669494ef-46683afd36305f4903f44e62;7a692a93-b6f4-44ee-80ba-4e03cfde403c) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669494d3-6af856cf1c8afc57242df494;6c6317f3-b7d5-4453-86b3-85f9cdc1364e) Repository Not Found for url: https://huggingface.co/0/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. @@ -35319,79 +34281,8 @@ Traceback (most recent call last): OSError: 0 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-6B-nl,Salesforce/codegen-6B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: CodeGenForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-70b-hf,meta-llama/Llama-2-70b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 112.00 MiB. GPU - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,2,2,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-7b,google/gemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -35403,21 +34294,11 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/2/resolve/main/config.json +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/gemma-7b/resolve/main/config.json The above exception was the direct cause of the following exception: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn @@ -35428,13 +34309,28 @@ Traceback (most recent call last): response = _request_wrapper( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949384-64791c6830106fee54d20bde;b6eb150d-e320-45d0-b121-1e789f263508) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status + raise HfHubHTTPError(message, response=response) from e +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66948155-7fe862463b36ae76360f388e;fe492e76-e99d-488e-a31f-db34d4326761) -Repository Not Found for url: https://huggingface.co/2/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. +403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. +Cannot access content at: https://huggingface.co/google/gemma-7b/resolve/main/config.json. +If you are trying to create or update content,make sure you have a token with the `write` role. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error + raise LocalEntryNotFoundError( +huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. The above exception was the direct cause of the following exception: @@ -35455,13 +34351,13 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file raise EnvironmentError( -OSError: 2 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/gemma-7b is not the path to a directory containing a file named config.json. +Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,a,a,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,x,x,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -35473,7 +34369,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/a/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/x/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -35500,9 +34396,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949171-3125b6236ec631226f52bbaa;0f758913-8bcf-45b1-9fb1-baf7fa54916e) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669492b1-3921fa19586c45085fc01876;2d3b220d-7f3c-4e7f-9c37-ec7b22bfa61a) -Repository Not Found for url: https://huggingface.co/a/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/x/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -35527,104 +34423,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: a is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: x is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-350m,facebook/opt-350m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/phi-1_5,microsoft/phi-1_5,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-2.7b,facebook/opt-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-13b,huggyllama/llama-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm2-20b,internlm/internlm2-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -35642,7 +34445,7 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained hf_quantizer.postprocess_model(model) @@ -35658,37 +34461,8 @@ ChildProcessError: Traceback (most recent call last): self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-7b,tiiuae/falcon-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: FalconForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-MoE-A2.7B,Qwen/Qwen1.5-MoE-A2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -35722,8 +34496,8 @@ ChildProcessError: Traceback (most recent call last): self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-7b,huggyllama/llama-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-6.7b,facebook/opt-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -35757,8 +34531,8 @@ ChildProcessError: Traceback (most recent call last): self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-14B,Qwen/Qwen2-beta-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -35792,112 +34566,8 @@ ChildProcessError: Traceback (most recent call last): self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-2b,google/recurrentgemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status - raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-669481de-41f6776a37cf8d5c484750e8;67d51f55-5550-4111-9616-e7ea9fe9dc15) - -403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json. -If you are trying to create or update content,make sure you have a token with the `write` role. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error - raise LocalEntryNotFoundError( -huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file - raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/recurrentgemma-2b is not the path to a directory containing a file named config.json. -Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-30b,facebook/opt-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-160m,EleutherAI/pythia-160m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-110B,Qwen/Qwen1.5-110B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -35917,22 +34587,29 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 32.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-7b,stabilityai/stablelm-base-alpha-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-564M,facebook/xglm-564M,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -35966,8 +34643,8 @@ ChildProcessError: Traceback (most recent call last): self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,m,m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,t,t,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -35979,7 +34656,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/m/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/t/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -36006,9 +34683,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948c52-7c4106786b4cbcc30e45aab2;cf14755c-9cfa-4a50-9669-5f6c6d283e1a) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669490b2-45ae11576d865af9256c6d61;e4c2efda-3968-4a76-9362-193274524683) -Repository Not Found for url: https://huggingface.co/m/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/t/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -36033,11 +34710,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: m is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: t is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-3b-4e1t,stabilityai/stablelm-3b-4e1t,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neox-20b,EleutherAI/gpt-neox-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -36071,8 +34748,8 @@ ChildProcessError: Traceback (most recent call last): self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-125m,EleutherAI/gpt-neo-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -36092,17 +34769,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: GPTNeoForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2,openai-community/gpt2,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.42.3,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,1222.918144,1002.962944,0.0,356.51584,319.013888,s,24,0.17108643198013304,0.007128601332505545,0.00023506038056566344,0.0071254239082336425,0.00730543360710144,0.007380452966690063,0.007901603527069092,"[0.008055839538574219, 0.0070044159889221195, 0.006933440208435058, 0.006980544090270996, 0.007076032161712646, 0.007130688190460205, 0.006901663780212402, 0.00719379186630249, 0.006775263786315918, 0.007147552013397217, 0.006987008094787597, 0.007127007961273193, 0.007123839855194092, 0.0069337282180786134, 0.006967872142791748, 0.007136064052581787, 0.007171455860137939, 0.007136960029602051, 0.007385248184204101, 0.0071905279159545895, 0.007149151802062988, 0.007353280067443848, 0.00712220811843872, 0.007102848052978516]",tokens/s,35911.67299995744,kWh,8.20515813007031e-08,4.496026881836977e-08,1.723284557638797e-07,2.9934030588295257e-07,tokens/kWh,855213931.9991895,MB,1222.918144,1002.962944,0.0,356.51584,319.016448,s,24,10.024570068359376,0.417690419514974,0.009639100573855391,0.4168327026367188,0.4219854522705078,0.42297065277099605,0.4497069650268555,"[0.4576481628417969, 0.4167873229980469, 0.4013796691894531, 0.41602001953125, 0.4197399597167969, 0.41845706176757813, 0.41359945678710935, 0.41306964111328126, 0.41490817260742185, 0.4164496765136719, 0.41565142822265627, 0.413171875, 0.417815185546875, 0.41687808227539064, 0.404253173828125, 0.4180263671875, 0.415652587890625, 0.4194432373046875, 0.4231212158203125, 0.4190736083984375, 0.42167742919921875, 0.4221174621582031, 0.4120869445800781, 0.4175423278808594]",tokens/s,150.82941110585247,kWh,4.878610027839004e-06,2.673259573047272e-06,8.213615752983987e-06,1.5765485353870266e-05,tokens/kWh,3996071.074623411,,s,1511,10.180687867164602,0.0067377153323392525,0.0009229027913049718,0.006619135856628418,0.006779903888702392,0.007192575931549072,0.013923225975036629,"[0.007412735939025879, 0.00744755220413208, 0.007483391761779785, 0.0073994240760803225, 0.007536640167236328, 0.007288832187652588, 0.007184383869171143, 0.007219200134277344, 0.007250944137573242, 0.0071495680809020995, 0.007094272136688232, 0.007154687881469727, 0.007214079856872559, 0.007896063804626464, 0.007287807941436767, 0.007271423816680909, 0.007174208164215088, 0.007232448101043701, 0.007291903972625732, 0.007258111953735351, 0.007313439846038819, 0.007170015811920166, 0.007235583782196045, 0.0073175039291381834, 0.007245823860168457, 0.0071198720932006835, 0.007203839778900147, 0.007159808158874512, 0.007173120021820068, 0.007256063938140869, 0.0072540159225463864, 0.007328767776489258, 0.007588863849639893, 0.007350272178649903, 0.007271423816680909, 0.0072325119972229, 0.007336959838867187, 0.007259136199951172, 0.007278592109680176, 0.007124000072479248, 0.007150559902191162, 0.0071905279159545895, 0.007312384128570557, 0.007115839958190918, 0.00720684814453125, 0.007279615879058838, 0.007194623947143554, 0.0072325119972229, 0.007303167819976806, 0.007305215835571289, 0.007370751857757568, 0.0073471999168395995, 0.007316480159759522, 0.00733900785446167, 0.007209983825683594, 0.0071833600997924804, 0.007266304016113281, 0.007063551902770996, 0.007123968124389648, 0.006914048194885254, 0.007126016139984131, 0.006872064113616944, 0.013767680168151856, 0.006612991809844971, 0.0068055357933044435, 0.0070184640884399414, 0.007288832187652588, 0.007051263809204102, 0.0071526398658752445, 0.00723967981338501, 0.006957056045532227, 0.00682700777053833, 0.006904831886291504, 0.006914048194885254, 0.006833151817321777, 0.0074291200637817386, 0.006706175804138184, 0.006618112087249756, 0.006719488143920899, 0.0067358717918396, 0.006503424167633057, 0.006547520160675049, 0.0065924482345581055, 0.006811647891998291, 0.006649856090545654, 0.006663167953491211, 0.006638591766357422, 0.006681600093841553, 0.006639616012573242, 0.00662937593460083, 0.006624288082122802, 0.006625279903411865, 0.006634463787078857, 0.006653952121734619, 0.006660096168518067, 0.006622208118438721, 0.006669312000274658, 0.006585343837738037, 0.006519807815551758, 0.006428671836853027, 0.0065064959526062015, 0.0065075201988220215, 0.006525951862335205, 0.006609920024871826, 0.006543360233306885, 0.006285376071929931, 0.006284224033355713, 0.0062945599555969236, 0.0063159999847412105, 0.006336575984954834, 0.006356927871704101, 0.006312960147857666, 0.006337535858154297, 0.006352896213531494, 0.006377471923828125, 0.006362112045288086, 0.006487040042877197, 0.00638976001739502, 0.006368256092071533, 0.006372352123260498, 0.006360064029693604, 0.006396927833557129, 0.006378560066223144, 0.006458303928375244, 0.006375423908233643, 0.013642751693725585, 0.006362112045288086, 0.006369279861450195, 0.006368256092071533, 0.006377471923828125, 0.006344704151153564, 0.006386688232421875, 0.006358016014099121, 0.0064133119583129885, 0.006368256092071533, 0.006345727920532227, 0.0063569917678833006, 0.006347775936126709, 0.0063508481979370115, 0.006388735771179199, 0.006345727920532227, 0.0063610877990722655, 0.006331391811370849, 0.006377503871917724, 0.006363103866577149, 0.00642252779006958, 0.006384640216827392, 0.006384640216827392, 0.00637440013885498, 0.006342656135559082, 0.006366208076477051, 0.006367231845855713, 0.006340608119964599, 0.006343679904937744, 0.006337535858154297, 0.0064737281799316405, 0.006309887886047363, 0.006277120113372803, 0.006291456222534179, 0.006271999835968017, 0.006305791854858398, 0.006260735988616943, 0.0063539199829101565, 0.006333439826965332, 0.006277120113372803, 0.006294591903686524, 0.006271935939788818, 0.006261760234832763, 0.006304768085479737, 0.006252543926239014, 0.006292479991912842, 0.006278143882751465, 0.006305791854858398, 0.006262784004211426, 0.006259712219238281, 0.0062740478515625, 0.006270976066589356, 0.006278143882751465, 0.006260735988616943, 0.0062576642036437985, 0.0064849920272827145, 0.006639616012573242, 0.006626304149627686, 0.006595583915710449, 0.006602752208709717, 0.006615039825439453, 0.0066007041931152345, 0.006666240215301514, 0.013848575592041015, 0.006554624080657959, 0.006558720111846924, 0.0065382399559021, 0.006540287971496582, 0.006557695865631104, 0.006494207859039307, 0.006524928092956543, 0.0065146880149841305, 0.006554624080657959, 0.00653926420211792, 0.00653004789352417, 0.006576128005981445, 0.006567935943603515, 0.00653004789352417, 0.006549503803253174, 0.00658022403717041, 0.006554624080657959, 0.006533120155334473, 0.006550528049468994, 0.006508543968200684, 0.006524928092956543, 0.006527999877929688, 0.006545407772064209, 0.006617087841033936, 0.0065812478065490725, 0.006529024124145508, 0.006592512130737305, 0.006603775978088379, 0.0066416640281677245, 0.006628352165222168, 0.006606847763061524, 0.006625279903411865, 0.006633535861968994, 0.006624192237854004, 0.006643743991851807, 0.006575071811676025, 0.006703135967254639, 0.006697951793670654, 0.006589439868927002, 0.006616064071655273, 0.006540287971496582, 0.006535168170928955, 0.006783999919891357, 0.00693452787399292, 0.006716415882110595, 0.006651904106140137, 0.006653952121734619, 0.006609983921051025, 0.006612927913665772, 0.006668320178985596, 0.0065965762138366696, 0.006608895778656006, 0.006614016056060791, 0.006594560146331787, 0.006658048152923584, 0.0066119680404663084, 0.006605823993682861, 0.006628352165222168, 0.006657023906707763, 0.006617119789123535, 0.006628320217132568, 0.006690815925598144, 0.01406771183013916, 0.006669312000274658, 0.006616064071655273, 0.006605823993682861, 0.006593535900115967, 0.006903808116912841, 0.0066826238632202144, 0.006944767951965332, 0.006823935985565186, 0.007096320152282715, 0.007384064197540283, 0.006724607944488525, 0.00667955207824707, 0.006643712043762207, 0.0066744318008422855, 0.006673471927642822, 0.006619103908538818, 0.006709216117858886, 0.006681600093841553, 0.006652927875518798, 0.0066641921997070315, 0.006657023906707763, 0.006631423950195312, 0.006589439868927002, 0.0065177597999572755, 0.006503424167633057, 0.00653004789352417, 0.006574143886566162, 0.006555583953857422, 0.006545407772064209, 0.006633471965789795, 0.006624256134033203, 0.006626304149627686, 0.0065781760215759275, 0.006595583915710449, 0.006606912136077881, 0.006654911994934082, 0.006585343837738037, 0.00663046407699585, 0.0065924482345581055, 0.006612991809844971, 0.006606847763061524, 0.0065771517753601075, 0.0066119680404663084, 0.0066007041931152345, 0.006591487884521485, 0.006599679946899414, 0.006575104236602783, 0.006628352165222168, 0.006615039825439453, 0.0068321280479431154, 0.006767615795135498, 0.0066109437942504885, 0.006635519981384277, 0.006599679946899414, 0.006711296081542969, 0.006590464115142822, 0.0067123517990112305, 0.006628320217132568, 0.006584320068359375, 0.006609920024871826, 0.006616064071655273, 0.0065710082054138185, 0.014100480079650878, 0.0066447358131408694, 0.006599679946899414, 0.006623231887817383, 0.006631423950195312, 0.0066304001808166506, 0.006638591766357422, 0.006631423950195312, 0.006601727962493896, 0.006616064071655273, 0.00684441614151001, 0.006636544227600098, 0.006599679946899414, 0.006639616012573242, 0.0066375679969787596, 0.006628352165222168, 0.00657919979095459, 0.006729728221893311, 0.006616064071655273, 0.006595583915710449, 0.006638591766357422, 0.006619135856628418, 0.0065771517753601075, 0.006623231887817383, 0.006595583915710449, 0.006585343837738037, 0.006602752208709717, 0.0066375679969787596, 0.006621183872222901, 0.006656000137329102, 0.006621183872222901, 0.0066304001808166506, 0.006622208118438721, 0.006920191764831543, 0.006619135856628418, 0.006656000137329102, 0.006635519981384277, 0.0066109437942504885, 0.006660096168518067, 0.0066304001808166506, 0.0066007041931152345, 0.006620160102844238, 0.006638591766357422, 0.006605823993682861, 0.006626304149627686, 0.006624256134033203, 0.006559743881225586, 0.006598656177520752, 0.006622208118438721, 0.006592512130737305, 0.006656000137329102, 0.0066007041931152345, 0.006809599876403808, 0.00676966381072998, 0.006660096168518067, 0.006616064071655273, 0.006612991809844971, 0.006670335769653321, 0.006624288082122802, 0.00667952013015747, 0.006633471965789795, 0.0066119680404663084, 0.006625343799591064, 0.01360582447052002, 0.006369279861450195, 0.006322175979614258, 0.006368256092071533, 0.006367231845855713, 0.006349855899810791, 0.006337503910064698, 0.006335487842559814, 0.0063539199829101565, 0.006343679904937744, 0.0063498239517211915, 0.006377471923828125, 0.006339583873748779, 0.006369279861450195, 0.006277120113372803, 0.0062863359451293946, 0.0063632001876831054, 0.006559679985046387, 0.006557695865631104, 0.00653004789352417, 0.006723584175109864, 0.006628352165222168, 0.006583295822143555, 0.006676479816436768, 0.006598656177520752, 0.006603775978088379, 0.00667955207824707, 0.00662937593460083, 0.0066826238632202144, 0.007476223945617676, 0.006923264026641846, 0.00662937593460083, 0.006625279903411865, 0.00662937593460083, 0.006648831844329834, 0.006622208118438721, 0.006627327919006347, 0.006619135856628418, 0.006661119937896728, 0.006663167953491211, 0.006616064071655273, 0.006624256134033203, 0.006542335987091064, 0.00652396821975708, 0.0065054078102111815, 0.0066826238632202144, 0.006606847763061524, 0.006606847763061524, 0.006627327919006347, 0.006651904106140137, 0.00658022403717041, 0.006604800224304199, 0.006597631931304931, 0.006625279903411865, 0.006626304149627686, 0.006617087841033936, 0.0066119680404663084, 0.006606847763061524, 0.006595583915710449, 0.006601727962493896, 0.0066007041931152345, 0.006569983959197998, 0.006602752208709717, 0.014182463645935058, 0.00659449577331543, 0.006605823993682861, 0.006616064071655273, 0.006615039825439453, 0.006638591766357422, 0.006428671836853027, 0.006589439868927002, 0.0065781760215759275, 0.0066119680404663084, 0.006597663879394531, 0.006642655849456787, 0.006558720111846924, 0.0066344962120056155, 0.006590464115142822, 0.006589439868927002, 0.006726655960083008, 0.0066007041931152345, 0.006597631931304931, 0.006614016056060791, 0.006599679946899414, 0.006591519832611084, 0.006626272201538086, 0.006591487884521485, 0.006618112087249756, 0.006617087841033936, 0.006589439868927002, 0.006617087841033936, 0.006601727962493896, 0.006565887928009034, 0.006592512130737305, 0.006591487884521485, 0.006586368083953857, 0.006599679946899414, 0.006622208118438721, 0.006667263984680176, 0.0065771517753601075, 0.006598656177520752, 0.006585343837738037, 0.0065075201988220215, 0.0064767999649047855, 0.006506559848785401, 0.006499263763427734, 0.0064880638122558594, 0.006511616230010986, 0.006495232105255127, 0.006471680164337158, 0.0065177597999572755, 0.006503424167633057, 0.006497280120849609, 0.006503424167633057, 0.006499328136444092, 0.006496255874633789, 0.006584320068359375, 0.006481919765472412, 0.006559743881225586, 0.006508543968200684, 0.006489088058471679, 0.006508543968200684, 0.006358016014099121, 0.006275072097778321, 0.00626585578918457, 0.006271999835968017, 0.01334169578552246, 0.0062494721412658695, 0.006322175979614258, 0.006260735988616943, 0.006278143882751465, 0.006286399841308594, 0.006353856086730957, 0.006494207859039307, 0.006524928092956543, 0.006524928092956543, 0.006515711784362793, 0.0065136637687683106, 0.006543360233306885, 0.0065372161865234375, 0.0065136637687683106, 0.006545407772064209, 0.006558720111846924, 0.006500351905822754, 0.006492159843444824, 0.006520832061767578, 0.006516736030578613, 0.006515711784362793, 0.006518784046173095, 0.00653926420211792, 0.006526976108551025, 0.006503424167633057, 0.007187456130981445, 0.006808576107025147, 0.006639616012573242, 0.006661119937896728, 0.00658841609954834, 0.006639616012573242, 0.006702079772949219, 0.006563839912414551, 0.006907904148101806, 0.006646783828735352, 0.006625279903411865, 0.006619135856628418, 0.006623231887817383, 0.006564864158630371, 0.007068672180175781, 0.006636544227600098, 0.006612991809844971, 0.006597631931304931, 0.006617087841033936, 0.006592512130737305, 0.0066344962120056155, 0.006673408031463623, 0.006559743881225586, 0.006606847763061524, 0.006609920024871826, 0.006573056221008301, 0.00659660816192627, 0.006716415882110595, 0.006948863983154297, 0.0066826238632202144, 0.006673408031463623, 0.0066375679969787596, 0.0066713600158691405, 0.006602752208709717, 0.0065136637687683106, 0.00657919979095459, 0.0064880638122558594, 0.014107647895812989, 0.006604800224304199, 0.006589439868927002, 0.00659660816192627, 0.006616096019744873, 0.0065965762138366696, 0.006593535900115967, 0.006632448196411133, 0.006594560146331787, 0.006598656177520752, 0.006585343837738037, 0.006618112087249756, 0.0066119680404663084, 0.006623231887817383, 0.006659071922302246, 0.006657023906707763, 0.006614016056060791, 0.006620160102844238, 0.006605823993682861, 0.006597631931304931, 0.006626304149627686, 0.006633471965789795, 0.006767615795135498, 0.006643712043762207, 0.006583295822143555, 0.00658739185333252, 0.006628352165222168, 0.006645760059356689, 0.00662224006652832, 0.006647808074951172, 0.006631392002105713, 0.006622208118438721, 0.006614016056060791, 0.006670335769653321, 0.006593535900115967, 0.006608895778656006, 0.006608895778656006, 0.00658841609954834, 0.0066119680404663084, 0.006653952121734619, 0.006590464115142822, 0.006606847763061524, 0.006604800224304199, 0.006606847763061524, 0.006592512130737305, 0.006573056221008301, 0.00673689603805542, 0.006714367866516113, 0.006563839912414551, 0.006609920024871826, 0.006626304149627686, 0.006592512130737305, 0.006608895778656006, 0.00657919979095459, 0.006510591983795166, 0.006554624080657959, 0.006527999877929688, 0.006492159843444824, 0.0065136637687683106, 0.006621183872222901, 0.006511616230010986, 0.006520832061767578, 0.0065064959526062015, 0.013931520462036133, 0.0066119680404663084, 0.006621183872222901, 0.006615039825439453, 0.006592512130737305, 0.0066406397819519045, 0.006624256134033203, 0.006606847763061524, 0.006616064071655273, 0.006636544227600098, 0.006585343837738037, 0.006627327919006347, 0.00662937593460083, 0.006596640110015869, 0.006647776126861573, 0.006661119937896728, 0.00656489610671997, 0.006495200157165528, 0.006501376152038574, 0.00658841609954834, 0.006501376152038574, 0.006496255874633789, 0.0065136637687683106, 0.006508543968200684, 0.006564864158630371, 0.006609951972961426, 0.006609888076782227, 0.00658841609954834, 0.006608895778656006, 0.006618112087249756, 0.0066109437942504885, 0.006592512130737305, 0.006608895778656006, 0.006608895778656006, 0.00658841609954834, 0.0066744318008422855, 0.006743040084838867, 0.006790143966674805, 0.006713344097137451, 0.0066109437942504885, 0.006657023906707763, 0.0066119680404663084, 0.006625311851501465, 0.006631392002105713, 0.006659071922302246, 0.006608895778656006, 0.006642687797546387, 0.006816768169403077, 0.006625279903411865, 0.0065372161865234375, 0.006508543968200684, 0.006494207859039307, 0.006550528049468994, 0.006509568214416504, 0.0065075201988220215, 0.006590464115142822, 0.006479872226715088, 0.006499328136444092, 0.006538271903991699, 0.00648905611038208, 0.006513728141784668, 0.006510528087615966, 0.006516736030578613, 0.014094335556030273, 0.006583295822143555, 0.006668288230895996, 0.0066498880386352535, 0.006615007877349853, 0.006656000137329102, 0.006551551818847656, 0.006372352123260498, 0.006388768196105957, 0.006356959819793701, 0.0063805441856384275, 0.006368256092071533, 0.006385663986206055, 0.006379519939422608, 0.006598656177520752, 0.0065443840026855465, 0.006545407772064209, 0.00672051191329956, 0.006673408031463623, 0.006669312000274658, 0.006614016056060791, 0.0066416640281677245, 0.006662144184112549, 0.006608895778656006, 0.006653952121734619, 0.006667263984680176, 0.006623231887817383, 0.006631423950195312, 0.0066375679969787596, 0.006616064071655273, 0.00667852783203125, 0.006632448196411133, 0.006620160102844238, 0.0066416640281677245, 0.006661119937896728, 0.006612991809844971, 0.006647808074951172, 0.006628352165222168, 0.006639616012573242, 0.006624256134033203, 0.006603775978088379, 0.006643712043762207, 0.006624256134033203, 0.006603775978088379, 0.006683648109436035, 0.006377471923828125, 0.006328320026397705, 0.006337535858154297, 0.006367231845855713, 0.0063805761337280276, 0.006385632038116455, 0.006344704151153564, 0.006343679904937744, 0.006366208076477051, 0.006387712001800537, 0.006379519939422608, 0.006369279861450195, 0.006379519939422608, 0.00683622407913208, 0.006717440128326416, 0.006616064071655273, 0.006659071922302246, 0.006650879859924317, 0.01406156826019287, 0.006552576065063476, 0.00662937593460083, 0.006673408031463623, 0.0066344962120056155, 0.0066641921997070315, 0.006643712043762207, 0.006604800224304199, 0.006687776088714599, 0.006708191871643066, 0.0066744318008422855, 0.006726655960083008, 0.0067051520347595215, 0.0066447358131408694, 0.0067041277885437015, 0.006714367866516113, 0.006649856090545654, 0.006677504062652588, 0.0066908798217773435, 0.0066221442222595215, 0.006620160102844238, 0.0066375679969787596, 0.006619135856628418, 0.006658048152923584, 0.006638591766357422, 0.006656000137329102, 0.006762495994567871, 0.0066457920074462894, 0.006626272201538086, 0.006645760059356689, 0.006651904106140137, 0.006598656177520752, 0.006618112087249756, 0.006621183872222901, 0.006632448196411133, 0.006625279903411865, 0.006651904106140137, 0.006796288013458252, 0.006672383785247803, 0.006635519981384277, 0.006540287971496582, 0.006524928092956543, 0.006523903846740723, 0.0065669121742248536, 0.0065443840026855465, 0.006558720111846924, 0.006542335987091064, 0.0066416640281677245, 0.006523903846740723, 0.006565887928009034, 0.006543360233306885, 0.006543360233306885, 0.006519807815551758, 0.006540287971496582, 0.006635519981384277, 0.006616064071655273, 0.006602752208709717, 0.006643775939941406, 0.006604735851287842, 0.006605823993682861, 0.0066344962120056155, 0.006631423950195312, 0.006632448196411133, 0.01363046360015869, 0.006363135814666748, 0.006354944229125976, 0.0063610877990722655, 0.006343679904937744, 0.006358016014099121, 0.007881728172302246, 0.006760447978973389, 0.006873087882995605, 0.006906879901885986, 0.006669312000274658, 0.006677504062652588, 0.00667955207824707, 0.006677504062652588, 0.006649856090545654, 0.0066375679969787596, 0.006605823993682861, 0.006631423950195312, 0.006782976150512696, 0.006667263984680176, 0.006597631931304931, 0.006651904106140137, 0.0066375679969787596, 0.0066344962120056155, 0.006649856090545654, 0.0066304001808166506, 0.006657023906707763, 0.0066713600158691405, 0.006625279903411865, 0.006691840171813965, 0.006626304149627686, 0.0066406397819519045, 0.006662144184112549, 0.006652927875518798, 0.006617087841033936, 0.0066406397819519045, 0.006691840171813965, 0.006864895820617676, 0.006680575847625733, 0.006628352165222168, 0.0066406397819519045, 0.006685696125030518, 0.006675456047058105, 0.006592512130737305, 0.006623231887817383, 0.006605823993682861, 0.0065894718170166015, 0.006627295970916748, 0.006621183872222901, 0.006617087841033936, 0.0066375679969787596, 0.006602752208709717, 0.00657919979095459, 0.006604800224304199, 0.006534143924713135, 0.00636518383026123, 0.0063508481979370115, 0.006352896213531494, 0.006369279861450195, 0.006419456005096436, 0.006345727920532227, 0.006393856048583985, 0.006351871967315674, 0.013632512092590332, 0.006351871967315674, 0.006325247764587402, 0.006335487842559814, 0.006329343795776367, 0.006355967998504639, 0.006363135814666748, 0.006375423908233643, 0.006378496170043945, 0.006376448154449463, 0.006355967998504639, 0.006329343795776367, 0.006344704151153564, 0.006337535858154297, 0.006375423908233643, 0.0063569917678833006, 0.006333439826965332, 0.006346752166748047, 0.006351871967315674, 0.0063569917678833006, 0.006367231845855713, 0.00632422399520874, 0.0063539199829101565, 0.006363135814666748, 0.006352896213531494, 0.006458367824554443, 0.006360064029693604, 0.006363135814666748, 0.006342656135559082, 0.00628227186203003, 0.006288352012634277, 0.0062679038047790524, 0.006275072097778321, 0.006255616188049316, 0.006262784004211426, 0.0062638077735900875, 0.00628223991394043, 0.006231040000915527, 0.0062975997924804685, 0.006253568172454834, 0.006287424087524414, 0.006264768123626709, 0.006277120113372803, 0.0062638077735900875, 0.006675456047058105, 0.006616064071655273, 0.00658022403717041, 0.0066007041931152345, 0.006614016056060791, 0.006746111869812011, 0.006563839912414551, 0.006576128005981445, 0.006606847763061524, 0.0065669121742248536, 0.006586368083953857, 0.006594560146331787, 0.006612991809844971, 0.006656000137329102, 0.006606847763061524, 0.006591487884521485, 0.006604800224304199, 0.006606847763061524, 0.006589439868927002, 0.014072832107543945, 0.006594560146331787, 0.006690815925598144, 0.0066406397819519045, 0.006585343837738037, 0.006612991809844971, 0.006654975891113281, 0.006593535900115967, 0.006582272052764892, 0.006615039825439453, 0.006591487884521485, 0.00663046407699585, 0.006618048191070557, 0.0066007041931152345, 0.006575104236602783, 0.0066119680404663084, 0.006660096168518067, 0.00660588788986206, 0.006574016094207763, 0.006597631931304931, 0.006848512172698974, 0.0068321280479431154, 0.006599679946899414, 0.006649856090545654, 0.006628352165222168, 0.006632448196411133, 0.006633471965789795, 0.006657055854797363, 0.006719456195831299, 0.006617087841033936, 0.006602752208709717, 0.006632448196411133, 0.006656000137329102, 0.00658841609954834, 0.00662937593460083, 0.006636544227600098, 0.006595583915710449, 0.006631423950195312, 0.006615039825439453, 0.006595583915710449, 0.006667263984680176, 0.006670335769653321, 0.006564864158630371, 0.006623231887817383, 0.006683648109436035, 0.0066078720092773435, 0.006621183872222901, 0.0066826238632202144, 0.0066304001808166506, 0.006648831844329834, 0.006744063854217529, 0.00675328016281128, 0.006692863941192627, 0.006601727962493896, 0.006508543968200684, 0.0065771517753601075, 0.006516736030578613, 0.006511616230010986, 0.006556672096252441, 0.006564864158630371, 0.006582272052764892, 0.006591487884521485, 0.006819839954376221, 0.014217215538024902, 0.006583295822143555, 0.006612991809844971, 0.006651904106140137, 0.006640704154968262, 0.00665388822555542, 0.006659071922302246, 0.006606847763061524, 0.006609920024871826, 0.006620160102844238, 0.00662937593460083, 0.006650879859924317, 0.00673689603805542, 0.006623231887817383, 0.006650879859924317, 0.0066795840263366695, 0.006654943943023682, 0.006602752208709717, 0.0065812478065490725, 0.00653107213973999, 0.0065669121742248536, 0.006585343837738037, 0.006500351905822754, 0.0065443840026855465, 0.006519807815551758, 0.006553599834442139, 0.006525951862335205, 0.006533120155334473, 0.006670335769653321, 0.006550528049468994, 0.0065177597999572755, 0.006542399883270263, 0.006552512168884277, 0.006475776195526123, 0.006536191940307618, 0.00653926420211792, 0.006557695865631104, 0.006645760059356689, 0.006582272052764892, 0.006617087841033936, 0.00666323184967041, 0.006596543788909912, 0.006612991809844971, 0.006688767910003662, 0.006617087841033936, 0.006604800224304199, 0.006612991809844971, 0.006576128005981445, 0.006593535900115967, 0.006658112049102783, 0.0064757118225097655, 0.006543360233306885, 0.006564864158630371, 0.006467584133148193, 0.006532095909118653, 0.0066416640281677245, 0.0065372161865234375, 0.006532095909118653, 0.006549503803253174, 0.006604800224304199, 0.0066375679969787596, 0.006618112087249756, 0.006680575847625733, 0.014107647895812989, 0.0066007041931152345, 0.006592512130737305, 0.006648831844329834, 0.0066304001808166506, 0.006669312000274658, 0.006659071922302246, 0.006652927875518798, 0.006677504062652588, 0.006639616012573242, 0.006676511764526367, 0.00667952013015747, 0.006652927875518798, 0.006651904106140137, 0.006688767910003662, 0.006649856090545654, 0.006646783828735352, 0.0066202239990234375, 0.006640575885772705, 0.006663167953491211, 0.006636544227600098, 0.006635519981384277, 0.006680575847625733, 0.0066119680404663084, 0.006713344097137451, 0.0066416640281677245, 0.006515711784362793, 0.006573056221008301, 0.0065781760215759275, 0.00658739185333252, 0.006589439868927002, 0.006575104236602783, 0.006510591983795166, 0.006624256134033203, 0.006673408031463623, 0.006606847763061524, 0.006624256134033203, 0.0066416640281677245, 0.006667263984680176, 0.0066713600158691405, 0.006715392112731934, 0.006684671878814697, 0.006702079772949219, 0.006626304149627686, 0.00657919979095459, 0.006594560146331787, 0.006558720111846924, 0.006585343837738037, 0.006598656177520752, 0.006559743881225586, 0.006586368083953857, 0.006612991809844971, 0.00662937593460083, 0.00674508810043335, 0.006699007987976074, 0.006650879859924317, 0.0071015038490295414, 0.006799295902252197, 0.00669593620300293, 0.007017471790313721, 0.006725632190704346, 0.006669312000274658, 0.006666240215301514, 0.014368767738342286, 0.006797311782836914, 0.006669312000274658, 0.006615071773529053, 0.006666207790374756, 0.006676479816436768, 0.006661119937896728, 0.0067051520347595215, 0.00669593620300293, 0.006633471965789795, 0.006677504062652588, 0.006674496173858643, 0.0066211199760437016, 0.006677504062652588, 0.006703104019165039, 0.006627327919006347, 0.006699007987976074, 0.00667955207824707, 0.006642687797546387, 0.006683648109436035, 0.0066641921997070315, 0.007554048061370849, 0.0068249602317810056, 0.006938623905181885, 0.007472127914428711, 0.0069212160110473635, 0.006665215969085693, 0.006681600093841553, 0.006743040084838867, 0.0066754879951477055, 0.006725599765777588, 0.006972415924072266, 0.006754303932189941, 0.006662144184112549, 0.0067276802062988285, 0.006739967823028564, 0.006623231887817383, 0.006656000137329102, 0.006686719894409179, 0.006612031936645508, 0.006796224117279053, 0.0067010560035705566, 0.006658048152923584, 0.006667263984680176, 0.006719488143920899, 0.006653952121734619, 0.006708223819732666, 0.006681663990020752, 0.006625216007232666, 0.006688767910003662, 0.006691840171813965, 0.0065781760215759275, 0.006618112087249756, 0.006604800224304199, 0.0065413122177124024, 0.0065781760215759275, 0.006559743881225586, 0.006562816143035889, 0.006625279903411865, 0.006624256134033203, 0.006686719894409179, 0.0066938881874084475, 0.006770688056945801, 0.014256128311157227, 0.006601727962493896, 0.0067123198509216305, 0.006761472225189209, 0.006686719894409179, 0.0067041277885437015, 0.006691840171813965, 0.006648831844329834, 0.006724607944488525, 0.006722559928894043, 0.006683648109436035, 0.0066641921997070315, 0.006699007987976074, 0.006687744140625, 0.006688767910003662, 0.00672870397567749, 0.006650879859924317, 0.006647808074951172, 0.006594560146331787, 0.0065484800338745115, 0.006557695865631104, 0.006603775978088379, 0.006592512130737305, 0.006557695865631104, 0.006594560146331787, 0.006574079990386963, 0.00653926420211792, 0.0065771517753601075, 0.006700032234191895, 0.006551551818847656, 0.006543360233306885, 0.00658739185333252, 0.0066304001808166506, 0.006604800224304199, 0.006622208118438721, 0.006689792156219483, 0.0066713600158691405, 0.006699007987976074, 0.006731776237487793, 0.006668288230895996, 0.006703104019165039, 0.006722559928894043, 0.006645760059356689, 0.006675456047058105, 0.00667955207824707, 0.006624256134033203, 0.006686719894409179, 0.006707200050354004, 0.006656000137329102, 0.0066109437942504885, 0.00658841609954834, 0.0065443840026855465, 0.006564864158630371, 0.006584320068359375, 0.006560768127441406, 0.006614016056060791, 0.006668288230895996, 0.006685696125030518, 0.006688767910003662, 0.00673689603805542, 0.006662144184112549, 0.006684671878814697, 0.006643712043762207, 0.014236672401428223, 0.006684671878814697, 0.006696959972381592, 0.006686719894409179, 0.0066406397819519045, 0.006670335769653321, 0.006689792156219483, 0.006631455898284912, 0.00667849588394165, 0.006680575847625733, 0.006628352165222168, 0.00673689603805542, 0.006723584175109864, 0.006696959972381592, 0.006719488143920899, 0.006743040084838867, 0.0066416640281677245, 0.006887423992156983, 0.00684441614151001, 0.0066713600158691405, 0.006700032234191895, 0.0066826238632202144, 0.00666323184967041, 0.006700992107391357, 0.006660096168518067, 0.006643712043762207, 0.006717440128326416, 0.006726655960083008, 0.006665215969085693, 0.006723584175109864, 0.006663167953491211, 0.006603807926177979, 0.006680543899536133, 0.006645760059356689, 0.006585343837738037, 0.006866943836212158, 0.006668288230895996, 0.006576128005981445, 0.0066713600158691405, 0.006624256134033203, 0.006639616012573242, 0.006696959972381592, 0.0066375679969787596, 0.006638591766357422, 0.0066826558113098145, 0.00662937593460083, 0.006691808223724365, 0.006779903888702392, 0.006768703937530518, 0.00694163179397583, 0.0067717118263244626, 0.006684671878814697, 0.006723584175109864, 0.006661119937896728, 0.006642687797546387, 0.0067123198509216305, 0.006628352165222168, 0.006646783828735352, 0.006667263984680176, 0.006606847763061524, 0.006631423950195312, 0.0067041277885437015, 0.006604800224304199, 0.01434931182861328, 0.006623231887817383, 0.006648831844329834, 0.006688767910003662, 0.006618112087249756, 0.00667955207824707, 0.006669312000274658, 0.006657023906707763, 0.006662144184112549, 0.006690815925598144, 0.006612991809844971, 0.006651904106140137, 0.006677504062652588, 0.006643712043762207, 0.006601727962493896, 0.006650879859924317, 0.006628352165222168, 0.006595583915710449, 0.006665215969085693, 0.006627327919006347, 0.006631423950195312, 0.006663167953491211, 0.0066109437942504885, 0.0066119680404663084, 0.006681600093841553, 0.006603775978088379, 0.0066416640281677245, 0.006664224147796631, 0.006680543899536133, 0.007458816051483155, 0.0073820161819458, 0.007127039909362793, 0.0068249602317810056, 0.006905856132507324, 0.006700032234191895, 0.006703104019165039, 0.006656000137329102, 0.006643712043762207, 0.006624256134033203, 0.006626304149627686, 0.0066406397819519045, 0.006659071922302246, 0.0066447358131408694, 0.006676479816436768, 0.006658048152923584, 0.006649856090545654, 0.006681600093841553, 0.006667263984680176, 0.006649856090545654, 0.006666240215301514, 0.0066713600158691405, 0.006657023906707763, 0.006652927875518798, 0.006685696125030518, 0.006657023906707763, 0.006683648109436035, 0.006660096168518067, 0.006617087841033936, 0.006669312000274658, 0.006709248065948486, 0.00662937593460083, 0.006684671878814697, 0.00684441614151001, 0.014042112350463867, 0.006527999877929688, 0.006525951862335205, 0.0065146880149841305, 0.00653107213973999, 0.0065372161865234375, 0.006565887928009034, 0.006639616012573242, 0.006625279903411865, 0.0066304001808166506, 0.006650879859924317, 0.006643712043762207, 0.00667852783203125, 0.006645760059356689, 0.006628352165222168, 0.006640704154968262, 0.006639552116394043, 0.006526976108551025, 0.006576128005981445, 0.006633471965789795, 0.006534143924713135, 0.006568960189819336, 0.00662937593460083, 0.0066416640281677245, 0.006621183872222901, 0.0066375679969787596, 0.006652927875518798, 0.006638591766357422, 0.00662937593460083, 0.006626304149627686, 0.006639616012573242, 0.006625279903411865, 0.006652927875518798, 0.006561791896820069, 0.006331391811370849, 0.006592512130737305, 0.006418432235717773, 0.006364160060882569, 0.006404096126556396, 0.006343679904937744, 0.006371327877044678, 0.006340608119964599, 0.00636518383026123, 0.006366208076477051, 0.006364160060882569, 0.006371327877044678, 0.006339583873748779, 0.006410304069519043, 0.006392767906188965, 0.006396927833557129, 0.006333439826965332, 0.006336512088775635, 0.006355967998504639, 0.006423552036285401, 0.006400000095367431, 0.006660096168518067, 0.0066109437942504885, 0.006874112129211426, 0.006673408031463623, 0.006654975891113281, 0.006623231887817383, 0.006549503803253174, 0.0065064959526062015, 0.014049280166625976, 0.0066304001808166506, 0.006616064071655273, 0.006620160102844238, 0.006614016056060791, 0.006619135856628418, 0.006598656177520752, 0.006657023906707763, 0.006594560146331787, 0.0066744318008422855, 0.006616064071655273, 0.00672870397567749, 0.006714367866516113, 0.006683648109436035, 0.006619135856628418, 0.00662937593460083, 0.006631423950195312, 0.006602752208709717, 0.006620160102844238, 0.006619135856628418, 0.006616064071655273, 0.006625279903411865, 0.00662937593460083, 0.006621183872222901, 0.006684671878814697, 0.006653952121734619, 0.006656032085418701, 0.0066303682327270505, 0.006614016056060791, 0.006626304149627686, 0.006622208118438721, 0.006599679946899414, 0.006632448196411133, 0.006633471965789795, 0.006592512130737305, 0.006820864200592041, 0.0066406397819519045, 0.006590464115142822, 0.006585343837738037, 0.0066109437942504885, 0.006575104236602783, 0.006614016056060791, 0.006603775978088379, 0.006601727962493896, 0.006603775978088379, 0.006623231887817383, 0.006589439868927002, 0.006598656177520752, 0.006599679946899414, 0.006605823993682861, 0.006604800224304199, 0.00658022403717041, 0.006605823993682861, 0.006590464115142822, 0.00658131217956543, 0.006609856128692627, 0.006622208118438721, 0.006593535900115967, 0.006598656177520752, 0.006688767910003662, 0.006590464115142822, 0.006602752208709717, 0.00659660816192627]",tokens/s,148.4182620776904,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-j-6b,EleutherAI/gpt-j-6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-72B,Qwen/Qwen2-beta-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -36122,16 +34804,29 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: GPTJForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-16B-nl,Salesforce/codegen-16B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-7B,Qwen/Qwen1.5-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -36151,16 +34846,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: CodeGenForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-6.7b,facebook/opt-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-32B,Qwen/Qwen1.5-32B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -36180,16 +34881,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-40b,tiiuae/falcon-40b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -36207,7 +34914,7 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained hf_quantizer.postprocess_model(model) @@ -36223,8 +34930,8 @@ ChildProcessError: Traceback (most recent call last): self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm2-20b,internlm/internlm2-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-160m,EleutherAI/pythia-160m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -36242,7 +34949,7 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained hf_quantizer.postprocess_model(model) @@ -36258,8 +34965,8 @@ ChildProcessError: Traceback (most recent call last): self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,t,t,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.3b,EleutherAI/pythia-1.3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -36267,69 +34974,34 @@ NameError: name 'exl_ext' is not defined File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/t/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669490cd-5670af7d50823e5925c31534;4524844e-3120-4598-a881-3652146e5428) - -Repository Not Found for url: https://huggingface.co/t/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file - raise EnvironmentError( -OSError: t is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-66b,facebook/opt-66b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-1.8B,Qwen/Qwen1.5-1.8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -36349,16 +35021,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,.,.,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-6B-nl,Salesforce/codegen-6B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -36370,24 +35048,31 @@ ChildProcessError: Traceback (most recent call last): report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 373, in cached_file - raise EnvironmentError( -OSError: . does not appear to have a file named config.json. Checkout 'https://huggingface.co/./tree/None' for available files. + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mixtral-8x7B-v0.1,mistralai/Mixtral-8x7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2,openai-community/gpt2,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1231.843328,1005.060096,0.0,358.612992,318.913024,s,21,0.18355030345916748,0.008740490640912738,0.0003350787955471485,0.00862604808807373,0.008949695587158203,0.00923475170135498,0.009869042778015138,"[0.010027615547180176, 0.008949695587158203, 0.008625503540039062, 0.00923475170135498, 0.008610015869140624, 0.00866915225982666, 0.00862604808807373, 0.008871392250061035, 0.008561504364013673, 0.008556192398071288, 0.008633919715881348, 0.00886348819732666, 0.008537247657775878, 0.008714079856872559, 0.008701151847839355, 0.008674336433410644, 0.008554752349853516, 0.008511584281921386, 0.00850607967376709, 0.008580191612243653, 0.008541600227355957]",tokens/s,29288.973642018205,kWh,1.0310658924635563e-07,5.648848538782815e-08,2.2294035675046953e-07,3.825354313846533e-07,tokens/kWh,669219055.2738177,MB,1232.13824,1005.060096,0.0,358.612992,328.809472,s,21,10.26999664306641,0.48904745919363846,0.00403887718511448,0.487286376953125,0.4949382019042969,0.4976250915527344,0.4998394714355469,"[0.50039306640625, 0.4949382019042969, 0.491740478515625, 0.4892876586914062, 0.4909471740722656, 0.4976250915527344, 0.487286376953125, 0.48865457153320313, 0.48538818359375, 0.48481610107421874, 0.48979806518554686, 0.48635006713867185, 0.48722393798828123, 0.485962646484375, 0.4894192504882813, 0.48873077392578124, 0.4857748413085938, 0.4860442810058594, 0.48649954223632813, 0.4870877685546875, 0.486028564453125]",tokens/s,128.821853208024,kWh,5.764060866563101e-06,3.1584372687529265e-06,9.864422210484918e-06,1.878692034580095e-05,tokens/kWh,3353396.8761453275,,s,1322,10.43460300683975,0.007893043121663959,0.0011110576671242386,0.007707647800445557,0.007921459436416627,0.008081356382369995,0.016560291538238524,"[0.009092096328735352, 0.009058367729187012, 0.008918975830078125, 0.008963071823120117, 0.008934399604797364, 0.008929280281066895, 0.00934502410888672, 0.008104960441589355, 0.008223744392395019, 0.007952415943145752, 0.007911392211914062, 0.007724063873291016, 0.007740384101867676, 0.007718912124633789, 0.007732223987579345, 0.007771135807037354, 0.007724031925201416, 0.007733248233795166, 0.007701568126678467, 0.00769324779510498, 0.007707647800445557, 0.007727104187011719, 0.007730175971984863, 0.007672832012176513, 0.007747583866119385, 0.007762944221496582, 0.007890944004058837, 0.007702527999877929, 0.007723008155822754, 0.007799808025360107, 0.007707647800445557, 0.007696383953094482, 0.007733248233795166, 0.0076902399063110355, 0.007792640209197998, 0.007727104187011719, 0.007721983909606934, 0.007738368034362793, 0.007664639949798584, 0.0076902399063110355, 0.007693312168121338, 0.0076902399063110355, 0.0076912641525268555, 0.007764992237091065, 0.007812096118927002, 0.0076984319686889645, 0.007737343788146973, 0.007910399913787843, 0.007769087791442871, 0.007794688224792481, 0.007959551811218261, 0.007833600044250488, 0.007940095901489258, 0.007715839862823487, 0.007907328128814697, 0.007768064022064209, 0.0076984319686889645, 0.007676928043365478, 0.007727104187011719, 0.007711743831634522, 0.00790937614440918, 0.007811071872711181, 0.01726470375061035, 0.007868351936340333, 0.007919616222381591, 0.008102911949157715, 0.008324095726013184, 0.008201215744018555, 0.008301568031311036, 0.008308735847473145, 0.008286208152770995, 0.00830463981628418, 0.008102911949157715, 0.00808140754699707, 0.007987199783325195, 0.007973919868469239, 0.007829472064971924, 0.00774348783493042, 0.007905280113220215, 0.007950335979461669, 0.008045568466186523, 0.007724031925201416, 0.00809779167175293, 0.007895040035247802, 0.007924736022949219, 0.007701504230499268, 0.007714816093444824, 0.007802879810333252, 0.007689216136932373, 0.007731200218200684, 0.0076902399063110355, 0.007704576015472412, 0.0077209601402282715, 0.0077036161422729494, 0.00770963191986084, 0.00785100793838501, 0.007706624031066894, 0.00785920000076294, 0.007693312168121338, 0.00774348783493042, 0.007714816093444824, 0.007696383953094482, 0.007706624031066894, 0.007671807765960693, 0.008090656280517578, 0.00802505588531494, 0.007776256084442139, 0.007709695816040039, 0.007713791847229004, 0.007703551769256592, 0.00783462381362915, 0.007703551769256592, 0.0076984319686889645, 0.007723008155822754, 0.007885824203491211, 0.007710720062255859, 0.007711743831634522, 0.007705599784851074, 0.007715839862823487, 0.007755775928497314, 0.007683072090148926, 0.007688191890716553, 0.007709695816040039, 0.007748608112335205, 0.007685120105743408, 0.01663488006591797, 0.007726079940795898, 0.007717887878417969, 0.0077281279563903805, 0.007688191890716553, 0.007729152202606201, 0.0076943359375, 0.007702527999877929, 0.007713888168334961, 0.007737247943878174, 0.0077209601402282715, 0.007712768077850342, 0.0077608962059021, 0.007717887878417969, 0.007710720062255859, 0.008239104270935058, 0.008116224288940429, 0.008475647926330567, 0.008458239555358887, 0.008246272087097169, 0.007942143917083741, 0.00795961618423462, 0.007945151805877685, 0.007906303882598878, 0.007910399913787843, 0.007938047885894776, 0.007723008155822754, 0.007715839862823487, 0.0076902399063110355, 0.0076902399063110355, 0.0076902399063110355, 0.007681024074554443, 0.007697408199310303, 0.007683104038238526, 0.0076943359375, 0.0077506241798400875, 0.00775270414352417, 0.007787519931793213, 0.007673855781555176, 0.007689216136932373, 0.007712768077850342, 0.007634943962097168, 0.007689216136932373, 0.0076902399063110355, 0.0076912641525268555, 0.007678976058959961, 0.0076902399063110355, 0.007709695816040039, 0.007890944004058837, 0.007795711994171142, 0.007898111820220948, 0.007674880027770996, 0.007759871959686279, 0.007707647800445557, 0.007746560096740723, 0.007889920234680176, 0.007853055953979492, 0.007882751941680909, 0.007867392063140868, 0.0077547521591186525, 0.007782400131225586, 0.007676928043365478, 0.007889920234680176, 0.01763020706176758, 0.008062975883483887, 0.007933951854705811, 0.00788479995727539, 0.007878655910491944, 0.007974912166595459, 0.007945216178894043, 0.007906303882598878, 0.007907328128814697, 0.007918591976165772, 0.007847936153411865, 0.007732223987579345, 0.00775270414352417, 0.007715839862823487, 0.007693312168121338, 0.007790592193603516, 0.007701504230499268, 0.00767084789276123, 0.007698368072509765, 0.007670783996582031, 0.007679999828338623, 0.007670783996582031, 0.007672832012176513, 0.0076871681213378906, 0.007737343788146973, 0.007924736022949219, 0.007703551769256592, 0.007711743831634522, 0.007705599784851074, 0.007706624031066894, 0.007683072090148926, 0.007726079940795898, 0.007684095859527588, 0.007717887878417969, 0.007829504013061523, 0.007885824203491211, 0.007727104187011719, 0.007808000087738037, 0.007792640209197998, 0.007704576015472412, 0.007664639949798584, 0.007731200218200684, 0.007749631881713868, 0.007715839862823487, 0.007766016006469726, 0.007790592193603516, 0.007709695816040039, 0.007795711994171142, 0.007740416049957275, 0.007689216136932373, 0.007677951812744141, 0.007688191890716553, 0.007706624031066894, 0.007693312168121338, 0.007697440147399902, 0.007667679786682129, 0.0076912641525268555, 0.007759871959686279, 0.007836671829223632, 0.007707647800445557, 0.007697408199310303, 0.007692287921905518, 0.007705599784851074, 0.01658367919921875, 0.007725056171417236, 0.007701568126678467, 0.007698368072509765, 0.007697408199310303, 0.007677984237670898, 0.007667744159698486, 0.00769324779510498, 0.007798816204071045, 0.007762944221496582, 0.00780079984664917, 0.008656895637512207, 0.00830361557006836, 0.008055839538574219, 0.008196063995361328, 0.007998464107513427, 0.00795136022567749, 0.008061951637268066, 0.007879712104797364, 0.00796668815612793, 0.007711808204650879, 0.0077086081504821775, 0.007677951812744141, 0.007714816093444824, 0.007709695816040039, 0.007789567947387695, 0.007707647800445557, 0.0076912641525268555, 0.007716864109039307, 0.007702527999877929, 0.007709695816040039, 0.007679999828338623, 0.007709695816040039, 0.007703551769256592, 0.007715839862823487, 0.007775231838226319, 0.007758848190307617, 0.007897088050842285, 0.007768064022064209, 0.007769087791442871, 0.007915520191192627, 0.007915520191192627, 0.007895040035247802, 0.0076943359375, 0.007679999828338623, 0.007676928043365478, 0.00769536018371582, 0.007711743831634522, 0.007781375885009765, 0.007708735942840576, 0.00771065616607666, 0.0076984319686889645, 0.007763967990875244, 0.007647232055664062, 0.007775231838226319, 0.007683072090148926, 0.007717887878417969, 0.007763967990875244, 0.0076943359375, 0.007715839862823487, 0.007766016006469726, 0.007777279853820801, 0.007678976058959961, 0.016675840377807616, 0.007716864109039307, 0.0076984319686889645, 0.007701504230499268, 0.00780185604095459, 0.007713791847229004, 0.007725056171417236, 0.007714816093444824, 0.007688191890716553, 0.008960000038146973, 0.008425472259521484, 0.00793497610092163, 0.007820288181304931, 0.007699456214904785, 0.007699456214904785, 0.007682047843933106, 0.007803904056549072, 0.007661568164825439, 0.007709695816040039, 0.007979008197784423, 0.007948287963867188, 0.008050687789916992, 0.007895040035247802, 0.007890944004058837, 0.007904255867004394, 0.00800051212310791, 0.007781375885009765, 0.007700479984283447, 0.0076902399063110355, 0.0076902399063110355, 0.007723008155822754, 0.007730175971984863, 0.007696383953094482, 0.007681024074554443, 0.008360960006713868, 0.009117695808410644, 0.009527296066284179, 0.00808243179321289, 0.00799955177307129, 0.00785094404220581, 0.007670783996582031, 0.007714816093444824, 0.007681024074554443, 0.007689216136932373, 0.007984127998352051, 0.007931903839111328, 0.007922688007354736, 0.00800870418548584, 0.007964672088623047, 0.008010751724243164, 0.007980031967163086, 0.00773529577255249, 0.007676928043365478, 0.0076871681213378906, 0.00769536018371582, 0.007947264194488525, 0.008145919799804687, 0.007927807807922363, 0.007897088050842285, 0.007776256084442139, 0.007714816093444824, 0.007714816093444824, 0.007712768077850342, 0.016688127517700196, 0.007721983909606934, 0.007673855781555176, 0.00773529577255249, 0.008170495986938477, 0.008371199607849121, 0.0077209601402282715, 0.0077281599044799806, 0.007708640098571778, 0.007672832012176513, 0.0076943359375, 0.0076943359375, 0.007738368034362793, 0.00773529577255249, 0.007715839862823487, 0.007730175971984863, 0.0076871681213378906, 0.007707647800445557, 0.007707647800445557, 0.007686143875122071, 0.007689216136932373, 0.0076984319686889645, 0.007703551769256592, 0.007768064022064209, 0.00774348783493042, 0.007772160053253174, 0.0076871681213378906, 0.007663616180419922, 0.007666687965393066, 0.007672832012176513, 0.0076656961441040035, 0.007675871849060058, 0.0076871681213378906, 0.00764518404006958, 0.007671807765960693, 0.007745535850524903, 0.007677951812744141, 0.0076902399063110355, 0.007734272003173828, 0.007685120105743408, 0.0076943359375, 0.007675903797149658, 0.007677951812744141, 0.007675903797149658, 0.007730175971984863, 0.007740416049957275, 0.007658495903015137, 0.007704576015472412, 0.007727104187011719, 0.007727104187011719, 0.007701504230499268, 0.007684095859527588, 0.0077578239440917966, 0.007705599784851074, 0.007681024074554443, 0.007710720062255859, 0.007685184001922607, 0.007728064060211181, 0.007676959991455078, 0.007675871849060058, 0.007856128215789794, 0.00790118408203125, 0.0079267840385437, 0.017124351501464845, 0.007890944004058837, 0.007896063804626464, 0.007844863891601562, 0.007715839862823487, 0.007679999828338623, 0.007675903797149658, 0.0076912641525268555, 0.007697408199310303, 0.007703551769256592, 0.007701504230499268, 0.007693312168121338, 0.00774348783493042, 0.0076984319686889645, 0.007705599784851074, 0.007809023857116699, 0.007742464065551758, 0.007864319801330566, 0.007906303882598878, 0.007886847972869874, 0.007703551769256592, 0.007671807765960693, 0.007692287921905518, 0.007684095859527588, 0.007683072090148926, 0.007726079940795898, 0.007716864109039307, 0.007705599784851074, 0.007701504230499268, 0.007738368034362793, 0.007684095859527588, 0.007758848190307617, 0.007689216136932373, 0.007742464065551758, 0.007646207809448242, 0.007659520149230957, 0.007811071872711181, 0.007968768119812012, 0.007933951854705811, 0.007763967990875244, 0.007693312168121338, 0.0076943359375, 0.007675903797149658, 0.007677951812744141, 0.007677951812744141, 0.007675936222076416, 0.007691232204437256, 0.0076687359809875484, 0.007788544178009033, 0.007912447929382324, 0.0077209601402282715, 0.007674880027770996, 0.007666687965393066, 0.007675903797149658, 0.007684095859527588, 0.007665664196014404, 0.007678976058959961, 0.008128512382507324, 0.008069120407104492, 0.007811071872711181, 0.007938047885894776, 0.007679999828338623, 0.007688223838806152, 0.016586719512939455, 0.007676928043365478, 0.007712768077850342, 0.007682047843933106, 0.007674880027770996, 0.007696383953094482, 0.007659520149230957, 0.007680031776428222, 0.007677919864654541, 0.0076912641525268555, 0.0076912641525268555, 0.007704576015472412, 0.007708672046661377, 0.007681024074554443, 0.007847936153411865, 0.007811071872711181, 0.00773632001876831, 0.007725056171417236, 0.0076574721336364745, 0.0076769919395446775, 0.007656383991241455, 0.007673855781555176, 0.007708672046661377, 0.00769536018371582, 0.007670783996582031, 0.007692287921905518, 0.007771135807037354, 0.007670783996582031, 0.007665664196014404, 0.007670783996582031, 0.007733248233795166, 0.007681024074554443, 0.007705599784851074, 0.007664639949798584, 0.0076605439186096195, 0.007678976058959961, 0.007718912124633789, 0.007679999828338623, 0.007672832012176513, 0.007723008155822754, 0.007666687965393066, 0.007671807765960693, 0.007719999790191651, 0.007715775966644287, 0.007756832122802734, 0.007769055843353271, 0.007670783996582031, 0.007681024074554443, 0.0076871681213378906, 0.007742464065551758, 0.007697408199310303, 0.007704576015472412, 0.007715839862823487, 0.0077199358940124516, 0.007715839862823487, 0.007699456214904785, 0.007782400131225586, 0.007672832012176513, 0.007705599784851074, 0.007671807765960693, 0.007681024074554443, 0.007676928043365478, 0.007688191890716553, 0.016537599563598633, 0.007702527999877929, 0.0076912641525268555, 0.00780185604095459, 0.007649280071258545, 0.0077199358940124516, 0.0076605439186096195, 0.007711743831634522, 0.0076360001564025875, 0.0076789441108703616, 0.007679999828338623, 0.007708672046661377, 0.007693376064300537, 0.0076594557762145994, 0.007683072090148926, 0.007707647800445557, 0.007715839862823487, 0.007693312168121338, 0.007656447887420655, 0.007662591934204102, 0.007688191890716553, 0.007667712211608887, 0.007652383804321289, 0.007774176120758057, 0.007679999828338623, 0.0076277761459350585, 0.0077199358940124516, 0.007705599784851074, 0.007661568164825439, 0.007655424118041992, 0.00765337610244751, 0.007646207809448242, 0.007651328086853027, 0.00765337610244751, 0.007684095859527588, 0.007672832012176513, 0.00765235185623169, 0.007797760009765625, 0.0076574721336364745, 0.007676928043365478, 0.007676928043365478, 0.0076605439186096195, 0.007675936222076416, 0.007666656017303467, 0.007671807765960693, 0.007673855781555176, 0.007711743831634522, 0.007681024074554443, 0.0076605439186096195, 0.007897088050842285, 0.007715839862823487, 0.007639039993286132, 0.007663616180419922, 0.007663616180419922, 0.007703551769256592, 0.007701504230499268, 0.007685120105743408, 0.007809023857116699, 0.007738368034362793, 0.007857151985168457, 0.007700479984283447, 0.007667744159698486, 0.007658463954925537, 0.01657142448425293, 0.007717855930328369, 0.007683072090148926, 0.007674880027770996, 0.007670783996582031, 0.007671807765960693, 0.0076984319686889645, 0.007650303840637207, 0.007666687965393066, 0.007692287921905518, 0.007678976058959961, 0.00769536018371582, 0.007678976058959961, 0.007858176231384278, 0.0076912641525268555, 0.007671807765960693, 0.007683072090148926, 0.007661568164825439, 0.007699456214904785, 0.00769536018371582, 0.007699456214904785, 0.007732223987579345, 0.0076902399063110355, 0.007854080200195313, 0.007869440078735352, 0.007822336196899414, 0.007726079940795898, 0.008191007614135742, 0.008648672103881837, 0.008141823768615723, 0.007966720104217529, 0.007977983951568603, 0.008117247581481933, 0.007708672046661377, 0.007697408199310303, 0.007654399871826172, 0.007683072090148926, 0.007730175971984863, 0.007701504230499268, 0.008463359832763672, 0.008068096160888672, 0.007916543960571289, 0.007705599784851074, 0.007667712211608887, 0.007699456214904785, 0.007643136024475097, 0.007656447887420655, 0.007656447887420655, 0.007661568164825439, 0.0076605439186096195, 0.007755775928497314, 0.007671807765960693, 0.0076871681213378906, 0.007669760227203369, 0.0077619199752807615, 0.007662591934204102, 0.0076605439186096195, 0.007664639949798584, 0.007772160053253174, 0.007708672046661377, 0.007676928043365478, 0.007662591934204102, 0.00795750379562378, 0.017183744430541992, 0.007907328128814697, 0.007918591976165772, 0.00783462381362915, 0.007717887878417969, 0.0076943359375, 0.007677951812744141, 0.007763967990875244, 0.007702527999877929, 0.007685120105743408, 0.007701504230499268, 0.007684095859527588, 0.007709695816040039, 0.007688191890716553, 0.007730175971984863, 0.007692287921905518, 0.007733248233795166, 0.007673855781555176, 0.007678976058959961, 0.007662591934204102, 0.007718912124633789, 0.007674880027770996, 0.007672832012176513, 0.007670783996582031, 0.007658495903015137, 0.007688191890716553, 0.007734272003173828, 0.007763967990875244, 0.007769087791442871, 0.007686143875122071, 0.007650303840637207, 0.007665664196014404, 0.007681024074554443, 0.007721983909606934, 0.0077281279563903805, 0.007683072090148926, 0.00769536018371582, 0.0077916159629821775, 0.007670783996582031, 0.007696383953094482, 0.0076605439186096195, 0.007673920154571533, 0.0076819839477539065, 0.007651328086853027, 0.0076943359375, 0.007655424118041992, 0.0076574721336364745, 0.007684095859527588, 0.007669760227203369, 0.007726079940795898, 0.007689216136932373, 0.007771135807037354, 0.0076912641525268555, 0.007823359966278077, 0.007716864109039307, 0.007703551769256592, 0.007678976058959961, 0.007688191890716553, 0.0077844481468200685, 0.007733248233795166, 0.007706624031066894, 0.0077199358940124516, 0.007748608112335205, 0.016525312423706053, 0.007715839862823487, 0.0077209601402282715, 0.007697408199310303, 0.007702527999877929, 0.007712800025939942, 0.007707615852355957, 0.007683072090148926, 0.007696383953094482, 0.007737343788146973, 0.0076687359809875484, 0.007705599784851074, 0.007711743831634522, 0.007686143875122071, 0.007732223987579345, 0.00773632001876831, 0.00787660789489746, 0.00830361557006836, 0.007911424160003662, 0.007717887878417969, 0.007702527999877929, 0.007723008155822754, 0.007732223987579345, 0.007715839862823487, 0.007697408199310303, 0.007795711994171142, 0.007724031925201416, 0.007716864109039307, 0.007809023857116699, 0.007868415832519531, 0.0077608962059021, 0.00773632001876831, 0.007714816093444824, 0.007705599784851074, 0.007703551769256592, 0.007706624031066894, 0.007705599784851074, 0.007702527999877929, 0.007710720062255859, 0.007686143875122071, 0.007699456214904785, 0.007853055953979492, 0.007704576015472412, 0.007655424118041992, 0.007672832012176513, 0.007702527999877929, 0.007703551769256592, 0.007702527999877929, 0.007742464065551758, 0.0076871681213378906, 0.007737343788146973, 0.007697408199310303, 0.007700479984283447, 0.007683072090148926, 0.007702527999877929, 0.007733248233795166, 0.007663616180419922, 0.007678976058959961, 0.007686143875122071, 0.00769536018371582, 0.0077209601402282715, 0.007686143875122071, 0.007703551769256592, 0.01681612777709961, 0.007713791847229004, 0.007679999828338623, 0.007707712173461914, 0.007690176010131836, 0.007659520149230957, 0.007675903797149658, 0.007814144134521485, 0.007681024074554443, 0.007721983909606934, 0.007671807765960693, 0.007718912124633789, 0.007726079940795898, 0.007714816093444824, 0.007703551769256592, 0.007715839862823487, 0.0076943359375, 0.00769536018371582, 0.007705599784851074, 0.007677951812744141, 0.007672832012176513, 0.007671807765960693, 0.007730175971984863, 0.007686143875122071, 0.007659520149230957, 0.0076912641525268555, 0.0076984319686889645, 0.007662591934204102, 0.007699456214904785, 0.0077578239440917966, 0.0076943359375, 0.0077404799461364745, 0.007823296070098877, 0.007710720062255859, 0.0076943359375, 0.007682047843933106, 0.00769536018371582, 0.007639039993286132, 0.007710720062255859, 0.007692287921905518, 0.007687200069427491, 0.007911392211914062, 0.00794316816329956, 0.007654399871826172, 0.0076943359375, 0.007661568164825439, 0.0076902399063110355, 0.007673855781555176, 0.007707647800445557, 0.007701504230499268, 0.007683072090148926, 0.007661568164825439, 0.00773632001876831, 0.007669760227203369, 0.007759871959686279, 0.007682047843933106, 0.007688191890716553, 0.007670783996582031, 0.00773638391494751, 0.007666624069213867, 0.007685120105743408, 0.007774208068847656, 0.007774208068847656, 0.016714752197265623, 0.007661568164825439, 0.007718912124633789, 0.007678976058959961, 0.0076902399063110355, 0.0076687359809875484, 0.007655424118041992, 0.007704576015472412, 0.007724031925201416, 0.007693312168121338, 0.007682047843933106, 0.007713856220245362, 0.007695295810699463, 0.007727104187011719, 0.007708672046661377, 0.0076912641525268555, 0.0076943359375, 0.007725056171417236, 0.007659520149230957, 0.008349696159362792, 0.008087552070617676, 0.00800153636932373, 0.007982079982757568, 0.007956480026245117, 0.007929855823516846, 0.008227840423583984, 0.008046591758728027, 0.008014847755432129, 0.007885824203491211, 0.007773183822631836, 0.0076871681213378906, 0.007777279853820801, 0.007727104187011719, 0.007721983909606934, 0.007692287921905518, 0.007705599784851074, 0.007746560096740723, 0.007696383953094482, 0.007721983909606934, 0.007792640209197998, 0.007708672046661377, 0.007921664237976075, 0.007707647800445557, 0.007706624031066894, 0.007712768077850342, 0.007642111778259277, 0.007730175971984863, 0.007689216136932373, 0.007717887878417969, 0.007708672046661377, 0.007692287921905518, 0.007714816093444824, 0.007763967990875244, 0.007715839862823487, 0.007689216136932373, 0.007714816093444824, 0.007768064022064209, 0.0076912641525268555, 0.007679999828338623, 0.007677951812744141, 0.007693312168121338, 0.007681024074554443, 0.007692287921905518, 0.01683967971801758, 0.007956480026245117, 0.00795136022567749, 0.007931968212127686, 0.007883711814880371, 0.0077209601402282715, 0.007726111888885498, 0.007844831943511963, 0.007725056171417236, 0.007685120105743408, 0.007966720104217529, 0.007915520191192627, 0.007905280113220215, 0.007930880069732665, 0.0077209601402282715, 0.0077199358940124516, 0.007727104187011719, 0.007699456214904785, 0.0076912641525268555, 0.0076912641525268555, 0.007654399871826172, 0.007792640209197998, 0.0076871681213378906, 0.007699456214904785, 0.0076902399063110355, 0.007671807765960693, 0.0077209601402282715, 0.0076984319686889645, 0.007840767860412597, 0.007961599826812745, 0.007816192150115966, 0.007692287921905518, 0.007686143875122071, 0.007718912124633789, 0.007701504230499268, 0.007663616180419922, 0.007713791847229004, 0.007682047843933106, 0.007669760227203369, 0.007689216136932373, 0.007676928043365478, 0.00800153636932373, 0.007803904056549072, 0.007771135807037354, 0.0077322559356689455, 0.007685152053833008, 0.007731135845184326, 0.007712768077850342, 0.007674880027770996, 0.007709695816040039, 0.007684095859527588, 0.007681024074554443, 0.00773632001876831, 0.007786496162414551, 0.007685120105743408, 0.007683072090148926, 0.007667712211608887, 0.007677951812744141, 0.007724031925201416, 0.007700479984283447, 0.007700479984283447, 0.007817215919494629, 0.0077209601402282715, 0.01655705642700195, 0.007729152202606201, 0.007725056171417236, 0.007679999828338623, 0.00773529577255249, 0.007704576015472412, 0.007726079940795898, 0.007715839862823487, 0.007713791847229004, 0.00774454402923584, 0.007709663867950439, 0.007705599784851074, 0.007731200218200684, 0.007697408199310303, 0.007729152202606201, 0.007713791847229004, 0.00773632001876831, 0.007699456214904785, 0.007676928043365478, 0.007709695816040039, 0.007763967990875244, 0.007693312168121338, 0.007684095859527588, 0.007672832012176513, 0.007727104187011719, 0.007699456214904785, 0.007692287921905518, 0.007696383953094482, 0.007666687965393066, 0.007671807765960693, 0.007734272003173828, 0.007797760009765625, 0.007671807765960693, 0.007671807765960693, 0.007674880027770996, 0.007686143875122071, 0.007685120105743408, 0.007680031776428222, 0.007708640098571778, 0.007688191890716553, 0.007741439819335938, 0.007726079940795898, 0.007679999828338623, 0.007747583866119385, 0.007707647800445557, 0.007661568164825439, 0.007709695816040039, 0.007714816093444824, 0.007689216136932373, 0.007710720062255859, 0.007702527999877929, 0.00769536018371582, 0.007712768077850342, 0.007729152202606201, 0.007714816093444824, 0.0076984319686889645, 0.00769536018371582, 0.007725056171417236, 0.007663616180419922, 0.007682112216949463, 0.007765952110290527, 0.007704576015472412, 0.007675903797149658, 0.016482303619384766, 0.0077209601402282715, 0.007693312168121338, 0.007663616180419922, 0.007686143875122071, 0.007688191890716553, 0.007673855781555176, 0.007783423900604248, 0.007667712211608887, 0.007689216136932373, 0.007803904056549072, 0.00769536018371582, 0.007676928043365478, 0.007678976058959961, 0.007724031925201416, 0.007696383953094482, 0.007805952072143555, 0.007718912124633789, 0.007708672046661377, 0.0076912641525268555, 0.007655424118041992, 0.0076902399063110355, 0.007697408199310303, 0.007712768077850342, 0.007770112037658691, 0.007656447887420655, 0.00785920000076294, 0.007704576015472412, 0.007676928043365478, 0.007677951812744141, 0.007712768077850342, 0.0076943359375, 0.007666687965393066, 0.007725056171417236, 0.007830527782440186, 0.007674880027770996, 0.00769536018371582, 0.007692287921905518, 0.007716864109039307, 0.0076687359809875484, 0.007670783996582031, 0.007796735763549805, 0.007696383953094482, 0.0076943359375, 0.007697408199310303, 0.007675903797149658, 0.007701504230499268, 0.007655424118041992, 0.007669760227203369, 0.007663616180419922, 0.007686143875122071, 0.007696383953094482, 0.00764518404006958, 0.00769536018371582, 0.007786496162414551, 0.007718912124633789, 0.007711743831634522, 0.0077209601402282715, 0.007987199783325195, 0.0076871681213378906, 0.007702527999877929, 0.007797760009765625, 0.007693312168121338, 0.016484352111816408, 0.007674880027770996, 0.007697408199310303, 0.007717887878417969, 0.007707647800445557, 0.007704576015472412, 0.007643136024475097, 0.007710720062255859, 0.0077199358940124516, 0.0077199358940124516, 0.007701504230499268, 0.007710720062255859, 0.0076984319686889645, 0.0077619199752807615, 0.007701504230499268, 0.007733248233795166, 0.007715871810913086, 0.007692255973815918, 0.007709695816040039, 0.0076943359375, 0.007684095859527588, 0.0076912641525268555, 0.007692287921905518, 0.007710720062255859, 0.007682047843933106, 0.007670783996582031, 0.007689216136932373, 0.007673855781555176, 0.007685120105743408, 0.007702527999877929, 0.007711743831634522, 0.007717887878417969, 0.007881728172302246, 0.007721983909606934, 0.007707647800445557, 0.007847936153411865, 0.007799808025360107, 0.0077281279563903805, 0.007715839862823487, 0.0076902399063110355, 0.007700479984283447, 0.007724031925201416, 0.0076943359375, 0.007865344047546387, 0.0076871681213378906, 0.007723008155822754, 0.007727104187011719, 0.0077199358940124516, 0.007688191890716553, 0.007844863891601562, 0.007663616180419922, 0.007730175971984863, 0.007700479984283447, 0.007699456214904785, 0.00773529577255249, 0.007684095859527588, 0.007678976058959961, 0.007696383953094482, 0.007714816093444824, 0.00782643222808838, 0.007778304100036621, 0.007774208068847656, 0.007678976058959961, 0.016561151504516602, 0.007704576015472412, 0.007812096118927002, 0.007910399913787843, 0.007922688007354736, 0.008080384254455567, 0.007913472175598145, 0.007903232097625732, 0.007676928043365478, 0.007712831974029541, 0.007683008193969726, 0.007683072090148926, 0.007721983909606934, 0.007693312168121338, 0.007700479984283447, 0.0077199358940124516, 0.007685120105743408, 0.007682047843933106, 0.007686143875122071, 0.007696383953094482, 0.007689216136932373, 0.007641088008880615, 0.007703551769256592, 0.0076912641525268555, 0.007705599784851074, 0.0077281599044799806, 0.007726047992706299, 0.007732223987579345, 0.007673855781555176, 0.0076687359809875484, 0.00778547191619873, 0.007723008155822754, 0.007731200218200684, 0.007683072090148926, 0.007699456214904785, 0.007643136024475097, 0.007693312168121338, 0.007725088119506836, 0.007687136173248291, 0.007711743831634522, 0.007689216136932373, 0.007809023857116699, 0.007697408199310303, 0.007674911975860596, 0.0076861119270324706, 0.007665664196014404, 0.007709695816040039, 0.007683072090148926, 0.007771135807037354, 0.007688191890716553, 0.007716864109039307, 0.007693312168121338, 0.007705599784851074, 0.007773183822631836, 0.007767039775848389, 0.0077578239440917966, 0.0077209601402282715, 0.007709695816040039, 0.007776256084442139, 0.007709695816040039, 0.007684095859527588, 0.007709695816040039, 0.00769536018371582, 0.016553983688354493, 0.007738368034362793, 0.007707647800445557, 0.0077199358940124516, 0.007712768077850342, 0.007697408199310303, 0.007688191890716553, 0.007713791847229004, 0.007730175971984863, 0.007711743831634522, 0.007738368034362793, 0.007681024074554443, 0.007712768077850342, 0.007685120105743408, 0.007709695816040039, 0.007734272003173828, 0.007716864109039307, 0.007678976058959961, 0.0076912641525268555, 0.007699456214904785, 0.0077209601402282715, 0.007701504230499268, 0.007718912124633789, 0.007665664196014404, 0.0076912641525268555, 0.007706624031066894, 0.007685120105743408, 0.007721983909606934, 0.007716864109039307, 0.007688191890716553, 0.007689216136932373, 0.007676928043365478, 0.007684095859527588, 0.007715839862823487, 0.007701504230499268, 0.007725056171417236, 0.0076912641525268555, 0.007726079940795898, 0.007692287921905518, 0.007766016006469726, 0.00800051212310791, 0.00773529577255249, 0.007711743831634522, 0.007738368034362793, 0.0076912641525268555, 0.0076574721336364745, 0.0077066879272460935, 0.007749567985534668, 0.007740416049957275, 0.007701504230499268, 0.007696383953094482, 0.007714816093444824, 0.0076871681213378906, 0.007677951812744141, 0.0076902399063110355, 0.007684095859527588, 0.007696415901184082, 0.007714784145355225, 0.007678976058959961, 0.007717919826507568, 0.0077270717620849605, 0.007686143875122071, 0.007689216136932373]",tokens/s,126.69384730146851,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-14B,Qwen/Qwen-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -36405,31 +35090,18 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained + model_class = get_class_from_dynamic_module( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module + final_module = get_cached_module_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file + modules_needed = check_imports(resolved_module_file) + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports + raise ImportError( +ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-72B,Qwen/Qwen2-beta-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-7B,Qwen/Qwen-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -36447,31 +35119,18 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained + model_class = get_class_from_dynamic_module( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module + final_module = get_cached_module_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file + modules_needed = check_imports(resolved_module_file) + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports + raise ImportError( +ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-180B,tiiuae/falcon-180B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,v,v,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -36483,11 +35142,21 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/v/resolve/main/config.json The above exception was the direct cause of the following exception: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn @@ -36498,28 +35167,13 @@ Traceback (most recent call last): response = _request_wrapper( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status - raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-6694991a-41428bd0086501fc7eb2e428;368fb4cb-1f2b-4e77-a5bf-224e96afc204) - -403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json. -If you are trying to create or update content,make sure you have a token with the `write` role. - -The above exception was the direct cause of the following exception: + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949473-61e860600dac1c367dd02b0b;f6f0dede-edd1-4196-ac94-bcff2355b84c) -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error - raise LocalEntryNotFoundError( -huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. +Repository Not Found for url: https://huggingface.co/v/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. The above exception was the direct cause of the following exception: @@ -36540,13 +35194,13 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like tiiuae/falcon-180B is not the path to a directory containing a file named config.json. -Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. +OSError: v is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-4B,Qwen/Qwen1.5-4B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-125m,EleutherAI/gpt-neo-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,1,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -36572,16 +35226,16 @@ ChildProcessError: Traceback (most recent call last): return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules + model = exllama_post_init(model) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init + submodule.post_init() + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init + self.q4 = exl_ext.make_q4( +NameError: name 'exl_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm-20b,internlm/internlm-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,.,.,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -36589,32 +35243,28 @@ NameError: name 'exlv2_ext' is not defined File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code - answer = input( -EOFError: EOF when reading a line - -During handling of the above exception, another exception occurred: - -Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights - self.create_no_weights_model() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model - meta_model = self.automodel_class.from_config(self.pretrained_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config - trust_remote_code = resolve_trust_remote_code( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code - raise ValueError( -ValueError: The repository for internlm/internlm-20b contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/internlm/internlm-20b. -Please pass the argument `trust_remote_code=True` to allow custom code to be run. + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 373, in cached_file + raise EnvironmentError( +OSError: . does not appear to have a file named config.json. Checkout 'https://huggingface.co/./tree/None' for available files. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-1_6b,stabilityai/stablelm-2-1_6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/phi-1_5,microsoft/phi-1_5,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -36624,32 +35274,56 @@ Please pass the argument `trust_remote_code=True` to allow custom code to be run ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/phi/modeling_phi.py"", line 1268, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/phi/modeling_phi.py"", line 1064, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/phi/modeling_phi.py"", line 804, in forward + attn_outputs, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/phi/modeling_phi.py"", line 313, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,1,1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,s,s,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -36661,7 +35335,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/1/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/s/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -36688,9 +35362,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669495ac-5e42e51857eede2b456eb4b4;ad0329de-34e3-47a5-bb01-63405db8328a) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948cd2-4d6c6b664524e1e5746d86dd;e5c7161f-f625-4c7e-b538-0425a6e939d7) -Repository Not Found for url: https://huggingface.co/1/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/s/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -36715,11 +35389,70 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: 1 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: s is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-1.8B,Qwen/Qwen1.5-1.8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 326, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-66b,facebook/opt-66b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -36739,55 +35472,29 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code - answer = input( -EOFError: EOF when reading a line - -During handling of the above exception, another exception occurred: - -Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights - self.create_no_weights_model() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model - meta_model = self.automodel_class.from_config(self.pretrained_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config - trust_remote_code = resolve_trust_remote_code( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code - raise ValueError( -ValueError: The repository for Deci/DeciCoder-1b contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/Deci/DeciCoder-1b. -Please pass the argument `trust_remote_code=True` to allow custom code to be run. + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 162.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,s,s,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,i,i,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -36799,7 +35506,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/s/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/i/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -36826,9 +35533,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948ce0-3444eee579eb976d15e1ea5a;0e4b7586-4890-4e0f-8cf6-08242a5926a3) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948ffb-4794033e6b24e05329510985;c8a6740e-2e2a-4d3d-87ba-6d0cf00b7a4d) -Repository Not Found for url: https://huggingface.co/s/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/i/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -36853,11 +35560,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: s is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: i is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,TencentARC/Mistral_Pro_8B_v0.1,TencentARC/Mistral_Pro_8B_v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-6.7b,EleutherAI/pythia-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -36867,32 +35574,58 @@ If this is a private repository, make sure to pass a token having permission to ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward + outputs = self.gpt_neox( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward + outputs = layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward + attention_layer_outputs = self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 170, in forward + query, key, value, present = self._attn_projections_and_rope( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope + qkv = self.query_key_value(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-12b,EleutherAI/pythia-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-0.5B,Qwen/Qwen1.5-0.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -36902,32 +35635,56 @@ NameError: name 'exlv2_ext' is not defined ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1221, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1023, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 763, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 257, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/polyglot-ko-12.8b,EleutherAI/polyglot-ko-12.8b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-16B-nl,Salesforce/codegen-16B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -36937,32 +35694,56 @@ NameError: name 'exlv2_ext' is not defined ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/codegen/modeling_codegen.py"", line 667, in forward + transformer_outputs = self.transformer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/codegen/modeling_codegen.py"", line 536, in forward + outputs = block( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/codegen/modeling_codegen.py"", line 272, in forward + attn_outputs = self.attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/codegen/modeling_codegen.py"", line 163, in forward + qkv = self.qkv_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-3b,stabilityai/stablelm-base-alpha-3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-j-6b,EleutherAI/gpt-j-6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -36972,32 +35753,57 @@ NameError: name 'exlv2_ext' is not defined ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gptj/modeling_gptj.py"", line 1124, in forward + transformer_outputs = self.transformer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gptj/modeling_gptj.py"", line 950, in forward + outputs = block( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gptj/modeling_gptj.py"", line 578, in forward + attn_outputs = self.attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gptj/modeling_gptj.py"", line 224, in forward + query = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,/,/,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2-large,openai-community/gpt2-large,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1255.817216,2645.03296,0.0,1998.585856,1692.285952,s,10,0.2421620788574219,0.02421620788574219,0.0007151447258735442,0.02405540752410889,0.025104490089416506,0.025451717281341553,0.02572949903488159,"[0.0257989444732666, 0.02358336067199707, 0.023982303619384766, 0.023516639709472657, 0.023505535125732422, 0.02412851142883301, 0.023632959365844728, 0.024505855560302735, 0.024480640411376955, 0.025027328491210938]",tokens/s,10571.432208043005,kWh,2.7753140546097755e-07,1.5207407634566343e-07,8.297378834037525e-07,1.2593433652103935e-06,tokens/kWh,203280540.5356871,MB,1257.193472,2645.03296,0.0,1998.585856,1740.091904,s,10,13.934907348632812,1.3934907348632812,0.025773039375764546,1.3917061157226562,1.4230255249023438,1.4235073303222656,1.423892774658203,"[1.4067874755859375, 1.374333740234375, 1.3706243896484376, 1.3586650390625, 1.362622314453125, 1.376624755859375, 1.4168704833984376, 1.42291845703125, 1.4239891357421874, 1.4214715576171875]",tokens/s,45.21020371633909,kWh,1.628260937647143e-05,8.921926230863981e-06,3.281937236919722e-05,5.802390797653265e-05,tokens/kWh,1085759.339503294,,s,629,14.127670267105099,0.02246052506693975,0.0029503195630523993,0.022187007904052734,0.02265027198791504,0.02293166084289551,0.04536406036376953,"[0.022769664764404295, 0.022405120849609376, 0.022578176498413087, 0.023195648193359376, 0.023209983825683594, 0.022948863983154297, 0.022355968475341798, 0.022914047241210937, 0.023353343963623048, 0.023217151641845703, 0.023201791763305665, 0.022947839736938477, 0.023254016876220703, 0.023146495819091797, 0.023326719284057617, 0.023176191329956054, 0.022323200225830078, 0.022245376586914063, 0.02193715286254883, 0.02272153663635254, 0.023012351989746094, 0.023163904190063478, 0.02294272041320801, 0.02234060859680176, 0.02215936088562012, 0.02208768081665039, 0.022123519897460937, 0.02208460807800293, 0.022091775894165038, 0.02206617546081543, 0.022107135772705077, 0.02208358383178711, 0.022021120071411132, 0.022038528442382813, 0.02208051109313965, 0.0220150089263916, 0.02190025520324707, 0.022139904022216796, 0.022179840087890625, 0.02205904006958008, 0.02192790412902832, 0.022039552688598633, 0.022223871231079103, 0.02220953559875488, 0.02188390350341797, 0.02201190376281738, 0.022675455093383787, 0.02223411178588867, 0.02206105613708496, 0.022090751647949217, 0.021857280731201172, 0.021324800491333007, 0.021366783142089844, 0.021997568130493163, 0.022114303588867186, 0.02204569625854492, 0.022026239395141603, 0.02142207908630371, 0.021380096435546874, 0.021425151824951173, 0.021315584182739256, 0.0213309440612793, 0.04596223831176758, 0.021974016189575195, 0.022114303588867186, 0.022154239654541014, 0.02209280014038086, 0.02191974449157715, 0.02253824043273926, 0.021955583572387697, 0.022146047592163084, 0.022205440521240235, 0.02226585578918457, 0.02211737632751465, 0.02268262481689453, 0.02250649642944336, 0.021916671752929686, 0.02152448081970215, 0.021397504806518555, 0.021328895568847657, 0.021774335861206053, 0.021780479431152345, 0.021586944580078125, 0.021465087890625, 0.022072320938110353, 0.021960704803466798, 0.022072320938110353, 0.022037504196166992, 0.022006784439086914, 0.022033407211303712, 0.021959680557250977, 0.022055936813354493, 0.022128639221191407, 0.022040576934814454, 0.0220948486328125, 0.022106111526489256, 0.02224742317199707, 0.02228531265258789, 0.02211327934265137, 0.021979135513305666, 0.022032384872436524, 0.0219289608001709, 0.021993471145629884, 0.02209791946411133, 0.022039552688598633, 0.0212992000579834, 0.021410816192626952, 0.021403648376464843, 0.02163609504699707, 0.02124595260620117, 0.021142528533935546, 0.021389312744140625, 0.021386240005493166, 0.0214466552734375, 0.021399551391601563, 0.021315584182739256, 0.021326847076416015, 0.021357568740844726, 0.021409791946411134, 0.021377023696899415, 0.021366783142089844, 0.021364736557006835, 0.021374975204467773, 0.021353471755981446, 0.021223424911499023, 0.04640563201904297, 0.02209791946411133, 0.022133760452270508, 0.02215936088562012, 0.022190080642700196, 0.02220953559875488, 0.022187007904052734, 0.022112255096435548, 0.022176767349243166, 0.022145023345947267, 0.022112255096435548, 0.022082559585571288, 0.022288383483886717, 0.02206211280822754, 0.022308832168579103, 0.02231091117858887, 0.02206924819946289, 0.022254592895507814, 0.02222489547729492, 0.022042623519897463, 0.0214835205078125, 0.021370880126953123, 0.021332992553710937, 0.021533695220947266, 0.021412864685058593, 0.02131455993652344, 0.021326847076416015, 0.021283840179443358, 0.021344255447387696, 0.02128895950317383, 0.0213309440612793, 0.021343231201171875, 0.02143027114868164, 0.021319679260253906, 0.021373952865600586, 0.0214783992767334, 0.021329919815063478, 0.021348352432250976, 0.021346303939819337, 0.021257247924804688, 0.021285856246948242, 0.02147225570678711, 0.021311487197875977, 0.02129817581176758, 0.021356544494628905, 0.021321727752685548, 0.021562368392944335, 0.021621759414672852, 0.02251571273803711, 0.022560768127441407, 0.02229555130004883, 0.022179840087890625, 0.02206003189086914, 0.022012928009033202, 0.021967872619628907, 0.02206105613708496, 0.02226688003540039, 0.021485567092895508, 0.021444608688354492, 0.021311487197875977, 0.02147532844543457, 0.02142617607116699, 0.02152448081970215, 0.04532940673828125, 0.021456960678100587, 0.0213636474609375, 0.021334016799926758, 0.021410816192626952, 0.02126540756225586, 0.021332992553710937, 0.021356544494628905, 0.021361663818359376, 0.021425151824951173, 0.021332992553710937, 0.021401599884033205, 0.02150297546386719, 0.021410816192626952, 0.02147635269165039, 0.021433343887329103, 0.021370880126953123, 0.021360639572143555, 0.021415935516357423, 0.02128179168701172, 0.02147225570678711, 0.02146611213684082, 0.021404672622680664, 0.021355520248413085, 0.021335039138793945, 0.02127052879333496, 0.02127462387084961, 0.021300224304199217, 0.02129408073425293, 0.02132275199890137, 0.021327871322631836, 0.021271551132202148, 0.02127462387084961, 0.021307392120361326, 0.02125312042236328, 0.021362688064575194, 0.02129817581176758, 0.0212674560546875, 0.02125721549987793, 0.021336063385009766, 0.021368831634521485, 0.021367807388305664, 0.022182912826538087, 0.02204364776611328, 0.022477823257446287, 0.022156288146972656, 0.022164480209350586, 0.022153215408325197, 0.02215116882324219, 0.022112255096435548, 0.02223308753967285, 0.021774335861206053, 0.021360639572143555, 0.021424127578735352, 0.02147430419921875, 0.021820415496826173, 0.022039552688598633, 0.021996543884277343, 0.021987327575683592, 0.021978111267089845, 0.022215679168701173, 0.021952512741088868, 0.021716991424560548, 0.045139968872070314, 0.02131865692138672, 0.02143337631225586, 0.021398496627807618, 0.021307392120361326, 0.021493759155273438, 0.021393407821655275, 0.021301248550415038, 0.021374975204467773, 0.02145280075073242, 0.021390335083007812, 0.02150297546386719, 0.021489664077758788, 0.021440511703491212, 0.02142720031738281, 0.021526527404785157, 0.021372928619384765, 0.021565439224243164, 0.02143129539489746, 0.02141798400878906, 0.021360639572143555, 0.021386240005493166, 0.02146303939819336, 0.021389312744140625, 0.021300224304199217, 0.021390335083007812, 0.02137500762939453, 0.02170979118347168, 0.021416959762573243, 0.02166169548034668, 0.021412864685058593, 0.02129100799560547, 0.021393407821655275, 0.021315584182739256, 0.02129817581176758, 0.021374975204467773, 0.02126540756225586, 0.021320703506469727, 0.021309440612792968, 0.021335039138793945, 0.02105958366394043, 0.021311487197875977, 0.021408767700195314, 0.02206208038330078, 0.021833728790283204, 0.021940223693847655, 0.022131711959838866, 0.022004735946655272, 0.022141952514648438, 0.022601728439331056, 0.022064128875732423, 0.022550527572631835, 0.022140928268432617, 0.022034431457519533, 0.022132736206054687, 0.022040576934814454, 0.02220134353637695, 0.022141952514648438, 0.02208563232421875, 0.02213478469848633, 0.022071296691894532, 0.022076416015625, 0.02202828788757324, 0.04676198577880859, 0.022076416015625, 0.022165504455566407, 0.022025215148925782, 0.022189056396484375, 0.022040576934814454, 0.022009855270385743, 0.02191155242919922, 0.021346303939819337, 0.021363712310791014, 0.021751808166503905, 0.022120447158813478, 0.022120447158813478, 0.022024192810058595, 0.022178815841674804, 0.022125568389892578, 0.0214466552734375, 0.021332992553710937, 0.021196832656860353, 0.021298143386840822, 0.02126131248474121, 0.021347328186035155, 0.021440511703491212, 0.021309440612792968, 0.02128998374938965, 0.02130636787414551, 0.02127462387084961, 0.021506048202514647, 0.021967872619628907, 0.02267852783203125, 0.022377471923828125, 0.022228992462158204, 0.021961727142333985, 0.02238057518005371, 0.022480863571166992, 0.022366207122802736, 0.022130687713623046, 0.022410240173339844, 0.022207487106323243, 0.02203647994995117, 0.02210406494140625, 0.022013952255249023, 0.022139904022216796, 0.02206208038330078, 0.022072320938110353, 0.022063104629516602, 0.022055936813354493, 0.022146047592163084, 0.021373952865600586, 0.021384191513061524, 0.0214517765045166, 0.021425151824951173, 0.021285888671875, 0.02165247917175293, 0.02213580894470215, 0.023093248367309572, 0.022350847244262697, 0.021918720245361328, 0.02126950454711914, 0.02141798400878906, 0.021342208862304687, 0.02129100799560547, 0.02127872085571289, 0.04537753677368164, 0.021362688064575194, 0.02168012809753418, 0.021445632934570313, 0.021562368392944335, 0.023380992889404296, 0.02294988822937012, 0.022619136810302733, 0.022610944747924806, 0.022618112564086915, 0.02253107261657715, 0.022600704193115235, 0.022537216186523438, 0.02262937545776367, 0.022548479080200197, 0.02261299133300781, 0.022598655700683593, 0.022401023864746093, 0.02266828727722168, 0.022421503067016603, 0.02246348762512207, 0.02240716743469238, 0.02251263999938965, 0.022780927658081054, 0.02266111946105957, 0.022450176239013672, 0.022542335510253905, 0.02250547218322754, 0.02253107261657715, 0.022403072357177735, 0.02250752067565918, 0.0224399356842041, 0.022510591506958007, 0.022391807556152343, 0.02243071937561035, 0.022434816360473633, 0.022566911697387695, 0.02246451187133789, 0.02249830436706543, 0.022501375198364256, 0.022556671142578123, 0.02242252731323242, 0.02248294448852539, 0.022494207382202147, 0.02264473533630371, 0.022535167694091796, 0.02271027183532715, 0.022768640518188478, 0.02254745674133301, 0.022559743881225586, 0.022617088317871094, 0.022611967086791994, 0.022586368560791017, 0.022608896255493165, 0.022517759323120116, 0.022565887451171874, 0.022566911697387695, 0.02251571273803711, 0.022542335510253905, 0.02262118339538574, 0.022635520935058592, 0.02247065544128418, 0.022392831802368163, 0.04779520034790039, 0.022597631454467772, 0.022558719635009765, 0.02245734405517578, 0.022569984436035157, 0.022467584609985353, 0.02248192024230957, 0.022486015319824217, 0.02246143913269043, 0.02248294448852539, 0.022742015838623047, 0.022492160797119142, 0.022527008056640624, 0.02257302474975586, 0.022579200744628908, 0.02274508857727051, 0.02345881652832031, 0.023000064849853515, 0.02261299133300781, 0.02246246337890625, 0.02247987174987793, 0.022460416793823244, 0.022501375198364256, 0.022377471923828125, 0.022587392807006838, 0.022579200744628908, 0.022409215927124023, 0.022552576065063477, 0.022545408248901368, 0.022526975631713866, 0.022583295822143554, 0.02240924835205078, 0.02254640007019043, 0.022492191314697266, 0.022502368927001953, 0.02255462455749512, 0.022578176498413087, 0.022533119201660155, 0.022567935943603516, 0.022429695129394533, 0.02269900894165039, 0.022544384002685547, 0.022562816619873048, 0.022451200485229493, 0.022467584609985353, 0.022537216186523438, 0.022425600051879883, 0.0225218563079834, 0.02251571273803711, 0.022526975631713866, 0.022443008422851563, 0.022509567260742186, 0.02247987174987793, 0.022441984176635742, 0.02262019157409668, 0.02277884864807129, 0.022132736206054687, 0.022345727920532226, 0.023601152420043944, 0.022863872528076173, 0.022647808074951172, 0.02253107261657715, 0.02285875129699707, 0.04789452743530274, 0.022619136810302733, 0.022617088317871094, 0.022478847503662108, 0.02246963119506836, 0.022590463638305663, 0.022616064071655274, 0.022584320068359375, 0.02249830436706543, 0.022614015579223632, 0.02253824043273926, 0.022575103759765625, 0.022889471054077147, 0.022776832580566408, 0.022552576065063477, 0.02266316795349121, 0.022708223342895507, 0.022755327224731444, 0.023163904190063478, 0.023447551727294923, 0.022767616271972657, 0.022598655700683593, 0.022563840866088865, 0.022608896255493165, 0.022380544662475587, 0.022608896255493165, 0.022518783569335937, 0.02244915199279785, 0.022536224365234375, 0.022473695755004883, 0.02252390480041504, 0.022567935943603516, 0.02270412826538086, 0.022590463638305663, 0.022618112564086915, 0.022537216186523438, 0.022511615753173828, 0.022529024124145508, 0.022445056915283205, 0.022580223083496095, 0.022503423690795898, 0.022542335510253905, 0.022564863204956053, 0.02249728012084961, 0.022584320068359375, 0.022634496688842775, 0.022619136810302733, 0.022861824035644532, 0.02261299133300781, 0.022543359756469726, 0.02264575958251953, 0.022572032928466795, 0.022399999618530272, 0.022557695388793944, 0.022495231628417968, 0.022634496688842775, 0.02253107261657715, 0.022536191940307617, 0.02249625587463379, 0.0224716796875, 0.022382591247558595, 0.022590463638305663, 0.02266012763977051, 0.0479508171081543, 0.022475776672363282, 0.02249625587463379, 0.02250547218322754, 0.02250547218322754, 0.022533119201660155, 0.02248089599609375, 0.022503423690795898, 0.022444032669067384, 0.022507551193237305, 0.022583263397216797, 0.02248089599609375, 0.022525951385498046, 0.022509567260742186, 0.022599679946899414, 0.022622207641601562, 0.022597631454467772, 0.022395904541015626, 0.022401023864746093, 0.02250547218322754, 0.022385663986206054, 0.022564863204956053, 0.02261299133300781, 0.02285260772705078, 0.022624256134033204, 0.0225167350769043, 0.022809600830078124, 0.022617088317871094, 0.022585344314575196, 0.022565887451171874, 0.022597631454467772, 0.022520832061767578, 0.022486015319824217, 0.022468608856201173, 0.022527999877929687, 0.022373376846313478, 0.02243891143798828, 0.022764575958251952, 0.022584287643432618, 0.022425600051879883, 0.02244607925415039, 0.022509567260742186, 0.02246451187133789, 0.0224532470703125, 0.022565887451171874, 0.02253926467895508, 0.02261299133300781, 0.022559743881225586, 0.022495264053344725, 0.022618080139160158, 0.022915071487426757, 0.02374553680419922, 0.022756351470947265, 0.02259660720825195, 0.022460416793823244, 0.022443008422851563, 0.02251571273803711, 0.022524927139282228, 0.022544384002685547, 0.022533119201660155, 0.022412288665771486, 0.022402048110961914, 0.02247987174987793]",tokens/s,44.522556664177316,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -37007,26 +35813,46 @@ NameError: name 'exlv2_ext' is not defined ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 373, in cached_file - raise EnvironmentError( -OSError: / does not appear to have a file named config.json. Checkout 'https://huggingface.co///tree/None' for available files. + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) +TypeError: DeciCoderAttention.forward() got an unexpected keyword argument 'cache_position' -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-70m,EleutherAI/pythia-70m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mistral-7B-v0.1,mistralai/Mistral-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -37036,32 +35862,56 @@ OSError: / does not appear to have a file named config.json. Checkout 'https://h ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 1200, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 976, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 718, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 242, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-2b,google/gemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,r,r,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -37073,11 +35923,21 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/gemma-2b/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/r/resolve/main/config.json The above exception was the direct cause of the following exception: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn @@ -37088,28 +35948,13 @@ Traceback (most recent call last): response = _request_wrapper( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status - raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66948106-7eae8abf35688f2e537398ea;ddb9b4a1-0682-4438-b0ca-b68ec49fe82a) - -403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/google/gemma-2b/resolve/main/config.json. -If you are trying to create or update content,make sure you have a token with the `write` role. - -The above exception was the direct cause of the following exception: + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669490fd-3f2a747c7c64b2cc25b371b8;a3c05cd9-19aa-49de-a101-169897cabdb7) -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error - raise LocalEntryNotFoundError( -huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. +Repository Not Found for url: https://huggingface.co/r/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. The above exception was the direct cause of the following exception: @@ -37130,46 +35975,13 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/gemma-2b is not the path to a directory containing a file named config.json. -Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciLM-7B,Deci/DeciLM-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code - answer = input( -EOFError: EOF when reading a line - -During handling of the above exception, another exception occurred: - -Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights - self.create_no_weights_model() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model - meta_model = self.automodel_class.from_config(self.pretrained_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config - trust_remote_code = resolve_trust_remote_code( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code - raise ValueError( -ValueError: The repository for Deci/DeciLM-7B contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/Deci/DeciLM-7B. -Please pass the argument `trust_remote_code=True` to allow custom code to be run. +OSError: r is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,databricks/dbrx-base,databricks/dbrx-base,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,l,l,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -37181,11 +35993,21 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/l/resolve/main/config.json The above exception was the direct cause of the following exception: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn @@ -37196,28 +36018,13 @@ Traceback (most recent call last): response = _request_wrapper( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status - raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66947b2f-6ae9874027ec04660f185aff;3e73d25b-ebc4-46c2-86d8-67ed0854a12f) - -403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json. -If you are trying to create or update content,make sure you have a token with the `write` role. - -The above exception was the direct cause of the following exception: + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669491a2-32161b7622c1adf138eafd32;918e0598-ac81-4e21-8a78-e5a774418c9a) -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error - raise LocalEntryNotFoundError( -huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. +Repository Not Found for url: https://huggingface.co/l/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. The above exception was the direct cause of the following exception: @@ -37238,48 +36045,13 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like databricks/dbrx-base is not the path to a directory containing a file named config.json. -Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-7.5B,facebook/xglm-7.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined +OSError: l is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,B,B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,a,a,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -37291,7 +36063,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/B/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/a/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -37318,9 +36090,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669493c4-3b2e74dc6e607ee34f0464bc;6a9f2d1a-1120-492e-a51c-9bf5c063028a) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694914e-3c9d31e241d54aa821b5a02c;1d89675e-d458-4e6f-9eb2-3812b338cf89) -Repository Not Found for url: https://huggingface.co/B/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/a/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -37345,81 +36117,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: B is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: a is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-14B,Qwen/Qwen1.5-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,v,v,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,1,1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -37431,7 +36133,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/v/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/1/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -37458,9 +36160,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694947b-53dbb31c0a7512f03614f0c4;f3e7a548-682a-4605-979e-e6805ddf6104) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694959a-2d4f38f41e42b3ce4ddd3833;3fd20cf5-6e9d-43aa-8f5c-0d865dd92b88) -Repository Not Found for url: https://huggingface.co/v/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/1/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -37485,114 +36187,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: v is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: 1 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.3b,EleutherAI/pythia-1.3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-40b,tiiuae/falcon-40b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code - answer = input( -EOFError: EOF when reading a line - -During handling of the above exception, another exception occurred: - -Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights - self.create_no_weights_model() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model - meta_model = self.automodel_class.from_config(self.pretrained_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config - trust_remote_code = resolve_trust_remote_code( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code - raise ValueError( -ValueError: The repository for tiiuae/falcon-40b contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/tiiuae/falcon-40b. -Please pass the argument `trust_remote_code=True` to allow custom code to be run. - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neox-20b,EleutherAI/gpt-neox-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-13b,facebook/opt-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-7b,huggyllama/llama-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -37602,33 +36201,56 @@ NameError: name 'exlv2_ext' is not defined ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 326, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2-large,openai-community/gpt2-large,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1282.564096,2645.03296,0.0,1998.585856,1692.285952,s,10,0.2531576633453369,0.02531576633453369,0.002450285014570774,0.024608816146850586,0.025783482170104975,0.02917710142135619,0.031891996822357174,"[0.03257072067260742, 0.02457766342163086, 0.02456787109375, 0.024639968872070313, 0.023735296249389647, 0.02453727912902832, 0.02502934455871582, 0.024820192337036133, 0.024842975616455078, 0.02383635139465332]",tokens/s,10112.275355093076,kWh,2.792075205920154e-07,1.529921474871729e-07,8.369050561796469e-07,1.2691047242588353e-06,tokens/kWh,201717001.84120387,MB,1282.859008,2645.03296,0.0,1998.585856,1740.091904,s,10,14.224613037109373,1.4224613037109373,0.007999866488579442,1.4226959228515625,1.4288772583007814,1.4350930480957031,1.4400656799316405,"[1.441308837890625, 1.4159813232421874, 1.4227452392578126, 1.4274959716796876, 1.4234324951171875, 1.4254453125, 1.42061181640625, 1.4226466064453125, 1.410975341796875, 1.4139700927734375]",tokens/s,44.28942976209244,kWh,1.649391267739289e-05,9.038513698214438e-06,3.331084448422058e-05,5.884327085982791e-05,tokens/kWh,1070640.6880418654,,s,629,14.421040109634406,0.022926931811819394,0.002966066291432769,0.022564863204956053,0.022848736572265625,0.023248467254638677,0.047059558868408236,"[0.02345062446594238, 0.023438335418701172, 0.023334911346435547, 0.02593791961669922, 0.023631872177124022, 0.023432191848754884, 0.023536640167236327, 0.022730752944946288, 0.02284752082824707, 0.022558687210083007, 0.022576128005981445, 0.022565887451171874, 0.022806528091430665, 0.02365644836425781, 0.023848960876464844, 0.023938047409057618, 0.023386144638061525, 0.023298015594482423, 0.023143423080444335, 0.023015424728393553, 0.02310758399963379, 0.022743040084838868, 0.022743040084838868, 0.02262937545776367, 0.022384639739990234, 0.022402048110961914, 0.022543359756469726, 0.02267136001586914, 0.022543359756469726, 0.022590463638305663, 0.022413312911987306, 0.02251468849182129, 0.022372352600097657, 0.022536191940307617, 0.022580223083496095, 0.022455327987670897, 0.02253718376159668, 0.022559743881225586, 0.022518783569335937, 0.022353919982910156, 0.023468063354492186, 0.02273072052001953, 0.0225167350769043, 0.022666240692138673, 0.022587392807006838, 0.022557695388793944, 0.022419456481933595, 0.022979583740234375, 0.0226375675201416, 0.022574079513549804, 0.02263039970397949, 0.022649856567382814, 0.023013376235961915, 0.022584320068359375, 0.022502399444580077, 0.022550527572631835, 0.022541311264038084, 0.022582271575927734, 0.02264371109008789, 0.022633472442626954, 0.022517759323120116, 0.022525951385498046, 0.0473620491027832, 0.022525951385498046, 0.02267238426208496, 0.02266009521484375, 0.022524927139282228, 0.022616064071655274, 0.022587392807006838, 0.022130687713623046, 0.02282598304748535, 0.022890495300292968, 0.02264575958251953, 0.022579200744628908, 0.022518783569335937, 0.022551551818847656, 0.02265088081359863, 0.02282700729370117, 0.022845439910888672, 0.02262937545776367, 0.022577152252197266, 0.022571008682250978, 0.02287615966796875, 0.02270515251159668, 0.022545408248901368, 0.022587392807006838, 0.02253004837036133, 0.02262118339538574, 0.022649856567382814, 0.022642688751220705, 0.02253926467895508, 0.022557695388793944, 0.02247065544128418, 0.021695487976074217, 0.0216494083404541, 0.021728256225585937, 0.02169343948364258, 0.021741567611694337, 0.02169753646850586, 0.021777408599853516, 0.0221265926361084, 0.02168832015991211, 0.021707775115966797, 0.021751808166503905, 0.022738943099975584, 0.022576128005981445, 0.02267750358581543, 0.02270412826538086, 0.022567935943603516, 0.022503423690795898, 0.022580223083496095, 0.022568960189819336, 0.022582271575927734, 0.02268876838684082, 0.02267955207824707, 0.022681600570678712, 0.022557695388793944, 0.02259660720825195, 0.022569984436035157, 0.02267033576965332, 0.022801408767700194, 0.02265292739868164, 0.02266111946105957, 0.022509567260742186, 0.022838272094726563, 0.047782913208007816, 0.022707199096679686, 0.022584320068359375, 0.022564863204956053, 0.022674432754516603, 0.022626304626464845, 0.022611967086791994, 0.0224849910736084, 0.02268262481689453, 0.022615039825439453, 0.02254643249511719, 0.022516767501831056, 0.022648799896240236, 0.022920192718505858, 0.02280243110656738, 0.022716415405273437, 0.02269696044921875, 0.022509567260742186, 0.02259660720825195, 0.02186240005493164, 0.02168524742126465, 0.02166988754272461, 0.02171494483947754, 0.021893119812011717, 0.021777408599853516, 0.022468608856201173, 0.022656000137329102, 0.022567935943603516, 0.022509567260742186, 0.02251468849182129, 0.022665216445922853, 0.022495231628417968, 0.022585344314575196, 0.022890495300292968, 0.022707199096679686, 0.022599679946899414, 0.0224901123046875, 0.022616064071655274, 0.022360063552856444, 0.021804031372070314, 0.023768064498901367, 0.023956480026245116, 0.02288128089904785, 0.022603776931762694, 0.0226713924407959, 0.023395296096801757, 0.022510591506958007, 0.02287718391418457, 0.02255462455749512, 0.022599679946899414, 0.022701055526733398, 0.022611967086791994, 0.022558719635009765, 0.022564863204956053, 0.022536191940307617, 0.022574079513549804, 0.022587392807006838, 0.022669343948364257, 0.022663135528564454, 0.022517759323120116, 0.022557695388793944, 0.022557695388793944, 0.02261299133300781, 0.047557632446289064, 0.022609920501708985, 0.02284339141845703, 0.022714399337768556, 0.022558687210083007, 0.02247065544128418, 0.022534143447875975, 0.02250752067565918, 0.0227061767578125, 0.022619136810302733, 0.02262937545776367, 0.022804479598999023, 0.022742015838623047, 0.022770687103271483, 0.022768640518188478, 0.022951936721801756, 0.02267852783203125, 0.022591487884521484, 0.022607872009277344, 0.022577152252197266, 0.022529024124145508, 0.02264678382873535, 0.022737920761108397, 0.022552576065063477, 0.02267136001586914, 0.022562816619873048, 0.022501375198364256, 0.022537216186523438, 0.022494207382202147, 0.02264678382873535, 0.02247987174987793, 0.022520832061767578, 0.022560768127441407, 0.02410700798034668, 0.02294988822937012, 0.022955007553100586, 0.022804479598999023, 0.022603776931762694, 0.022517759323120116, 0.02248806381225586, 0.022510591506958007, 0.022556671142578123, 0.022529024124145508, 0.022588415145874022, 0.022787071228027343, 0.022559743881225586, 0.0224901123046875, 0.022579200744628908, 0.02262118339538574, 0.022518783569335937, 0.022634496688842775, 0.022610944747924806, 0.02249113655090332, 0.02265907287597656, 0.022619136810302733, 0.022478847503662108, 0.0225167350769043, 0.023174144744873046, 0.02269388771057129, 0.022603776931762694, 0.022579200744628908, 0.022594560623168947, 0.02265292739868164, 0.046281726837158206, 0.022588415145874022, 0.022619136810302733, 0.022642688751220705, 0.022658048629760744, 0.022820863723754883, 0.022597631454467772, 0.022796287536621093, 0.022675455093383787, 0.022595584869384764, 0.02252288055419922, 0.022564863204956053, 0.0224849910736084, 0.02255462455749512, 0.022748159408569335, 0.02264678382873535, 0.02248294448852539, 0.022684671401977538, 0.02248908805847168, 0.022733823776245117, 0.022589439392089843, 0.022492160797119142, 0.02248089599609375, 0.022501375198364256, 0.022565887451171874, 0.022586368560791017, 0.02262428855895996, 0.022853599548339844, 0.022603776931762694, 0.022559743881225586, 0.02252288055419922, 0.022573055267333983, 0.022579200744628908, 0.02252390480041504, 0.022502399444580077, 0.02264473533630371, 0.022536191940307617, 0.022897663116455077, 0.022585344314575196, 0.02255564880371094, 0.022405120849609376, 0.022467584609985353, 0.022635520935058592, 0.022593536376953126, 0.0225218563079834, 0.022452224731445314, 0.022436864852905275, 0.022429695129394533, 0.02269696044921875, 0.022748159408569335, 0.02262015914916992, 0.022977535247802734, 0.022610944747924806, 0.022665216445922853, 0.022550527572631835, 0.022545440673828125, 0.022626272201538088, 0.02249830436706543, 0.02253926467895508, 0.02264371109008789, 0.022418432235717774, 0.02254745674133301, 0.022605823516845702, 0.04739276885986328, 0.02246143913269043, 0.022681600570678712, 0.02274406433105469, 0.022584320068359375, 0.022503423690795898, 0.02266828727722168, 0.02253824043273926, 0.02254643249511719, 0.022562816619873048, 0.022585344314575196, 0.022560768127441407, 0.02247987174987793, 0.022607872009277344, 0.022597631454467772, 0.022610944747924806, 0.022567935943603516, 0.022563840866088865, 0.02281881523132324, 0.022563840866088865, 0.0224849910736084, 0.02272051239013672, 0.0226375675201416, 0.02251263999938965, 0.022478847503662108, 0.022413312911987306, 0.02251468849182129, 0.0224901123046875, 0.02249113655090332, 0.02434867286682129, 0.023407615661621094, 0.022523935317993165, 0.022494176864624023, 0.022559743881225586, 0.022478847503662108, 0.022961151123046874, 0.022486015319824217, 0.022556671142578123, 0.02263859176635742, 0.022518783569335937, 0.022518783569335937, 0.02246451187133789, 0.02289356803894043, 0.022587392807006838, 0.022529024124145508, 0.02253926467895508, 0.022483968734741212, 0.022623231887817383, 0.022536191940307617, 0.022718463897705078, 0.02246451187133789, 0.022972415924072266, 0.02262835121154785, 0.0225167350769043, 0.022565887451171874, 0.022534143447875975, 0.022614015579223632, 0.02248192024230957, 0.02244812774658203, 0.022526975631713866, 0.022551551818847656, 0.022509567260742186, 0.022915071487426757, 0.04775833511352539, 0.02229145622253418, 0.022557695388793944, 0.02253107261657715, 0.022478847503662108, 0.0224399356842041, 0.02260479927062988, 0.022494207382202147, 0.02253004837036133, 0.022792192459106447, 0.02268057632446289, 0.02263039970397949, 0.022606847763061523, 0.022649856567382814, 0.022525951385498046, 0.022591487884521484, 0.022524927139282228, 0.022495231628417968, 0.022508544921875, 0.02243174362182617, 0.02255564880371094, 0.022437887191772463, 0.02250547218322754, 0.022789119720458984, 0.022580223083496095, 0.022500352859497072, 0.022552576065063477, 0.022320127487182616, 0.022432767868041992, 0.022403072357177735, 0.02246963119506836, 0.022459392547607423, 0.0224901123046875, 0.02248089599609375, 0.022550527572631835, 0.022467584609985353, 0.022548479080200197, 0.022475776672363282, 0.022477823257446287, 0.02252288055419922, 0.0224849910736084, 0.022486015319824217, 0.022814720153808594, 0.02265500831604004, 0.022472671508789063, 0.022571008682250978, 0.02265395164489746, 0.02249830436706543, 0.022722560882568358, 0.02262118339538574, 0.022388736724853517, 0.02170572853088379, 0.021612543106079102, 0.021695487976074217, 0.022331392288208008, 0.022533119201660155, 0.022584320068359375, 0.022502399444580077, 0.022580223083496095, 0.022626304626464845, 0.022617088317871094, 0.023888896942138672, 0.023900159835815428, 0.048435199737548826, 0.022572032928466795, 0.022586368560791017, 0.022606847763061523, 0.02252390480041504, 0.02247065544128418, 0.022392831802368163, 0.022492160797119142, 0.022527999877929687, 0.02246143913269043, 0.02269900894165039, 0.022972415924072266, 0.022939647674560547, 0.02273689651489258, 0.022567935943603516, 0.02269388771057129, 0.02290380859375, 0.022779903411865234, 0.022605823516845702, 0.022666240692138673, 0.02265497589111328, 0.022666240692138673, 0.02287308883666992, 0.022775808334350587, 0.022595584869384764, 0.02246963119506836, 0.0227061767578125, 0.022598655700683593, 0.02247987174987793, 0.0224532470703125, 0.02243174362182617, 0.022486015319824217, 0.022541343688964845, 0.022189023971557618, 0.021953535079956055, 0.02270515251159668, 0.022633472442626954, 0.02249625587463379, 0.022388736724853517, 0.022459392547607423, 0.022429695129394533, 0.022640640258789063, 0.02250444793701172, 0.022399999618530272, 0.022501375198364256, 0.022605823516845702, 0.0224399356842041, 0.022534143447875975, 0.02251468849182129, 0.02254745674133301, 0.022427648544311524, 0.0224716796875, 0.022389759063720704, 0.02249318313598633, 0.022563840866088865, 0.02271334457397461, 0.02255462455749512, 0.022589439392089843, 0.022642688751220705, 0.0231014404296875, 0.02254745674133301, 0.022579200744628908, 0.02269696044921875, 0.04771123123168945, 0.022592512130737305, 0.02264371109008789, 0.022725631713867187, 0.02244915199279785, 0.02268671989440918, 0.02250547218322754, 0.022475776672363282, 0.022564863204956053, 0.02251468849182129, 0.022571008682250978, 0.02249728012084961, 0.022548479080200197, 0.022580223083496095, 0.022772735595703125, 0.022789119720458984, 0.022508544921875, 0.022747135162353514, 0.022509567260742186, 0.022601728439331056, 0.022254592895507814, 0.022381568908691408, 0.022518783569335937, 0.02252288055419922, 0.022477823257446287, 0.02253209686279297, 0.02265292739868164, 0.02251571273803711, 0.022641664505004884, 0.0224532470703125, 0.022544384002685547, 0.022437887191772463, 0.02270207977294922, 0.022600704193115235, 0.022566911697387695, 0.02243071937561035, 0.022535167694091796, 0.02248089599609375, 0.02253824043273926, 0.022527999877929687, 0.02228531265258789, 0.02247987174987793, 0.022460416793823244, 0.02248806381225586, 0.022437887191772463, 0.02251571273803711, 0.022404096603393556, 0.022582271575927734, 0.02262118339538574, 0.02246143913269043, 0.022376447677612304, 0.02247270393371582, 0.021943296432495117, 0.02165862464904785, 0.021585920333862304, 0.02163609504699707, 0.021603328704833984, 0.021702655792236326, 0.021951488494873047, 0.02187980842590332, 0.021659648895263672, 0.02163609504699707, 0.021739519119262696, 0.045930496215820314, 0.021621759414672852, 0.02165247917175293, 0.021627904891967774, 0.0216944637298584, 0.021584896087646483, 0.02169343948364258, 0.021748735427856446, 0.021755903244018555, 0.022071296691894532, 0.021841920852661133, 0.021811199188232423, 0.022022144317626953, 0.022518783569335937, 0.022567935943603516, 0.022632448196411133, 0.02263654327392578, 0.022412288665771486, 0.022459392547607423, 0.022587392807006838, 0.022642688751220705, 0.022559743881225586, 0.022419456481933595, 0.022595584869384764, 0.022737920761108397, 0.02244812774658203, 0.022764543533325195, 0.02286591911315918, 0.022866943359375, 0.022540288925170897, 0.022541311264038084, 0.022564863204956053, 0.02249932861328125, 0.022607872009277344, 0.02301644706726074, 0.02265292739868164, 0.02348646354675293, 0.02287718391418457, 0.022573055267333983, 0.022571008682250978, 0.023392255783081056, 0.02261299133300781, 0.022563840866088865, 0.02254745674133301, 0.022725631713867187, 0.022534143447875975, 0.022619136810302733, 0.022601728439331056, 0.022498336791992188, 0.02250441551208496, 0.02248192024230957, 0.0224901123046875, 0.022467584609985353, 0.022432767868041992, 0.022517759323120116, 0.022550527572631835, 0.022475776672363282, 0.0225218563079834, 0.02246963119506836, 0.02247987174987793, 0.022467584609985353, 0.022591487884521484, 0.022592512130737305]",tokens/s,43.61682619409526,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-72B,Qwen/Qwen1.5-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-2.7b,EleutherAI/pythia-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -37638,39 +36260,58 @@ NameError: name 'exlv2_ext' is not defined ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward + outputs = self.gpt_neox( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward + outputs = layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward + attention_layer_outputs = self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 170, in forward + query, key, value, present = self._attn_projections_and_rope( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope + qkv = self.query_key_value(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,M,M,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,B,B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -37682,7 +36323,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/M/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/B/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -37709,9 +36350,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948fb6-14aa653006bdca2765c97850;3e155ea7-f331-4aeb-9ad7-8e41408fd669) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669493b5-372aadfd1c4a48c5729717bb;7f946987-14ca-4b71-b3f4-0991b37851e6) -Repository Not Found for url: https://huggingface.co/M/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/B/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -37736,11 +36377,70 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: M is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: B is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-7b,google/gemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-30b,huggyllama/llama-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 326, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,2,2,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -37752,11 +36452,21 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/gemma-7b/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/2/resolve/main/config.json The above exception was the direct cause of the following exception: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn @@ -37767,28 +36477,13 @@ Traceback (most recent call last): response = _request_wrapper( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status - raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-6694815d-5e017f6503242c5c374369e3;94556fa9-f33c-44da-82ef-c749cdb3c7b3) - -403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/google/gemma-7b/resolve/main/config.json. -If you are trying to create or update content,make sure you have a token with the `write` role. - -The above exception was the direct cause of the following exception: + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949353-6dbed5c34f1fb2443b523cf0;50b4a2e8-f415-4f7f-a4f5-d7dd784d2130) -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error - raise LocalEntryNotFoundError( -huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. +Repository Not Found for url: https://huggingface.co/2/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. The above exception was the direct cause of the following exception: @@ -37809,83 +36504,13 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/gemma-7b is not the path to a directory containing a file named config.json. -Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-2.7b,EleutherAI/pythia-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-7B,Qwen/Qwen1.5-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined +OSError: 2 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,-,-,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-350m,facebook/opt-350m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -37893,39 +36518,46 @@ NameError: name 'exlv2_ext' is not defined File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 106, in _inner_fn - validate_repo_id(arg_value) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 160, in validate_repo_id - raise HFValidationError( -huggingface_hub.errors.HFValidationError: Repo id must use alphanumeric chars or '-', '_', '.', '--' and '..' are forbidden, '-' and '.' cannot start or end the name, max length is 96: '-'. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 466, in cached_file - raise EnvironmentError( -OSError: Incorrect path_or_model_id: '-'. Please provide either the path to a local folder or the repo_id of a model on the Hub. + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 1118, in forward + outputs = self.model.decoder( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 836, in forward + inputs_embeds = self.project_in(inputs_embeds) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-125m,facebook/opt-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-MoE-A2.7B,Qwen/Qwen1.5-MoE-A2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -37945,22 +36577,27 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3724, in from_pretrained + hf_quantizer.preprocess_model( + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 182, in preprocess_model + return self._process_model_before_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 85, in _process_model_before_weight_loading + model, has_been_replaced = replace_with_awq_linear( + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear + _, has_been_replaced = replace_with_awq_linear( + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear + _, has_been_replaced = replace_with_awq_linear( + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear + _, has_been_replaced = replace_with_awq_linear( + [Previous line repeated 1 more time] + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 166, in replace_with_awq_linear + model._modules[name] = target_cls( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 46, in __init__ + assert out_features % (32 // self.w_bit) == 0 +AssertionError -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-6.7b,EleutherAI/pythia-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-70B,meta-llama/Meta-Llama-3-70B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -37980,55 +36617,29 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-14B,Qwen/Qwen-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code - answer = input( -EOFError: EOF when reading a line - -During handling of the above exception, another exception occurred: - -Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights - self.create_no_weights_model() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model - meta_model = self.automodel_class.from_config(self.pretrained_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config - trust_remote_code = resolve_trust_remote_code( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code - raise ValueError( -ValueError: The repository for Qwen/Qwen-14B contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/Qwen/Qwen-14B. -Please pass the argument `trust_remote_code=True` to allow custom code to be run. + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-12b,stabilityai/stablelm-2-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/polyglot-ko-12.8b,EleutherAI/polyglot-ko-12.8b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -38038,32 +36649,58 @@ Please pass the argument `trust_remote_code=True` to allow custom code to be run ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward + outputs = self.gpt_neox( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward + outputs = layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward + attention_layer_outputs = self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 170, in forward + query, key, value, present = self._attn_projections_and_rope( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope + qkv = self.query_key_value(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-30b,huggyllama/llama-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-65b,huggyllama/llama-65b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -38083,22 +36720,29 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 86.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-14B,Qwen/Qwen1.5-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -38108,32 +36752,56 @@ NameError: name 'exlv2_ext' is not defined ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1221, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1023, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 763, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 257, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-8B,meta-llama/Meta-Llama-3-8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-12b,stabilityai/stablelm-2-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -38143,32 +36811,56 @@ NameError: name 'exlv2_ext' is not defined ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 1268, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 1062, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 792, in forward + self_attn_output, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 325, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,x,x,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,8,8,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -38180,7 +36872,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/x/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/8/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -38207,9 +36899,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669492b8-634e3ca77eb48b2270e617dd;be4e9d7c-7209-43ab-a2d1-ffd9eb9a74d5) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949256-054bc40c134a0df42d637844;3152bcb1-1075-4284-be44-b99c5b849ec7) -Repository Not Found for url: https://huggingface.co/x/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/8/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -38234,11 +36926,190 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: x is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: 8 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,i,i,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-8B,meta-llama/Meta-Llama-3-8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 326, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/rho-math-1b-v0.1,microsoft/rho-math-1b-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 326, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-70m,EleutherAI/pythia-70m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward + outputs = self.gpt_neox( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward + outputs = layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward + attention_layer_outputs = self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 170, in forward + query, key, value, present = self._attn_projections_and_rope( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope + qkv = self.query_key_value(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,databricks/dbrx-base,databricks/dbrx-base,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -38250,21 +37121,11 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/i/resolve/main/config.json +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json The above exception was the direct cause of the following exception: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn @@ -38275,13 +37136,28 @@ Traceback (most recent call last): response = _request_wrapper( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949009-0f5883156c63c2794cf9eeb6;2468f1ff-3ca9-4800-855c-7fe4321cfa1a) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status + raise HfHubHTTPError(message, response=response) from e +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66947b1f-1afd41a335ddeba67849ea25;2e38c0ca-0386-414d-9c86-103e1a9f6c64) -Repository Not Found for url: https://huggingface.co/i/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. +403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. +Cannot access content at: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json. +If you are trying to create or update content,make sure you have a token with the `write` role. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error + raise LocalEntryNotFoundError( +huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. The above exception was the direct cause of the following exception: @@ -38302,116 +37178,13 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file raise EnvironmentError( -OSError: i is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-72B,Qwen/Qwen-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code - answer = input( -EOFError: EOF when reading a line - -During handling of the above exception, another exception occurred: - -Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights - self.create_no_weights_model() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model - meta_model = self.automodel_class.from_config(self.pretrained_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config - trust_remote_code = resolve_trust_remote_code( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code - raise ValueError( -ValueError: The repository for Qwen/Qwen-72B contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/Qwen/Qwen-72B. -Please pass the argument `trust_remote_code=True` to allow custom code to be run. - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.4b,EleutherAI/pythia-1.4b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-3B-v1,togethercomputer/RedPajama-INCITE-Base-3B-v1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like databricks/dbrx-base is not the path to a directory containing a file named config.json. +Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-0.5B,Qwen/Qwen1.5-0.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-2.7B,EleutherAI/gpt-neo-2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -38421,32 +37194,62 @@ NameError: name 'exlv2_ext' is not defined ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 970, in forward + transformer_outputs = self.transformer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 838, in forward + outputs = block( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 565, in forward + attn_outputs = self.attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 517, in forward + return self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 259, in forward + query = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-7B,Qwen/Qwen-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-2.7b,facebook/opt-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -38454,32 +37257,58 @@ NameError: name 'exlv2_ext' is not defined File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code - answer = input( -EOFError: EOF when reading a line - -During handling of the above exception, another exception occurred: - -Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights - self.create_no_weights_model() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model - meta_model = self.automodel_class.from_config(self.pretrained_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config - trust_remote_code = resolve_trust_remote_code( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code - raise ValueError( -ValueError: The repository for Qwen/Qwen-7B contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/Qwen/Qwen-7B. -Please pass the argument `trust_remote_code=True` to allow custom code to be run. + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 1118, in forward + outputs = self.model.decoder( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 884, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 525, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 155, in forward + query_states = self.q_proj(hidden_states) * self.scaling + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-14B,Qwen/Qwen2-beta-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciLM-7B,Deci/DeciLM-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -38489,32 +37318,56 @@ Please pass the argument `trust_remote_code=True` to allow custom code to be run ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciLM-7B/c3c9f4226801dc0433f32aebffe0aac68ee2f051/transformers_v4_35_2__modeling_llama.py"", line 1034, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciLM-7B/c3c9f4226801dc0433f32aebffe0aac68ee2f051/modeling_decilm.py"", line 274, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciLM-7B/c3c9f4226801dc0433f32aebffe0aac68ee2f051/transformers_v4_35_2__modeling_llama.py"", line 672, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciLM-7B/c3c9f4226801dc0433f32aebffe0aac68ee2f051/modeling_decilm.py"", line 84, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-7b,google/recurrentgemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-7b,google/recurrentgemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -38553,7 +37406,7 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948234-0b6b1da752c6eafa11f86275;8c3679d8-ef5d-4d1f-9643-6ce65ed5db5d) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948221-1bf0f7923d277e3521096580;412f76c7-1f76-41e9-8f60-855126f5a1e6) Repository Not Found for url: https://huggingface.co/google/recurrentgemma-7b/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. @@ -38583,8 +37436,8 @@ Traceback (most recent call last): OSError: google/recurrentgemma-7b is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-rw-1b,tiiuae/falcon-rw-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -38592,32 +37445,300 @@ If this is a private repository, make sure to pass a token having permission to File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code - answer = input( -EOFError: EOF when reading a line + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 970, in forward + transformer_outputs = self.transformer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 838, in forward + outputs = block( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 565, in forward + attn_outputs = self.attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 517, in forward + return self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 259, in forward + query = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -During handling of the above exception, another exception occurred: +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-4B,Qwen/Qwen1.5-4B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1221, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1023, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 763, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 257, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-4.5B,facebook/xglm-4.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights - self.create_no_weights_model() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model - meta_model = self.automodel_class.from_config(self.pretrained_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config - trust_remote_code = resolve_trust_remote_code( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code - raise ValueError( -ValueError: The repository for tiiuae/falcon-rw-1b contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/tiiuae/falcon-rw-1b. -Please pass the argument `trust_remote_code=True` to allow custom code to be run. + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/xglm/modeling_xglm.py"", line 760, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/xglm/modeling_xglm.py"", line 646, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/xglm/modeling_xglm.py"", line 413, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/xglm/modeling_xglm.py"", line 243, in forward + query_states = self.q_proj(hidden_states) * self.scaling + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-3b-4e1t,stabilityai/stablelm-3b-4e1t,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 1268, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 1062, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 792, in forward + self_attn_output, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 325, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-30b,facebook/opt-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 1118, in forward + outputs = self.model.decoder( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 884, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 525, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 155, in forward + query_states = self.q_proj(hidden_states) * self.scaling + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-70B,meta-llama/Meta-Llama-3-70B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-2b,google/recurrentgemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -38625,41 +37746,74 @@ Please pass the argument `trust_remote_code=True` to allow custom code to be run File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status + raise HfHubHTTPError(message, response=response) from e +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-669481b3-270490a33b4dcdad4ec189ca;d450b818-373e-4673-8006-318abea629fb) + +403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. +Cannot access content at: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json. +If you are trying to create or update content,make sure you have a token with the `write` role. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error + raise LocalEntryNotFoundError( +huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file + raise EnvironmentError( +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/recurrentgemma-2b is not the path to a directory containing a file named config.json. +Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-65b,huggyllama/llama-65b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mixtral-8x7B-v0.1,mistralai/Mixtral-8x7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -38698,10 +37852,10 @@ ChildProcessError: Traceback (most recent call last): self._buffers[key] = fn(buf) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 86.00 MiB. GPU +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,l,l,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-125m,facebook/opt-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -38709,69 +37863,117 @@ torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 86.00 MiB. GP File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/l/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669491b0-327a16341b2f51a514e18177;e075165f-03de-49cf-b752-40507cae6236) - -Repository Not Found for url: https://huggingface.co/l/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. - -The above exception was the direct cause of the following exception: + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 1118, in forward + outputs = self.model.decoder( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 884, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 525, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 155, in forward + query_states = self.q_proj(hidden_states) * self.scaling + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm-20b,internlm/internlm-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file - raise EnvironmentError( -OSError: l is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 976, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 866, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 583, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 339, in forward + query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-4.5B,facebook/xglm-4.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-7.5B,facebook/xglm-7.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -38781,32 +37983,56 @@ If this is a private repository, make sure to pass a token having permission to ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/xglm/modeling_xglm.py"", line 760, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/xglm/modeling_xglm.py"", line 646, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/xglm/modeling_xglm.py"", line 413, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/xglm/modeling_xglm.py"", line 243, in forward + query_states = self.q_proj(hidden_states) * self.scaling + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-110B,Qwen/Qwen1.5-110B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-3B-v1,togethercomputer/RedPajama-INCITE-Base-3B-v1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -38816,39 +38042,58 @@ NameError: name 'exlv2_ext' is not defined ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 32.00 MiB. GPU + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward + outputs = self.gpt_neox( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward + outputs = layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward + attention_layer_outputs = self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 170, in forward + query, key, value, present = self._attn_projections_and_rope( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope + qkv = self.query_key_value(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,8,8,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,M,M,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -38860,7 +38105,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/8/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/M/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -38887,9 +38132,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949264-2f8b59776239e9fd092109d4;3fc6b401-c54c-4b1e-a2d6-62cfccdac636) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948fa8-613d450c2f712f3110dd5bbb;c460b950-a2e4-4a33-b773-1b675861d953) -Repository Not Found for url: https://huggingface.co/8/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/M/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -38914,11 +38159,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: 8 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: M is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/rho-math-1b-v0.1,microsoft/rho-math-1b-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-3b,stabilityai/stablelm-base-alpha-3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -38928,32 +38173,58 @@ If this is a private repository, make sure to pass a token having permission to ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward + outputs = self.gpt_neox( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward + outputs = layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward + attention_layer_outputs = self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 170, in forward + query, key, value, present = self._attn_projections_and_rope( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope + qkv = self.query_key_value(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-7b-hf,meta-llama/Llama-2-7b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-13b,huggyllama/llama-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -38963,32 +38234,56 @@ NameError: name 'exlv2_ext' is not defined ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 326, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-13b-hf,meta-llama/Llama-2-13b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-7b-hf,meta-llama/Llama-2-7b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -38998,32 +38293,56 @@ NameError: name 'exlv2_ext' is not defined ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 326, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mistral-7B-v0.1,mistralai/Mistral-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,-,-,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -39031,69 +38350,39 @@ NameError: name 'exlv2_ext' is not defined File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 106, in _inner_fn + validate_repo_id(arg_value) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 160, in validate_repo_id + raise HFValidationError( +huggingface_hub.errors.HFValidationError: Repo id must use alphanumeric chars or '-', '_', '.', '--' and '..' are forbidden, '-' and '.' cannot start or end the name, max length is 96: '-'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-32B,Qwen/Qwen1.5-32B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 466, in cached_file + raise EnvironmentError( +OSError: Incorrect path_or_model_id: '-'. Please provide either the path to a local folder or the repo_id of a model on the Hub. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,r,r,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-410m,EleutherAI/pythia-410m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -39101,46 +38390,67 @@ NameError: name 'exlv2_ext' is not defined File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/r/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694910a-1fc585f87c96f8c55bf20dc7;210cbf51-6bfb-4b75-828d-c24cb5bad6ac) - -Repository Not Found for url: https://huggingface.co/r/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. - -The above exception was the direct cause of the following exception: + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward + outputs = self.gpt_neox( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward + outputs = layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward + attention_layer_outputs = self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 170, in forward + query, key, value, present = self._attn_projections_and_rope( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope + qkv = self.query_key_value(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,/,/,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run @@ -39157,13 +38467,12 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 373, in cached_file raise EnvironmentError( -OSError: r is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` +OSError: / does not appear to have a file named config.json. Checkout 'https://huggingface.co///tree/None' for available files. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-564M,facebook/xglm-564M,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-13b,facebook/opt-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -39173,32 +38482,56 @@ If this is a private repository, make sure to pass a token having permission to ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 1118, in forward + outputs = self.model.decoder( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 884, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 525, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 155, in forward + query_states = self.q_proj(hidden_states) * self.scaling + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-2.7B,EleutherAI/gpt-neo-2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.4b,EleutherAI/pythia-1.4b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -39208,32 +38541,58 @@ NameError: name 'exlv2_ext' is not defined ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward + outputs = self.gpt_neox( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward + outputs = layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward + attention_layer_outputs = self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 170, in forward + query, key, value, present = self._attn_projections_and_rope( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope + qkv = self.query_key_value(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-410m,EleutherAI/pythia-410m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-1_6b,stabilityai/stablelm-2-1_6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -39243,32 +38602,115 @@ NameError: name 'exlv2_ext' is not defined ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 1268, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 1062, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 792, in forward + self_attn_output, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/stablelm/modeling_stablelm.py"", line 325, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-rw-1b,tiiuae/falcon-rw-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/root/.cache/huggingface/modules/transformers_modules/tiiuae/falcon-rw-1b/e4b9872bb803165eb22f0a867d4e6a64d34fce19/modeling_falcon.py"", line 900, in forward + transformer_outputs = self.transformer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/root/.cache/huggingface/modules/transformers_modules/tiiuae/falcon-rw-1b/e4b9872bb803165eb22f0a867d4e6a64d34fce19/modeling_falcon.py"", line 797, in forward + outputs = block( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/root/.cache/huggingface/modules/transformers_modules/tiiuae/falcon-rw-1b/e4b9872bb803165eb22f0a867d4e6a64d34fce19/modeling_falcon.py"", line 453, in forward + attn_outputs = self.self_attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/root/.cache/huggingface/modules/transformers_modules/tiiuae/falcon-rw-1b/e4b9872bb803165eb22f0a867d4e6a64d34fce19/modeling_falcon.py"", line 291, in forward + fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,0,0,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-2b,google/gemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -39280,21 +38722,11 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/0/resolve/main/config.json +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/gemma-2b/resolve/main/config.json The above exception was the direct cause of the following exception: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn @@ -39305,13 +38737,28 @@ Traceback (most recent call last): response = _request_wrapper( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669494d9-3ed6ff7a2f4e451a0832c5e7;9f50bcbd-7e2c-4c3d-a291-f640c0ad5763) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status + raise HfHubHTTPError(message, response=response) from e +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-669480f7-4b3307f05b6207322f5489e1;b8965509-315a-4f97-9989-40d61dfff628) -Repository Not Found for url: https://huggingface.co/0/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. +403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. +Cannot access content at: https://huggingface.co/google/gemma-2b/resolve/main/config.json. +If you are trying to create or update content,make sure you have a token with the `write` role. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error + raise LocalEntryNotFoundError( +huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. The above exception was the direct cause of the following exception: @@ -39332,13 +38779,13 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file raise EnvironmentError( -OSError: 0 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/gemma-2b is not the path to a directory containing a file named config.json. +Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-6B-nl,Salesforce/codegen-6B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-7b,tiiuae/falcon-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -39356,24 +38803,29 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3724, in from_pretrained + hf_quantizer.preprocess_model( + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 182, in preprocess_model + return self._process_model_before_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 85, in _process_model_before_weight_loading + model, has_been_replaced = replace_with_awq_linear( + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear + _, has_been_replaced = replace_with_awq_linear( + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear + _, has_been_replaced = replace_with_awq_linear( + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear + _, has_been_replaced = replace_with_awq_linear( + [Previous line repeated 1 more time] + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 166, in replace_with_awq_linear + model._modules[name] = target_cls( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 45, in __init__ + assert self.in_features % self.group_size == 0 +AssertionError -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-70b-hf,meta-llama/Llama-2-70b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-12b,EleutherAI/pythia-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -39383,39 +38835,58 @@ NameError: name 'exlv2_ext' is not defined ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 112.00 MiB. GPU + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward + outputs = self.gpt_neox( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward + outputs = layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward + attention_layer_outputs = self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 170, in forward + query, key, value, present = self._attn_projections_and_rope( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope + qkv = self.query_key_value(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,2,2,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-180B,tiiuae/falcon-180B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -39427,21 +38898,11 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/2/resolve/main/config.json +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json The above exception was the direct cause of the following exception: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn @@ -39452,13 +38913,28 @@ Traceback (most recent call last): response = _request_wrapper( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949363-46ab8ed24e41d8cc04a7d32c;cae9269f-014e-4011-83ce-e993e098b454) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status + raise HfHubHTTPError(message, response=response) from e +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-6694990d-5035294a29e862db4134ff12;e3557df7-fe3c-4a82-9341-6e5d52ba71fd) -Repository Not Found for url: https://huggingface.co/2/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. +403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. +Cannot access content at: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json. +If you are trying to create or update content,make sure you have a token with the `write` role. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error + raise LocalEntryNotFoundError( +huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. The above exception was the direct cause of the following exception: @@ -39479,13 +38955,72 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file raise EnvironmentError( -OSError: 2 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like tiiuae/falcon-180B is not the path to a directory containing a file named config.json. +Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,TencentARC/Mistral_Pro_8B_v0.1,TencentARC/Mistral_Pro_8B_v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 1200, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 976, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 718, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/mistral/modeling_mistral.py"", line 242, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,a,a,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,m,m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -39497,7 +39032,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/a/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/m/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -39524,9 +39059,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694915d-39ab4dc675e32efe6561cfed;e47ddd1a-35c8-40f3-a7eb-3ff9fadfc81d) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948c31-56d5ad366ee7254e2b0990c4;f19ecd97-032a-4c76-86d9-0ee7aa2c3620) -Repository Not Found for url: https://huggingface.co/a/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/m/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -39551,46 +39086,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: a is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: m is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-350m,facebook/opt-350m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/phi-1_5,microsoft/phi-1_5,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-72B,Qwen/Qwen1.5-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -39610,22 +39110,29 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-2.7b,facebook/opt-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-70b-hf,meta-llama/Llama-2-70b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -39645,22 +39152,29 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 112.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-13b,huggyllama/llama-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-13b-hf,meta-llama/Llama-2-13b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -39670,32 +39184,56 @@ NameError: name 'exlv2_ext' is not defined ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 326, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-7b,tiiuae/falcon-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-7b,stabilityai/stablelm-base-alpha-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -39703,32 +39241,60 @@ NameError: name 'exlv2_ext' is not defined File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code - answer = input( -EOFError: EOF when reading a line - -During handling of the above exception, another exception occurred: - -Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights - self.create_no_weights_model() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model - meta_model = self.automodel_class.from_config(self.pretrained_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config - trust_remote_code = resolve_trust_remote_code( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code - raise ValueError( -ValueError: The repository for tiiuae/falcon-7b contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/tiiuae/falcon-7b. -Please pass the argument `trust_remote_code=True` to allow custom code to be run. + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward + outputs = self.gpt_neox( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward + outputs = layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward + attention_layer_outputs = self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 170, in forward + query, key, value, present = self._attn_projections_and_rope( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope + qkv = self.query_key_value(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-MoE-A2.7B,Qwen/Qwen1.5-MoE-A2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-72B,Qwen/Qwen-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -39746,24 +39312,18 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained + model_class = get_class_from_dynamic_module( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module + final_module = get_cached_module_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file + modules_needed = check_imports(resolved_module_file) + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports + raise ImportError( +ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-7b,huggyllama/llama-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,0,0,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -39771,69 +39331,69 @@ NameError: name 'exlv2_ext' is not defined File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/0/resolve/main/config.json -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669494cc-70275b937cc5b7317485c356;6524d7bd-443b-4276-ae45-e563395c40fa) + +Repository Not Found for url: https://huggingface.co/0/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + raise EnvironmentError( +OSError: 0 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-2b,google/recurrentgemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-7b,google/gemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -39845,7 +39405,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/gemma-7b/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -39862,10 +39422,10 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-669481c6-7de5cf01677919b4242aab6c;3ad2d841-515a-4781-8edf-860ae04b15bd) +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-6694814e-5675fa9451fdcf132e3bcca0;cfb71b90-400f-470d-8819-592c449d1da7) 403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json. +Cannot access content at: https://huggingface.co/google/gemma-7b/resolve/main/config.json. If you are trying to create or update content,make sure you have a token with the `write` role. The above exception was the direct cause of the following exception: @@ -39904,116 +39464,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/recurrentgemma-2b is not the path to a directory containing a file named config.json. +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/gemma-7b is not the path to a directory containing a file named config.json. Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-30b,facebook/opt-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-160m,EleutherAI/pythia-160m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-7b,stabilityai/stablelm-base-alpha-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,m,m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,x,x,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -40025,7 +39480,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/m/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/x/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -40052,9 +39507,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948c3e-42f750de74e57e6a47d2fa67;42b55cee-8651-4cc8-aa87-b8b5bc58be2c) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669492ab-36dbcf4433448b790be9062b;dcab6e1e-89c7-4ff5-b63a-e5b0dddd39a1) -Repository Not Found for url: https://huggingface.co/m/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/x/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -40079,46 +39534,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: m is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: x is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-3b-4e1t,stabilityai/stablelm-3b-4e1t,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-125m,EleutherAI/gpt-neo-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm2-20b,internlm/internlm2-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -40128,33 +39548,56 @@ NameError: name 'exlv2_ext' is not defined ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/dc0130882132de7cb2eb1fa54ba5294b8c922076/modeling_internlm2.py"", line 1204, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/dc0130882132de7cb2eb1fa54ba5294b8c922076/modeling_internlm2.py"", line 1004, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/dc0130882132de7cb2eb1fa54ba5294b8c922076/modeling_internlm2.py"", line 738, in forward + hidden_states, self_attn_weights, present_key_value = self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm2-20b/dc0130882132de7cb2eb1fa54ba5294b8c922076/modeling_internlm2.py"", line 308, in forward + qkv_states = self.wqkv(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2,openai-community/gpt2,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1235.7632,1005.060096,0.0,358.612992,318.913024,s,20,0.1788675851821899,0.008943379259109496,0.00026419798811655123,0.00887070369720459,0.00916225633621216,0.009274708795547485,0.009786717424392698,"[0.009914719581604003, 0.008858528137207031, 0.008864447593688965, 0.008830816268920898, 0.008876959800720214, 0.009153504371643067, 0.008886079788208007, 0.008735072135925294, 0.009109472274780274, 0.008775872230529785, 0.008850208282470703, 0.00901251220703125, 0.00899942398071289, 0.008742527961730957, 0.009241024017333984, 0.008729375839233399, 0.00890329647064209, 0.008699104309082032, 0.008877599716186523, 0.008807040214538575]",tokens/s,28624.526879953683,kWh,1.0405706355691948e-07,5.701826505582485e-08,2.244287160088168e-07,3.8550404462156115e-07,tokens/kWh,664065665.643815,MB,1235.7632,1005.060096,0.0,358.612992,328.809472,s,20,10.08869351196289,0.5044346755981446,0.005335005585423021,0.503564468383789,0.5124426330566406,0.5136576141357422,0.5166526654052734,"[0.5010412292480468, 0.5011974487304688, 0.4979539489746094, 0.5063039855957031, 0.5047576599121094, 0.5012839050292969, 0.49773388671875, 0.5053358764648438, 0.5038833312988281, 0.51085546875, 0.5134605712890625, 0.5174014282226562, 0.50324560546875, 0.5123295288085937, 0.50199462890625, 0.5043636169433594, 0.4986883239746094, 0.5073371276855468, 0.49996554565429685, 0.49956039428710936]",tokens/s,124.89228644976944,kWh,6.0475178527528624e-06,3.3125900223381058e-06,1.029085747399049e-05,1.9650965349081454e-05,tokens/kWh,3205949.3709780937,,s,1259,10.248980564594259,0.008140572330892985,0.0011351723397017978,0.007914495944976807,0.00819527702331543,0.008268185138702392,0.017085111923217773,"[0.008740960121154785, 0.008759200096130371, 0.00870195198059082, 0.009260031700134277, 0.008202239990234375, 0.00787660789489746, 0.00785203218460083, 0.007820288181304931, 0.00780083179473877, 0.007929855823516846, 0.007827455997467042, 0.007792640209197998, 0.007823359966278077, 0.007840767860412597, 0.007830527782440186, 0.007824384212493896, 0.007812096118927002, 0.007836671829223632, 0.007806975841522217, 0.007794688224792481, 0.007799808025360107, 0.007849984169006348, 0.007786496162414551, 0.007824384212493896, 0.007945216178894043, 0.007836671829223632, 0.007806975841522217, 0.007813119888305664, 0.008041472434997558, 0.007838719844818116, 0.007780352115631104, 0.007794688224792481, 0.007814144134521485, 0.007823359966278077, 0.007830527782440186, 0.00779366397857666, 0.007840767860412597, 0.00790937614440918, 0.008236031532287597, 0.00806604766845703, 0.008050687789916992, 0.008067071914672852, 0.00800972843170166, 0.007974912166595459, 0.00786636781692505, 0.007839744091033935, 0.00782643222808838, 0.007836671829223632, 0.007819263935089112, 0.007831552028656007, 0.007787519931793213, 0.007797760009765625, 0.007813119888305664, 0.007910399913787843, 0.007830527782440186, 0.00781824016571045, 0.007817215919494629, 0.007847936153411865, 0.007822336196899414, 0.00779366397857666, 0.007809088230133056, 0.007972799777984619, 0.017083391189575196, 0.007821311950683594, 0.007833600044250488, 0.007803904056549072, 0.008130559921264649, 0.008444928169250488, 0.008322048187255859, 0.008384511947631837, 0.008393728256225585, 0.008424448013305665, 0.00838144016265869, 0.008119296073913575, 0.008051712036132813, 0.007872511863708496, 0.007865344047546387, 0.007855103969573975, 0.007837696075439453, 0.007867392063140868, 0.007815167903900147, 0.007829504013061523, 0.007813119888305664, 0.007836671829223632, 0.007914495944976807, 0.007887872219085693, 0.00783564805984497, 0.00791756820678711, 0.007890944004058837, 0.007857151985168457, 0.007817215919494629, 0.007907328128814697, 0.007833600044250488, 0.00782643222808838, 0.007804927825927735, 0.007836671829223632, 0.007812096118927002, 0.00781824016571045, 0.007804927825927735, 0.007844863891601562, 0.007870463848114014, 0.00782643222808838, 0.00781004810333252, 0.008635392189025879, 0.008225791931152344, 0.008044544219970704, 0.007888895988464355, 0.007927807807922363, 0.00791756820678711, 0.007895040035247802, 0.007888895988464355, 0.007903232097625732, 0.007906303882598878, 0.007899136066436767, 0.008059904098510743, 0.007930880069732665, 0.00791756820678711, 0.007890944004058837, 0.0078919677734375, 0.007902207851409913, 0.007917632102966308, 0.007903168201446533, 0.007907328128814697, 0.007885824203491211, 0.007904255867004394, 0.017123327255249024, 0.007914495944976807, 0.007899136066436767, 0.007911424160003662, 0.00787660789489746, 0.007897088050842285, 0.007896063804626464, 0.007951392173767089, 0.007910367965698242, 0.00790937614440918, 0.007902207851409913, 0.007904255867004394, 0.007924736022949219, 0.00791756820678711, 0.007886847972869874, 0.007912447929382324, 0.007911424160003662, 0.007878655910491944, 0.007873536109924317, 0.007907328128814697, 0.007894015789031983, 0.00790118408203125, 0.00790118408203125, 0.007882751941680909, 0.007897088050842285, 0.00790937614440918, 0.00790015983581543, 0.007895040035247802, 0.007877632141113282, 0.007913472175598145, 0.007868415832519531, 0.007877632141113282, 0.007882751941680909, 0.007887872219085693, 0.007899136066436767, 0.007874559879302979, 0.00788479995727539, 0.007873536109924317, 0.007944191932678223, 0.007880703926086426, 0.007899136066436767, 0.007952383995056152, 0.007964672088623047, 0.007881728172302246, 0.007886847972869874, 0.007874559879302979, 0.00789299201965332, 0.007895040035247802, 0.00787660789489746, 0.007916543960571289, 0.007904255867004394, 0.007903232097625732, 0.007869440078735352, 0.007903232097625732, 0.007887872219085693, 0.00796675205230713, 0.007912415981292725, 0.00786636781692505, 0.00789299201965332, 0.007875584125518798, 0.007924767971038818, 0.007874527931213378, 0.0078919677734375, 0.017052671432495118, 0.007898111820220948, 0.007918591976165772, 0.007899136066436767, 0.00785923194885254, 0.007882719993591308, 0.007894015789031983, 0.007855103969573975, 0.00787769603729248, 0.007874495983123779, 0.007897088050842285, 0.007960576057434082, 0.007932928085327149, 0.007918591976165772, 0.007887872219085693, 0.007918591976165772, 0.008210432052612305, 0.007874559879302979, 0.007902207851409913, 0.00789299201965332, 0.007839776039123536, 0.007864287853240967, 0.007882751941680909, 0.007897088050842285, 0.007990272045135497, 0.007927807807922363, 0.007896063804626464, 0.007938047885894776, 0.007918591976165772, 0.008033280372619628, 0.008353792190551757, 0.008071167945861817, 0.007939072132110595, 0.007919616222381591, 0.007890944004058837, 0.007920639991760254, 0.008637439727783204, 0.00832921600341797, 0.008156160354614257, 0.00827187156677246, 0.008194047927856446, 0.008177663803100586, 0.008159232139587403, 0.008148032188415527, 0.00825443172454834, 0.008152031898498535, 0.008161279678344726, 0.008157183647155761, 0.008122367858886719, 0.008179712295532226, 0.008135680198669434, 0.008156160354614257, 0.008168448448181152, 0.008136704444885253, 0.008164352416992187, 0.008143872261047362, 0.008163328170776368, 0.008181759834289551, 0.0082227201461792, 0.008193023681640625, 0.007928832054138184, 0.00785920000076294, 0.007887872219085693, 0.017110015869140623, 0.007940095901489258, 0.007927807807922363, 0.007938047885894776, 0.007880703926086426, 0.007928832054138184, 0.007878655910491944, 0.007922688007354736, 0.007928832054138184, 0.007921664237976075, 0.007896063804626464, 0.007921728134155273, 0.007894976139068604, 0.007971839904785156, 0.007922688007354736, 0.007927807807922363, 0.007964672088623047, 0.00813158416748047, 0.008223744392395019, 0.008168448448181152, 0.008158207893371582, 0.008228863716125488, 0.008165375709533691, 0.008120320320129394, 0.00812342357635498, 0.008126432418823243, 0.008164352416992187, 0.008128512382507324, 0.008146944046020508, 0.00789299201965332, 0.007964672088623047, 0.007932928085327149, 0.00788479995727539, 0.007954432010650634, 0.007886847972869874, 0.007877632141113282, 0.007887872219085693, 0.007885824203491211, 0.00790835189819336, 0.00788479995727539, 0.00787660789489746, 0.007916543960571289, 0.007880703926086426, 0.007913472175598145, 0.007856128215789794, 0.007871488094329833, 0.007870463848114014, 0.007887872219085693, 0.007919616222381591, 0.007886847972869874, 0.007913472175598145, 0.008102911949157715, 0.008297472000122071, 0.008225824356079102, 0.008167391777038574, 0.008201215744018555, 0.008158207893371582, 0.008196096420288086, 0.008138751983642578, 0.008178751945495605, 0.008141759872436524, 0.008168448448181152, 0.008168448448181152, 0.017675264358520508, 0.008162303924560547, 0.008164352416992187, 0.008168448448181152, 0.007974912166595459, 0.007903232097625732, 0.007895040035247802, 0.007900191783905029, 0.007922656059265136, 0.007906303882598878, 0.00795136022567749, 0.007872511863708496, 0.008233983993530274, 0.008203264236450195, 0.008174592018127442, 0.007968768119812012, 0.007970816135406494, 0.00800767993927002, 0.007923711776733398, 0.00791756820678711, 0.007895040035247802, 0.007906303882598878, 0.007885824203491211, 0.007902207851409913, 0.007950335979461669, 0.007906303882598878, 0.00800153636932373, 0.008085503578186035, 0.007935999870300293, 0.00807423973083496, 0.007925759792327881, 0.007998464107513427, 0.007912447929382324, 0.007880703926086426, 0.007910431861877442, 0.007928800106048585, 0.007922688007354736, 0.00797388792037964, 0.007903232097625732, 0.007905280113220215, 0.007947264194488525, 0.007898111820220948, 0.007899136066436767, 0.00788479995727539, 0.007897088050842285, 0.007875584125518798, 0.007867392063140868, 0.00787660789489746, 0.007890944004058837, 0.007881728172302246, 0.007879680156707763, 0.007906303882598878, 0.007890944004058837, 0.007894015789031983, 0.0078919677734375, 0.00790835189819336, 0.007898111820220948, 0.007895040035247802, 0.007961631774902344, 0.007899104118347168, 0.00791756820678711, 0.007910399913787843, 0.008005632400512695, 0.017169408798217774, 0.0079267840385437, 0.00794316816329956, 0.007887872219085693, 0.007921664237976075, 0.007984127998352051, 0.00790015983581543, 0.007987199783325195, 0.007899136066436767, 0.007883776187896728, 0.007895040035247802, 0.007885824203491211, 0.007896063804626464, 0.007905344009399413, 0.007891903877258301, 0.007874559879302979, 0.007882751941680909, 0.007895040035247802, 0.007906303882598878, 0.007896063804626464, 0.007887872219085693, 0.007865344047546387, 0.007896063804626464, 0.007923711776733398, 0.007896063804626464, 0.007872511863708496, 0.007886847972869874, 0.007873536109924317, 0.00788479995727539, 0.00788479995727539, 0.007883776187896728, 0.007895040035247802, 0.007899136066436767, 0.007889920234680176, 0.007888895988464355, 0.007883776187896728, 0.007887872219085693, 0.007912447929382324, 0.00789299201965332, 0.007896063804626464, 0.007897088050842285, 0.00789299201965332, 0.007904255867004394, 0.007873536109924317, 0.0078919677734375, 0.007883776187896728, 0.007934016227722168, 0.007873472213745117, 0.007871488094329833, 0.007897088050842285, 0.007870463848114014, 0.007869440078735352, 0.007874559879302979, 0.007904255867004394, 0.007865344047546387, 0.00790835189819336, 0.007881728172302246, 0.007898111820220948, 0.007878655910491944, 0.007904255867004394, 0.007894015789031983, 0.007880703926086426, 0.007881760120391846, 0.016962528228759766, 0.00789299201965332, 0.007874559879302979, 0.007890944004058837, 0.0078919677734375, 0.007897088050842285, 0.007905280113220215, 0.007899136066436767, 0.007896063804626464, 0.0078919677734375, 0.007912447929382324, 0.007894015789031983, 0.007956480026245117, 0.007898176193237304, 0.007912384033203126, 0.007885824203491211, 0.007932928085327149, 0.007882751941680909, 0.007877632141113282, 0.00787660789489746, 0.007870463848114014, 0.00789299201965332, 0.00787660789489746, 0.007877632141113282, 0.007886879920959473, 0.007880671977996826, 0.007911424160003662, 0.007899136066436767, 0.007886847972869874, 0.007935999870300293, 0.007873536109924317, 0.007868415832519531, 0.0078919677734375, 0.007889920234680176, 0.007879680156707763, 0.007983104228973388, 0.007993343830108643, 0.008654848098754882, 0.008453120231628418, 0.008224767684936523, 0.008190976142883302, 0.008196096420288086, 0.008163328170776368, 0.008144895553588867, 0.008160256385803222, 0.0081725435256958, 0.008152064323425292, 0.008176639556884765, 0.008184831619262695, 0.008145919799804687, 0.00812339210510254, 0.008157183647155761, 0.008146944046020508, 0.008195072174072266, 0.0081397762298584, 0.00821555233001709, 0.008168448448181152, 0.0081397762298584, 0.008179743766784668, 0.00813974380493164, 0.00812339210510254, 0.00800767993927002, 0.008005632400512695, 0.017589248657226563, 0.008153087615966797, 0.008118271827697754, 0.00813158416748047, 0.008112128257751466, 0.008121343612670898, 0.008136704444885253, 0.008134655952453614, 0.0081397762298584, 0.008102944374084473, 0.008115167617797852, 0.008144895553588867, 0.008137727737426758, 0.008156160354614257, 0.008138751983642578, 0.008175616264343261, 0.008162303924560547, 0.00818995189666748, 0.00819711971282959, 0.008226816177368163, 0.00820736026763916, 0.007906303882598878, 0.007905280113220215, 0.007881824016571046, 0.007879583835601807, 0.007870463848114014, 0.007897088050842285, 0.007874559879302979, 0.007897088050842285, 0.007871488094329833, 0.007896063804626464, 0.007914495944976807, 0.00790937614440918, 0.007870463848114014, 0.007983104228973388, 0.008044544219970704, 0.008096768379211425, 0.007906303882598878, 0.008112128257751466, 0.007983104228973388, 0.007894015789031983, 0.007897088050842285, 0.007886847972869874, 0.007949312210083008, 0.008068096160888672, 0.007966720104217529, 0.007918591976165772, 0.007911424160003662, 0.007865344047546387, 0.00786742401123047, 0.007906271934509277, 0.007863296031951903, 0.007878687858581543, 0.007874527931213378, 0.007888895988464355, 0.007899136066436767, 0.00789299201965332, 0.007874559879302979, 0.007891007900238037, 0.007904191970825196, 0.007889920234680176, 0.007860223770141601, 0.007889920234680176, 0.016955392837524414, 0.007903232097625732, 0.007902207851409913, 0.007949312210083008, 0.008045568466186523, 0.008096768379211425, 0.008201215744018555, 0.008014847755432129, 0.007928832054138184, 0.007928832054138184, 0.007914495944976807, 0.007942143917083741, 0.00790937614440918, 0.00790835189819336, 0.007902207851409913, 0.007897088050842285, 0.007897119998931884, 0.007896031856536865, 0.00787660789489746, 0.007882751941680909, 0.007858176231384278, 0.008070143699645996, 0.007881728172302246, 0.007886847972869874, 0.008017919540405273, 0.008667136192321777, 0.008648703575134278, 0.009057279586791991, 0.008278016090393067, 0.008357888221740722, 0.008216575622558593, 0.008090656280517578, 0.008072159767150878, 0.008176639556884765, 0.008013824462890624, 0.008032256126403809, 0.008014847755432129, 0.008168448448181152, 0.008040448188781739, 0.008073216438293456, 0.008193023681640625, 0.008168448448181152, 0.008135680198669434, 0.008099840164184571, 0.008014847755432129, 0.008209407806396484, 0.008148991584777832, 0.00819916820526123, 0.008255488395690918, 0.008286208152770995, 0.008129535675048828, 0.008140800476074218, 0.0081397762298584, 0.008138751983642578, 0.008297472000122071, 0.008203264236450195, 0.008134655952453614, 0.008274944305419921, 0.008238080024719239, 0.008150015830993652, 0.008124416351318359, 0.008136768341064454, 0.008249279975891113, 0.017087488174438475, 0.007910399913787843, 0.007920639991760254, 0.008250368118286134, 0.008164352416992187, 0.008233983993530274, 0.008186880111694337, 0.008132608413696289, 0.008143872261047362, 0.008156160354614257, 0.008376352310180664, 0.008221664428710938, 0.008168448448181152, 0.008158207893371582, 0.008151040077209473, 0.008147968292236327, 0.008152064323425292, 0.008318976402282715, 0.008307711601257324, 0.008219648361206054, 0.00800153636932373, 0.008033280372619628, 0.008261631965637208, 0.00818380832672119, 0.008162303924560547, 0.008141823768615723, 0.007873536109924317, 0.007918591976165772, 0.007895040035247802, 0.007880703926086426, 0.008042495727539062, 0.008142848014831543, 0.008126463890075684, 0.008128512382507324, 0.008168448448181152, 0.008210432052612305, 0.008141823768615723, 0.00820736026763916, 0.008134655952453614, 0.00812339210510254, 0.008116224288940429, 0.00813158416748047, 0.008230912208557128, 0.008254464149475099, 0.008152064323425292, 0.008153087615966797, 0.008138751983642578, 0.008230912208557128, 0.008318976402282715, 0.008128512382507324, 0.008023039817810058, 0.008267775535583496, 0.008164352416992187, 0.008136704444885253, 0.008127488136291505, 0.00820736026763916, 0.008120320320129394, 0.008137727737426758, 0.00810905647277832, 0.008242176055908204, 0.00839782428741455, 0.008219648361206054, 0.0081397762298584, 0.017508352279663086, 0.008938495635986327, 0.008742912292480469, 0.00971059226989746, 0.008355839729309082, 0.008208383560180664, 0.008152064323425292, 0.008168448448181152, 0.008190976142883302, 0.008128512382507324, 0.008148991584777832, 0.00819200038909912, 0.008155136108398438, 0.008122367858886719, 0.008112128257751466, 0.00818892765045166, 0.008202239990234375, 0.008152064323425292, 0.008154111862182617, 0.00818995189666748, 0.008156160354614257, 0.008177663803100586, 0.008173567771911621, 0.008204287528991699, 0.008194047927856446, 0.008203264236450195, 0.008143872261047362, 0.00818995189666748, 0.008177663803100586, 0.00820633602142334, 0.008037376403808593, 0.00800972843170166, 0.008042495727539062, 0.008101887702941894, 0.008113151550292968, 0.008145919799804687, 0.008156160354614257, 0.008130559921264649, 0.0081397762298584, 0.008161279678344726, 0.008170495986938477, 0.008151040077209473, 0.008163328170776368, 0.008194047927856446, 0.008196096420288086, 0.008153087615966797, 0.008142848014831543, 0.008136704444885253, 0.008156160354614257, 0.008150015830993652, 0.008145919799804687, 0.008147968292236327, 0.008154111862182617, 0.008148991584777832, 0.008158207893371582, 0.00813158416748047, 0.008259584426879883, 0.008144895553588867, 0.008218624114990235, 0.00830463981628418, 0.008120320320129394, 0.008150015830993652, 0.008175616264343261, 0.017464319229125978, 0.008178688049316407, 0.008190976142883302, 0.0081725435256958, 0.008135680198669434, 0.008138751983642578, 0.0081397762298584, 0.008038399696350097, 0.007894015789031983, 0.007888895988464355, 0.007879680156707763, 0.00788479995727539, 0.007920639991760254, 0.008181759834289551, 0.008130559921264649, 0.008185855865478516, 0.008140800476074218, 0.008155136108398438, 0.00813158416748047, 0.008122367858886719, 0.007890944004058837, 0.007875584125518798, 0.007867392063140868, 0.00787660789489746, 0.007881728172302246, 0.008043519973754883, 0.008003583908081055, 0.00809062385559082, 0.008116224288940429, 0.008218624114990235, 0.008130559921264649, 0.008170495986938477, 0.00818995189666748, 0.008052736282348634, 0.007889920234680176, 0.007963647842407226, 0.00790015983581543, 0.007899136066436767, 0.007959551811218261, 0.00790015983581543, 0.007911424160003662, 0.007858176231384278, 0.0078919677734375, 0.007912447929382324, 0.007858208179473877, 0.007885791778564454, 0.00790118408203125, 0.0079267840385437, 0.007885824203491211, 0.007836671829223632, 0.00790841579437256, 0.00794924783706665, 0.007862271785736084, 0.007860223770141601, 0.007871488094329833, 0.007906303882598878, 0.007912447929382324, 0.007873536109924317, 0.007865344047546387, 0.007861248016357422, 0.007913472175598145, 0.007860223770141601, 0.007880703926086426, 0.01722265625, 0.008181759834289551, 0.008146944046020508, 0.008179712295532226, 0.008160256385803222, 0.008201215744018555, 0.008342592239379883, 0.008229824066162109, 0.008120320320129394, 0.008130559921264649, 0.008120320320129394, 0.00821555233001709, 0.008196096420288086, 0.008161279678344726, 0.008143872261047362, 0.008142848014831543, 0.008159232139587403, 0.008179712295532226, 0.008135680198669434, 0.008193023681640625, 0.008152064323425292, 0.008148991584777832, 0.008143872261047362, 0.00818380832672119, 0.008122367858886719, 0.008177663803100586, 0.00818995189666748, 0.008096768379211425, 0.008077312469482421, 0.008087552070617676, 0.008060928344726562, 0.007846975803375244, 0.007794623851776123, 0.007839744091033935, 0.007877632141113282, 0.007870463848114014, 0.00796569585800171, 0.00821555233001709, 0.008161279678344726, 0.008137727737426758, 0.0081397762298584, 0.008158207893371582, 0.008185855865478516, 0.008094719886779785, 0.008176639556884765, 0.008166399955749512, 0.008152064323425292, 0.008129535675048828, 0.008145919799804687, 0.008144895553588867, 0.008102911949157715, 0.008136704444885253, 0.008160256385803222, 0.008142848014831543, 0.008163328170776368, 0.008125503540039063, 0.00813152027130127, 0.008148991584777832, 0.00818995189666748, 0.008140800476074218, 0.008144895553588867, 0.008143872261047362, 0.008157183647155761, 0.017770496368408203, 0.008144895553588867, 0.008167424201965333, 0.008121343612670898, 0.008127488136291505, 0.008167424201965333, 0.008127488136291505, 0.00813366413116455, 0.008134655952453614, 0.008162272453308106, 0.008150015830993652, 0.008126463890075684, 0.00828006362915039, 0.00813158416748047, 0.00809267234802246, 0.00790118408203125, 0.00790015983581543, 0.007904255867004394, 0.007929855823516846, 0.007919616222381591, 0.007922688007354736, 0.007886847972869874, 0.007990272045135497, 0.007903232097625732, 0.00789299201965332, 0.008048640251159669, 0.007890944004058837, 0.007895040035247802, 0.007911424160003662, 0.007920639991760254, 0.007906303882598878, 0.007864319801330566, 0.007913472175598145, 0.00788479995727539, 0.007877632141113282, 0.007867392063140868, 0.00788479995727539, 0.007886847972869874, 0.00790118408203125, 0.00790118408203125, 0.00790937614440918, 0.007898111820220948, 0.007895040035247802, 0.007885824203491211, 0.007911424160003662, 0.007966720104217529, 0.007956480026245117, 0.007877632141113282, 0.007889920234680176, 0.007912447929382324, 0.007882751941680909, 0.007911424160003662, 0.007864319801330566, 0.007896063804626464, 0.007914527893066407, 0.007879648208618164, 0.00789299201965332, 0.007902207851409913, 0.007905280113220215, 0.007902207851409913, 0.007896063804626464, 0.007899136066436767, 0.00789299201965332, 0.016945152282714843, 0.007976960182189942, 0.007987199783325195, 0.007897088050842285, 0.007890944004058837, 0.007878655910491944, 0.007885824203491211, 0.008117247581481933, 0.008261631965637208, 0.008130592346191406, 0.008142815589904786, 0.00818073558807373, 0.008161279678344726, 0.008145919799804687, 0.008124447822570801, 0.0082390718460083, 0.008175616264343261, 0.008152064323425292, 0.008142848014831543, 0.008135680198669434, 0.008121343612670898, 0.008034303665161132, 0.008308735847473145, 0.008354816436767578, 0.008210432052612305, 0.00818892765045166, 0.00840499210357666, 0.008446975708007813, 0.008169471740722656, 0.00808448028564453, 0.007904255867004394, 0.007879680156707763, 0.007803904056549072, 0.007822336196899414, 0.007821311950683594, 0.007830527782440186, 0.00781824016571045, 0.00783564805984497, 0.007887872219085693, 0.00790937614440918, 0.007906303882598878, 0.007878655910491944, 0.007903232097625732, 0.00790118408203125, 0.007885824203491211, 0.007912447929382324, 0.007875584125518798, 0.007875584125518798, 0.00785920000076294, 0.007907328128814697, 0.007918591976165772, 0.007895040035247802, 0.007977983951568603, 0.007904255867004394, 0.007905280113220215, 0.007886911869049072, 0.007864255905151368, 0.00790118408203125, 0.007961599826812745, 0.007873536109924317, 0.007895040035247802, 0.007902207851409913, 0.007896063804626464, 0.017140735626220704, 0.007910399913787843, 0.007895040035247802, 0.007890944004058837, 0.007916543960571289, 0.007902207851409913, 0.00790937614440918, 0.007895040035247802, 0.007900191783905029, 0.007898079872131347, 0.007911424160003662, 0.007941120147705078, 0.007872511863708496, 0.007905280113220215, 0.007915520191192627, 0.00790835189819336, 0.007896063804626464, 0.007886847972869874, 0.007879744052886963, 0.007878592014312744, 0.007881728172302246, 0.007902207851409913, 0.00787660789489746, 0.007873536109924317, 0.007888895988464355, 0.00790835189819336, 0.007879680156707763, 0.00790118408203125, 0.007902207851409913, 0.00790015983581543, 0.007922688007354736, 0.007886847972869874, 0.007983104228973388, 0.007858176231384278, 0.0077916159629821775, 0.007862271785736084, 0.00781824016571045, 0.007829504013061523, 0.0078438401222229, 0.007886847972869874, 0.00790835189819336, 0.007917600154876709, 0.007915487766265869, 0.007886847972869874, 0.007902207851409913, 0.008055808067321778, 0.008141823768615723, 0.008117247581481933, 0.008110079765319824, 0.008225791931152344, 0.007896063804626464, 0.007907328128814697, 0.007890944004058837, 0.007872511863708496, 0.0078919677734375, 0.007872511863708496, 0.007890944004058837, 0.007888895988464355, 0.00785920000076294, 0.007879680156707763, 0.007883776187896728, 0.007872511863708496, 0.007987199783325195, 0.01689091110229492, 0.007906271934509277, 0.007910399913787843, 0.007885824203491211, 0.007910399913787843, 0.008279040336608886, 0.008184831619262695, 0.008133631706237793, 0.008155136108398438, 0.008173567771911621, 0.008164352416992187, 0.008150015830993652, 0.008140864372253418, 0.008307647705078126, 0.008159232139587403, 0.008154111862182617, 0.00818380832672119, 0.008154111862182617, 0.008138751983642578, 0.008128512382507324, 0.008130559921264649, 0.008145919799804687, 0.008111104011535645, 0.008121343612670898, 0.008159328460693359, 0.008150943756103516, 0.008162303924560547, 0.008224767684936523, 0.008142848014831543, 0.008118271827697754, 0.008174592018127442, 0.008132608413696289, 0.008121343612670898, 0.008136704444885253, 0.008122367858886719, 0.008136735916137696, 0.008140768051147461, 0.008134655952453614, 0.008135680198669434, 0.008136704444885253, 0.008128512382507324, 0.008117247581481933, 0.007903232097625732, 0.007888895988464355, 0.007879680156707763, 0.007862271785736084, 0.007904255867004394, 0.007907328128814697, 0.007888895988464355, 0.007863296031951903, 0.00788479995727539, 0.007880703926086426, 0.007897088050842285, 0.00787660789489746, 0.007877632141113282, 0.007864319801330566, 0.007898111820220948, 0.007869440078735352, 0.008171520233154296, 0.007862271785736084, 0.007905280113220215, 0.00789299201965332, 0.007885824203491211, 0.017105920791625977, 0.007873536109924317, 0.007889920234680176, 0.007930880069732665, 0.00790015983581543, 0.007897088050842285, 0.0078919677734375, 0.007902207851409913, 0.007905280113220215, 0.007921664237976075, 0.007916543960571289, 0.00790015983581543, 0.0078919677734375, 0.007914495944976807, 0.007897088050842285, 0.007927807807922363, 0.007922688007354736, 0.007899136066436767, 0.007882751941680909, 0.007895040035247802, 0.007905280113220215, 0.007902207851409913, 0.007878655910491944, 0.007896063804626464, 0.007888895988464355, 0.007855103969573975, 0.007883776187896728, 0.007883776187896728, 0.007855103969573975, 0.007872511863708496, 0.007853055953979492, 0.007902207851409913, 0.007882751941680909, 0.007883776187896728, 0.007874559879302979, 0.007872511863708496, 0.007898111820220948, 0.007904255867004394, 0.008046591758728027, 0.007898111820220948, 0.007877632141113282, 0.007856192111968995, 0.007872447967529297, 0.00787660789489746, 0.007890944004058837, 0.007873536109924317, 0.007888927936553955, 0.007879648208618164, 0.007868415832519531, 0.007879680156707763, 0.0078919677734375, 0.007882751941680909, 0.007896063804626464, 0.007927807807922363, 0.008242176055908204, 0.008209440231323242, 0.008128479957580566, 0.008130559921264649, 0.008132608413696289, 0.008170495986938477, 0.008165375709533691, 0.008122367858886719, 0.008122367858886719, 0.017102848052978514, 0.007897088050842285, 0.008235008239746093, 0.008123456001281738, 0.00811308765411377, 0.008124416351318359, 0.008163328170776368, 0.008134655952453614, 0.008124416351318359, 0.007883776187896728, 0.007894015789031983, 0.00789299201965332, 0.007903232097625732, 0.007879680156707763, 0.007888895988464355, 0.007906303882598878, 0.007946239948272706, 0.007930880069732665, 0.007925759792327881, 0.00787052822113037, 0.007870399951934814, 0.007874559879302979, 0.007879680156707763, 0.00790118408203125, 0.007874559879302979, 0.007903232097625732, 0.007858176231384278, 0.007882751941680909, 0.00785920000076294, 0.007887872219085693, 0.007886847972869874, 0.007887872219085693, 0.007857151985168457, 0.007988224029541016, 0.007899136066436767, 0.007855103969573975, 0.007875584125518798, 0.007875584125518798, 0.007878655910491944, 0.007942143917083741, 0.007910399913787843, 0.007874591827392578, 0.007892000198364257, 0.007928768157958984, 0.007923711776733398, 0.007873536109924317, 0.007880703926086426, 0.007872511863708496, 0.007953407764434815, 0.007883776187896728, 0.007881728172302246, 0.007890944004058837, 0.007899136066436767, 0.007879680156707763, 0.007898111820220948, 0.007873568058013916, 0.007885791778564454, 0.007894015789031983, 0.00795750379562378, 0.00790835189819336, 0.007937024116516114, 0.007947264194488525, 0.00787667179107666]",tokens/s,122.84148575218228,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-j-6b,EleutherAI/gpt-j-6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -40164,32 +39607,58 @@ NameError: name 'exlv2_ext' is not defined ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward + outputs = self.gpt_neox( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward + outputs = layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward + attention_layer_outputs = self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 170, in forward + query, key, value, present = self._attn_projections_and_rope( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope + qkv = self.query_key_value(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-16B-nl,Salesforce/codegen-16B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-6.7b,facebook/opt-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -40199,32 +39668,56 @@ NameError: name 'exlv2_ext' is not defined ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 1118, in forward + outputs = self.model.decoder( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 884, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 525, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/opt/modeling_opt.py"", line 155, in forward + query_states = self.q_proj(hidden_states) * self.scaling + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-6.7b,facebook/opt-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-14B,Qwen/Qwen2-beta-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -40234,32 +39727,56 @@ NameError: name 'exlv2_ext' is not defined ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1221, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1023, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 763, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 257, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-110B,Qwen/Qwen1.5-110B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -40279,22 +39796,29 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules - model = exllamav2_post_init( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init - submodule.post_init(scratch_space=model.scratch_spaces[device]) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init - self.q_handle = exlv2_ext.make_q_matrix( -NameError: name 'exlv2_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 32.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm2-20b,internlm/internlm2-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-564M,facebook/xglm-564M,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -40302,32 +39826,58 @@ NameError: name 'exlv2_ext' is not defined File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code - answer = input( -EOFError: EOF when reading a line - -During handling of the above exception, another exception occurred: - -Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights - self.create_no_weights_model() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model - meta_model = self.automodel_class.from_config(self.pretrained_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config - trust_remote_code = resolve_trust_remote_code( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code - raise ValueError( -ValueError: The repository for internlm/internlm2-20b contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/internlm/internlm2-20b. -Please pass the argument `trust_remote_code=True` to allow custom code to be run. + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/xglm/modeling_xglm.py"", line 760, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/xglm/modeling_xglm.py"", line 646, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/xglm/modeling_xglm.py"", line 413, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/xglm/modeling_xglm.py"", line 243, in forward + query_states = self.q_proj(hidden_states) * self.scaling + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,t,t,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,t,t,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -40366,7 +39916,7 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669490b9-22be1ff2055a4add6d74494d;8b5ceaee-3d79-4d05-8ed7-97d8bf434133) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669490ac-350d4b3736bdc7876956a189;ab2f9c35-cdab-4c0c-ab62-30f03550ed69) Repository Not Found for url: https://huggingface.co/t/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. @@ -40396,8 +39946,8 @@ Traceback (most recent call last): OSError: t is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-66b,facebook/opt-66b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neox-20b,EleutherAI/gpt-neox-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -40407,39 +39957,58 @@ If this is a private repository, make sure to pass a token having permission to ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 162.00 MiB. GPU + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward + outputs = self.gpt_neox( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward + outputs = layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward + attention_layer_outputs = self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 170, in forward + query, key, value, present = self._attn_projections_and_rope( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope + qkv = self.query_key_value(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,.,.,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -40449,26 +40018,56 @@ torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 162.00 MiB. G ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 373, in cached_file - raise EnvironmentError( -OSError: . does not appear to have a file named config.json. Checkout 'https://huggingface.co/./tree/None' for available files. + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 326, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mixtral-8x7B-v0.1,mistralai/Mixtral-8x7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-72B,Qwen/Qwen2-beta-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -40507,10 +40106,10 @@ ChildProcessError: Traceback (most recent call last): self._buffers[key] = fn(buf) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-72B,Qwen/Qwen2-beta-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-7B,Qwen/Qwen1.5-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -40520,39 +40119,56 @@ torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GP ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1221, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1023, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 763, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 257, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-180B,tiiuae/falcon-180B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-32B,Qwen/Qwen1.5-32B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -40560,74 +40176,117 @@ torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GP File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status - raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66949950-2a69c88c0d96ccfe10b0664e;78d50d99-e0dd-4404-b05f-d052d8ae4bdd) - -403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json. -If you are trying to create or update content,make sure you have a token with the `write` role. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error - raise LocalEntryNotFoundError( -huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. - -The above exception was the direct cause of the following exception: + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1221, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1023, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 763, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 257, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-40b,tiiuae/falcon-40b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file - raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like tiiuae/falcon-180B is not the path to a directory containing a file named config.json. -Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/root/.cache/huggingface/modules/transformers_modules/tiiuae/falcon-40b/4a70170c215b36a3cce4b4253f6d0612bb7d4146/modeling_falcon.py"", line 900, in forward + transformer_outputs = self.transformer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/root/.cache/huggingface/modules/transformers_modules/tiiuae/falcon-40b/4a70170c215b36a3cce4b4253f6d0612bb7d4146/modeling_falcon.py"", line 797, in forward + outputs = block( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/root/.cache/huggingface/modules/transformers_modules/tiiuae/falcon-40b/4a70170c215b36a3cce4b4253f6d0612bb7d4146/modeling_falcon.py"", line 453, in forward + attn_outputs = self.self_attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/root/.cache/huggingface/modules/transformers_modules/tiiuae/falcon-40b/4a70170c215b36a3cce4b4253f6d0612bb7d4146/modeling_falcon.py"", line 291, in forward + fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-4B,Qwen/Qwen1.5-4B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-160m,EleutherAI/pythia-160m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -40637,32 +40296,58 @@ Checkout your internet connection or see how to run the library in offline mode ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward + outputs = self.gpt_neox( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward + outputs = layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward + attention_layer_outputs = self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 170, in forward + query, key, value, present = self._attn_projections_and_rope( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope + qkv = self.query_key_value(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm-20b,internlm/internlm-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.3b,EleutherAI/pythia-1.3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -40672,32 +40357,58 @@ NameError: name 'exl_ext' is not defined ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1097, in forward + outputs = self.gpt_neox( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 988, in forward + outputs = layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 753, in forward + attention_layer_outputs = self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 170, in forward + query, key, value, present = self._attn_projections_and_rope( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 224, in _attn_projections_and_rope + qkv = self.query_key_value(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-1_6b,stabilityai/stablelm-2-1_6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-1.8B,Qwen/Qwen1.5-1.8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -40707,32 +40418,56 @@ NameError: name 'exl_ext' is not defined ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1221, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 1023, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 763, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/qwen2/modeling_qwen2.py"", line 257, in forward + query_states = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,1,1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-6B-nl,Salesforce/codegen-6B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -40740,69 +40475,59 @@ NameError: name 'exl_ext' is not defined File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/1/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669495df-2cbdc8593eea08c73e900421;367ac5f9-0f91-4fe6-bec2-088720c44ad8) - -Repository Not Found for url: https://huggingface.co/1/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file - raise EnvironmentError( -OSError: 1 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/codegen/modeling_codegen.py"", line 667, in forward + transformer_outputs = self.transformer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/codegen/modeling_codegen.py"", line 536, in forward + outputs = block( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/codegen/modeling_codegen.py"", line 272, in forward + attn_outputs = self.attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/codegen/modeling_codegen.py"", line 163, in forward + qkv = self.qkv_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-1.8B,Qwen/Qwen1.5-1.8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2,openai-community/gpt2,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1234.579456,1005.060096,0.0,358.612992,318.913024,s,21,0.18631392097473143,0.008872091474987211,0.000924222773129299,0.008636768341064454,0.008913311958312988,0.009082719802856446,0.012191328048706058,"[0.012968480110168457, 0.008715680122375488, 0.008649439811706542, 0.008653440475463868, 0.008547360420227051, 0.008636223793029784, 0.00852006435394287, 0.008628000259399414, 0.008578911781311035, 0.008601471900939942, 0.008556415557861328, 0.00872332763671875, 0.008607872009277344, 0.008735967636108398, 0.008636768341064454, 0.008690496444702149, 0.008913311958312988, 0.00862070369720459, 0.008642592430114747, 0.009082719802856446, 0.008604672431945801]",tokens/s,28854.526660566135,kWh,1.0560125751725471e-07,5.786425132276262e-08,2.2601994052193067e-07,3.89485449361948e-07,tokens/kWh,657277442.3778274,MB,1234.579456,1005.060096,0.0,358.612992,328.809472,s,21,10.324910400390625,0.4916624000186012,0.00544805281141677,0.49037628173828124,0.4947781066894531,0.5050043334960937,0.5079629760742188,"[0.50870263671875, 0.4930988159179687, 0.48819091796875, 0.4877738342285156, 0.4884733581542969, 0.48753598022460937, 0.488943115234375, 0.48698284912109374, 0.48965280151367185, 0.4866800231933594, 0.49037628173828124, 0.4889322509765625, 0.4905810546875, 0.48850283813476564, 0.4947781066894531, 0.49458047485351564, 0.4923774108886719, 0.4912550964355469, 0.49059906005859377, 0.49188916015625, 0.5050043334960937]",tokens/s,128.13670518147515,kWh,5.982969098851764e-06,3.278237305428838e-06,1.0177446715578437e-05,1.9438653119859037e-05,tokens/kWh,3240965.287643183,,s,1322,10.486766648292543,0.007932501246817355,0.0011072131495569327,0.007730175971984863,0.008002457332611084,0.008157030057907104,0.016623786373138428,"[0.011603967666625976, 0.010896384239196777, 0.009056256294250489, 0.008364031791687012, 0.007814144134521485, 0.007742464065551758, 0.0078919677734375, 0.007983104228973388, 0.007925759792327881, 0.007923711776733398, 0.007890944004058837, 0.00773529577255249, 0.00810598373413086, 0.007941120147705078, 0.007896063804626464, 0.00778547191619873, 0.0077209601402282715, 0.007713791847229004, 0.00801689624786377, 0.007914495944976807, 0.00795750379562378, 0.007947264194488525, 0.007755775928497314, 0.007707647800445557, 0.007718912124633789, 0.0077281279563903805, 0.007827455997467042, 0.0077281279563903805, 0.007740416049957275, 0.00769536018371582, 0.007731200218200684, 0.0077281279563903805, 0.0077578239440917966, 0.007866432189941406, 0.007905216217041015, 0.007806975841522217, 0.007733280181884765, 0.007848959922790527, 0.007939040184020996, 0.007905280113220215, 0.007763967990875244, 0.007702527999877929, 0.007729152202606201, 0.0076871681213378906, 0.007738368034362793, 0.007699456214904785, 0.00774451208114624, 0.007715839862823487, 0.007705599784851074, 0.007665664196014404, 0.007705599784851074, 0.007772160053253174, 0.00832307243347168, 0.008374272346496582, 0.008364031791687012, 0.008137727737426758, 0.008676351547241211, 0.008647680282592773, 0.008061951637268066, 0.007941120147705078, 0.007804927825927735, 0.007699456214904785, 0.016753664016723634, 0.007749631881713868, 0.007865344047546387, 0.007974912166595459, 0.008176639556884765, 0.008267775535583496, 0.008225791931152344, 0.008252415657043457, 0.008347647666931152, 0.008347647666931152, 0.008121343612670898, 0.00808140754699707, 0.00795750379562378, 0.007962624073028564, 0.007906303882598878, 0.00773529577255249, 0.007738368034362793, 0.007763967990875244, 0.007729152202606201, 0.0077506561279296875, 0.0077281279563903805, 0.007724031925201416, 0.007824384212493896, 0.007721983909606934, 0.007715839862823487, 0.007718912124633789, 0.007739391803741455, 0.00787660789489746, 0.007906303882598878, 0.0078919677734375, 0.007863296031951903, 0.0077281279563903805, 0.007847936153411865, 0.007693312168121338, 0.007734272003173828, 0.007749631881713868, 0.007703551769256592, 0.007707680225372314, 0.007713791847229004, 0.00769532823562622, 0.007730175971984863, 0.007704576015472412, 0.007762944221496582, 0.007703551769256592, 0.007713791847229004, 0.007731200218200684, 0.0077209601402282715, 0.007721983909606934, 0.0076912641525268555, 0.007723008155822754, 0.007797760009765625, 0.007732223987579345, 0.007863296031951903, 0.007836671829223632, 0.007715839862823487, 0.007715839862823487, 0.0076984319686889645, 0.007693312168121338, 0.007702527999877929, 0.007692287921905518, 0.007733248233795166, 0.007749631881713868, 0.007714816093444824, 0.016701440811157226, 0.007828479766845703, 0.0077547521591186525, 0.007716864109039307, 0.007701504230499268, 0.007740416049957275, 0.007717887878417969, 0.007721983909606934, 0.007828479766845703, 0.007741471767425537, 0.007738336086273194, 0.007726079940795898, 0.00785100793838501, 0.007770112037658691, 0.007825407981872558, 0.0077506561279296875, 0.0077506561279296875, 0.007702527999877929, 0.007725056171417236, 0.007788544178009033, 0.007708672046661377, 0.007740416049957275, 0.00773529577255249, 0.0077209601402282715, 0.007741439819335938, 0.007802879810333252, 0.00779366397857666, 0.007837696075439453, 0.007726079940795898, 0.007718912124633789, 0.007726079940795898, 0.007703584194183349, 0.007741407871246338, 0.007717887878417969, 0.007705599784851074, 0.007717887878417969, 0.007699456214904785, 0.007767039775848389, 0.007716864109039307, 0.007705599784851074, 0.007756800174713135, 0.007726079940795898, 0.007723008155822754, 0.00773632001876831, 0.0077333121299743655, 0.007885759830474853, 0.00774348783493042, 0.007778304100036621, 0.007740416049957275, 0.007734335899353027, 0.0077424001693725585, 0.007721983909606934, 0.007734272003173828, 0.007772160053253174, 0.007711743831634522, 0.007724031925201416, 0.007748608112335205, 0.007730175971984863, 0.0077281279563903805, 0.007767039775848389, 0.007715839862823487, 0.007709695816040039, 0.007712768077850342, 0.016694271087646484, 0.007724031925201416, 0.00775270414352417, 0.007763967990875244, 0.0077578239440917966, 0.007700479984283447, 0.0077281279563903805, 0.007669760227203369, 0.007833600044250488, 0.007715839862823487, 0.007715839862823487, 0.007729152202606201, 0.007787519931793213, 0.00773529577255249, 0.007711743831634522, 0.00774451208114624, 0.007697408199310303, 0.007684095859527588, 0.007714816093444824, 0.0076984319686889645, 0.007693312168121338, 0.007684095859527588, 0.007703551769256592, 0.007802879810333252, 0.007802879810333252, 0.007792640209197998, 0.00774348783493042, 0.007737343788146973, 0.007920639991760254, 0.007919616222381591, 0.007796735763549805, 0.007738431930541992, 0.007714752197265625, 0.0077209601402282715, 0.007729152202606201, 0.007764992237091065, 0.007960576057434082, 0.007717887878417969, 0.007692287921905518, 0.007679999828338623, 0.007699456214904785, 0.007741471767425537, 0.007738336086273194, 0.007733248233795166, 0.007748608112335205, 0.007697408199310303, 0.007705599784851074, 0.007739391803741455, 0.007689216136932373, 0.007723008155822754, 0.007702527999877929, 0.007710720062255859, 0.007726079940795898, 0.007693312168121338, 0.007741439819335938, 0.007713791847229004, 0.00773529577255249, 0.0076943359375, 0.007782400131225586, 0.007725056171417236, 0.007685120105743408, 0.007715839862823487, 0.007738368034362793, 0.016563199996948243, 0.0077547521591186525, 0.007727104187011719, 0.007756800174713135, 0.0076984319686889645, 0.00783564805984497, 0.007682047843933106, 0.00773632001876831, 0.0076984319686889645, 0.007762944221496582, 0.007725056171417236, 0.007751679897308349, 0.007710720062255859, 0.007872511863708496, 0.007729152202606201, 0.00774451208114624, 0.007726079940795898, 0.007779327869415284, 0.00779366397857666, 0.007710720062255859, 0.007713791847229004, 0.007693312168121338, 0.007716864109039307, 0.007709695816040039, 0.007707647800445557, 0.007715839862823487, 0.007712768077850342, 0.0076871681213378906, 0.00773529577255249, 0.007710720062255859, 0.007712768077850342, 0.007706624031066894, 0.0076902399063110355, 0.007711743831634522, 0.007706624031066894, 0.007689216136932373, 0.007766016006469726, 0.0076912641525268555, 0.007726079940795898, 0.007915520191192627, 0.00795750379562378, 0.007804927825927735, 0.007710720062255859, 0.007705599784851074, 0.007717887878417969, 0.007700479984283447, 0.0076943359375, 0.008194047927856446, 0.008091648101806641, 0.007954432010650634, 0.00774451208114624, 0.007711743831634522, 0.007692319869995117, 0.007700448036193848, 0.007789567947387695, 0.007700479984283447, 0.007714816093444824, 0.007712768077850342, 0.007706624031066894, 0.007718912124633789, 0.007716864109039307, 0.0077292160987854006, 0.007698368072509765, 0.016657407760620118, 0.007730175971984863, 0.007724031925201416, 0.0078438401222229, 0.00769536018371582, 0.007745535850524903, 0.007696383953094482, 0.007697408199310303, 0.007726079940795898, 0.00785203218460083, 0.00775270414352417, 0.007676928043365478, 0.007704576015472412, 0.00774348783493042, 0.007731200218200684, 0.007701504230499268, 0.007804927825927735, 0.007708672046661377, 0.007710720062255859, 0.007707647800445557, 0.007711743831634522, 0.007700479984283447, 0.007700479984283447, 0.007699456214904785, 0.007712768077850342, 0.007697472095489502, 0.007697343826293945, 0.0076871681213378906, 0.007741471767425537, 0.007927775859832764, 0.00779366397857666, 0.00778547191619873, 0.007738368034362793, 0.00773529577255249, 0.007708672046661377, 0.007841792106628418, 0.007705599784851074, 0.007713791847229004, 0.007704576015472412, 0.007732223987579345, 0.007716928005218506, 0.007747519969940186, 0.007733248233795166, 0.007702527999877929, 0.007742464065551758, 0.007692287921905518, 0.007708672046661377, 0.007714848041534424, 0.007716832160949707, 0.007709695816040039, 0.007716864109039307, 0.0077209601402282715, 0.007709695816040039, 0.0077506561279296875, 0.0077578239440917966, 0.007712768077850342, 0.007811071872711181, 0.007751679897308349, 0.007782400131225586, 0.007685120105743408, 0.007799808025360107, 0.007716864109039307, 0.007768064022064209, 0.016578559875488282, 0.0077199358940124516, 0.007724031925201416, 0.007730175971984863, 0.007751679897308349, 0.007838719844818116, 0.007721983909606934, 0.007738368034362793, 0.007946239948272706, 0.007903232097625732, 0.007706624031066894, 0.007726079940795898, 0.007748608112335205, 0.007771135807037354, 0.007941120147705078, 0.00794220781326294, 0.007843776226043701, 0.007714816093444824, 0.007815167903900147, 0.007742464065551758, 0.007722015857696533, 0.007703519821166992, 0.007739391803741455, 0.007772160053253174, 0.007702527999877929, 0.007701504230499268, 0.007732223987579345, 0.007699456214904785, 0.008051775932312011, 0.008126399993896484, 0.007746560096740723, 0.0077281279563903805, 0.007717887878417969, 0.0076943359375, 0.0076871681213378906, 0.007692287921905518, 0.007706624031066894, 0.007808000087738037, 0.0077209601402282715, 0.007701504230499268, 0.007711743831634522, 0.0078438401222229, 0.007739391803741455, 0.007706624031066894, 0.007716864109039307, 0.007707647800445557, 0.007768064022064209, 0.007886847972869874, 0.007692287921905518, 0.007712768077850342, 0.007726079940795898, 0.007709695816040039, 0.007706624031066894, 0.00773529577255249, 0.007704576015472412, 0.00773529577255249, 0.007718912124633789, 0.007711743831634522, 0.007676928043365478, 0.0076871681213378906, 0.007708703994750977, 0.007705567836761474, 0.007707647800445557, 0.016647167205810547, 0.007724031925201416, 0.007713791847229004, 0.007688191890716553, 0.007745600223541259, 0.007724991798400879, 0.007704576015472412, 0.007768064022064209, 0.007717887878417969, 0.007707647800445557, 0.007766016006469726, 0.007725056171417236, 0.00769536018371582, 0.00769536018371582, 0.007714816093444824, 0.007707647800445557, 0.007798783779144287, 0.00790118408203125, 0.00781004810333252, 0.0076574721336364745, 0.007778304100036621, 0.007678976058959961, 0.007707647800445557, 0.0077209601402282715, 0.007697408199310303, 0.007703551769256592, 0.0076902399063110355, 0.007699456214904785, 0.007769087791442871, 0.0077844481468200685, 0.007714816093444824, 0.007693312168121338, 0.0077209601402282715, 0.007701504230499268, 0.0077578239440917966, 0.007845888137817383, 0.007723008155822754, 0.007715839862823487, 0.007715839862823487, 0.007713791847229004, 0.0076943359375, 0.007692287921905518, 0.007703551769256592, 0.0076943359375, 0.007688191890716553, 0.007770112037658691, 0.0076912641525268555, 0.007683072090148926, 0.007733248233795166, 0.0076984319686889645, 0.007782400131225586, 0.007789567947387695, 0.007717919826507568, 0.007701471805572509, 0.007716864109039307, 0.007721983909606934, 0.007721983909606934, 0.007702527999877929, 0.0077547521591186525, 0.007731200218200684, 0.0076943359375, 0.007699456214904785, 0.007689216136932373, 0.016616479873657226, 0.007721951961517334, 0.0076984319686889645, 0.007682079792022705, 0.0077536959648132325, 0.007910399913787843, 0.0077199358940124516, 0.007729152202606201, 0.007723008155822754, 0.007775231838226319, 0.007875584125518798, 0.007718912124633789, 0.007697408199310303, 0.007702527999877929, 0.007699456214904785, 0.007777279853820801, 0.008135680198669434, 0.007952383995056152, 0.007699456214904785, 0.007688191890716553, 0.0076912641525268555, 0.007688191890716553, 0.007723008155822754, 0.007730175971984863, 0.007710720062255859, 0.00773529577255249, 0.007718912124633789, 0.0076912641525268555, 0.007692319869995117, 0.0076973757743835445, 0.007742464065551758, 0.007873536109924317, 0.007718912124633789, 0.008615936279296875, 0.007956480026245117, 0.007966720104217529, 0.007947264194488525, 0.007872511863708496, 0.0077608962059021, 0.007699456214904785, 0.007715839862823487, 0.00769536018371582, 0.007725056171417236, 0.007732223987579345, 0.007871488094329833, 0.007798783779144287, 0.0077209601402282715, 0.007711743831634522, 0.007717887878417969, 0.0077281279563903805, 0.007717887878417969, 0.007701504230499268, 0.007701504230499268, 0.007703551769256592, 0.007751679897308349, 0.007730175971984863, 0.007711743831634522, 0.0076984319686889645, 0.007762944221496582, 0.007710720062255859, 0.00773632001876831, 0.007712800025939942, 0.007716832160949707, 0.01661030387878418, 0.007712768077850342, 0.007726079940795898, 0.007716864109039307, 0.007732223987579345, 0.007729152202606201, 0.007705599784851074, 0.007732223987579345, 0.007708672046661377, 0.007714816093444824, 0.007675903797149658, 0.007910399913787843, 0.007725056171417236, 0.007729152202606201, 0.007730175971984863, 0.007763967990875244, 0.007731200218200684, 0.007730175971984863, 0.0076871681213378906, 0.007688191890716553, 0.007684095859527588, 0.007711743831634522, 0.0076687359809875484, 0.007706624031066894, 0.007774208068847656, 0.007678976058959961, 0.007700479984283447, 0.0076902399063110355, 0.007696447849273681, 0.007699391841888428, 0.007823359966278077, 0.007854080200195313, 0.007693312168121338, 0.007725056171417236, 0.007701504230499268, 0.00783564805984497, 0.007677951812744141, 0.007689216136932373, 0.007685120105743408, 0.007682047843933106, 0.007734272003173828, 0.007696383953094482, 0.007682047843933106, 0.007710720062255859, 0.007696383953094482, 0.007702527999877929, 0.0076984319686889645, 0.00775270414352417, 0.007681024074554443, 0.007682047843933106, 0.007686143875122071, 0.007697408199310303, 0.0077199358940124516, 0.007731200218200684, 0.007727104187011719, 0.007754784107208252, 0.0077209281921386715, 0.007737343788146973, 0.007764992237091065, 0.007710720062255859, 0.007709695816040039, 0.007701504230499268, 0.007770112037658691, 0.016547840118408205, 0.007730175971984863, 0.007739391803741455, 0.007730175971984863, 0.007729152202606201, 0.00789299201965332, 0.0077619199752807615, 0.007703551769256592, 0.007711743831634522, 0.007745535850524903, 0.007731200218200684, 0.0078438401222229, 0.007710720062255859, 0.0077619199752807615, 0.007710720062255859, 0.007699456214904785, 0.0077281279563903805, 0.008186944007873535, 0.008094655990600585, 0.007806975841522217, 0.007730175971984863, 0.00773529577255249, 0.007699456214904785, 0.0077199358940124516, 0.007721983909606934, 0.007737343788146973, 0.007670783996582031, 0.007726079940795898, 0.007745535850524903, 0.007716864109039307, 0.007806975841522217, 0.007882751941680909, 0.007704576015472412, 0.007703551769256592, 0.0077209601402282715, 0.007707647800445557, 0.007676928043365478, 0.008251456260681153, 0.008133567810058594, 0.007824384212493896, 0.007700479984283447, 0.0076984319686889645, 0.0077209601402282715, 0.007747583866119385, 0.007709695816040039, 0.007673855781555176, 0.007715839862823487, 0.007702527999877929, 0.007711743831634522, 0.008233983993530274, 0.007969791889190675, 0.007902207851409913, 0.00793497610092163, 0.007878655910491944, 0.007746560096740723, 0.007704576015472412, 0.007705599784851074, 0.007717887878417969, 0.007718912124633789, 0.007718944072723389, 0.0077291841506958005, 0.00770246410369873, 0.007727104187011719, 0.01676288032531738, 0.007725056171417236, 0.007721983909606934, 0.007742464065551758, 0.00769536018371582, 0.007717887878417969, 0.007709760189056397, 0.007786431789398193, 0.007712768077850342, 0.007718912124633789, 0.007725056171417236, 0.007823359966278077, 0.007729152202606201, 0.007708672046661377, 0.007699456214904785, 0.007780352115631104, 0.007726079940795898, 0.007726079940795898, 0.007740416049957275, 0.007729152202606201, 0.007700479984283447, 0.007715839862823487, 0.007773183822631836, 0.007751679897308349, 0.0077199358940124516, 0.007716864109039307, 0.007704576015472412, 0.007727104187011719, 0.007710720062255859, 0.007731200218200684, 0.007723008155822754, 0.007889920234680176, 0.00790937614440918, 0.008008735656738281, 0.00790012788772583, 0.007946239948272706, 0.00785100793838501, 0.007679999828338623, 0.007686143875122071, 0.007853055953979492, 0.00769536018371582, 0.007714816093444824, 0.007721983909606934, 0.007976960182189942, 0.007935999870300293, 0.007832575798034667, 0.007708672046661377, 0.007726079940795898, 0.007707647800445557, 0.007676928043365478, 0.007708672046661377, 0.00773632001876831, 0.007734272003173828, 0.007734272003173828, 0.007725056171417236, 0.007711743831634522, 0.00774451208114624, 0.007724031925201416, 0.00780185604095459, 0.007727104187011719, 0.0077281279563903805, 0.007778304100036621, 0.007770112037658691, 0.01660211181640625, 0.007740416049957275, 0.007758848190307617, 0.007717887878417969, 0.0076984319686889645, 0.007717887878417969, 0.007723008155822754, 0.007696383953094482, 0.00782643222808838, 0.0076902399063110355, 0.007689216136932373, 0.007712768077850342, 0.00794316816329956, 0.007795711994171142, 0.007724031925201416, 0.007756800174713135, 0.007738368034362793, 0.007890944004058837, 0.007928832054138184, 0.007711743831634522, 0.007721983909606934, 0.007827455997467042, 0.007703551769256592, 0.007713791847229004, 0.007709695816040039, 0.007723008155822754, 0.007705599784851074, 0.007701504230499268, 0.00779366397857666, 0.007730175971984863, 0.007710720062255859, 0.007721983909606934, 0.00773632001876831, 0.007712768077850342, 0.007732223987579345, 0.007749695777893067, 0.007699391841888428, 0.007712768077850342, 0.00769536018371582, 0.007714816093444824, 0.007675903797149658, 0.007679999828338623, 0.007706624031066894, 0.007713791847229004, 0.007707647800445557, 0.007725056171417236, 0.0077199358940124516, 0.0077199358940124516, 0.007711743831634522, 0.007701504230499268, 0.008041472434997558, 0.007925759792327881, 0.007964672088623047, 0.008812543869018554, 0.00818892765045166, 0.007971839904785156, 0.007931903839111328, 0.00797388792037964, 0.007821311950683594, 0.00773632001876831, 0.007737343788146973, 0.0076984319686889645, 0.0077506561279296875, 0.016773120880126953, 0.007713791847229004, 0.007703551769256592, 0.007712768077850342, 0.0077199358940124516, 0.007724031925201416, 0.007887872219085693, 0.007883776187896728, 0.007776256084442139, 0.0076943359375, 0.007706655979156494, 0.007736288070678711, 0.007830527782440186, 0.0077619199752807615, 0.0077281279563903805, 0.007740416049957275, 0.007749631881713868, 0.007731200218200684, 0.007759871959686279, 0.007758848190307617, 0.007709695816040039, 0.0077209601402282715, 0.007706624031066894, 0.007707647800445557, 0.007697408199310303, 0.007702527999877929, 0.0077209601402282715, 0.00769536018371582, 0.007708672046661377, 0.007721983909606934, 0.008154111862182617, 0.008143872261047362, 0.007910399913787843, 0.007795711994171142, 0.007726079940795898, 0.007689280033111572, 0.007698368072509765, 0.007763967990875244, 0.007821311950683594, 0.007713791847229004, 0.007711743831634522, 0.007733248233795166, 0.007748608112335205, 0.007656447887420655, 0.00775270414352417, 0.007725056171417236, 0.0077281279563903805, 0.007710720062255859, 0.007682047843933106, 0.007711743831634522, 0.007732223987579345, 0.007700479984283447, 0.007749631881713868, 0.00773632001876831, 0.007706624031066894, 0.007697408199310303, 0.00774348783493042, 0.00773632001876831, 0.007778304100036621, 0.00773632001876831, 0.007763967990875244, 0.007724031925201416, 0.007725056171417236, 0.01663488006591797, 0.0077281279563903805, 0.0077292160987854006, 0.00771782398223877, 0.007703551769256592, 0.007724031925201416, 0.007721983909606934, 0.007717887878417969, 0.007869440078735352, 0.007717887878417969, 0.007703551769256592, 0.007697408199310303, 0.00781824016571045, 0.007864319801330566, 0.007912447929382324, 0.007799808025360107, 0.007717887878417969, 0.007748608112335205, 0.007753727912902832, 0.007782400131225586, 0.007894015789031983, 0.007772160053253174, 0.007773183822631836, 0.007839744091033935, 0.007825407981872558, 0.007860223770141601, 0.007705599784851074, 0.007798783779144287, 0.007741439819335938, 0.007748608112335205, 0.007869440078735352, 0.0077209601402282715, 0.007725056171417236, 0.007706624031066894, 0.0076984319686889645, 0.007726079940795898, 0.007718912124633789, 0.007711743831634522, 0.0077547521591186525, 0.0077281279563903805, 0.007716864109039307, 0.0076943359375, 0.007706624031066894, 0.007708735942840576, 0.008207296371459961, 0.00828006362915039, 0.008375295639038086, 0.008964159965515136, 0.008193984031677246, 0.008244223594665527, 0.008076288223266602, 0.008083456039428711, 0.008111104011535645, 0.008119296073913575, 0.007963647842407226, 0.007763967990875244, 0.007849984169006348, 0.007905344009399413, 0.00797382402420044, 0.007958528041839599, 0.007767039775848389, 0.007678976058959961, 0.007705599784851074, 0.016735231399536133, 0.007749631881713868, 0.007739391803741455, 0.007732223987579345, 0.007741439819335938, 0.007729152202606201, 0.007734272003173828, 0.007770112037658691, 0.007745535850524903, 0.007739391803741455, 0.0076912641525268555, 0.007707680225372314, 0.0077803201675415035, 0.007710720062255859, 0.007718912124633789, 0.00785920000076294, 0.007742464065551758, 0.007711743831634522, 0.007757855892181397, 0.007923679828643799, 0.00797388792037964, 0.007967743873596191, 0.007703551769256592, 0.007781375885009765, 0.007738368034362793, 0.0077199358940124516, 0.0077199358940124516, 0.00773632001876831, 0.007770112037658691, 0.007689216136932373, 0.007716864109039307, 0.00784281587600708, 0.007911424160003662, 0.007947264194488525, 0.007904255867004394, 0.00787766408920288, 0.007705567836761474, 0.007828479766845703, 0.007711743831634522, 0.007731200218200684, 0.007724031925201416, 0.007885824203491211, 0.0077281279563903805, 0.007792640209197998, 0.00790937614440918, 0.007910399913787843, 0.00787660789489746, 0.007709695816040039, 0.007669760227203369, 0.007706655979156494, 0.007722976207733154, 0.007747583866119385, 0.009075712203979493, 0.0091146240234375, 0.008141823768615723, 0.007981056213378907, 0.007968768119812012, 0.007946239948272706, 0.008045568466186523, 0.007699456214904785, 0.00791756820678711, 0.00808243179321289, 0.007932928085327149, 0.01699430465698242, 0.007724031925201416, 0.007711743831634522, 0.007674880027770996, 0.007733248233795166, 0.007865344047546387, 0.008018943786621094, 0.007984127998352051, 0.007921664237976075, 0.0078919677734375, 0.007894015789031983, 0.007947264194488525, 0.0077209601402282715, 0.007711743831634522, 0.007716864109039307, 0.007726079940795898, 0.008037376403808593, 0.008160256385803222, 0.008114175796508789, 0.007946239948272706, 0.007955455780029297, 0.007880703926086426, 0.007709695816040039, 0.0076902399063110355, 0.007707647800445557, 0.007819263935089112, 0.0077066879272460935, 0.0077127041816711425, 0.007713791847229004, 0.007715839862823487, 0.007741439819335938, 0.007872511863708496, 0.008002559661865234, 0.007911424160003662, 0.007808000087738037, 0.007950335979461669, 0.007971839904785156, 0.007889920234680176, 0.007895040035247802, 0.007922688007354736, 0.007844863891601562, 0.007697408199310303, 0.007679999828338623, 0.007716864109039307, 0.007702527999877929, 0.0077547521591186525, 0.007723008155822754, 0.007700479984283447, 0.0076943359375, 0.007708672046661377, 0.00769536018371582, 0.007707647800445557, 0.0076902399063110355, 0.0076943359375, 0.007699456214904785, 0.007935999870300293, 0.007902207851409913, 0.007918591976165772, 0.00793398380279541, 0.007732192039489746, 0.007676928043365478, 0.007679999828338623, 0.007780352115631104, 0.016642080307006837, 0.007711711883544922, 0.007697408199310303, 0.007676928043365478, 0.007706624031066894, 0.007731200218200684, 0.007718976020812988, 0.00803116798400879, 0.007894015789031983, 0.007731200218200684, 0.007890944004058837, 0.008027135848999023, 0.008517631530761719, 0.007713791847229004, 0.007714816093444824, 0.00786947202682495, 0.007754720211029052, 0.007733248233795166, 0.007702527999877929, 0.007700479984283447, 0.007743519783020019, 0.007692255973815918, 0.007667712211608887, 0.007686143875122071, 0.007748608112335205, 0.007677951812744141, 0.007717887878417969, 0.007771135807037354, 0.007829504013061523, 0.007766016006469726, 0.00800153636932373, 0.007898111820220948, 0.007880703926086426, 0.007862271785736084, 0.007678016185760498, 0.007819200038909912, 0.007671840190887451, 0.007682015895843506, 0.007673855781555176, 0.007704576015472412, 0.0076871681213378906, 0.007699456214904785, 0.007682047843933106, 0.007710720062255859, 0.007718944072723389, 0.0076902079582214355, 0.007753727912902832, 0.007715839862823487, 0.007767039775848389, 0.007705599784851074, 0.007976960182189942, 0.007907328128814697, 0.007895040035247802, 0.007870463848114014, 0.008042495727539062, 0.007890975952148438, 0.007929823875427245, 0.007815167903900147, 0.008281087875366211, 0.007686143875122071, 0.007705599784851074, 0.007724031925201416, 0.00773632001876831, 0.01665023994445801, 0.0076984319686889645, 0.007708672046661377, 0.007708672046661377, 0.007717887878417969, 0.007837696075439453, 0.007702527999877929, 0.00774451208114624, 0.007753727912902832, 0.007738368034362793, 0.007723008155822754, 0.007798783779144287, 0.007696383953094482, 0.007700479984283447, 0.007701504230499268, 0.007718912124633789, 0.007715839862823487, 0.007762944221496582, 0.00785203218460083, 0.007715839862823487, 0.007769087791442871, 0.007730175971984863, 0.007700479984283447, 0.0077199358940124516, 0.007688191890716553, 0.007705599784851074, 0.0076943359375, 0.007681024074554443, 0.0076984319686889645, 0.007692287921905518, 0.007710720062255859, 0.007753727912902832, 0.00773529577255249, 0.007738368034362793, 0.007740416049957275, 0.007705599784851074, 0.0077281279563903805, 0.007871488094329833, 0.007733248233795166, 0.007703551769256592, 0.007703551769256592, 0.007701504230499268, 0.007677951812744141, 0.007689216136932373, 0.007725056171417236, 0.007723008155822754, 0.007781375885009765, 0.007701504230499268, 0.007701504230499268, 0.00852684783935547, 0.0082227201461792, 0.007988224029541016, 0.00809881591796875, 0.007950335979461669, 0.007958528041839599, 0.007836671829223632, 0.007874559879302979, 0.007763967990875244, 0.007967743873596191, 0.0078438401222229, 0.007737343788146973, 0.007927807807922363, 0.00799948787689209, 0.017304576873779298, 0.0077199358940124516, 0.007718912124633789, 0.007681024074554443, 0.0076871681213378906, 0.007727104187011719, 0.0076984319686889645, 0.007781375885009765, 0.007724031925201416, 0.007789567947387695, 0.007988224029541016, 0.008054783821105957, 0.007925759792327881, 0.00790937614440918, 0.00774348783493042, 0.007699456214904785, 0.00774348783493042, 0.007709695816040039, 0.007708672046661377, 0.007677951812744141, 0.00774348783493042, 0.007771135807037354, 0.007776256084442139, 0.007746560096740723, 0.00773529577255249, 0.007714816093444824, 0.007729152202606201, 0.00793497610092163, 0.007860223770141601, 0.007898111820220948, 0.007904255867004394, 0.007738368034362793, 0.00795244789123535, 0.007912415981292725, 0.0076861119270324706, 0.00797388792037964, 0.007954432010650634, 0.007786496162414551, 0.007844863891601562, 0.007825407981872558, 0.007705599784851074, 0.007705599784851074, 0.007717887878417969, 0.00774451208114624, 0.007718912124633789, 0.0076912641525268555, 0.00773632001876831, 0.007782400131225586, 0.007776256084442139, 0.007937024116516114, 0.007910399913787843, 0.007729152202606201, 0.00830668830871582, 0.00813158416748047, 0.007849984169006348, 0.007703551769256592, 0.007739391803741455, 0.007732223987579345, 0.008006655693054199, 0.007778304100036621, 0.00773632001876831, 0.0076984319686889645, 0.007703551769256592, 0.016625728607177735, 0.007673791885375977, 0.00773529577255249, 0.0076912641525268555, 0.007684095859527588, 0.007864319801330566, 0.007684095859527588, 0.007782400131225586, 0.008040448188781739, 0.007699456214904785, 0.007816192150115966, 0.00787660789489746, 0.007726079940795898, 0.0076912641525268555, 0.007709695816040039, 0.007703551769256592, 0.007727104187011719, 0.007713791847229004, 0.007734272003173828, 0.007740416049957275, 0.007954432010650634, 0.008110079765319824, 0.008164352416992187, 0.008158207893371582, 0.008134655952453614, 0.008079360008239746, 0.008034303665161132, 0.008069120407104492, 0.008080384254455567, 0.008045568466186523, 0.008086527824401855, 0.008064000129699708, 0.008039423942565918, 0.008177663803100586, 0.008115232467651367, 0.008054752349853516, 0.008057855606079101, 0.00807423973083496, 0.008069120407104492, 0.00808243179321289, 0.008110079765319824, 0.008058879852294922, 0.008219648361206054, 0.008138751983642578, 0.008049663543701171, 0.008075263977050781, 0.008070143699645996, 0.008043519973754883, 0.008030207633972167, 0.008031231880187988, 0.008062975883483887, 0.008071167945861817, 0.008064000129699708, 0.008061951637268066, 0.00809881591796875, 0.008316927909851075, 0.008250368118286134, 0.00838963222503662, 0.008570879936218261, 0.008749055862426757, 0.008308735847473145, 0.008157183647155761, 0.0081080961227417]",tokens/s,126.06364233490866,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-14B,Qwen/Qwen-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -40820,24 +40545,18 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained + model_class = get_class_from_dynamic_module( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module + final_module = get_cached_module_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file + modules_needed = check_imports(resolved_module_file) + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports + raise ImportError( +ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-7B,Qwen/Qwen-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -40855,24 +40574,18 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained + model_class = get_class_from_dynamic_module( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module + final_module = get_cached_module_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file + modules_needed = check_imports(resolved_module_file) + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports + raise ImportError( +ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,s,s,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,v,v,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -40884,7 +40597,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/s/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/v/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -40911,9 +40624,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948d0f-021b1999049b241c164628c2;256122c7-411d-40e4-84e2-1960a59d69d7) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694946b-22a890fe488c5642487892bb;ba366b92-4f46-44a6-8f4c-32484422f882) -Repository Not Found for url: https://huggingface.co/s/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/v/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -40938,116 +40651,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: s is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: v is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,TencentARC/Mistral_Pro_8B_v0.1,TencentARC/Mistral_Pro_8B_v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-12b,EleutherAI/pythia-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/polyglot-ko-12.8b,EleutherAI/polyglot-ko-12.8b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-3b,stabilityai/stablelm-base-alpha-3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemv-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-125m,EleutherAI/gpt-neo-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -41057,32 +40665,62 @@ NameError: name 'exl_ext' is not defined ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 970, in forward + transformer_outputs = self.transformer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 838, in forward + outputs = block( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 565, in forward + attn_outputs = self.attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 517, in forward + return self.attention( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 259, in forward + query = self.q_proj(hidden_states) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward + assert AWQ_INSTALLED, ( +AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,/,/,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,.,.,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -41108,78 +40746,23 @@ ChildProcessError: Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 373, in cached_file raise EnvironmentError( -OSError: / does not appear to have a file named config.json. Checkout 'https://huggingface.co///tree/None' for available files. - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-70m,EleutherAI/pythia-70m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-2b,google/gemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/gemma-2b/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status - raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66948139-2e5cac304163c3a310aca370;1e056ae5-db30-4221-8c89-a45b3dbb08a2) - -403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/google/gemma-2b/resolve/main/config.json. -If you are trying to create or update content,make sure you have a token with the `write` role. +OSError: . does not appear to have a file named config.json. Checkout 'https://huggingface.co/./tree/None' for available files. + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/phi-1_5,microsoft/phi-1_5,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1306.464256,2103.967744,0.0,1457.52064,1272.750592,s,10,1.329427551269531,0.13294275512695314,0.0012200886206429765,0.13265889739990233,0.1341803771972656,0.1350921875,0.1358216357421875,"[0.13600399780273437, 0.13269917297363282, 0.1317310791015625, 0.1318907470703125, 0.131806884765625, 0.1328501434326172, 0.1324745635986328, 0.13397775268554687, 0.13261862182617187, 0.1333745880126953]",tokens/s,1925.6408501202932,kWh,1.562583448681218e-06,8.560805149739424e-07,6.424628677710524e-06,8.843292641365686e-06,tokens/kWh,28948493.55120577,MB,1306.464256,2103.967744,0.0,1457.52064,1369.423872,s,10,78.31643701171875,7.831643701171875,0.021087870794415795,7.826485107421875,7.855575732421875,7.869772485351563,7.881129887695312,"[7.8200595703125, 7.8524208984375, 7.80727783203125, 7.828986328125, 7.81284423828125, 7.83669384765625, 7.82121484375, 7.825626953125, 7.82734326171875, 7.88396923828125]",tokens/s,8.044288326162373,kWh,9.24571096544203e-05,5.067334492555682e-05,0.00037095189544549136,0.0005140823500254685,tokens/kWh,122548.4593993139,,s,629,79.38599323272705,0.12620984615695877,0.015775713114662086,0.12392652893066407,0.12565974731445312,0.1260990447998047,0.2560962493896484,"[0.12357324981689453, 0.12395417785644532, 0.12677222442626954, 0.12635955047607422, 0.124906494140625, 0.12412108612060548, 0.12417945861816407, 0.12488601684570312, 0.12357427215576172, 0.12358553314208984, 0.12521676635742188, 0.12579737854003906, 0.1256099853515625, 0.12379033660888672, 0.12357119750976563, 0.12366028594970703, 0.12364492797851563, 0.12450201416015624, 0.12360806274414063, 0.12366643524169922, 0.12377497863769531, 0.12358348846435546, 0.12363878631591797, 0.12448051452636719, 0.12341043090820313, 0.12406886291503906, 0.1237401580810547, 0.12359986877441406, 0.12348108673095703, 0.12367359924316407, 0.12363571166992188, 0.12357324981689453, 0.12363468933105469, 0.12353740692138672, 0.12361625671386718, 0.12422758483886719, 0.12424396514892579, 0.12538982391357423, 0.12366336059570313, 0.12492594909667969, 0.12365926361083984, 0.12361727905273437, 0.12350054168701172, 0.12435148620605468, 0.12661043548583983, 0.12594380950927733, 0.12404121398925781, 0.12383539581298827, 0.12378726196289062, 0.12356095886230468, 0.12356813049316406, 0.12374221038818359, 0.12462796783447265, 0.12367359924316407, 0.12347289276123047, 0.12355174255371094, 0.1236684799194336, 0.12365004730224609, 0.12358656311035156, 0.12423372650146484, 0.12397772979736328, 0.12430950164794922, 0.25706393432617186, 0.12518399810791014, 0.1238814697265625, 0.12411289978027344, 0.12383539581298827, 0.12371456146240234, 0.12595814514160156, 0.12542259216308593, 0.12580659484863282, 0.12499353790283203, 0.1239152603149414, 0.12502528381347655, 0.12599295806884767, 0.12452146911621094, 0.12406169891357421, 0.12400128173828125, 0.12455014038085938, 0.12355481719970703, 0.12359884643554687, 0.12353740692138672, 0.1237760009765625, 0.1253580780029297, 0.12455423736572266, 0.1236305923461914, 0.12355788421630859, 0.12357529449462891, 0.12357529449462891, 0.123683837890625, 0.12378419494628906, 0.12360908508300782, 0.12378828430175781, 0.12359474945068359, 0.12440064239501954, 0.12405043029785157, 0.12471295928955078, 0.12421119689941407, 0.12409037017822265, 0.12466687774658203, 0.12391321563720703, 0.1252689895629883, 0.1255536651611328, 0.12441907501220703, 0.12589260864257812, 0.12565299224853516, 0.12552909088134764, 0.12456448364257812, 0.12414975738525391, 0.12398387145996094, 0.1251430435180664, 0.12559257507324217, 0.1256447982788086, 0.12538572692871094, 0.12506521606445312, 0.12563251495361327, 0.12649676513671876, 0.12583424377441407, 0.1255536651611328, 0.12570214080810546, 0.12467916870117188, 0.12509900665283202, 0.12491264343261718, 0.12573184204101562, 0.12440268707275391, 0.2558197784423828, 0.12364800262451171, 0.123683837890625, 0.12350975799560547, 0.12375552368164063, 0.12458700561523438, 0.12379647827148438, 0.12382003021240234, 0.12372787475585938, 0.12350975799560547, 0.12364492797851563, 0.12362751770019531, 0.12420403289794922, 0.12373401641845704, 0.12366745758056641, 0.12346367645263671, 0.1236490249633789, 0.12343807983398437, 0.12373401641845704, 0.12360601806640625, 0.1237391357421875, 0.12377907562255859, 0.12418252563476563, 0.12495769500732422, 0.12483993530273438, 0.12376576232910157, 0.12357529449462891, 0.12388044738769531, 0.12398592376708985, 0.12371250915527343, 0.12381696319580078, 0.1249966049194336, 0.12406578826904296, 0.12373709106445313, 0.1236316146850586, 0.12356710052490234, 0.1236305923461914, 0.12532736206054687, 0.12533248138427736, 0.1239900131225586, 0.12350566101074219, 0.12367155456542969, 0.12361727905273437, 0.12359065246582031, 0.12348108673095703, 0.12358451080322265, 0.12368691253662109, 0.12367565155029298, 0.12437299346923827, 0.12555570983886719, 0.12554956817626953, 0.12386406707763672, 0.12385485076904297, 0.12392857360839844, 0.12358246612548827, 0.12377907562255859, 0.12381081390380859, 0.12436070251464844, 0.12358144378662109, 0.12363775634765625, 0.12359168243408203, 0.12367974090576171, 0.12394802856445312, 0.2562037658691406, 0.12365312194824218, 0.1237053451538086, 0.1237760009765625, 0.12487884521484376, 0.12573286437988282, 0.12605644989013673, 0.12572876739501954, 0.12546969604492186, 0.1246740493774414, 0.124980224609375, 0.12507443237304688, 0.12493721771240235, 0.12486860656738281, 0.1260953598022461, 0.12375142669677734, 0.12360294342041016, 0.12364800262451171, 0.12349849700927734, 0.12341350555419922, 0.12356915283203125, 0.12356813049316406, 0.12392652893066407, 0.12379750061035157, 0.12378316497802734, 0.12362239837646484, 0.1237544937133789, 0.12356301116943359, 0.12365824127197265, 0.12351487731933594, 0.12436070251464844, 0.12455014038085938, 0.12394802856445312, 0.12437811279296875, 0.12415590667724609, 0.12446412658691407, 0.1244395523071289, 0.12447334289550781, 0.1255577621459961, 0.1261445083618164, 0.12384767913818359, 0.12500070190429688, 0.12377907562255859, 0.12363775634765625, 0.12484812927246093, 0.12531302642822265, 0.12550348663330077, 0.12423168182373047, 0.12353024291992187, 0.12354150390625, 0.12352819061279297, 0.12369817352294922, 0.12365004730224609, 0.12370738983154297, 0.12456755065917968, 0.12433100891113281, 0.1237739486694336, 0.12359168243408203, 0.12380569458007812, 0.12372684478759766, 0.12373299407958985, 0.12365721893310547, 0.12492594909667969, 0.2555535430908203, 0.12613938903808594, 0.12532940673828125, 0.12536217498779298, 0.1253396453857422, 0.12545536041259767, 0.12536831665039064, 0.12381081390380859, 0.12342476654052735, 0.12351283264160157, 0.12347801971435547, 0.12362035369873046, 0.12350669097900391, 0.12365414428710937, 0.12357324981689453, 0.12354252624511719, 0.12360192108154297, 0.12350975799560547, 0.12355379486083984, 0.12362751770019531, 0.12359065246582031, 0.12350259399414062, 0.12365414428710937, 0.12462079620361328, 0.12366643524169922, 0.12346572875976562, 0.12355891418457031, 0.12368691253662109, 0.12421836853027343, 0.12335001373291016, 0.12413645172119141, 0.12520652770996094, 0.12418355560302734, 0.1253570556640625, 0.12440064239501954, 0.1235230712890625, 0.1235968017578125, 0.12357529449462891, 0.12391321563720703, 0.12415590667724609, 0.12387635040283203, 0.12383539581298827, 0.12365106964111328, 0.12362649536132812, 0.12361727905273437, 0.12473446655273437, 0.12511949157714844, 0.12443341064453126, 0.12362854766845703, 0.12501708984375, 0.12398387145996094, 0.12350873565673828, 0.12383948516845703, 0.1234698257446289, 0.12409651184082031, 0.12359884643554687, 0.12379750061035157, 0.12368077087402343, 0.12469760131835937, 0.12350669097900391, 0.1235077133178711, 0.12355891418457031, 0.12358451080322265, 0.25665740966796874, 0.12402899169921874, 0.12411385345458985, 0.12439552307128907, 0.12551270294189454, 0.12451840209960938, 0.12435968017578125, 0.12583116912841796, 0.1254318084716797, 0.1253939208984375, 0.12529971313476562, 0.1254133758544922, 0.1254062042236328, 0.1256294403076172, 0.12560486602783202, 0.12544409942626952, 0.12538470458984374, 0.12542668914794922, 0.1252710418701172, 0.12386508941650391, 0.12361420440673829, 0.12358144378662109, 0.12357324981689453, 0.12350873565673828, 0.12352819061279297, 0.12368793487548828, 0.12353945922851563, 0.12357222747802735, 0.12369203186035156, 0.12346880340576172, 0.12355583953857421, 0.1235599365234375, 0.12362035369873046, 0.12436275482177735, 0.1252147216796875, 0.12532940673828125, 0.12448358154296875, 0.1234882583618164, 0.12387020874023437, 0.12536627197265626, 0.12422758483886719, 0.12369407653808594, 0.12347187042236328, 0.12357427215576172, 0.12363673400878906, 0.12348006439208985, 0.12376166534423828, 0.12611788940429688, 0.12559974670410157, 0.12563353729248047, 0.12546969604492186, 0.12542668914794922, 0.1254840316772461, 0.12547277069091797, 0.12400947570800781, 0.12405452728271485, 0.12358451080322265, 0.1235599365234375, 0.12348928070068359, 0.12358246612548827, 0.1234862060546875, 0.12351181030273438, 0.12364492797851563, 0.2565027770996094, 0.12444467163085937, 0.124115966796875, 0.12360499572753907, 0.12404326629638672, 0.12441804504394531, 0.1250918426513672, 0.1257748489379883, 0.12563353729248047, 0.12372889709472656, 0.12562022399902345, 0.12486041259765625, 0.12480921936035157, 0.123720703125, 0.12351897430419922, 0.12377088165283204, 0.12374221038818359, 0.12360908508300782, 0.1239920654296875, 0.1237022705078125, 0.12362547302246094, 0.12358758544921875, 0.12353330993652344, 0.12495155334472656, 0.12379033660888672, 0.1237227554321289, 0.12362137603759765, 0.1235445785522461, 0.12405248260498047, 0.12381081390380859, 0.12356403350830078, 0.12472217559814452, 0.12582911682128906, 0.1260021743774414, 0.12565503692626953, 0.12548607635498046, 0.125338623046875, 0.12534374237060547, 0.12404428863525391, 0.12439449310302735, 0.12376576232910157, 0.12392550659179688, 0.12379135894775391, 0.1235384292602539, 0.12375961303710938, 0.12353228759765625, 0.12357427215576172, 0.12382310485839844, 0.1239767074584961, 0.12351385498046875, 0.12377088165283204, 0.12349235534667968, 0.12367667388916016, 0.1235568618774414, 0.12351283264160157, 0.12387225341796874, 0.12435968017578125, 0.12366745758056641, 0.12357734680175782, 0.12359986877441406, 0.12354560089111329, 0.12352819061279297, 0.12502630615234375, 0.26002227783203125, 0.12474163055419922, 0.12465561676025391, 0.12385485076904297, 0.12388966369628907, 0.12364697265625, 0.12477133178710938, 0.12527410888671875, 0.12405145263671875, 0.1237760009765625, 0.12372991943359375, 0.1253529586791992, 0.12522803497314453, 0.12430233764648438, 0.12380057525634766, 0.12450713348388671, 0.12450508880615234, 0.12496998596191407, 0.12366950225830078, 0.12387840270996094, 0.12420403289794922, 0.1244395523071289, 0.12422451019287109, 0.12519014739990234, 0.12686438751220702, 0.12572672271728516, 0.12376882934570313, 0.12486656188964844, 0.1239767074584961, 0.12363263702392578, 0.12419276428222656, 0.12381183624267578, 0.12427263641357422, 0.12527206420898437, 0.12414259338378907, 0.12360499572753907, 0.12352102661132812, 0.12354662322998047, 0.12364083099365235, 0.12379545593261719, 0.1257748489379883, 0.12477439880371094, 0.12361011505126954, 0.12374425506591796, 0.12376268768310547, 0.12368691253662109, 0.12373606109619141, 0.12365824127197265, 0.1240596466064453, 0.12369305419921875, 0.12396441650390624, 0.12373811340332032, 0.12371353912353515, 0.12357119750976563, 0.12355379486083984, 0.1238067169189453, 0.12372889709472656, 0.12425318145751953, 0.12379853057861329, 0.12396031951904297, 0.12386099243164063, 0.12410060882568359, 0.12376780700683594, 0.2569492492675781, 0.12346163177490234, 0.12355788421630859, 0.12358451080322265, 0.12365516662597656, 0.12385894775390625, 0.12412210845947266, 0.12367871856689452, 0.12457984161376953, 0.12387123107910156, 0.12360704040527344, 0.12351078033447266, 0.12353638458251953, 0.12353638458251953, 0.12359782409667969, 0.12352921295166015, 0.12678758239746094, 0.1258260498046875, 0.12560076904296874, 0.12596224212646484, 0.12543590545654296, 0.12542668914794922, 0.12532838439941407, 0.12374221038818359, 0.12540006256103517, 0.12414771270751954, 0.12379750061035157, 0.12367871856689452, 0.12370944213867187, 0.12368077087402343, 0.12369817352294922, 0.12355379486083984, 0.12357119750976563, 0.12395622253417969, 0.12402175903320313, 0.12356505584716797, 0.12348210906982422, 0.12368793487548828, 0.12353536224365234, 0.12395622253417969, 0.12403302764892578, 0.12700466918945313, 0.12573798370361328, 0.12478463745117188, 0.12397158050537109, 0.12360192108154297, 0.12377292633056641, 0.12353024291992187, 0.12364390563964844, 0.12410163116455078, 0.12373197174072266, 0.123936767578125, 0.12391731262207031, 0.12367155456542969, 0.12363980865478516, 0.12377804565429687, 0.12557823944091798, 0.12434022521972657, 0.12393472290039062, 0.12455423736572266, 0.12541849517822265, 0.12554239654541016, 0.12558438110351564, 0.25772952270507815, 0.12436172485351563, 0.12393984222412109, 0.12354867553710938, 0.12373197174072266, 0.12357119750976563, 0.123578369140625, 0.12372889709472656, 0.12355379486083984, 0.12389990234375, 0.12362239837646484, 0.12408729553222657, 0.12435148620605468, 0.1244395523071289, 0.12433100891113281, 0.12407398223876953, 0.12391117095947266, 0.12426445007324219, 0.12396236419677735, 0.12403404998779297, 0.1263288345336914, 0.12405554962158204, 0.12396646118164062, 0.1240995864868164, 0.12518297576904297, 0.12740505981445313, 0.12441292572021484, 0.12416512298583984, 0.12624896240234376, 0.12561100769042968, 0.12505804443359375, 0.12423577880859375, 0.12659302520751953, 0.1257891845703125, 0.1247457275390625, 0.12536627197265626, 0.12574105834960939, 0.12544102478027344, 0.12642201232910155, 0.1264035873413086, 0.12703129577636718, 0.12545126342773438, 0.12710707092285156, 0.12490751647949219, 0.1260052490234375, 0.12597964477539061, 0.1264691162109375, 0.12679987335205078, 0.12610150146484375, 0.12555980682373047, 0.12536831665039064, 0.12553011322021485, 0.12543283081054687, 0.125591552734375, 0.12561817932128908, 0.12541849517822265, 0.1260789794921875, 0.12718182373046874, 0.1256980514526367, 0.12580147552490234, 0.1268490219116211, 0.1256785888671875, 0.12574310302734376]",tokens/s,7.92331209053505,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,s,s,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/s/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -41192,9 +40775,25 @@ Traceback (most recent call last): return _hf_hub_download_to_cache_dir( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error - raise LocalEntryNotFoundError( -huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948d02-27681008592811d63d300b85;7f6b8ec3-25cb-4d45-b82b-b63da8dd38e8) + +Repository Not Found for url: https://huggingface.co/s/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. The above exception was the direct cause of the following exception: @@ -41215,13 +40814,14 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/gemma-2b is not the path to a directory containing a file named config.json. -Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. +OSError: s is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciLM-7B,Deci/DeciLM-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-34B,,cuda,0,42,,,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,MB,1743.122432,22129.672192,0.0,21483.225088,20799.036928,s,10,27.909502197265624,2.7909502197265623,0.0030225550178342967,2.7914050292968753,2.79439267578125,2.794928149414062,2.7953565283203123,"[2.794273681640625, 2.795463623046875, 2.7873525390625, 2.789448486328125, 2.787631103515625, 2.78628466796875, 2.790373291015625, 2.792436767578125, 2.79304931640625, 2.793188720703125]",tokens/s,91.72503263962948,kWh,3.290233454770512e-05,1.803171549396211e-05,0.0001583880155991868,0.00020932206564085407,tokens/kWh,1222995.765956342,MB,1743.720448,22129.672192,0.0,21483.225088,20902.142976,s,10,1661.799328125,166.1799328125,0.024199823300055656,166.1772734375,166.2117125,166.21745,166.22204,"[166.17496875, 166.167359375, 166.14703125, 166.2104375, 166.2231875, 166.181296875, 166.179578125, 166.204078125, 166.159546875, 166.15184375]",tokens/s,0.37910714569299164,kWh,0.0019616428730719624,0.001075153456676562,0.009382404450362024,0.012419200780110549,tokens/kWh,5072.790199261051,,s,629,1684.2762666015624,2.677704716377683,0.33156351074934576,2.63752294921875,2.6395720703125,2.6405790039062498,5.428127246093751,"[2.63648046875, 2.637477783203125, 2.636610595703125, 2.63773388671875, 2.63674365234375, 2.6374482421875, 2.63684716796875, 2.637740966796875, 2.636241943359375, 2.6376162109375, 2.636966796875, 2.6365615234375, 2.639180908203125, 2.637003662109375, 2.637414306640625, 2.638074951171875, 2.638488525390625, 2.637603759765625, 2.6381865234375, 2.6367314453125, 2.63737646484375, 2.636360595703125, 2.63697314453125, 2.6366044921875, 2.6370693359375, 2.636568603515625, 2.636980224609375, 2.636353515625, 2.63706103515625, 2.636314697265625, 2.637646728515625, 2.63864208984375, 2.637822998046875, 2.63769091796875, 2.636580810546875, 2.636631103515625, 2.6366474609375, 2.636380126953125, 2.635778076171875, 2.639795166015625, 2.637285400390625, 2.636735595703125, 2.63680419921875, 2.636505126953125, 2.636515380859375, 2.637959228515625, 2.6366884765625, 2.638927001953125, 2.6396015625, 2.6393056640625, 2.640069580078125, 2.638898193359375, 2.6396181640625, 2.639129638671875, 2.6404248046875, 2.63950439453125, 2.6398291015625, 2.639203369140625, 2.639447021484375, 2.638824462890625, 2.638972900390625, 2.637701171875, 5.43399951171875, 2.63682861328125, 2.637526123046875, 2.637077392578125, 2.636991455078125, 2.636851318359375, 2.63690966796875, 2.636982177734375, 2.638088134765625, 2.63716455078125, 2.63853662109375, 2.638309326171875, 2.63889111328125, 2.64060107421875, 2.637055908203125, 2.63606884765625, 2.63802880859375, 2.637928466796875, 2.6390927734375, 2.6384384765625, 2.637506591796875, 2.63756298828125, 2.63665869140625, 2.636583984375, 2.63687060546875, 2.6370908203125, 2.637446044921875, 2.63802685546875, 2.6375556640625, 2.637516845703125, 2.63621728515625, 2.637552734375, 2.637285400390625, 2.637663330078125, 2.6371767578125, 2.637763671875, 2.63699560546875, 2.63773583984375, 2.637076416015625, 2.637444091796875, 2.636642333984375, 2.636317626953125, 2.63705078125, 2.636695556640625, 2.637413330078125, 2.63615478515625, 2.6434365234375, 2.637322265625, 2.638057373046875, 2.63786181640625, 2.638676025390625, 2.637177734375, 2.63716455078125, 2.637470703125, 2.63781689453125, 2.636496826171875, 2.63722802734375, 2.637602783203125, 2.638507080078125, 2.637663330078125, 2.636621826171875, 2.63727001953125, 2.6375107421875, 5.42925830078125, 2.638592041015625, 2.6379560546875, 2.637390869140625, 2.636768310546875, 2.63889501953125, 2.638235595703125, 2.638288818359375, 2.637874267578125, 2.638148681640625, 2.637728759765625, 2.637327392578125, 2.63690869140625, 2.637347900390625, 2.6369453125, 2.637433837890625, 2.63707958984375, 2.636822509765625, 2.637656982421875, 2.63617529296875, 2.636454833984375, 2.6358466796875, 2.636423095703125, 2.63856640625, 2.63604833984375, 2.63657470703125, 2.637000732421875, 2.637095947265625, 2.636664794921875, 2.6381435546875, 2.640372802734375, 2.638454833984375, 2.636282958984375, 2.636675048828125, 2.635629638671875, 2.636507080078125, 2.63680615234375, 2.63701611328125, 2.636884033203125, 2.63752294921875, 2.6366669921875, 2.63699462890625, 2.63780859375, 2.6374072265625, 2.636739501953125, 2.6374296875, 2.637625244140625, 2.639678466796875, 2.63699658203125, 2.63729052734375, 2.637656982421875, 2.636547119140625, 2.6364794921875, 2.636135498046875, 2.636613525390625, 2.636599365234375, 2.63747265625, 2.6357861328125, 2.63600439453125, 2.6359716796875, 2.636907470703125, 2.636198974609375, 2.639195068359375, 5.42974560546875, 2.637918212890625, 2.638065673828125, 2.6382080078125, 2.639459228515625, 2.638834716796875, 2.640337890625, 2.639097900390625, 2.638284912109375, 2.639035400390625, 2.636672119140625, 2.63703955078125, 2.63772265625, 2.639283203125, 2.6380830078125, 2.639520751953125, 2.63948291015625, 2.637526123046875, 2.638147705078125, 2.637602783203125, 2.63681640625, 2.63762841796875, 2.638529541015625, 2.63696484375, 2.63714599609375, 2.637178955078125, 2.6376796875, 2.63855810546875, 2.641314697265625, 2.637876220703125, 2.63853369140625, 2.63912548828125, 2.637345703125, 2.636560302734375, 2.636971923828125, 2.636669921875, 2.636619873046875, 2.6392392578125, 2.63902099609375, 2.638465087890625, 2.63775341796875, 2.638636962890625, 2.637673583984375, 2.6372373046875, 2.64167431640625, 2.6387353515625, 2.637962158203125, 2.639416259765625, 2.637681640625, 2.639564697265625, 2.6377236328125, 2.638668701171875, 2.638095458984375, 2.63796728515625, 2.637655029296875, 2.637210693359375, 2.63780859375, 2.638158935546875, 2.637846435546875, 2.63988232421875, 2.641334228515625, 2.636745849609375, 2.63619482421875, 5.42609521484375, 2.63847412109375, 2.64098095703125, 2.6405458984375, 2.64087451171875, 2.64148388671875, 2.64074755859375, 2.64026318359375, 2.640604248046875, 2.640962646484375, 2.638622802734375, 2.63895458984375, 2.636958740234375, 2.636030029296875, 2.636072021484375, 2.637117431640625, 2.636577880859375, 2.642241455078125, 2.64078857421875, 2.641033203125, 2.641383544921875, 2.64137841796875, 2.639701904296875, 2.640848876953125, 2.640034912109375, 2.6397451171875, 2.640384033203125, 2.637106201171875, 2.636432373046875, 2.636267578125, 2.637424560546875, 2.636958740234375, 2.63680712890625, 2.637274169921875, 2.638011474609375, 2.63804931640625, 2.63707861328125, 2.636590087890625, 2.63739794921875, 2.63689013671875, 2.63980029296875, 2.639002685546875, 2.638836669921875, 2.63720849609375, 2.637477783203125, 2.637814697265625, 2.637075439453125, 2.637104248046875, 2.638521240234375, 2.63874755859375, 2.63686962890625, 2.63682763671875, 2.637802490234375, 2.63747998046875, 2.6362255859375, 2.63657568359375, 2.636940185546875, 2.642130859375, 2.6372998046875, 2.63684912109375, 2.63803271484375, 2.63796533203125, 2.637073486328125, 5.4244033203125, 2.636745849609375, 2.6364814453125, 2.6371123046875, 2.637408203125, 2.636239990234375, 2.63697607421875, 2.638215087890625, 2.639066162109375, 2.63918994140625, 2.639048583984375, 2.63975634765625, 2.639510498046875, 2.63817626953125, 2.637822021484375, 2.6385029296875, 2.637655029296875, 2.637551513671875, 2.636876708984375, 2.63750048828125, 2.63714599609375, 2.63798779296875, 2.63727099609375, 2.637442138671875, 2.636712890625, 2.637854736328125, 2.638200927734375, 2.6394736328125, 2.63754541015625, 2.636971923828125, 2.637844482421875, 2.63727197265625, 2.6361865234375, 2.636801025390625, 2.637619140625, 2.637947998046875, 2.63809228515625, 2.637560791015625, 2.6417490234375, 2.63729052734375, 2.63712158203125, 2.63689111328125, 2.63716259765625, 2.635864990234375, 2.6373251953125, 2.63663623046875, 2.63742578125, 2.637765625, 2.63775341796875, 2.638487548828125, 2.638257080078125, 2.63924951171875, 2.639295654296875, 2.639500244140625, 2.63644970703125, 2.637189208984375, 2.637624267578125, 2.639413330078125, 2.639233154296875, 2.63777587890625, 2.637401123046875, 2.637765625, 2.63680712890625, 5.42891748046875, 2.637751220703125, 2.6369423828125, 2.637287353515625, 2.6384208984375, 2.6376162109375, 2.637705078125, 2.6376396484375, 2.636984375, 2.636735595703125, 2.637454345703125, 2.63906005859375, 2.641005615234375, 2.639869873046875, 2.638488525390625, 2.638159912109375, 2.638043212890625, 2.6367958984375, 2.6363330078125, 2.637013916015625, 2.63684716796875, 2.63693115234375, 2.636872802734375, 2.64043212890625, 2.636421142578125, 2.63861962890625, 2.63849169921875, 2.638710693359375, 2.637824951171875, 2.6379111328125, 2.636610595703125, 2.6375966796875, 2.637263916015625, 2.63708984375, 2.637641845703125, 2.637759521484375, 2.6372197265625, 2.63781591796875, 2.63773583984375, 2.638950439453125, 2.637347900390625, 2.63666796875, 2.638234619140625, 2.638180419921875, 2.637719482421875, 2.63872216796875, 2.639690673828125, 2.63703662109375, 2.636780517578125, 2.636748779296875, 2.637224853515625, 2.636233642578125, 2.636378173828125, 2.636863525390625, 2.63923193359375, 2.638593994140625, 2.638180419921875, 2.63895556640625, 2.638899169921875, 2.637263916015625, 2.63600537109375, 2.637727783203125, 2.63825, 5.43155078125, 2.637918212890625, 2.63883056640625, 2.63889208984375, 2.63790185546875, 2.637695068359375, 2.636559326171875, 2.636966796875, 2.63714208984375, 2.639033447265625, 2.6404404296875, 2.640530517578125, 2.64198046875, 2.640649169921875, 2.637720458984375, 2.637758544921875, 2.639655029296875, 2.63736328125, 2.63708251953125, 2.636771240234375, 2.636508056640625, 2.63598583984375, 2.6370068359375, 2.636777587890625, 2.636590087890625, 2.63606884765625, 2.63714111328125, 2.63913671875, 2.637537353515625, 2.63705712890625, 2.636992431640625, 2.638615478515625, 2.636080078125, 2.637097900390625, 2.636854248046875, 2.640509033203125, 2.63925146484375, 2.6389052734375, 2.6383544921875, 2.63872705078125, 2.638085205078125, 2.6382275390625, 2.637551513671875, 2.637571044921875, 2.637200439453125, 2.63806982421875, 2.637642822265625, 2.637718505859375, 2.6373642578125, 2.6366044921875, 2.638297119140625, 2.63918798828125, 2.63943896484375, 2.6392646484375, 2.639478759765625, 2.637856689453125, 2.638085205078125, 2.638904296875, 2.6383564453125, 2.639803466796875, 2.640150634765625, 2.637856689453125, 2.640256103515625, 5.4306796875, 2.637127685546875, 2.6382705078125, 2.640280517578125, 2.639151123046875, 2.639075439453125, 2.63817529296875, 2.638035888671875, 2.638784423828125, 2.639287353515625, 2.637106201171875, 2.637173828125, 2.6368388671875, 2.6376591796875, 2.635720703125, 2.63617333984375, 2.636442626953125, 2.63904150390625, 2.6368818359375, 2.635509765625, 2.636674072265625, 2.6366484375, 2.637701171875, 2.638306396484375, 2.64076806640625, 2.63686865234375, 2.6378896484375, 2.639107177734375, 2.6401259765625, 2.6394111328125, 2.63695166015625, 2.63650927734375, 2.636439453125, 2.63674267578125, 2.637043701171875, 2.637275146484375, 2.637382568359375, 2.63693115234375, 2.636669921875, 2.637486083984375, 2.636729248046875, 2.636916748046875, 2.6372802734375, 2.638066650390625, 2.637075439453125, 2.637048828125, 2.636240966796875, 2.637787109375, 2.636506103515625, 2.636660888671875, 2.63712548828125, 2.637421630859375, 2.637157470703125, 2.636517333984375, 2.637552734375, 2.636777587890625, 2.63666064453125, 2.6360966796875, 2.637487060546875, 2.636655517578125, 2.6372158203125, 2.637021240234375, 2.63826025390625, 5.43210595703125, 2.637992919921875, 2.6383369140625, 2.636921875, 2.637557861328125, 2.637305908203125, 2.63912646484375, 2.63752099609375, 2.6370693359375, 2.638551025390625, 2.6377646484375, 2.638067626953125, 2.637068359375, 2.63798876953125, 2.6374892578125, 2.63644775390625, 2.636535888671875, 2.637727783203125, 2.63798876953125, 2.637382568359375, 2.637177734375, 2.637806640625, 2.63628173828125, 2.6376171875, 2.63735302734375, 2.63743896484375, 2.6397236328125, 2.637740966796875, 2.637970458984375, 2.6363720703125, 2.636199951171875, 2.6363935546875, 2.638331787109375, 2.636755859375, 2.636908447265625, 2.636675048828125, 2.63809033203125, 2.636525634765625, 2.63657373046875, 2.63596435546875, 2.63809130859375, 2.6373671875, 2.636396484375, 2.637010009765625, 2.637177734375, 2.636538818359375, 2.637276123046875, 2.638035888671875, 2.636796875, 2.636739501953125, 2.636539794921875, 2.63828076171875, 2.63714404296875, 2.637462646484375, 2.637360107421875, 2.638277587890625, 2.636430419921875, 2.6370283203125, 2.6365234375, 2.638316650390625, 2.636391357421875, 2.636579833984375, 2.636466064453125]",tokens/s,0.3734541728532224,,,main,False,False +4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-66b,facebook/opt-66b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -41239,24 +40839,31 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 162.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,databricks/dbrx-base,databricks/dbrx-base,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,i,i,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -41268,11 +40875,21 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/i/resolve/main/config.json The above exception was the direct cause of the following exception: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn @@ -41283,28 +40900,13 @@ Traceback (most recent call last): response = _request_wrapper( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status - raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66947b61-3dd454f06d4669706371a771;9097486f-9799-43ca-9c32-0c49eeb86a6c) - -403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json. -If you are trying to create or update content,make sure you have a token with the `write` role. - -The above exception was the direct cause of the following exception: + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949031-3a1f54a034a3a88c48a90592;8738dafb-8c32-45c9-a050-4e3569efb582) -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error - raise LocalEntryNotFoundError( -huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. +Repository Not Found for url: https://huggingface.co/i/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. The above exception was the direct cause of the following exception: @@ -41325,13 +40927,15 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like databricks/dbrx-base is not the path to a directory containing a file named config.json. -Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. +OSError: i is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-7.5B,facebook/xglm-7.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-6.7b,EleutherAI/pythia-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1308.962816,6256.328704,0.0,5609.8816,5292.617216,s,10,5.571213256835938,0.5571213256835937,0.0007666840176307737,0.5568714599609375,0.557456005859375,0.5584093994140625,0.5591721142578125,"[0.55936279296875, 0.556702392578125, 0.5567649536132813, 0.5570609741210938, 0.5566168212890625, 0.5568453979492187, 0.557244140625, 0.5567742919921875, 0.5569439697265625, 0.5568975219726563]",tokens/s,459.5049376110048,kWh,6.58186607890659e-06,3.606554268359711e-06,3.10157809854445e-05,4.1204201332710805e-05,tokens/kWh,6212958.672172324,MB,1308.962816,6256.328704,0.0,5609.8816,5503.948288,s,10,327.20778125,32.720778124999995,0.005308491364446453,32.7202353515625,32.7266998046875,32.72907548828125,32.73097603515625,"[32.72102734375, 32.713080078125, 32.72320703125, 32.723677734375, 32.719443359375, 32.726171875, 32.7142578125, 32.71880859375, 32.71665625, 32.731451171875]",tokens/s,1.9253820847208232,kWh,0.00038621306252148413,0.00021167820178359155,0.0018056511605691545,0.00240354242487423,tokens/kWh,26211.31183207494,,s,629,331.6996517333982,0.527344438367883,0.06619643329461054,0.519362548828125,0.5196838745117187,0.5197864990234375,1.0765131103515626,"[0.5193318481445313, 0.5191546630859375, 0.5195264282226563, 0.5193011474609375, 0.519161865234375, 0.5189949340820312, 0.519024658203125, 0.5189488525390625, 0.51919873046875, 0.518950927734375, 0.5190645751953125, 0.5191629028320313, 0.5196636352539062, 0.5194833984375, 0.5193001098632812, 0.5194168090820312, 0.5192283935546875, 0.5194127807617187, 0.5191557006835937, 0.5193123779296875, 0.5200199584960937, 0.5194977416992187, 0.5196605224609375, 0.519141357421875, 0.5195980834960937, 0.5191690063476563, 0.5194024658203125, 0.51964208984375, 0.5193021240234375, 0.5191884765625, 0.5192212524414063, 0.5194844360351563, 0.5194926147460938, 0.5195140991210937, 0.519436279296875, 0.5195079956054688, 0.5191536865234375, 0.5194281005859375, 0.5195120849609375, 0.5192755126953125, 0.5196728515625, 0.5195980834960937, 0.5193359375, 0.5193533325195312, 0.5194619140625, 0.5194895629882812, 0.5192806396484375, 0.5191629028320313, 0.51945166015625, 0.519245849609375, 0.5195632934570312, 0.519736328125, 0.5192724609375, 0.5192140502929687, 0.5193277587890625, 0.5196113891601563, 0.5192888793945313, 0.519089111328125, 0.5195858154296875, 0.519647216796875, 0.5195612182617187, 0.5193564453125, 1.0763663330078126, 0.518898681640625, 0.5189488525390625, 0.5190789184570312, 0.5190236206054688, 0.5189979858398438, 0.5195140991210937, 0.5191475219726562, 0.5191536865234375, 0.5191444702148438, 0.5191588134765625, 0.519103515625, 0.5190625, 0.5190420532226563, 0.5190901489257812, 0.5192744750976562, 0.5193707275390625, 0.5191854248046875, 0.5194649658203125, 0.5193666381835937, 0.5193236694335938, 0.5194281005859375, 0.5191649169921875, 0.5191342163085938, 0.519046142578125, 0.5191383056640625, 0.5194874877929687, 0.5194271240234375, 0.5192376098632813, 0.5192274169921876, 0.5190830078125, 0.519161865234375, 0.51907275390625, 0.51944140625, 0.5194660034179688, 0.5193697509765625, 0.5191290893554688, 0.5192161254882812, 0.51917822265625, 0.51928271484375, 0.5191895141601562, 0.5192591552734375, 0.5195140991210937, 0.51934619140625, 0.5191177978515625, 0.51966259765625, 0.5194188842773437, 0.5195499267578125, 0.5193359375, 0.5193554077148438, 0.5193215942382813, 0.5193707275390625, 0.5193646240234375, 0.5194526977539062, 0.5195642700195312, 0.5192232666015625, 0.5191710815429688, 0.519193603515625, 0.5191710815429688, 0.519245849609375, 0.5192489013671875, 0.519278564453125, 0.5190645751953125, 1.076937744140625, 0.5192662963867187, 0.5193164672851562, 0.5193584594726562, 0.5193011474609375, 0.5191680297851563, 0.5191188354492188, 0.5191270141601563, 0.5195693969726562, 0.5193901977539063, 0.5192611694335938, 0.519352294921875, 0.519352294921875, 0.5192232666015625, 0.5193594970703125, 0.51930419921875, 0.519245849609375, 0.5191546630859375, 0.5192427368164062, 0.5194291381835937, 0.5196943359375, 0.519520263671875, 0.5194066162109375, 0.5193318481445313, 0.5193011474609375, 0.5194178466796875, 0.5193533325195312, 0.5193809814453125, 0.5195612182617187, 0.5193554077148438, 0.5194926147460938, 0.5192898559570313, 0.5194373168945312, 0.5194137573242188, 0.519341064453125, 0.5194496459960938, 0.5192283935546875, 0.51919873046875, 0.5195048828125, 0.5196339111328125, 0.5195560913085937, 0.519572509765625, 0.51938916015625, 0.5192929077148437, 0.5191874389648438, 0.5194547119140625, 0.5193114013671875, 0.5195682983398437, 0.5193922729492187, 0.5194547119140625, 0.5196246948242188, 0.5193451538085937, 0.5195867919921875, 0.5193400268554688, 0.5194721069335938, 0.5192376098632813, 0.51959912109375, 0.5194547119140625, 0.5198776245117187, 0.5195980834960937, 0.519794677734375, 0.5196093139648438, 0.5194988403320312, 1.07694482421875, 0.51944140625, 0.5193348999023437, 0.519572509765625, 0.5193656616210938, 0.5192765502929687, 0.5190225830078125, 0.5192960205078125, 0.5193001098632812, 0.519414794921875, 0.5196113891601563, 0.5192478637695312, 0.5194208984375, 0.5195591430664063, 0.5194547119140625, 0.5194055786132813, 0.5193932495117187, 0.5193236694335938, 0.519299072265625, 0.519203857421875, 0.519172119140625, 0.519413818359375, 0.5194751586914063, 0.5194956665039062, 0.5193031616210938, 0.5192714233398438, 0.5192642822265625, 0.5195704345703125, 0.5194055786132813, 0.5192109985351563, 0.5192069702148437, 0.5193225708007813, 0.5193994140625, 0.5194393310546875, 0.5193717651367188, 0.51938916015625, 0.5194823608398438, 0.5195161743164063, 0.5194229736328125, 0.5193123779296875, 0.5194803466796875, 0.5196267700195313, 0.5195346069335938, 0.5195284423828125, 0.5194066162109375, 0.5194495849609375, 0.5196309204101562, 0.5191699829101563, 0.5192222900390625, 0.5191680297851563, 0.5192140502929687, 0.5192509155273437, 0.5197455444335938, 0.51945166015625, 0.5199011840820312, 0.5196165161132813, 0.5196021728515625, 0.51944140625, 0.519468017578125, 0.5196871948242188, 0.5198428344726562, 0.5196503295898437, 0.5193164672851562, 1.076336669921875, 0.5190471801757812, 0.51890380859375, 0.5190809326171875, 0.5190072021484375, 0.5190051879882812, 0.519067626953125, 0.5190942993164063, 0.5192550659179688, 0.5191608276367188, 0.51911474609375, 0.5190000610351563, 0.5190625, 0.5189099731445312, 0.5189284057617187, 0.5190532836914062, 0.5191976928710937, 0.5195181884765625, 0.5195192260742187, 0.5192243041992187, 0.5194373779296875, 0.5194208374023438, 0.5193380126953125, 0.51938818359375, 0.5193707275390625, 0.5193901977539063, 0.5194732055664063, 0.5196451416015625, 0.5194977416992187, 0.5196513061523438, 0.5195796508789062, 0.5192212524414063, 0.5195172119140625, 0.5192601318359376, 0.5197967529296875, 0.5195601806640625, 0.5197598876953125, 0.5193154296875, 0.5192755126953125, 0.5190604858398438, 0.519140380859375, 0.519161865234375, 0.5192714233398438, 0.5192130737304688, 0.519172119140625, 0.5193922729492187, 0.5197404174804687, 0.5195489501953126, 0.5196461791992187, 0.5194475708007813, 0.5194373168945312, 0.5194741821289063, 0.5194240112304688, 0.5196431274414063, 0.51991552734375, 0.5195888671875, 0.5194813232421875, 0.5196830444335937, 0.5193574829101563, 0.5195447387695312, 0.519552001953125, 0.5194495849609375, 0.5193912353515625, 1.0770308837890625, 0.519299072265625, 0.519161865234375, 0.519352294921875, 0.519202880859375, 0.519232421875, 0.5192161254882812, 0.5191495971679687, 0.5193451538085937, 0.5194649658203125, 0.5192969970703125, 0.51949365234375, 0.5189734497070313, 0.5189652709960938, 0.5190738525390625, 0.5190205078125, 0.5188731079101563, 0.5189837036132813, 0.5191946411132813, 0.5191895141601562, 0.5194915771484375, 0.5194823608398438, 0.5194649658203125, 0.5193861083984375, 0.519541748046875, 0.5195222778320312, 0.5193441162109375, 0.5196687622070313, 0.5194107055664062, 0.5194291381835937, 0.5196728515625, 0.519736328125, 0.5194956665039062, 0.5196932983398438, 0.51970458984375, 0.5194557495117188, 0.5194752197265625, 0.5195489501953126, 0.5196452026367188, 0.51976904296875, 0.5196585693359375, 0.5195037841796875, 0.5197609252929688, 0.5197005004882812, 0.5194229736328125, 0.51953564453125, 0.5195899047851562, 0.5200025634765625, 0.5196328735351563, 0.5195530395507812, 0.5195929565429688, 0.5197322387695312, 0.519456787109375, 0.5192703857421875, 0.5194905395507813, 0.5194588012695313, 0.5194240112304688, 0.5194588012695313, 0.519572509765625, 0.5200353393554688, 0.5195612182617187, 0.5195438232421875, 0.5196062622070312, 1.0774559326171875, 0.5191044921875, 0.5191157836914062, 0.5191874389648438, 0.5194168090820312, 0.519161865234375, 0.5189949340820312, 0.5192335205078125, 0.5191475219726562, 0.5193502807617187, 0.5192642822265625, 0.5191946411132813, 0.5190123291015625, 0.5190532836914062, 0.5194086303710937, 0.5190615234375, 0.5189734497070313, 0.5190645751953125, 0.5192376098632813, 0.5190942993164063, 0.5191700439453125, 0.5191280517578125, 0.5192765502929687, 0.5192151489257812, 0.5193707275390625, 0.5190543212890625, 0.5191290893554688, 0.5193359375, 0.5194874877929687, 0.5193267211914062, 0.5189846801757813, 0.51919873046875, 0.5191116943359375, 0.5194178466796875, 0.51928369140625, 0.5192315063476562, 0.51917724609375, 0.5193430786132812, 0.5191895141601562, 0.5191710815429688, 0.5193011474609375, 0.5194956665039062, 0.5192806396484375, 0.519357421875, 0.5193850708007812, 0.5195530395507812, 0.5191905517578125, 0.519109619140625, 0.5193072509765625, 0.5192550659179688, 0.5195325317382813, 0.5192079467773437, 0.5195632934570312, 0.5195438232421875, 0.5192283935546875, 0.5193164672851562, 0.5193871459960937, 0.519130126953125, 0.5190543212890625, 0.519066650390625, 0.519762939453125, 0.5196871948242188, 0.51964208984375, 1.0765701904296876, 0.5193727416992188, 0.5190225830078125, 0.51900927734375, 0.51913525390625, 0.5190553588867187, 0.5191137084960937, 0.519404541015625, 0.5193369750976562, 0.5193421020507812, 0.5189796142578125, 0.5190471801757812, 0.5191260375976563, 0.5190000610351563, 0.5188761596679687, 0.5193082885742187, 0.5192929077148437, 0.5189151000976563, 0.5193871459960937, 0.5191874389648438, 0.5193277587890625, 0.5193389892578125, 0.5194967041015625, 0.5193380126953125, 0.518867919921875, 0.5191762084960938, 0.5194178466796875, 0.5198345947265625, 0.5194864501953125, 0.519278564453125, 0.5193430786132812, 0.5191434326171875, 0.51901953125, 0.519066650390625, 0.5193963623046876, 0.5190963134765625, 0.51917822265625, 0.5191843872070312, 0.5193840942382812, 0.5189468383789062, 0.5197189331054688, 0.5195069580078125, 0.5195929565429688, 0.5196318969726562, 0.5192345581054687, 0.5199708251953125, 0.5198817138671875, 0.5194895629882812, 0.5193318481445313, 0.51960009765625, 0.519520263671875, 0.5197168579101562, 0.5195089721679688, 0.5197127685546875, 0.5197619018554688, 0.5193789672851562, 0.5196011352539063, 0.5199605712890625, 0.5192171630859375, 0.519773193359375, 0.5193154296875, 0.5193421020507812, 0.5191127319335938, 1.076674560546875, 0.5193175048828125, 0.5198510131835937, 0.5194219360351563, 0.5192171630859375, 0.5192335205078125, 0.5190491943359375, 0.5191076049804687, 0.519288818359375, 0.519351318359375, 0.51945166015625, 0.5192109985351563, 0.5194281005859375, 0.5190523071289063, 0.518887451171875, 0.5189160766601563, 0.5193380126953125, 0.5191219482421875, 0.5194137573242188, 0.5189949340820312, 0.5194024658203125, 0.5194833984375, 0.5191393432617187, 0.5193871459960937, 0.5191823120117187, 0.519035888671875, 0.5191137084960937, 0.5192263793945312, 0.5193850708007812, 0.5195980834960937, 0.519099365234375, 0.5191802978515625, 0.519103515625, 0.5190819702148437, 0.5191076049804687, 0.5194823608398438, 0.519362548828125, 0.5193380126953125, 0.5192847290039062, 0.5194066162109375, 0.5196646118164062, 0.519319580078125, 0.5197086791992187, 0.5193389892578125, 0.5191321411132812, 0.5191423950195313, 0.5191177978515625, 0.51974658203125, 0.5195028686523437, 0.5193082885742187, 0.5194967041015625, 0.5192734985351563, 0.5193185424804687, 0.5191393432617187, 0.5193789672851562, 0.5193001098632812, 0.519245849609375, 0.5193215942382813, 0.5193871459960937, 0.5200670776367188, 0.5194752197265625, 0.5193564453125, 0.519161865234375, 1.0765865478515626, 0.5188423461914062, 0.5193768920898437, 0.5195335693359375, 0.5195069580078125, 0.5196103515625, 0.5192714233398438, 0.5193687133789062, 0.5194761962890625, 0.5191976928710937, 0.5193594970703125, 0.5194977416992187, 0.5192212524414063, 0.5192960205078125, 0.5195693969726562, 0.51974755859375, 0.519372802734375, 0.5196605224609375, 0.5194926147460938, 0.5194332275390625, 0.5192581176757812, 0.5195612182617187, 0.519888916015625, 0.52008251953125, 0.519522216796875, 0.519762939453125, 0.5197742309570312, 0.5199441528320312, 0.5196011352539063, 0.5197128295898438, 0.519615478515625, 0.5195438232421875, 0.5197282104492188, 0.52025439453125, 0.52010595703125, 0.5197557983398438, 0.5197957153320313, 0.5193380126953125, 0.5193861083984375, 0.5192591552734375, 0.5193103637695312, 0.5194598388671875, 0.519741455078125, 0.5195346069335938, 0.519635986328125, 0.5194772338867187, 0.5194158325195313, 0.5195806884765625, 0.5193267211914062, 0.5193666381835937, 0.5194485473632813, 0.5195233154296875, 0.5197117309570313, 0.519857177734375, 0.519552001953125, 0.519488525390625, 0.5193113403320313, 0.519372802734375, 0.5194302368164062, 0.5193245849609375, 0.5197352905273438, 0.51986328125, 0.5195817260742187]",tokens/s,1.8962938209701676,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-0.5B,Qwen/Qwen1.5-0.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1440.489472,1709.703168,0.0,1063.256064,942.605312,s,10,0.8710727081298828,0.08710727081298827,0.0020526611434407644,0.0869946403503418,0.08830768203735351,0.09043918418884277,0.09214438591003418,"[0.09257068634033203, 0.08689478302001953, 0.08709449768066406, 0.08734588623046875, 0.0876402587890625, 0.08528950500488282, 0.08547952270507812, 0.08543309020996094, 0.08549046325683594, 0.08783401489257812]",tokens/s,2938.9050719957663,kWh,1.0307077509193605e-06,5.647778186555472e-07,2.6262726324173835e-06,4.221758201992291e-06,tokens/kWh,60638243.06166823,MB,1440.817152,1709.703168,0.0,1063.256064,942.607872,s,10,54.10364501953125,5.410364501953125,0.04442393039305028,5.402393798828125,5.47523671875,5.4771017578125,5.478593789062501,"[5.402685546875, 5.4450302734375, 5.474822265625, 5.478966796875, 5.39001171875, 5.366296875, 5.3479423828125, 5.3592861328125, 5.4365009765625, 5.40210205078125]",tokens/s,11.64431712082563,kWh,6.414297001805283e-05,3.5154539095709204e-05,0.00015373626912418487,0.00025303377823794696,tokens/kWh,248978.61636779693,,s,629,54.788874206542985,0.08710472846827182,0.01042761753839409,0.08542822265625,0.08754749298095703,0.08829050750732421,0.17079922241210937,"[0.08673382568359375, 0.08457215881347656, 0.08464179229736328, 0.08488550567626953, 0.08813362884521485, 0.08856473541259766, 0.08671949005126953, 0.08648601531982422, 0.08687923431396484, 0.08737894439697266, 0.08506470489501954, 0.0844554214477539, 0.0844400634765625, 0.08486911773681641, 0.08474524688720703, 0.08481378936767578, 0.08675328063964843, 0.08531455993652344, 0.08472268676757813, 0.08468172454833985, 0.08468172454833985, 0.0845322265625, 0.08479436492919921, 0.08471552276611329, 0.08475545501708984, 0.08474521636962891, 0.08502886199951172, 0.0846899871826172, 0.0848424301147461, 0.084569091796875, 0.08475955200195312, 0.08495104217529297, 0.08461721801757813, 0.08463571166992187, 0.08458643341064453, 0.08476876831054687, 0.08473804473876953, 0.08473190307617187, 0.0844554214477539, 0.08442777252197266, 0.08484761810302735, 0.08466124725341796, 0.08562483215332031, 0.08599142456054687, 0.08450764465332031, 0.0840970230102539, 0.08538521575927735, 0.08838041687011719, 0.0868485107421875, 0.08694374084472656, 0.08736255645751953, 0.08686080169677735, 0.08700518035888671, 0.08699289703369141, 0.08753254699707032, 0.0868485107421875, 0.08696627044677735, 0.08728985595703125, 0.08770150756835937, 0.08642969512939454, 0.08510566711425781, 0.08681779479980468, 0.1740953674316406, 0.08652799987792968, 0.08564736175537109, 0.0842209243774414, 0.08706150054931641, 0.08500326538085938, 0.08664473724365235, 0.08596275329589843, 0.0853391342163086, 0.08664268493652344, 0.08708096313476563, 0.08690073394775391, 0.08696934509277343, 0.08694783782958984, 0.08664575958251954, 0.08597196960449219, 0.08684748840332031, 0.08683110046386719, 0.08509439849853516, 0.08638566589355469, 0.08632217407226563, 0.08716287994384765, 0.087119873046875, 0.08713215637207031, 0.08506470489501954, 0.08651168060302734, 0.08632109069824219, 0.08708403015136719, 0.08612662506103516, 0.08650748443603516, 0.08707481384277344, 0.08641535949707031, 0.08600678253173828, 0.08589107513427735, 0.08514252471923828, 0.08699494171142579, 0.08681676483154296, 0.08650956726074219, 0.0871383056640625, 0.08712806701660156, 0.08630374145507813, 0.08593612670898437, 0.08639590454101563, 0.08506681823730469, 0.08687712097167968, 0.08704512023925781, 0.08696115112304688, 0.08838451385498047, 0.08482816314697265, 0.08464895629882813, 0.08431206512451171, 0.08453427124023437, 0.08795238494873046, 0.08794931030273437, 0.08684134674072265, 0.08686592102050782, 0.08699801635742188, 0.08754073333740234, 0.087947265625, 0.08687513732910156, 0.08657100677490234, 0.08599350738525391, 0.08582653045654297, 0.17401548767089844, 0.0865423355102539, 0.08694374084472656, 0.08704204559326172, 0.08744652557373046, 0.08659967803955078, 0.08703897857666015, 0.08700109100341796, 0.08715776062011718, 0.08681574249267578, 0.08705433654785157, 0.08619929504394531, 0.08701548767089844, 0.086857666015625, 0.08725811004638671, 0.08656588745117187, 0.08733184051513672, 0.0871731185913086, 0.08719257354736328, 0.08709120178222657, 0.0869713897705078, 0.0868485107421875, 0.08620236968994141, 0.08700415802001953, 0.08701337432861328, 0.0868331527709961, 0.08713420867919922, 0.08696627044677735, 0.08672972869873047, 0.08645836639404297, 0.08661094665527344, 0.08728678131103515, 0.08693452453613282, 0.08721206665039062, 0.08688022613525391, 0.08789299011230468, 0.08672870635986328, 0.08694477081298828, 0.087731201171875, 0.08747007751464844, 0.08717005157470703, 0.08711270141601563, 0.08729190063476562, 0.08698271942138672, 0.08669484710693359, 0.08654745483398438, 0.08669286346435547, 0.08840806579589844, 0.08711475372314453, 0.08676044464111328, 0.08631705474853515, 0.08654956817626953, 0.08599648284912109, 0.08647679901123047, 0.08694989013671875, 0.08696524810791016, 0.08698060607910156, 0.08548556518554687, 0.08556953430175782, 0.0868823013305664, 0.08658534240722657, 0.08709939575195312, 0.08710451507568359, 0.17466163635253906, 0.08715673828125, 0.08728371429443359, 0.08680345916748047, 0.08702361297607422, 0.0872099838256836, 0.08695299530029296, 0.0865228500366211, 0.08702054595947266, 0.08711270141601563, 0.08681267547607421, 0.0862402572631836, 0.08722022247314454, 0.08714342498779297, 0.08641433715820312, 0.08614297485351563, 0.08621363067626953, 0.08743526458740235, 0.0874260482788086, 0.08645123291015624, 0.08728675079345703, 0.08692940521240235, 0.08707891082763672, 0.08719055938720703, 0.08709014129638672, 0.08714854431152344, 0.08714035034179687, 0.08686592102050782, 0.0871751708984375, 0.08751411437988281, 0.08707379150390625, 0.08701952362060547, 0.08471449279785156, 0.08613683319091797, 0.08813772583007813, 0.08714240264892578, 0.08702566528320313, 0.0872959976196289, 0.08773222351074218, 0.08883302307128907, 0.08757759857177734, 0.08561151885986328, 0.08676659393310547, 0.08834764862060547, 0.08476467132568359, 0.08778854370117188, 0.08729497528076172, 0.08688441467285156, 0.08712287902832032, 0.0869744644165039, 0.0868136978149414, 0.08646246337890626, 0.08621875, 0.08678707122802734, 0.08692428588867188, 0.08732262420654296, 0.08703692626953125, 0.08800665283203125, 0.08684236907958984, 0.08649215698242188, 0.0869048309326172, 0.08684236907958984, 0.08680857849121094, 0.1740042266845703, 0.08717619323730469, 0.0870635528564453, 0.0868219223022461, 0.08698159790039063, 0.08682291412353516, 0.08556953430175782, 0.08729804992675781, 0.08690278625488282, 0.08721305847167969, 0.08680857849121094, 0.08707686614990234, 0.08708812713623047, 0.0862003173828125, 0.08698265838623047, 0.08703385925292968, 0.08684031677246094, 0.08691814422607422, 0.08724281311035156, 0.08704608154296875, 0.08688742065429687, 0.08603648376464844, 0.08850739288330078, 0.08509849548339844, 0.08658636474609376, 0.08696934509277343, 0.08461007690429688, 0.08453526306152344, 0.08452095794677734, 0.08469811248779296, 0.084959228515625, 0.08464383697509766, 0.08490086364746094, 0.08458649444580078, 0.08620851135253907, 0.08480665588378906, 0.08471449279785156, 0.08450867462158203, 0.08490086364746094, 0.0845486068725586, 0.08454962921142578, 0.08446873474121094, 0.0846909408569336, 0.0845506591796875, 0.08456806182861328, 0.08460185241699218, 0.08472268676757813, 0.08459366607666016, 0.08461414337158203, 0.0848005142211914, 0.08458854675292969, 0.08446669006347657, 0.08458854675292969, 0.08470323181152344, 0.08453427124023437, 0.08449433898925782, 0.08460192108154296, 0.08460384368896484, 0.08456192016601563, 0.08444825744628906, 0.08477184295654297, 0.0844421157836914, 0.08439193725585938, 0.17255935668945313, 0.08706764984130859, 0.0871720962524414, 0.0869908447265625, 0.08572518157958985, 0.08475033569335938, 0.0848353271484375, 0.08454962921142578, 0.08473804473876953, 0.08482406616210937, 0.08465305328369141, 0.08468479919433594, 0.08473395538330078, 0.08460902404785156, 0.08453529357910156, 0.08463053131103515, 0.0845455322265625, 0.08432128143310547, 0.08473190307617187, 0.08471449279785156, 0.084578369140625, 0.08457823944091797, 0.08466944122314453, 0.08652288055419922, 0.08498278045654296, 0.08480255889892578, 0.08473702239990234, 0.08468787384033204, 0.08633650970458985, 0.0850851821899414, 0.08458751678466797, 0.08468991851806641, 0.08474726104736328, 0.0846909408569336, 0.0885032958984375, 0.08480870056152344, 0.0858071060180664, 0.08694374084472656, 0.08694989013671875, 0.08657920074462891, 0.08678604888916015, 0.08691814422607422, 0.084853759765625, 0.08535858917236328, 0.08599654388427734, 0.08458137512207031, 0.08471347045898438, 0.084495361328125, 0.08461516571044922, 0.0845322265625, 0.08443698883056641, 0.0841891860961914, 0.08461619567871094, 0.0845137939453125, 0.0844031982421875, 0.08491827392578125, 0.08468889617919922, 0.08446873474121094, 0.08431718444824218, 0.0844595489501953, 0.08526640319824219, 0.08521421051025391, 0.0846397476196289, 0.1709055938720703, 0.08506777954101563, 0.08515379333496094, 0.08487731170654297, 0.08472576141357421, 0.08464383697509766, 0.08466124725341796, 0.08488448333740234, 0.08489778900146484, 0.08490598297119141, 0.08465203094482422, 0.0848189468383789, 0.08532991790771484, 0.08477286529541016, 0.08459468841552735, 0.08518246459960938, 0.08490803527832032, 0.0846561279296875, 0.08462028503417969, 0.08444313812255859, 0.0862208023071289, 0.08462643432617188, 0.08517222595214843, 0.08487423706054688, 0.08629145812988281, 0.08506470489501954, 0.0851937255859375, 0.08485785675048828, 0.08452505493164063, 0.0856289291381836, 0.08493059539794921, 0.08512406158447265, 0.08508620452880859, 0.08450457763671874, 0.084515869140625, 0.08459465789794922, 0.08446975708007813, 0.08475852966308593, 0.08493772888183594, 0.08463161468505859, 0.08454649353027344, 0.0845322265625, 0.08463667297363281, 0.08475753784179688, 0.08451376342773438, 0.08450662231445312, 0.08457318115234375, 0.08449842834472657, 0.08456294250488282, 0.08457523345947265, 0.08489676666259766, 0.08472576141357421, 0.087193603515625, 0.08506368255615235, 0.08472064208984376, 0.08463565063476562, 0.08460390472412109, 0.08499712371826172, 0.08570368194580077, 0.08466124725341796, 0.08457625579833984, 0.08450355529785156, 0.08474214172363281, 0.17052569580078125, 0.0847298583984375, 0.08458444976806641, 0.08468275451660157, 0.08454041290283203, 0.08447081756591797, 0.08448406219482422, 0.08457523345947265, 0.0845301742553711, 0.0844247055053711, 0.08477286529541016, 0.08456502532958984, 0.08428745269775391, 0.08627097320556641, 0.08500633239746094, 0.08606105804443359, 0.08684646606445312, 0.08513126373291016, 0.08685874938964844, 0.08501042938232421, 0.08475545501708984, 0.0846346206665039, 0.08462438201904297, 0.08665497589111328, 0.08509542083740235, 0.08484454345703125, 0.08662322998046874, 0.08476467132568359, 0.08460492706298828, 0.0845998077392578, 0.08459878540039062, 0.08473702239990234, 0.08481484985351563, 0.08530022430419922, 0.08468275451660157, 0.08468685150146485, 0.08445645141601563, 0.08475548553466797, 0.08516194915771484, 0.08527359771728515, 0.08474931335449219, 0.08479542541503907, 0.08579888153076172, 0.08668876647949218, 0.08599346923828124, 0.08607129669189453, 0.08541696166992188, 0.08659865570068359, 0.08641024017333984, 0.08462847900390626, 0.08492339324951172, 0.0848875503540039, 0.084674560546875, 0.08466534423828125, 0.08485273742675781, 0.08462643432617188, 0.08465408325195313, 0.08468479919433594, 0.08457011413574218, 0.0847984619140625, 0.08467558288574219, 0.08471142578125, 0.08483334350585937, 0.1702665557861328, 0.08738406372070312, 0.08923648071289063, 0.08826573181152343, 0.08826470184326173, 0.08866099548339844, 0.08817049407958985, 0.08779468536376953, 0.08849612426757812, 0.08879206085205078, 0.08808345794677734, 0.08809164428710937, 0.0881233901977539, 0.08886784362792968, 0.08884019470214843, 0.08862515258789062, 0.08821043395996093, 0.08844905853271484, 0.08820121765136718, 0.08817353820800782, 0.08852275085449218, 0.08854227447509766, 0.08476563262939453, 0.0872243194580078, 0.08712806701660156, 0.08852275085449218, 0.08827391815185547, 0.08493363189697266, 0.08474214172363281, 0.08446873474121094, 0.08490598297119141, 0.08460697937011719, 0.08487014770507813, 0.08471858978271485, 0.08479743957519531, 0.0852490234375, 0.08817971038818359, 0.0883599395751953, 0.08766566467285156, 0.0848189468383789, 0.08454348754882812, 0.08476876831054687, 0.08462950134277344, 0.08455782318115235, 0.0845998077392578, 0.08457523345947265, 0.08428851318359375, 0.08459468841552735, 0.08465920257568359, 0.08506470489501954, 0.08472268676757813, 0.08413491058349609, 0.08476467132568359, 0.08465715026855469, 0.08452915191650391, 0.08448102569580078, 0.0847267837524414, 0.08448614501953125, 0.08460594940185547, 0.08444416046142578, 0.08624127960205077, 0.08508006286621093, 0.08459878540039062, 0.1760184326171875, 0.08723353576660156, 0.08769331359863282, 0.08806092834472656, 0.08757453155517578, 0.08732978820800781, 0.08919449615478516, 0.08813977813720703, 0.08797286224365235, 0.08746189117431641, 0.08733798217773438, 0.08667750549316407, 0.08574054718017578, 0.08622182464599609, 0.08452095794677734, 0.08488345336914062, 0.08462950134277344, 0.08516403198242188, 0.08760736083984375, 0.08629344177246094, 0.08519782257080079, 0.08494694519042968, 0.08468275451660157, 0.08495308685302734, 0.08589212799072266, 0.08511488342285156, 0.08629449462890625, 0.08508927917480469, 0.08481075286865235, 0.08436326599121094, 0.08498995208740234, 0.08503705596923829, 0.08542822265625, 0.08469503784179687, 0.08443392181396485, 0.08501554870605468, 0.0846376953125, 0.08496742248535157, 0.08612351989746093, 0.08490290832519531, 0.08461516571044922, 0.08477081298828125, 0.0848005142211914, 0.08621977233886718, 0.08505651092529297, 0.08459571075439454, 0.08459878540039062, 0.08486918640136719, 0.08474515533447266, 0.08450969696044922, 0.08503501129150391, 0.0847267837524414, 0.08468889617919922, 0.08508927917480469, 0.0886118392944336, 0.08830156707763671, 0.08738508605957031, 0.08487321472167969, 0.0855920639038086, 0.08490496063232422, 0.08478208160400391, 0.08481689453125, 0.08506368255615235]",tokens/s,11.480433009606973,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-16B-nl,Salesforce/codegen-16B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -41357,10 +40961,62 @@ ChildProcessError: Traceback (most recent call last): cls._check_and_enable_flash_attn_2( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 raise ValueError( -ValueError: XGLMForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpckq6u6ex/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new +ValueError: CodeGenForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpqa80axcd/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-j-6b,,cuda,0,42,,,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,MB,2054.77888,5566.365696,0.0,4919.918592,4635.537408,s,10,5.159750671386719,0.5159750671386718,0.0024202673095528563,0.5153813171386719,0.5170659973144531,0.5199656463623047,0.5222853656005859,"[0.5228652954101562, 0.5143955078125, 0.5157650146484375, 0.5144519653320313, 0.5155265502929688, 0.5141107177734375, 0.516309814453125, 0.5146680908203125, 0.516421630859375, 0.515236083984375]",tokens/s,496.14800463061573,kWh,6.087385805116759e-06,3.3354087369571064e-06,2.7887036198498415e-05,3.7309830740572285e-05,tokens/kWh,6861462.379179726,MB,2054.77888,5566.365696,0.0,4919.918592,4794.439168,s,10,301.012869140625,30.101286914062502,0.007474756939868433,30.101162109375,30.1092380859375,30.11128505859375,30.11292263671875,"[30.104474609375, 30.0874609375, 30.10366796875, 30.09865625, 30.095248046875, 30.1085703125, 30.108783203125, 30.11333203125, 30.097923828125, 30.094751953125]",tokens/s,2.0929337732257594,kWh,0.00035535723721815483,0.00019476662748246779,0.0016039330748120972,0.00215405693951272,tokens/kWh,29247.13773548231,,s,629,305.1713383178704,0.4851690593288888,0.06123176770881389,0.4777687072753906,0.47843901367187497,0.47872921142578123,0.9921051538085938,"[0.47712460327148437, 0.4769034118652344, 0.47702426147460936, 0.47709390258789064, 0.47730584716796876, 0.4771205139160156, 0.4773304443359375, 0.47765298461914063, 0.4770846862792969, 0.4785274963378906, 0.47798681640625, 0.47815167236328127, 0.4778588256835937, 0.4773570556640625, 0.477907958984375, 0.47804620361328126, 0.47764480590820313, 0.4777400207519531, 0.4774901733398437, 0.4775546875, 0.4790906982421875, 0.47841998291015625, 0.4775454711914062, 0.4774205322265625, 0.4777062377929687, 0.4773007507324219, 0.47782296752929687, 0.477517822265625, 0.47927194213867186, 0.47922592163085936, 0.4796824951171875, 0.4796200866699219, 0.478603271484375, 0.47771649169921876, 0.4775034790039063, 0.47786904907226563, 0.4779376525878906, 0.4778526611328125, 0.47831039428710936, 0.47768167114257815, 0.4777820129394531, 0.47838104248046875, 0.4779438171386719, 0.4779376525878906, 0.47762432861328125, 0.47779022216796874, 0.47766015625, 0.4779346008300781, 0.47730584716796876, 0.47776666259765627, 0.4777215881347656, 0.4779438171386719, 0.4776980590820312, 0.4786534423828125, 0.47755673217773437, 0.4775034790039063, 0.47755059814453127, 0.47741543579101564, 0.4771686401367187, 0.47783526611328125, 0.4779069519042969, 0.4776560668945313, 0.9921392822265624, 0.4773294067382812, 0.4772085876464844, 0.477370361328125, 0.4770396728515625, 0.4769504699707031, 0.47741748046875, 0.47746356201171875, 0.4771512451171875, 0.47819979858398437, 0.4786329650878906, 0.47734783935546876, 0.477412353515625, 0.4770017395019531, 0.47757003784179686, 0.47735910034179685, 0.47719219970703125, 0.4772116394042969, 0.4775659484863281, 0.47811892700195313, 0.4780257263183594, 0.4779304809570312, 0.4777492370605469, 0.4775045166015625, 0.4776427612304687, 0.4780738525390625, 0.4773498840332031, 0.47781170654296873, 0.4772178039550781, 0.47686654663085937, 0.4779991149902344, 0.47811175537109374, 0.47742669677734373, 0.4774471740722656, 0.47721368408203124, 0.4768757629394531, 0.47745944213867186, 0.4774481811523438, 0.4774799499511719, 0.4782315979003906, 0.4776785583496094, 0.4772024230957031, 0.477707275390625, 0.47777587890625, 0.47741030883789065, 0.47758950805664063, 0.47756494140625, 0.47724337768554687, 0.4777215881347656, 0.47767962646484374, 0.47741543579101564, 0.47842715454101564, 0.4785602111816406, 0.4774819946289062, 0.4774615173339844, 0.4775465087890625, 0.4775475158691406, 0.4778106994628906, 0.4775577697753906, 0.4773294067382812, 0.47762738037109376, 0.47781375122070313, 0.4781895751953125, 0.9939957885742188, 0.47789157104492186, 0.4779029235839844, 0.4775321044921875, 0.4773294067382812, 0.47682968139648435, 0.4777994384765625, 0.478455810546875, 0.4786780090332031, 0.47789056396484375, 0.47756390380859376, 0.4770979919433594, 0.47737344360351563, 0.4772915344238281, 0.4772536315917969, 0.4778649597167969, 0.47748095703125, 0.4771614685058594, 0.47814862060546875, 0.47750143432617187, 0.4773918762207031, 0.47743896484375, 0.4776662902832031, 0.47875582885742185, 0.4773284606933594, 0.4779539794921875, 0.4778567810058594, 0.47754238891601564, 0.47780154418945314, 0.47773382568359374, 0.4781598815917969, 0.4780472412109375, 0.4777594909667969, 0.477765625, 0.47762841796875, 0.47739596557617187, 0.47771444702148436, 0.47763250732421875, 0.4777687072753906, 0.4783943786621094, 0.47779736328125, 0.4777215881347656, 0.47773284912109376, 0.47762841796875, 0.4779315185546875, 0.4779735107421875, 0.4777461853027344, 0.4787445983886719, 0.47787722778320313, 0.4785080261230469, 0.4784373779296875, 0.47873638916015626, 0.47828274536132814, 0.4777001037597656, 0.47793560791015627, 0.4780277709960937, 0.47800115966796874, 0.47787213134765627, 0.47758950805664063, 0.47742156982421874, 0.47888998413085937, 0.478159912109375, 0.47799700927734373, 0.9920173950195312, 0.47721368408203124, 0.4778260498046875, 0.477939697265625, 0.47749530029296877, 0.4772659912109375, 0.4777287292480469, 0.4779949645996094, 0.47825204467773436, 0.4779581298828125, 0.4773775329589844, 0.4774225769042969, 0.47868109130859376, 0.4778076171875, 0.47798785400390625, 0.478139404296875, 0.47792538452148436, 0.4779366455078125, 0.4774615173339844, 0.47746356201171875, 0.477728759765625, 0.47751473999023436, 0.47717376708984377, 0.47695462036132813, 0.4774942626953125, 0.47761920166015626, 0.4774625244140625, 0.4780001220703125, 0.4778526611328125, 0.47788134765625, 0.4775301513671875, 0.47762127685546873, 0.4773498229980469, 0.4779581298828125, 0.4775413818359375, 0.47721881103515623, 0.47748504638671874, 0.4778824462890625, 0.47803488159179686, 0.47796633911132813, 0.47795098876953124, 0.47843328857421874, 0.4778895263671875, 0.47771749877929687, 0.47763766479492187, 0.47745123291015623, 0.47731610107421873, 0.47720550537109374, 0.47810763549804686, 0.47794686889648436, 0.478023681640625, 0.47817214965820315, 0.4775679931640625, 0.4772167663574219, 0.4781783142089844, 0.4780738525390625, 0.4782264404296875, 0.4780769348144531, 0.4779223022460938, 0.4776662902832031, 0.47806668090820315, 0.4780738525390625, 0.47803903198242187, 0.9936957397460937, 0.47736831665039064, 0.4772413330078125, 0.47760589599609377, 0.47733966064453126, 0.4780892028808594, 0.47794790649414065, 0.4774604797363281, 0.47752294921875, 0.4775792541503906, 0.47779022216796874, 0.4776407165527344, 0.4775096435546875, 0.4774523010253906, 0.4773304443359375, 0.4777021484375, 0.477939697265625, 0.4781055908203125, 0.4771205749511719, 0.477898681640625, 0.47731201171875, 0.47782196044921876, 0.4773775329589844, 0.4771747741699219, 0.4777697143554688, 0.47787213134765627, 0.4778188781738281, 0.4779683837890625, 0.47738983154296877, 0.4772915344238281, 0.4775802917480469, 0.47765914916992186, 0.47731201171875, 0.47755877685546877, 0.4773355407714844, 0.4775382995605469, 0.477918212890625, 0.47747378540039065, 0.4770508728027344, 0.4778793029785156, 0.477528076171875, 0.47719937133789064, 0.4775516052246094, 0.4772341613769531, 0.4773990478515625, 0.47757415771484374, 0.47758746337890623, 0.47739495849609376, 0.47834423828125, 0.4778536682128906, 0.4773058776855469, 0.47772262573242186, 0.4777635498046875, 0.4777185363769531, 0.4785080261230469, 0.4780687255859375, 0.4775168151855469, 0.4807618408203125, 0.47829605102539063, 0.47767245483398435, 0.4783206481933594, 0.4779980773925781, 0.4780625915527344, 0.9916989135742188, 0.47712973022460936, 0.4770652160644531, 0.4772781982421875, 0.47782296752929687, 0.47800833129882814, 0.47793356323242187, 0.47763150024414064, 0.47709390258789064, 0.47777484130859377, 0.4777667236328125, 0.47767550659179686, 0.47757720947265625, 0.4771798400878906, 0.47727410888671873, 0.47779531860351565, 0.4776089477539063, 0.4775792541503906, 0.47766937255859376, 0.47783627319335936, 0.47713690185546875, 0.47779226684570314, 0.4778567810058594, 0.4774615173339844, 0.4775833740234375, 0.47805950927734375, 0.47846502685546877, 0.478561279296875, 0.4782633056640625, 0.4781055908203125, 0.47865753173828124, 0.47780044555664064, 0.47805950927734375, 0.4787906494140625, 0.47858688354492185, 0.47910400390625, 0.47804107666015627, 0.4773498840332031, 0.47763455200195315, 0.4782264404296875, 0.47779736328125, 0.47735809326171874, 0.4779683837890625, 0.4779571228027344, 0.47788134765625, 0.47783627319335936, 0.4788439025878906, 0.47873126220703127, 0.47824075317382814, 0.47784039306640624, 0.47777279663085936, 0.47869952392578125, 0.4775126953125, 0.47748504638671874, 0.4778311767578125, 0.47821005249023435, 0.478708740234375, 0.4786903076171875, 0.4786278381347656, 0.4780533752441406, 0.47773080444335936, 0.47787213134765627, 0.47809127807617186, 0.9952440185546875, 0.4780052490234375, 0.47796734619140624, 0.47861553955078123, 0.47840972900390627, 0.478055419921875, 0.4771358642578125, 0.47734375, 0.4771768188476562, 0.47729766845703125, 0.477949951171875, 0.4772239379882813, 0.4777277526855469, 0.47779531860351565, 0.47714407348632815, 0.47731814575195314, 0.47762841796875, 0.47755877685546877, 0.477528076171875, 0.4772034606933594, 0.47703143310546875, 0.47779531860351565, 0.4779202575683594, 0.4790067138671875, 0.478593017578125, 0.4792412109375, 0.47822540283203124, 0.4779069519042969, 0.4779427795410156, 0.47770932006835937, 0.47803802490234376, 0.4777840576171875, 0.47797247314453123, 0.477939697265625, 0.47781991577148436, 0.4778240051269531, 0.47803289794921877, 0.47818240356445313, 0.47798175048828123, 0.4779959716796875, 0.4778680419921875, 0.4780902404785156, 0.47819674682617186, 0.47809945678710936, 0.4779765625, 0.479388671875, 0.4785356750488281, 0.4774143981933594, 0.4776642456054688, 0.47775238037109374, 0.4779253234863281, 0.4778547058105469, 0.4781363220214844, 0.47750860595703126, 0.4780830688476562, 0.47821728515625, 0.4779703674316406, 0.47782196044921876, 0.4780851135253906, 0.4781322326660156, 0.47786392211914064, 0.4776509399414062, 0.4776099853515625, 0.9929461669921875, 0.47778509521484375, 0.48122674560546874, 0.47778509521484375, 0.4777943115234375, 0.47731814575195314, 0.4780748901367188, 0.47792538452148436, 0.47784756469726564, 0.4781158447265625, 0.4780155029296875, 0.47748403930664063, 0.4777891845703125, 0.4779100036621094, 0.4776908874511719, 0.47778713989257815, 0.47860736083984373, 0.47720037841796875, 0.4777891845703125, 0.4777216491699219, 0.4775577087402344, 0.47795404052734375, 0.47750143432617187, 0.47806668090820315, 0.4786780090332031, 0.477744140625, 0.47708673095703125, 0.47796429443359373, 0.4774686584472656, 0.4776775817871094, 0.4779796447753906, 0.47754855346679687, 0.4775096435546875, 0.4782417907714844, 0.47757107543945315, 0.4774205322265625, 0.4781158447265625, 0.4779376525878906, 0.47806362915039063, 0.47810763549804686, 0.4782090148925781, 0.478413818359375, 0.47833804321289064, 0.4782417907714844, 0.4790927429199219, 0.4781537170410156, 0.47856845092773437, 0.4775301208496094, 0.4781506652832031, 0.4774615173339844, 0.4780472412109375, 0.4780318603515625, 0.47794891357421876, 0.47838311767578123, 0.47825408935546876, 0.4780349426269531, 0.47770111083984373, 0.4779857788085938, 0.47789266967773436, 0.47788128662109375, 0.4787712097167969, 0.47795306396484377, 0.47804415893554686, 0.9943838500976563, 0.4787189636230469, 0.47804107666015627, 0.47781375122070313, 0.477370361328125, 0.4773304443359375, 0.47816705322265624, 0.47811993408203124, 0.4777738342285156, 0.47763250732421875, 0.4774573974609375, 0.47708673095703125, 0.47772467041015626, 0.47725567626953125, 0.47783627319335936, 0.47736831665039064, 0.4771112976074219, 0.478445556640625, 0.47864935302734374, 0.4780984191894531, 0.47761102294921876, 0.4776365966796875, 0.4789073791503906, 0.4771778564453125, 0.47777484130859377, 0.47784756469726564, 0.4784169006347656, 0.4775045166015625, 0.47752191162109375, 0.47713177490234376, 0.47731610107421873, 0.47756390380859376, 0.4773212280273437, 0.47744512939453126, 0.4777543640136719, 0.477222900390625, 0.477707275390625, 0.47724850463867186, 0.47723724365234377, 0.4778823547363281, 0.477412353515625, 0.4772392883300781, 0.4777994384765625, 0.47849676513671874, 0.4779949951171875, 0.47791104125976563, 0.47725466918945314, 0.47723629760742187, 0.47771026611328127, 0.478139404296875, 0.4780195922851562, 0.478129150390625, 0.47857867431640627, 0.47747174072265625, 0.47793869018554686, 0.47770932006835937, 0.4779571228027344, 0.47765509033203124, 0.4775464172363281, 0.47778713989257815, 0.477918212890625, 0.4777820129394531, 0.47804107666015627, 0.9942221069335937, 0.47767550659179686, 0.4771686401367187, 0.477431884765625, 0.4771603698730469, 0.47666278076171875, 0.4774676513671875, 0.47758746337890623, 0.47736114501953125, 0.4776488952636719, 0.47701708984375, 0.47684402465820314, 0.47745944213867186, 0.477633544921875, 0.4778076171875, 0.4772536315917969, 0.47761715698242185, 0.47721881103515623, 0.4775362548828125, 0.47752294921875, 0.4779653015136719, 0.47805645751953124, 0.47783526611328125, 0.47724032592773435, 0.4773447570800781, 0.4780175476074219, 0.4793231506347656, 0.4781588439941406, 0.47761715698242185, 0.47719937133789064, 0.4781537170410156, 0.47752294921875, 0.4775311279296875, 0.47761920166015626, 0.4774993896484375, 0.4768399353027344, 0.4775946960449219, 0.47729248046875, 0.47762841796875, 0.4775372924804687, 0.4772720642089844, 0.4776089477539063, 0.4787261352539062, 0.47772262573242186, 0.47747378540039065, 0.47768780517578124, 0.477528076171875, 0.477149169921875, 0.4776355895996094, 0.47729766845703125, 0.4775628662109375, 0.47870361328125, 0.4778188781738281, 0.4776509399414062, 0.4779898986816406, 0.4782561340332031, 0.47833087158203125, 0.47798681640625, 0.4781035461425781, 0.477955078125, 0.47816192626953125, 0.4783472595214844, 0.47877734375]",tokens/s,2.061137207272146,,,main,False,False +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2-large,openai-community/gpt2-large,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1255.170048,2645.03296,0.0,1998.585856,1692.285952,s,10,0.19596438217163084,0.019596438217163083,0.0005758753327798738,0.019594847679138182,0.020116428565979005,0.020397430515289305,0.020622232074737547,"[0.02067843246459961, 0.01995683288574219, 0.018657087326049804, 0.019397823333740235, 0.01875289535522461, 0.019354879379272463, 0.019658687591552735, 0.019531007766723632, 0.020053983688354492, 0.019922752380371094]",tokens/s,13063.598454120523,kWh,2.196003245524462e-07,1.203308225381941e-07,6.683390311598506e-07,1.008270178250491e-06,tokens/kWh,253900200.08744156,MB,1255.46496,2645.03296,0.0,1998.585856,1740.085248,s,10,11.909100097656252,1.1909100097656249,0.015963798664011486,1.1926223754882814,1.1998400390625,1.2087030395507812,1.215793439941406,"[1.2175660400390624, 1.1913038330078125, 1.18787646484375, 1.1978704833984375, 1.1491290283203126, 1.195384033203125, 1.1938314208984375, 1.19254345703125, 1.19089404296875, 1.1927012939453125]",tokens/s,52.90072254275419,kWh,1.3774184907753079e-05,7.5477682720333215e-06,2.8730712265842306e-05,5.005266544562869e-05,tokens/kWh,1258674.227218444,,s,629,12.064169954299933,0.019179920436088915,0.0023597437619934914,0.018893823623657227,0.019228466796875003,0.019791871643066405,0.038067117614746133,"[0.02008166313171387, 0.01979801559448242, 0.0196177921295166, 0.01978265571594238, 0.019717119216918946, 0.019862527847290038, 0.019771392822265626, 0.01966592025756836, 0.01981439971923828, 0.019919872283935547, 0.019991552352905274, 0.0198154239654541, 0.01984102439880371, 0.019713024139404296, 0.019945472717285157, 0.019693599700927735, 0.019734495162963866, 0.019999744415283204, 0.019870719909667968, 0.019916799545288084, 0.019698688507080078, 0.01944063949584961, 0.019574783325195313, 0.019809280395507813, 0.019941375732421874, 0.019547136306762695, 0.019590143203735352, 0.019150848388671874, 0.018918399810791017, 0.019148799896240236, 0.01879756736755371, 0.018762752532958983, 0.01876479911804199, 0.018760704040527345, 0.018949119567871094, 0.01901158332824707, 0.018997247695922852, 0.018856960296630858, 0.018832384109497072, 0.018873344421386717, 0.018898944854736328, 0.018821151733398437, 0.01887945556640625, 0.018886655807495118, 0.018907136917114258, 0.01886412811279297, 0.01882521629333496, 0.01883033561706543, 0.01877299118041992, 0.01884569549560547, 0.01886310386657715, 0.018886655807495118, 0.01883340835571289, 0.01906790351867676, 0.01885081672668457, 0.018737152099609376, 0.018815999984741212, 0.01884774398803711, 0.019143680572509765, 0.018949119567871094, 0.020289535522460937, 0.01920512008666992, 0.03925708770751953, 0.018815999984741212, 0.01889587211608887, 0.018832384109497072, 0.018815999984741212, 0.018876415252685547, 0.01883647918701172, 0.018874368667602538, 0.018893823623657227, 0.018908159255981445, 0.018892799377441406, 0.01882624053955078, 0.018942975997924806, 0.018923519134521484, 0.018984960556030273, 0.01907711982727051, 0.018955263137817382, 0.018844671249389648, 0.018907136917114258, 0.018997247695922852, 0.0189040641784668, 0.018984960556030273, 0.01885081672668457, 0.01881705665588379, 0.018884576797485352, 0.01886720085144043, 0.018889728546142577, 0.01884774398803711, 0.018916351318359375, 0.018886655807495118, 0.018868223190307617, 0.018915327072143554, 0.01883852767944336, 0.018860031127929687, 0.018909183502197266, 0.018886655807495118, 0.018922496795654296, 0.018905088424682616, 0.018777088165283205, 0.01884364891052246, 0.018903039932250978, 0.018914304733276367, 0.018931711196899414, 0.018917375564575196, 0.018893823623657227, 0.018744319915771485, 0.019489791870117186, 0.01881497573852539, 0.018911231994628908, 0.018894847869873048, 0.018968576431274413, 0.01905971145629883, 0.018966527938842775, 0.01887027168273926, 0.018861055374145508, 0.018988031387329102, 0.018940959930419922, 0.01884156799316406, 0.018929664611816405, 0.018964479446411133, 0.018922496795654296, 0.01888467216491699, 0.018768831253051756, 0.03698995208740234, 0.018000896453857423, 0.01803878402709961, 0.01861529541015625, 0.01846886444091797, 0.018893823623657227, 0.01886207962036133, 0.018841632843017576, 0.018986976623535157, 0.01903001594543457, 0.018913280487060546, 0.018872352600097658, 0.018723808288574218, 0.01885593605041504, 0.018965503692626954, 0.018915327072143554, 0.018923519134521484, 0.01879347229003906, 0.018799615859985352, 0.01884876823425293, 0.01886310386657715, 0.018957311630249024, 0.0188723201751709, 0.01919385528564453, 0.018920480728149416, 0.018839519500732423, 0.018932735443115235, 0.01881395149230957, 0.018926591873168946, 0.019110912322998046, 0.01883647918701172, 0.018770944595336913, 0.018880512237548826, 0.01885081672668457, 0.018919424057006837, 0.018876415252685547, 0.018939903259277344, 0.01885081672668457, 0.018897920608520507, 0.018840576171875, 0.018856960296630858, 0.01884876823425293, 0.01887539291381836, 0.01882009506225586, 0.018813983917236328, 0.018836448669433594, 0.018860031127929687, 0.019740671157836915, 0.019281919479370118, 0.018899967193603515, 0.018890783309936522, 0.018863071441650392, 0.01886412811279297, 0.01881804847717285, 0.018817024230957033, 0.018861055374145508, 0.01885081672668457, 0.018868223190307617, 0.018972671508789063, 0.018760704040527345, 0.018917375564575196, 0.018985984802246093, 0.01883647918701172, 0.03859558486938477, 0.018811904907226562, 0.019163135528564454, 0.02009702491760254, 0.019518463134765626, 0.018994176864624023, 0.01887948799133301, 0.019116031646728517, 0.01887539291381836, 0.018940927505493164, 0.01884364891052246, 0.01884364891052246, 0.01904435157775879, 0.018973695755004884, 0.018964479446411133, 0.019170303344726563, 0.01942630386352539, 0.018782207489013672, 0.018939903259277344, 0.018861055374145508, 0.018964479446411133, 0.018869247436523438, 0.018767871856689454, 0.01895427131652832, 0.018802656173706054, 0.018971647262573242, 0.018899967193603515, 0.01889587211608887, 0.01884876823425293, 0.019386367797851564, 0.018991104125976564, 0.019079168319702147, 0.018916351318359375, 0.018882560729980468, 0.01925632095336914, 0.018929664611816405, 0.018899967193603515, 0.018811935424804686, 0.01888355255126953, 0.018973695755004884, 0.018752511978149415, 0.0189040641784668, 0.019373056411743163, 0.02027008056640625, 0.020695039749145508, 0.01957683181762695, 0.019105791091918945, 0.01883852767944336, 0.018929664611816405, 0.018824192047119142, 0.01904025650024414, 0.01886412811279297, 0.01887539291381836, 0.01883852767944336, 0.01881292724609375, 0.018732032775878905, 0.018886655807495118, 0.018578432083129884, 0.01839926338195801, 0.018844640731811524, 0.018790399551391602, 0.01878937530517578, 0.018752511978149415, 0.03698483276367188, 0.017928192138671875, 0.01796505546569824, 0.01789952087402344, 0.0178657283782959, 0.017949695587158202, 0.017992704391479493, 0.017977344512939454, 0.017977344512939454, 0.018036735534667968, 0.017976320266723633, 0.017991680145263672, 0.017904640197753906, 0.01803468894958496, 0.01804902458190918, 0.018043903350830077, 0.017953792572021485, 0.01813811111450195, 0.01799782371520996, 0.018018304824829103, 0.017966079711914062, 0.018051071166992186, 0.017977344512939454, 0.01800704002380371, 0.01799679946899414, 0.01804083251953125, 0.017994752883911135, 0.018061311721801757, 0.018028543472290038, 0.018044927597045898, 0.017864704132080078, 0.017921024322509766, 0.017951744079589844, 0.017963008880615236, 0.017930240631103517, 0.01801420783996582, 0.017941503524780272, 0.018001920700073244, 0.017939456939697264, 0.017915903091430666, 0.017966079711914062, 0.017979391098022462, 0.017955839157104494, 0.01800294494628906, 0.017899551391601563, 0.017976287841796876, 0.01799679946899414, 0.01827123260498047, 0.01843097686767578, 0.018742271423339844, 0.01887948799133301, 0.018784255981445314, 0.018868223190307617, 0.01879859161376953, 0.01882009506225586, 0.01982771110534668, 0.02038377571105957, 0.020016096115112306, 0.01902079963684082, 0.018759679794311524, 0.018523136138916017, 0.018774015426635742, 0.018930688858032226, 0.03848601531982422, 0.019079168319702147, 0.018916351318359375, 0.018967552185058592, 0.01886207962036133, 0.01879347229003906, 0.018959360122680666, 0.01920921516418457, 0.019406848907470704, 0.018989055633544923, 0.018952192306518553, 0.019162111282348633, 0.018876415252685547, 0.01877299118041992, 0.01900748825073242, 0.018959360122680666, 0.019094528198242186, 0.01884364891052246, 0.018897920608520507, 0.018896896362304686, 0.01880473518371582, 0.018931711196899414, 0.018745344161987306, 0.01838591957092285, 0.01842995262145996, 0.01898089599609375, 0.01894806480407715, 0.018896896362304686, 0.018777151107788086, 0.018982847213745116, 0.01923583984375, 0.018766847610473633, 0.01887846374511719, 0.018757631301879883, 0.018769920349121092, 0.019090431213378906, 0.019116031646728517, 0.01899929618835449, 0.019524608612060547, 0.02007961654663086, 0.01907711982727051, 0.01902284812927246, 0.018975744247436522, 0.019171327590942384, 0.018874368667602538, 0.018787328720092773, 0.01904844856262207, 0.018750463485717773, 0.01922662353515625, 0.018884607315063476, 0.018779136657714843, 0.01897881507873535, 0.019174400329589843, 0.019117055892944337, 0.01881907272338867, 0.01883955192565918, 0.019125247955322267, 0.01887846374511719, 0.018976768493652343, 0.018964479446411133, 0.018942975997924806, 0.01901260757446289, 0.019120128631591796, 0.03889766311645508, 0.018888704299926756, 0.01882624053955078, 0.01916316795349121, 0.01887331199645996, 0.01903104019165039, 0.018936832427978514, 0.018971647262573242, 0.018852863311767578, 0.018949119567871094, 0.018922496795654296, 0.018955263137817382, 0.0188221435546875, 0.018824192047119142, 0.018950143814086915, 0.018929664611816405, 0.018951168060302736, 0.01887129592895508, 0.019127296447753905, 0.019130367279052735, 0.018890752792358398, 0.018958335876464845, 0.0188723201751709, 0.019166208267211913, 0.01922150421142578, 0.018877439498901367, 0.018980863571166993, 0.018884607315063476, 0.0188590087890625, 0.018983936309814452, 0.019647487640380858, 0.018966527938842775, 0.018917375564575196, 0.01881907272338867, 0.018967552185058592, 0.018912256240844725, 0.018912256240844725, 0.01900032043457031, 0.018948095321655273, 0.01884979248046875, 0.018891775131225585, 0.018865152359008788, 0.018935808181762694, 0.018865152359008788, 0.018948095321655273, 0.018892799377441406, 0.018840576171875, 0.01882009506225586, 0.018924543380737305, 0.01885798454284668, 0.018974752426147462, 0.018999263763427733, 0.018900991439819336, 0.018874368667602538, 0.018922496795654296, 0.018955263137817382, 0.018931711196899414, 0.01878937530517578, 0.018860031127929687, 0.018972671508789063, 0.018959360122680666, 0.019132448196411134, 0.018904031753540038, 0.03866828918457031, 0.01882521629333496, 0.01878118324279785, 0.018948095321655273, 0.018792448043823243, 0.018868223190307617, 0.018778112411499022, 0.018958368301391602, 0.01888559913635254, 0.0188272647857666, 0.018973695755004884, 0.01886720085144043, 0.018776063919067384, 0.01901055908203125, 0.018993152618408202, 0.018917375564575196, 0.019162111282348633, 0.018950143814086915, 0.018990079879760743, 0.018930688858032226, 0.018890752792358398, 0.018946048736572265, 0.018886655807495118, 0.018832384109497072, 0.018940927505493164, 0.018965503692626954, 0.01929113578796387, 0.018768896102905275, 0.018882560729980468, 0.018877439498901367, 0.01883340835571289, 0.018912256240844725, 0.018927648544311525, 0.01891529655456543, 0.018811904907226562, 0.018910207748413087, 0.01882009506225586, 0.018910207748413087, 0.018745344161987306, 0.018956287384033203, 0.018868223190307617, 0.018768896102905275, 0.01880575942993164, 0.018736127853393555, 0.018824192047119142, 0.018956287384033203, 0.01884979248046875, 0.018948095321655273, 0.01881907272338867, 0.01880985641479492, 0.01883955192565918, 0.018891775131225585, 0.01883340835571289, 0.01884979248046875, 0.01884569549560547, 0.018924543380737305, 0.018920448303222655, 0.018898944854736328, 0.018893823623657227, 0.019284992218017577, 0.01971609687805176, 0.01968639945983887, 0.01919692802429199, 0.03932364654541016, 0.018924543380737305, 0.019127296447753905, 0.01901875114440918, 0.018907136917114258, 0.018896896362304686, 0.01885798454284668, 0.01881292724609375, 0.01900441551208496, 0.018884607315063476, 0.018885631561279297, 0.01883955192565918, 0.018886688232421876, 0.018969663619995115, 0.018922399520874024, 0.018976768493652343, 0.018914304733276367, 0.01907302474975586, 0.019050495147705078, 0.018923519134521484, 0.018939903259277344, 0.0189040641784668, 0.018877439498901367, 0.01883852767944336, 0.018897920608520507, 0.018779136657714843, 0.018916351318359375, 0.018919424057006837, 0.018974720001220705, 0.018869247436523438, 0.01886617660522461, 0.018947071075439453, 0.018897920608520507, 0.018967552185058592, 0.018948095321655273, 0.018880512237548826, 0.01887846374511719, 0.018902015686035157, 0.01886310386657715, 0.01887846374511719, 0.018799615859985352, 0.018912256240844725, 0.018832384109497072, 0.01883852767944336, 0.018920448303222655, 0.019014656066894533, 0.0188272647857666, 0.018974720001220705, 0.01883852767944336, 0.018874368667602538, 0.018527231216430663, 0.018898944854736328, 0.01881292724609375, 0.01879756736755371, 0.018902015686035157, 0.018908159255981445, 0.018832384109497072, 0.018918399810791017, 0.018792448043823243, 0.018888704299926756, 0.01884880065917969, 0.018927583694458006, 0.018953216552734374, 0.039212032318115236, 0.018920448303222655, 0.018912256240844725, 0.018958335876464845, 0.018861055374145508, 0.018928640365600585, 0.01884774398803711, 0.01884569549560547, 0.01886617660522461, 0.018934783935546876, 0.018942975997924806, 0.01904332733154297, 0.018899967193603515, 0.018918399810791017, 0.01901670455932617, 0.018998271942138673, 0.019309568405151366, 0.02033459281921387, 0.01902899169921875, 0.018954240798950195, 0.019001344680786132, 0.018902015686035157, 0.018910207748413087, 0.018935808181762694, 0.01882828712463379, 0.0188590087890625, 0.019208192825317383, 0.019014656066894533, 0.018882560729980468, 0.019042303085327148, 0.019025951385498046, 0.019065824508666993, 0.018945024490356444, 0.018880512237548826, 0.018861055374145508, 0.018893823623657227, 0.01887539291381836, 0.018876415252685547, 0.01903104019165039, 0.018890752792358398, 0.01881497573852539, 0.01882009506225586, 0.01887948799133301, 0.01878835105895996, 0.018860031127929687, 0.018661376953125, 0.018603008270263673, 0.01880473518371582, 0.018817024230957033, 0.0188723201751709, 0.018905088424682616, 0.018860031127929687, 0.018917375564575196, 0.018925567626953126, 0.018750463485717773, 0.01882009506225586, 0.018754560470581053, 0.0188538875579834, 0.01883443260192871, 0.01882931137084961, 0.01881088066101074, 0.018900991439819336, 0.018924543380737305]",tokens/s,52.13785966068979,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run + report = scenario.run(backend) + File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run + _ = backend.generate(self.inputs, self.config.generate_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate + return self.pretrained_model.generate(**inputs, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context + return func(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate + result = self._sample( + File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample + outputs = self( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward + outputs = self.model( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward + layer_outputs = decoder_layer( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward + hidden_states, self_attn_weights, present_key_value = self.self_attn( + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl + return self._call_impl(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl + return forward_call(*args, **kwargs) +TypeError: DeciCoderAttention.forward() got an unexpected keyword argument 'cache_position' -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,B,B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mistral-7B-v0.1,mistralai/Mistral-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1859.03104,6201.802752,0.0,5555.355648,5273.986048,s,10,6.183414916992188,0.6183414916992188,0.0011184543236210387,0.618503173828125,0.6196270629882813,0.6198319030761719,0.6199957751464844,"[0.6192075805664062, 0.6172159423828125, 0.6163760986328125, 0.6177174072265625, 0.6180655517578125, 0.6173275146484375, 0.6189407958984375, 0.6189457397460938, 0.61958154296875, 0.6200367431640625]",tokens/s,414.010709998621,kWh,7.2943227158652426e-06,3.997002324692457e-06,3.5828705133529186e-05,4.7120030174086885e-05,tokens/kWh,5432933.70259309,MB,1859.03104,6201.802752,0.0,5555.355648,5324.908032,s,10,366.93543359375,36.693543359375,0.025425135768351863,36.68483984375,36.71502578125,36.739856640625,36.759721328125,"[36.6825078125, 36.6820625, 36.67597265625, 36.67723828125, 36.69059375, 36.7646875, 36.68741015625, 36.687171875, 36.7095078125, 36.67828125]",tokens/s,1.7169233121745884,kWh,0.0004334749158389039,0.00023758188798711938,0.002030957448294073,0.002702014252120096,tokens/kWh,23315.939192610833,,s,629,371.9142907714842,0.5912786816716763,0.07347096675901024,0.5822586669921875,0.5836932861328125,0.5840418579101562,1.2002971240234375,"[0.5831044921875, 0.5822699584960938, 0.5834168090820312, 0.58437939453125, 0.5840988159179688, 0.583689208984375, 0.5825567016601563, 0.5822218017578125, 0.5818173217773438, 0.5815992431640625, 0.5817159423828125, 0.5822648315429687, 0.5821982421875, 0.5821337890625, 0.5815695190429687, 0.5815643920898438, 0.582739990234375, 0.5819013061523437, 0.5815090942382812, 0.5818992919921875, 0.5820938110351562, 0.5823037719726563, 0.5815859375, 0.5816412353515625, 0.5814845581054687, 0.5814404907226562, 0.5816504516601563, 0.5815562133789063, 0.5829365844726563, 0.5825740966796875, 0.5817200927734375, 0.5818470458984375, 0.5818685302734375, 0.5846865844726562, 0.581960693359375, 0.5823938598632813, 0.582456298828125, 0.5820784912109375, 0.581928955078125, 0.5816002807617188, 0.5820436401367187, 0.5819269409179687, 0.581781494140625, 0.5828024291992188, 0.582518798828125, 0.583046142578125, 0.58231396484375, 0.58227197265625, 0.5819197387695313, 0.58180712890625, 0.5825986328125, 0.5820835571289062, 0.5818644409179687, 0.5822269287109375, 0.582245361328125, 0.5821522216796875, 0.5817988891601562, 0.5820927734375, 0.5820047607421875, 0.5820805053710938, 0.582076416015625, 0.5821747436523438, 1.2006451416015624, 0.5828607788085938, 0.5824737548828125, 0.5826815795898438, 0.5828382568359375, 0.582724609375, 0.5826375732421875, 0.5826047973632813, 0.5828505859375, 0.5823723754882812, 0.582371337890625, 0.5822054443359375, 0.5829539794921875, 0.5826570434570313, 0.5828075561523437, 0.582297607421875, 0.5822361450195312, 0.5817088012695313, 0.5831546630859376, 0.5821470947265625, 0.58178564453125, 0.5819739990234375, 0.5819053955078125, 0.581644287109375, 0.5816033325195312, 0.58183984375, 0.5819576416015625, 0.5817825317382812, 0.5819330444335937, 0.5823958740234375, 0.5825853271484375, 0.5823047485351562, 0.5824429931640625, 0.5819678955078125, 0.5820170288085937, 0.58241845703125, 0.5822371826171875, 0.5820948486328125, 0.581960693359375, 0.5820579833984375, 0.5817855834960938, 0.5820006103515625, 0.5823180541992188, 0.5817886962890625, 0.5818910522460937, 0.5815715942382812, 0.5831065673828125, 0.5818674926757812, 0.5818327026367187, 0.5820958862304687, 0.5820795288085937, 0.5822504272460938, 0.5827584228515625, 0.58241845703125, 0.5819842529296875, 0.5818224487304687, 0.5830155029296875, 0.5818920288085937, 0.58241943359375, 0.5820692749023437, 0.5821624145507812, 0.58189208984375, 0.582134765625, 1.199605712890625, 0.5822044067382812, 0.58277685546875, 0.5820149536132813, 0.5822853393554688, 0.5823651733398437, 0.5825372314453126, 0.5818859252929688, 0.58189111328125, 0.5824112548828125, 0.5814589233398437, 0.5815828247070313, 0.5821522216796875, 0.5817999267578124, 0.5821306762695313, 0.5816801147460937, 0.5815941162109375, 0.5823600463867188, 0.5821112060546875, 0.5825054931640625, 0.5818009643554688, 0.5820743408203125, 0.5816873168945312, 0.58237646484375, 0.5829601440429687, 0.5822699584960938, 0.5826181030273437, 0.582033447265625, 0.5821142578125, 0.5820088500976562, 0.581875732421875, 0.5822617797851563, 0.581992431640625, 0.5820211181640625, 0.5821327514648438, 0.5825167236328125, 0.583541748046875, 0.5822965698242187, 0.5826570434570313, 0.5821788330078125, 0.5822116088867187, 0.5822228393554687, 0.582134765625, 0.5822730102539062, 0.5822904052734375, 0.5818532104492188, 0.581939208984375, 0.58212353515625, 0.5819115600585938, 0.581917724609375, 0.581796875, 0.5814108276367187, 0.5820999755859375, 0.581823486328125, 0.5824778442382812, 0.5824727172851563, 0.58199658203125, 0.5818797607421875, 0.582181884765625, 0.5825372314453126, 0.5822669067382813, 0.582498291015625, 0.582295654296875, 1.1999998779296874, 0.5822935180664063, 0.5821593627929688, 0.5819166870117187, 0.58216552734375, 0.5825269775390625, 0.5819852905273437, 0.5826549682617187, 0.58295703125, 0.5822156982421876, 0.5825126342773438, 0.5818338012695312, 0.5822903442382813, 0.5818214111328125, 0.5828648681640625, 0.5822689208984375, 0.5817630615234375, 0.5818245239257812, 0.5817979736328125, 0.582257568359375, 0.5819883422851563, 0.5817487182617187, 0.5817006225585938, 0.5819115600585938, 0.5828761596679688, 0.5822597045898438, 0.5822843017578125, 0.5820897216796875, 0.5826027221679687, 0.581818359375, 0.5817947998046875, 0.5823662109375, 0.5819771118164062, 0.5821470947265625, 0.581907470703125, 0.5817671508789063, 0.5819443359375, 0.5819330444335937, 0.5819166870117187, 0.5820835571289062, 0.5821214599609374, 0.5826129760742188, 0.5820989379882813, 0.5827706909179687, 0.5828003540039063, 0.5829396362304687, 0.5819617309570313, 0.5818541870117188, 0.5825341186523437, 0.5824102172851563, 0.582561767578125, 0.582096923828125, 0.58191259765625, 0.581517333984375, 0.5817364501953125, 0.5814691772460937, 0.5818265380859375, 0.5818490600585937, 0.5822433471679688, 0.5819934692382812, 0.5829918823242187, 0.5824635009765625, 0.5829898071289062, 1.201005615234375, 0.5828812866210937, 0.5822740478515624, 0.58203955078125, 0.58253515625, 0.58185009765625, 0.58208154296875, 0.5819259033203125, 0.58195458984375, 0.5821777954101562, 0.5819033813476563, 0.5821747436523438, 0.5821358032226562, 0.5823917846679687, 0.58222900390625, 0.5823723754882812, 0.5822586669921875, 0.5819432983398437, 0.5823989868164062, 0.582287353515625, 0.5819432983398437, 0.5823098754882813, 0.5821470947265625, 0.58201904296875, 0.5821522216796875, 0.5817927856445313, 0.58224951171875, 0.5818756713867187, 0.5823150024414062, 0.5823600463867188, 0.5821900634765625, 0.5823775024414063, 0.5833564453125, 0.5822730102539062, 0.583024658203125, 0.5828505859375, 0.5830850830078125, 0.5825567016601563, 0.5824440307617188, 0.58309326171875, 0.5827573852539063, 0.58252392578125, 0.5825177612304687, 0.5825382690429688, 0.5826395874023438, 0.582086669921875, 0.5830287475585938, 0.5831290893554687, 0.5821757202148438, 0.5823723754882812, 0.5831546630859376, 0.5824204711914063, 0.5822750854492188, 0.5826437377929687, 0.582055908203125, 0.5820119018554688, 0.5823989868164062, 0.5829959716796875, 0.5821931762695313, 0.5819218139648438, 0.5824594116210937, 0.5828392944335937, 0.5823467407226562, 1.2004127197265626, 0.5823897705078125, 0.5821522216796875, 0.5828423461914063, 0.58172314453125, 0.5815429077148437, 0.5822146606445312, 0.5822965698242187, 0.5824727172851563, 0.5832130737304687, 0.5837701416015625, 0.5834608764648438, 0.58389404296875, 0.583257080078125, 0.5831526489257812, 0.5838325805664063, 0.5842800903320312, 0.5840598754882812, 0.5840148315429687, 0.5834495849609375, 0.5838704833984375, 0.5837393798828125, 0.58374658203125, 0.5832683715820313, 0.5839451904296875, 0.5835653076171875, 0.583952392578125, 0.5841285400390624, 0.5839216918945312, 0.584069091796875, 0.5833717651367187, 0.584079345703125, 0.5822791748046875, 0.58410595703125, 0.5837250366210938, 0.5839124755859375, 0.5839564819335937, 0.583910400390625, 0.5855027465820313, 0.5835325317382812, 0.5842186279296875, 0.5839196166992188, 0.5835909423828125, 0.5837138061523437, 0.5835827026367187, 0.5830758666992187, 0.5837998046875, 0.5836973876953125, 0.5838069458007813, 0.5841008911132812, 0.5842042846679687, 0.5843200073242187, 0.584690673828125, 0.5837639770507812, 0.5840875244140625, 0.58410595703125, 0.5839616088867188, 0.5835899047851563, 0.5849579467773437, 0.5842135009765625, 0.5833236694335937, 0.5823897705078125, 0.581928955078125, 1.2009288330078125, 0.582350830078125, 0.58395751953125, 0.5835161743164062, 0.5829293823242188, 0.5832315063476563, 0.5834116821289063, 0.5836349487304687, 0.5841828002929688, 0.5820057373046875, 0.5825576782226562, 0.5837035522460937, 0.5828607788085938, 0.5823723754882812, 0.5838561401367187, 0.58364111328125, 0.5828628540039062, 0.5813483276367187, 0.581317626953125, 0.5815889892578125, 0.58169140625, 0.5815162963867188, 0.58185009765625, 0.582002685546875, 0.5819638061523438, 0.5832847290039063, 0.5816729736328125, 0.5818470458984375, 0.5819771118164062, 0.5817507934570313, 0.5814476928710938, 0.5819402465820313, 0.5820078125, 0.581517333984375, 0.581465087890625, 0.5822945556640625, 0.5821337890625, 0.5815838623046875, 0.5820989990234375, 0.5824296875, 0.5820457153320312, 0.5824461059570313, 0.5824737548828125, 0.5818050537109375, 0.582128662109375, 0.5824798583984375, 0.5821214599609374, 0.5822095336914063, 0.5823784790039063, 0.582134765625, 0.5822146606445312, 0.5818245239257812, 0.5819381713867188, 0.5824696044921875, 0.5824706420898438, 0.5826283569335937, 0.58235595703125, 0.5820753784179687, 0.5823877563476563, 0.582424560546875, 0.58216552734375, 0.5818204345703125, 0.5826416625976563, 1.201427490234375, 0.5822935180664063, 0.582170654296875, 0.5820518188476562, 0.5819218139648438, 0.5819739990234375, 0.5826621704101562, 0.5824409790039062, 0.5830502319335937, 0.582667236328125, 0.5825014038085937, 0.5823467407226562, 0.5828045043945312, 0.5823252563476562, 0.5821880493164062, 0.5829171142578125, 0.582118408203125, 0.5825382690429688, 0.5823733520507812, 0.5822125854492187, 0.5824266357421874, 0.5821091918945313, 0.5821173706054688, 0.5825208129882813, 0.5826007080078125, 0.5825556640625, 0.5820579833984375, 0.5825986328125, 0.582476806640625, 0.5827225341796874, 0.5821777954101562, 0.5822300415039062, 0.58294580078125, 0.5820938720703125, 0.5819207153320313, 0.5821747436523438, 0.582129638671875, 0.5825044555664063, 0.5818736572265625, 0.5816575927734375, 0.5821951904296875, 0.5822125854492187, 0.5821552734375, 0.5820139770507813, 0.5825054931640625, 0.5818880004882813, 0.5819913940429687, 0.5824952392578125, 0.5821358032226562, 0.5826898193359376, 0.582197265625, 0.5821798095703125, 0.582339599609375, 0.5823529052734375, 0.5823723754882812, 0.5820682373046875, 0.582150146484375, 0.5822054443359375, 0.5825587158203125, 0.5829376220703125, 0.5822269287109375, 0.5832161254882813, 0.5821911010742188, 1.2029603271484375, 0.5822730102539062, 0.5827010498046875, 0.5821941528320312, 0.5827747802734375, 0.5820374755859375, 0.582319091796875, 0.5819852905273437, 0.5823017578125, 0.5824746704101562, 0.5826314086914063, 0.582255615234375, 0.5823743896484375, 0.5821563110351563, 0.5829775390625, 0.5822258911132813, 0.5821051025390624, 0.582297607421875, 0.5837189331054687, 0.5839871826171875, 0.5838991088867187, 0.5836922607421875, 0.584005615234375, 0.5837537231445312, 0.583568359375, 0.5831055297851563, 0.5834229736328125, 0.5836431274414062, 0.5840794067382813, 0.5837383422851562, 0.58393701171875, 0.5841243896484375, 0.5823876953125, 0.5833635864257812, 0.58427392578125, 0.5820712890625, 0.5819453735351563, 0.5823057861328125, 0.582002685546875, 0.5819166870117187, 0.5829539794921875, 0.5820671997070312, 0.5822361450195312, 0.5820221557617188, 0.5820999755859375, 0.58199755859375, 0.5821737060546875, 0.583208984375, 0.5831434326171875, 0.5823364868164063, 0.5827174682617188, 0.5824962768554688, 0.5822781372070313, 0.5826682739257812, 0.5827501831054688, 0.5818245239257812, 0.5817589721679688, 0.5818521728515625, 0.58195556640625, 0.58195458984375, 0.582002685546875, 0.5821552734375, 0.5824307250976563, 1.2025272216796874, 0.5821696166992187, 0.5821286010742187, 0.582107177734375, 0.5820220947265625, 0.5823426513671875, 0.5817620239257812, 0.5823989868164062, 0.5820825805664063, 0.581781494140625, 0.5816698608398437, 0.581696533203125, 0.5820774536132812, 0.5819094848632812, 0.581712890625, 0.5817139282226562, 0.5817886962890625, 0.581992431640625, 0.5820774536132812, 0.5824501953125, 0.5818746948242187, 0.5817753295898438, 0.5824921875, 0.5816432495117188, 0.582413330078125, 0.58231396484375, 0.5824603881835938, 0.5824594116210937, 0.5828782348632813, 0.5824542846679688, 0.582302734375, 0.5820313720703125, 0.58241943359375, 0.5823294067382813, 0.5827665405273438, 0.5818951416015625, 0.5827501831054688, 0.5819842529296875, 0.5818511352539063, 0.5822074584960938, 0.5821696166992187, 0.5824000244140625, 0.582150146484375, 0.582055908203125, 0.5819166870117187, 0.5821051025390624, 0.58183984375, 0.581707763671875, 0.5821583251953125, 0.5820416259765625, 0.581970947265625, 0.5821788330078125, 0.582245361328125, 0.58267138671875, 0.5819248657226562, 0.58211328125, 0.5825842895507812, 0.5821829223632813, 0.5829417114257812, 0.582345703125, 0.5822811889648437, 0.5821439819335937, 0.5820999755859375]",tokens/s,1.6912498809745307,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,r,r,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -41372,7 +41028,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/B/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/r/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -41399,9 +41055,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669493fd-013e08995fdf1f4d0ea581b1;01e8675b-edd7-4148-a6f3-5dd1e864ce33) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694912c-60e453442697ac4940744e43;3a3af6a6-109c-419c-b4f2-14f3bfc8c669) -Repository Not Found for url: https://huggingface.co/B/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/r/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -41426,11 +41082,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: B is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: r is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-14B,Qwen/Qwen1.5-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,l,l,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -41438,34 +41094,69 @@ If this is a private repository, make sure to pass a token having permission to File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/l/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669491d4-22858b3357f2964948d23c91;9564856a-ceae-48eb-af48-1e4aa36b295e) + +Repository Not Found for url: https://huggingface.co/l/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + raise EnvironmentError( +OSError: l is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,a,a,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -41473,34 +41164,69 @@ NameError: name 'exl_ext' is not defined File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/a/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949180-00c8d36e48127f563ccb1729;c119ed00-3b61-4ac1-8cd3-234cb2161b07) + +Repository Not Found for url: https://huggingface.co/a/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + raise EnvironmentError( +OSError: a is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,v,v,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,1,1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -41512,7 +41238,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/v/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/1/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -41539,9 +41265,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669494b4-549dcc15366ce1242c5eefa3;f15389f7-3f94-4733-accd-4a3f23975402) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669495d1-2b15a10d7e57708f3509f03a;6417b781-f373-4b15-803a-c6ba2cba3507) -Repository Not Found for url: https://huggingface.co/v/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/1/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -41566,11 +41292,13 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: v is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: 1 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.3b,EleutherAI/pythia-1.3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-7b,huggyllama/llama-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1979.4944,5480.382464,0.0,4833.93536,4503.282688,s,10,5.706418334960937,0.5706418334960938,0.0011422166985642673,0.5705734558105469,0.5721191223144532,0.5723321746826172,0.5725026165771484,"[0.5707071533203125, 0.5725452270507813, 0.570284912109375, 0.5698196411132812, 0.5708470458984375, 0.569266357421875, 0.5704397583007812, 0.571673828125, 0.57207177734375, 0.5687626342773437]",tokens/s,448.6176529182773,kWh,6.72348948356546e-06,3.6841831159411714e-06,3.142670724010705e-05,4.183437983961368e-05,tokens/kWh,6119368.829691346,MB,1979.4944,5480.382464,0.0,4833.93536,4688.699392,s,10,334.87464062500004,33.487464062499996,0.006284503345517177,33.486009765625,33.4966609375,33.498351953125,33.499704765625005,"[33.50004296875, 33.49628515625, 33.487125, 33.48791796875, 33.48489453125, 33.48313671875, 33.490703125, 33.48450390625, 33.48125, 33.47878125]",tokens/s,1.8813010111013093,kWh,0.0003953183352579305,0.00021666870724086642,0.0018133419907958965,0.002425329033294693,tokens/kWh,25975.85693946752,,s,629,339.4783874511717,0.5397112678079045,0.0678655066405644,0.531504150390625,0.5319763916015625,0.5321570190429687,1.1021465185546875,"[0.531127197265625, 0.5313873901367188, 0.5311314086914063, 0.5313760986328125, 0.5314212036132813, 0.5316044921875, 0.5316137084960938, 0.5314949340820313, 0.5322680053710938, 0.531794921875, 0.5314816284179688, 0.5319925537109375, 0.531863525390625, 0.5316638793945313, 0.5320120239257813, 0.5315921630859375, 0.5318819580078125, 0.5321605224609375, 0.53214208984375, 0.531884033203125, 0.5315399780273438, 0.5322833862304688, 0.532052978515625, 0.5314406127929687, 0.5317867431640625, 0.5322066040039063, 0.531673095703125, 0.53195263671875, 0.5317314453125, 0.5317376098632812, 0.5320519409179687, 0.5320724487304688, 0.531541015625, 0.5316557006835938, 0.53180517578125, 0.5318154296875, 0.5315655517578125, 0.5316137084960938, 0.5321820068359375, 0.531557373046875, 0.5312399291992187, 0.5314426879882812, 0.5312901000976562, 0.53134130859375, 0.531072998046875, 0.5317980346679687, 0.5320304565429688, 0.5319249877929687, 0.5319178466796874, 0.5318133544921875, 0.531989501953125, 0.5314345092773437, 0.531373046875, 0.531641357421875, 0.5318492431640625, 0.5319464721679688, 0.5321226196289063, 0.5319137573242188, 0.5322987670898438, 0.531788818359375, 0.53163623046875, 0.5317109985351562, 1.1043450927734375, 0.531673095703125, 0.5321574096679688, 0.5315389404296875, 0.5321922607421875, 0.531525634765625, 0.5317652587890624, 0.531631103515625, 0.5321697387695312, 0.5315164184570312, 0.5316024169921875, 0.5313341674804688, 0.5321021728515625, 0.5321441040039062, 0.5318215942382812, 0.531609619140625, 0.5315983276367188, 0.5313085327148438, 0.5319906005859375, 0.5317283325195312, 0.5320519409179687, 0.5316751098632813, 0.5315983276367188, 0.5317775268554688, 0.5322587890625, 0.5316044921875, 0.5319588012695312, 0.5312645263671875, 0.5314641723632813, 0.5313402709960937, 0.531599365234375, 0.5311528930664062, 0.5314417114257812, 0.5315245361328125, 0.5315297241210938, 0.531078125, 0.53165771484375, 0.5314437255859376, 0.5313720092773437, 0.53186767578125, 0.531873779296875, 0.5317017822265625, 0.53191064453125, 0.5315491943359375, 0.531904541015625, 0.53142529296875, 0.532937744140625, 0.5315389404296875, 0.5317601318359375, 0.5315614624023437, 0.5316034545898437, 0.5312798461914062, 0.5315686645507812, 0.53125634765625, 0.5316055297851563, 0.5312440185546875, 0.5317672729492188, 0.5314345092773437, 0.5318533325195313, 0.5322587890625, 0.5322587890625, 0.5315594482421875, 0.5315952758789062, 1.10245166015625, 0.5316915283203125, 0.5318369140625, 0.531167236328125, 0.5314037475585938, 0.5311907958984375, 0.531399658203125, 0.5313310546875, 0.5314713745117188, 0.5310955810546875, 0.5314068603515625, 0.5314180908203125, 0.5313095703125, 0.5320089721679687, 0.532147216796875, 0.5318717041015625, 0.5314703369140625, 0.5313587036132813, 0.5315277099609375, 0.5315932006835937, 0.5320427856445312, 0.5314682006835938, 0.5316864013671875, 0.5312532348632812, 0.531578857421875, 0.5313218383789062, 0.5315369262695312, 0.5313751220703125, 0.5314324340820312, 0.5314744262695312, 0.53136181640625, 0.5313638305664062, 0.5315297241210938, 0.5316331787109375, 0.5315000610351562, 0.5318041381835937, 0.5314805908203125, 0.5310812377929688, 0.5316290283203124, 0.531251220703125, 0.5314805908203125, 0.5312870483398437, 0.5313802490234375, 0.5314498291015625, 0.531378173828125, 0.5312542724609375, 0.531356689453125, 0.5313423461914063, 0.5315717163085938, 0.5312665405273438, 0.5319905395507812, 0.5315286865234375, 0.5317857055664063, 0.5316792602539062, 0.5319916381835937, 0.5315020141601563, 0.5320150756835937, 0.531610595703125, 0.5316116333007812, 0.531620849609375, 0.5315635375976563, 0.53176318359375, 0.5320653076171875, 1.1017093505859374, 0.5309368286132813, 0.5314478149414062, 0.531114990234375, 0.5318041381835937, 0.531794921875, 0.5318615112304688, 0.5316116333007812, 0.5316034545898437, 0.5310453491210938, 0.5313955688476563, 0.5313310546875, 0.5316249389648438, 0.5315194702148438, 0.5316045532226562, 0.5311835327148438, 0.5314447631835938, 0.53148876953125, 0.5315830688476563, 0.5314241943359375, 0.5317130126953125, 0.5312276611328125, 0.5314457397460938, 0.5311815795898438, 0.5318450927734375, 0.5317929077148438, 0.5315983276367188, 0.5316392822265625, 0.5314345092773437, 0.5313597412109375, 0.5314928588867187, 0.53110986328125, 0.5317550048828125, 0.531198974609375, 0.5312501831054688, 0.5313074951171874, 0.5314006958007812, 0.5310812377929688, 0.5314263305664062, 0.53121435546875, 0.5314088745117187, 0.5312266235351563, 0.5319813232421875, 0.5324287719726563, 0.53281494140625, 0.532264892578125, 0.5315143432617188, 0.531272705078125, 0.5317017822265625, 0.5313546142578125, 0.531945556640625, 0.5313545532226562, 0.53178369140625, 0.5314877319335938, 0.5314969482421875, 0.5313597412109375, 0.5315460815429688, 0.5314918212890625, 0.5317130126953125, 0.5316566772460938, 0.5317969970703125, 0.5315768432617187, 0.53257421875, 1.1031951904296875, 0.5310873413085937, 0.531431396484375, 0.5310433349609375, 0.5313966064453125, 0.5312911376953126, 0.5316239624023438, 0.5313822631835937, 0.5315317993164063, 0.53124609375, 0.5313659057617187, 0.5311549682617187, 0.5316239624023438, 0.531420166015625, 0.5314857177734374, 0.531357666015625, 0.5316966552734375, 0.5313771362304688, 0.5317969970703125, 0.5319751586914062, 0.531504150390625, 0.5317877807617187, 0.53207958984375, 0.531504150390625, 0.5317980346679687, 0.5316649169921875, 0.5317243041992188, 0.5313710327148438, 0.53178369140625, 0.5310208129882813, 0.5313812255859375, 0.5311692504882812, 0.5312440185546875, 0.530914306640625, 0.531140625, 0.5312010498046875, 0.5316300659179688, 0.5319229736328125, 0.5317314453125, 0.5311651611328125, 0.5311211547851562, 0.531178466796875, 0.5316658935546875, 0.5312122802734375, 0.5314109497070313, 0.5314529418945313, 0.5315552978515625, 0.531398681640625, 0.5312880859375, 0.5313443603515625, 0.53163623046875, 0.5312163696289063, 0.5315215454101563, 0.5311047973632812, 0.5318932495117188, 0.531894287109375, 0.5316249389648438, 0.5334948120117188, 0.5316904907226563, 0.5312880859375, 0.5315880737304688, 0.5312071533203125, 0.5317755126953125, 1.1012259521484375, 0.5312655639648437, 0.531800048828125, 0.5310771484375, 0.5316597900390625, 0.5314877319335938, 0.5313556518554687, 0.531009521484375, 0.5315706787109375, 0.5319342041015624, 0.5316925659179688, 0.5315604248046875, 0.5314334716796875, 0.5310894165039063, 0.531968994140625, 0.53129931640625, 0.5314898071289063, 0.5309706420898438, 0.5316198120117187, 0.5311743774414063, 0.53146826171875, 0.5311262817382812, 0.5313914794921875, 0.5310750732421875, 0.5313494873046875, 0.53096142578125, 0.5314263916015625, 0.5310238037109375, 0.5317867431640625, 0.5314058227539062, 0.531926025390625, 0.5319659423828125, 0.5314160766601562, 0.531178466796875, 0.5314283447265625, 0.5311897583007813, 0.5313648681640625, 0.5312819213867187, 0.53264794921875, 0.531478515625, 0.5314662475585937, 0.5313802490234375, 0.53146728515625, 0.531188720703125, 0.531399658203125, 0.5311815795898438, 0.5315440673828125, 0.5322147827148438, 0.531962890625, 0.5316351928710937, 0.5318799438476562, 0.5312614135742187, 0.5315430297851562, 0.5312973022460937, 0.531641357421875, 0.5314744262695312, 0.5315491943359375, 0.5312296752929687, 0.531863525390625, 0.5313689575195313, 0.5315000610351562, 0.5313095703125, 0.5315379028320313, 1.1023165283203125, 0.5312081909179688, 0.5320724487304688, 0.5311488037109375, 0.5318819580078125, 0.5312911376953126, 0.5314949340820313, 0.5315706787109375, 0.5317857055664063, 0.5313474731445312, 0.5318563842773437, 0.5311016845703125, 0.5315194702148438, 0.53150927734375, 0.5318553466796875, 0.5311559448242188, 0.5314652099609375, 0.5313792114257813, 0.5314171142578125, 0.5314180908203125, 0.5321830444335938, 0.5318389892578125, 0.5316331787109375, 0.5316177368164062, 0.5313392944335937, 0.5313668823242188, 0.5315061645507813, 0.5312501831054688, 0.5319915771484375, 0.5316126708984374, 0.5317601318359375, 0.5316557006835938, 0.53146826171875, 0.5313116455078125, 0.5315369262695312, 0.5313966064453125, 0.5317078857421875, 0.5314437255859376, 0.5320560913085938, 0.5326489868164063, 0.5319014282226563, 0.531631103515625, 0.5314703369140625, 0.5317478637695312, 0.5316761474609375, 0.5316065063476563, 0.531609619140625, 0.5315194702148438, 0.5318502197265625, 0.5314826049804687, 0.5319669799804687, 0.5315072021484375, 0.5315419921875, 0.5310453491210938, 0.5313034057617188, 0.5311867065429687, 0.5317181396484375, 0.531683349609375, 0.5318041381835937, 0.5316966552734375, 0.5320130615234375, 0.5314692993164063, 0.5316198120117187, 1.103932373046875, 0.5310914306640625, 0.531578857421875, 0.5308538818359375, 0.5313659057617187, 0.5314221801757812, 0.5314703369140625, 0.5309716186523438, 0.5315850830078125, 0.5310443115234375, 0.5311928100585938, 0.53098291015625, 0.5311600341796875, 0.5316239624023438, 0.531800048828125, 0.531646484375, 0.5318225708007812, 0.5314242553710937, 0.5319229736328125, 0.53176318359375, 0.5316587524414063, 0.53146826171875, 0.531483642578125, 0.5312266235351563, 0.5317498779296875, 0.5314273071289063, 0.5314631958007813, 0.5311232299804688, 0.5317816162109374, 0.5313494873046875, 0.5318584594726562, 0.5314795532226563, 0.5324308471679687, 0.5313074951171874, 0.5318523559570313, 0.5310309448242188, 0.5311488037109375, 0.5311488037109375, 0.5314488525390625, 0.530966552734375, 0.5313894653320312, 0.5310975952148438, 0.5314426879882812, 0.5313054809570312, 0.5314180908203125, 0.5313187866210938, 0.5313914794921875, 0.5315809326171875, 0.5312921752929688, 0.5312911376953126, 0.531684326171875, 0.5320560913085938, 0.5315133666992188, 0.5317980346679687, 0.5318328247070313, 0.5314559936523438, 0.5321195678710937, 0.5318225708007812, 0.5315963134765626, 0.5315829467773437, 0.5318184814453125, 0.531431396484375, 0.5319127197265625, 1.103847412109375, 0.531304443359375, 0.5315451049804687, 0.531357666015625, 0.5316792602539062, 0.5319639282226563, 0.5315829467773437, 0.5313710327148438, 0.5315205078125, 0.5312491455078125, 0.5314611206054688, 0.5316341552734375, 0.5313760986328125, 0.5311549682617187, 0.531583984375, 0.5310637817382813, 0.5312645263671875, 0.53108837890625, 0.5316741333007813, 0.531162109375, 0.5312429809570313, 0.5314140014648437, 0.531314697265625, 0.5313054809570312, 0.531968017578125, 0.531599365234375, 0.5316085815429688, 0.5312634887695312, 0.5314406127929687, 0.53096240234375, 0.5313423461914063, 0.5313720092773437, 0.5316188354492187, 0.5309050903320313, 0.5311948852539062, 0.5310873413085937, 0.5315645141601563, 0.5312706298828125, 0.5313065185546875, 0.5313433837890625, 0.53119384765625, 0.5309767456054687, 0.5315348510742187, 0.532041748046875, 0.5317161254882813, 0.5314119873046875, 0.5313494873046875, 0.5311979370117188, 0.5316075439453125, 0.5313341674804688, 0.5313423461914063, 0.531177490234375, 0.5312553100585937, 0.531019775390625, 0.5315665893554687, 0.5312440185546875, 0.5314283447265625, 0.5314006958007812, 0.5314877319335938, 0.5311262817382812, 0.5316321411132813, 0.5312686157226563, 0.5320028076171875, 1.103824951171875, 0.5310279541015624, 0.53146826171875, 0.5310341186523437, 0.5313740844726562, 0.5310853271484375, 0.5314447631835938, 0.5311447143554687, 0.5314212036132813, 0.531420166015625, 0.5311948852539062, 0.5308630981445313, 0.5313853149414063, 0.5309020385742188, 0.53150830078125, 0.5310576171875, 0.5312839965820313, 0.5317191772460937, 0.5318482055664062, 0.5312532348632812, 0.5314641723632813, 0.5309531860351563, 0.5312553100585937, 0.5309808349609375, 0.5311590576171875, 0.5310494995117188, 0.531863525390625, 0.5317703857421875, 0.5314180908203125, 0.53118359375, 0.5314396362304687, 0.5311129150390625, 0.5312420043945313, 0.5310259399414062, 0.5311918334960938, 0.5312973022460937, 0.5321564331054688, 0.5315194702148438, 0.5316976928710937, 0.5313034057617188, 0.5316218872070313, 0.531430419921875, 0.5316812744140625, 0.5315625, 0.5316239624023438, 0.5310105590820312, 0.5315389404296875, 0.5312665405273438, 0.5317191772460937, 0.5312142944335938, 0.5314641723632813, 0.53167822265625, 0.5313607788085938, 0.5311918334960938, 0.5314918212890625, 0.53161474609375, 0.5318031616210938, 0.5315338134765625, 0.5315020751953125, 0.5313065185546875, 0.531968994140625, 0.5318994140625, 0.5317734375]",tokens/s,1.8528425468336207,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-2.7b,EleutherAI/pythia-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2221.408256,3330.801664,0.0,2684.35456,2447.595008,s,10,2.311121505737305,0.2311121505737305,0.0008602880707090342,0.23093637084960938,0.23197196044921875,0.23249637908935547,0.23291591400146486,"[0.2330207977294922, 0.23185542297363282, 0.23051023864746092, 0.23036329650878906, 0.2304237823486328, 0.2300004119873047, 0.23067584228515625, 0.2311968994140625, 0.231619384765625, 0.23145542907714844]",tokens/s,1107.6873256749418,kWh,2.719861554979074e-06,1.4903567604051204e-06,1.2427491002590687e-05,1.6637709317974884e-05,tokens/kWh,15386733.54050159,MB,2222.546944,3330.801664,0.0,2684.35456,2597.68064,s,10,135.98273144531248,13.598273144531248,0.005626597165862265,13.59927783203125,13.6021646484375,13.60570927734375,13.60854498046875,"[13.60925390625, 13.5985986328125, 13.5982265625, 13.6012080078125, 13.59995703125, 13.5903544921875, 13.5950361328125, 13.600318359375, 13.601376953125, 13.5884013671875]",tokens/s,4.63294120734267,kWh,0.00016051297066488652,8.797306729544289e-05,0.0007245357930120089,0.0009730218309723382,tokens/kWh,64746.74873126358,,s,629,137.8431466979981,0.21914649713513207,0.027476947243743017,0.21579168701171875,0.2161471496582031,0.2163871795654297,0.4466235400390625,"[0.2167510986328125, 0.21612850952148438, 0.2157936706542969, 0.21595852661132814, 0.21579776000976564, 0.21578341674804688, 0.21598515319824219, 0.21577626037597655, 0.21600563049316407, 0.21667738342285156, 0.2159656982421875, 0.21651968383789064, 0.21600767517089844, 0.21581004333496093, 0.21593600463867188, 0.21574656677246093, 0.2157589111328125, 0.21606707763671876, 0.2157782440185547, 0.21572096252441406, 0.2157322235107422, 0.21579058837890625, 0.21588172912597656, 0.21599232482910155, 0.2161080322265625, 0.21578341674804688, 0.21588172912597656, 0.21578341674804688, 0.21624217224121095, 0.21602406311035155, 0.2159482879638672, 0.21581619262695312, 0.21592169189453125, 0.21585302734375, 0.2157742004394531, 0.21580697631835938, 0.2158233642578125, 0.21585305786132813, 0.216163330078125, 0.2158858184814453, 0.21590425109863282, 0.2159718475341797, 0.2159482879638672, 0.21587660217285157, 0.2160394287109375, 0.21591244506835938, 0.2157660217285156, 0.21589913940429686, 0.21592576599121094, 0.21606399536132812, 0.21596365356445313, 0.2158428192138672, 0.21607833862304687, 0.21651866149902343, 0.21638246154785157, 0.21635379028320312, 0.21680844116210937, 0.21638656616210938, 0.21633331298828126, 0.21572709655761718, 0.21570457458496095, 0.21581517028808594, 0.448078857421875, 0.21560012817382812, 0.21530323791503905, 0.21556626892089845, 0.21550796508789063, 0.2154915771484375, 0.21565951538085937, 0.21555711364746094, 0.21552742004394532, 0.21577728271484375, 0.2157127685546875, 0.21635789489746093, 0.21575782775878907, 0.21568818664550782, 0.2154915771484375, 0.2156810302734375, 0.21565440368652344, 0.21555404663085936, 0.21562060546875, 0.21577728271484375, 0.2157557830810547, 0.21564006042480469, 0.21555815124511718, 0.21571583557128907, 0.2157373504638672, 0.21600973510742189, 0.21567079162597655, 0.2159482879638672, 0.21565235900878907, 0.2156820526123047, 0.21579469299316406, 0.21556941223144532, 0.215583740234375, 0.21569842529296876, 0.21576191711425782, 0.21580294799804686, 0.21571781921386718, 0.215583740234375, 0.21599334716796875, 0.2168739776611328, 0.21618482971191405, 0.21625753784179688, 0.21591142272949218, 0.21590835571289063, 0.21615206909179688, 0.21587557983398437, 0.21748121643066406, 0.21573324584960937, 0.21585816955566406, 0.21574758911132813, 0.21579161071777345, 0.21602613830566406, 0.21589602661132812, 0.21573837280273436, 0.21600767517089844, 0.2161459197998047, 0.216195068359375, 0.21681561279296874, 0.21595545959472656, 0.2159800262451172, 0.21614183044433594, 0.21579263305664062, 0.21579168701171875, 0.44681414794921875, 0.21564927673339843, 0.21552024841308592, 0.2156093444824219, 0.21581517028808594, 0.21569024658203126, 0.21543324279785156, 0.2153850555419922, 0.21555917358398438, 0.21604454040527343, 0.2156441650390625, 0.21566259765625, 0.2157373504638672, 0.21574348449707031, 0.2156165771484375, 0.2157229461669922, 0.21567692565917967, 0.21569024658203126, 0.2158540802001953, 0.21572198486328126, 0.2158008270263672, 0.21594009399414063, 0.21594009399414063, 0.2173450164794922, 0.21601280212402343, 0.21582643127441406, 0.21562265014648438, 0.216121337890625, 0.21586329650878905, 0.21575065612792968, 0.21581721496582032, 0.21577626037597655, 0.21595135498046875, 0.21587046813964844, 0.2158223419189453, 0.21579263305664062, 0.21578854370117187, 0.21617765808105469, 0.21579571533203126, 0.2159615936279297, 0.2160906219482422, 0.2161459197998047, 0.21604864501953125, 0.2158551025390625, 0.2156943359375, 0.21593498229980468, 0.2158254089355469, 0.21669273376464843, 0.21583258056640625, 0.21568307495117187, 0.21580288696289063, 0.21581210327148437, 0.21588070678710938, 0.21590118408203124, 0.2158018493652344, 0.2157803497314453, 0.2158192596435547, 0.2158192596435547, 0.2157670440673828, 0.21574758911132813, 0.21588890075683595, 0.2157137908935547, 0.21567079162597655, 0.44661248779296875, 0.215657470703125, 0.21567999267578125, 0.21604351806640626, 0.2158858184814453, 0.21600665283203124, 0.21593600463867188, 0.2156145324707031, 0.21560723876953125, 0.21591346740722656, 0.21581619262695312, 0.21606809997558593, 0.216342529296875, 0.21595750427246094, 0.21586636352539063, 0.21600154113769532, 0.2158540802001953, 0.21593907165527343, 0.21594522094726562, 0.21608345031738282, 0.21599334716796875, 0.21589401245117187, 0.21608038330078125, 0.21600665283203124, 0.21591448974609376, 0.21582131958007814, 0.21565542602539062, 0.2157004852294922, 0.21572921752929688, 0.21575570678710937, 0.215878662109375, 0.21577113342285156, 0.2156390380859375, 0.21572709655761718, 0.21576191711425782, 0.215878662109375, 0.21596774291992188, 0.21590835571289063, 0.21587660217285157, 0.21585305786132813, 0.2158356475830078, 0.21571685791015624, 0.21579263305664062, 0.21578956604003907, 0.21685247802734375, 0.2158223419189453, 0.21567692565917967, 0.21570661926269533, 0.21589503479003908, 0.21621554565429688, 0.2161643524169922, 0.21638758850097656, 0.215878662109375, 0.21575885009765625, 0.21584588623046874, 0.21589401245117187, 0.2158745574951172, 0.21597900390625, 0.21583769226074218, 0.21566361999511718, 0.2158182373046875, 0.21573017883300782, 0.21579776000976564, 0.44662783813476564, 0.21568511962890624, 0.2158233642578125, 0.21589605712890625, 0.2156615753173828, 0.21600154113769532, 0.21570355224609375, 0.2157639617919922, 0.21581312561035157, 0.21569024658203126, 0.215552001953125, 0.21569638061523438, 0.21593087768554686, 0.2157076416015625, 0.21581004333496093, 0.21580902099609375, 0.21563699340820314, 0.21653094482421875, 0.21587660217285157, 0.21565440368652344, 0.21584588623046874, 0.2159288330078125, 0.21573426818847657, 0.21571583557128907, 0.21572096252441406, 0.21561036682128906, 0.21595750427246094, 0.21581210327148437, 0.215841796875, 0.21570559692382812, 0.21621452331542967, 0.2162554931640625, 0.216015869140625, 0.21625958251953126, 0.21600767517089844, 0.2159052734375, 0.2159800262451172, 0.21584077453613282, 0.21585714721679689, 0.2158612518310547, 0.21581517028808594, 0.2157496337890625, 0.21570252990722658, 0.21573837280273436, 0.21577215576171874, 0.21601689147949218, 0.21586534118652342, 0.21566053771972657, 0.21617971801757813, 0.215804931640625, 0.2159964141845703, 0.215910400390625, 0.21567692565917967, 0.21574143981933594, 0.215993408203125, 0.21583967590332032, 0.21577626037597655, 0.21723341369628907, 0.2157936706542969, 0.21567181396484375, 0.21573017883300782, 0.2158602294921875, 0.21591346740722656, 0.44625918579101564, 0.2154598388671875, 0.21547109985351562, 0.215942138671875, 0.2155018310546875, 0.2154967041015625, 0.21560525512695314, 0.21534719848632813, 0.2155335693359375, 0.21555609130859374, 0.21548646545410155, 0.21554893493652344, 0.21556838989257812, 0.2154239959716797, 0.21581210327148437, 0.21597080993652343, 0.2159831085205078, 0.21576191711425782, 0.21572813415527345, 0.21552543640136718, 0.21562054443359374, 0.21571994018554688, 0.21557862854003906, 0.21559500122070313, 0.21570867919921874, 0.21560115051269532, 0.21548851013183593, 0.21564210510253906, 0.21561856079101563, 0.21550079345703124, 0.2157137908935547, 0.21574348449707031, 0.21571481323242186, 0.21626162719726563, 0.21590016174316407, 0.2157127685546875, 0.21570867919921874, 0.21562982177734374, 0.21705215454101562, 0.21569229125976563, 0.21560012817382812, 0.2157373504638672, 0.21579058837890625, 0.21566464233398439, 0.21566361999511718, 0.21576191711425782, 0.21585101318359376, 0.21570867919921874, 0.21573529052734375, 0.21557554626464845, 0.2158305206298828, 0.2157742004394531, 0.2156083221435547, 0.2155704345703125, 0.21572813415527345, 0.21567082214355468, 0.21573321533203124, 0.2156513214111328, 0.21562777709960937, 0.21566265869140624, 0.21600965881347656, 0.21582028198242187, 0.21637837219238282, 0.4470773620605469, 0.2156072998046875, 0.21567079162597655, 0.21566566467285156, 0.21550079345703124, 0.21559091186523438, 0.21565542602539062, 0.21559500122070313, 0.2156697540283203, 0.21570661926269533, 0.21575474548339843, 0.21560426330566407, 0.2156011199951172, 0.21565235900878907, 0.21573939514160156, 0.2161090545654297, 0.2160199737548828, 0.21577523803710938, 0.21591552734375, 0.21555815124511718, 0.2156441650390625, 0.21569842529296876, 0.21553868103027343, 0.21665382385253906, 0.21579571533203126, 0.21555711364746094, 0.2155888671875, 0.21576499938964844, 0.215762939453125, 0.21582028198242187, 0.2158582458496094, 0.2157608337402344, 0.21596368408203126, 0.21594313049316408, 0.2157445068359375, 0.2157639617919922, 0.21581414794921874, 0.21576502990722657, 0.21569635009765625, 0.215762939453125, 0.2158223419189453, 0.21592268371582032, 0.21613157653808593, 0.21586329650878905, 0.21606501770019532, 0.21634661865234375, 0.21581517028808594, 0.21568716430664062, 0.215804931640625, 0.21572096252441406, 0.215689208984375, 0.21578239440917968, 0.21577523803710938, 0.21575167846679688, 0.21579776000976564, 0.21582028198242187, 0.21593600463867188, 0.2157178955078125, 0.21569024658203126, 0.21573324584960937, 0.21574758911132813, 0.21596876525878905, 0.21589605712890625, 0.44737637329101565, 0.21560012817382812, 0.2154035186767578, 0.21556224060058593, 0.21559091186523438, 0.21557760620117186, 0.2155878448486328, 0.2156195831298828, 0.21551922607421875, 0.21568511962890624, 0.21572813415527345, 0.21568818664550782, 0.21565542602539062, 0.21562265014648438, 0.21565440368652344, 0.21580799865722655, 0.21636402893066406, 0.2157178955078125, 0.2158018493652344, 0.21578341674804688, 0.21576499938964844, 0.21569740295410156, 0.21566464233398439, 0.21570970153808594, 0.2157936706542969, 0.21613772583007812, 0.21595237731933595, 0.21639680480957033, 0.21639474487304688, 0.21601791381835939, 0.2160025634765625, 0.21584999084472656, 0.2159288330078125, 0.21633024597167969, 0.21584793090820312, 0.2159964141845703, 0.21607936096191407, 0.2160148468017578, 0.21588992309570312, 0.21595852661132814, 0.21601689147949218, 0.21620632934570314, 0.21618380737304688, 0.216595458984375, 0.21603021240234374, 0.21584690856933594, 0.21581619262695312, 0.21571994018554688, 0.21570252990722658, 0.21567692565917967, 0.21569638061523438, 0.21571072387695311, 0.2158970947265625, 0.2156810302734375, 0.2158981170654297, 0.2158602294921875, 0.21611932373046874, 0.21608546447753907, 0.21588479614257813, 0.21581004333496093, 0.21603225708007812, 0.21623910522460937, 0.21606809997558593, 0.44815972900390627, 0.21594316101074218, 0.21585305786132813, 0.21599130249023438, 0.21577932739257813, 0.21586534118652342, 0.21586431884765625, 0.21613055419921876, 0.21584895324707032, 0.21639578247070312, 0.21571994018554688, 0.215657470703125, 0.21565951538085937, 0.2156748809814453, 0.21572607421875, 0.21584690856933594, 0.21561138916015626, 0.21668966674804688, 0.2158008270263672, 0.21577113342285156, 0.21580902099609375, 0.2158673858642578, 0.21579673767089844, 0.21592063903808595, 0.21624319458007812, 0.21564927673339843, 0.21612953186035155, 0.21587046813964844, 0.2156810302734375, 0.21577830505371093, 0.2156943359375, 0.2155827178955078, 0.21565542602539062, 0.21575372314453126, 0.21602610778808592, 0.2159052734375, 0.2158039093017578, 0.21560421752929687, 0.21574656677246093, 0.2161326141357422, 0.21603021240234374, 0.21574041748046874, 0.21587251281738282, 0.21601791381835939, 0.21597900390625, 0.2160343017578125, 0.21582028198242187, 0.21569126892089843, 0.2157424621582031, 0.21565235900878907, 0.21565440368652344, 0.2158602294921875, 0.21615206909179688, 0.21636915588378905, 0.2160148468017578, 0.21692825317382813, 0.21595960998535157, 0.21593696594238282, 0.21585101318359376, 0.21585101318359376, 0.21587251281738282, 0.2156134338378906, 0.21572813415527345, 0.44772250366210936, 0.2154598388671875, 0.21554896545410157, 0.21563491821289063, 0.21536154174804686, 0.2154977264404297, 0.21561651611328125, 0.2155335693359375, 0.21565338134765624, 0.21574867248535157, 0.21558367919921875, 0.2155714874267578, 0.21574960327148437, 0.2156390380859375, 0.21553868103027343, 0.21560838317871095, 0.21563385009765626, 0.2156810302734375, 0.2155704345703125, 0.2155704345703125, 0.21559603881835937, 0.21553663635253906, 0.21553152465820313, 0.21560525512695314, 0.21560421752929687, 0.21559397888183593, 0.21667225646972657, 0.21568818664550782, 0.21559910583496095, 0.21570457458496095, 0.2156513214111328, 0.21557554626464845, 0.21559193420410155, 0.21564210510253906, 0.21565338134765624, 0.21612953186035155, 0.2163251190185547, 0.21550592041015626, 0.215910400390625, 0.21579469299316406, 0.2157455291748047, 0.215762939453125, 0.21571891784667968, 0.21559295654296876, 0.21559091186523438, 0.2155847625732422, 0.21548442077636717, 0.21573426818847657, 0.21578341674804688, 0.21575270080566405, 0.21571583557128907, 0.2156134338378906, 0.2155878448486328, 0.21560012817382812, 0.21608242797851562, 0.2159646759033203, 0.2156615753173828, 0.21582438659667968, 0.21574348449707031, 0.215689208984375, 0.21561856079101563, 0.21556121826171876, 0.2156380157470703]",tokens/s,4.563157582132701,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,B,B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -41578,34 +41306,70 @@ If this is a private repository, make sure to pass a token having permission to File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/B/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669493f0-68e8bdad2c7e64af22b921fd;f188bfd6-b853-4b0d-a4e7-5240103fdc64) + +Repository Not Found for url: https://huggingface.co/B/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + raise EnvironmentError( +OSError: B is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-40b,tiiuae/falcon-40b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-30b,huggyllama/llama-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,6386.765824,20902.838272,0.0,20256.391168,19273.711616,s,10,26.8813134765625,2.68813134765625,0.0041309885323175775,2.6865931396484375,2.691104760742187,2.6949006469726564,2.6979373559570314,"[2.68579150390625, 2.698696533203125, 2.6865712890625, 2.6859423828125, 2.686614990234375, 2.68409033203125, 2.68391357421875, 2.689296875, 2.690134765625, 2.69026123046875]",tokens/s,95.23344170782555,kWh,3.169923381672966e-05,1.7372348204735315e-05,0.00014952039739400956,0.00019859197941547455,tokens/kWh,1289075.222239575,MB,6390.304768,20902.838272,0.0,20256.391168,19862.692352,s,10,1586.219609375,158.62196093749998,0.021140987905695616,158.62285937500002,158.64970156249998,158.65553046875,158.66019359375,"[158.621765625, 158.64840625, 158.661359375, 158.62828125, 158.623953125, 158.628453125, 158.605140625, 158.5859375, 158.5989375, 158.617375]",tokens/s,0.39717072987657226,kWh,0.0018725793671773541,0.001026339254797931,0.00885864822580179,0.011757566847777077,tokens/kWh,5358.251483121356,,s,629,1607.8922929687508,2.55626755638911,0.31948633074222244,2.517612548828125,2.519399658203125,2.519920654296875,5.205208671875,"[2.518139892578125, 2.51872265625, 2.517171142578125, 2.517675048828125, 2.517256103515625, 2.51740869140625, 2.51825048828125, 2.5169521484375, 2.517097412109375, 2.516339599609375, 2.5180908203125, 2.51845947265625, 2.51869189453125, 2.518560791015625, 2.519083984375, 2.517611572265625, 2.517076904296875, 2.5172490234375, 2.518533203125, 2.518801513671875, 2.5181748046875, 2.51648193359375, 2.517393310546875, 2.516537353515625, 2.517125, 2.516431884765625, 2.518256591796875, 2.516644775390625, 2.5168720703125, 2.516345947265625, 2.51714453125, 2.516572265625, 2.516453369140625, 2.516675537109375, 2.517611572265625, 2.516471923828125, 2.516367431640625, 2.517232666015625, 2.517244873046875, 2.51826904296875, 2.517273681640625, 2.51704638671875, 2.5178828125, 2.51706884765625, 2.51754296875, 2.518129638671875, 2.519542724609375, 2.5176494140625, 2.517353515625, 2.51711279296875, 2.519594970703125, 2.52010693359375, 2.51871435546875, 2.519090087890625, 2.519048095703125, 2.519532470703125, 2.51997802734375, 2.518859619140625, 2.51943017578125, 2.520383544921875, 2.517666748046875, 2.51677392578125, 5.2204013671875, 2.5192919921875, 2.51740771484375, 2.516737060546875, 2.5188486328125, 2.5170791015625, 2.516949951171875, 2.517423095703125, 2.517424072265625, 2.51706787109375, 2.517665771484375, 2.519553955078125, 2.51833642578125, 2.519075927734375, 2.519300048828125, 2.51761962890625, 2.519573486328125, 2.518274169921875, 2.517041259765625, 2.5171435546875, 2.516961181640625, 2.517271484375, 2.516989013671875, 2.52028515625, 2.518149169921875, 2.5176474609375, 2.517328857421875, 2.51751220703125, 2.51903271484375, 2.51806005859375, 2.51780810546875, 2.51837548828125, 2.519371826171875, 2.517011474609375, 2.519920654296875, 2.5178798828125, 2.517094482421875, 2.51761669921875, 2.51815625, 2.51747216796875, 2.516791259765625, 2.5166181640625, 2.517612548828125, 2.51765576171875, 2.51951513671875, 2.516619384765625, 2.519645263671875, 2.518657958984375, 2.516588623046875, 2.519201904296875, 2.51913720703125, 2.518130615234375, 2.517403564453125, 2.5184736328125, 2.519552001953125, 2.523171875, 2.51789013671875, 2.516390869140625, 2.5189345703125, 2.518498291015625, 2.519341064453125, 2.5183642578125, 2.519233642578125, 5.20647900390625, 2.5165556640625, 2.518474853515625, 2.51786962890625, 2.51740478515625, 2.517843994140625, 2.51732177734375, 2.51726123046875, 2.516327392578125, 2.517376953125, 2.518192138671875, 2.519117919921875, 2.518830078125, 2.516476806640625, 2.51763916015625, 2.517055419921875, 2.517540771484375, 2.51723681640625, 2.519719970703125, 2.51848095703125, 2.517832763671875, 2.516706298828125, 2.51780517578125, 2.518971435546875, 2.5205986328125, 2.51799853515625, 2.51905029296875, 2.52092919921875, 2.517274658203125, 2.51875634765625, 2.5179462890625, 2.51730126953125, 2.51972802734375, 2.519468017578125, 2.518427734375, 2.5177353515625, 2.517422119140625, 2.5163857421875, 2.51761767578125, 2.517665771484375, 2.52023291015625, 2.51808154296875, 2.517843017578125, 2.52073974609375, 2.519414794921875, 2.51922216796875, 2.518572021484375, 2.519636962890625, 2.520416259765625, 2.518666259765625, 2.522156005859375, 2.518053955078125, 2.519404541015625, 2.518847412109375, 2.517646240234375, 2.51810205078125, 2.51926123046875, 2.519097412109375, 2.521001953125, 2.518910888671875, 2.5173779296875, 2.517789794921875, 2.520220703125, 5.20475830078125, 2.51871240234375, 2.5201982421875, 2.520436767578125, 2.51780908203125, 2.516747314453125, 2.51753271484375, 2.516557861328125, 2.51795458984375, 2.51775390625, 2.518048828125, 2.517761962890625, 2.518373291015625, 2.51766064453125, 2.517230712890625, 2.516822021484375, 2.51799755859375, 2.5179033203125, 2.5168720703125, 2.518266845703125, 2.517353515625, 2.5180712890625, 2.518619140625, 2.516643798828125, 2.517336181640625, 2.517548095703125, 2.517536865234375, 2.517360595703125, 2.517929931640625, 2.517650390625, 2.517623779296875, 2.518117431640625, 2.51952734375, 2.51759521484375, 2.517037109375, 2.517159912109375, 2.51675537109375, 2.518679443359375, 2.517864501953125, 2.51694189453125, 2.517684326171875, 2.519645263671875, 2.518003662109375, 2.517291015625, 2.516994140625, 2.51759912109375, 2.5174609375, 2.51873388671875, 2.517940185546875, 2.51837841796875, 2.51715185546875, 2.5170146484375, 2.51955517578125, 2.518741943359375, 2.5189775390625, 2.5173525390625, 2.517677978515625, 2.51769140625, 2.51719580078125, 2.51702783203125, 2.5181552734375, 2.519466064453125, 2.519775146484375, 5.2051865234375, 2.517904296875, 2.51915869140625, 2.51858935546875, 2.519103515625, 2.519520263671875, 2.517877685546875, 2.517642333984375, 2.518906982421875, 2.51755419921875, 2.517623779296875, 2.517487548828125, 2.518580322265625, 2.518183837890625, 2.517307373046875, 2.516926513671875, 2.51662353515625, 2.519920654296875, 2.516429931640625, 2.518091796875, 2.5164921875, 2.5171865234375, 2.51658251953125, 2.517351318359375, 2.516623291015625, 2.517256103515625, 2.517856201171875, 2.517544921875, 2.516708251953125, 2.519246826171875, 2.518055908203125, 2.518032470703125, 2.516893798828125, 2.519097412109375, 2.517005126953125, 2.517876708984375, 2.5175634765625, 2.518494140625, 2.5167412109375, 2.5177138671875, 2.518095947265625, 2.51822998046875, 2.518499267578125, 2.516704345703125, 2.520115234375, 2.517539794921875, 2.5169130859375, 2.517727294921875, 2.517357666015625, 2.5173330078125, 2.518453369140625, 2.520203369140625, 2.517231689453125, 2.517478515625, 2.517189697265625, 2.517262451171875, 2.517794921875, 2.519332763671875, 2.517783447265625, 2.517359619140625, 2.51770458984375, 2.517918701171875, 2.5172275390625, 5.20521728515625, 2.518489013671875, 2.51708203125, 2.5163857421875, 2.51787060546875, 2.5188076171875, 2.518327392578125, 2.517561279296875, 2.519435302734375, 2.52038037109375, 2.517274658203125, 2.517645263671875, 2.517359619140625, 2.517127197265625, 2.516441162109375, 2.516781982421875, 2.518454345703125, 2.517274658203125, 2.51644921875, 2.51639306640625, 2.5190185546875, 2.5164248046875, 2.516654052734375, 2.5163837890625, 2.51848388671875, 2.516992919921875, 2.5170400390625, 2.51709033203125, 2.517877685546875, 2.516539306640625, 2.516367431640625, 2.51928173828125, 2.519300048828125, 2.51730029296875, 2.516928466796875, 2.516885498046875, 2.518531982421875, 2.5179638671875, 2.518365234375, 2.521257080078125, 2.5186845703125, 2.51814697265625, 2.518978515625, 2.518739013671875, 2.51789208984375, 2.517880859375, 2.5175458984375, 2.51723779296875, 2.520966064453125, 2.5173125, 2.517146728515625, 2.517482421875, 2.51751123046875, 2.518137939453125, 2.517230712890625, 2.51829150390625, 2.51913720703125, 2.51747216796875, 2.518295654296875, 2.51835693359375, 2.5180498046875, 2.51679443359375, 2.516978759765625, 5.20618505859375, 2.516756591796875, 2.516822021484375, 2.516474853515625, 2.517072998046875, 2.51698583984375, 2.517000244140625, 2.517266357421875, 2.51782666015625, 2.51772119140625, 2.518513671875, 2.518520751953125, 2.517814208984375, 2.516486083984375, 2.516232177734375, 2.51664892578125, 2.517416015625, 2.51725, 2.517421142578125, 2.51761767578125, 2.517550048828125, 2.517233642578125, 2.51706982421875, 2.517667724609375, 2.518662109375, 2.517381103515625, 2.5167001953125, 2.517783447265625, 2.51818603515625, 2.51659375, 2.51644921875, 2.516968505859375, 2.51725927734375, 2.517319580078125, 2.51740673828125, 2.517291015625, 2.51770068359375, 2.516655029296875, 2.516579345703125, 2.518679443359375, 2.51792578125, 2.517526611328125, 2.518116455078125, 2.51873291015625, 2.517396484375, 2.517900390625, 2.51812255859375, 2.5177353515625, 2.5179853515625, 2.516726806640625, 2.5171015625, 2.517467041015625, 2.518310791015625, 2.51728173828125, 2.516833251953125, 2.51797412109375, 2.517671875, 2.518767578125, 2.51833251953125, 2.518369384765625, 2.519214111328125, 2.5175, 2.517960693359375, 5.207421875, 2.516853759765625, 2.517536865234375, 2.51687841796875, 2.516634521484375, 2.516380615234375, 2.51723681640625, 2.517261474609375, 2.51818798828125, 2.518327392578125, 2.518880126953125, 2.518677490234375, 2.517012451171875, 2.516658203125, 2.5166181640625, 2.51793505859375, 2.517747802734375, 2.519637939453125, 2.5187236328125, 2.518320068359375, 2.517434326171875, 2.516303955078125, 2.516716552734375, 2.516737060546875, 2.516611083984375, 2.516365234375, 2.51681591796875, 2.516877197265625, 2.517065673828125, 2.516994140625, 2.517845947265625, 2.518003662109375, 2.517454833984375, 2.51677685546875, 2.517212158203125, 2.517548095703125, 2.51734228515625, 2.51691015625, 2.5173115234375, 2.51702587890625, 2.51687109375, 2.517181396484375, 2.517095458984375, 2.517434326171875, 2.518919189453125, 2.51658447265625, 2.516896728515625, 2.51681787109375, 2.51647900390625, 2.5165732421875, 2.516769775390625, 2.51728271484375, 2.516929443359375, 2.516444091796875, 2.5165341796875, 2.517580810546875, 2.51643798828125, 2.51633984375, 2.51785302734375, 2.517928955078125, 2.516727783203125, 2.51658544921875, 2.516779052734375, 5.207884765625, 2.51725, 2.51802001953125, 2.517275634765625, 2.516849609375, 2.516008056640625, 2.516381591796875, 2.51746826171875, 2.51627734375, 2.516135986328125, 2.5164912109375, 2.5164912109375, 2.516265869140625, 2.5161103515625, 2.516736083984375, 2.51685693359375, 2.51656396484375, 2.51710986328125, 2.517779541015625, 2.51814697265625, 2.517348388671875, 2.516961181640625, 2.518197265625, 2.51780810546875, 2.518084716796875, 2.518426513671875, 2.517813232421875, 2.517560302734375, 2.51685693359375, 2.51721728515625, 2.516894775390625, 2.517078125, 2.516939697265625, 2.516675537109375, 2.516822021484375, 2.516694091796875, 2.51648828125, 2.516349853515625, 2.51686083984375, 2.51789404296875, 2.516864013671875, 2.516809814453125, 2.516926513671875, 2.51690185546875, 2.51774462890625, 2.518223876953125, 2.51867236328125, 2.520320068359375, 2.518391845703125, 2.518958984375, 2.5195068359375, 2.51765771484375, 2.51833251953125, 2.519100341796875, 2.51811328125, 2.5185771484375, 2.51877587890625, 2.5190849609375, 2.51871337890625, 2.517376953125, 2.516873291015625, 2.516703125, 2.517409912109375, 5.20814892578125, 2.516905029296875, 2.517455810546875, 2.51675341796875, 2.5166611328125, 2.5164248046875, 2.51766064453125, 2.516621337890625, 2.516347900390625, 2.51616455078125, 2.5168916015625, 2.516533203125, 2.51630078125, 2.51683935546875, 2.5170791015625, 2.5168505859375, 2.51635498046875, 2.516509765625, 2.517519287109375, 2.517980224609375, 2.517612548828125, 2.51685888671875, 2.5184287109375, 2.517878662109375, 2.51812548828125, 2.51820849609375, 2.519699462890625, 2.51765771484375, 2.517099609375, 2.517208984375, 2.51761962890625, 2.5169130859375, 2.51656591796875, 2.5162998046875, 2.51715185546875, 2.517620849609375, 2.516823974609375, 2.516893798828125, 2.517906494140625, 2.517166259765625, 2.5167236328125, 2.51692236328125, 2.51753271484375, 2.51745166015625, 2.516619384765625, 2.517034912109375, 2.51966259765625, 2.5194423828125, 2.519153564453125, 2.519391357421875, 2.519334716796875, 2.520791015625, 2.5193984375, 2.51885986328125, 2.518571044921875, 2.519627685546875, 2.519412841796875, 2.5196328125, 2.5182587890625, 2.516928466796875, 2.517813232421875, 2.518243408203125, 2.5184306640625]",tokens/s,0.3911953572702552,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,2,2,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -41613,28 +41377,70 @@ NameError: name 'exl_ext' is not defined File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/2/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949393-3d2fe20f66c6aa0258d7e342;1ceb2da6-1f33-4669-9748-fd7626e7e9fc) + +Repository Not Found for url: https://huggingface.co/2/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation - cls._check_and_enable_flash_attn_2( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 - raise ValueError( -ValueError: FalconForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmp76n4ebgl/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + raise EnvironmentError( +OSError: 2 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neox-20b,EleutherAI/gpt-neox-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-350m,facebook/opt-350m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1312.935936,1023.934464,0.0,377.48736,290.348032,s,10,0.6976366119384766,0.06976366119384766,0.0018590846735664541,0.0696058578491211,0.07176354598999024,0.07230553245544434,0.07273912162780762,"[0.07284751892089844, 0.06800761413574219, 0.06769139099121094, 0.06779033660888673, 0.07104889678955079, 0.07164310455322266, 0.07125389099121093, 0.06824649810791016, 0.07096521759033203, 0.06814214324951172]",tokens/s,3669.5321836488733,kWh,8.134236630148721e-07,4.4571909736688417e-07,2.1182893658638067e-06,3.377432126245563e-06,tokens/kWh,75797230.09402885,MB,1312.935936,1023.934464,0.0,377.48736,337.281536,s,10,43.73100244140625,4.373100244140625,0.07142248616314475,4.400765380859375,4.4402288085937505,4.445402490234375,4.449541435546875,"[4.35173583984375, 4.25024462890625, 4.26398681640625, 4.30877587890625, 4.41468994140625, 4.4390791015625, 4.43881396484375, 4.42625927734375, 4.3868408203125, 4.450576171875]",tokens/s,14.40625562709468,kWh,5.082961926562783e-05,2.7857636841584544e-05,0.0001254377571233551,0.00020412501323056748,tokens/kWh,308634.39518232364,,s,629,44.28504171752928,0.07040547172898139,0.008395184351578173,0.07026687622070313,0.07091015625,0.07132590332031251,0.13567237548828126,"[0.0723609619140625, 0.07140863800048829, 0.07176195526123047, 0.07163388824462891, 0.07094169616699218, 0.07094783782958984, 0.07148441314697265, 0.07121202850341797, 0.07107174682617187, 0.07111577606201172, 0.07114342498779297, 0.07076761627197266, 0.07108198547363281, 0.07081574249267578, 0.07077072143554687, 0.07092835235595703, 0.07097344207763671, 0.0714598388671875, 0.07095500946044922, 0.07107481384277343, 0.07127347564697266, 0.07087923431396484, 0.07049420928955077, 0.07076659393310547, 0.07170150756835937, 0.071552001953125, 0.0690360336303711, 0.06716006469726563, 0.06747545623779297, 0.0673433609008789, 0.06707405090332032, 0.06747135925292969, 0.06733312225341796, 0.06719999694824219, 0.06728806304931641, 0.0673095703125, 0.06710784149169922, 0.06706175994873047, 0.0676126708984375, 0.06733926391601562, 0.06688256072998047, 0.06733414459228515, 0.06721126556396484, 0.0674703369140625, 0.06733926391601562, 0.06750822448730469, 0.06778880310058594, 0.06814105224609375, 0.0675225601196289, 0.06693376159667969, 0.06731980895996094, 0.06751334381103516, 0.07044198608398437, 0.0684615707397461, 0.0671098861694336, 0.06701465606689454, 0.06718463897705078, 0.06769561767578125, 0.06716422271728516, 0.06652819061279297, 0.06804582214355469, 0.06770995330810547, 0.13573631286621093, 0.0672204818725586, 0.06833356475830078, 0.06807555389404298, 0.06771196746826172, 0.06805197143554688, 0.06715392303466797, 0.06708428955078125, 0.06746112060546874, 0.06681702423095703, 0.06697062683105469, 0.06744166564941406, 0.06732288360595703, 0.06716006469726563, 0.06725325012207031, 0.06715602874755859, 0.06704019165039063, 0.06741094207763672, 0.06709555053710937, 0.06650572967529297, 0.06745292663574219, 0.06664704132080078, 0.06701261138916016, 0.06722150421142578, 0.06713855743408204, 0.0671098861694336, 0.06744268798828125, 0.06728704071044922, 0.0696258544921875, 0.06788813018798828, 0.06791372680664062, 0.06849024200439453, 0.06736895751953124, 0.06989209747314454, 0.06821990203857421, 0.06771097564697266, 0.06738432312011719, 0.06751948547363282, 0.06726348876953125, 0.06710784149169922, 0.06749183654785157, 0.06747545623779297, 0.06864179229736328, 0.0675563507080078, 0.06683135986328125, 0.06710681915283204, 0.06729011535644532, 0.06674534606933594, 0.06728089904785156, 0.06722354888916016, 0.06724607849121093, 0.06693990325927734, 0.0674703369140625, 0.06723481750488282, 0.06712223815917968, 0.06780818939208984, 0.06794751739501953, 0.06755840301513671, 0.0675758056640625, 0.06719692993164063, 0.0672573471069336, 0.06723481750488282, 0.06736589050292968, 0.13550796508789062, 0.06692147064208985, 0.06734950256347656, 0.07442227172851562, 0.0679557113647461, 0.06727680206298828, 0.06684569549560547, 0.06775091552734375, 0.06815436553955079, 0.06903807830810547, 0.06718975830078125, 0.06693376159667969, 0.06734031677246094, 0.06811030578613281, 0.06972621154785157, 0.06792601776123047, 0.06736486053466798, 0.06915481567382813, 0.06836736297607422, 0.06893875122070313, 0.07033753967285156, 0.06752665710449218, 0.0672194595336914, 0.06725325012207031, 0.06720822143554687, 0.06680572509765625, 0.06687026977539062, 0.0672143325805664, 0.06730445098876953, 0.06715904235839844, 0.06759014129638671, 0.06702899169921875, 0.06747443389892578, 0.06825984191894531, 0.0673280029296875, 0.06705152130126953, 0.06734130859375, 0.06769664001464844, 0.06806425476074218, 0.06706380462646484, 0.06730137634277343, 0.0671825942993164, 0.0676157455444336, 0.06711398315429687, 0.06727577972412109, 0.06933606719970703, 0.06894182586669922, 0.06846259307861328, 0.06729523468017579, 0.06725836944580078, 0.06733312225341796, 0.0672511978149414, 0.0672890853881836, 0.06693376159667969, 0.0676341781616211, 0.06666957092285156, 0.06659993743896485, 0.0665722885131836, 0.0667514877319336, 0.0672368621826172, 0.06741712188720703, 0.06712726593017578, 0.06705049896240234, 0.1353912353515625, 0.0671488037109375, 0.06749900817871093, 0.0674703369140625, 0.06737715148925781, 0.0673064956665039, 0.06735257720947266, 0.06739974212646484, 0.0676075210571289, 0.07006716918945312, 0.06824960327148437, 0.06842777252197266, 0.06737100982666015, 0.06794239807128906, 0.06855276489257812, 0.0674927978515625, 0.06724813079833984, 0.06728294372558594, 0.06814617919921875, 0.06813286590576172, 0.06723583984375, 0.06725222778320313, 0.06753689575195312, 0.06841139221191406, 0.06750617980957031, 0.06819737243652343, 0.06738438415527344, 0.06882195281982421, 0.06757997131347657, 0.06839907073974609, 0.06708633422851562, 0.06791574096679688, 0.06755020904541016, 0.06742527770996094, 0.06748569488525391, 0.066587646484375, 0.06756761932373047, 0.06675154876708984, 0.06733510589599609, 0.06650163269042969, 0.06747647857666016, 0.06739250946044922, 0.06733824157714843, 0.07072870635986328, 0.07021260833740234, 0.07095807647705078, 0.07044915008544922, 0.07039590454101563, 0.07007437133789063, 0.06753177642822265, 0.06737203216552734, 0.07054438018798828, 0.06973747253417968, 0.07040415954589843, 0.07051052856445313, 0.0710830078125, 0.0708136978149414, 0.06919782257080079, 0.06926131439208984, 0.06997299194335938, 0.07050035095214843, 0.0701286392211914, 0.07048499298095703, 0.14131712341308594, 0.06722457885742188, 0.06749183654785157, 0.06760550689697266, 0.07033446502685547, 0.07015731048583984, 0.07011225891113282, 0.06978765106201172, 0.0705269775390625, 0.06983372497558593, 0.06974156951904296, 0.07031603240966797, 0.07043583679199218, 0.0705802230834961, 0.07040614318847656, 0.07013069152832031, 0.0699504623413086, 0.07051058959960937, 0.07024332427978516, 0.06977126312255859, 0.06987673950195313, 0.07046553802490234, 0.07214806365966797, 0.07040809631347657, 0.06932179260253907, 0.07022994995117188, 0.07043071746826172, 0.07018402862548828, 0.07030262756347656, 0.07083622741699219, 0.07088333129882812, 0.06744166564941406, 0.06735155487060547, 0.06759731292724609, 0.06742733001708984, 0.0693780517578125, 0.07071334075927735, 0.07068876647949218, 0.07128985595703125, 0.07055465698242187, 0.07048291015625, 0.07026483154296875, 0.07063346862792969, 0.07024947357177734, 0.0704563217163086, 0.07028530883789062, 0.0700212173461914, 0.07084226989746094, 0.0705269775390625, 0.07041228485107422, 0.07060889434814453, 0.07039590454101563, 0.07050342559814453, 0.0704686050415039, 0.07056486511230468, 0.07071641540527343, 0.07057920074462891, 0.07043276977539062, 0.07038159942626954, 0.07048802947998047, 0.06970470428466796, 0.07084134674072265, 0.07183257293701172, 0.14264422607421876, 0.07059661102294922, 0.0704337921142578, 0.07088127899169921, 0.07030681610107421, 0.07067340850830078, 0.07019110107421875, 0.06985215759277344, 0.07026483154296875, 0.07035391998291016, 0.0703815689086914, 0.07054847717285156, 0.07035903930664063, 0.07019519805908203, 0.0714567642211914, 0.0703662109375, 0.07029964447021485, 0.07025766754150391, 0.07012351989746093, 0.07053107452392578, 0.07036518096923829, 0.07038873291015625, 0.07040204620361327, 0.07045836639404297, 0.07014093017578125, 0.07181926727294922, 0.07061196899414063, 0.07031705474853515, 0.07053209686279296, 0.07042457580566407, 0.07070719909667969, 0.07003033447265625, 0.0699525146484375, 0.07056486511230468, 0.07099187469482422, 0.07034060668945312, 0.07056281280517578, 0.07041228485107422, 0.070940673828125, 0.07032319641113281, 0.0704901123046875, 0.07044915008544922, 0.07032627105712891, 0.07004057312011719, 0.07051776123046875, 0.07030169677734376, 0.07029043579101563, 0.07063859558105469, 0.07095500946044922, 0.07047993469238281, 0.0705125732421875, 0.07045734405517579, 0.07045222473144531, 0.07037542724609375, 0.07044096374511719, 0.0705638427734375, 0.07061196899414063, 0.07037747192382812, 0.07041024017333984, 0.06980403137207031, 0.07040614318847656, 0.07026585388183594, 0.07064780426025391, 0.14216192626953125, 0.07040102386474609, 0.07040819549560547, 0.07026483154296875, 0.07061504364013672, 0.07052496337890625, 0.07054332733154296, 0.07030989074707031, 0.07011020660400391, 0.07049727630615234, 0.07108812713623047, 0.07056179046630859, 0.07050444793701172, 0.07025971221923828, 0.07032217407226563, 0.07038566589355469, 0.07023513793945313, 0.07034368133544922, 0.07049625396728515, 0.07012556457519531, 0.07023721313476562, 0.06932579040527344, 0.07020543670654297, 0.07085977935791016, 0.07015219116210937, 0.07016242980957031, 0.07007129669189453, 0.07072870635986328, 0.07037542724609375, 0.07045836639404297, 0.07033446502685547, 0.07036313629150391, 0.07039180755615235, 0.07009587097167969, 0.07063346862792969, 0.0701839370727539, 0.07108812713623047, 0.07090892791748046, 0.07049727630615234, 0.07038259124755859, 0.07044403076171875, 0.0706519012451172, 0.070761474609375, 0.0694466552734375, 0.0697528305053711, 0.07026380920410157, 0.07064268493652344, 0.0705433578491211, 0.0703477783203125, 0.07133491516113281, 0.0704368667602539, 0.07131238555908204, 0.07170355224609375, 0.0705771484375, 0.07050752258300781, 0.07046451568603515, 0.07079840087890625, 0.07022892761230469, 0.07035084533691406, 0.07033344268798829, 0.0702402572631836, 0.07078604888916015, 0.07056896209716797, 0.13596263122558594, 0.06696959686279297, 0.06721331024169921, 0.06699417877197265, 0.06940467071533203, 0.07078604888916015, 0.07069593811035156, 0.07035187530517578, 0.07053107452392578, 0.07046246337890626, 0.0706344985961914, 0.07024642944335938, 0.07162467193603515, 0.07080652618408204, 0.07045529937744141, 0.07055359649658204, 0.0706519012451172, 0.07040102386474609, 0.06990335845947265, 0.07026080322265625, 0.07056377410888671, 0.07085670471191406, 0.06976921844482421, 0.07021260833740234, 0.06979583740234375, 0.07011634826660157, 0.0700426254272461, 0.07040716552734375, 0.07058329772949219, 0.0699658203125, 0.07026892852783204, 0.0703272933959961, 0.07030989074707031, 0.07069593811035156, 0.07077683258056641, 0.07038259124755859, 0.07024230194091798, 0.07033548736572266, 0.07012454223632812, 0.07299378967285156, 0.07067033386230469, 0.07059865570068359, 0.07034368133544922, 0.07035699462890625, 0.07052902221679687, 0.070687744140625, 0.06977433776855468, 0.07029862213134766, 0.0704901123046875, 0.07047270202636718, 0.07048191833496094, 0.07052799987792968, 0.0706170883178711, 0.07022182464599609, 0.0703272933959961, 0.070255615234375, 0.07052082824707032, 0.07059967803955078, 0.07068160247802735, 0.0705054702758789, 0.07004364776611328, 0.07048089599609375, 0.07136255645751953, 0.14220700073242187, 0.07030985260009766, 0.07026892852783204, 0.0702033920288086, 0.07120588684082031, 0.07035289764404297, 0.07038361358642578, 0.07045222473144531, 0.070181884765625, 0.07042969512939454, 0.07047577667236328, 0.07076150512695313, 0.07077168273925781, 0.07013990020751953, 0.07032422637939453, 0.07050752258300781, 0.07027200317382812, 0.07128268432617188, 0.070614013671875, 0.07047475433349609, 0.07060889434814453, 0.07019827270507813, 0.07051264190673828, 0.07065702056884765, 0.07134515380859376, 0.07106253051757813, 0.07054950714111329, 0.07042253112792969, 0.07038873291015625, 0.0702740478515625, 0.07026687622070313, 0.06861004638671875, 0.0671272964477539, 0.06711507415771484, 0.0671866226196289, 0.06729523468017579, 0.06710169219970703, 0.06714166259765625, 0.06752764892578125, 0.06734130859375, 0.06720921325683593, 0.06747135925292969, 0.06729933166503907, 0.0674150390625, 0.06712422180175781, 0.06744882965087891, 0.06737612915039062, 0.06713958740234376, 0.06726656341552735, 0.0685823974609375, 0.07029043579101563, 0.07070515441894532, 0.0720742416381836, 0.07064166259765625, 0.07065087890625, 0.07042559814453125, 0.07116806030273437, 0.07063648223876953, 0.07048703765869141, 0.07075430297851562, 0.07056896209716797, 0.07044608306884766, 0.07033036804199219, 0.13839053344726562, 0.07068978881835937, 0.07101030731201172, 0.07077279663085938, 0.07043782043457031, 0.070614013671875, 0.07037542724609375, 0.07067443084716797, 0.070181884765625, 0.07043788909912109, 0.07035391998291016, 0.0702003173828125, 0.07099903869628907, 0.07056690979003906, 0.07074406433105469, 0.07023308563232422, 0.07023616027832032, 0.0702208023071289, 0.070150146484375, 0.0707799072265625, 0.07061199951171875, 0.0703927993774414, 0.07016448211669922, 0.07032115173339844, 0.07010406494140625, 0.07089151763916016, 0.07061913299560547, 0.07181926727294922, 0.07085977935791016, 0.07089663696289063, 0.07025459289550781, 0.07071952056884766, 0.07063139343261719, 0.07043276977539062, 0.07035391998291016, 0.07057920074462891, 0.07042867279052735, 0.07073075103759766, 0.07066726684570312, 0.07058124542236328, 0.07049215698242188, 0.07038668823242188, 0.07035903930664063, 0.07047987365722656, 0.07088025665283203, 0.07053414154052734, 0.07050342559814453, 0.07065395355224609, 0.07077375793457032, 0.07083213043212891, 0.070761474609375, 0.07080242919921875, 0.07068364715576173, 0.0717496337890625, 0.07135539245605468, 0.07119155120849609, 0.07112703704833985, 0.07091506958007812, 0.07129190063476562, 0.07068876647949218, 0.07067545318603516, 0.07053619384765625, 0.07090688323974609]",tokens/s,14.20344151445213,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-MoE-A2.7B,Qwen/Qwen1.5-MoE-A2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -41644,32 +41450,37 @@ ValueError: FalconForCausalLM does not support Flash Attention 2.0 yet. Please r ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3724, in from_pretrained + hf_quantizer.preprocess_model( + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 182, in preprocess_model + return self._process_model_before_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 85, in _process_model_before_weight_loading + model, has_been_replaced = replace_with_awq_linear( + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear + _, has_been_replaced = replace_with_awq_linear( + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear + _, has_been_replaced = replace_with_awq_linear( + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear + _, has_been_replaced = replace_with_awq_linear( + [Previous line repeated 1 more time] + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 166, in replace_with_awq_linear + model._modules[name] = target_cls( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemm.py"", line 102, in __init__ + assert out_features % (32 // self.w_bit) == 0 +AssertionError -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-13b,facebook/opt-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-70B,meta-llama/Meta-Llama-3-70B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -41689,23 +41500,30 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2-large,openai-community/gpt2-large,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1241.440256,2645.03296,0.0,1998.585856,1692.285952,s,10,0.1919048309326172,0.01919048309326172,0.0005813408225469491,0.019010607719421386,0.019647625350952148,0.020231876564025877,0.020699277534484865,"[0.02081612777709961, 0.019026687622070312, 0.018811967849731444, 0.01893507194519043, 0.019049951553344727, 0.018704191207885742, 0.01899452781677246, 0.019173408508300783, 0.018875104904174805, 0.019517791748046874]",tokens/s,13339.945573850004,kWh,2.2137678517830954e-07,1.2130415742105693e-07,6.751076978052327e-07,1.0177886404045992e-06,tokens/kWh,251525699.77420157,MB,1241.735168,2645.03296,0.0,1998.585856,1740.085248,s,10,11.541304443359374,1.1541304443359375,0.013489751503469302,1.149205810546875,1.1732497924804688,1.1755724670410155,1.177430606689453,"[1.1778951416015624, 1.1547576904296875, 1.1516905517578124, 1.172733642578125, 1.1467210693359375, 1.1696463623046875, 1.1408421630859376, 1.139661865234375, 1.142564697265625, 1.144791259765625]",tokens/s,54.586550687733464,kWh,1.3797132453780056e-05,7.558356126426566e-06,2.913202725899442e-05,5.048751583920103e-05,tokens/kWh,1247833.230706979,,s,629,11.692877828598027,0.01858963088807317,0.002323445722503397,0.018134016036987305,0.01885880355834961,0.019136306762695315,0.03729248260498047,"[0.019385343551635743, 0.0192225284576416, 0.018934783935546876, 0.01901055908203125, 0.01903001594543457, 0.018994176864624023, 0.019083263397216797, 0.019182592391967773, 0.01884671974182129, 0.018938880920410156, 0.019106815338134766, 0.019335168838500977, 0.01993011283874512, 0.01969254493713379, 0.019323904037475585, 0.018969663619995115, 0.018957248687744142, 0.01906790351867676, 0.01939455986022949, 0.01918976020812988, 0.018973695755004884, 0.018967552185058592, 0.018592767715454102, 0.01882931137084961, 0.01986457633972168, 0.019759103775024413, 0.01927577590942383, 0.018947071075439453, 0.018954240798950195, 0.018718751907348632, 0.01868899154663086, 0.018881536483764647, 0.018890752792358398, 0.01879449653625488, 0.018750463485717773, 0.018704383850097657, 0.018181119918823242, 0.018052095413208007, 0.01804902458190918, 0.018082815170288084, 0.01805414390563965, 0.018017280578613282, 0.018066432952880858, 0.01804287910461426, 0.01808076858520508, 0.01808793640136719, 0.018129919052124025, 0.01807155227661133, 0.017999872207641602, 0.018085887908935547, 0.01802444839477539, 0.018131967544555663, 0.018059263229370116, 0.018091007232666014, 0.018020351409912108, 0.018124799728393554, 0.017999872207641602, 0.01805516815185547, 0.018081792831420897, 0.01821183967590332, 0.018096128463745118, 0.018970624923706055, 0.039049217224121094, 0.01886207962036133, 0.018746368408203123, 0.018647039413452148, 0.01864089584350586, 0.018724863052368163, 0.01864396858215332, 0.018092031478881835, 0.01817190361022949, 0.018177024841308592, 0.018156543731689453, 0.018041856765747072, 0.018233343124389647, 0.018233343124389647, 0.018225151062011717, 0.01824358367919922, 0.018241535186767577, 0.018158592224121094, 0.018133056640625, 0.01810220718383789, 0.01814630317687988, 0.018093055725097656, 0.01806540870666504, 0.018025472640991212, 0.01816166305541992, 0.018155519485473632, 0.018131967544555663, 0.01815449523925781, 0.01820159912109375, 0.018340864181518556, 0.018150400161743165, 0.018102272033691406, 0.018126848220825196, 0.018134016036987305, 0.01820364761352539, 0.018164735794067383, 0.01820876884460449, 0.018197504043579102, 0.01820159912109375, 0.01819443130493164, 0.01808896064758301, 0.018144256591796876, 0.018129919052124025, 0.018091007232666014, 0.018099199295043944, 0.018150400161743165, 0.018698272705078126, 0.018225120544433593, 0.018116607666015624, 0.018067455291748045, 0.01820057678222656, 0.018164735794067383, 0.018551807403564453, 0.018906112670898437, 0.018751487731933594, 0.01883033561706543, 0.018760704040527345, 0.018741247177124023, 0.018735103607177735, 0.0186746883392334, 0.018655231475830078, 0.018259967803955078, 0.018106367111206053, 0.037272575378417966, 0.01804287910461426, 0.018233343124389647, 0.01804697608947754, 0.018033664703369142, 0.018062335968017578, 0.018127872467041017, 0.018066432952880858, 0.01813711929321289, 0.018199520111083986, 0.01845452880859375, 0.018223104476928712, 0.01807360076904297, 0.018113536834716795, 0.018190336227416993, 0.01820979118347168, 0.018121728897094725, 0.018137088775634767, 0.018068479537963866, 0.018098175048828127, 0.018137088775634767, 0.018147327423095702, 0.018077695846557617, 0.018140159606933593, 0.018127872467041017, 0.018028543472290038, 0.018081792831420897, 0.01804697608947754, 0.018106367111206053, 0.018052095413208007, 0.018062335968017578, 0.01801523208618164, 0.018132991790771484, 0.018094079971313477, 0.018069503784179687, 0.018031648635864258, 0.018113504409790038, 0.018044927597045898, 0.018437120437622072, 0.01925632095336914, 0.01884774398803711, 0.018707456588745116, 0.018890752792358398, 0.01904640007019043, 0.018824192047119142, 0.018703359603881836, 0.018787328720092773, 0.018679807662963867, 0.018689023971557618, 0.018731008529663085, 0.018735103607177735, 0.018665504455566407, 0.018631647109985352, 0.01864396858215332, 0.018618368148803712, 0.018663423538208008, 0.018375680923461913, 0.01799884796142578, 0.017819648742675782, 0.01783193588256836, 0.01783296012878418, 0.017921024322509766, 0.01779916763305664, 0.037171199798583986, 0.01801215934753418, 0.01789952087402344, 0.017904640197753906, 0.018226175308227538, 0.01882828712463379, 0.018754560470581053, 0.018746368408203123, 0.018753536224365236, 0.01880985641479492, 0.0188723201751709, 0.01885798454284668, 0.018932735443115235, 0.018494464874267577, 0.018233343124389647, 0.018856960296630858, 0.018811904907226562, 0.01864908790588379, 0.018693119049072265, 0.018749439239501953, 0.018752511978149415, 0.01867263984680176, 0.01923686408996582, 0.019318784713745117, 0.01998028755187988, 0.018965503692626954, 0.018785280227661134, 0.018815999984741212, 0.018700288772583007, 0.01884262466430664, 0.018718719482421875, 0.018868223190307617, 0.018815999984741212, 0.019164159774780275, 0.01888768005371094, 0.018765823364257812, 0.018686975479125977, 0.018481151580810547, 0.018116607666015624, 0.018117631912231445, 0.018100223541259765, 0.018150400161743165, 0.01819545555114746, 0.018114591598510744, 0.018619359970092772, 0.018117631912231445, 0.018189311981201172, 0.01824051284790039, 0.018177024841308592, 0.018135040283203126, 0.01820262336730957, 0.018158624649047852, 0.01811452865600586, 0.018732032775878905, 0.01821696090698242, 0.018974720001220705, 0.01884979248046875, 0.018716672897338867, 0.018817024230957033, 0.01866444778442383, 0.018647039413452148, 0.019155967712402345, 0.019417087554931642, 0.03750092697143555, 0.018118656158447266, 0.01828659248352051, 0.018125823974609375, 0.01805414390563965, 0.018811904907226562, 0.018735103607177735, 0.0184770565032959, 0.018504703521728515, 0.018662399291992187, 0.018761728286743166, 0.018754560470581053, 0.018148351669311523, 0.018076671600341796, 0.018160640716552736, 0.018207744598388673, 0.018172927856445312, 0.018312192916870116, 0.018480127334594726, 0.018217983245849608, 0.018116607666015624, 0.01823641586303711, 0.018152448654174806, 0.018135040283203126, 0.01826304054260254, 0.01798963165283203, 0.01804595184326172, 0.018339839935302735, 0.018109439849853515, 0.018084863662719726, 0.01803264045715332, 0.01802956771850586, 0.018092031478881835, 0.01806438446044922, 0.01800396728515625, 0.018047008514404297, 0.018133983612060547, 0.018128896713256838, 0.018109439849853515, 0.018044927597045898, 0.018116607666015624, 0.018112512588500978, 0.018077695846557617, 0.018052095413208007, 0.018108415603637695, 0.018172927856445312, 0.018084863662719726, 0.018033664703369142, 0.01804595184326172, 0.018159616470336915, 0.018166784286499024, 0.01809715270996094, 0.018106367111206053, 0.018134016036987305, 0.018110464096069336, 0.01809715270996094, 0.018217983245849608, 0.01862451171875, 0.018117631912231445, 0.018137088775634767, 0.018086912155151368, 0.018139135360717772, 0.018082815170288084, 0.037372928619384765, 0.019594240188598632, 0.01887846374511719, 0.018699264526367186, 0.018685951232910156, 0.018745344161987306, 0.0186562557220459, 0.018723840713500976, 0.018711551666259766, 0.018807807922363282, 0.018708480834960937, 0.018749439239501953, 0.018676736831665038, 0.018697216033935548, 0.018767871856689454, 0.018767871856689454, 0.018817024230957033, 0.018683904647827147, 0.018645023345947264, 0.01865622329711914, 0.01864089584350586, 0.018694143295288086, 0.018293760299682618, 0.018084863662719726, 0.018115583419799804, 0.018192384719848635, 0.01815449523925781, 0.018799615859985352, 0.01866035270690918, 0.018714624404907225, 0.01863884735107422, 0.018683904647827147, 0.018699264526367186, 0.0186746883392334, 0.018709503173828124, 0.01882521629333496, 0.018779136657714843, 0.018700288772583007, 0.01929113578796387, 0.01887027168273926, 0.018775039672851563, 0.018670591354370117, 0.018784255981445314, 0.01879859161376953, 0.01863987159729004, 0.018677759170532226, 0.01880985641479492, 0.01878937530517578, 0.018669567108154296, 0.01821696090698242, 0.018050048828125, 0.018114559173583983, 0.018089984893798827, 0.01817190361022949, 0.018095104217529297, 0.01802444839477539, 0.01803059196472168, 0.018067455291748045, 0.018166784286499024, 0.018106367111206053, 0.018116607666015624, 0.018066432952880858, 0.01820979118347168, 0.03734732818603516, 0.01810534477233887, 0.01814630317687988, 0.01808896064758301, 0.018041856765747072, 0.01805619239807129, 0.018103296279907227, 0.018070528030395508, 0.017984512329101563, 0.018099199295043944, 0.018062335968017578, 0.018096128463745118, 0.01801215934753418, 0.018069503784179687, 0.01802444839477539, 0.018127872467041017, 0.018061311721801757, 0.017991680145263672, 0.01801625633239746, 0.01803468894958496, 0.018074623107910158, 0.01801113510131836, 0.018058240890502928, 0.018307071685791015, 0.01817804718017578, 0.018010112762451173, 0.018112512588500978, 0.018100223541259765, 0.018069503784179687, 0.018035711288452147, 0.01807360076904297, 0.01804800033569336, 0.01803264045715332, 0.01805414390563965, 0.018062335968017578, 0.018094079971313477, 0.018051071166992186, 0.01806540870666504, 0.018123775482177733, 0.017978368759155275, 0.018130943298339842, 0.018027519226074217, 0.018078720092773438, 0.01800294494628906, 0.018018304824829103, 0.01806438446044922, 0.018033695220947266, 0.018548704147338866, 0.018318336486816408, 0.018074623107910158, 0.01804287910461426, 0.018137088775634767, 0.018116607666015624, 0.018299903869628906, 0.018448383331298827, 0.018397184371948243, 0.01822105598449707, 0.018160640716552736, 0.018083839416503905, 0.01819340705871582, 0.018143232345581056, 0.018141183853149414, 0.01808896064758301, 0.037615615844726565, 0.01807360076904297, 0.018068479537963866, 0.018083839416503905, 0.018127872467041017, 0.01803775978088379, 0.018241535186767577, 0.01798963165283203, 0.018557952880859374, 0.018586624145507814, 0.018172927856445312, 0.018067455291748045, 0.01803878402709961, 0.018145280838012694, 0.018100223541259765, 0.018101247787475586, 0.018332672119140626, 0.018173952102661133, 0.01820057678222656, 0.017988639831542967, 0.01809404754638672, 0.018164735794067383, 0.018033664703369142, 0.017838079452514647, 0.017934335708618163, 0.018098175048828127, 0.018100223541259765, 0.018076671600341796, 0.018108415603637695, 0.018108415603637695, 0.018044927597045898, 0.01805721664428711, 0.018168832778930662, 0.018124799728393554, 0.017839103698730468, 0.0178657283782959, 0.01810742378234863, 0.018242528915405273, 0.01802649688720703, 0.018190336227416993, 0.018053119659423827, 0.01803468894958496, 0.017968128204345703, 0.017933311462402343, 0.01803878402709961, 0.018069503784179687, 0.0180316162109375, 0.018095104217529297, 0.01797532844543457, 0.018125823974609375, 0.018138080596923827, 0.01808076858520508, 0.01804287910461426, 0.01801215934753418, 0.01802649688720703, 0.01809715270996094, 0.018018304824829103, 0.01804287910461426, 0.017999872207641602, 0.018067455291748045, 0.018019327163696287, 0.01802137565612793, 0.01806540870666504, 0.03730022430419922, 0.018094079971313477, 0.018059263229370116, 0.01804287910461426, 0.018068479537963866, 0.01806540870666504, 0.01783705520629883, 0.017780736923217775, 0.017881088256835938, 0.018093055725097656, 0.018077695846557617, 0.018033664703369142, 0.01805721664428711, 0.018053119659423827, 0.018106367111206053, 0.018098175048828127, 0.01809715270996094, 0.018293760299682618, 0.018572288513183592, 0.018217983245849608, 0.018103296279907227, 0.018078720092773438, 0.01804595184326172, 0.01818009567260742, 0.01806540870666504, 0.018141183853149414, 0.018036735534667968, 0.01805721664428711, 0.01779199981689453, 0.017710079193115236, 0.017810432434082032, 0.017822719573974608, 0.01781760025024414, 0.01787392044067383, 0.01781760025024414, 0.017908735275268553, 0.018152448654174806, 0.018028543472290038, 0.01804902458190918, 0.01803980827331543, 0.018033664703369142, 0.018020351409912108, 0.01802137565612793, 0.018041856765747072, 0.018025472640991212, 0.018141183853149414, 0.018959360122680666, 0.019607551574707033, 0.01887948799133301, 0.01866444778442383, 0.01859174346923828, 0.01863680076599121, 0.018182144165039063, 0.01803980827331543, 0.018092031478881835, 0.01807257652282715, 0.018306047439575195, 0.018158592224121094, 0.018062335968017578, 0.018176000595092775, 0.01822105598449707, 0.018059263229370116, 0.018125823974609375, 0.03789209747314453, 0.018148351669311523, 0.01803468894958496, 0.018094079971313477, 0.017999872207641602, 0.018111488342285157, 0.01804902458190918, 0.018020351409912108, 0.018093055725097656, 0.01810534477233887, 0.018127872467041017, 0.018068511962890624, 0.0180664005279541, 0.018096128463745118, 0.01821696090698242, 0.018103296279907227, 0.018053119659423827, 0.018055200576782227, 0.018034656524658202, 0.01801113510131836, 0.018131967544555663, 0.01807360076904297, 0.01802649688720703, 0.01801420783996582, 0.01799679946899414, 0.018027519226074217, 0.01835212707519531, 0.018299903869628906, 0.018121728897094725, 0.018103296279907227, 0.01825484848022461, 0.018123775482177733, 0.01818623924255371, 0.018493440628051756, 0.01862451171875, 0.01944371223449707, 0.01863167953491211, 0.018110464096069336, 0.018092031478881835, 0.018112512588500978, 0.018126848220825196, 0.01802649688720703, 0.018069503784179687, 0.0180316162109375, 0.018068479537963866, 0.018126848220825196, 0.018089984893798827, 0.018099199295043944, 0.018084863662719726, 0.01804697608947754, 0.01818623924255371, 0.01801625633239746, 0.01804697608947754, 0.018050048828125, 0.018163711547851562, 0.01810534477233887, 0.017994752883911135, 0.018119680404663087, 0.01820057678222656, 0.01805619239807129, 0.018568191528320312, 0.018714624404907225, 0.018725887298583984]",tokens/s,53.79342957484891,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-72B,Qwen/Qwen1.5-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/polyglot-ko-12.8b,EleutherAI/polyglot-ko-12.8b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,,MB,1723.056128,9941.024768,0.0,9294.577664,8910.495232,s,10,10.523069458007814,1.0523069458007812,0.0008028232056597039,1.0523904418945311,1.0530852783203124,1.05345859375,1.05375724609375,"[1.0527669677734375, 1.0538319091796875, 1.05145703125, 1.0517464599609374, 1.052252197265625, 1.0511856689453125, 1.0525286865234376, 1.0530023193359375, 1.0528663330078125, 1.051431884765625]",tokens/s,243.27502638043498,kWh,1.2425229681862726e-05,6.805541535795782e-06,6.044174279779546e-05,7.967251401545396e-05,tokens/kWh,3213153.283331113,MB,1723.056128,9941.024768,0.0,9294.577664,9220.876288,s,10,626.3534921875,62.63534921875,0.004239119732727424,62.635099609375004,62.63956796875,62.641526171875,62.643092734375,"[62.6319921875, 62.6329375, 62.6391328125, 62.643484375, 62.63139453125, 62.6282421875, 62.63577734375, 62.634421875, 62.63843359375, 62.63767578125]",tokens/s,1.0058218048721415,kWh,0.0007394197557369868,0.0004052695339850652,0.003591932262432407,0.004736621552154459,tokens/kWh,13300.619292952455,,s,629,634.8295839233394,1.009268018956025,0.1250286498200473,0.9942149047851563,0.9945757568359375,0.99473427734375,2.0461909814453128,"[0.9937213745117187, 0.9941636962890625, 0.9939281616210938, 0.9936691284179687, 0.9940469970703125, 0.9936640014648438, 0.99386572265625, 0.9940029296875, 0.9938134765625, 0.9938718872070312, 0.9940316162109375, 0.9940879516601563, 0.9947422485351562, 0.9942005615234375, 0.994029541015625, 0.993860595703125, 0.9938984985351562, 0.994188232421875, 0.9941381225585938, 0.9940950927734375, 0.9939527587890625, 0.9939947509765625, 0.99481396484375, 0.994408447265625, 0.994361328125, 0.9940614013671875, 0.99426806640625, 0.9940326538085937, 0.9939323120117187, 0.993944580078125, 0.9940070190429687, 0.994107421875, 0.994229248046875, 0.9940459594726563, 0.9943674926757813, 0.9942251586914063, 0.99422412109375, 0.9942691650390625, 0.9943838500976563, 0.994155517578125, 0.994197509765625, 0.9944873046875, 0.9943777465820313, 0.994418701171875, 0.994387939453125, 0.9942783813476562, 0.9941801147460938, 0.9943582763671875, 0.9945180053710938, 0.9940408325195312, 0.9938134765625, 0.9940326538085937, 0.9944760131835938, 0.9945057373046875, 0.9942804565429687, 0.99428662109375, 0.9941749877929688, 0.994018310546875, 0.9942005615234375, 0.994018310546875, 0.9942138671875, 0.99439306640625, 2.048400390625, 0.9937254638671875, 0.9939384155273437, 0.993649658203125, 0.993681396484375, 0.993491943359375, 0.9935380249023438, 0.993723388671875, 0.9939885864257813, 0.993955810546875, 0.9941115112304687, 0.9941227416992188, 0.9936732177734375, 0.9938882446289062, 0.993818603515625, 0.9939773559570313, 0.9937152099609375, 0.9938954467773438, 0.994029541015625, 0.9940746459960937, 0.9940223999023438, 0.9943040161132812, 0.9939876098632813, 0.9940018920898438, 0.993870849609375, 0.9941780395507812, 0.9940029296875, 0.9939568481445312, 0.9940223999023438, 0.9943408813476563, 0.9943121948242187, 0.9944913940429687, 0.994107421875, 0.9944105224609375, 0.9942425537109375, 0.9945681762695312, 0.9944022827148438, 0.9939404907226562, 0.994323486328125, 0.9944729614257812, 0.9945559692382813, 0.9941841430664062, 0.9939691772460938, 0.9944022827148438, 0.9942015991210937, 0.9941749877929688, 0.996316162109375, 0.994234375, 0.9943941040039063, 0.9945528564453125, 0.9943756713867188, 0.9942384643554687, 0.99406640625, 0.9946685180664062, 0.9946071166992188, 0.9947156372070313, 0.9943460083007812, 0.9942159423828125, 0.9944033203125, 0.994250732421875, 0.994207763671875, 0.9942732543945313, 0.9941258544921875, 2.0457523193359375, 0.9937326049804688, 0.993923095703125, 0.9941954345703125, 0.9940490112304687, 0.9940633544921875, 0.9942056884765625, 0.9942149047851563, 0.9938370361328125, 0.9937274780273437, 0.9940162353515625, 0.9940469970703125, 0.99371826171875, 0.9940367431640625, 0.9938534545898438, 0.9942271728515625, 0.9941575927734375, 0.9941626586914063, 0.9939773559570313, 0.9939947509765625, 0.993728515625, 0.993818603515625, 0.99376025390625, 0.9947381591796876, 0.9940807495117188, 0.9942988891601563, 0.9943746337890625, 0.9940838623046875, 0.9939465942382812, 0.9941636962890625, 0.9940090942382812, 0.99420263671875, 0.9942149047851563, 0.9942138671875, 0.9943306274414062, 0.9944053955078125, 0.9946675415039062, 0.9946388549804688, 0.9943070678710938, 0.9942528076171875, 0.9945692138671876, 0.9944391479492187, 0.9944893188476562, 0.9945906982421875, 0.9944791259765625, 0.99445556640625, 0.9944688720703125, 0.9956966552734375, 0.9946471557617188, 0.9943448486328125, 0.99428662109375, 0.9943275756835938, 0.9942988891601563, 0.9942845458984375, 0.99435107421875, 0.9946736450195313, 0.9949030151367187, 0.99470849609375, 0.9946101684570312, 0.99445556640625, 0.9944708862304688, 0.9945303344726563, 0.9944258422851563, 2.046361572265625, 0.9943121948242187, 0.993902587890625, 0.9938494262695312, 0.9939803466796875, 0.993817626953125, 0.99403369140625, 0.9938892822265625, 0.993890380859375, 0.9941790161132813, 0.9943521118164063, 0.994566162109375, 0.9950842895507812, 0.9945149536132812, 0.9943418579101563, 0.994255859375, 0.9942322998046875, 0.9944514770507813, 0.9944678344726563, 0.9941493530273438, 0.99386572265625, 0.994466796875, 0.994135009765625, 0.9944791259765625, 0.993997802734375, 0.9939465942382812, 0.993850341796875, 0.994050048828125, 0.994281494140625, 0.9941104736328125, 0.9941370849609374, 0.99445556640625, 0.9942169799804688, 0.9945046997070313, 0.9944360961914063, 0.994355224609375, 0.9945057373046875, 0.9943777465820313, 0.9944063720703125, 0.9943849487304688, 0.9944248046875, 0.9944248046875, 0.9944043579101562, 0.9945538330078125, 0.9957181396484375, 0.9942650756835938, 0.9944627075195313, 0.9945119018554688, 0.9939578857421875, 0.9942630615234375, 0.9940695190429687, 0.994323486328125, 0.9945487060546875, 0.9944248046875, 0.9942774047851562, 0.9945712890625, 0.9945681762695312, 0.994572265625, 0.9946071166992188, 0.9948231811523438, 0.994545654296875, 0.9945897216796875, 0.994703369140625, 2.0469268798828124, 0.9937100830078125, 0.99370703125, 0.9939507446289062, 0.9940214233398438, 0.993982421875, 0.9939998779296875, 0.994187255859375, 0.9942363891601562, 0.994165771484375, 0.9937623291015625, 0.9936098022460937, 0.9937017822265625, 0.99392919921875, 0.9935421142578125, 0.9941094360351562, 0.9936434936523437, 0.9947597045898438, 0.9939476318359375, 0.9940572509765625, 0.993876953125, 0.9940459594726563, 0.9939384155273437, 0.9936783447265625, 0.9934899291992187, 0.9937745971679688, 0.9935821533203125, 0.9939537353515625, 0.993924072265625, 0.9939793701171875, 0.9942067260742188, 0.9939005737304687, 0.9939332885742187, 0.9940510864257812, 0.9938903198242187, 0.9940438842773438, 0.9939251098632812, 0.9943121948242187, 0.9945211181640625, 0.9941473388671875, 0.9944022827148438, 0.9940101318359374, 0.9942968139648437, 0.9944330444335937, 0.994639892578125, 0.9945938110351562, 0.9943070678710938, 0.99437158203125, 0.9943593139648438, 0.9942528076171875, 0.9945589599609375, 0.994482177734375, 0.9939876098632813, 0.9945620727539063, 0.9944330444335937, 0.9943951416015625, 0.9943367919921875, 0.9962434692382812, 0.9943162841796875, 0.994186279296875, 0.9945906372070312, 0.9944248657226562, 0.9944125366210937, 2.04558642578125, 0.993912841796875, 0.9936803588867188, 0.9937315673828125, 0.9937705688476562, 0.9936362915039062, 0.9941083984375, 0.9939169311523437, 0.993712158203125, 0.9938135375976562, 0.9937837524414063, 0.9940541381835938, 0.9938093872070313, 0.9940275268554688, 0.9939824829101562, 0.9938954467773438, 0.9938401489257812, 0.9937479858398437, 0.9936363525390625, 0.9938779907226563, 0.9936895751953125, 0.9938565063476562, 0.9942282104492187, 0.9945733032226562, 0.9943101196289063, 0.994271240234375, 0.9942517700195312, 0.9937531127929687, 0.9937540893554687, 0.9940654296875, 0.9936906127929688, 0.9937561645507812, 0.9941299438476563, 0.994255859375, 0.9943173217773438, 0.99435107421875, 0.9943480224609375, 0.9938595581054688, 0.9955552978515625, 0.9940582275390625, 0.994145263671875, 0.9937991943359376, 0.9941483764648438, 0.994471923828125, 0.9942374267578125, 0.9941565551757813, 0.994735107421875, 0.99420263671875, 0.9940562133789063, 0.994302978515625, 0.9941094360351562, 0.9940899658203125, 0.9943009033203125, 0.9945149536132812, 0.9943971557617187, 0.9942517700195312, 0.9943009033203125, 0.9943582763671875, 0.9941473388671875, 0.9944699096679688, 0.9942067260742188, 0.9939999389648437, 0.994462646484375, 2.0474276123046873, 0.9942875366210937, 0.9945169677734375, 0.9941104736328125, 0.99388623046875, 0.99411865234375, 0.9940193481445313, 0.9938565063476562, 0.9939681396484376, 0.9939568481445312, 0.9942251586914063, 0.9939885864257813, 0.9937736206054687, 0.9940674438476562, 0.9934888916015625, 0.9936240844726563, 0.9936025390625, 0.9939957885742188, 0.9941309204101563, 0.9939783935546875, 0.9941585693359375, 0.9935872192382813, 0.9937633056640625, 0.99496142578125, 0.9941268310546875, 0.9944862670898438, 0.993723388671875, 0.9938739013671875, 0.9938882446289062, 0.9944063720703125, 0.9942282104492187, 0.9941043090820313, 0.9945272216796875, 0.9945446166992188, 0.9939815063476563, 0.9940366821289063, 0.9942149047851563, 0.9942435913085937, 0.9943531494140625, 0.9939906616210937, 0.994450439453125, 0.9943357543945313, 0.9943040161132812, 0.9945149536132812, 0.9941370849609374, 0.9942384643554687, 0.99449853515625, 0.9946624145507813, 0.9942548217773437, 0.9945487060546875, 0.9945855712890626, 0.9943418579101563, 0.9944760131835938, 0.9945589599609375, 0.9944545288085938, 0.9943593139648438, 0.9944330444335937, 0.9942958374023437, 0.9943746337890625, 0.9943889770507812, 0.9947330322265625, 0.9947310180664063, 0.9944688720703125, 2.047277099609375, 0.9937192993164062, 0.9936015625, 0.993828857421875, 0.9938534545898438, 0.9940787353515625, 0.9938462524414062, 0.9938677978515625, 0.9937264404296875, 0.9940316162109375, 0.9937715454101562, 0.9938134765625, 0.9937797241210937, 0.9938841552734375, 0.9937469482421875, 0.9938042602539062, 0.9948897094726562, 0.99428759765625, 0.99430810546875, 0.9943807983398437, 0.9940869140625, 0.994150390625, 0.9942937622070313, 0.994207763671875, 0.9942947998046875, 0.9942835083007813, 0.9943101196289063, 0.994366455078125, 0.9940070190429687, 0.9944422607421874, 0.9940172729492187, 0.9939844970703124, 0.9939251098632812, 0.9939476318359375, 0.9940101318359374, 0.9939158935546875, 0.9941954345703125, 0.9944647827148437, 0.994376708984375, 0.9946132202148438, 0.9943787231445312, 0.9942466430664062, 0.994313232421875, 0.9944729614257812, 0.9945261840820312, 0.9942916870117188, 0.9944391479492187, 0.9942671508789063, 0.994545654296875, 0.994798583984375, 0.9944873046875, 0.9943193359375, 0.994164794921875, 0.9943551635742187, 0.9943255004882813, 0.99406640625, 0.9942916870117188, 0.994587646484375, 0.9942916870117188, 0.9949767456054688, 0.9941903076171875, 0.9943889770507812, 0.9943162841796875, 2.047072265625, 0.9936138305664063, 0.9937510375976563, 0.9939783935546875, 0.9938709106445313, 0.9944656982421874, 0.993997802734375, 0.99403369140625, 0.993713134765625, 0.9936732177734375, 0.9935554809570313, 0.9939323120117187, 0.9941073608398437, 0.994260986328125, 0.9937418212890625, 0.9940961303710938, 0.9939844970703124, 0.9946102294921875, 0.993966064453125, 0.9940264892578125, 0.9938206787109375, 0.9939199829101563, 0.9943121948242187, 0.9942937622070313, 0.9941575927734375, 0.9946552124023438, 0.9939906616210937, 0.9938114624023437, 0.9936793823242187, 0.9941647338867188, 0.9941442260742187, 0.994471923828125, 0.9945323486328125, 0.99468798828125, 0.9943142700195312, 0.994466796875, 0.9942467041015625, 0.9940725708007813, 0.9942282104492187, 0.994255859375, 0.9944166259765626, 0.9944391479492187, 0.9945436401367187, 0.9948764038085938, 0.99462451171875, 0.9944658203125, 0.994460693359375, 0.994155517578125, 0.9942097778320312, 0.9942763671875, 0.9942702026367187, 0.994260986328125, 0.9944309692382812, 0.9945098266601563, 0.9942968139648437, 0.9946491088867188, 0.9945579223632812, 0.99460302734375, 0.994281494140625, 0.9945108642578125, 0.99460302734375, 0.9943797607421875, 0.9946961669921875, 2.04813623046875, 0.99420263671875, 0.99418115234375, 0.9938411254882813, 0.9938524169921875, 0.9939671020507812, 0.9941248168945312, 0.994044921875, 0.9940910034179687, 0.9938984985351562, 0.9937213745117187, 0.9939066772460937, 0.9943142700195312, 0.9939824829101562, 0.9937520751953125, 0.9941227416992188, 0.9939323120117187, 0.9941923828125, 0.9938759765625, 0.9943316650390625, 0.994208740234375, 0.99416064453125, 0.9944412231445312, 0.99399169921875, 0.9939773559570313, 0.9942149658203125, 0.9955389404296875, 0.9943828735351562, 0.9939456176757813, 0.9944596557617188, 0.9941442260742187, 0.9940377807617188, 0.9945589599609375, 0.994135009765625, 0.9938985595703125, 0.9942609252929687, 0.994212890625, 0.9942732543945313, 0.9943726196289062, 0.994460693359375, 0.9944248657226562, 0.9942844848632812, 0.9949808349609375, 0.9943121948242187, 0.9940910034179687, 0.994150390625, 0.9942640380859376, 0.9941688232421875, 0.9940387573242188, 0.9946736450195313, 0.994753662109375, 0.99428857421875, 0.994555908203125, 0.9943367919921875, 0.9942702026367187, 0.994302978515625, 0.994234375, 0.9944371337890625, 0.9942466430664062, 0.9943602905273438, 0.9947944946289062, 0.99437158203125, 0.9947586669921875]",tokens/s,0.9908170884423626,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-65b,huggyllama/llama-65b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -41744,10 +41562,12 @@ ChildProcessError: Traceback (most recent call last): self._buffers[key] = fn(buf) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 86.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,M,M,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-14B,Qwen/Qwen1.5-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,3927.220224,12732.33408,0.0,12085.886976,11337.364992,s,10,11.005286376953126,1.1005286376953127,0.00219951912246486,1.1001186523437498,1.1034800170898438,1.1035955383300782,1.1036879553222656,"[1.1009342041015624, 1.102259765625, 1.0977261962890625, 1.099001708984375, 1.0989405517578126, 1.0975576171875, 1.0993031005859375, 1.103454345703125, 1.1023978271484376, 1.1037110595703126]",tokens/s,232.615482443152,kWh,1.2971816278166244e-05,7.107321095700172e-06,6.386246775661464e-05,8.394160513048104e-05,tokens/kWh,3049739.156191579,MB,3927.220224,12732.33408,0.0,12085.886976,11686.79936,s,10,645.4452890625,64.54452890625001,0.006590572212624524,64.54356250000001,64.553694140625,64.5538998046875,64.5540643359375,"[64.5536484375, 64.5513828125, 64.538359375, 64.55410546875, 64.5438203125, 64.5392109375, 64.53455859375, 64.5433046875, 64.5480546875, 64.53884375]",tokens/s,0.9760703357445925,kWh,0.0007619009707371396,0.00041758989640207795,0.003727131037257969,0.004906621904397187,tokens/kWh,12839.791047184834,,s,629,654.3247843627931,1.0402619783192257,0.1307385835871094,1.0244464111328124,1.0251733154296874,1.0253723876953125,2.12362228515625,"[1.0239293212890626, 1.0247884521484374, 1.0239590454101561, 1.0238433227539063, 1.0245233154296876, 1.0249482421875, 1.0245938720703125, 1.024648193359375, 1.0243778076171874, 1.0244761962890625, 1.0242918701171875, 1.02411474609375, 1.0238392333984374, 1.02443310546875, 1.0240072021484374, 1.025123291015625, 1.0243983154296874, 1.0239702758789062, 1.0238289794921875, 1.024879638671875, 1.0246707763671874, 1.0245980224609375, 1.0249052734375, 1.0246092529296875, 1.0252646484375, 1.025154052734375, 1.0244208984375, 1.0245867919921876, 1.025153076171875, 1.0249769287109376, 1.025039306640625, 1.0247618408203125, 1.0240020751953125, 1.0246666259765624, 1.024626708984375, 1.024693359375, 1.0244617919921875, 1.024501708984375, 1.02472802734375, 1.0254991455078124, 1.024680908203125, 1.025005615234375, 1.0249237060546874, 1.0251907958984374, 1.0256405029296876, 1.0250250244140624, 1.025184814453125, 1.02483251953125, 1.024786376953125, 1.0252471923828126, 1.0244935302734375, 1.0253773193359375, 1.024436279296875, 1.025090576171875, 1.025364990234375, 1.0249923095703124, 1.0241658935546876, 1.024015380859375, 1.0247249755859376, 1.0251048583984375, 1.0238597412109376, 1.02401123046875, 2.12693603515625, 1.0248826904296875, 1.024394287109375, 1.02513671875, 1.02491650390625, 1.024427978515625, 1.02502294921875, 1.0245028076171876, 1.0245499267578124, 1.024806884765625, 1.024963623046875, 1.024541748046875, 1.02464306640625, 1.0238269653320313, 1.024679931640625, 1.025101806640625, 1.0239959106445313, 1.0239354858398437, 1.024395263671875, 1.0241566162109375, 1.0247188720703124, 1.0248836669921875, 1.0245191650390626, 1.0240450439453126, 1.024563232421875, 1.0246707763671874, 1.0240665283203125, 1.02398974609375, 1.02415869140625, 1.024153564453125, 1.0244813232421874, 1.0248365478515624, 1.0246881103515626, 1.0250660400390625, 1.024818115234375, 1.02487451171875, 1.0241402587890625, 1.0241505126953125, 1.0248140869140625, 1.0247342529296875, 1.0252052001953125, 1.024384033203125, 1.0249267578125, 1.0247813720703125, 1.0250096435546876, 1.02519091796875, 1.0286304931640624, 1.0247679443359374, 1.0250260009765626, 1.02523291015625, 1.0252830810546876, 1.024384033203125, 1.0238484497070313, 1.0244556884765625, 1.0247547607421874, 1.0238433227539063, 1.0240604248046874, 1.0238505249023437, 1.0239692993164062, 1.02425390625, 1.0245499267578124, 1.0240184326171875, 1.0239478149414063, 2.123869140625, 1.024112548828125, 1.0244178466796876, 1.024606201171875, 1.024331787109375, 1.024970703125, 1.0241341552734375, 1.0240655517578126, 1.0246256103515625, 1.024216064453125, 1.02445361328125, 1.0246973876953125, 1.02462158203125, 1.0241884765625, 1.024816162109375, 1.0244024658203126, 1.0240604248046874, 1.0241331787109376, 1.02439013671875, 1.024101318359375, 1.02460107421875, 1.0241126708984376, 1.0239580078125, 1.0260316162109375, 1.024153564453125, 1.024626708984375, 1.025184814453125, 1.024384033203125, 1.0247044677734376, 1.0242744140625, 1.0245263671875, 1.0240440673828124, 1.0243983154296874, 1.0242017822265626, 1.025048583984375, 1.02445263671875, 1.0241658935546876, 1.024067626953125, 1.0245570068359375, 1.0243236083984375, 1.0241505126953125, 1.0240552978515625, 1.0239324340820313, 1.02377880859375, 1.0250537109375, 1.0241873779296875, 1.0242979736328126, 1.0260521240234375, 1.0243245849609375, 1.0240809326171876, 1.024226318359375, 1.02384228515625, 1.0239518432617187, 1.02460107421875, 1.0242713623046875, 1.023963134765625, 1.0244454345703125, 1.02419970703125, 1.0243572998046875, 1.025553466796875, 1.0245345458984374, 1.0243184814453126, 1.02401123046875, 2.12367041015625, 1.0241259765625, 1.0242652587890626, 1.0244208984375, 1.0240543212890625, 1.0244075927734375, 1.0240450439453126, 1.024143310546875, 1.024236572265625, 1.0248232421875, 1.0240543212890625, 1.0240615234375, 1.0252451171875, 1.0245201416015626, 1.02453857421875, 1.024142333984375, 1.024111572265625, 1.0240758056640624, 1.0245355224609376, 1.0249923095703124, 1.0250772705078126, 1.025503173828125, 1.024585693359375, 1.025353759765625, 1.0251724853515625, 1.025302490234375, 1.0245509033203124, 1.02447412109375, 1.025395751953125, 1.0254765625, 1.025158203125, 1.02477001953125, 1.025292236328125, 1.024942138671875, 1.024954345703125, 1.024868408203125, 1.025138671875, 1.0246287841796875, 1.0256414794921875, 1.025081298828125, 1.0248232421875, 1.023910888671875, 1.0245693359375, 1.0238443603515626, 1.027009521484375, 1.0242816162109376, 1.0239989624023438, 1.0243726806640625, 1.0255267333984375, 1.024779296875, 1.0242899169921875, 1.0245653076171874, 1.0248477783203125, 1.0242303466796876, 1.025016845703125, 1.024173095703125, 1.0242969970703124, 1.024927734375, 1.0247515869140624, 1.02410546875, 1.0243441162109375, 1.024101318359375, 1.024564208984375, 2.12349853515625, 1.0242017822265626, 1.024427978515625, 1.0245703125, 1.0245938720703125, 1.025349609375, 1.02506396484375, 1.02497900390625, 1.0247310791015625, 1.0254193115234376, 1.0243072509765625, 1.02436865234375, 1.02426416015625, 1.024543701171875, 1.0246932373046875, 1.0242508544921876, 1.0247291259765625, 1.0247679443359374, 1.0248099365234375, 1.0243450927734374, 1.0237440185546876, 1.0239437255859376, 1.02409619140625, 1.0248201904296874, 1.024573486328125, 1.0249298095703125, 1.0247445068359375, 1.024711669921875, 1.0242037353515625, 1.025076171875, 1.0243707275390626, 1.0241719970703125, 1.0248785400390625, 1.0241934814453124, 1.0238074951171876, 1.0240870361328125, 1.0238863525390625, 1.024194580078125, 1.0243511962890626, 1.023699951171875, 1.0239385375976562, 1.0239354858398437, 1.0245355224609376, 1.0244464111328124, 1.02446484375, 1.0242958984375, 1.024153564453125, 1.0246614990234375, 1.0249881591796874, 1.0237716674804687, 1.02404296875, 1.0248468017578125, 1.0250352783203125, 1.024362548828125, 1.0239723510742187, 1.02413623046875, 1.0246624755859375, 1.029676025390625, 1.02432568359375, 1.0238546142578124, 1.0238064575195311, 1.0237429809570313, 1.02468603515625, 2.1217158203125, 1.0237695922851562, 1.024711669921875, 1.02485498046875, 1.0252984619140626, 1.0250035400390625, 1.0246727294921876, 1.024594970703125, 1.0253424072265624, 1.024754638671875, 1.0237081298828126, 1.024232421875, 1.024865234375, 1.0245396728515626, 1.02403173828125, 1.02407275390625, 1.02489599609375, 1.0252052001953125, 1.0250966796875, 1.023773681640625, 1.02441162109375, 1.02495947265625, 1.0239385375976562, 1.0248038330078124, 1.0244832763671874, 1.0240286865234376, 1.0238095092773438, 1.02410546875, 1.024607177734375, 1.0238873901367187, 1.0241719970703125, 1.0245919189453125, 1.0244515380859376, 1.0247874755859374, 1.0245714111328126, 1.02497998046875, 1.0246953125, 1.024564208984375, 1.02820654296875, 1.02466455078125, 1.02426220703125, 1.02436962890625, 1.0242867431640625, 1.0247608642578125, 1.023847412109375, 1.0239989624023438, 1.0239672241210938, 1.024320556640625, 1.0242447509765624, 1.02379931640625, 1.02389453125, 1.024280517578125, 1.0238443603515626, 1.0239979248046875, 1.02392626953125, 1.02389453125, 1.0241024169921875, 1.0241402587890625, 1.024089111328125, 1.0238341064453125, 1.0239702758789062, 1.0240225830078125, 1.02510595703125, 2.124275634765625, 1.02431640625, 1.0250086669921874, 1.0248448486328126, 1.0252420654296874, 1.024489501953125, 1.0244403076171875, 1.0246031494140626, 1.0247711181640624, 1.0237265625, 1.0236641235351562, 1.0239344482421875, 1.0241915283203125, 1.023867919921875, 1.02379931640625, 1.0237245483398438, 1.024006103515625, 1.023836181640625, 1.024227294921875, 1.02468603515625, 1.0239273071289063, 1.0240594482421874, 1.0241719970703125, 1.024067626953125, 1.023867919921875, 1.0238515014648437, 1.025666015625, 1.0245263671875, 1.024973876953125, 1.02382080078125, 1.0239006958007812, 1.0243861083984376, 1.0252000732421875, 1.025047607421875, 1.0245989990234374, 1.0247177734375, 1.023931396484375, 1.0238443603515626, 1.0247506103515625, 1.0237757568359376, 1.0241033935546875, 1.0239365844726562, 1.0244884033203125, 1.0237399291992189, 1.024362548828125, 1.024405517578125, 1.024089111328125, 1.0244864501953126, 1.02445263671875, 1.02447509765625, 1.024986083984375, 1.0248734130859376, 1.0243768310546875, 1.024090087890625, 1.024077880859375, 1.0242088623046874, 1.0244178466796876, 1.0243809814453124, 1.024343017578125, 1.024501708984375, 1.0247445068359375, 1.024690185546875, 1.0249298095703125, 2.128819091796875, 1.02439111328125, 1.0247823486328125, 1.0247977294921875, 1.02436767578125, 1.0251878662109375, 1.025364990234375, 1.0248714599609374, 1.024216064453125, 1.023978515625, 1.024204833984375, 1.024175048828125, 1.0241976318359376, 1.02432568359375, 1.024288818359375, 1.024332763671875, 1.02521142578125, 1.0247762451171876, 1.0244351806640626, 1.0237880249023437, 1.0244085693359375, 1.024279541015625, 1.024522216796875, 1.0245447998046875, 1.0244136962890624, 1.02485302734375, 1.0252779541015624, 1.0244249267578125, 1.0243072509765625, 1.024364501953125, 1.0249554443359374, 1.02441064453125, 1.02491748046875, 1.025059814453125, 1.0243563232421875, 1.024710693359375, 1.0254488525390626, 1.0243583984375, 1.024216064453125, 1.0244423828125, 1.024673828125, 1.0236497802734374, 1.0240399169921874, 1.02411572265625, 1.0241024169921875, 1.0244669189453126, 1.024669677734375, 1.0245672607421874, 1.0250875244140625, 1.0249993896484375, 1.024100341796875, 1.0239754028320311, 1.0242611083984374, 1.0236723022460938, 1.0240758056640624, 1.025005615234375, 1.0246123046875, 1.024385009765625, 1.024511962890625, 1.0244013671875, 1.0243123779296874, 1.0240665283203125, 1.0242939453125, 2.1268427734375, 1.0253404541015625, 1.0243931884765625, 1.0240972900390626, 1.0241934814453124, 1.0252298583984376, 1.024215087890625, 1.0247833251953125, 1.024521240234375, 1.023973388671875, 1.0242017822265626, 1.0258052978515626, 1.024546875, 1.0249359130859375, 1.025333251953125, 1.0250526123046875, 1.02436962890625, 1.0253035888671875, 1.0246348876953124, 1.0245201416015626, 1.02516015625, 1.0252349853515625, 1.02502294921875, 1.024257080078125, 1.0243369140625, 1.0239395751953124, 1.02425390625, 1.0249779052734376, 1.024067626953125, 1.0241177978515625, 1.0244976806640624, 1.025036376953125, 1.02519189453125, 1.02483349609375, 1.0254356689453126, 1.0247762451171876, 1.024606201171875, 1.0247310791015625, 1.024310302734375, 1.0240450439453126, 1.024733154296875, 1.0244976806640624, 1.0241402587890625, 1.0240235595703124, 1.025154052734375, 1.023847412109375, 1.0244290771484375, 1.0241136474609376, 1.0241822509765626, 1.0238689575195312, 1.0249298095703125, 1.0245478515625, 1.0244771728515625, 1.0245509033203124, 1.024611328125, 1.0240921630859374, 1.024890869140625, 1.0240205078125, 1.024279541015625, 1.0245560302734376, 1.0247720947265626, 1.024206787109375, 1.0244300537109374, 2.128713623046875, 1.024427001953125, 1.0249287109375, 1.025007568359375, 1.0242989501953126, 1.025701904296875, 1.0250526123046875, 1.024421875, 1.02443115234375, 1.0251038818359375, 1.024236572265625, 1.0237388916015624, 1.0245765380859375, 1.023847412109375, 1.0237470703125, 1.0244495849609374, 1.024459716796875, 1.024206787109375, 1.02432666015625, 1.024251953125, 1.0239293212890626, 1.024359375, 1.02411669921875, 1.0238505249023437, 1.024151611328125, 1.025427490234375, 1.0240450439453126, 1.024953369140625, 1.02416796875, 1.0247802734375, 1.0241229248046875, 1.024373779296875, 1.024141357421875, 1.0242396240234375, 1.02449560546875, 1.0251766357421874, 1.024015380859375, 1.0237122802734375, 1.0239969482421876, 1.0238975830078125, 1.0237726440429689, 1.02384130859375, 1.02431640625, 1.0243133544921874, 1.0245919189453125, 1.024943115234375, 1.0246246337890625, 1.024611328125, 1.024716796875, 1.024035888671875, 1.0247413330078126, 1.024973876953125, 1.024796630859375, 1.0246318359375, 1.0259609375, 1.0238064575195311, 1.0238228759765624, 1.02377880859375, 1.02478955078125, 1.02438916015625, 1.0245723876953126, 1.0243604736328125, 1.02432568359375]",tokens/s,0.9612963088545465,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-12b,stabilityai/stablelm-2-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2287.439872,9584.508928,0.0,8938.061824,8629.72416,s,10,10.131507629394532,1.013150762939453,0.002692660193456455,1.0122420349121093,1.01416416015625,1.017623095703125,1.020390244140625,"[1.02108203125, 1.01157763671875, 1.012674072265625, 1.0126704711914063, 1.0133955078125, 1.012330322265625, 1.0118361206054687, 1.0117332763671876, 1.012054443359375, 1.0121537475585938]",tokens/s,252.67710331408875,kWh,1.195108746488889e-05,6.548659351992683e-06,5.668768423900405e-05,7.518743105588562e-05,tokens/kWh,3404824.4022291345,MB,2287.439872,9584.508928,0.0,8938.061824,8715.664896,s,10,591.45866796875,59.145866796875,0.006617972035565828,59.14582421874999,59.155115234374996,59.1558447265625,59.1564283203125,"[59.14538671875, 59.13608984375, 59.150515625, 59.1451953125, 59.154953125, 59.15657421875, 59.14678515625, 59.1360078125, 59.1408984375, 59.14626171875]",tokens/s,1.0651631874186793,kWh,0.0006982415291666984,0.00038269747479935173,0.0032679308921203906,0.004348869896086441,tokens/kWh,14486.52213226564,,s,629,599.6304891357424,0.9533076138883024,0.12026100633018022,0.9387591552734375,0.9396539428710937,0.9399756713867188,1.9507973779296877,"[0.9389322509765625, 0.9398538208007813, 0.938841064453125, 0.93900390625, 0.9390182495117188, 0.9385973510742187, 0.9396909790039063, 0.938871826171875, 0.9403566284179687, 0.9389732055664063, 0.939009033203125, 0.9392967529296875, 0.9398015747070313, 0.938829833984375, 0.9383045043945313, 0.9377362060546875, 0.9381539916992188, 0.9390131225585937, 0.9386055908203125, 0.9399725952148438, 0.93948828125, 0.939114501953125, 0.939462646484375, 0.93991015625, 0.9391953735351563, 0.9389260864257812, 0.9383475341796875, 0.9386793212890625, 0.9386414184570312, 0.9392066650390625, 0.9393878784179688, 0.9381703491210938, 0.9381140747070312, 0.9383218994140625, 0.9380587768554688, 0.9380526123046875, 0.9383915405273437, 0.9382041625976563, 0.9384386596679688, 0.9379778442382812, 0.9379686279296875, 0.9389004516601562, 0.938387451171875, 0.93830859375, 0.9408757934570312, 0.9392742309570312, 0.9384775390625, 0.9388594970703125, 0.9387110595703125, 0.938039306640625, 0.9378734130859375, 0.93863525390625, 0.9386055908203125, 0.9390182495117188, 0.938181640625, 0.939652099609375, 0.9389639892578125, 0.9383065795898438, 0.939093017578125, 0.9385164794921875, 0.9385799560546875, 0.9382952880859375, 1.9507384033203126, 0.9382799072265625, 0.9386485595703125, 0.938119140625, 0.9379522705078125, 0.9383259887695312, 0.9382891235351563, 0.938335205078125, 0.9381273803710938, 0.9386373291015625, 0.938450927734375, 0.9386209106445312, 0.9381652221679687, 0.9398865966796875, 0.93909912109375, 0.9384284057617187, 0.9378529052734375, 0.9383649291992188, 0.938302490234375, 0.9382522583007813, 0.9403709716796875, 0.9398660888671875, 0.93905615234375, 0.9389526977539062, 0.9395927124023438, 0.9383956298828126, 0.9380956420898438, 0.9384847412109375, 0.9385236206054688, 0.9388482666015625, 0.9386148071289062, 0.93890966796875, 0.938439697265625, 0.93823486328125, 0.9391492919921876, 0.9383259887695312, 0.9384806518554687, 0.9384683227539062, 0.9383198852539063, 0.9388380126953125, 0.9383782348632812, 0.939188232421875, 0.9388707885742188, 0.9384468383789063, 0.9386332397460937, 0.9392158813476562, 0.9388359375, 0.9386854248046875, 0.9379727172851563, 0.9386455078125, 0.9383505859375, 0.938419189453125, 0.93814990234375, 0.9399869384765625, 0.9389414672851563, 0.9384857788085937, 0.93823486328125, 0.9385400390625, 0.9385010986328125, 0.9388738403320313, 0.9391431884765625, 0.9389598999023437, 0.9393756103515625, 1.951994873046875, 0.938608642578125, 0.9388524169921875, 0.9380965576171875, 0.9379512329101563, 0.9383270263671875, 0.9390551147460937, 0.9391697998046875, 0.938060791015625, 0.9392967529296875, 0.9386834106445312, 0.9387222900390625, 0.93907763671875, 0.940732421875, 0.9389188842773437, 0.9391503295898438, 0.9383372802734375, 0.938250244140625, 0.9387908935546875, 0.9389424438476562, 0.939419677734375, 0.9392752685546875, 0.9382041625976563, 0.9396817626953125, 0.9394974975585938, 0.93903564453125, 0.938745849609375, 0.9387335815429687, 0.9390694580078125, 0.9386281127929688, 0.9390643310546875, 0.9388779296875, 0.9388635864257813, 0.9396141967773437, 0.9400760498046875, 0.9385093383789063, 0.9377218627929688, 0.9381908569335937, 0.9382952880859375, 0.9383936157226562, 0.9382778930664063, 0.9385912475585938, 0.9392332763671875, 0.9384796142578125, 0.9385226440429687, 0.9392466430664063, 0.9381528930664063, 0.9381519165039063, 0.938461181640625, 0.9395015869140625, 0.93941455078125, 0.9390643310546875, 0.9385420532226563, 0.94017333984375, 0.939114501953125, 0.9396920166015625, 0.9393316040039063, 0.938903564453125, 0.9387530517578125, 0.9390448608398437, 0.9396613159179688, 0.9389629516601562, 0.938998779296875, 1.9516702880859376, 0.9386065673828125, 0.9402235107421875, 0.9383372802734375, 0.9382932739257812, 0.938365966796875, 0.9387254028320312, 0.938693603515625, 0.9385010986328125, 0.938767333984375, 0.9391104125976563, 0.9382758178710937, 0.93905712890625, 0.9390704345703125, 0.93931005859375, 0.9386598510742188, 0.9379256591796875, 0.938017822265625, 0.9386240234375, 0.9385728149414062, 0.9389793090820312, 0.9392128295898438, 0.938334228515625, 0.9388523559570312, 0.938787841796875, 0.9384253540039063, 0.9385072631835938, 0.93846630859375, 0.9390551147460937, 0.939335693359375, 0.9389865112304687, 0.9403515014648437, 0.938693603515625, 0.9387028198242188, 0.9390755615234375, 0.9390796508789062, 0.9388257446289062, 0.9389475708007813, 0.9399132080078125, 0.938587158203125, 0.9390377197265625, 0.9394114379882812, 0.940221435546875, 0.9385441284179687, 0.9391052856445312, 0.938335205078125, 0.9382625122070313, 0.9383117065429688, 0.9383178100585937, 0.9387202758789063, 0.9384796142578125, 0.9386547241210937, 0.9381621704101563, 0.93876123046875, 0.9382215576171875, 0.9389844360351562, 0.9389209594726563, 0.9384591064453125, 0.9386475219726562, 0.9395773315429687, 0.9389486083984375, 0.9387765502929688, 0.93916162109375, 1.9526563720703125, 0.9392178955078125, 0.9389434814453125, 0.93859326171875, 0.939198486328125, 0.93855126953125, 0.9389004516601562, 0.9386444702148438, 0.9396828002929688, 0.9400084228515625, 0.9395486450195313, 0.93916162109375, 0.939404296875, 0.9389486083984375, 0.939167724609375, 0.9397196655273438, 0.93857177734375, 0.938660888671875, 0.9386322021484375, 0.9401231079101563, 0.939725830078125, 0.9393346557617187, 0.9393930053710937, 0.9400657958984375, 0.9386649780273437, 0.9385441284179687, 0.9381509399414063, 0.9390632934570312, 0.9386444702148438, 0.9382697143554688, 0.939452392578125, 0.9390592041015625, 0.9396920166015625, 0.93861376953125, 0.9394022216796875, 0.939062255859375, 0.9391001586914063, 0.938335205078125, 0.9390151977539063, 0.9384151000976563, 0.9390755615234375, 0.93837109375, 0.9391544189453125, 0.9386065673828125, 0.9394503784179687, 0.9384161376953125, 0.938771484375, 0.9382778930664063, 0.9383301391601563, 0.9384806518554687, 0.9385072631835938, 0.939251708984375, 0.9386219482421875, 0.939736083984375, 0.9381171264648438, 0.939852783203125, 0.9383362426757812, 0.9384755249023438, 0.9382440795898438, 0.9390888671875, 0.9384498901367188, 0.9385430908203125, 0.93985791015625, 1.9517337646484374, 0.9388739013671875, 0.9396459350585937, 0.9385574951171874, 0.9385686645507813, 0.9384365844726562, 0.9387765502929688, 0.93935205078125, 0.9397186279296875, 0.93812939453125, 0.939156494140625, 0.938771484375, 0.9394319458007813, 0.9387591552734375, 0.9385062255859375, 0.9385093383789063, 0.9380311279296875, 0.9388994750976563, 0.9391216430664062, 0.9395814208984375, 0.939610107421875, 0.9395476684570313, 0.9393233642578125, 0.9399511108398437, 0.9398251342773437, 0.9391124267578125, 0.9394176025390625, 0.9400964965820312, 0.9399777221679687, 0.9401446533203125, 0.939125732421875, 0.9388021850585937, 0.9388124389648438, 0.9400350952148437, 0.9387550659179688, 0.9386065673828125, 0.9382359008789063, 0.9382369384765625, 0.93964697265625, 0.9381478271484375, 0.939219970703125, 0.9382389526367187, 0.9393500366210937, 0.9386393432617187, 0.9393213500976563, 0.9382932739257812, 0.9387704467773438, 0.9389281005859375, 0.9396756591796875, 0.9391441650390625, 0.9385687255859375, 0.9398343505859375, 0.93823486328125, 0.9392557983398437, 0.9380843505859375, 0.939009033203125, 0.9379246215820313, 0.938049560546875, 0.93809765625, 0.9396961059570312, 0.938603515625, 0.9394022216796875, 0.9386465454101562, 1.9507159423828124, 0.9391738891601562, 0.9382543334960938, 0.9382963256835938, 0.9384693603515625, 0.9383526611328125, 0.9399357299804687, 0.93943603515625, 0.9397831420898437, 0.93865673828125, 0.9389649658203125, 0.938598388671875, 0.9392752685546875, 0.938119140625, 0.9378037719726563, 0.9382062377929687, 0.938081298828125, 0.9376358642578125, 0.9382072143554687, 0.9395159301757813, 0.9385308227539062, 0.93964697265625, 0.9388390502929688, 0.9387509765625, 0.9381334838867188, 0.938144775390625, 0.9383526000976562, 0.9388922729492187, 0.9388226318359375, 0.9387222900390625, 0.9390540771484375, 0.9390018310546875, 0.9392066650390625, 0.9401517944335938, 0.9398220825195313, 0.938925048828125, 0.938987548828125, 0.9386342163085938, 0.9397770385742188, 0.9390172119140625, 0.9395302124023438, 0.9389547729492187, 0.9400145874023438, 0.9384099731445312, 0.939598876953125, 0.9384038696289062, 0.9381325073242187, 0.9380997314453124, 0.9389240112304688, 0.938376220703125, 0.9384140625, 0.9392455444335938, 0.9389741821289063, 0.9392086791992188, 0.9387509765625, 0.9395404663085938, 0.93880322265625, 0.938650634765625, 0.9383117065429688, 0.9391912841796874, 0.938625, 0.93869775390625, 0.9389117431640625, 1.9512227783203124, 0.9401149291992188, 0.938693603515625, 0.9384498901367188, 0.9391452026367187, 0.9389598999023437, 0.93937255859375, 0.9388656616210938, 0.939441162109375, 0.938603515625, 0.9388677368164062, 0.9383546752929688, 0.9392056274414062, 0.938287109375, 0.9377484741210937, 0.9378836669921875, 0.93793896484375, 0.9375641479492187, 0.9385707397460937, 0.9388339233398437, 0.938630126953125, 0.9394104614257812, 0.9392772827148438, 0.9391390991210937, 0.938872802734375, 0.9386659545898437, 0.9385103149414062, 0.9388339233398437, 0.9386782836914063, 0.9387857666015625, 0.9381437377929688, 0.9386362915039063, 0.9390151977539063, 0.939298828125, 0.9390264282226563, 0.9383864135742187, 0.9382738037109375, 0.9385748291015625, 0.938534912109375, 0.938250244140625, 0.9396162719726563, 0.9382584228515625, 0.9384591064453125, 0.9386362915039063, 0.9391001586914063, 0.9379573974609375, 0.9382379760742188, 0.938408935546875, 0.9383331909179687, 0.9385953369140625, 0.9381273803710938, 0.9385042114257812, 0.9381089477539063, 0.9387110595703125, 0.9393162231445312, 0.9386168823242188, 0.9382542724609375, 0.9378928833007812, 0.9382205200195313, 0.9389230346679688, 0.9386598510742188, 0.939430908203125, 0.9383444213867187, 1.9508203125, 0.9386854248046875, 0.9382471923828125, 0.938323974609375, 0.9382011108398437, 0.9390366821289062, 0.93852978515625, 0.9385359497070312, 0.9398814697265625, 0.9387048950195312, 0.9394933471679687, 0.939357177734375, 0.9405009765625, 0.9390079956054688, 0.9383884887695313, 0.9386322021484375, 0.9385226440429687, 0.9374658813476563, 0.9394872436523437, 0.9389967651367187, 0.9386393432617187, 0.939273193359375, 0.939357177734375, 0.9387940063476562, 0.9389414672851563, 0.9389557495117188, 0.9387868041992188, 0.9400811767578126, 0.9384970092773437, 0.9387786254882813, 0.938735595703125, 0.938808349609375, 0.939025390625, 0.9387807006835938, 0.9382564086914063, 0.9380014038085938, 0.9381089477539063, 0.9382532958984375, 0.938630126953125, 0.938618896484375, 0.938883056640625, 0.9382164306640625, 0.938872802734375, 0.9385338745117188, 0.9390315551757813, 0.9384253540039063, 0.938555419921875, 0.9387694091796875, 0.9386690673828125, 0.9383936157226562, 0.9389619140625, 0.9384304809570313, 0.9386782836914063, 0.9390888671875, 0.939125732421875, 0.9383280639648437, 0.938625, 0.9386373291015625, 0.9384110107421875, 0.9388840942382812, 0.9385308227539062, 0.9386843872070313, 0.9381119995117188, 1.9515452880859374, 0.9394534301757812, 0.93916259765625, 0.9390397338867188, 0.9386148071289062, 0.9386332397460937, 0.9383301391601563, 0.9385236206054688, 0.9390694580078125, 0.9383864135742187, 0.9387816772460937, 0.938566650390625, 0.9386209106445312, 0.938498046875, 0.938482666015625, 0.9383372802734375, 0.938598388671875, 0.9374115600585937, 0.9391605834960938, 0.9391114501953125, 0.9388984375, 0.9407098999023438, 0.9396029663085937, 0.9391421508789063, 0.938498046875, 0.9380679931640625, 0.9384048461914063, 0.93968896484375, 0.9385738525390624, 0.939087890625, 0.9386076049804688, 0.93890869140625, 0.938851318359375, 0.9392803955078125, 0.93926806640625, 0.9393264770507812, 0.9389168701171875, 0.9393695068359375, 0.938694580078125, 0.9390172119140625, 0.93890966796875, 0.9383895263671875, 0.9392957153320313, 0.9389629516601562, 0.938323974609375, 0.9382389526367187, 0.9378775024414062, 0.9381263427734375, 0.9386209106445312, 0.9382277221679688, 0.9391841430664063, 0.938829833984375, 0.938335205078125, 0.9392312622070312, 0.9389691162109375, 0.9388851318359375, 0.9389680786132812, 0.9386978149414062, 0.9398670654296875, 0.9389967651367187, 0.93882470703125, 0.938935302734375, 0.9384898681640625]",tokens/s,1.0489793487762582,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,8,8,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -41759,7 +41579,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/M/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/8/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -41786,9 +41606,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948fe6-7c509360614f81c367915a07;37b8a00d-d972-4899-8226-d021077ad739) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949288-5e1f1e9f425492757171b6c3;e597356b-a8dd-47f1-97ea-9831b9b5026f) -Repository Not Found for url: https://huggingface.co/M/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/8/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -41813,11 +41633,14 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: M is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: 8 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-7b,google/gemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-8B,meta-llama/Meta-Llama-3-8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1644.60544,7583.82592,0.0,6937.378816,6314.17344,s,10,6.228646179199219,0.6228646179199219,0.003273798456462667,0.6227339782714845,0.6241754699707032,0.6279462249755859,0.6309628289794922,"[0.6317169799804687, 0.6232648315429687, 0.6204146728515625, 0.6228704833984375, 0.6219456176757813, 0.6190134887695312, 0.6202999877929688, 0.6233375244140625, 0.6231851196289062, 0.6225974731445313]",tokens/s,411.0042417482646,kWh,7.31462190548579e-06,4.008082885946565e-06,3.373723287211802e-05,4.505993766355038e-05,tokens/kWh,5681321.663413707,MB,1644.60544,7583.82592,0.0,6937.378816,6464.046592,s,10,368.19280468750003,36.81928046875,0.018694382665316225,36.824119140625,36.835055078125,36.8438986328125,36.8509734765625,"[36.82331640625, 36.826859375, 36.8276015625, 36.8527421875, 36.83308984375, 36.78996875, 36.79416796875, 36.7968203125, 36.823703125, 36.82453515625]",tokens/s,1.7110600532639584,kWh,0.00043422340434458523,0.00023799224410691,0.0019653583664030845,0.00263757401485458,tokens/kWh,23885.58563482566,,s,629,373.2052468261721,0.5933310760352495,0.07394405347043131,0.5842933959960938,0.5858826293945313,0.58612470703125,1.20537375,"[0.5849108276367188, 0.5836380004882813, 0.5857188110351562, 0.5863209228515625, 0.5851494140625, 0.5851401977539062, 0.5856481323242188, 0.5834137573242187, 0.584342529296875, 0.58520166015625, 0.58519140625, 0.5853235473632813, 0.5863526611328125, 0.5858436889648437, 0.5854269409179688, 0.5851904296875, 0.5858662109375, 0.5851248779296875, 0.58393701171875, 0.586082275390625, 0.5860935668945313, 0.5858037719726562, 0.5858048095703124, 0.5849139404296875, 0.5841203002929688, 0.5845104370117188, 0.5843281860351562, 0.58593896484375, 0.5835950317382812, 0.5853214721679687, 0.5840045776367188, 0.58496923828125, 0.5845125122070313, 0.5841981201171875, 0.583709716796875, 0.583604248046875, 0.585080810546875, 0.5840435180664062, 0.5833502807617188, 0.583204833984375, 0.5833809814453125, 0.583488525390625, 0.5837742309570313, 0.5834803466796875, 0.5833226318359375, 0.5833451538085938, 0.5854525146484375, 0.5855877075195313, 0.5852989501953125, 0.5850931396484375, 0.5837567749023438, 0.5835980834960938, 0.583244873046875, 0.5846691284179687, 0.5844193115234375, 0.5830215454101563, 0.58328369140625, 0.5829970092773438, 0.5831393432617188, 0.5830184936523437, 0.583066650390625, 0.5831342163085937, 1.2092733154296875, 0.5848668212890625, 0.5853839721679688, 0.5835458374023438, 0.583478271484375, 0.5848524780273437, 0.5844121704101563, 0.5853265991210937, 0.5850194091796875, 0.5835120849609375, 0.5833359375, 0.5842094116210937, 0.5853716430664062, 0.5833635864257812, 0.583319580078125, 0.5834424438476562, 0.5833430786132813, 0.584900634765625, 0.5847019653320312, 0.5855590209960938, 0.585365478515625, 0.585439208984375, 0.5842821044921875, 0.5841654052734375, 0.5858457641601562, 0.5847449340820312, 0.585164794921875, 0.5848309936523437, 0.584369140625, 0.58404248046875, 0.5838244018554688, 0.583257080078125, 0.5842994995117188, 0.5846712036132813, 0.5851217651367188, 0.5858897705078125, 0.5863434448242187, 0.5853060913085938, 0.5856419677734375, 0.5848340454101563, 0.5839616088867188, 0.5841131591796875, 0.5834690551757813, 0.5832816772460937, 0.5835386962890625, 0.5836953735351562, 0.5837783203125, 0.5832489013671875, 0.5833348999023438, 0.5838141479492187, 0.58338818359375, 0.5840414428710937, 0.5849354248046875, 0.5850501098632812, 0.5841889038085938, 0.5833840942382813, 0.5846098022460937, 0.5854556274414062, 0.5855375366210938, 0.586071044921875, 0.586082275390625, 0.5858805541992187, 0.5854515380859375, 1.2056739501953124, 0.5838673706054688, 0.5836922607421875, 0.5847716064453125, 0.5860086059570313, 0.586287109375, 0.5854852905273438, 0.5859491577148438, 0.5838069458007813, 0.5842606201171875, 0.5834219360351562, 0.58568701171875, 0.5857372436523437, 0.5852446899414062, 0.58332568359375, 0.5833123779296875, 0.5834485473632812, 0.5832437744140625, 0.583193603515625, 0.5835929565429687, 0.5832130737304687, 0.5838284912109375, 0.58541259765625, 0.5862522583007812, 0.5836943359375, 0.5834444580078125, 0.5840834350585937, 0.5839165649414062, 0.5839165649414062, 0.585080810546875, 0.583625732421875, 0.5833779296875, 0.583635986328125, 0.5836810302734375, 0.585175048828125, 0.5848340454101563, 0.5836544189453124, 0.5838428344726563, 0.5849999389648437, 0.5866905517578125, 0.5863915405273438, 0.5861068725585937, 0.5854617309570312, 0.58519140625, 0.585206787109375, 0.5851094970703125, 0.5855795288085938, 0.5858048095703124, 0.5847920532226563, 0.58595947265625, 0.5849281616210937, 0.5841448974609375, 0.5848914184570313, 0.5851996459960938, 0.5850060424804687, 0.585902099609375, 0.5855529174804688, 0.5846098022460937, 0.5835745239257812, 0.5832652587890625, 0.5837926635742188, 0.5831690063476562, 0.5832499389648438, 1.207994384765625, 0.585818115234375, 0.5860628662109375, 0.5862369384765626, 0.5856450805664063, 0.5840588989257812, 0.5840947265625, 0.5850921020507812, 0.5846712036132813, 0.584900634765625, 0.5842124633789062, 0.585068603515625, 0.5859398803710938, 0.5848207397460937, 0.585101318359375, 0.5848822021484374, 0.5862144165039063, 0.5845022583007813, 0.58452685546875, 0.5850029907226563, 0.5852498168945313, 0.58498046875, 0.5852426147460937, 0.584975341796875, 0.5861365966796875, 0.5855333862304688, 0.5858826293945313, 0.5837987670898438, 0.5849784545898438, 0.584690673828125, 0.585865234375, 0.585797607421875, 0.58403125, 0.5845575561523437, 0.583736328125, 0.5857874145507812, 0.584921142578125, 0.5861068115234375, 0.5857382202148438, 0.5839708251953125, 0.5849497680664062, 0.5862993774414063, 0.5846947631835937, 0.5865574340820312, 0.5856399536132812, 0.5843414916992188, 0.5835376586914063, 0.5834024658203125, 0.5844940795898438, 0.5834383544921875, 0.584827880859375, 0.5836144409179688, 0.5839237060546875, 0.5843804321289062, 0.5840660400390625, 0.5849600219726563, 0.5857423095703125, 0.583419921875, 0.5841243896484375, 0.5841254272460937, 0.5858836669921875, 0.586166259765625, 0.5862020874023437, 1.2080977783203124, 0.5857433471679687, 0.5837967529296875, 0.5849077758789063, 0.5842442016601562, 0.5845339965820312, 0.5844049682617187, 0.584521728515625, 0.585860107421875, 0.5852057495117188, 0.5834055786132812, 0.5845022583007813, 0.5843896484375, 0.584616943359375, 0.5853900756835938, 0.585218017578125, 0.584774658203125, 0.583119873046875, 0.5841193237304687, 0.583546875, 0.5849262084960938, 0.5859512329101563, 0.5857454223632812, 0.5856983032226563, 0.5860689697265625, 0.584722412109375, 0.585270263671875, 0.5859860229492188, 0.5858826293945313, 0.5849948120117188, 0.5863117065429687, 0.5867387084960938, 0.5861365966796875, 0.583546875, 0.583605224609375, 0.5836113891601562, 0.58324169921875, 0.5857771606445312, 0.5841275024414062, 0.583731201171875, 0.5836175537109375, 0.5853092041015625, 0.5840271606445312, 0.583151611328125, 0.5838561401367187, 0.5832478637695313, 0.5832324829101563, 0.5840947265625, 0.5859563598632812, 0.5858385620117188, 0.5836267700195312, 0.5830523071289062, 0.58344140625, 0.5830737915039063, 0.5846456298828125, 0.58616015625, 0.5856010131835937, 0.584089599609375, 0.5855467529296875, 0.5856133422851563, 0.5847756958007813, 0.583384033203125, 0.583277587890625, 1.204601806640625, 0.5862328491210937, 0.5855662231445312, 0.5857454223632812, 0.585776123046875, 0.5854013671875, 0.5835397338867188, 0.5845718994140625, 0.584806396484375, 0.5833901977539062, 0.58340966796875, 0.5848545532226562, 0.5836718139648438, 0.583673828125, 0.5833185424804688, 0.5834208984375, 0.5831044921875, 0.58376806640625, 0.5851791381835938, 0.584932373046875, 0.5834536743164063, 0.58336767578125, 0.5833983764648437, 0.583994384765625, 0.5848350830078125, 0.5854105834960938, 0.5858877563476562, 0.584690673828125, 0.5837537231445312, 0.5838837890625, 0.5847900390625, 0.5848023071289062, 0.5842175903320312, 0.5831762084960938, 0.5833820190429687, 0.5859891357421875, 0.5835069580078125, 0.5831127319335937, 0.5831157836914063, 0.5827809448242187, 0.58313623046875, 0.58292431640625, 0.5838295288085937, 0.5834178466796875, 0.5833871459960938, 0.5833328857421874, 0.5838223266601562, 0.5833430786132813, 0.58349462890625, 0.5832028198242187, 0.583478271484375, 0.5832816772460937, 0.5838448486328125, 0.58444287109375, 0.5835448608398438, 0.583488525390625, 0.5832765502929688, 0.5831597900390625, 0.5829530029296875, 0.5834905395507812, 0.5833994140625, 0.583025634765625, 0.5832243041992188, 1.203841064453125, 0.5830482177734375, 0.58326220703125, 0.5829181518554688, 0.5830656127929688, 0.5832324829101563, 0.5837772827148437, 0.5836277465820312, 0.5839247436523437, 0.5832898559570312, 0.5831966552734374, 0.5831823120117188, 0.5834014892578125, 0.5832069091796875, 0.58324169921875, 0.5832232666015625, 0.5835601806640625, 0.5835192260742188, 0.5839534301757813, 0.583889892578125, 0.5849528198242188, 0.583784423828125, 0.5851146240234375, 0.584163330078125, 0.5861038208007813, 0.5857628173828126, 0.5840619506835938, 0.5834321899414062, 0.5833062133789062, 0.5850715942382813, 0.5838827514648437, 0.5832939453125, 0.5836646118164063, 0.5837035522460937, 0.5832540283203125, 0.58330419921875, 0.5831854248046875, 0.5831260375976562, 0.5833052368164062, 0.5834301147460937, 0.5840445556640625, 0.5837404174804688, 0.5842206420898437, 0.5848719482421875, 0.5832294311523437, 0.5834393310546875, 0.5849579467773437, 0.585996337890625, 0.5837516479492187, 0.5843865356445312, 0.5841224365234375, 0.58503466796875, 0.5842933959960938, 0.5842514038085938, 0.5854228515625, 0.5845718994140625, 0.5853296508789062, 0.58530712890625, 0.585987060546875, 0.5857822875976563, 0.5840445556640625, 0.5849928588867187, 0.5844633178710937, 1.2071761474609375, 0.5841336059570312, 0.5841234130859375, 0.5854689331054688, 0.5842175903320312, 0.5836083374023437, 0.5841305541992188, 0.5834137573242187, 0.583314453125, 0.5843251342773438, 0.584774658203125, 0.5859430541992188, 0.58572802734375, 0.5840137939453125, 0.583277587890625, 0.583404541015625, 0.58437939453125, 0.5849334106445313, 0.5850767211914063, 0.5838622436523437, 0.5835120849609375, 0.583267333984375, 0.5832949829101562, 0.5855610961914063, 0.583498779296875, 0.5834619140625, 0.58427392578125, 0.584437744140625, 0.5862256469726562, 0.5834854125976563, 0.5835243530273437, 0.5841622924804688, 0.58366259765625, 0.584537109375, 0.5853388671875, 0.5849989013671875, 0.5844951171875, 0.5839963989257813, 0.5834158325195312, 0.583077880859375, 0.5831526489257812, 0.5830082397460937, 0.5828720703125, 0.5832632446289062, 0.5835222778320313, 0.5850848999023438, 0.5834332275390625, 0.58313623046875, 0.5834127197265625, 0.58305126953125, 0.5829222412109375, 0.5836380004882813, 0.5834926147460937, 0.5847183227539062, 0.58433740234375, 0.5834075927734375, 0.583525390625, 0.585175048828125, 0.5840414428710937, 0.5833728637695312, 0.5833543090820312, 0.5860372314453125, 0.58665673828125, 1.209406494140625, 0.5842022705078125, 0.5846261596679687, 0.5852323608398438, 0.5844152221679687, 0.5856993408203125, 0.5855590209960938, 0.5855303955078125, 0.5856942138671875, 0.5849548950195312, 0.584184814453125, 0.583784423828125, 0.5838602905273438, 0.583943115234375, 0.5855211791992188, 0.5860454711914063, 0.5839083251953125, 0.5838970947265625, 0.58345166015625, 0.584595458984375, 0.5834035034179688, 0.583773193359375, 0.5848862915039063, 0.5850439453125, 0.5842882690429687, 0.5836083374023437, 0.5860198364257813, 0.5854996337890624, 0.5847982177734375, 0.58365234375, 0.5836318969726563, 0.5851351318359375, 0.5849569091796875, 0.5841541137695313, 0.5852262573242187, 0.5854945068359375, 0.58353662109375, 0.5831260375976562, 0.5857720336914063, 0.5833697509765625, 0.5847398681640625, 0.5836799926757813, 0.5841725463867188, 0.5835213012695313, 0.5834793090820313, 0.5834086303710937, 0.5851555786132813, 0.5856593627929687, 0.586039306640625, 0.586672119140625, 0.5860044555664062, 0.583857177734375, 0.5836093139648437, 0.5832765502929688, 0.583372802734375, 0.5853153076171875, 0.5847501220703125, 0.5838038330078125, 0.5834752197265625, 0.5835591430664062, 0.5838551635742187, 0.5840281372070313, 0.5836544189453124, 1.2069908447265625, 0.5845330200195312, 0.5855457153320313, 0.58528564453125, 0.5856204833984375, 0.5856962280273438, 0.5844951171875, 0.585575439453125, 0.5854146728515625, 0.5844561767578125, 0.5846773681640625, 0.5847982177734375, 0.5842196655273437, 0.5833287963867188, 0.5843486938476562, 0.5833656616210937, 0.5831823120117188, 0.5832847290039063, 0.5848411865234375, 0.585359375, 0.5844951171875, 0.5839882202148438, 0.58340966796875, 0.5836564331054688, 0.5833912353515625, 0.5853634643554687, 0.5840670776367187, 0.5857935180664062, 0.584247314453125, 0.5839431762695313, 0.5854044189453125, 0.5834598388671876, 0.5832744750976563, 0.584158203125, 0.5852743530273438, 0.5853818969726563, 0.5850951538085938, 0.5850203857421875, 0.584026123046875, 0.5849088134765625, 0.5856348266601562, 0.5836636352539063, 0.5857105712890625, 0.58444287109375, 0.58351513671875, 0.5845309448242187, 0.5851401977539062, 0.5842554931640624, 0.5832396850585938, 0.583677978515625, 0.58317822265625, 0.5831372680664062, 0.5843138427734375, 0.5847398681640625, 0.5867151489257812, 0.5837537231445312, 0.58568603515625, 0.584394775390625, 0.5833359375, 0.5846251220703125, 0.5849108276367188, 0.5853767700195313, 0.5857874145507812]",tokens/s,1.6853996704204155,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/rho-math-1b-v0.1,microsoft/rho-math-1b-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1535.045632,1705.508864,0.0,1059.06176,901.251072,s,10,1.2508666152954102,0.125086661529541,0.0018104018213424833,0.12444574356079102,0.126299910736084,0.12811838493347166,0.12957316429138183,"[0.12993685913085937, 0.12397126770019531, 0.12358041381835938, 0.124216064453125, 0.1243848648071289, 0.12450662231445313, 0.12540995025634766, 0.1256360321044922, 0.1233287353515625, 0.12589580535888673]",tokens/s,2046.5811211976581,kWh,1.4727642404526186e-06,8.07004418028454e-07,5.46138982864209e-06,7.741158487123162e-06,tokens/kWh,33069985.639208503,MB,1535.045632,1705.508864,0.0,1059.06176,931.976704,s,10,74.43358642578124,7.443358642578124,0.00946750701010035,7.4411630859375,7.453821142578125,7.459902514648437,7.464767612304687,"[7.4524697265625, 7.437251953125, 7.43481591796875, 7.44107763671875, 7.44202734375, 7.4486748046875, 7.46598388671875, 7.43750244140625, 7.4325341796875, 7.44124853515625]",tokens/s,8.463921063755025,kWh,8.849523470459816e-05,4.850131187912767e-05,0.0003201225928605506,0.0004571191394442764,tokens/kWh,137819.65042327833,,s,629,75.43097544097903,0.11992205952460892,0.01485084367631047,0.11795148468017579,0.11891920471191407,0.11957084197998047,0.24228786743164063,"[0.1226967010498047, 0.12151910400390625, 0.12056473541259766, 0.11847885131835938, 0.11765760040283203, 0.1177681884765625, 0.11789107513427734, 0.11814604949951171, 0.11932160186767578, 0.11832012939453125, 0.1177927703857422, 0.11863961791992188, 0.117970947265625, 0.11791155242919922, 0.1177927703857422, 0.11780095672607421, 0.11787673950195313, 0.11762687683105469, 0.11790541076660156, 0.11779481506347657, 0.117823486328125, 0.1177896957397461, 0.11771392059326172, 0.11764736175537109, 0.1177733154296875, 0.11770368194580078, 0.11773951721191406, 0.118076416015625, 0.11775590515136719, 0.11770674896240234, 0.11798528289794921, 0.1176780776977539, 0.117775390625, 0.1183753890991211, 0.11995954895019531, 0.11985305786132812, 0.1180579833984375, 0.11781836700439453, 0.11756646728515625, 0.11805900573730468, 0.11770265960693359, 0.11834572601318359, 0.11778355407714844, 0.11779481506347657, 0.11785932922363282, 0.11764838409423828, 0.11807437133789063, 0.11778662109375, 0.11772621154785157, 0.11770982360839843, 0.11952230072021484, 0.11834982299804687, 0.11924479675292969, 0.1183662109375, 0.11791871643066407, 0.11783168029785156, 0.11791667175292969, 0.11793510437011719, 0.11775590515136719, 0.11848908996582032, 0.11845222473144532, 0.11795967864990234, 0.24229991149902344, 0.11855974578857421, 0.11810508728027344, 0.1181112289428711, 0.11786239624023437, 0.11781222534179688, 0.11777536010742187, 0.11783475494384765, 0.1178050537109375, 0.11783270263671874, 0.11801292419433594, 0.11765145874023437, 0.11773747253417968, 0.11818905639648437, 0.11795558166503907, 0.11861913299560548, 0.11793202972412109, 0.11773951721191406, 0.11792384338378906, 0.11784806060791016, 0.11804672241210938, 0.11847372436523437, 0.11889459228515625, 0.11787366485595703, 0.11765760040283203, 0.11804364776611329, 0.1181839370727539, 0.11801395416259766, 0.11794841766357422, 0.11845529937744141, 0.11901849365234375, 0.11806412506103516, 0.11792793273925781, 0.1178419189453125, 0.11779174041748047, 0.1181470718383789, 0.11795148468017579, 0.11775794982910157, 0.11785420989990235, 0.11785318756103516, 0.11791769409179688, 0.1176842269897461, 0.11780198669433593, 0.11803135681152344, 0.11790847778320312, 0.11800678253173828, 0.11986029052734375, 0.11766470336914063, 0.11762483215332031, 0.11772927856445313, 0.11784601593017578, 0.11774259185791015, 0.1181296615600586, 0.11775794982910157, 0.11769548797607422, 0.11781222534179688, 0.11974041748046875, 0.11866316986083984, 0.11849625396728515, 0.11808665466308593, 0.11798220825195313, 0.11786956787109375, 0.11778559875488281, 0.2420991973876953, 0.11768319702148437, 0.11785318756103516, 0.1178757095336914, 0.11764019012451171, 0.11813990020751954, 0.11782553863525391, 0.11776204681396485, 0.11799756622314453, 0.11830271911621094, 0.118508544921875, 0.11805184173583984, 0.11785523223876954, 0.11794841766357422, 0.11769241333007813, 0.11777126312255859, 0.11797299194335938, 0.11789926147460937, 0.1177528305053711, 0.11770880126953125, 0.11770674896240234, 0.11790438079833984, 0.1180794906616211, 0.11948953247070312, 0.11772211456298828, 0.11786239624023437, 0.11781734466552735, 0.11803340911865234, 0.11814604949951171, 0.11789823913574218, 0.11793920135498047, 0.11805184173583984, 0.11791667175292969, 0.11798834991455077, 0.11809382629394531, 0.1178818588256836, 0.11811328125, 0.11793817901611328, 0.11791053009033203, 0.11808255767822265, 0.11819929504394532, 0.11768319702148437, 0.11867545318603516, 0.11808870697021484, 0.11771084594726562, 0.11781324768066406, 0.11782860565185548, 0.11991654205322265, 0.11770674896240234, 0.117823486328125, 0.11866214752197266, 0.11856486511230468, 0.11797299194335938, 0.11779686737060546, 0.11797913360595703, 0.1178941421508789, 0.11789619445800781, 0.11790847778320312, 0.11780812835693359, 0.11815628814697265, 0.11777945709228516, 0.11793202972412109, 0.11774361419677734, 0.24225689697265626, 0.11883827209472657, 0.11843174743652343, 0.11770162963867188, 0.11769651031494141, 0.11803648376464844, 0.11810921478271484, 0.11791152191162109, 0.11775180816650391, 0.1179842529296875, 0.11786649322509765, 0.11789823913574218, 0.11888333129882812, 0.11870105743408203, 0.11781120300292969, 0.11810918426513672, 0.11798937225341796, 0.11783577728271484, 0.11785113525390625, 0.11797196960449219, 0.11792281341552735, 0.11785011291503907, 0.11803040313720703, 0.11771692657470703, 0.117897216796875, 0.11816140747070313, 0.11904307556152344, 0.11791974639892579, 0.11789311981201171, 0.11902464294433594, 0.11833856201171875, 0.12005171203613281, 0.11821363067626953, 0.11774566650390625, 0.11858534240722657, 0.11854847717285157, 0.11799961853027344, 0.11858636474609376, 0.11794432067871094, 0.11810918426513672, 0.11841535949707031, 0.11808563232421875, 0.11770777893066406, 0.11799142456054687, 0.11910041809082031, 0.11799552154541015, 0.11794534301757813, 0.11774361419677734, 0.11787366485595703, 0.11796173095703125, 0.11805900573730468, 0.11948339080810547, 0.1178265609741211, 0.11779071807861329, 0.11765350341796875, 0.11782860565185548, 0.11791667175292969, 0.11784909057617188, 0.11769856262207032, 0.11790643310546875, 0.11776000213623047, 0.11783065795898437, 0.11767705535888671, 0.2425384979248047, 0.11768013000488281, 0.11795558166503907, 0.11765964508056641, 0.11810201263427735, 0.11820953369140624, 0.1178265609741211, 0.11962060546875, 0.11832319641113281, 0.11826278686523438, 0.11800371551513672, 0.11801292419433594, 0.11777126312255859, 0.11808979034423828, 0.1176882553100586, 0.11781632232666016, 0.11816345977783203, 0.11939839935302735, 0.11851058959960938, 0.11840716552734375, 0.11813273620605469, 0.11791053009033203, 0.1183477783203125, 0.11780403137207031, 0.11925299072265624, 0.11806310272216797, 0.11794226837158203, 0.11788288116455078, 0.11790847778320312, 0.11780812835693359, 0.11756851196289063, 0.11803648376464844, 0.11778457641601563, 0.11857817840576172, 0.11874816131591796, 0.11857202911376953, 0.11783372497558593, 0.11794432067871094, 0.11835801696777344, 0.11801395416259766, 0.11805388641357421, 0.11840716552734375, 0.11800678253173828, 0.11772723388671875, 0.11773849487304687, 0.11781427001953125, 0.11807030487060546, 0.11788591766357422, 0.1177896957397461, 0.11810610961914063, 0.11781529235839844, 0.118150146484375, 0.11891506958007812, 0.11792588806152343, 0.1180979232788086, 0.11776000213623047, 0.11800064086914062, 0.12033126068115234, 0.11792998504638671, 0.1180200958251953, 0.1176995849609375, 0.11785523223876954, 0.11783270263671874, 0.24298291015625, 0.1177528305053711, 0.11772723388671875, 0.11784909057617188, 0.11783782196044922, 0.11776409912109374, 0.1176258544921875, 0.11822592163085938, 0.11832115173339844, 0.11806719970703125, 0.11768729400634766, 0.11852082824707032, 0.11796377563476562, 0.11766067504882813, 0.11783372497558593, 0.11778457641601563, 0.11765452575683594, 0.11768319702148437, 0.11780812835693359, 0.11886284637451172, 0.11925299072265624, 0.11837849426269531, 0.11823616027832032, 0.11786137390136718, 0.11829452514648438, 0.11799961853027344, 0.11810099029541016, 0.11921817779541016, 0.11947929382324218, 0.11808767700195312, 0.11842867279052735, 0.11818086242675781, 0.11845017242431641, 0.11814604949951171, 0.11810406494140625, 0.11812249755859375, 0.118150146484375, 0.11768627166748047, 0.12074086761474609, 0.11790029144287109, 0.1178757095336914, 0.11833753967285156, 0.11824742126464843, 0.1190297622680664, 0.11828121948242187, 0.11830067443847657, 0.11778559875488281, 0.1179842529296875, 0.11804879760742187, 0.11841123199462891, 0.11772108459472656, 0.11835801696777344, 0.11804057312011719, 0.11791462707519532, 0.11991449737548829, 0.1183846435546875, 0.11778867340087891, 0.11815936279296875, 0.11795558166503907, 0.11824639892578125, 0.11795558166503907, 0.11841535949707031, 0.11960320281982421, 0.2442239990234375, 0.11785625457763672, 0.11795455932617188, 0.1188362274169922, 0.1178050537109375, 0.11798834991455077, 0.11827916717529297, 0.11871334075927735, 0.11938304138183593, 0.1188136978149414, 0.11833753967285156, 0.11944652557373046, 0.11828736114501953, 0.1178757095336914, 0.1189969940185547, 0.11945779418945313, 0.11926118469238281, 0.11858534240722657, 0.1181296615600586, 0.1187041244506836, 0.11901542663574219, 0.11876454162597656, 0.11830989074707031, 0.12047666931152344, 0.11891817474365235, 0.11892630767822265, 0.11849318695068359, 0.11825049591064453, 0.1181839370727539, 0.11833241271972657, 0.11835699462890625, 0.11903282928466796, 0.11840614318847656, 0.11857100677490234, 0.11871027374267579, 0.11851980590820313, 0.11851673889160157, 0.11861606597900391, 0.11881267547607421, 0.1186324462890625, 0.12009369659423828, 0.11938201904296875, 0.11857305908203125, 0.11787980651855469, 0.11817676544189454, 0.11832524871826172, 0.11826790618896485, 0.11835801696777344, 0.120447998046875, 0.11851776123046875, 0.11879526519775391, 0.11777536010742187, 0.11783372497558593, 0.11804057312011719, 0.11810304260253907, 0.11771186828613281, 0.11789823913574218, 0.11804160308837891, 0.11768934631347656, 0.11759923553466797, 0.11778559875488281, 0.11754393768310546, 0.11777740478515625, 0.24373759460449218, 0.11779174041748047, 0.1175920639038086, 0.11776306915283204, 0.1174999008178711, 0.11786547088623046, 0.11793408203125, 0.11796479797363281, 0.11785113525390625, 0.11759923553466797, 0.12032717132568359, 0.11938098907470703, 0.11796991729736328, 0.11770674896240234, 0.11779891204833984, 0.11797913360595703, 0.11979264068603515, 0.11813990020751954, 0.11899801635742188, 0.11855462646484374, 0.11808153533935548, 0.1180231704711914, 0.11797913360595703, 0.11860889434814453, 0.11787366485595703, 0.11785113525390625, 0.11788492584228516, 0.11816242980957031, 0.11869491577148437, 0.1198888931274414, 0.11808051300048829, 0.11794739532470704, 0.11787468719482422, 0.11797196960449219, 0.11788288116455078, 0.11782246398925782, 0.11781017303466797, 0.11793612670898437, 0.11752345275878906, 0.11755213165283203, 0.11759308624267578, 0.1179535369873047, 0.11776102447509766, 0.11792486572265624, 0.11769344329833985, 0.11778150177001953, 0.11779993438720703, 0.11772313690185547, 0.11796889495849609, 0.11796275329589843, 0.11774463653564453, 0.11760639953613282, 0.11799858856201172, 0.11777126312255859, 0.11769139099121094, 0.1178757095336914, 0.11771699523925781, 0.1177733154296875, 0.11792588806152343, 0.11762687683105469, 0.11798834991455077, 0.11797913360595703, 0.11765555572509766, 0.24334541320800782, 0.11772621154785157, 0.11778457641601563, 0.11770777893066406, 0.11806208038330078, 0.11857817840576172, 0.11794944000244141, 0.11780403137207031, 0.1176094741821289, 0.11765350341796875, 0.11788390350341797, 0.11832118225097656, 0.1179985580444336, 0.11776409912109374, 0.11778253173828125, 0.11771392059326172, 0.11762995147705078, 0.11899801635742188, 0.11768831634521484, 0.11782860565185548, 0.1177343978881836, 0.11791974639892579, 0.11767910766601562, 0.1176975326538086, 0.11781222534179688, 0.1176842269897461, 0.11812044525146484, 0.11786444854736328, 0.11779481506347657, 0.11779280090332031, 0.11815216064453125, 0.11984896087646485, 0.11806412506103516, 0.11796889495849609, 0.11819007873535156, 0.11776102447509766, 0.11791974639892579, 0.11807334136962891, 0.1183795166015625, 0.11832832336425782, 0.11772211456298828, 0.11752243041992187, 0.1177364501953125, 0.117718017578125, 0.11764736175537109, 0.11770265960693359, 0.11787673950195313, 0.11846963500976562, 0.11805900573730468, 0.11839180755615235, 0.11926834869384766, 0.11823616027832032, 0.11819110107421875, 0.11771186828613281, 0.11779891204833984, 0.11797606658935547, 0.11803033447265625, 0.11784806060791016, 0.11762380981445313, 0.11781938934326172, 0.11753062438964844, 0.1183846435546875, 0.11802214050292968, 0.24430592346191407, 0.11781120300292969, 0.11784294128417969, 0.11759410858154297, 0.11747020721435547, 0.11764940643310547, 0.11776000213623047, 0.1176657943725586, 0.11789209747314452, 0.11810304260253907, 0.11752448272705078, 0.11766681671142579, 0.11787366485595703, 0.11762278747558594, 0.11758796691894531, 0.11786854553222656, 0.11814297485351563, 0.11897650909423828, 0.11819315338134766, 0.11778355407714844, 0.11794944000244141, 0.1182208023071289, 0.1181665267944336, 0.11872051239013671, 0.11848806762695313, 0.11986124420166015, 0.12019916534423829, 0.11816754913330078, 0.1177927703857422, 0.11773849487304687, 0.11777740478515625, 0.11786956787109375, 0.11777843475341797, 0.11820543670654297, 0.1184686050415039, 0.11819417572021484, 0.1180917739868164, 0.11786137390136718, 0.11804774475097657, 0.11794329833984375, 0.11819213104248047, 0.11829759979248047, 0.11792998504638671, 0.11812147521972656, 0.11761766052246093, 0.11775590515136719, 0.11777228546142578, 0.11778253173828125, 0.11822898864746094, 0.11784601593017578, 0.11788082885742188, 0.11892332458496094, 0.11907987213134766, 0.11818086242675781, 0.11776000213623047, 0.11779891204833984, 0.1183272933959961, 0.11851878356933594, 0.11775590515136719, 0.11797401428222656, 0.11782144165039063, 0.11866828918457031, 0.11815936279296875]",tokens/s,8.338749384093028,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-70m,EleutherAI/pythia-70m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1279.725568,872.93952,0.0,226.492416,184.397824,s,12,0.17399129676818847,0.014499274730682373,0.0004405777377392672,0.014355583667755127,0.01475712022781372,0.015286664152145383,0.01576770728111267,"[0.01588796806335449, 0.014419008255004882, 0.014310144424438476, 0.01430396842956543, 0.014377471923828124, 0.014377087593078612, 0.01433407974243164, 0.014250847816467285, 0.014390144348144531, 0.01479468822479248, 0.014266719818115234, 0.014279168128967285]",tokens/s,17656.055544507362,kWh,1.7155437431226257e-07,9.399407219055296e-08,3.2474264005518264e-07,5.902910865579981e-07,tokens/kWh,433684339.52262825,MB,1280.053248,872.93952,0.0,226.492416,197.932544,s,12,10.420531616210937,0.8683776346842448,0.009197306451406238,0.8653596801757812,0.8716784362792969,0.8835345275878906,0.8948784387207032,"[0.8977144165039063, 0.866240966796875, 0.8642362670898438, 0.8648695068359376, 0.8719328002929687, 0.8635298461914063, 0.862948974609375, 0.866379638671875, 0.86938916015625, 0.865849853515625, 0.8638052368164062, 0.8636349487304688]",tokens/s,72.54908174012076,kWh,1.0699516429705703e-05,5.862862695252688e-06,1.9223555826850592e-05,3.578593495180898e-05,tokens/kWh,1760468.186309475,,s,755,10.563054601669307,0.013990800796912995,0.001781085498877292,0.013702143669128418,0.014027775764465332,0.014339276885986327,0.028389335021972658,"[0.015265791893005372, 0.014698495864868164, 0.014765055656433105, 0.014334976196289062, 0.014128128051757812, 0.014334976196289062, 0.014543871879577636, 0.014234623908996581, 0.0144650239944458, 0.01454694366455078, 0.014418944358825684, 0.01439027214050293, 0.01425100803375244, 0.014261247634887696, 0.014215167999267577, 0.014323712348937988, 0.014708736419677734, 0.014633983612060546, 0.01434931182861328, 0.01467801570892334, 0.014370816230773926, 0.014229503631591797, 0.014525440216064453, 0.014231552124023437, 0.014211071968078613, 0.014244864463806153, 0.014368767738342286, 0.014796799659729003, 0.014531583786010742, 0.014297087669372559, 0.014436384201049805, 0.014063584327697753, 0.014220288276672363, 0.013916159629821777, 0.014133248329162598, 0.014468095779418945, 0.014696479797363281, 0.014910431861877441, 0.014256128311157227, 0.014102527618408203, 0.01407590389251709, 0.014150655746459961, 0.014071807861328126, 0.013922304153442382, 0.013725728034973144, 0.01371132755279541, 0.013733887672424316, 0.013731840133666993, 0.014045184135437011, 0.014156800270080566, 0.014639103889465332, 0.014141440391540527, 0.013728863716125488, 0.013714336395263671, 0.013676544189453126, 0.013729791641235351, 0.013732864379882812, 0.013691904067993164, 0.013711359977722168, 0.013743103981018067, 0.013743103981018067, 0.013660223960876464, 0.0284968318939209, 0.013691904067993164, 0.01368883228302002, 0.013686783790588379, 0.013670399665832519, 0.01399295997619629, 0.013728768348693847, 0.013667327880859375, 0.013691904067993164, 0.01365503978729248, 0.013710335731506347, 0.013666303634643554, 0.013699071884155273, 0.013669376373291015, 0.013689855575561523, 0.013734911918640137, 0.013744128227233888, 0.01374617576599121, 0.01366323184967041, 0.013693951606750488, 0.013799424171447755, 0.013740032196044923, 0.013728768348693847, 0.013709312438964843, 0.013709312438964843, 0.01379532814025879, 0.013731840133666993, 0.013713408470153808, 0.013707263946533203, 0.013776896476745605, 0.01368883228302002, 0.013706239700317382, 0.013716480255126954, 0.013789183616638183, 0.014757887840270996, 0.013946911811828614, 0.013715423583984376, 0.013734911918640137, 0.013693951606750488, 0.01369600009918213, 0.013839360237121581, 0.013735936164855958, 0.013712384223937989, 0.013700096130371094, 0.013719552040100098, 0.013707263946533203, 0.013677568435668945, 0.013913087844848633, 0.013707263946533203, 0.013698047637939453, 0.013667360305786132, 0.013723615646362305, 0.013713408470153808, 0.013699071884155273, 0.013731840133666993, 0.013686783790588379, 0.013784064292907714, 0.01374828815460205, 0.013744064331054687, 0.013783040046691895, 0.013717503547668456, 0.013740032196044923, 0.013710335731506347, 0.028412927627563478, 0.013706239700317382, 0.013686783790588379, 0.013731840133666993, 0.013669376373291015, 0.013661184310913087, 0.013645824432373046, 0.013658111572265624, 0.013669376373291015, 0.013628416061401367, 0.013694975852966309, 0.013636608123779297, 0.013705216407775878, 0.013678591728210449, 0.013858816146850587, 0.01386086368560791, 0.01368883228302002, 0.013693951606750488, 0.013660160064697266, 0.01374518394470215, 0.013757408142089844, 0.013689855575561523, 0.013717503547668456, 0.01369600009918213, 0.013725695610046386, 0.013678591728210449, 0.013732895851135254, 0.013722592353820801, 0.0136878080368042, 0.013707263946533203, 0.013698047637939453, 0.013684736251831055, 0.013669376373291015, 0.013684736251831055, 0.01375641632080078, 0.013708288192749024, 0.013765631675720215, 0.013703167915344238, 0.013721599578857421, 0.013702143669128418, 0.013694975852966309, 0.013763584136962891, 0.01369600009918213, 0.013714431762695312, 0.013794303894042969, 0.013682687759399414, 0.013697024345397948, 0.013739007949829102, 0.013708288192749024, 0.013678591728210449, 0.013742079734802246, 0.013710335731506347, 0.013716480255126954, 0.013678591728210449, 0.013706239700317382, 0.013776896476745605, 0.013827072143554688, 0.013702143669128418, 0.013737983703613281, 0.013683712005615235, 0.013726719856262207, 0.013710335731506347, 0.013788160324096679, 0.028406784057617186, 0.013711359977722168, 0.013690879821777344, 0.013694975852966309, 0.013714431762695312, 0.013697024345397948, 0.013701120376586913, 0.01367142391204834, 0.013676544189453126, 0.013768704414367675, 0.01366528034210205, 0.013711423873901367, 0.013736895561218262, 0.013741056442260742, 0.01368064022064209, 0.013705216407775878, 0.013719552040100098, 0.013714431762695312, 0.013728768348693847, 0.013700096130371094, 0.01368883228302002, 0.013689855575561523, 0.013683712005615235, 0.013835264205932616, 0.013717503547668456, 0.013843520164489746, 0.013794239997863769, 0.013710335731506347, 0.013718527793884277, 0.013725695610046386, 0.01368064022064209, 0.013674495697021484, 0.013712384223937989, 0.013718527793884277, 0.013752320289611816, 0.013718527793884277, 0.013736960411071777, 0.01367347240447998, 0.013757439613342285, 0.01370419216156006, 0.013725695610046386, 0.013716480255126954, 0.013707263946533203, 0.013740032196044923, 0.013692928314208984, 0.013726719856262207, 0.013685759544372558, 0.013721664428710938, 0.013703104019165038, 0.01367142391204834, 0.013768704414367675, 0.01369600009918213, 0.013686783790588379, 0.013691904067993164, 0.01368883228302002, 0.013734911918640137, 0.013686783790588379, 0.01375334358215332, 0.013711359977722168, 0.013979647636413574, 0.013771776199340821, 0.013735936164855958, 0.013831232070922852, 0.028631999969482423, 0.013729824066162109, 0.013675488471984864, 0.01368172836303711, 0.013717439651489258, 0.013657088279724122, 0.01366528034210205, 0.013697024345397948, 0.013677568435668945, 0.01365503978729248, 0.013760512351989745, 0.013660160064697266, 0.01366220760345459, 0.013717503547668456, 0.013717503547668456, 0.013676544189453126, 0.013710335731506347, 0.013657088279724122, 0.013947903633117676, 0.013619199752807617, 0.013640704154968262, 0.01366528034210205, 0.013693951606750488, 0.01365401554107666, 0.013627391815185547, 0.013701120376586913, 0.013742079734802246, 0.013648896217346192, 0.013675552368164062, 0.013744095802307128, 0.01440665626525879, 0.01619865608215332, 0.016926719665527345, 0.014181376457214356, 0.01386188793182373, 0.013735936164855958, 0.01376153564453125, 0.013664256095886231, 0.013693951606750488, 0.013689855575561523, 0.013661184310913087, 0.013678591728210449, 0.013649920463562011, 0.014139391899108887, 0.013820927619934082, 0.013752320289611816, 0.013699071884155273, 0.014027775764465332, 0.01368064022064209, 0.013682687759399414, 0.013675519943237305, 0.013695039749145509, 0.01367750358581543, 0.01376460838317871, 0.014016511917114258, 0.0136878080368042, 0.013678591728210449, 0.01369600009918213, 0.013848575592041015, 0.013717503547668456, 0.0136878080368042, 0.013729791641235351, 0.013838335990905762, 0.028457984924316407, 0.013737983703613281, 0.013685759544372558, 0.013691904067993164, 0.013822976112365723, 0.013697024345397948, 0.013604864120483399, 0.013649920463562011, 0.013724672317504882, 0.013774847984313965, 0.013691904067993164, 0.01366528034210205, 0.013736960411071777, 0.013702143669128418, 0.0136878080368042, 0.013701120376586913, 0.013822976112365723, 0.013692928314208984, 0.013674495697021484, 0.013799424171447755, 0.013674495697021484, 0.01368166446685791, 0.013725695610046386, 0.013814784049987794, 0.013684736251831055, 0.01368883228302002, 0.013848608016967773, 0.013685728073120117, 0.013669376373291015, 0.013674495697021484, 0.01367961597442627, 0.01367244815826416, 0.013739007949829102, 0.01367961597442627, 0.013712384223937989, 0.013697024345397948, 0.013697024345397948, 0.013740032196044923, 0.01376460838317871, 0.013657088279724122, 0.013855744361877441, 0.013742079734802246, 0.013683712005615235, 0.013691904067993164, 0.013676544189453126, 0.013682687759399414, 0.013661184310913087, 0.013661184310913087, 0.013647904396057129, 0.013673439979553222, 0.013668352127075196, 0.013643775939941406, 0.013797375679016113, 0.013658111572265624, 0.013664256095886231, 0.013652031898498534, 0.01367033576965332, 0.013643775939941406, 0.013650943756103515, 0.013666303634643554, 0.013641728401184081, 0.01367142391204834, 0.013726719856262207, 0.028403711318969727, 0.013668352127075196, 0.013674495697021484, 0.01363046360015869, 0.013641728401184081, 0.013643775939941406, 0.01365503978729248, 0.01366220760345459, 0.01366220760345459, 0.01368166446685791, 0.013640704154968262, 0.013685759544372558, 0.013637632369995116, 0.013725695610046386, 0.013702143669128418, 0.013674495697021484, 0.013714431762695312, 0.013770751953125, 0.013796352386474609, 0.013739007949829102, 0.013711359977722168, 0.01367244815826416, 0.013684736251831055, 0.013736960411071777, 0.01367244815826416, 0.013675519943237305, 0.01368992042541504, 0.01368569564819336, 0.01368166446685791, 0.01367961597442627, 0.0136878080368042, 0.01367961597442627, 0.013676544189453126, 0.013953023910522461, 0.013818880081176758, 0.01379532814025879, 0.013685759544372558, 0.01367347240447998, 0.013747200012207032, 0.013718527793884277, 0.013677568435668945, 0.013668352127075196, 0.013685759544372558, 0.01365503978729248, 0.013649920463562011, 0.013637632369995116, 0.013633536338806153, 0.013768704414367675, 0.01365401554107666, 0.013760543823242188, 0.013644767761230468, 0.013698047637939453, 0.013644800186157227, 0.013639679908752441, 0.013675519943237305, 0.013670399665832519, 0.013651968002319336, 0.013715456008911133, 0.01376972770690918, 0.013659135818481445, 0.01366528034210205, 0.013699071884155273, 0.013642751693725585, 0.02831974411010742, 0.013700096130371094, 0.013639679908752441, 0.013622271537780761, 0.013687840461730957, 0.013710304260253907, 0.013718527793884277, 0.01368166446685791, 0.01366323184967041, 0.013705216407775878, 0.01368064022064209, 0.013686783790588379, 0.013666303634643554, 0.013668352127075196, 0.013682687759399414, 0.013727744102478028, 0.013724672317504882, 0.013721599578857421, 0.013724672317504882, 0.014102527618408203, 0.01380352020263672, 0.013740032196044923, 0.013737983703613281, 0.013920255661010742, 0.013740032196044923, 0.013717503547668456, 0.013843456268310546, 0.01380352020263672, 0.013684736251831055, 0.013757439613342285, 0.013758463859558106, 0.013974528312683105, 0.013858816146850587, 0.01417420768737793, 0.013920255661010742, 0.013936639785766602, 0.01377280044555664, 0.013703167915344238, 0.01368883228302002, 0.013677568435668945, 0.013684736251831055, 0.013694975852966309, 0.013688863754272461, 0.013667296409606934, 0.013786111831665039, 0.013828096389770507, 0.013668352127075196, 0.013664256095886231, 0.013733887672424316, 0.013702143669128418, 0.013656064033508301, 0.013676544189453126, 0.01377894401550293, 0.013708288192749024, 0.0136878080368042, 0.013683712005615235, 0.013735936164855958, 0.01395404815673828, 0.013817855834960938, 0.013650943756103515, 0.013703167915344238, 0.013696063995361328, 0.013751232147216796, 0.028461055755615236, 0.013700096130371094, 0.013645824432373046, 0.014017536163330077, 0.013718527793884277, 0.015047679901123047, 0.014234623908996581, 0.014027775764465332, 0.01408512020111084, 0.014048255920410157, 0.014173184394836426, 0.013982720375061035, 0.014036992073059081, 0.013888511657714844, 0.013721599578857421, 0.01374617576599121, 0.013685759544372558, 0.013708288192749024, 0.013652992248535157, 0.013644800186157227, 0.013687871932983398, 0.013667263984680177, 0.01366220760345459, 0.01367347240447998, 0.01367961597442627, 0.013639679908752441, 0.01368166446685791, 0.013686783790588379, 0.013645824432373046, 0.013686783790588379, 0.01366220760345459, 0.013650943756103515, 0.013632512092590332, 0.013693951606750488, 0.013690879821777344, 0.013845503807067871, 0.013686783790588379, 0.013660160064697266, 0.013715456008911133, 0.01387724781036377, 0.014060544013977052, 0.01405951976776123, 0.013849599838256836, 0.013645824432373046, 0.013682687759399414, 0.013699071884155273, 0.013699071884155273, 0.013707263946533203, 0.013682687759399414, 0.013713408470153808, 0.013652992248535157, 0.013708288192749024, 0.01368166446685791, 0.01368064022064209, 0.013719552040100098, 0.013873151779174805, 0.01370419216156006, 0.013788224220275879, 0.013749183654785157, 0.013675519943237305, 0.01366329574584961, 0.01380140781402588, 0.014252032279968262, 0.029146112442016602, 0.013622271537780761, 0.013830143928527832, 0.013846528053283692, 0.013924351692199707, 0.013684736251831055, 0.013667327880859375, 0.01367347240447998, 0.01363865566253662, 0.01366323184967041, 0.013697024345397948, 0.013644800186157227, 0.013669376373291015, 0.01386086368560791, 0.013948927879333496, 0.013683712005615235, 0.013719552040100098, 0.013699071884155273, 0.013691904067993164, 0.013702143669128418, 0.013697024345397948, 0.013853728294372558, 0.013726688385009766, 0.013720576286315917, 0.013678591728210449, 0.01369600009918213, 0.013735936164855958, 0.013697024345397948, 0.013715456008911133, 0.013755392074584961, 0.013735936164855958, 0.013721599578857421, 0.013707263946533203, 0.013883392333984374, 0.013845503807067871, 0.013723648071289063, 0.013712384223937989, 0.013705216407775878, 0.01368883228302002, 0.013685759544372558, 0.013721599578857421, 0.013728768348693847, 0.013697024345397948, 0.013751296043395997, 0.013793279647827148, 0.013677568435668945, 0.01369600009918213, 0.013702143669128418, 0.013920255661010742, 0.013789183616638183, 0.013728768348693847, 0.013712384223937989, 0.01368166446685791, 0.013733920097351074, 0.013666272163391113, 0.01387724781036377, 0.013720576286315917, 0.013702143669128418, 0.013740032196044923, 0.013721599578857421, 0.013722623825073242, 0.013712384223937989, 0.01376153564453125, 0.02837708854675293, 0.01365401554107666, 0.01364684772491455, 0.013660160064697266, 0.013664256095886231, 0.013692928314208984, 0.013957119941711426, 0.01405951976776123, 0.013983743667602539, 0.01367961597442627, 0.013649920463562011, 0.013858880043029785, 0.013722559928894044, 0.013641728401184081, 0.013668352127075196, 0.013664256095886231, 0.013723648071289063, 0.01365503978729248, 0.013669376373291015, 0.01367142391204834, 0.01370419216156006, 0.01368166446685791, 0.01367142391204834, 0.013675519943237305, 0.013628416061401367, 0.013627391815185547, 0.013661184310913087, 0.013818880081176758, 0.013710335731506347, 0.013647871971130371, 0.013670399665832519, 0.01368064022064209, 0.01367347240447998, 0.013683712005615235, 0.01368883228302002, 0.013701120376586913, 0.013677568435668945, 0.013657088279724122, 0.013692928314208984, 0.013644800186157227, 0.013676544189453126, 0.013677568435668945, 0.01380352020263672, 0.013749247550964355, 0.013674495697021484, 0.013695039749145509, 0.013658047676086426, 0.013690879821777344, 0.01367244815826416, 0.013657088279724122, 0.013640704154968262, 0.013657088279724122, 0.013793279647827148, 0.013695008277893066, 0.013856736183166504, 0.013647871971130371, 0.013661215782165528, 0.013750240325927735, 0.013722623825073242, 0.013768704414367675, 0.013710335731506347, 0.013717503547668456, 0.01366220760345459, 0.028322816848754883, 0.013648896217346192, 0.013686783790588379, 0.01369600009918213, 0.013699071884155273, 0.0136878080368042, 0.013691904067993164, 0.013702143669128418, 0.013697024345397948, 0.013683712005615235, 0.013700096130371094, 0.013693951606750488, 0.013722623825073242, 0.013705216407775878, 0.013691935539245605, 0.013717472076416016, 0.013724672317504882, 0.013700096130371094, 0.013664256095886231, 0.013639679908752441, 0.013757439613342285, 0.013656064033508301, 0.013667327880859375, 0.01366431999206543, 0.013849535942077636, 0.013924351692199707, 0.013633567810058594, 0.013722592353820801, 0.013668352127075196, 0.013906944274902343, 0.013789183616638183, 0.013662240028381348, 0.013687775611877442, 0.013670399665832519, 0.01367347240447998, 0.01366528034210205, 0.013657088279724122, 0.013661184310913087, 0.013678591728210449, 0.013684736251831055, 0.013658143997192384, 0.013722592353820801, 0.01366528034210205, 0.013637632369995116, 0.01367347240447998, 0.01365503978729248, 0.01367347240447998, 0.013744128227233888, 0.01370419216156006, 0.013693951606750488, 0.013711359977722168, 0.01368064022064209, 0.01368064022064209, 0.013691904067993164, 0.01369600009918213, 0.013724672317504882, 0.013697024345397948, 0.01367142391204834, 0.013682687759399414, 0.01365503978729248, 0.013683712005615235, 0.013806591987609864, 0.013955072402954101]",tokens/s,71.4755369986145,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,databricks/dbrx-base,databricks/dbrx-base,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -41829,7 +41652,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/gemma-7b/resolve/main/config.json +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -41846,10 +41669,10 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66948199-501abf544af13d907f908b6a;6bc76075-90c5-4095-be9e-73b444905df8) +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66947b53-2b5e40457723b735115df74c;0af0b51f-0135-4589-9ea0-66c7e96b251c) 403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/google/gemma-7b/resolve/main/config.json. +Cannot access content at: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json. If you are trying to create or update content,make sure you have a token with the `write` role. The above exception was the direct cause of the following exception: @@ -41888,11 +41711,14 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/gemma-7b is not the path to a directory containing a file named config.json. +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like databricks/dbrx-base is not the path to a directory containing a file named config.json. Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-2.7b,EleutherAI/pythia-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-2.7B,,cuda,0,42,,,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,MB,2234.441728,2932.342784,0.0,2285.89568,2082.575872,s,10,2.433214202880859,0.24332142028808593,0.0008617435568583196,0.24325077056884764,0.24459763488769531,0.24462198333740234,0.24464146209716797,"[0.24380015563964844, 0.24204917907714843, 0.24258213806152343, 0.24336614990234376, 0.24313539123535155, 0.24226588439941407, 0.24288755798339845, 0.24388919067382814, 0.24464633178710937, 0.24459222412109374]",tokens/s,1052.1063032465574,kWh,2.856464352872637e-06,1.5652168180297718e-06,1.2995936322662033e-05,1.7417617493564442e-05,tokens/kWh,14697762.199370166,MB,2234.441728,2959.60576,0.0,2313.158656,2180.684288,s,10,139.734884765625,13.9734884765625,0.01146198033243705,13.9710908203125,13.98807626953125,13.992370166015625,13.995805283203126,"[13.9871220703125, 13.9770771484375, 13.9966640625, 13.980609375, 13.95928515625, 13.96146875, 13.9670087890625, 13.9751728515625, 13.965376953125, 13.965099609375]",tokens/s,4.508537728833344,kWh,0.00016483188493384256,9.03412226583766e-05,0.0007461166431891384,0.0010012897507813577,tokens/kWh,62918.85036358144,,s,629,141.7022607421874,0.22528181358058424,0.02898003334479797,0.22168063354492187,0.2224162872314453,0.22265180053710937,0.4647246643066406,"[0.22235647583007812, 0.22139903259277344, 0.22141644287109374, 0.22147891235351563, 0.2213693389892578, 0.22170726013183595, 0.22163967895507813, 0.2214256591796875, 0.22199398803710937, 0.22159564208984375, 0.22243431091308594, 0.22190284729003906, 0.22202674865722657, 0.2210723876953125, 0.22141133117675782, 0.22209945678710938, 0.22192127990722657, 0.2224189453125, 0.22194073486328125, 0.22234317016601562, 0.22204518127441406, 0.22228582763671875, 0.2221793212890625, 0.22186904907226562, 0.222603271484375, 0.22207487487792968, 0.22233599853515626, 0.22205238342285155, 0.22235133361816406, 0.2235494384765625, 0.22263296508789063, 0.22236671447753906, 0.22127410888671875, 0.2215219268798828, 0.2213519287109375, 0.22189056396484375, 0.22161100769042968, 0.22196940612792967, 0.22203187561035156, 0.22196531677246092, 0.22140007019042968, 0.2213396453857422, 0.2219325408935547, 0.2218577880859375, 0.22200933837890624, 0.22186495971679687, 0.22244557189941405, 0.22216499328613282, 0.22224179077148437, 0.221955078125, 0.2217943115234375, 0.2224179229736328, 0.22189776611328124, 0.2225540771484375, 0.22166732788085938, 0.22277632141113282, 0.22537420654296875, 0.22221209716796875, 0.22146047973632813, 0.22176870727539064, 0.22216294860839844, 0.22160383605957032, 0.46420379638671877, 0.2221997833251953, 0.22188236999511718, 0.22198272705078126, 0.2217697296142578, 0.22201139831542968, 0.2215034942626953, 0.22119526672363282, 0.22219879150390626, 0.22249369812011718, 0.22189773559570314, 0.22246092224121095, 0.22249574279785156, 0.22148197937011718, 0.22124134826660155, 0.221802490234375, 0.22128536987304687, 0.2213744659423828, 0.22234214782714845, 0.22216806030273437, 0.22141746520996095, 0.22162637329101562, 0.22157516479492187, 0.22105191040039063, 0.2215782470703125, 0.2218741760253906, 0.2216898498535156, 0.22149427795410156, 0.2215536651611328, 0.2222725067138672, 0.22197760009765624, 0.22207795715332032, 0.2216847381591797, 0.22156083679199218, 0.2215741424560547, 0.2220595245361328, 0.22160179138183594, 0.22255001831054688, 0.22156492614746093, 0.22203904724121093, 0.22160179138183594, 0.22140109252929688, 0.22128640747070313, 0.22133660888671874, 0.2213908233642578, 0.22154035949707032, 0.22508236694335937, 0.22183013916015626, 0.22202879333496095, 0.2222407684326172, 0.2216785888671875, 0.22169293212890626, 0.22160691833496093, 0.22218649291992187, 0.2214686737060547, 0.22141439819335937, 0.222487548828125, 0.2225991668701172, 0.22195301818847657, 0.22147276306152344, 0.22199909973144533, 0.22176666259765626, 0.22219879150390626, 0.4654428100585937, 0.2218987579345703, 0.22210765075683594, 0.2219008026123047, 0.22165504455566407, 0.22182707214355468, 0.22211891174316406, 0.22192640686035156, 0.221770751953125, 0.22130482482910158, 0.22165913391113282, 0.22189263916015625, 0.2217932434082031, 0.22167552185058595, 0.22172467041015625, 0.22150143432617186, 0.22293606567382812, 0.22162535095214844, 0.2228019256591797, 0.22176255798339845, 0.22248243713378907, 0.22172979736328124, 0.22229402160644532, 0.22310092163085937, 0.22198988342285156, 0.22210150146484375, 0.22238616943359374, 0.22228480529785155, 0.22175334167480468, 0.22205337524414062, 0.22236058044433593, 0.2222407684326172, 0.2220369873046875, 0.2219929656982422, 0.2221854705810547, 0.2224127960205078, 0.22233395385742188, 0.22231858825683593, 0.22264627075195312, 0.22218751525878908, 0.22241587829589843, 0.22255718994140625, 0.2218741760253906, 0.22225920104980468, 0.22183935546875, 0.22192332458496095, 0.22207795715332032, 0.223752197265625, 0.22219673156738282, 0.22203289794921874, 0.22212197875976564, 0.2223206329345703, 0.22238616943359374, 0.22253575134277342, 0.22210047912597655, 0.22248442077636718, 0.2219356231689453, 0.2220912628173828, 0.22202572631835937, 0.22224896240234376, 0.22215168762207033, 0.22308761596679688, 0.22262168884277345, 0.46642996215820315, 0.22230323791503906, 0.22220390319824218, 0.22247935485839843, 0.22223155212402343, 0.22242303466796876, 0.22273023986816406, 0.2226411590576172, 0.22237493896484375, 0.22229808044433594, 0.2220185546875, 0.22259507751464844, 0.22249984741210938, 0.22244659423828125, 0.22167654418945312, 0.22273228454589844, 0.2222581787109375, 0.22126182556152343, 0.2230200653076172, 0.22316950988769532, 0.22224179077148437, 0.22140518188476563, 0.22184857177734374, 0.22160281372070312, 0.22178099060058593, 0.22235443115234374, 0.2213928985595703, 0.22145535278320314, 0.22126591491699218, 0.22138368225097657, 0.22140518188476563, 0.22138983154296876, 0.22134886169433593, 0.22174208068847656, 0.22144720458984374, 0.22132118225097655, 0.22146354675292967, 0.2214001007080078, 0.22144508361816406, 0.2214297637939453, 0.22163763427734376, 0.221517822265625, 0.22244044494628906, 0.22324838256835938, 0.22501274108886718, 0.22167861938476563, 0.22164067077636718, 0.2215004119873047, 0.22143283081054688, 0.22134579467773438, 0.22140518188476563, 0.22115122985839844, 0.22140415954589843, 0.2217195587158203, 0.22167449951171875, 0.2215034942626953, 0.22143795776367187, 0.2215854034423828, 0.22149530029296874, 0.22169497680664063, 0.22140931701660158, 0.22172157287597657, 0.22152806091308594, 0.4667914123535156, 0.22145228576660156, 0.2217512969970703, 0.2216468505859375, 0.22147789001464843, 0.221444091796875, 0.22145126342773438, 0.22144717407226563, 0.22157005310058595, 0.22128947448730468, 0.22147071838378907, 0.22156903076171874, 0.22139801025390626, 0.2215116729736328, 0.2211778564453125, 0.22171034240722656, 0.22124748229980468, 0.22265548706054689, 0.22149836730957032, 0.22151065063476563, 0.22136422729492186, 0.22120550537109376, 0.22162431335449218, 0.22184754943847657, 0.2219530487060547, 0.22183625793457032, 0.22151065063476563, 0.22187826538085936, 0.2214799346923828, 0.22132736206054687, 0.22136524963378906, 0.22137344360351563, 0.22129356384277343, 0.22121778869628905, 0.22129254150390626, 0.2211164093017578, 0.22158746337890625, 0.22140415954589843, 0.22128128051757812, 0.22147071838378907, 0.22140313720703125, 0.22121273803710936, 0.22131808471679687, 0.2216048583984375, 0.22186810302734375, 0.22218540954589844, 0.221623291015625, 0.22134477233886718, 0.22152088928222657, 0.22141746520996095, 0.22138368225097657, 0.22134169006347656, 0.22129458618164063, 0.22138983154296876, 0.22134169006347656, 0.2212956085205078, 0.221159423828125, 0.2240184326171875, 0.22193971252441405, 0.2216089630126953, 0.22141952514648439, 0.22154853820800782, 0.2216837158203125, 0.46434201049804685, 0.22140415954589843, 0.22150758361816406, 0.22161817932128905, 0.2220298309326172, 0.22168780517578124, 0.2222530517578125, 0.22144613647460937, 0.2217840576171875, 0.22155264282226564, 0.22125669860839844, 0.22169197082519532, 0.22176358032226562, 0.22181779479980468, 0.22157926940917969, 0.2215782470703125, 0.2214246368408203, 0.22152294921875, 0.22142771911621092, 0.22154547119140625, 0.22132429504394532, 0.22135606384277343, 0.22152394104003906, 0.22135398864746095, 0.22151577758789062, 0.2220185546875, 0.22214349365234376, 0.22169088745117188, 0.2212464599609375, 0.22148403930664062, 0.221370361328125, 0.22125363159179687, 0.22161305236816406, 0.22148197937011718, 0.22166015625, 0.2215977020263672, 0.22134783935546876, 0.2212351989746094, 0.2241535949707031, 0.22163558959960938, 0.2216785888671875, 0.22160691833496093, 0.221549560546875, 0.22167141723632813, 0.22142054748535156, 0.2214297637939453, 0.22139903259277344, 0.2217943115234375, 0.22149119567871095, 0.221876220703125, 0.22163250732421874, 0.221765625, 0.2215004119873047, 0.2217400360107422, 0.22149427795410156, 0.2213939208984375, 0.2211758117675781, 0.22143487548828125, 0.22141644287109374, 0.22124339294433593, 0.22147071838378907, 0.22166630554199218, 0.22171136474609374, 0.46487347412109375, 0.22141133117675782, 0.22127206420898438, 0.221338623046875, 0.2219622344970703, 0.22154342651367187, 0.22202265930175782, 0.22145330810546876, 0.22258995056152345, 0.22142874145507813, 0.22155264282226564, 0.22175334167480468, 0.2215741424560547, 0.22162739562988282, 0.22164378356933595, 0.2218803253173828, 0.22163250732421874, 0.22160076904296874, 0.22158848571777343, 0.2215116729736328, 0.2215679931640625, 0.22120550537109376, 0.22134477233886718, 0.22316543579101564, 0.22167039489746093, 0.22168063354492187, 0.22168678283691406, 0.2215116729736328, 0.2215188751220703, 0.22155363464355468, 0.22205235290527345, 0.22159359741210938, 0.22261351013183595, 0.2219059143066406, 0.22219161987304686, 0.22189773559570314, 0.22165504455566407, 0.22153114318847655, 0.2218076171875, 0.22219570922851561, 0.22192445373535155, 0.22225091552734375, 0.22204415893554688, 0.22189260864257812, 0.22191104125976563, 0.2215352325439453, 0.22143385314941405, 0.22180557250976562, 0.22147584533691406, 0.22139698791503906, 0.22178713989257812, 0.22213325500488282, 0.22149221801757812, 0.22222848510742188, 0.22150860595703126, 0.2214686737060547, 0.22136627197265624, 0.22127001953125, 0.22115020751953124, 0.22117478942871094, 0.22150143432617186, 0.22140211486816405, 0.22120550537109376, 0.46591384887695314, 0.22151065063476563, 0.22132838439941407, 0.22122496032714845, 0.22145433044433593, 0.22153318786621093, 0.2213519287109375, 0.22116044616699218, 0.22144717407226563, 0.22135296630859375, 0.2212833251953125, 0.22198477172851563, 0.22165811157226561, 0.22226739501953124, 0.22169804382324218, 0.22206361389160156, 0.22276095581054686, 0.22171136474609374, 0.22175949096679687, 0.22171034240722656, 0.22183833312988283, 0.2217021484375, 0.22223257446289063, 0.221876220703125, 0.22166323852539063, 0.22185369873046876, 0.22207693481445312, 0.22190386962890624, 0.2217379913330078, 0.22185165405273438, 0.22234214782714845, 0.22208717346191406, 0.22299136352539062, 0.22185061645507811, 0.22382899475097656, 0.22139187622070314, 0.22159461975097655, 0.22185369873046876, 0.2214072265625, 0.22193971252441405, 0.22215577697753905, 0.22185267639160156, 0.22164480590820312, 0.22156594848632813, 0.2215188751220703, 0.22147990417480468, 0.22186189270019532, 0.22172262573242188, 0.22174310302734376, 0.22215577697753905, 0.22219366455078124, 0.2219448699951172, 0.2216007385253906, 0.22184959411621094, 0.22170930480957032, 0.22189164733886718, 0.2221639404296875, 0.22170518493652344, 0.22201344299316406, 0.2217830352783203, 0.22169395446777343, 0.22200831604003907, 0.22163148498535157, 0.46692044067382815, 0.2217400360107422, 0.22165196228027345, 0.22197555541992187, 0.22193458557128906, 0.22203904724121093, 0.22154655456542968, 0.22138873291015626, 0.22145330810546876, 0.22146354675292967, 0.22145024108886718, 0.22175640869140625, 0.22180351257324218, 0.22217727661132813, 0.22153727722167968, 0.221896728515625, 0.2214164123535156, 0.2225797119140625, 0.22176051330566407, 0.22177381896972656, 0.22154649353027345, 0.221233154296875, 0.2214615020751953, 0.22134681701660155, 0.22129356384277343, 0.22127615356445313, 0.22128640747070313, 0.22148095703125, 0.22134169006347656, 0.22124339294433593, 0.22114816284179686, 0.2213191680908203, 0.2215188446044922, 0.22131814575195313, 0.22146969604492187, 0.22117990112304686, 0.22134375, 0.22164889526367187, 0.22181581115722657, 0.222171142578125, 0.22175640869140625, 0.22172979736328124, 0.22134066772460936, 0.22151986694335937, 0.22140313720703125, 0.22141030883789062, 0.22220594787597656, 0.22215887451171876, 0.22227349853515624, 0.22183116149902343, 0.22192640686035156, 0.22173184204101562, 0.2216898498535156, 0.22144717407226563, 0.22147584533691406, 0.22146354675292967, 0.22156903076171874, 0.22176051330566407, 0.22247833251953125, 0.221802490234375, 0.22252543640136718, 0.22219468688964844, 0.22166015625, 0.46707403564453126, 0.22175640869140625, 0.22192536926269532, 0.22187315368652344, 0.22208204650878907, 0.22162535095214844, 0.22142361450195314, 0.22128025817871094, 0.22170008850097656, 0.2215782470703125, 0.22144613647460937, 0.22178201293945313, 0.22167654418945312, 0.22178816223144532, 0.2213816375732422, 0.2216816711425781, 0.22158131408691406, 0.22198066711425782, 0.22218853759765625, 0.221770751953125, 0.22207693481445312, 0.2219069366455078, 0.22215782165527342, 0.2219069366455078, 0.2217830352783203, 0.2216417236328125, 0.2232033233642578, 0.22143283081054688, 0.22127719116210937, 0.22148300170898438, 0.22127104187011717, 0.2214615020751953, 0.22147584533691406, 0.22175538635253905, 0.22177690124511718, 0.2215290832519531, 0.22144717407226563, 0.22135296630859375, 0.22129356384277343, 0.22165196228027345, 0.22160076904296874, 0.22165402221679686, 0.22142771911621092, 0.22134783935546876, 0.22133555603027344, 0.22152088928222657, 0.22161509704589843, 0.2215034942626953, 0.22159257507324218, 0.22131712341308593, 0.22130586242675782, 0.22127410888671875, 0.22141850280761718, 0.22161305236816406, 0.22188954162597657, 0.22163456726074218, 0.2218014678955078, 0.2217902069091797, 0.22162124633789063, 0.22154444885253907, 0.22161305236816406, 0.2218956756591797, 0.22184857177734374]",tokens/s,4.438884720014453,,,main,False,False +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-2.7b,facebook/opt-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2109.853696,2844.2624,0.0,2197.815296,1927.351296,s,10,2.3800795135498047,0.23800795135498043,0.0010254107368052306,0.23830428314208985,0.23930529022216795,0.23934926986694335,0.23938445358276367,"[0.2383564453125, 0.23939324951171875, 0.23619731140136718, 0.23845465087890624, 0.23723452758789063, 0.23663900756835937, 0.23750480651855468, 0.2382521209716797, 0.2387518768310547, 0.23929551696777343]",tokens/s,1075.594317511624,kWh,2.793223439723023e-06,1.5305452026781454e-06,1.2162554949675677e-05,1.6486323592076845e-05,tokens/kWh,15528022.276781643,MB,2109.853696,2844.2624,0.0,2197.815296,2031.97184,s,10,139.4725029296875,13.94725029296875,0.016539028053013265,13.941937500000002,13.97250703125,13.977812109375,13.982056171875,"[13.953560546875, 13.945388671875, 13.94201171875, 13.9831171875, 13.9309609375, 13.9364580078125, 13.92993359375, 13.94186328125, 13.971328125, 13.937880859375]",tokens/s,4.517019389245513,kWh,0.000164597820511391,9.021296607492203e-05,0.0007178143901425277,0.0009726251767288406,tokens/kWh,64773.153633430826,,s,629,141.39150625610358,0.2247877682926924,0.028297149074530483,0.2211778564453125,0.22228438720703125,0.22277959289550783,0.45843198486328124,"[0.22260429382324218, 0.22169497680664063, 0.2212351989746094, 0.22115533447265626, 0.22176870727539064, 0.22137344360351563, 0.22118502807617188, 0.22141644287109374, 0.22102528381347655, 0.22195199584960937, 0.2219018249511719, 0.22150553894042968, 0.22119935607910157, 0.2213509063720703, 0.22125465393066407, 0.22120550537109376, 0.22150962829589843, 0.2213017578125, 0.22201548767089843, 0.2213632049560547, 0.22165196228027345, 0.22151373291015625, 0.22148095703125, 0.22154649353027345, 0.22147174072265624, 0.22180044555664064, 0.22122802734375, 0.22110105895996093, 0.22116249084472656, 0.221444091796875, 0.22163456726074218, 0.22287872314453125, 0.2216417236328125, 0.222202880859375, 0.2216407012939453, 0.22104165649414062, 0.22102323913574218, 0.22114508056640625, 0.22116044616699218, 0.22107955932617188, 0.2210508728027344, 0.22112460327148437, 0.22108979797363282, 0.2215557098388672, 0.22159564208984375, 0.22146662902832032, 0.2216785888671875, 0.22263194274902343, 0.22135398864746095, 0.22125056457519532, 0.22187930297851563, 0.22126797485351563, 0.2213396453857422, 0.22115225219726561, 0.22118502807617188, 0.22127410888671875, 0.22127104187011717, 0.22109901428222656, 0.22111744689941407, 0.22118911743164063, 0.2214871063232422, 0.22157005310058595, 0.46144613647460936, 0.22118707275390626, 0.2218403778076172, 0.2209945526123047, 0.22095564270019533, 0.22111538696289063, 0.22113792419433595, 0.22112973022460938, 0.22129766845703125, 0.22095974731445311, 0.22107244873046875, 0.2212720031738281, 0.22100991821289062, 0.22110617065429689, 0.22098739624023436, 0.22138470458984374, 0.22130073547363283, 0.22108773803710938, 0.22093721008300782, 0.2209566650390625, 0.2209310760498047, 0.2208204803466797, 0.22089932250976563, 0.22095155334472658, 0.22101708984375, 0.22186495971679687, 0.22131610107421876, 0.22127513122558592, 0.22142361450195314, 0.22218751525878908, 0.2213519287109375, 0.2209669189453125, 0.22220083618164063, 0.2210744323730469, 0.22159461975097655, 0.22113792419433595, 0.22117990112304686, 0.2222161865234375, 0.22108262634277343, 0.2210293731689453, 0.22102117919921874, 0.22107955932617188, 0.22112562561035157, 0.22216499328613282, 0.22140518188476563, 0.22183526611328125, 0.22283879089355468, 0.22166937255859376, 0.2215045166015625, 0.22186904907226562, 0.22122700500488282, 0.2214256591796875, 0.22139903259277344, 0.2215004119873047, 0.22137753295898438, 0.22115737915039063, 0.22106419372558594, 0.22163967895507813, 0.22111334228515625, 0.22137753295898438, 0.2212833251953125, 0.2219683837890625, 0.22127923583984374, 0.45813043212890625, 0.22103347778320312, 0.2213949432373047, 0.22112973022460938, 0.22099250793457031, 0.22118502807617188, 0.2218219451904297, 0.22100376892089843, 0.221154296875, 0.22091162109375, 0.22253260803222658, 0.22119935607910157, 0.2210529327392578, 0.22278041076660157, 0.22130482482910158, 0.22150553894042968, 0.2213519287109375, 0.22121983337402343, 0.2217584686279297, 0.22111436462402342, 0.22102015686035156, 0.22090444946289062, 0.22078054809570313, 0.2211778564453125, 0.22104576110839844, 0.2211420135498047, 0.22199909973144533, 0.22127308654785155, 0.22181170654296875, 0.2217164764404297, 0.2210918426513672, 0.2213201904296875, 0.22124339294433593, 0.2210150451660156, 0.22111231994628905, 0.22106008911132813, 0.22112051391601562, 0.22103245544433595, 0.22106419372558594, 0.2211778564453125, 0.22102323913574218, 0.22111846923828124, 0.22116146850585938, 0.2212884521484375, 0.22095872497558594, 0.22103347778320312, 0.221048828125, 0.2216294403076172, 0.22115122985839844, 0.22118400573730468, 0.221127685546875, 0.22102117919921874, 0.22113177490234376, 0.22128025817871094, 0.2211031036376953, 0.22143180847167968, 0.22129254150390626, 0.22108773803710938, 0.22222642517089844, 0.22198886108398438, 0.2217205810546875, 0.2217574462890625, 0.22159461975097655, 0.4614256591796875, 0.22283775329589844, 0.22295756530761718, 0.22274969482421875, 0.2225858612060547, 0.22346035766601563, 0.22301695251464843, 0.22341127014160156, 0.22270252990722655, 0.22250291442871092, 0.22281216430664064, 0.22286746215820313, 0.22281011962890626, 0.22280703735351562, 0.22268620300292968, 0.22271487426757813, 0.22270976257324218, 0.22246092224121095, 0.222814208984375, 0.22279373168945313, 0.22285516357421875, 0.222635009765625, 0.2227783660888672, 0.2227271728515625, 0.22253773498535157, 0.22261862182617187, 0.223025146484375, 0.22222540283203124, 0.22242611694335937, 0.22123930358886718, 0.22103450012207032, 0.2209105987548828, 0.22106008911132813, 0.22086451721191405, 0.2209740753173828, 0.22110208129882813, 0.2218260498046875, 0.2210365447998047, 0.2210713653564453, 0.22134988403320313, 0.22149017333984375, 0.22106419372558594, 0.22114309692382814, 0.22111225891113281, 0.2225971221923828, 0.22118400573730468, 0.22139187622070314, 0.22111538696289063, 0.22112153625488282, 0.22092594909667967, 0.22134783935546876, 0.221127685546875, 0.22192127990722657, 0.2215854034423828, 0.22127308654785155, 0.22121881103515625, 0.2214686737060547, 0.2213396453857422, 0.22123008728027344, 0.22115327453613282, 0.22119218444824218, 0.22103347778320312, 0.22114303588867187, 0.45854925537109376, 0.22104678344726564, 0.22133247375488282, 0.22091571044921876, 0.22102630615234375, 0.2210508728027344, 0.22108364868164063, 0.22100274658203126, 0.22103141784667968, 0.22081741333007812, 0.22105906677246093, 0.22115737915039063, 0.22105702209472655, 0.22100991821289062, 0.22107749938964844, 0.22084402465820313, 0.22094540405273438, 0.22115327453613282, 0.22110719299316406, 0.220980224609375, 0.22154444885253907, 0.22112460327148437, 0.2211031036376953, 0.22097817993164062, 0.2210498504638672, 0.22134375, 0.2211266632080078, 0.22089112854003906, 0.2209566650390625, 0.22103756713867187, 0.2209976348876953, 0.22094540405273438, 0.22101708984375, 0.2214256591796875, 0.22106623840332032, 0.22102528381347655, 0.2213017578125, 0.2209976348876953, 0.221233154296875, 0.22100274658203126, 0.22102220153808594, 0.22098329162597657, 0.2211584014892578, 0.2211092529296875, 0.22123417663574219, 0.22111744689941407, 0.2211235809326172, 0.22127001953125, 0.22116761779785157, 0.22121881103515625, 0.2211031036376953, 0.2210498504638672, 0.221085693359375, 0.22113587951660157, 0.22125978088378906, 0.2211041259765625, 0.221154296875, 0.22228172302246094, 0.22109901428222656, 0.22121267700195313, 0.22124339294433593, 0.2211584014892578, 0.2214686737060547, 0.457933837890625, 0.2211962890625, 0.22194586181640624, 0.22120755004882814, 0.22100889587402345, 0.2212843475341797, 0.22189056396484375, 0.2212884521484375, 0.2211727294921875, 0.22092083740234375, 0.22090956115722657, 0.2211768341064453, 0.2210160675048828, 0.22107545471191406, 0.22154035949707032, 0.22111436462402342, 0.22106521606445312, 0.22105599975585938, 0.22096998596191406, 0.22127615356445313, 0.22098329162597657, 0.22110617065429689, 0.2209003448486328, 0.22102117919921874, 0.22100376892089843, 0.2210365447998047, 0.22115635681152343, 0.2209239044189453, 0.22113996887207032, 0.22109490966796874, 0.22142259216308594, 0.22121983337402343, 0.22105599975585938, 0.2209105987548828, 0.221159423828125, 0.22130482482910158, 0.22137651062011718, 0.22106521606445312, 0.22213119506835938, 0.22088088989257812, 0.2209105987548828, 0.2210150451660156, 0.22098739624023436, 0.22129458618164063, 0.22125363159179687, 0.22113894653320312, 0.22119833374023437, 0.2218956756591797, 0.22099250793457031, 0.22140518188476563, 0.22130892944335936, 0.22184857177734374, 0.22106930541992187, 0.22177484130859376, 0.22129254150390626, 0.22115635681152343, 0.22096485900878907, 0.22116864013671875, 0.22148915100097658, 0.22126797485351563, 0.221384765625, 0.2214911346435547, 0.22094540405273438, 0.45877044677734374, 0.2209187774658203, 0.22111744689941407, 0.22087065124511718, 0.22097509765625, 0.22129971313476562, 0.2210744323730469, 0.2212843475341797, 0.22100991821289062, 0.22094744873046876, 0.2208368682861328, 0.22104473876953126, 0.22097305297851563, 0.2210682830810547, 0.2209914855957031, 0.2208757781982422, 0.2209628143310547, 0.2210426940917969, 0.22097509765625, 0.22097203063964843, 0.22091468811035156, 0.22095872497558594, 0.22083993530273438, 0.22126591491699218, 0.2211420135498047, 0.22217318725585938, 0.22125978088378906, 0.22093618774414062, 0.2212351989746094, 0.22171852111816406, 0.22144717407226563, 0.22102323913574218, 0.221486083984375, 0.220980224609375, 0.2209935302734375, 0.2213939208984375, 0.22103858947753907, 0.22095462036132812, 0.22107647705078126, 0.22094744873046876, 0.22103858947753907, 0.22127206420898438, 0.22109286499023437, 0.2211461181640625, 0.22218240356445312, 0.22110719299316406, 0.2209812469482422, 0.22119833374023437, 0.22108876037597655, 0.22112870788574218, 0.22101913452148436, 0.22104678344726564, 0.2209669189453125, 0.22112870788574218, 0.2210682830810547, 0.22112051391601562, 0.22107034301757814, 0.22104473876953126, 0.22089421081542968, 0.221011962890625, 0.2210160675048828, 0.2210846710205078, 0.2209628143310547, 0.45941656494140626, 0.2209495086669922, 0.221739013671875, 0.2209863739013672, 0.22102117919921874, 0.221048828125, 0.22226022338867188, 0.22110617065429689, 0.2219622344970703, 0.22180557250976562, 0.22233804321289063, 0.2211041259765625, 0.22118911743164063, 0.22098329162597657, 0.2222192687988281, 0.22136012268066407, 0.22214041137695312, 0.2213079071044922, 0.22128947448730468, 0.22100787353515625, 0.221127685546875, 0.22152703857421874, 0.2220943298339844, 0.2211031036376953, 0.22113792419433595, 0.22100889587402345, 0.22107034301757814, 0.22086758422851563, 0.2210048065185547, 0.22096588134765624, 0.2210846710205078, 0.22087680053710937, 0.221154296875, 0.22088607788085937, 0.22132730102539064, 0.2210529327392578, 0.22137548828125, 0.22103450012207032, 0.22103450012207032, 0.22075392150878906, 0.22111949157714844, 0.2211420135498047, 0.2211461181640625, 0.2211041259765625, 0.22117990112304686, 0.2209812469482422, 0.22081843566894532, 0.22104371643066406, 0.22111949157714844, 0.22109286499023437, 0.22118502807617188, 0.22213119506835938, 0.22129049682617188, 0.22118092346191406, 0.22175027465820313, 0.2221670379638672, 0.22145330810546876, 0.221517822265625, 0.22109490966796874, 0.22186087036132812, 0.2214615020751953, 0.22115122985839844, 0.22144102478027344, 0.46024600219726564, 0.2209976348876953, 0.22151475524902345, 0.22144717407226563, 0.2214246368408203, 0.22156083679199218, 0.2218076171875, 0.22113690185546875, 0.2215905303955078, 0.22111949157714844, 0.2214993896484375, 0.22210354614257813, 0.221412353515625, 0.22127104187011717, 0.22124339294433593, 0.22104165649414062, 0.22167552185058595, 0.22163148498535157, 0.2216048583984375, 0.22217523193359376, 0.22170419311523437, 0.22118092346191406, 0.22107034301757814, 0.22108876037597655, 0.22134988403320313, 0.22161715698242188, 0.22139698791503906, 0.22093209838867187, 0.22118707275390626, 0.22141542053222657, 0.22160383605957032, 0.2212833251953125, 0.22284288024902343, 0.2227220458984375, 0.22272000122070312, 0.22289511108398438, 0.22466764831542968, 0.2222950439453125, 0.22271078491210938, 0.22245887756347657, 0.22309580993652345, 0.2229698486328125, 0.22274867248535157, 0.22293504333496095, 0.22252748107910156, 0.22249267578125, 0.22271795654296875, 0.22294834899902344, 0.2227640380859375, 0.22101913452148436, 0.2211420135498047, 0.22163967895507813, 0.22111949157714844, 0.22116761779785157, 0.2211420135498047, 0.22103347778320312, 0.22134066772460936, 0.22165606689453124, 0.22108979797363282, 0.22110823059082033, 0.2213621826171875, 0.22120448303222656, 0.22122802734375, 0.46055218505859374, 0.22127308654785155, 0.22119218444824218, 0.22088088989257812, 0.22082456970214845, 0.22128128051757812, 0.22141439819335937, 0.22119935607910157, 0.22096383666992186, 0.22105804443359375, 0.22094137573242187, 0.2210590057373047, 0.22101094055175782, 0.22181581115722657, 0.22244248962402344, 0.22087271118164062, 0.22137753295898438, 0.22102732849121093, 0.2222520294189453, 0.22111129760742188, 0.22082662963867186, 0.22154853820800782, 0.22087986755371095, 0.2212034606933594, 0.22097920227050782, 0.22116659545898437, 0.22161100769042968, 0.22113075256347656, 0.2215413818359375, 0.22253465270996095, 0.22111949157714844, 0.2211102752685547, 0.2211788787841797, 0.22141952514648439, 0.22129766845703125, 0.22112562561035157, 0.22104063415527345, 0.22099046325683594, 0.22102835083007813, 0.22090444946289062, 0.22094438171386718, 0.2210181121826172, 0.22109907531738282, 0.22128121948242188, 0.22107647705078126, 0.22143795776367187, 0.2210846710205078, 0.22113792419433595, 0.22100274658203126, 0.22100889587402345, 0.2211266632080078, 0.22113587951660157, 0.2213580780029297, 0.2212833251953125, 0.221154296875, 0.22113587951660157, 0.2210672607421875, 0.22181581115722657, 0.22194586181640624, 0.22132325744628906, 0.22108572387695313, 0.22134576416015625, 0.22117170715332032]",tokens/s,4.448640633764008,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciLM-7B,,cuda,0,42,,,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,MB,1662.808064,5516.034048,0.0,4869.586944,4743.593472,s,10,6.1237835083007806,0.6123783508300781,0.001253925145814982,0.6120383911132812,0.6140244384765625,0.6141366088867187,0.6142263452148438,"[0.6138787841796876, 0.614248779296875, 0.6107066650390625, 0.61129736328125, 0.6111465454101562, 0.6114146728515625, 0.6116507568359375, 0.612426025390625, 0.61399951171875, 0.613014404296875]",tokens/s,418.0422114089963,kWh,7.21943411562178e-06,3.95425479798766e-06,3.477342651153299e-05,4.594711542514243e-05,tokens/kWh,5571622.889299289,MB,1662.808064,5516.034048,0.0,4869.586944,4769.651712,s,10,360.87087890624997,36.087087890625,0.01748383820965051,36.082986328125,36.11191953125,36.119573046875,36.125695859375,"[36.11021875, 36.1272265625, 36.08849609375, 36.07920703125, 36.0845625, 36.08481640625, 36.08141015625, 36.0650625, 36.07158203125, 36.078296875]",tokens/s,1.7457767773045123,kWh,0.00042595356252458363,0.00023346088450391426,0.0019820382702698735,0.0026414527172983716,tokens/kWh,23850.51210170259,,s,629,365.80599053955063,0.5815675525271077,0.07276675093795772,0.5726207885742187,0.5739550537109376,0.5744299926757812,1.1846730029296875,"[0.5736171264648438, 0.573517822265625, 0.5738854370117188, 0.57415576171875, 0.5742704467773437, 0.5731041259765625, 0.57312255859375, 0.5737461547851562, 0.5739632568359375, 0.5725850219726563, 0.5728665161132812, 0.5735147705078125, 0.5726494750976563, 0.573000732421875, 0.57260546875, 0.5726546020507812, 0.572073974609375, 0.5728809204101563, 0.572885986328125, 0.5725767822265625, 0.5731676025390625, 0.5745838012695312, 0.5729105834960937, 0.5730211791992188, 0.5729566650390625, 0.5723678588867187, 0.5724866333007812, 0.5726197509765625, 0.5735526123046875, 0.5740676879882812, 0.5729720458984375, 0.5732095947265625, 0.5726760864257813, 0.5724497680664062, 0.5724518432617187, 0.572790771484375, 0.5723668823242187, 0.5727159423828125, 0.5731563720703124, 0.5741424560546875, 0.5723576049804687, 0.5724334106445312, 0.5723883666992188, 0.5724548950195313, 0.5725368041992187, 0.5722142944335937, 0.5739407348632812, 0.5740206298828125, 0.572927001953125, 0.573212646484375, 0.5730181274414062, 0.5728184204101563, 0.5730816040039063, 0.5726177368164063, 0.572484619140625, 0.5727293701171875, 0.5740543823242188, 0.5732669677734376, 0.57483056640625, 0.574424072265625, 0.5744517211914062, 0.5744885864257813, 1.18734130859375, 0.5729505004882812, 0.5725030517578125, 0.5725654907226563, 0.5738137817382812, 0.572379150390625, 0.5741465454101562, 0.574750732421875, 0.573475830078125, 0.5734666137695312, 0.5736826782226563, 0.5750292358398438, 0.5742151489257813, 0.5739274291992188, 0.5746913452148438, 0.5744281616210938, 0.5742459106445312, 0.5746903076171875, 0.5750845336914062, 0.5739735107421875, 0.5736888427734375, 0.574476318359375, 0.5740001220703125, 0.573032470703125, 0.5722992553710937, 0.57221630859375, 0.571994140625, 0.573065185546875, 0.573844482421875, 0.5739673461914062, 0.5742745361328125, 0.5743206787109375, 0.5743236694335937, 0.5738577880859375, 0.5742110595703125, 0.5753764038085938, 0.5745797119140625, 0.57402880859375, 0.5725982666015625, 0.5732260131835938, 0.5737594604492188, 0.5739530029296875, 0.5731553344726562, 0.572927978515625, 0.57257470703125, 0.5744312133789062, 0.5755975952148438, 0.5727283325195313, 0.5721149291992188, 0.572199951171875, 0.5723617553710938, 0.572105712890625, 0.57270068359375, 0.5733294067382813, 0.5723873291015625, 0.57191015625, 0.573065185546875, 0.5727866821289063, 0.5724027099609375, 0.5726883544921875, 0.5723258666992187, 0.5720657958984375, 0.5731727294921874, 1.1836395263671875, 0.5721917724609376, 0.5728533325195313, 0.5732484741210937, 0.5725409545898438, 0.5732628784179687, 0.5741773071289062, 0.5730109252929687, 0.5731737670898438, 0.573043701171875, 0.5734686889648437, 0.5732505493164063, 0.5726914672851563, 0.5729924926757812, 0.5729525756835937, 0.5732260131835938, 0.574719970703125, 0.5727836303710937, 0.5730283813476562, 0.5724508056640625, 0.5733519287109375, 0.5728767700195313, 0.5725736694335938, 0.5743431396484375, 0.5745357055664062, 0.573507568359375, 0.572695556640625, 0.5729177856445312, 0.573022216796875, 0.5733980102539062, 0.5731030883789062, 0.5730037841796874, 0.572927978515625, 0.5738895263671875, 0.573137939453125, 0.57310107421875, 0.5718549194335938, 0.5721885986328125, 0.57208935546875, 0.5725255737304688, 0.5722398681640625, 0.5733836669921875, 0.5725736694335938, 0.57238525390625, 0.5722880249023438, 0.5720064086914063, 0.5721456909179687, 0.57385986328125, 0.5721773681640625, 0.5720176391601562, 0.5720484008789063, 0.5730570068359375, 0.5720934448242188, 0.5720852661132813, 0.5719961547851562, 0.5719992065429688, 0.5727928466796876, 0.5721221313476562, 0.5721630859375, 0.572600341796875, 0.5723125610351563, 0.5724631958007812, 0.5727794799804687, 1.1843287353515626, 0.572779541015625, 0.57261669921875, 0.5734041748046875, 0.5739274291992188, 0.57350146484375, 0.57328125, 0.5731553344726562, 0.5729392700195313, 0.5729403076171875, 0.5732833251953126, 0.57289013671875, 0.5743707885742187, 0.5724887084960938, 0.5720043334960937, 0.5718681640625, 0.5722941284179688, 0.5721036987304687, 0.5721763916015625, 0.57200537109375, 0.5717247924804687, 0.572310546875, 0.5729740600585937, 0.5724682006835937, 0.5719664916992188, 0.5723975830078125, 0.5722286376953125, 0.5723289794921875, 0.572221435546875, 0.5728389282226563, 0.5737000732421875, 0.5728737182617187, 0.5730037841796874, 0.572178466796875, 0.5720411376953125, 0.5717974853515625, 0.5721036987304687, 0.5720719604492187, 0.5719695434570312, 0.5730037841796874, 0.5722941284179688, 0.5718763427734375, 0.5725706176757812, 0.5727713012695312, 0.5752719116210937, 0.5729822998046875, 0.5730355224609375, 0.5741107177734375, 0.5727109375, 0.5726207885742187, 0.5727815551757812, 0.5729136352539063, 0.572896240234375, 0.572600341796875, 0.5730191650390625, 0.5724456787109375, 0.573222900390625, 0.57379736328125, 0.5722828979492187, 0.572052490234375, 0.5719766845703125, 0.5719429321289062, 0.5717380981445312, 1.1848990478515624, 0.5739724731445313, 0.5733632202148438, 0.5733693237304688, 0.5734880981445313, 0.5738117065429688, 0.5729403076171875, 0.5730672607421875, 0.5729863891601562, 0.5730140380859375, 0.57394482421875, 0.5726064453125, 0.5722265625, 0.5720391845703126, 0.5731246337890625, 0.5720433349609375, 0.57220703125, 0.5742510375976563, 0.5736365966796875, 0.572663818359375, 0.5723699340820313, 0.5724794921875, 0.5720340576171875, 0.5722705688476563, 0.5724047241210938, 0.57236376953125, 0.5725368041992187, 0.5725255737304688, 0.5728256225585937, 0.5726392211914062, 0.5721354370117188, 0.5721804809570312, 0.5721774291992188, 0.5723484497070312, 0.5721793823242187, 0.572990478515625, 0.5730048217773438, 0.5721558837890625, 0.572242919921875, 0.5721978759765625, 0.5722470703125, 0.5720596313476562, 0.5724047241210938, 0.5724436645507812, 0.5722009887695313, 0.5737861328125, 0.57619970703125, 0.5726668701171875, 0.5722962036132813, 0.5730099487304687, 0.5725439453125, 0.5726085205078125, 0.5728368530273438, 0.5743206176757812, 0.5726044311523437, 0.5726791381835937, 0.5723678588867187, 0.5721937866210938, 0.572822509765625, 0.5727109375, 0.5722070922851562, 0.5722654418945312, 0.5724968872070313, 1.1851029052734374, 0.5723607177734376, 0.57244775390625, 0.5727620849609375, 0.5731502075195313, 0.5729341430664062, 0.5733734130859375, 0.5732301025390625, 0.572663818359375, 0.5735577392578125, 0.5724036865234375, 0.5722737426757812, 0.5723555297851562, 0.5722726440429687, 0.5723494262695312, 0.5725409545898438, 0.5730109252929687, 0.57223681640625, 0.5723402099609375, 0.5722613525390625, 0.572516357421875, 0.5727579956054687, 0.5724467163085938, 0.572221435546875, 0.5731195068359375, 0.5724169921875, 0.5723781127929688, 0.5720811767578124, 0.5718343505859375, 0.5718425903320312, 0.57302734375, 0.5730027465820312, 0.5725501708984375, 0.5730252685546875, 0.57335498046875, 0.5724067993164063, 0.5720145874023438, 0.5724354858398437, 0.5753599853515625, 0.572169189453125, 0.5720125732421875, 0.5726105346679687, 0.5732147216796875, 0.57269970703125, 0.5723483276367187, 0.572010498046875, 0.5722890014648437, 0.5727958984375, 0.5723873901367188, 0.57226953125, 0.5728460693359375, 0.57364892578125, 0.5736980590820312, 0.5732618408203125, 0.5729075317382812, 0.5730396118164063, 0.5730027465820312, 0.5737277221679687, 0.5737984008789062, 0.574740478515625, 0.5733519287109375, 0.5725675659179688, 0.572537841796875, 1.184806884765625, 0.5725839233398438, 0.5726617431640625, 0.573106201171875, 0.5745018920898437, 0.5735618286132812, 0.573259765625, 0.5744578857421875, 0.5749258422851562, 0.5728265991210938, 0.5725081787109375, 0.5727150268554687, 0.5735505981445312, 0.573075439453125, 0.5722562255859375, 0.57212109375, 0.5720760498046875, 0.5723033447265625, 0.5736908569335938, 0.5737195434570312, 0.5725010375976562, 0.57371337890625, 0.5728123168945313, 0.5738147583007812, 0.571978759765625, 0.5718763427734375, 0.5724252319335937, 0.5723299560546875, 0.5721712646484375, 0.5726679077148438, 0.57254296875, 0.5723995971679687, 0.5719193725585937, 0.5722777709960938, 0.571779052734375, 0.5716900024414062, 0.5719306030273438, 0.5717493896484375, 0.571821044921875, 0.5734307861328125, 0.5732904663085937, 0.5728604125976563, 0.572748779296875, 0.57318603515625, 0.5727365112304688, 0.5732413330078125, 0.57249072265625, 0.5729822998046875, 0.573169677734375, 0.5721641235351562, 0.5722808227539062, 0.5722900390625, 0.57253173828125, 0.5722101440429688, 0.5723197631835938, 0.5721200561523437, 0.5727498168945313, 0.5729525756835937, 0.5725030517578125, 0.5723596801757812, 0.5721190185546875, 0.5728788452148438, 0.57232177734375, 1.18618115234375, 0.5729382934570313, 0.5724763793945312, 0.5728051147460937, 0.572410888671875, 0.5722828979492187, 0.5726187744140625, 0.57223681640625, 0.5720278930664062, 0.5722142944335937, 0.5735720825195313, 0.5724139404296875, 0.5722695922851563, 0.5720924072265625, 0.572410888671875, 0.5720698852539062, 0.5738741455078125, 0.5721026611328125, 0.5729136352539063, 0.5728265991210938, 0.5724375, 0.5722224731445312, 0.57202587890625, 0.573212646484375, 0.572484619140625, 0.5720780639648437, 0.57230859375, 0.57369384765625, 0.5728798828125, 0.572020751953125, 0.5721231079101563, 0.5717554931640625, 0.572156982421875, 0.5722654418945312, 0.5718435668945312, 0.5726340942382813, 0.573137939453125, 0.5722542114257813, 0.5726156616210938, 0.572095458984375, 0.572031982421875, 0.5723658447265625, 0.5724303588867188, 0.5722726440429687, 0.5725307006835938, 0.5731655883789063, 0.5721272583007813, 0.5720043334960937, 0.572042236328125, 0.572242919921875, 0.5721856079101563, 0.5724548950195313, 0.5724661865234375, 0.5730764770507812, 0.5732301025390625, 0.5725450439453125, 0.5724866333007812, 0.5721734008789062, 0.5719572143554688, 0.5721549072265625, 0.572000244140625, 0.5720064086914063, 0.5725757446289063, 1.1873709716796874, 0.5724487915039063, 0.5732085571289063, 0.572284912109375, 0.5727989501953125, 0.5728409423828125, 0.5729740600585937, 0.573497314453125, 0.572516357421875, 0.572705810546875, 0.5721886596679687, 0.5721958618164062, 0.5724036865234375, 0.5723381958007813, 0.57270068359375, 0.5734564208984375, 0.5733170776367188, 0.5739089965820312, 0.5724610595703125, 0.5728818969726562, 0.5730293579101563, 0.57270068359375, 0.572495849609375, 0.5729935302734375, 0.5724405517578125, 0.572822509765625, 0.5726105346679687, 0.572315673828125, 0.5717718505859375, 0.5719408569335938, 0.5722603759765625, 0.5722347412109375, 0.5724713134765625, 0.5740123901367188, 0.5722296142578125, 0.5719521484375, 0.572314697265625, 0.572317626953125, 0.5720811767578124, 0.5719705810546875, 0.5717545166015625, 0.5723504638671875, 0.5726515502929688, 0.5724016723632812, 0.5723504638671875, 0.572231689453125, 0.572205078125, 0.5721190185546875, 0.572031982421875, 0.5724467163085938, 0.573043701171875, 0.5730468139648438, 0.5726412353515625, 0.5725030517578125, 0.5725399169921875, 0.5724713134765625, 0.5720606689453125, 0.5723914184570312, 0.5728767700195313, 0.573179931640625, 0.5726597290039063, 0.572295166015625, 0.5719317016601563, 1.1857969970703126, 0.5727313842773437, 0.572368896484375, 0.572347412109375, 0.5732669677734376, 0.5725573120117188, 0.5721907348632812, 0.5723095092773437, 0.5727498168945313, 0.5725081787109375, 0.5725491333007813, 0.5726720581054687, 0.5733457641601563, 0.5733345336914063, 0.5721354370117188, 0.5723043823242188, 0.5719183349609375, 0.5717770385742188, 0.5724968872070313, 0.5726105346679687, 0.573053955078125, 0.5741567993164063, 0.5731102905273437, 0.5720698852539062, 0.5720145874023438, 0.57215185546875, 0.574278564453125, 0.5722521362304688, 0.5720453491210937, 0.5730723266601563, 0.5723924560546875, 0.5727354736328125, 0.572337158203125, 0.5723197631835938, 0.5723668212890625, 0.572221435546875, 0.5729075317382812, 0.5726556396484375, 0.5724456787109375, 0.5738014526367188, 0.5731779174804688, 0.572559326171875, 0.5726812133789062, 0.5728235473632812, 0.572885986328125, 0.5726618041992187, 0.5722745971679688, 0.5731082153320313, 0.5732781982421875, 0.5720135498046875, 0.5721507568359375, 0.57227880859375, 0.5728726806640625, 0.572346435546875, 0.5726781005859375, 0.5728286743164063, 0.5733345336914063, 0.5729228515625, 0.572737548828125, 0.5724548950195313, 0.5741793212890625, 0.5722265625, 0.572494873046875]",tokens/s,1.7194907034525255,,,main,False,False +4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-7b,google/recurrentgemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -41900,34 +41726,71 @@ Checkout your internet connection or see how to run the library in offline mode File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/google/recurrentgemma-7b/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948268-289bb5d42b45f4406907f61a;96ba6bd8-fd65-47cc-9087-9f12eebaae6f) + +Repository Not Found for url: https://huggingface.co/google/recurrentgemma-7b/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + raise EnvironmentError( +OSError: google/recurrentgemma-7b is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-7B,Qwen/Qwen1.5-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-1.3B,,cuda,0,42,,,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,MB,1554.096128,1957.167104,0.0,1310.72,1163.82464,s,10,1.286997444152832,0.1286997444152832,0.0010709154419692667,0.12870168304443358,0.13024390106201172,0.13026507034301757,0.13028200576782226,"[0.13028623962402344, 0.13023919677734375, 0.1282391662597656, 0.12805363464355468, 0.1269244155883789, 0.12729046630859375, 0.12865869140625, 0.1287446746826172, 0.1295413055419922, 0.1290196533203125]",tokens/s,1989.1259393177147,kWh,1.4998026454163673e-06,8.218217431655106e-07,6.2844740852399835e-06,8.60609847382186e-06,tokens/kWh,29746347.985524923,MB,1554.096128,1959.264256,0.0,1312.817152,1232.774656,s,10,75.16664355468751,7.516664355468751,0.019324999879587898,7.517852294921875,7.5454459960937506,7.548604345703125,7.551131025390625,"[7.5517626953125, 7.5180322265625, 7.52255224609375, 7.52390966796875, 7.544744140625, 7.51767236328125, 7.49461669921875, 7.49106689453125, 7.50185205078125, 7.5004345703125]",tokens/s,8.3813772999142,kWh,8.89009176429398e-05,4.872418928564946e-05,0.00036540068437377195,0.0005030257913023612,tokens/kWh,125242.08716393956,,s,629,76.20247959136968,0.12114861620249542,0.01533479707935131,0.1192816619873047,0.12045271148681641,0.12072119903564453,0.24720068908691412,"[0.12236902618408203, 0.12192870330810547, 0.12110336303710938, 0.12021862030029297, 0.12056371307373047, 0.11989708709716797, 0.11929497528076172, 0.11829862213134766, 0.11859661102294922, 0.11861504364013672, 0.11821469116210938, 0.11968099212646484, 0.11959193420410157, 0.12045926666259765, 0.12021043395996094, 0.1199452133178711, 0.11970047760009765, 0.12003225708007813, 0.120163330078125, 0.11992678070068359, 0.11977011108398437, 0.11847372436523437, 0.11856588745117187, 0.11883724975585938, 0.11842662048339844, 0.11851676940917968, 0.11948745727539062, 0.11911475372314453, 0.119552001953125, 0.1215068130493164, 0.120257568359375, 0.1204623031616211, 0.12012236785888672, 0.12004659271240234, 0.12008038330078125, 0.12001689910888672, 0.11995954895019531, 0.12004761505126953, 0.12005683135986328, 0.12010189056396485, 0.12003635406494141, 0.11968307495117188, 0.12004863739013671, 0.12036300659179687, 0.11988992309570312, 0.1200558090209961, 0.1202534408569336, 0.12022169494628906, 0.12032921600341796, 0.12026265716552734, 0.12077056121826171, 0.12018585968017578, 0.11901235198974609, 0.1193861083984375, 0.11910348510742187, 0.11925606536865234, 0.11975270080566407, 0.12020941162109375, 0.11999846649169922, 0.12033843231201172, 0.11914854431152344, 0.12003942108154297, 0.2506158142089844, 0.12027391815185547, 0.11959091186523438, 0.11991551971435546, 0.1192816619873047, 0.11801292419433594, 0.11855052947998047, 0.11803955078125, 0.11798016357421875, 0.11803241729736329, 0.11873174285888671, 0.12019200134277344, 0.11996057891845703, 0.11952947235107422, 0.11857612609863281, 0.11973939514160156, 0.11993702697753907, 0.11889049530029297, 0.11839385223388672, 0.11943730926513672, 0.11985203552246093, 0.11852082824707032, 0.11822898864746094, 0.11862739562988281, 0.11842758178710938, 0.11852185821533204, 0.1185054702758789, 0.11835596466064453, 0.11835699462890625, 0.11841331481933594, 0.11834674835205078, 0.11860070037841797, 0.12062003326416015, 0.11992473602294922, 0.12043059539794922, 0.12157746887207031, 0.12022579193115235, 0.11964927673339844, 0.12050534057617188, 0.12049407958984375, 0.12015615844726563, 0.11910553741455078, 0.12046438598632812, 0.1204510726928711, 0.12023603057861328, 0.11975885009765624, 0.12176998138427735, 0.12023705291748046, 0.12054937744140624, 0.11995750427246094, 0.12132864379882813, 0.11925917053222657, 0.1186283187866211, 0.11835699462890625, 0.11851776123046875, 0.11839794921875, 0.11879730987548828, 0.11951107025146485, 0.11866006469726563, 0.11900109100341796, 0.11836723327636718, 0.11853414154052734, 0.11843583679199218, 0.24882893371582032, 0.11982233428955077, 0.11939225769042969, 0.12049919891357422, 0.12002508544921875, 0.1198919677734375, 0.12023910522460937, 0.11994217681884765, 0.11870614624023437, 0.11836006164550782, 0.11821260833740234, 0.11851570892333985, 0.11971686553955078, 0.12000460815429688, 0.11984076690673828, 0.11931136322021485, 0.11905126190185547, 0.11986329650878906, 0.11975373077392579, 0.11980595397949219, 0.1196267547607422, 0.11956735992431641, 0.12024422454833984, 0.12106342315673828, 0.11977728271484375, 0.1197127685546875, 0.11865599822998046, 0.11831404876708984, 0.11899692535400391, 0.11852082824707032, 0.11829145812988281, 0.11852595520019531, 0.11846348571777343, 0.11836518096923829, 0.11844812774658203, 0.11833757019042969, 0.11830780792236328, 0.11964620971679688, 0.11897650909423828, 0.11840921783447265, 0.11968511962890625, 0.11841024017333984, 0.11969535827636718, 0.11970559692382812, 0.12029644775390624, 0.12001078033447266, 0.11961955261230468, 0.12051967620849609, 0.11861196899414063, 0.11842150115966797, 0.11837133026123046, 0.12028313446044922, 0.11990322875976563, 0.1188751983642578, 0.12033939361572266, 0.11918643188476563, 0.1187583999633789, 0.12003942108154297, 0.11934515380859376, 0.12007730865478515, 0.12025138854980469, 0.12019916534423829, 0.12015615844726563, 0.24848793029785157, 0.11997798156738282, 0.11991763305664062, 0.12037625885009766, 0.12008345794677734, 0.11944652557373046, 0.12011827087402344, 0.12008448028564453, 0.11987149047851563, 0.12019404602050782, 0.12016851043701172, 0.11977823638916016, 0.11987865447998047, 0.11973426818847656, 0.12008038330078125, 0.11942092895507812, 0.11997491455078126, 0.11880242919921875, 0.11979673767089843, 0.1197127685546875, 0.11939532470703125, 0.11976703643798828, 0.11997494506835937, 0.12019094085693359, 0.12064665222167968, 0.12001996612548828, 0.12060364532470703, 0.12040294647216797, 0.11997388458251954, 0.11948646545410156, 0.11998822021484375, 0.11993907165527344, 0.11955097961425781, 0.11953561401367188, 0.11927756500244141, 0.11897036743164062, 0.11999334716796875, 0.11905126190185547, 0.11846553802490234, 0.11841843414306641, 0.11854847717285157, 0.11835596466064453, 0.11830995178222656, 0.11828428649902344, 0.1203987808227539, 0.11818905639648437, 0.1193707504272461, 0.11814604949951171, 0.11847782135009766, 0.1183078384399414, 0.11799350738525391, 0.11804771423339844, 0.11817372894287109, 0.11848700714111328, 0.11852082824707032, 0.11849932861328125, 0.12020735931396484, 0.120089599609375, 0.12004761505126953, 0.12012134552001953, 0.11869286346435547, 0.11855974578857421, 0.11863142395019531, 0.24572006225585938, 0.1183477783203125, 0.11846041870117187, 0.11811737823486328, 0.1181470718383789, 0.11830067443847657, 0.11928985595703125, 0.11911065673828125, 0.1185771484375, 0.11835187530517578, 0.12018994903564453, 0.12008550262451172, 0.11990534210205078, 0.1200219497680664, 0.12004659271240234, 0.11994931030273437, 0.12035686492919923, 0.12041522979736329, 0.12053298950195312, 0.12031999969482422, 0.12058419036865234, 0.12013158416748047, 0.12075929260253906, 0.11833036804199219, 0.1206794204711914, 0.12085862731933594, 0.12161433410644532, 0.11919667053222656, 0.1187041244506836, 0.11844300842285156, 0.11833650970458984, 0.11833856201171875, 0.1186355209350586, 0.11820236968994141, 0.12034559631347656, 0.12019712066650391, 0.12016947174072265, 0.11850035095214843, 0.12005375671386719, 0.12051763153076171, 0.11887615966796874, 0.11807539367675782, 0.11823411560058594, 0.11905741119384766, 0.12032307434082032, 0.1189775390625, 0.12029132843017579, 0.12084019470214843, 0.12052992248535156, 0.1207357406616211, 0.12054220581054688, 0.12078284454345703, 0.12055244445800781, 0.12059852600097656, 0.12064358520507812, 0.12082486724853515, 0.1207326431274414, 0.12082278442382813, 0.12053196716308594, 0.12073065948486328, 0.12090262603759766, 0.12064870452880859, 0.12058112335205078, 0.24601292419433593, 0.11817881774902343, 0.11808255767822265, 0.11800780487060547, 0.118255615234375, 0.11830067443847657, 0.11829145812988281, 0.11941478729248046, 0.12005375671386719, 0.1198202896118164, 0.12005785369873047, 0.11806412506103516, 0.11867750549316407, 0.11829145812988281, 0.11833548736572265, 0.11830989074707031, 0.11806822204589844, 0.11833241271972657, 0.11837747192382812, 0.11845120239257813, 0.11834572601318359, 0.11841228485107422, 0.11827609252929687, 0.11805286407470703, 0.11896729278564454, 0.11836313629150391, 0.11981619262695313, 0.12392044830322266, 0.1205656967163086, 0.12015821075439453, 0.11990016174316406, 0.12003533172607422, 0.11934003448486329, 0.1199974365234375, 0.1193154525756836, 0.11959500885009766, 0.11863040161132812, 0.1188106231689453, 0.12067327880859376, 0.11914444732666016, 0.11830477142333984, 0.11853721618652344, 0.1185269775390625, 0.11941990661621094, 0.11858329772949219, 0.1186693115234375, 0.12036608123779297, 0.12004557037353515, 0.1200558090209961, 0.12050841522216797, 0.12022681427001954, 0.12039065551757812, 0.12011212921142578, 0.12010495758056641, 0.12036608123779297, 0.1201817626953125, 0.12043673706054688, 0.12033843231201172, 0.12007526397705078, 0.12000972747802735, 0.12006505584716796, 0.11996975708007812, 0.11998822021484375, 0.2494791717529297, 0.12030156707763671, 0.11901952362060547, 0.11824127960205078, 0.1192816619873047, 0.11887308502197266, 0.11826175689697266, 0.11869388580322265, 0.11826687622070313, 0.11836211395263672, 0.11810918426513672, 0.11887104034423829, 0.11972198486328126, 0.11960012817382812, 0.1192468490600586, 0.118002685546875, 0.11875942230224609, 0.11941478729248046, 0.11890585327148437, 0.11843382263183594, 0.1191526107788086, 0.11959500885009766, 0.11970668792724609, 0.11957036590576171, 0.11933695983886719, 0.11909327697753906, 0.11842966461181641, 0.11905228424072266, 0.11911888122558593, 0.11894780731201172, 0.11848089599609375, 0.1181890869140625, 0.11840406036376953, 0.1190297622680664, 0.11982848358154297, 0.11972096252441407, 0.11864371490478516, 0.11924582672119141, 0.11929804992675781, 0.11825459289550781, 0.11951718139648437, 0.11916287994384765, 0.11947417449951171, 0.11800064086914062, 0.11845017242431641, 0.11818089294433594, 0.11930210876464843, 0.1199810562133789, 0.11853517150878906, 0.11870310211181641, 0.11945164489746093, 0.11844096374511719, 0.1184194564819336, 0.118508544921875, 0.11926220703125, 0.12017356872558593, 0.11892838287353516, 0.1193021469116211, 0.11871849822998047, 0.11844911956787109, 0.11832115173339844, 0.11867545318603516, 0.11844403076171875, 0.24766259765625, 0.11916802978515625, 0.12123133087158203, 0.12028313446044922, 0.11920588684082031, 0.11884953308105468, 0.11862528228759765, 0.11994931030273437, 0.11886182403564453, 0.11885363006591797, 0.12013670349121094, 0.11913011169433593, 0.11992473602294922, 0.11888435363769531, 0.11946598052978516, 0.11882707214355469, 0.1207070083618164, 0.11865702056884765, 0.11839590454101563, 0.11839078521728516, 0.11947724914550781, 0.11919769287109375, 0.11886080169677735, 0.11848601531982422, 0.11876966094970703, 0.11810099029541016, 0.11880960083007812, 0.11817369842529298, 0.11927142333984375, 0.11965235137939453, 0.118761474609375, 0.11863654327392578, 0.11901439666748047, 0.11827814483642578, 0.11898368072509766, 0.11854233551025391, 0.11844915008544922, 0.11848397064208985, 0.11839078521728516, 0.11844608306884766, 0.11859455871582031, 0.11865190124511718, 0.11820441436767579, 0.11907686614990234, 0.11970867156982422, 0.11921715545654298, 0.11824230194091796, 0.11921817779541016, 0.11916390228271484, 0.11929804992675781, 0.11828326416015625, 0.11838361358642578, 0.11848499298095704, 0.11860991668701172, 0.11808153533935548, 0.11826588439941406, 0.11823715209960937, 0.11888639831542969, 0.11884031677246094, 0.11812454223632812, 0.11833446502685546, 0.11847577667236328, 0.11946905517578126, 0.24866712951660155, 0.11849318695068359, 0.11980188751220704, 0.11915773010253906, 0.11846041870117187, 0.1203589096069336, 0.1205381088256836, 0.11978342437744141, 0.11976601409912109, 0.11947417449951171, 0.11962163543701172, 0.11930316925048828, 0.11854541015625, 0.11897344207763672, 0.11885158538818359, 0.11875020599365234, 0.1181839370727539, 0.11931443023681641, 0.11823616027832032, 0.11900313568115234, 0.11816345977783203, 0.11854847717285157, 0.11989708709716797, 0.11902668762207032, 0.11941683197021484, 0.11941580963134765, 0.11852185821533204, 0.11982540893554687, 0.11974553680419922, 0.11874918365478515, 0.11918950653076171, 0.11970355224609375, 0.11946189117431641, 0.11857100677490234, 0.11914035034179687, 0.11940966033935548, 0.1185689926147461, 0.11831394958496094, 0.11820441436767579, 0.11945574188232422, 0.11997388458251954, 0.1203240966796875, 0.11903180694580077, 0.11818495941162109, 0.11810201263427735, 0.11788288116455078, 0.11807539367675782, 0.11814604949951171, 0.11880038452148438, 0.11919872283935547, 0.11881983947753906, 0.11975987243652343, 0.11975373077392579, 0.11953568267822266, 0.12003424072265625, 0.11991961669921875, 0.12044185638427735, 0.11880550384521485, 0.11889356994628907, 0.11842253112792969, 0.11843379211425781, 0.11815936279296875, 0.11811634826660156, 0.24846543884277345, 0.11927139282226562, 0.11798732757568359, 0.11792998504638671, 0.11840512084960937, 0.11863859558105469, 0.11815321350097656, 0.11805184173583984, 0.11871437072753906, 0.11836109161376954, 0.1180794906616211, 0.11815424346923828, 0.1181317138671875, 0.11853004455566406, 0.11842150115966797, 0.11837542724609375, 0.11854847717285157, 0.11832217407226563, 0.11862220764160156, 0.11864985656738282, 0.11943526458740235, 0.11942912292480469, 0.11993395233154297, 0.12021145629882812, 0.12013568115234376, 0.12069990539550782, 0.12175667572021484, 0.12003942108154297, 0.11987763214111329, 0.11907788848876953, 0.1194076156616211, 0.11910553741455078, 0.11873177337646484, 0.11934413146972657, 0.11961958312988281, 0.11883519744873047, 0.11877273559570313, 0.11876761627197266, 0.12034662628173828, 0.12008140563964843, 0.11964415740966797, 0.12007014465332032, 0.12065280151367187, 0.11880754852294922, 0.11892736053466797, 0.11855974578857421, 0.11855052947998047, 0.11903590393066406, 0.11845938873291016, 0.11849523162841796, 0.1184716796875, 0.11835289764404297, 0.11853619384765625, 0.11834368133544922, 0.11937382507324219, 0.11912806701660156, 0.11848806762695313, 0.11961753845214844, 0.1190113296508789, 0.11965132904052735, 0.11860281372070312, 0.11934611511230468, 0.11991145324707031]",tokens/s,8.254324575433342,,,main,False,False +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-4B,Qwen/Qwen1.5-4B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,3193.102336,5128.060928,0.0,4481.613824,4276.256768,s,10,3.2413734130859373,0.32413734130859373,0.0016825840816240875,0.3241157684326172,0.32623468627929686,0.3264099456787109,0.32655015319824215,"[0.326585205078125, 0.3253639221191406, 0.3222522888183594, 0.32284228515625, 0.32339013671875, 0.32129388427734373, 0.32326702880859376, 0.3248414001464844, 0.32534152221679685, 0.3261957397460937]",tokens/s,789.7886709580806,kWh,3.8053463575326738e-06,2.0845240635480878e-06,1.689038677618604e-05,2.27802571972668e-05,tokens/kWh,11237801.126789523,MB,3193.102336,5128.060928,0.0,4481.613824,4465.661952,s,10,189.078173828125,18.9078173828125,0.012273201694566093,18.9097021484375,18.920707812499998,18.9233919921875,18.9255393359375,"[18.91315625, 18.920111328125, 18.9024375, 18.901080078125, 18.88138671875, 18.897064453125, 18.91123828125, 18.908166015625, 18.926076171875, 18.91745703125]",tokens/s,3.331955176236681,kWh,0.00022324078258437416,0.00012235523933478362,0.0009709997090908196,0.0013165957310099774,tokens/kWh,47850.67922988926,,s,629,191.68752508544924,0.3047496424251975,0.038502073286161766,0.300015625,0.3008729064941406,0.3014152465820313,0.6232092919921874,"[0.3012270202636719, 0.30114816284179685, 0.3007774658203125, 0.30110003662109375, 0.29941351318359377, 0.29971661376953124, 0.2996531066894531, 0.2997452697753906, 0.30033203125, 0.3001241455078125, 0.30014566040039065, 0.3000565795898438, 0.3007344665527344, 0.30101809692382814, 0.2998548583984375, 0.2999808044433594, 0.3005767822265625, 0.29991937255859374, 0.3002378234863281, 0.3010672607421875, 0.30078155517578126, 0.30025625610351564, 0.29994802856445313, 0.3000330505371094, 0.3002951354980469, 0.30040884399414064, 0.30003506469726565, 0.30066790771484375, 0.30030438232421874, 0.30015179443359374, 0.30028594970703126, 0.3002818603515625, 0.30056243896484375, 0.3007068786621094, 0.3003309326171875, 0.29966232299804685, 0.2997370910644531, 0.2999521179199219, 0.29981594848632814, 0.2995947570800781, 0.29999102783203124, 0.29974835205078126, 0.299620361328125, 0.2994493408203125, 0.2994759826660156, 0.29976165771484375, 0.30030642700195315, 0.3000166320800781, 0.2999060363769531, 0.30026956176757813, 0.2995128173828125, 0.29971661376953124, 0.2999552001953125, 0.3005082092285156, 0.30011181640625, 0.2995394592285156, 0.3000186767578125, 0.30043032836914063, 0.29998388671875, 0.29997259521484376, 0.299610107421875, 0.29887283325195313, 0.6254059448242187, 0.3006320495605469, 0.3013908386230469, 0.30085733032226564, 0.3013273620605469, 0.29998489379882814, 0.2996244506835937, 0.3003135986328125, 0.299826171875, 0.2998814697265625, 0.300400634765625, 0.29994085693359374, 0.3004631042480469, 0.3001395263671875, 0.2999992370605469, 0.299926513671875, 0.300759033203125, 0.300590087890625, 0.29988455200195313, 0.29991729736328127, 0.30021221923828123, 0.30040472412109376, 0.3002593383789062, 0.30088909912109374, 0.3011358642578125, 0.2998763427734375, 0.30023577880859376, 0.30020709228515624, 0.3008174133300781, 0.3003627624511719, 0.300759033203125, 0.3007027587890625, 0.30042620849609375, 0.30063821411132813, 0.2999624328613281, 0.29996844482421875, 0.30086349487304687, 0.30146969604492185, 0.29992141723632815, 0.3000361022949219, 0.3000586242675781, 0.29992755126953125, 0.2999654541015625, 0.2998486938476562, 0.30020095825195314, 0.3000299377441406, 0.30309478759765623, 0.3002388610839844, 0.2999859313964844, 0.3003576354980469, 0.30067608642578125, 0.3001446533203125, 0.30003302001953125, 0.3000166320800781, 0.2999244689941406, 0.3001692199707031, 0.29990194702148437, 0.3005317077636719, 0.30013031005859375, 0.2998405151367188, 0.29998797607421873, 0.2999336853027344, 0.30006988525390627, 0.622824462890625, 0.30008013916015625, 0.29997259521484376, 0.2997729187011719, 0.29949029541015626, 0.300337158203125, 0.30040985107421875, 0.30018765258789065, 0.2999029846191406, 0.29995724487304687, 0.30025112915039065, 0.30034637451171875, 0.29992959594726565, 0.30029824829101565, 0.3003873291015625, 0.2998978576660156, 0.30032589721679687, 0.3002255249023438, 0.3004590454101562, 0.3001773681640625, 0.2999449462890625, 0.2996777038574219, 0.2997125244140625, 0.3017687072753906, 0.2998691711425781, 0.29983026123046874, 0.2998783874511719, 0.30037503051757813, 0.3002183532714844, 0.29920254516601563, 0.29975244140625, 0.2997073974609375, 0.29997671508789064, 0.2997862548828125, 0.30004327392578123, 0.2995845031738281, 0.29983743286132813, 0.29989376831054687, 0.3005511779785156, 0.3004989318847656, 0.3004620666503906, 0.2998620300292969, 0.2996592712402344, 0.2998609924316406, 0.29997567749023435, 0.2994964599609375, 0.3000780944824219, 0.30188134765625, 0.29991015625, 0.30026956176757813, 0.30005453491210937, 0.29941964721679687, 0.3000770568847656, 0.2994923400878906, 0.29899981689453126, 0.299219970703125, 0.29973809814453123, 0.29967666625976563, 0.30005966186523436, 0.3000115661621094, 0.3005040283203125, 0.2999951477050781, 0.30062490844726564, 0.6233589477539062, 0.29990194702148437, 0.3002234802246094, 0.2998190002441406, 0.30008734130859377, 0.30004833984375, 0.2998200378417969, 0.3000770568847656, 0.300015625, 0.3000606689453125, 0.29941146850585937, 0.29921484375, 0.299578369140625, 0.2996756591796875, 0.2996449279785156, 0.30001971435546876, 0.3000995788574219, 0.29999002075195313, 0.3003607177734375, 0.30082763671875, 0.3000340576171875, 0.300611572265625, 0.30002584838867186, 0.299694091796875, 0.29959066772460935, 0.30004019165039064, 0.2999818115234375, 0.30008218383789065, 0.29999002075195313, 0.3006935119628906, 0.2997913513183594, 0.29910015869140627, 0.2994124755859375, 0.29980160522460936, 0.2999715881347656, 0.3000504455566406, 0.3000074157714844, 0.2999378051757812, 0.2999920654296875, 0.3000719299316406, 0.2999992370605469, 0.30074981689453123, 0.30103448486328127, 0.2998681640625, 0.3038136291503906, 0.3005091857910156, 0.3002746887207031, 0.2998763427734375, 0.299767822265625, 0.29981594848632814, 0.2999541625976562, 0.29982720947265623, 0.299641845703125, 0.29993267822265623, 0.29993472290039064, 0.2999715881347656, 0.2998343811035156, 0.29893017578125, 0.29962136840820314, 0.30002072143554687, 0.2994237365722656, 0.299831298828125, 0.30021630859375, 0.623921142578125, 0.3000299377441406, 0.30005966186523436, 0.299926513671875, 0.299947021484375, 0.300115966796875, 0.29993572998046875, 0.30002072143554687, 0.30004531860351563, 0.29974118041992187, 0.30062188720703126, 0.29995513916015626, 0.29942477416992186, 0.2993663940429688, 0.29983026123046874, 0.2999603271484375, 0.2999285888671875, 0.3015209045410156, 0.29998797607421873, 0.30004327392578123, 0.30011700439453126, 0.2999449462890625, 0.30022860717773436, 0.3003965759277344, 0.30081021118164064, 0.30038836669921876, 0.30042520141601564, 0.30013336181640626, 0.3006033935546875, 0.29989376831054687, 0.29989273071289063, 0.30014874267578123, 0.3004436340332031, 0.299747314453125, 0.2998476867675781, 0.3000094604492187, 0.29924453735351564, 0.29881036376953124, 0.29879910278320315, 0.2987581481933594, 0.29875506591796874, 0.29884518432617185, 0.298787841796875, 0.2988482666015625, 0.29977191162109373, 0.3000657958984375, 0.2989967346191406, 0.2990592041015625, 0.2991626281738281, 0.2990673828125, 0.29893017578125, 0.2991349792480469, 0.299323486328125, 0.29853277587890625, 0.29891278076171873, 0.29906942749023435, 0.2987386779785156, 0.3028009033203125, 0.29910748291015626, 0.2988552551269531, 0.2989045715332031, 0.299146240234375, 0.29900595092773435, 0.621075439453125, 0.2991349792480469, 0.2998179931640625, 0.29896807861328123, 0.2991811828613281, 0.2986914672851563, 0.29862911987304686, 0.29889239501953124, 0.2989116516113281, 0.2987960205078125, 0.29937152099609377, 0.29994189453125, 0.29974630737304686, 0.30000537109375, 0.300537841796875, 0.29991015625, 0.30004837036132814, 0.300326904296875, 0.3002030029296875, 0.3000575866699219, 0.3000770568847656, 0.3004405822753906, 0.2999531555175781, 0.30005148315429686, 0.3000484008789063, 0.3000626525878906, 0.30036172485351564, 0.3001272277832031, 0.30000640869140627, 0.2996879272460938, 0.29982925415039063, 0.29986611938476565, 0.3000391540527344, 0.2998128662109375, 0.29970330810546875, 0.30041189575195315, 0.3001200561523438, 0.29997772216796875, 0.3035576171875, 0.30046923828125, 0.29996749877929685, 0.3007201232910156, 0.3004538879394531, 0.29997671508789064, 0.30013543701171874, 0.30009344482421874, 0.3003351135253906, 0.3000340576171875, 0.300626953125, 0.29982925415039063, 0.29992959594726565, 0.299978759765625, 0.3000924072265625, 0.30002484130859375, 0.29995724487304687, 0.2998896789550781, 0.299720703125, 0.2996705322265625, 0.2998804626464844, 0.2997698669433594, 0.3005307006835938, 0.29985382080078127, 0.30008731079101564, 0.6239016723632812, 0.3004989318847656, 0.3000094604492187, 0.3003781127929688, 0.3024650268554688, 0.30008941650390625, 0.30021728515625, 0.29997671508789064, 0.3000985717773437, 0.2997452697753906, 0.3001559143066406, 0.299789306640625, 0.299578369140625, 0.3000637512207031, 0.3000022888183594, 0.30041189575195315, 0.300179443359375, 0.30062490844726564, 0.3001978759765625, 0.29980978393554686, 0.30084915161132814, 0.3001692199707031, 0.30007400512695315, 0.3024322204589844, 0.3004334106445313, 0.29990194702148437, 0.30002584838867186, 0.2999787902832031, 0.3001108093261719, 0.3005962219238281, 0.3003105163574219, 0.30027059936523437, 0.299931640625, 0.2999029846191406, 0.3000309753417969, 0.30007601928710936, 0.2999808044433594, 0.299936767578125, 0.3001610107421875, 0.29992755126953125, 0.29989376831054687, 0.29997567749023435, 0.3000391540527344, 0.3000443115234375, 0.3002992248535156, 0.2999715881347656, 0.2998241577148438, 0.2998548278808594, 0.3000862731933594, 0.300653564453125, 0.3015086059570313, 0.29992242431640626, 0.299863037109375, 0.29971966552734375, 0.29996954345703125, 0.2999613342285156, 0.3001968688964844, 0.2997841796875, 0.2999797668457031, 0.29949029541015626, 0.2995916748046875, 0.29981695556640625, 0.30072625732421876, 0.6255585327148437, 0.30017230224609376, 0.299831298828125, 0.3000555419921875, 0.30022042846679686, 0.30029925537109375, 0.30140109252929687, 0.30094949340820315, 0.2998886413574219, 0.29979647827148437, 0.30036376953125, 0.29990194702148437, 0.30001458740234377, 0.300010498046875, 0.29990707397460936, 0.29992959594726565, 0.3013775329589844, 0.2998958129882813, 0.3009157104492188, 0.3004344177246094, 0.2997698974609375, 0.299400146484375, 0.3000780944824219, 0.300410888671875, 0.3009054870605469, 0.3005409240722656, 0.301384765625, 0.30065350341796876, 0.30062591552734375, 0.30096075439453124, 0.3004375, 0.30160894775390623, 0.3008819274902344, 0.3004241943359375, 0.29964389038085937, 0.2996091003417969, 0.2996643981933594, 0.29964901733398436, 0.2998384704589844, 0.29929779052734373, 0.29952517700195314, 0.30001556396484375, 0.29967666625976563, 0.29992242431640626, 0.2999613342285156, 0.299926513671875, 0.2998753356933594, 0.2995947570800781, 0.2999183349609375, 0.2996172790527344, 0.29993267822265623, 0.30100991821289064, 0.30017843627929686, 0.30001254272460937, 0.29992141723632815, 0.29997055053710936, 0.300147705078125, 0.3002347412109375, 0.29967462158203123, 0.299504638671875, 0.299514892578125, 0.29878680419921877, 0.2995189819335938, 0.6255062866210938, 0.30063821411132813, 0.30005966186523436, 0.30045697021484374, 0.3000965270996094, 0.2999285888671875, 0.300015625, 0.300263427734375, 0.299894775390625, 0.29981695556640625, 0.30063821411132813, 0.300000244140625, 0.29996954345703125, 0.29998797607421873, 0.30009344482421874, 0.2999808044433594, 0.3002378234863281, 0.30191104125976564, 0.3011993713378906, 0.30066586303710935, 0.3013355407714844, 0.30207794189453124, 0.302529541015625, 0.30110720825195314, 0.3007958984375, 0.3010785217285156, 0.30087783813476565, 0.2998056945800781, 0.30067608642578125, 0.3011614685058594, 0.3007979431152344, 0.30112152099609374, 0.3007201232910156, 0.3007068176269531, 0.30179122924804686, 0.3001978759765625, 0.3004272766113281, 0.2999080810546875, 0.3004764099121094, 0.30043954467773437, 0.3001835632324219, 0.3006484375, 0.3004712829589844, 0.3014246826171875, 0.3003248291015625, 0.30087884521484376, 0.3002808227539063, 0.299840576171875, 0.3000575256347656, 0.30002383422851564, 0.2996745910644531, 0.29950567626953123, 0.2997145690917969, 0.29997567749023435, 0.30001458740234377, 0.30037503051757813, 0.30008114624023435, 0.2989066162109375, 0.30013543701171874, 0.2999111633300781, 0.29975347900390625, 0.2997350463867188, 0.30005453491210937, 0.6268078002929688, 0.30009548950195314, 0.29986407470703125, 0.30065869140625, 0.3011307373046875, 0.30074368286132813, 0.3008604125976562, 0.30035250854492185, 0.30087167358398437, 0.29988760375976564, 0.30013644409179685, 0.3006300048828125, 0.3005399169921875, 0.30181991577148437, 0.30090756225585935, 0.29990191650390624, 0.30007601928710936, 0.30002688598632815, 0.2999869384765625, 0.3001077880859375, 0.30047845458984374, 0.29997567749023435, 0.3000227966308594, 0.3018362731933594, 0.30386279296875, 0.30291455078125, 0.303236083984375, 0.3023329162597656, 0.30000436401367186, 0.2989014892578125, 0.2988851318359375, 0.29931622314453127, 0.2989588623046875, 0.29878271484375, 0.2992056274414063, 0.30051431274414064, 0.3006761169433594, 0.29950460815429686, 0.29902847290039064, 0.2990940246582031, 0.29902545166015626, 0.29914212036132815, 0.29988455200195313, 0.299652099609375, 0.30047232055664064, 0.2996326293945312, 0.30089727783203124, 0.29991729736328127, 0.3000965270996094, 0.30000234985351565, 0.29993365478515627, 0.3000115051269531, 0.2999603881835938, 0.29999508666992186, 0.29998284912109374, 0.2999869384765625, 0.30106521606445313, 0.3007928466796875, 0.300732421875, 0.29975653076171876, 0.29992755126953125, 0.30012313842773436, 0.29981491088867185]",tokens/s,3.281382029005844,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-4.5B,facebook/xglm-4.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -41947,22 +41810,18 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation + cls._check_and_enable_flash_attn_2( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 + raise ValueError( +ValueError: XGLMForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmp8cm3__3l/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,-,-,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-3b-4e1t,stabilityai/stablelm-3b-4e1t,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2112.14336,2911.371264,0.0,2264.92416,2140.72832,s,10,2.4878771514892577,0.24878771514892578,0.001481785323819343,0.24867384338378906,0.25056690216064453,0.25108961105346683,0.2515077781677246,"[0.2516123199462891, 0.25045074462890626, 0.24760211181640626, 0.24728652954101563, 0.24780889892578126, 0.24664930725097656, 0.2480397186279297, 0.24930796813964845, 0.24954534912109375, 0.24957420349121093]",tokens/s,1028.9897145715452,kWh,2.9131745419851165e-06,1.5962883600656e-06,1.3288858869561026e-05,1.7798321771611744e-05,tokens/kWh,14383378.572710099,MB,2112.14336,2911.371264,0.0,2264.92416,2246.907904,s,10,146.0569638671875,14.605696386718751,0.006079082022590375,14.60555517578125,14.610718359375001,14.61447392578125,14.617478378906249,"[14.5972685546875, 14.605400390625, 14.6057099609375, 14.6049326171875, 14.5980126953125, 14.599310546875, 14.6182294921875, 14.609376953125, 14.6088388671875, 14.6098837890625]",tokens/s,4.313385567653395,kWh,0.00017247067014820533,9.452784657802511e-05,0.0007735646039460372,0.0010405631206722677,tokens/kWh,60544.14071421071,,s,629,148.0586790771484,0.23538740711788306,0.029533502655254593,0.23172300720214845,0.23236076049804688,0.2326812683105469,0.4793023583984375,"[0.23325080871582032, 0.23149772644042968, 0.23179673767089845, 0.2320568389892578, 0.2313912353515625, 0.23193907165527344, 0.23138099670410156, 0.23167181396484374, 0.2314608612060547, 0.2322554931640625, 0.23149363708496093, 0.23134413146972657, 0.23120999145507812, 0.23181106567382812, 0.23132569885253906, 0.23138099670410156, 0.2312243194580078, 0.23141888427734375, 0.23158682250976562, 0.23283609008789063, 0.2315028533935547, 0.23156224060058594, 0.2313502655029297, 0.23152435302734375, 0.23198617553710937, 0.23152435302734375, 0.23150592041015625, 0.23154483032226564, 0.23148646545410156, 0.2315581512451172, 0.23163084411621093, 0.23152537536621093, 0.23172300720214845, 0.23159397888183594, 0.23167079162597656, 0.23191448974609374, 0.2319974365234375, 0.2318376922607422, 0.23134413146972657, 0.23214079284667968, 0.23153254699707032, 0.231510009765625, 0.23141171264648439, 0.23148544311523436, 0.23137586975097657, 0.23179263305664063, 0.23232511901855468, 0.23154483032226564, 0.23182234191894532, 0.23154483032226564, 0.23155506896972655, 0.23143218994140624, 0.23180184936523437, 0.23193702697753907, 0.2313113555908203, 0.23155711364746093, 0.23150489807128907, 0.23152333068847655, 0.231404541015625, 0.23146803283691406, 0.2314721221923828, 0.23182131958007812, 0.48205722045898436, 0.23162675476074218, 0.23151513671875, 0.23147418212890625, 0.23139430236816405, 0.23154176330566406, 0.2315345916748047, 0.231478271484375, 0.2315161590576172, 0.2314055633544922, 0.23177113342285155, 0.23148748779296874, 0.23155506896972655, 0.23154995727539063, 0.23152435302734375, 0.23150796508789062, 0.23173222351074219, 0.23166157531738282, 0.23167897033691406, 0.23310336303710938, 0.23195033264160156, 0.23181925964355468, 0.23237017822265624, 0.2315888671875, 0.23168307495117188, 0.23146905517578126, 0.23271218872070312, 0.23225343322753905, 0.2316738586425781, 0.23232205200195313, 0.23157145690917968, 0.23149465942382813, 0.23150489807128907, 0.23166873168945312, 0.23170457458496094, 0.23163084411621093, 0.23201075744628907, 0.23196978759765624, 0.23187762451171876, 0.23154893493652343, 0.23200358581542968, 0.23128781127929687, 0.2326876220703125, 0.23151513671875, 0.2320189514160156, 0.23194111633300782, 0.2343126983642578, 0.23182745361328125, 0.23166975402832032, 0.2321029052734375, 0.2315478973388672, 0.23180390930175782, 0.23187455749511718, 0.23265895080566407, 0.23204351806640625, 0.23161549377441407, 0.23184384155273438, 0.23168307495117188, 0.23198822021484375, 0.23221965026855468, 0.23208038330078126, 0.2315028533935547, 0.2317189178466797, 0.4791541748046875, 0.23152537536621093, 0.23141786193847655, 0.23147109985351563, 0.2316881866455078, 0.23219097900390626, 0.23250738525390624, 0.23175474548339844, 0.23157862854003905, 0.23146905517578126, 0.23150796508789062, 0.23139942932128907, 0.23163084411621093, 0.23131954956054687, 0.23146290588378907, 0.2314721221923828, 0.23149977111816405, 0.23143116760253907, 0.23153561401367187, 0.23136460876464843, 0.23145574951171874, 0.23262821960449218, 0.23162060546875, 0.23222067260742188, 0.2317332458496094, 0.2321459197998047, 0.23204658508300782, 0.23222169494628905, 0.23193394470214843, 0.23173222351074219, 0.23207321166992187, 0.2314967041015625, 0.23171379089355468, 0.23195033264160156, 0.2315335693359375, 0.23165440368652343, 0.23151513671875, 0.2319278106689453, 0.23251968383789062, 0.2320762939453125, 0.2323722229003906, 0.23198104858398438, 0.23364813232421874, 0.231699462890625, 0.23159397888183594, 0.2315478973388672, 0.23241932678222657, 0.2327490539550781, 0.2325544891357422, 0.23194828796386718, 0.2318673858642578, 0.2316810302734375, 0.23178445434570313, 0.23171685791015625, 0.2330030059814453, 0.23198924255371095, 0.23177932739257812, 0.2315345916748047, 0.2316759033203125, 0.23150898742675782, 0.23172915649414064, 0.23147622680664062, 0.23150898742675782, 0.4793599853515625, 0.23149055480957031, 0.23156224060058594, 0.23211724853515625, 0.23157350158691406, 0.2316636199951172, 0.2315335693359375, 0.2317004852294922, 0.23198104858398438, 0.2317076416015625, 0.2317066192626953, 0.2316810302734375, 0.23214694213867187, 0.2314281005859375, 0.23171379089355468, 0.23145368957519533, 0.23175474548339844, 0.2320343017578125, 0.23201075744628907, 0.2313799743652344, 0.23178445434570313, 0.2324234313964844, 0.2315724792480469, 0.23148133850097657, 0.23172813415527344, 0.23166053771972656, 0.23147314453125, 0.2317332458496094, 0.2317066192626953, 0.23179878234863283, 0.23192472839355469, 0.231546875, 0.23191448974609374, 0.2325841979980469, 0.232310791015625, 0.23168716430664063, 0.23217356872558595, 0.23178752136230468, 0.23181004333496094, 0.23151922607421874, 0.23181517028808593, 0.23169024658203125, 0.23222067260742188, 0.23224114990234376, 0.233280517578125, 0.23156326293945312, 0.23260774230957032, 0.23164927673339844, 0.23165132141113282, 0.23178752136230468, 0.2314833984375, 0.23191654968261718, 0.23174041748046875, 0.23182847595214845, 0.23188172912597657, 0.23205477905273436, 0.23170252990722656, 0.23150592041015625, 0.23171072387695313, 0.23180697631835936, 0.23188787841796876, 0.23198924255371095, 0.2316083221435547, 0.48040447998046876, 0.2314649658203125, 0.23149465942382813, 0.23155506896972655, 0.23165338134765626, 0.23153050231933595, 0.23216741943359376, 0.23149977111816405, 0.2316738586425781, 0.2315141143798828, 0.23169229125976562, 0.23125503540039063, 0.23212237548828124, 0.231546875, 0.23149363708496093, 0.2313123779296875, 0.2316011505126953, 0.23193292236328125, 0.23160934448242188, 0.23140045166015624, 0.23142399597167967, 0.2315028533935547, 0.23264256286621093, 0.23136256408691405, 0.23141273498535156, 0.23175270080566407, 0.2318970947265625, 0.23143218994140624, 0.231625732421875, 0.23146803283691406, 0.23153561401367187, 0.23179263305664063, 0.23162265014648437, 0.23143833923339843, 0.23150489807128907, 0.2316769256591797, 0.2315028533935547, 0.23140351867675782, 0.23153254699707032, 0.23176396179199218, 0.23235379028320313, 0.23157145690917968, 0.23215000915527345, 0.23228416442871094, 0.23199436950683594, 0.2316083221435547, 0.2318725128173828, 0.2318663635253906, 0.2320168914794922, 0.2316748809814453, 0.23151718139648436, 0.2315161590576172, 0.23198104858398438, 0.23176908874511717, 0.2314844207763672, 0.23157452392578126, 0.2316400604248047, 0.2338518981933594, 0.23160319519042968, 0.2314608612060547, 0.23169842529296875, 0.23176499938964842, 0.23139634704589843, 0.47871487426757814, 0.23285452270507812, 0.2316759033203125, 0.23147109985351563, 0.2317619171142578, 0.23147418212890625, 0.23200460815429688, 0.23145368957519533, 0.23143423461914062, 0.23151513671875, 0.23195852661132813, 0.23152946472167968, 0.23166259765625, 0.2315407409667969, 0.231804931640625, 0.23130111694335936, 0.23147418212890625, 0.23145368957519533, 0.2317332458496094, 0.23229338073730468, 0.23143423461914062, 0.23145779418945311, 0.2318243865966797, 0.23271629333496094, 0.23164723205566407, 0.23130624389648438, 0.23173426818847656, 0.23160525512695312, 0.23191448974609374, 0.23143936157226563, 0.23173735046386718, 0.2313297882080078, 0.23191654968261718, 0.23161753845214844, 0.23174861145019532, 0.23163494873046875, 0.23162367248535157, 0.23179673767089845, 0.23365119934082032, 0.2315284423828125, 0.23203532409667968, 0.2314844207763672, 0.23151820373535156, 0.23153254699707032, 0.23219815063476562, 0.23247462463378907, 0.23148236083984375, 0.2316247100830078, 0.23154893493652343, 0.23167999267578124, 0.23152333068847655, 0.2313492431640625, 0.23187149047851563, 0.2317332458496094, 0.23147314453125, 0.23146803283691406, 0.231546875, 0.23138099670410156, 0.23195443725585937, 0.23131033325195313, 0.2316083221435547, 0.23169331359863282, 0.23267942810058595, 0.4799190979003906, 0.23168614196777343, 0.2323384246826172, 0.23134413146972657, 0.2315478973388672, 0.23153152465820312, 0.23206399536132813, 0.23240089416503906, 0.2316400604248047, 0.232195068359375, 0.23177113342285155, 0.23198208618164062, 0.231762939453125, 0.23141580200195314, 0.23243571472167968, 0.23172607421875, 0.23175167846679687, 0.23154380798339844, 0.23196159362792967, 0.2322186279296875, 0.23200767517089843, 0.23159706115722656, 0.23196774291992187, 0.23436288452148438, 0.23299481201171876, 0.23171994018554687, 0.23219917297363282, 0.23193702697753907, 0.23206809997558595, 0.23197900390625, 0.232015869140625, 0.23205580139160156, 0.2321817626953125, 0.23225856018066407, 0.23298252868652344, 0.23273779296875, 0.23192576599121092, 0.23256166076660156, 0.23193702697753907, 0.23206912231445312, 0.23249714660644533, 0.23228518676757812, 0.2316943359375, 0.23190733337402344, 0.2321776580810547, 0.23329791259765625, 0.2317434844970703, 0.23172300720214845, 0.23201791381835937, 0.23177830505371094, 0.23229849243164064, 0.23173631286621094, 0.23190631103515624, 0.23168716430664063, 0.23162879943847656, 0.2316021728515625, 0.23181619262695313, 0.23235891723632812, 0.23165338134765626, 0.23182540893554687, 0.23188890075683594, 0.23179878234863283, 0.23223193359375, 0.4815288391113281, 0.23210905456542968, 0.23236915588378906, 0.23213363647460938, 0.23194931030273438, 0.2322708435058594, 0.2319656982421875, 0.23167999267578124, 0.23199026489257812, 0.23194419860839843, 0.23190220642089843, 0.23164620971679686, 0.23152333068847655, 0.23174656677246094, 0.23165132141113282, 0.23153868103027345, 0.23241421508789062, 0.23152333068847655, 0.23160012817382813, 0.2317813720703125, 0.23216844177246093, 0.23163699340820312, 0.2317332458496094, 0.23213157653808594, 0.23221554565429686, 0.23165235900878905, 0.23165029907226561, 0.2321817626953125, 0.23166566467285157, 0.23215718078613282, 0.23198719787597658, 0.23195852661132813, 0.2326824951171875, 0.23238552856445313, 0.23246131896972655, 0.2325893096923828, 0.23215411376953124, 0.23172505187988282, 0.23226573181152343, 0.2317496337890625, 0.23191552734375, 0.23176908874511717, 0.23195545959472658, 0.2318008270263672, 0.23182643127441407, 0.23190016174316405, 0.232416259765625, 0.2320189514160156, 0.23202508544921874, 0.23167999267578124, 0.23148748779296874, 0.23161036682128905, 0.2314598388671875, 0.23159500122070312, 0.23170457458496094, 0.23154278564453126, 0.23169024658203125, 0.23182643127441407, 0.23170355224609376, 0.2315704345703125, 0.23159603881835938, 0.23155404663085938, 0.23165338134765626, 0.4812718200683594, 0.23177317810058592, 0.23226675415039064, 0.23194111633300782, 0.2323927001953125, 0.23203225708007813, 0.2321274871826172, 0.23159910583496093, 0.2321274871826172, 0.23236813354492186, 0.23202099609375, 0.23199026489257812, 0.2322821044921875, 0.23166873168945312, 0.2315704345703125, 0.2316953582763672, 0.2317066192626953, 0.23233638000488283, 0.23172402954101562, 0.23153765869140625, 0.2317015075683594, 0.23190835571289062, 0.2319349822998047, 0.23167079162597656, 0.23204454040527345, 0.23182949829101562, 0.2317066192626953, 0.23161241149902342, 0.23168716430664063, 0.23161651611328124, 0.2314915771484375, 0.23156736755371093, 0.23175578308105468, 0.2314915771484375, 0.2315898895263672, 0.2314639434814453, 0.23174041748046875, 0.23146188354492186, 0.23163699340820312, 0.231689208984375, 0.23188275146484374, 0.23198002624511718, 0.23282687377929687, 0.23209779357910157, 0.23285350036621094, 0.23174656677246094, 0.23175578308105468, 0.23238450622558593, 0.2317015075683594, 0.23150489807128907, 0.23172300720214845, 0.231625732421875, 0.23256166076660156, 0.23199641418457032, 0.232195068359375, 0.23204556274414062, 0.23192166137695314, 0.2320394287109375, 0.23225138854980468, 0.23171379089355468, 0.2317813720703125, 0.23161958312988282, 0.232158203125, 0.4819783630371094, 0.2318551025390625, 0.23196159362792967, 0.23218585205078124, 0.2324418487548828, 0.23145881652832032, 0.2316441650390625, 0.2316216278076172, 0.2316216278076172, 0.23146598815917968, 0.23160525512695312, 0.2316451873779297, 0.23194111633300782, 0.23152639770507813, 0.23173939514160155, 0.23201075744628907, 0.23212953186035157, 0.23183258056640624, 0.23173837280273438, 0.2314915771484375, 0.2315274200439453, 0.23239474487304687, 0.23221554565429686, 0.23157145690917968, 0.23228518676757812, 0.23169842529296875, 0.23386726379394532, 0.23193087768554688, 0.23240908813476563, 0.23179161071777343, 0.2318612518310547, 0.23229029846191407, 0.2322391052246094, 0.2321817626953125, 0.2317076416015625, 0.23165338134765626, 0.231762939453125, 0.23216537475585938, 0.23200869750976563, 0.23169024658203125, 0.2321448974609375, 0.23209881591796874, 0.23225343322753905, 0.2321080322265625, 0.2319605712890625, 0.23185305786132812, 0.23235276794433593, 0.23230157470703125, 0.23171379089355468, 0.23146905517578126, 0.2321694793701172, 0.2319288330078125, 0.231699462890625, 0.23157760620117188, 0.23183871459960936, 0.23164723205566407, 0.23158476257324218, 0.2316769256591797, 0.2315581512451172, 0.23161241149902342, 0.23160627746582033, 0.23157452392578126, 0.23163392639160157]",tokens/s,4.248315626753965,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-30b,facebook/opt-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,5945.012224,19933.954048,0.0,19287.506944,18376.2688,s,10,24.42857763671875,2.442857763671875,0.001982296286527604,2.4421226806640624,2.4459630615234373,2.446148400878906,2.4462966723632813,"[2.44311767578125, 2.441929443359375, 2.441054443359375, 2.44091455078125, 2.441591064453125, 2.440709716796875, 2.44231591796875, 2.446333740234375, 2.445921875, 2.444689208984375]",tokens/s,104.79529500530754,kWh,2.881985050108698e-05,1.5794228899012522e-05,0.00013673797050139935,0.00018135204990149886,tokens/kWh,1411619.0036950014,MB,5946.937344,19933.954048,0.0,19287.506944,18871.985152,s,10,1453.1662812499999,145.316628125,0.01677016451823821,145.3091796875,145.3392140625,145.34826328125,145.35550265625,"[145.31590625, 145.308921875, 145.3094375, 145.306953125, 145.3573125, 145.337203125, 145.304828125, 145.303359375, 145.319953125, 145.30240625]",tokens/s,0.4335360709430169,kWh,0.0017155244359870752,0.0009402592492990879,0.00808164824309121,0.010737431928377374,tokens/kWh,5867.324740238933,,s,629,1472.8442895507828,2.3415648482524345,0.29007180854476533,2.306472900390625,2.307840771484375,2.308159619140625,4.7478279296874994,"[2.30830078125, 2.30712939453125, 2.305491943359375, 2.305958984375, 2.306070556640625, 2.306164794921875, 2.306714599609375, 2.306167724609375, 2.30651708984375, 2.306343994140625, 2.306281494140625, 2.3058994140625, 2.306171875, 2.305965087890625, 2.3060673828125, 2.305934326171875, 2.306259033203125, 2.30677197265625, 2.30823828125, 2.3065693359375, 2.3062998046875, 2.3065107421875, 2.305712158203125, 2.3060634765625, 2.30664404296875, 2.30611865234375, 2.305919921875, 2.306153564453125, 2.30573876953125, 2.307145751953125, 2.307577880859375, 2.30742529296875, 2.3060234375, 2.306620361328125, 2.30689892578125, 2.306671630859375, 2.30721337890625, 2.306621337890625, 2.30584423828125, 2.306515869140625, 2.306025390625, 2.307158935546875, 2.307966064453125, 2.3080498046875, 2.30725927734375, 2.30751123046875, 2.30584326171875, 2.306826171875, 2.30643505859375, 2.306669677734375, 2.3066572265625, 2.306987060546875, 2.3064228515625, 2.30631640625, 2.3060048828125, 2.3066552734375, 2.306758544921875, 2.306385986328125, 2.306724853515625, 2.30693994140625, 2.3067626953125, 2.306996337890625, 4.747927734375, 2.3060458984375, 2.306315185546875, 2.305916015625, 2.30605615234375, 2.30666455078125, 2.306251708984375, 2.306472900390625, 2.306552734375, 2.30586376953125, 2.3063408203125, 2.306269287109375, 2.306483154296875, 2.3060849609375, 2.306608154296875, 2.306598876953125, 2.306947021484375, 2.306627685546875, 2.30656298828125, 2.306156494140625, 2.305994873046875, 2.305953857421875, 2.3070966796875, 2.307031005859375, 2.306716552734375, 2.30727587890625, 2.305818603515625, 2.30561181640625, 2.306303955078125, 2.30622607421875, 2.30601513671875, 2.306629638671875, 2.306018310546875, 2.307220458984375, 2.307166259765625, 2.30818310546875, 2.30658251953125, 2.306062255859375, 2.3065908203125, 2.3057265625, 2.306356201171875, 2.30654150390625, 2.306720703125, 2.306249755859375, 2.307949462890625, 2.307349609375, 2.30730859375, 2.306469970703125, 2.306974609375, 2.30639501953125, 2.30609716796875, 2.30603369140625, 2.306250732421875, 2.306716552734375, 2.306428955078125, 2.3060244140625, 2.306080810546875, 2.306798583984375, 2.306280517578125, 2.306587646484375, 2.306314208984375, 2.3067607421875, 2.307210205078125, 4.74750048828125, 2.30618017578125, 2.306073486328125, 2.306304931640625, 2.3058740234375, 2.306080810546875, 2.3063828125, 2.30624560546875, 2.305426513671875, 2.306010009765625, 2.3058330078125, 2.306188232421875, 2.305746826171875, 2.30639501953125, 2.305995849609375, 2.305857421875, 2.305976318359375, 2.306387939453125, 2.307175537109375, 2.3076884765625, 2.30548486328125, 2.305490966796875, 2.3058544921875, 2.30586474609375, 2.306364501953125, 2.30583203125, 2.306301025390625, 2.306060302734375, 2.306914306640625, 2.308274169921875, 2.307685302734375, 2.3084912109375, 2.306903076171875, 2.30611669921875, 2.306157470703125, 2.30603466796875, 2.306026611328125, 2.30809912109375, 2.30824658203125, 2.30763623046875, 2.30674853515625, 2.306740234375, 2.30609521484375, 2.305721435546875, 2.30651806640625, 2.307560546875, 2.30752880859375, 2.306269287109375, 2.30721630859375, 2.306631591796875, 2.30655908203125, 2.3057724609375, 2.30613818359375, 2.306503662109375, 2.306617431640625, 2.307072021484375, 2.30647802734375, 2.305734619140625, 2.3066552734375, 2.306449462890625, 2.30620361328125, 2.30637158203125, 2.306595947265625, 4.74802880859375, 2.306186279296875, 2.305531982421875, 2.305669189453125, 2.306135986328125, 2.3058759765625, 2.306019287109375, 2.306431884765625, 2.306522216796875, 2.30567529296875, 2.3055830078125, 2.306220947265625, 2.30667578125, 2.306291748046875, 2.306946044921875, 2.30719287109375, 2.3062763671875, 2.30605517578125, 2.3061484375, 2.306335693359375, 2.30618115234375, 2.30607666015625, 2.30662646484375, 2.30637158203125, 2.30767724609375, 2.308170654296875, 2.30727978515625, 2.306090087890625, 2.3074775390625, 2.30679248046875, 2.308010009765625, 2.306175048828125, 2.3065908203125, 2.306902099609375, 2.307230712890625, 2.30744677734375, 2.307564453125, 2.306438232421875, 2.306532470703125, 2.306220947265625, 2.306926513671875, 2.30791162109375, 2.30597021484375, 2.30626416015625, 2.306064453125, 2.305848388671875, 2.30631005859375, 2.305681396484375, 2.306680908203125, 2.3066787109375, 2.306912353515625, 2.30727587890625, 2.30600390625, 2.306438232421875, 2.306324462890625, 2.305838134765625, 2.305875, 2.305974365234375, 2.30620166015625, 2.306227294921875, 2.3058759765625, 2.306018310546875, 2.306186279296875, 4.7475712890625, 2.3056015625, 2.305901611328125, 2.30658251953125, 2.307598388671875, 2.307072998046875, 2.30600390625, 2.308192138671875, 2.307829833984375, 2.30786865234375, 2.307883056640625, 2.306185302734375, 2.305741943359375, 2.30852392578125, 2.307919921875, 2.30782763671875, 2.30862841796875, 2.308886474609375, 2.308350830078125, 2.308662353515625, 2.308884521484375, 2.30721337890625, 2.307564453125, 2.307115966796875, 2.307040283203125, 2.30601025390625, 2.307072998046875, 2.305795166015625, 2.3058740234375, 2.306260009765625, 2.3076474609375, 2.3075, 2.305462158203125, 2.305919921875, 2.306641845703125, 2.308442138671875, 2.30645654296875, 2.306227294921875, 2.306621337890625, 2.306598876953125, 2.3067822265625, 2.306314208984375, 2.307274658203125, 2.306165771484375, 2.30636962890625, 2.306336669921875, 2.3068681640625, 2.307556396484375, 2.307939208984375, 2.306641845703125, 2.308420654296875, 2.30788720703125, 2.30803857421875, 2.307458984375, 2.308116455078125, 2.3085107421875, 2.30814306640625, 2.309021728515625, 2.30691845703125, 2.3075400390625, 2.30881787109375, 2.30786962890625, 2.308601806640625, 4.747927734375, 2.30775, 2.307747802734375, 2.306754638671875, 2.30704638671875, 2.30609521484375, 2.305871826171875, 2.305828857421875, 2.306450439453125, 2.3074384765625, 2.30639404296875, 2.306155517578125, 2.30721240234375, 2.3061943359375, 2.306260986328125, 2.3063408203125, 2.305946533203125, 2.30626708984375, 2.3059384765625, 2.306785400390625, 2.30590576171875, 2.307837890625, 2.308127685546875, 2.307727294921875, 2.30624755859375, 2.30803759765625, 2.308209716796875, 2.306083740234375, 2.308106201171875, 2.30796484375, 2.307409912109375, 2.307322998046875, 2.3070556640625, 2.30601416015625, 2.30601220703125, 2.30685400390625, 2.3067841796875, 2.3062333984375, 2.30788818359375, 2.3078798828125, 2.307981201171875, 2.308041748046875, 2.307943359375, 2.3078779296875, 2.306785400390625, 2.306217041015625, 2.30694189453125, 2.3059833984375, 2.30669921875, 2.30706787109375, 2.307828857421875, 2.3062119140625, 2.30769970703125, 2.30689990234375, 2.306872314453125, 2.30632763671875, 2.307541015625, 2.307304443359375, 2.306280517578125, 2.305987548828125, 2.3064677734375, 2.30799365234375, 2.30702490234375, 4.74871826171875, 2.306419677734375, 2.30594775390625, 2.305490966796875, 2.3053935546875, 2.306144287109375, 2.305890380859375, 2.30618310546875, 2.30565380859375, 2.305838134765625, 2.3064453125, 2.306163818359375, 2.305967041015625, 2.30632958984375, 2.30599365234375, 2.30660205078125, 2.306093017578125, 2.30550927734375, 2.3062958984375, 2.30859375, 2.307629150390625, 2.305786865234375, 2.30675244140625, 2.30698291015625, 2.307533935546875, 2.306155517578125, 2.30588916015625, 2.30687744140625, 2.30660205078125, 2.30624658203125, 2.30635205078125, 2.30655078125, 2.30631005859375, 2.307313720703125, 2.306417724609375, 2.306740234375, 2.306871337890625, 2.30619140625, 2.3060859375, 2.305734619140625, 2.3065068359375, 2.30648828125, 2.306944091796875, 2.30637060546875, 2.3063173828125, 2.305910888671875, 2.306567138671875, 2.305996826171875, 2.306691162109375, 2.306502685546875, 2.306821044921875, 2.306130859375, 2.30672900390625, 2.307013671875, 2.306767822265625, 2.306404296875, 2.30620458984375, 2.306543701171875, 2.30641552734375, 2.30656298828125, 2.306662353515625, 2.306578369140625, 2.30736083984375, 4.75277099609375, 2.306112548828125, 2.305987548828125, 2.306069580078125, 2.305553466796875, 2.305196044921875, 2.306450439453125, 2.306493408203125, 2.306361328125, 2.305670166015625, 2.305954833984375, 2.30636328125, 2.305942626953125, 2.305912841796875, 2.3060244140625, 2.306492431640625, 2.306491455078125, 2.3065087890625, 2.306021484375, 2.30662255859375, 2.306044921875, 2.305946533203125, 2.306109375, 2.3060673828125, 2.30651708984375, 2.306368408203125, 2.306166748046875, 2.305617919921875, 2.3070966796875, 2.30624462890625, 2.30612060546875, 2.30616259765625, 2.306585693359375, 2.3061943359375, 2.305982421875, 2.30618212890625, 2.30691015625, 2.307801025390625, 2.30774169921875, 2.305775634765625, 2.30598974609375, 2.307757080078125, 2.307713134765625, 2.3067412109375, 2.306273193359375, 2.306452392578125, 2.30667578125, 2.306123779296875, 2.307871826171875, 2.3065498046875, 2.306324462890625, 2.3063818359375, 2.306296875, 2.306356201171875, 2.306536376953125, 2.30616162109375, 2.306343994140625, 2.3068017578125, 2.307167236328125, 2.3066982421875, 2.3068271484375, 2.30626611328125, 2.306765869140625, 4.75146533203125, 2.305406005859375, 2.306103271484375, 2.306335693359375, 2.306105224609375, 2.305650634765625, 2.305935302734375, 2.3065302734375, 2.306123779296875, 2.306839599609375, 2.306525146484375, 2.3065908203125, 2.3057275390625, 2.3065927734375, 2.306326416015625, 2.305699951171875, 2.306766845703125, 2.306298828125, 2.306177978515625, 2.306017333984375, 2.3064453125, 2.307205078125, 2.3069912109375, 2.30652099609375, 2.307852294921875, 2.30791357421875, 2.307249267578125, 2.30723388671875, 2.308533203125, 2.307859375, 2.307365966796875, 2.30736474609375, 2.306230224609375, 2.306595947265625, 2.306797607421875, 2.306817138671875, 2.307945556640625, 2.306934814453125, 2.306532470703125, 2.306154541015625, 2.306238525390625, 2.306093994140625, 2.306994140625, 2.30653125, 2.30648828125, 2.30630810546875, 2.306410400390625, 2.30582177734375, 2.30702392578125, 2.306610107421875, 2.30685888671875, 2.30723388671875, 2.307060791015625, 2.30736083984375, 2.307283935546875, 2.306974609375, 2.307143798828125, 2.30702685546875, 2.307147705078125, 2.306912353515625, 2.306466796875, 2.30637060546875, 2.305808349609375, 4.75029296875, 2.3062138671875, 2.305847412109375, 2.305751953125, 2.306163818359375, 2.305503173828125, 2.306188232421875, 2.305998779296875, 2.306451416015625, 2.305594482421875, 2.30626513671875, 2.30557080078125, 2.306021484375, 2.305986572265625, 2.30660498046875, 2.306206787109375, 2.305995849609375, 2.306838623046875, 2.306428955078125, 2.306533447265625, 2.306038818359375, 2.306441162109375, 2.306575439453125, 2.30774267578125, 2.30721435546875, 2.307527587890625, 2.30657421875, 2.3058974609375, 2.30637255859375, 2.305725341796875, 2.30624560546875, 2.306049072265625, 2.3060224609375, 2.306079833984375, 2.306041748046875, 2.305879150390625, 2.30664404296875, 2.306240478515625, 2.30664697265625, 2.306007080078125, 2.306346923828125, 2.3059384765625, 2.305849365234375, 2.306935791015625, 2.306491455078125, 2.306400146484375, 2.3062744140625, 2.306458740234375, 2.306747314453125, 2.307177490234375, 2.306862060546875, 2.306808837890625, 2.306905029296875, 2.30681298828125, 2.306693115234375, 2.30618017578125, 2.30659375, 2.306906005859375, 2.30719482421875, 2.306628662109375, 2.306923583984375, 2.306654296875, 2.3069306640625]",tokens/s,0.4270648326252095,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-2b,google/recurrentgemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -41970,13 +41829,47 @@ NameError: name 'exl_ext' is not defined File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status + raise HfHubHTTPError(message, response=response) from e +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-669481ee-1af78b1168dc6d375af06261;fc66bf74-8e04-43ac-b584-4ba86c5f87a0) + +403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. +Cannot access content at: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json. +If you are trying to create or update content,make sure you have a token with the `write` role. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 106, in _inner_fn - validate_repo_id(arg_value) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 160, in validate_repo_id - raise HFValidationError( -huggingface_hub.errors.HFValidationError: Repo id must use alphanumeric chars or '-', '_', '.', '--' and '..' are forbidden, '-' and '.' cannot start or end the name, max length is 96: '-'. + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error + raise LocalEntryNotFoundError( +huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. The above exception was the direct cause of the following exception: @@ -41997,12 +41890,13 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 466, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file raise EnvironmentError( -OSError: Incorrect path_or_model_id: '-'. Please provide either the path to a local folder or the repo_id of a model on the Hub. +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/recurrentgemma-2b is not the path to a directory containing a file named config.json. +Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-125m,facebook/opt-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mixtral-8x7B-v0.1,mistralai/Mixtral-8x7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -42022,22 +41916,31 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-6.7b,EleutherAI/pythia-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-125m,facebook/opt-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1207.41888,879.230976,0.0,232.783872,169.719808,s,10,0.3329092750549316,0.03329092750549316,0.001090057705435725,0.0329870719909668,0.033882015228271486,0.0350985279083252,0.036071738052368164,"[0.03631504058837891, 0.03281526565551758, 0.03245974349975586, 0.03361167907714844, 0.03344601440429688, 0.033440895080566406, 0.032671966552734376, 0.033158878326416015, 0.03245904159545898, 0.0325307502746582]",tokens/s,7689.782748100329,kWh,3.9167167718924527e-07,2.1461758953218489e-07,8.304311279209363e-07,1.4367203946423665e-06,tokens/kWh,178183591.57052574,MB,1207.41888,879.230976,0.0,232.783872,199.792128,s,10,20.506330566406252,2.050633056640625,0.01795433438952847,2.0542513427734375,2.07115517578125,2.0720841796875,2.0728273828125,"[2.05074072265625, 2.0363714599609377, 2.0684541015625, 2.054240966796875, 2.07094873046875, 2.07301318359375, 2.05426171875, 2.0559150390625, 2.0203577880859376, 2.02202685546875]",tokens/s,30.72222004613905,kWh,2.4533342500768937e-05,1.3444361220557862e-05,5.009960961606961e-05,8.80773133373964e-05,tokens/kWh,715280.6734540922,,s,629,20.768719875335666,0.03301863255220301,0.003999927492502233,0.03273830413818359,0.033139096832275394,0.033337548065185546,0.06495629302978514,"[0.033740798950195314, 0.034253822326660154, 0.0341104621887207, 0.03412275314331055, 0.0335206413269043, 0.03323699188232422, 0.03351859283447266, 0.03322982406616211, 0.033159168243408206, 0.03280998229980469, 0.03333222579956055, 0.033258495330810545, 0.032756736755371094, 0.03297075271606445, 0.03364352035522461, 0.03362918472290039, 0.033584129333496096, 0.03300249481201172, 0.03202867126464844, 0.031971328735351565, 0.031821823120117186, 0.031848447799682614, 0.03192934417724609, 0.03202560043334961, 0.03206041717529297, 0.032089088439941404, 0.03197644805908203, 0.03203379058837891, 0.03201638412475586, 0.031941631317138675, 0.03214438247680664, 0.03217407989501953, 0.03201638412475586, 0.031987712860107424, 0.03198054313659668, 0.03194572830200195, 0.03189145660400391, 0.03199590492248535, 0.03189043235778809, 0.03177676773071289, 0.032366592407226565, 0.03329228973388672, 0.0331960334777832, 0.0321341438293457, 0.032966655731201173, 0.03283865737915039, 0.03283456039428711, 0.032866302490234374, 0.032574462890625, 0.03194470405578613, 0.032132095336914065, 0.032039936065673826, 0.03172454452514648, 0.03170099258422852, 0.03186278343200684, 0.03212492752075195, 0.031920127868652344, 0.032054271697998044, 0.03213926315307617, 0.03209830474853516, 0.03199795150756836, 0.03198873519897461, 0.06604799652099609, 0.031955968856811526, 0.03163852882385254, 0.03178700828552246, 0.03185971260070801, 0.03197337532043457, 0.03201945495605469, 0.031987712860107424, 0.032059391021728514, 0.03199795150756836, 0.03196211242675781, 0.03191500854492187, 0.03182694435119629, 0.031764480590820314, 0.031714303970336914, 0.0317573127746582, 0.031927295684814457, 0.03189145660400391, 0.03197235107421875, 0.03200921630859375, 0.03191500854492187, 0.03215462493896484, 0.03199795150756836, 0.03201126480102539, 0.031936511993408204, 0.03203071975708008, 0.03208294296264649, 0.031936511993408204, 0.032161792755126956, 0.03201331329345703, 0.031562751770019534, 0.03183923149108887, 0.0325928955078125, 0.03195187187194824, 0.03276287841796875, 0.03203276824951172, 0.03358924865722656, 0.032881664276123046, 0.033119232177734374, 0.03294617462158203, 0.03283251190185547, 0.03209011077880859, 0.032072704315185545, 0.03290934371948242, 0.03280073547363281, 0.032763904571533206, 0.03282329559326172, 0.03290419387817383, 0.032740352630615234, 0.032478206634521486, 0.03298611068725586, 0.03275059127807617, 0.033102848052978515, 0.03289395141601562, 0.03265331268310547, 0.032115745544433597, 0.03197641563415527, 0.03259494400024414, 0.03297894287109375, 0.03300044631958008, 0.03283865737915039, 0.03288780975341797, 0.03242803192138672, 0.06496460723876953, 0.03309568023681641, 0.03194470405578613, 0.03273830413818359, 0.03288678359985352, 0.03281919860839844, 0.03297689437866211, 0.032912384033203124, 0.032787487030029296, 0.033037311553955076, 0.03294307327270508, 0.032863231658935545, 0.03278847885131836, 0.03306496047973633, 0.032745471954345705, 0.03307212829589844, 0.03291852951049805, 0.03285094451904297, 0.03298406219482422, 0.03316223907470703, 0.03301683044433594, 0.0328611831665039, 0.03299532699584961, 0.03296051025390625, 0.03287449645996094, 0.0329615364074707, 0.03278745651245117, 0.032949249267578126, 0.033023998260498046, 0.03287449645996094, 0.032909313201904294, 0.03280179214477539, 0.0328089599609375, 0.03198464012145996, 0.032054271697998044, 0.03240140914916992, 0.03320729446411133, 0.033165313720703124, 0.03290726470947265, 0.032584705352783204, 0.032707584381103515, 0.032249855041503905, 0.03290521621704102, 0.0328458251953125, 0.032791553497314455, 0.03254579162597656, 0.03258879852294922, 0.03239424133300781, 0.03282227325439453, 0.032894977569580076, 0.03285811233520508, 0.03289708709716797, 0.032930816650390625, 0.03297683334350586, 0.033140735626220705, 0.032868350982666016, 0.03292364883422851, 0.032985088348388675, 0.033018878936767575, 0.0329431037902832, 0.032927745819091796, 0.032976993560791014, 0.03305363082885742, 0.06707913970947266, 0.03323494338989258, 0.03279257583618164, 0.033137664794921876, 0.0331776008605957, 0.03303014373779297, 0.033274879455566404, 0.0330967025756836, 0.033137664794921876, 0.03282534408569336, 0.03309056091308594, 0.033081344604492184, 0.03303424072265625, 0.033309696197509765, 0.03319500732421875, 0.03301171112060547, 0.033345535278320314, 0.03285094451904297, 0.03292876815795898, 0.03282124710083008, 0.03200307083129883, 0.0319866886138916, 0.032074752807617186, 0.031974399566650394, 0.03197644805908203, 0.03283967971801758, 0.03339263916015625, 0.033058815002441407, 0.032753662109375, 0.03252326583862305, 0.03210553741455078, 0.031921152114868165, 0.03210540771484375, 0.0323768310546875, 0.03219968032836914, 0.0321976318359375, 0.03212799835205078, 0.03213516616821289, 0.03212799835205078, 0.03211775970458984, 0.032985088348388675, 0.034108417510986325, 0.033040382385253905, 0.03294617462158203, 0.03294105529785156, 0.032906238555908206, 0.032069633483886716, 0.031744064331054686, 0.03175724792480469, 0.031899648666381834, 0.03206655883789063, 0.03191296005249023, 0.03192934417724609, 0.032126976013183595, 0.03269740676879883, 0.03293075180053711, 0.03260313415527344, 0.03196211242675781, 0.031904767990112305, 0.03212287902832031, 0.03203788757324219, 0.03282944107055664, 0.03291033554077148, 0.06675456237792969, 0.033050624847412106, 0.0328007698059082, 0.03285299301147461, 0.0328089599609375, 0.03288883209228516, 0.033067008972167966, 0.03282022476196289, 0.03274649429321289, 0.03173785591125488, 0.032020481109619144, 0.03192428779602051, 0.03253753662109375, 0.03285606384277344, 0.033326080322265625, 0.03281919860839844, 0.033073150634765625, 0.03273830413818359, 0.03295129776000977, 0.03292364883422851, 0.03303628921508789, 0.03282841491699219, 0.032919551849365236, 0.03291961669921875, 0.032923583984375, 0.032797695159912106, 0.03295948791503906, 0.03298303985595703, 0.032982078552246094, 0.03352467346191406, 0.032589824676513675, 0.033331199645996096, 0.03296255874633789, 0.032672767639160154, 0.032740352630615234, 0.03300864028930664, 0.03226521682739258, 0.03242803192138672, 0.03284275054931641, 0.03410636901855469, 0.03410943984985351, 0.032530433654785154, 0.032048126220703126, 0.032909313201904294, 0.03273625564575195, 0.03282022476196289, 0.033040382385253905, 0.03312844848632813, 0.033032222747802736, 0.03294512176513672, 0.032824321746826174, 0.032772159576416014, 0.032817089080810546, 0.03304959869384766, 0.032717823028564456, 0.0328007698059082, 0.03302195358276367, 0.03298713684082031, 0.03286937713623047, 0.032884735107421875, 0.032917503356933595, 0.03312947082519531, 0.0328243522644043, 0.06682825469970703, 0.032939006805419925, 0.03280998229980469, 0.0324136962890625, 0.032930816650390625, 0.03313868713378906, 0.03297382354736328, 0.032863231658935545, 0.03299327850341797, 0.03307212829589844, 0.03317145538330078, 0.033142784118652346, 0.032942081451416014, 0.033363967895507815, 0.03327897644042969, 0.03276595306396484, 0.03296255874633789, 0.033056766510009765, 0.03283967971801758, 0.03291648101806641, 0.03299225616455078, 0.032946239471435546, 0.032924606323242185, 0.03313868713378906, 0.03290521621704102, 0.03295641708374023, 0.03341516876220703, 0.0333199348449707, 0.03459379196166992, 0.03333631896972656, 0.032895999908447264, 0.03294412612915039, 0.03291648101806641, 0.03218227386474609, 0.032626686096191404, 0.0323061752319336, 0.03225804901123047, 0.03283148956298828, 0.033329151153564454, 0.03292879867553711, 0.03304956817626953, 0.03294822311401367, 0.03261030578613281, 0.03294105529785156, 0.032903167724609376, 0.03311206436157227, 0.03312025451660156, 0.03289190292358399, 0.03233280181884766, 0.032524288177490236, 0.03305779266357422, 0.03231129455566406, 0.0324505615234375, 0.03278950500488281, 0.03302707290649414, 0.03288678359985352, 0.032996353149414064, 0.03286937713623047, 0.03303014373779297, 0.03281203079223633, 0.03252633666992188, 0.032178176879882815, 0.03199084854125977, 0.065176513671875, 0.03205017471313477, 0.03209011077880859, 0.03212287902832031, 0.03207987213134766, 0.03216588973999023, 0.03170816040039062, 0.03165286445617676, 0.03220684814453125, 0.03201228713989258, 0.03200614547729492, 0.03260927963256836, 0.03219046401977539, 0.03249868774414062, 0.03227340698242188, 0.03234201431274414, 0.03262464141845703, 0.03326873779296875, 0.03293286514282227, 0.032851966857910156, 0.032830463409423825, 0.03336908721923828, 0.03311824035644531, 0.03295331192016602, 0.032176128387451174, 0.03207680130004883, 0.032168991088867185, 0.032793567657470706, 0.03295641708374023, 0.032803871154785155, 0.03245257568359375, 0.03248025512695313, 0.03281612777709961, 0.03295129776000977, 0.033175552368164066, 0.03283359909057617, 0.03288671875, 0.03277721786499024, 0.033051647186279294, 0.033258495330810545, 0.03284275054931641, 0.03292364883422851, 0.03303014373779297, 0.03285504150390625, 0.03174399948120117, 0.03240857696533203, 0.033037311553955076, 0.03285299301147461, 0.032894977569580076, 0.032917503356933595, 0.0321341438293457, 0.03308031845092774, 0.032146430969238284, 0.03266559982299805, 0.03310899353027344, 0.032740352630615234, 0.03243212890625, 0.03290828704833984, 0.032982017517089846, 0.032979969024658204, 0.032942081451416014, 0.032345088958740234, 0.03220172882080078, 0.06660710144042968, 0.032917537689208985, 0.032905185699462894, 0.032873470306396486, 0.033800193786621094, 0.0329615364074707, 0.03261542510986328, 0.03257753753662109, 0.0329881591796875, 0.03291545486450195, 0.032912384033203124, 0.032797695159912106, 0.03293183898925781, 0.033181697845458984, 0.03299020767211914, 0.03279564666748047, 0.03290726470947265, 0.03288883209228516, 0.03297177505493164, 0.03243929672241211, 0.032846847534179685, 0.03225600051879883, 0.03281510543823242, 0.033083393096923826, 0.0330332145690918, 0.032736320495605466, 0.032817089080810546, 0.03186278343200684, 0.03185766410827637, 0.03318483352661133, 0.03217606353759766, 0.03176038360595703, 0.032323585510253904, 0.03279052734375, 0.0322949104309082, 0.032471038818359374, 0.03288780975341797, 0.03274140930175781, 0.03304035186767578, 0.03282841491699219, 0.031971328735351565, 0.03230003356933594, 0.03287551879882813, 0.032753662109375, 0.03289907073974609, 0.03249356842041016, 0.03194367980957031, 0.0321710090637207, 0.03300352096557617, 0.03274649429321289, 0.0328540153503418, 0.03268710327148437, 0.03202764892578125, 0.032950271606445314, 0.03294515228271484, 0.03292671966552734, 0.03265740966796875, 0.03194675254821777, 0.03184127998352051, 0.03206860733032227, 0.03196108818054199, 0.03163750457763672, 0.031665151596069335, 0.0648058853149414, 0.03185663986206055, 0.031904767990112305, 0.031893503189086916, 0.032007167816162106, 0.0315729923248291, 0.031927295684814457, 0.03198259162902832, 0.0319682559967041, 0.03189967918395996, 0.03205014419555664, 0.031955968856811526, 0.03200614547729492, 0.03189657592773437, 0.03188121604919433, 0.03202150344848633, 0.0321638412475586, 0.031991840362548825, 0.03199894332885742, 0.03193343925476074, 0.03197542381286621, 0.0318525447845459, 0.03199078369140625, 0.03202252960205078, 0.03216281509399414, 0.03228876876831055, 0.032105472564697264, 0.0329697265625, 0.03331584167480469, 0.031987712860107424, 0.03201638412475586, 0.03187820816040039, 0.03171219253540039, 0.032074752807617186, 0.03211372756958008, 0.03188115119934082, 0.031936511993408204, 0.032328704833984374, 0.032024574279785153, 0.03211980819702148, 0.031898624420166014, 0.03198566436767578, 0.03184332847595215, 0.032132095336914065, 0.031905792236328126, 0.031921152114868165, 0.03194777679443359, 0.03189145660400391, 0.03162112045288086, 0.03145011138916016, 0.03202867126464844, 0.03241164779663086, 0.03273932647705078, 0.03275980758666992, 0.0327086067199707, 0.032747520446777346, 0.032508926391601564, 0.031954944610595705, 0.03173785591125488, 0.03213926315307617, 0.03191910362243652, 0.032194561004638675, 0.03189452743530274, 0.0649349136352539, 0.032023551940917966, 0.03198566436767578, 0.03202560043334961, 0.03201126480102539, 0.03183616065979004, 0.031854591369628905, 0.0317573127746582, 0.031936511993408204, 0.031903743743896484, 0.03194675254821777, 0.03200511932373047, 0.031974399566650394, 0.03211161422729492, 0.031942655563354495, 0.0321638412475586, 0.03193446350097656, 0.03189145660400391, 0.03212799835205078, 0.032, 0.03198361587524414, 0.031937536239624024, 0.032105472564697264, 0.03191193580627441, 0.031916032791137694, 0.03271680068969727, 0.0333383674621582, 0.03406950378417969, 0.03317657470703125, 0.03253247833251953, 0.03198975944519043, 0.03277926254272461, 0.03240140914916992, 0.03290521621704102, 0.03309465789794922, 0.032075775146484374, 0.03243110275268555, 0.03205017471313477, 0.03197747230529785, 0.03197235107421875, 0.031908863067626955, 0.03199283218383789, 0.03201126480102539, 0.03172659111022949, 0.03145113563537598, 0.031459327697753905, 0.031643648147583005, 0.03180441665649414, 0.032189441680908204, 0.031916032791137694, 0.031955968856811526, 0.031971328735351565, 0.03196723175048828, 0.03189657592773437, 0.031959039688110355, 0.03171327972412109, 0.031732736587524416, 0.03177369689941406, 0.032056320190429685, 0.03193343925476074, 0.03195084762573242, 0.03191910362243652, 0.03195084762573242]",tokens/s,30.28593017651422,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm-20b,internlm/internlm-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,4499.935232,14621.868032,0.0,13975.420928,13365.937152,s,10,16.410234252929687,1.6410234252929687,0.0022480805464608366,1.6403901367187501,1.6418083374023436,1.6447224060058594,1.6470536608886719,"[1.647636474609375, 1.63996875, 1.6411607666015624, 1.640802978515625, 1.64035791015625, 1.6397760009765625, 1.6397884521484376, 1.6398060302734374, 1.6405145263671874, 1.64042236328125]",tokens/s,156.00021063337155,kWh,1.9377978377872043e-05,1.0617021217130968e-05,9.108710064739678e-05,0.00012108210024239978,tokens/kWh,2114267.9181109504,MB,4499.935232,14621.868032,0.0,13975.420928,13814.413824,s,10,975.3211015625,97.53211015625,0.011202982505412533,97.52955078125,97.54984375,97.55100390625,97.55193203125,"[97.540578125, 97.52715625, 97.522640625, 97.5219296875, 97.5304609375, 97.51653125, 97.5521640625, 97.5495859375, 97.5314140625, 97.528640625]",tokens/s,0.6459411151780855,kWh,0.0011513337257504463,0.0006310327948099438,0.005346427777138807,0.007128794297699197,tokens/kWh,8837.399056434146,,s,629,988.5350541992196,1.5715978604121124,0.19496209506894618,1.548072998046875,1.5490094970703125,1.549420166015625,3.189316650390625,"[1.547826171875, 1.5488624267578126, 1.5484969482421875, 1.5483443603515625, 1.5481630859375, 1.5493089599609375, 1.548452880859375, 1.5482459716796875, 1.5481619873046875, 1.5497840576171875, 1.54772998046875, 1.5493929443359375, 1.547630615234375, 1.5480760498046875, 1.547937744140625, 1.5482552490234376, 1.5470531005859376, 1.5489443359375, 1.5480074462890625, 1.548041259765625, 1.5472659912109374, 1.549042724609375, 1.5482132568359375, 1.5479869384765625, 1.54851123046875, 1.5473919677734376, 1.5474892578125, 1.547378662109375, 1.548716064453125, 1.548441650390625, 1.5491409912109375, 1.5472435302734375, 1.5476378173828125, 1.5480125732421874, 1.5484580078125, 1.5489659423828126, 1.5496949462890626, 1.5483074951171876, 1.5473623046875, 1.547552734375, 1.547135009765625, 1.548559326171875, 1.5482398681640626, 1.5498638916015626, 1.54827880859375, 1.5483668212890624, 1.5489197998046875, 1.548549072265625, 1.54787939453125, 1.547683837890625, 1.549091796875, 1.5491134033203124, 1.548537841796875, 1.548310546875, 1.547894775390625, 1.54776171875, 1.5491932373046875, 1.5472711181640626, 1.547672607421875, 1.5473602294921875, 1.5482440185546875, 1.548180419921875, 3.190286376953125, 1.5480146484375, 1.5486883544921874, 1.5482091064453125, 1.54775244140625, 1.5473919677734376, 1.547894775390625, 1.5473858642578124, 1.548252197265625, 1.5479337158203126, 1.54754052734375, 1.5482122802734375, 1.54810986328125, 1.5476787109375, 1.5477442626953124, 1.54800634765625, 1.5478446044921874, 1.5483709716796874, 1.5485460205078125, 1.5486474609375, 1.5467080078125, 1.546982421875, 1.5480340576171876, 1.5470633544921875, 1.5475240478515624, 1.5482020263671874, 1.5471483154296874, 1.5476029052734375, 1.548863525390625, 1.5478087158203124, 1.5482347412109374, 1.54766845703125, 1.54899658203125, 1.5479388427734375, 1.547747314453125, 1.547916259765625, 1.5490928955078125, 1.548327880859375, 1.548775390625, 1.5474073486328126, 1.547236328125, 1.5476397705078124, 1.5474749755859376, 1.5477001953125, 1.5486075439453124, 1.54838427734375, 1.5483780517578125, 1.5483616943359375, 1.5482193603515626, 1.548074951171875, 1.547906005859375, 1.549001708984375, 1.5483565673828126, 1.5475179443359375, 1.5475548095703124, 1.5477432861328124, 1.54893310546875, 1.54842724609375, 1.5487344970703125, 1.5480279541015625, 1.5475323486328125, 1.5480032958984375, 1.5488101806640624, 3.191152587890625, 1.5476182861328125, 1.548537841796875, 1.5480074462890625, 1.54785791015625, 1.548368896484375, 1.5487181396484375, 1.548142578125, 1.5480279541015625, 1.547535400390625, 1.5482972412109375, 1.54859521484375, 1.5482921142578125, 1.5488890380859375, 1.5477381591796875, 1.5481619873046875, 1.54773193359375, 1.54867919921875, 1.547737060546875, 1.5486033935546875, 1.5482552490234376, 1.5477698974609375, 1.5484517822265624, 1.5468912353515625, 1.5473387451171876, 1.5476397705078124, 1.5484375, 1.547588623046875, 1.5468543701171875, 1.54747802734375, 1.547462646484375, 1.5476142578125, 1.5486832275390625, 1.5478487548828126, 1.54682373046875, 1.547431884765625, 1.54697216796875, 1.5476439208984376, 1.547420654296875, 1.547546630859375, 1.5470274658203125, 1.5474892578125, 1.547757568359375, 1.547947021484375, 1.5482930908203125, 1.549538330078125, 1.547505615234375, 1.548253173828125, 1.549297607421875, 1.547484130859375, 1.548220458984375, 1.548078125, 1.547826171875, 1.54688916015625, 1.5470919189453125, 1.5475538330078125, 1.54765625, 1.5476009521484375, 1.5491522216796876, 1.5480196533203125, 1.5481773681640625, 1.5486719970703124, 1.54946044921875, 3.19001904296875, 1.5467274169921874, 1.5485091552734376, 1.54712060546875, 1.5472425537109376, 1.548200927734375, 1.5474647216796875, 1.5484794921875, 1.5470428466796875, 1.5474134521484375, 1.5471728515625, 1.54741455078125, 1.547334716796875, 1.5476378173828125, 1.5483443603515625, 1.5476234130859374, 1.5473817138671875, 1.548241943359375, 1.548495849609375, 1.5476910400390624, 1.5492137451171875, 1.5486300048828125, 1.547925537109375, 1.5481497802734374, 1.5477288818359376, 1.547779052734375, 1.5494564208984376, 1.5475230712890624, 1.547504638671875, 1.5472803955078125, 1.5474217529296874, 1.54842724609375, 1.547715576171875, 1.54804736328125, 1.54720458984375, 1.5474442138671876, 1.5468114013671874, 1.548011474609375, 1.5478446044921874, 1.5482470703125, 1.548304443359375, 1.5482255859375, 1.549054931640625, 1.548583984375, 1.5483463134765625, 1.5490682373046876, 1.5485091552734376, 1.5480699462890626, 1.5479337158203126, 1.5475302734375, 1.5479091796875, 1.548273681640625, 1.5492208251953126, 1.547388916015625, 1.54747802734375, 1.5476285400390626, 1.54806787109375, 1.548291015625, 1.5489659423828126, 1.5477606201171874, 1.5477279052734374, 1.5477841796875, 1.5487047119140624, 3.189357666015625, 1.54832177734375, 1.54777294921875, 1.5475640869140626, 1.548190673828125, 1.54800439453125, 1.54889111328125, 1.548938232421875, 1.547832275390625, 1.5472568359375, 1.5471380615234376, 1.5473438720703125, 1.5473499755859375, 1.548291015625, 1.5484302978515625, 1.547525146484375, 1.54766748046875, 1.54760400390625, 1.54752001953125, 1.547726806640625, 1.54796435546875, 1.5488388671875, 1.5483873291015624, 1.54832177734375, 1.54785791015625, 1.548337158203125, 1.548981201171875, 1.5488040771484375, 1.5480023193359376, 1.547864013671875, 1.5482235107421876, 1.54768994140625, 1.5485205078125, 1.5483873291015624, 1.5479071044921875, 1.54815380859375, 1.5473756103515626, 1.5484302978515625, 1.5488572998046874, 1.54754248046875, 1.548105712890625, 1.5480648193359374, 1.548222412109375, 1.5480238037109375, 1.547357177734375, 1.5477821044921876, 1.5485142822265625, 1.54811181640625, 1.5482706298828126, 1.547442138671875, 1.547783203125, 1.548359619140625, 1.54857373046875, 1.5488572998046874, 1.5484447021484375, 1.5478978271484376, 1.5483546142578124, 1.5478446044921874, 1.54789990234375, 1.548568603515625, 1.5481129150390625, 1.5489515380859376, 1.5481129150390625, 3.18936376953125, 1.5473162841796875, 1.548347412109375, 1.5468809814453126, 1.5473695068359374, 1.5474237060546876, 1.5484447021484375, 1.548760009765625, 1.5489996337890626, 1.547483154296875, 1.547210693359375, 1.5470223388671875, 1.5469271240234375, 1.5475926513671876, 1.54830029296875, 1.5476080322265624, 1.547652099609375, 1.5482685546875, 1.547872314453125, 1.5475855712890625, 1.5479234619140625, 1.5485009765625, 1.54821630859375, 1.54749853515625, 1.54756298828125, 1.5474810791015625, 1.5483934326171875, 1.5483914794921876, 1.5475958251953126, 1.5481610107421875, 1.5478609619140624, 1.5482193603515626, 1.5480648193359374, 1.5481988525390624, 1.5481087646484375, 1.5474114990234376, 1.54781494140625, 1.5477237548828124, 1.5477821044921876, 1.5474083251953126, 1.5495556640625, 1.5478026123046875, 1.54785693359375, 1.547255859375, 1.54735302734375, 1.5477073974609374, 1.547969482421875, 1.5477288818359376, 1.5476070556640624, 1.5480606689453125, 1.548168212890625, 1.5479029541015625, 1.5480186767578126, 1.5485255126953126, 1.5468739013671875, 1.546857421875, 1.54753125, 1.5483514404296874, 1.54785888671875, 1.548099609375, 1.54840478515625, 1.54806884765625, 1.5480648193359374, 3.188536376953125, 1.547326416015625, 1.5486146240234375, 1.5495721435546874, 1.5473060302734376, 1.5487816162109376, 1.549453369140625, 1.5489608154296874, 1.5496785888671876, 1.5480616455078124, 1.54798486328125, 1.5475947265625, 1.549253662109375, 1.5481968994140625, 1.548053466796875, 1.549401123046875, 1.5481220703125, 1.547989990234375, 1.548347412109375, 1.5480863037109376, 1.548441650390625, 1.5491942138671875, 1.5479951171875, 1.5477596435546874, 1.5479132080078124, 1.5479019775390626, 1.5476695556640625, 1.5486505126953125, 1.548642333984375, 1.5483924560546876, 1.548464111328125, 1.5485399169921874, 1.5489935302734374, 1.5492823486328124, 1.549126708984375, 1.5488082275390624, 1.5485020751953125, 1.5481436767578125, 1.5480247802734375, 1.5473438720703125, 1.5484078369140626, 1.5497154541015625, 1.548389404296875, 1.548622802734375, 1.5483453369140625, 1.5479080810546875, 1.548316650390625, 1.548980224609375, 1.5480084228515625, 1.5479080810546875, 1.5483177490234374, 1.54800634765625, 1.5485972900390625, 1.5479234619140625, 1.5486607666015626, 1.548347412109375, 1.5482081298828125, 1.547925537109375, 1.548674072265625, 1.548291015625, 1.55034423828125, 1.54886865234375, 1.5481036376953126, 3.189357666015625, 1.5474586181640626, 1.5491717529296876, 1.5481129150390625, 1.548072998046875, 1.5476490478515625, 1.5485419921875, 1.5480074462890625, 1.54784765625, 1.5483238525390626, 1.547341796875, 1.547925537109375, 1.547810791015625, 1.5478056640625, 1.5477412109375, 1.54859521484375, 1.5481068115234375, 1.548200927734375, 1.547937744140625, 1.547672607421875, 1.547968505859375, 1.5481712646484376, 1.5496058349609374, 1.54743603515625, 1.5484375, 1.548396484375, 1.5478035888671875, 1.5489986572265626, 1.54951171875, 1.547946044921875, 1.5478077392578125, 1.5477493896484376, 1.5488133544921876, 1.5480872802734376, 1.5481773681640625, 1.54931103515625, 1.5479542236328125, 1.5490611572265625, 1.547883544921875, 1.547809814453125, 1.5479930419921875, 1.549116455078125, 1.5483084716796875, 1.54863720703125, 1.54834130859375, 1.548610595703125, 1.5488941650390624, 1.5497103271484376, 1.5490672607421876, 1.5479500732421876, 1.5488173828125, 1.5487139892578126, 1.5484384765625, 1.5487242431640624, 1.5489197998046875, 1.5499970703125, 1.5479736328125, 1.549170654296875, 1.548205078125, 1.5482030029296876, 1.54952294921875, 1.548652587890625, 1.5488470458984376, 3.190570068359375, 1.5475732421875, 1.54899560546875, 1.5490723876953125, 1.548262451171875, 1.5477442626953124, 1.5488890380859375, 1.5484302978515625, 1.5486300048828125, 1.548895263671875, 1.5487139892578126, 1.54817333984375, 1.548970947265625, 1.5481988525390624, 1.5474852294921875, 1.548536865234375, 1.5487886962890625, 1.548294189453125, 1.54817333984375, 1.547431884765625, 1.54737353515625, 1.5477801513671876, 1.5483740234375, 1.547725830078125, 1.547284423828125, 1.5479593505859375, 1.5474329833984375, 1.5482255859375, 1.54836376953125, 1.54859521484375, 1.5475343017578125, 1.5487181396484375, 1.548205078125, 1.5478056640625, 1.5484302978515625, 1.54993359375, 1.5491451416015625, 1.548178466796875, 1.5477718505859375, 1.5477421875, 1.5473060302734376, 1.548078125, 1.548304443359375, 1.5474052734375, 1.5479808349609374, 1.547030517578125, 1.547672607421875, 1.5480975341796874, 1.5481231689453125, 1.547429931640625, 1.5478343505859375, 1.5476173095703125, 1.5473643798828125, 1.547039794921875, 1.5472691650390624, 1.5484384765625, 1.5475506591796875, 1.548432373046875, 1.54777294921875, 1.5470867919921876, 1.54768896484375, 1.5496007080078125, 1.548421142578125, 3.189211181640625, 1.5468963623046874, 1.547869140625, 1.54876416015625, 1.5484989013671875, 1.5492301025390625, 1.5475916748046874, 1.546978271484375, 1.5469158935546874, 1.54728759765625, 1.5486658935546875, 1.5481077880859375, 1.5487529296875, 1.54709912109375, 1.547663330078125, 1.5471912841796875, 1.54923828125, 1.54927001953125, 1.54796435546875, 1.5475865478515625, 1.5476448974609376, 1.547410400390625, 1.548801025390625, 1.5483770751953125, 1.547400146484375, 1.5478026123046875, 1.54826953125, 1.547557861328125, 1.547953125, 1.549897705078125, 1.5482357177734376, 1.5481138916015624, 1.547904052734375, 1.5478404541015625, 1.5473480224609375, 1.54821630859375, 1.5495045166015624, 1.547509765625, 1.5476746826171874, 1.546893310546875, 1.54714013671875, 1.5480177001953126, 1.548304443359375, 1.547969482421875, 1.547404296875, 1.5485450439453126, 1.547778076171875, 1.5482039794921876, 1.549432861328125, 1.54890234375, 1.5484302978515625, 1.5484652099609375, 1.547947998046875, 1.5474166259765625, 1.547483154296875, 1.5496939697265626, 1.5482757568359375, 1.547537353515625, 1.5478927001953124, 1.54752001953125, 1.547925537109375, 1.5486146240234375, 1.5490406494140625]",tokens/s,0.6362950887053097,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-7.5B,facebook/xglm-7.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -42057,22 +41960,17 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation + cls._check_and_enable_flash_attn_2( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 + raise ValueError( +ValueError: XGLMForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmppi9ax6e5/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-14B,Qwen/Qwen-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-3B-v1,togethercomputer/RedPajama-INCITE-Base-3B-v1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2293.178368,3364.356096,0.0,2717.908992,2483.907584,s,10,2.332126235961914,0.2332126235961914,0.0007025035151089087,0.23313691711425782,0.23428714752197263,0.2343353157043457,0.23437385025024415,"[0.2342764434814453, 0.23438348388671876, 0.23256541442871093, 0.2323934326171875, 0.23265362548828125, 0.23239085388183595, 0.23300813293457032, 0.2332657012939453, 0.2336903381347656, 0.23349880981445312]",tokens/s,1097.7107330316092,kWh,2.7429988588949646e-06,1.5025212867385563e-06,1.2985660641045106e-05,1.7231180786678625e-05,tokens/kWh,14856788.003635412,MB,2293.178368,3364.356096,0.0,2717.908992,2632.491008,s,10,135.513068359375,13.5513068359375,0.004490003668394658,13.54976904296875,13.55813466796875,13.559575634765624,13.560728408203124,"[13.557814453125, 13.5512802734375, 13.549751953125, 13.54661328125, 13.549029296875, 13.5610166015625, 13.5497861328125, 13.546083984375, 13.5524775390625, 13.54921484375]",tokens/s,4.64899811971836,kWh,0.0001599563909630583,8.766855071097778e-05,0.0007514645898075666,0.0009990895314816027,tokens/kWh,63057.411788284844,,s,629,137.39515400695814,0.21843426710168204,0.027695203958367918,0.2150584259033203,0.21541007690429687,0.21553008728027342,0.44768570190429685,"[0.215546875, 0.21509120178222657, 0.21484748840332032, 0.2146693115234375, 0.2148485107421875, 0.21482701110839844, 0.21496627807617188, 0.2148546600341797, 0.2148341827392578, 0.2148423614501953, 0.2148730926513672, 0.21502566528320313, 0.21523968505859375, 0.21587353515625, 0.2149601287841797, 0.2150584259033203, 0.21547929382324219, 0.21505638122558593, 0.21523866271972655, 0.21525401306152345, 0.2153605194091797, 0.21535232543945312, 0.21514854431152344, 0.21529600524902343, 0.2149396514892578, 0.21511885070800782, 0.21522738647460937, 0.21515980529785156, 0.21498982238769532, 0.21505433654785155, 0.21510963439941405, 0.21512602233886718, 0.2155325469970703, 0.21535232543945312, 0.215225341796875, 0.21511270141601563, 0.21541171264648437, 0.21544345092773437, 0.2153164825439453, 0.21536767578125, 0.2153871307373047, 0.21529087829589844, 0.21537893676757813, 0.21553868103027343, 0.21545779418945313, 0.21531546020507814, 0.21509529113769532, 0.2152816619873047, 0.21531954956054689, 0.2148720703125, 0.215088134765625, 0.2149949493408203, 0.21501849365234374, 0.21520999145507813, 0.2153052215576172, 0.21509529113769532, 0.21530111694335938, 0.2151014404296875, 0.21536665344238282, 0.21565542602539062, 0.21544345092773437, 0.21517721557617187, 0.4497049560546875, 0.21492530822753905, 0.21484031677246093, 0.21474610900878907, 0.21518130493164062, 0.21497036743164064, 0.2149539794921875, 0.2148833312988281, 0.21501951599121094, 0.21493760681152344, 0.21485568237304686, 0.21516493225097658, 0.21500518798828125, 0.2150102996826172, 0.2150328369140625, 0.21521510314941406, 0.2148863983154297, 0.21485055541992187, 0.21527859497070312, 0.21493862915039064, 0.21490380859375, 0.2149171142578125, 0.21504307556152344, 0.21492428588867188, 0.21488844299316406, 0.21539634704589844, 0.21504307556152344, 0.2151526336669922, 0.21495603942871094, 0.21498675537109374, 0.21492019653320313, 0.21486285400390626, 0.21517312622070311, 0.2152755126953125, 0.21528883361816406, 0.21505433654785155, 0.21547929382324219, 0.21528985595703126, 0.21551922607421875, 0.21516184997558593, 0.21498265075683592, 0.21506048583984375, 0.21529702758789063, 0.21518438720703126, 0.21498880004882812, 0.21501747131347657, 0.21603123474121094, 0.21503077697753906, 0.21511576843261718, 0.21513523864746092, 0.21525605773925782, 0.21546394348144532, 0.2150963134765625, 0.21497445678710939, 0.2149396514892578, 0.2152611846923828, 0.21501338195800782, 0.2153605194091797, 0.21494989013671875, 0.2149775390625, 0.21501235961914061, 0.21545472717285155, 0.21544960021972656, 0.4477255554199219, 0.21488946533203124, 0.2147993621826172, 0.214830078125, 0.21490687561035157, 0.21492019653320313, 0.21471743774414062, 0.21540556335449218, 0.21555815124511718, 0.2154772491455078, 0.21546086120605468, 0.21494784545898438, 0.21496524047851562, 0.2147747802734375, 0.21512191772460937, 0.215014404296875, 0.214935546875, 0.21500314331054687, 0.21485055541992187, 0.21497445678710939, 0.2149775390625, 0.21503897094726562, 0.21483314514160157, 0.2149283905029297, 0.21502053833007811, 0.21528678894042969, 0.2153553924560547, 0.21509735107421876, 0.21505229187011718, 0.2149539794921875, 0.21523455810546874, 0.2149099578857422, 0.21484339904785157, 0.21541888427734374, 0.21507379150390624, 0.21519564819335937, 0.2150328369140625, 0.21511065673828125, 0.21497343444824218, 0.2153123779296875, 0.21532876586914063, 0.21510963439941405, 0.21525709533691406, 0.21491506958007814, 0.2153175048828125, 0.21504818725585936, 0.2149048309326172, 0.21543218994140625, 0.21501951599121094, 0.21494886779785155, 0.21495603942871094, 0.21506764221191407, 0.21505433654785155, 0.21506150817871095, 0.21549261474609374, 0.2151208953857422, 0.21526220703125, 0.21505331420898438, 0.21497036743164064, 0.21506048583984375, 0.2150440979003906, 0.21503590393066407, 0.21496934509277343, 0.4474736633300781, 0.21475225830078126, 0.2146570281982422, 0.21483314514160157, 0.2149171142578125, 0.21528678894042969, 0.21490380859375, 0.21523353576660156, 0.2151004180908203, 0.214935546875, 0.21490176391601562, 0.21502362060546876, 0.21514854431152344, 0.21500006103515626, 0.21510861206054688, 0.21527040100097655, 0.21625958251953126, 0.2149365692138672, 0.2149539794921875, 0.21506150817871095, 0.21505638122558593, 0.21492326354980468, 0.21511167907714843, 0.21502362060546876, 0.21509120178222657, 0.21505433654785155, 0.21530931091308594, 0.2149396514892578, 0.2147993621826172, 0.21485568237304686, 0.2149283905029297, 0.214972412109375, 0.2149918670654297, 0.214898681640625, 0.21487820434570312, 0.21496421813964844, 0.21520281982421874, 0.214972412109375, 0.2149775390625, 0.21498675537109374, 0.2149212188720703, 0.21492941284179687, 0.21481471252441406, 0.21471128845214843, 0.21537791442871093, 0.21497856140136717, 0.21484442138671875, 0.21496421813964844, 0.21498573303222657, 0.215046142578125, 0.21490176391601562, 0.2149591064453125, 0.2149529571533203, 0.2151034851074219, 0.21514137268066405, 0.2150768585205078, 0.21502259826660156, 0.21512191772460937, 0.2151628875732422, 0.2150584259033203, 0.21498573303222657, 0.21492019653320313, 0.21532365417480467, 0.4478924865722656, 0.21483724975585938, 0.21483314514160157, 0.21480447387695312, 0.21494476318359376, 0.21484339904785157, 0.2147061767578125, 0.214793212890625, 0.21511167907714843, 0.2152048645019531, 0.2148833312988281, 0.21500518798828125, 0.21489459228515626, 0.21502464294433593, 0.2147235870361328, 0.21478810119628905, 0.2147553253173828, 0.21490176391601562, 0.2149591064453125, 0.21520588684082032, 0.21484646606445312, 0.2149109802246094, 0.21492633056640625, 0.21500006103515626, 0.21491302490234376, 0.21484133911132813, 0.2149908447265625, 0.21542912292480468, 0.2149601287841797, 0.21523455810546874, 0.21497958374023438, 0.21499288940429687, 0.21481471252441406, 0.21496524047851562, 0.21497343444824218, 0.21500518798828125, 0.21537484741210938, 0.21541786193847656, 0.21500723266601562, 0.21525605773925782, 0.21530111694335938, 0.21528472900390624, 0.21499903869628906, 0.21505126953125, 0.2150266876220703, 0.21561138916015626, 0.21505638122558593, 0.21511680603027344, 0.2150707244873047, 0.21535232543945312, 0.2149775390625, 0.21508709716796875, 0.21489561462402343, 0.21500825500488283, 0.21495603942871094, 0.21576191711425782, 0.2151034851074219, 0.21574656677246093, 0.21505946350097657, 0.21543321228027343, 0.21538304138183595, 0.21532261657714843, 0.21520895385742186, 0.44758322143554685, 0.21562471008300782, 0.2151034851074219, 0.2150707244873047, 0.21508096313476563, 0.21512396240234374, 0.2149396514892578, 0.21493350219726562, 0.21506355285644532, 0.21523353576660156, 0.21518130493164062, 0.21520281982421874, 0.21525914001464844, 0.2150891571044922, 0.21512294006347657, 0.21514035034179688, 0.21520384216308594, 0.2151761932373047, 0.21500518798828125, 0.21573017883300782, 0.2152489013671875, 0.2153871307373047, 0.21496524047851562, 0.21487718200683595, 0.2150440979003906, 0.21491404724121094, 0.21495706176757812, 0.2153359375, 0.2152611846923828, 0.2150963134765625, 0.21533287048339844, 0.21510861206054688, 0.2150645751953125, 0.21524787902832032, 0.21535334777832033, 0.21540966796875, 0.2150584259033203, 0.21552639770507812, 0.21640089416503908, 0.21548133850097656, 0.2153297882080078, 0.21563392639160156, 0.21536256408691407, 0.21525299072265625, 0.21546290588378905, 0.21525094604492187, 0.21537382507324218, 0.2153553924560547, 0.2156943359375, 0.21538815307617187, 0.21539328002929686, 0.21541273498535157, 0.21524479675292968, 0.2151137237548828, 0.21520179748535156, 0.21540045166015626, 0.21538201904296875, 0.21517106628417967, 0.21503181457519532, 0.21518438720703126, 0.2152314910888672, 0.21534002685546874, 0.2152857666015625, 0.44831845092773437, 0.2153543701171875, 0.21508607482910155, 0.2153891906738281, 0.21522738647460937, 0.2152263641357422, 0.2151383056640625, 0.2148311004638672, 0.2147604522705078, 0.21474508666992187, 0.2151946258544922, 0.21490176391601562, 0.2149283905029297, 0.2148341827392578, 0.21475634765625, 0.21509426879882812, 0.21515367126464843, 0.2148720703125, 0.2148106231689453, 0.21511576843261718, 0.2154588165283203, 0.21494169616699219, 0.21514752197265624, 0.21526629638671874, 0.21540658569335938, 0.2152980499267578, 0.21505433654785155, 0.21525094604492187, 0.21514956665039062, 0.21498573303222657, 0.2155397186279297, 0.21500006103515626, 0.21513113403320314, 0.21502362060546876, 0.21486079406738282, 0.2149171142578125, 0.21485977172851561, 0.21519564819335937, 0.21494682312011718, 0.2151137237548828, 0.2152744903564453, 0.21504512023925781, 0.21480755615234376, 0.21494682312011718, 0.21507379150390624, 0.214935546875, 0.21486796569824218, 0.2152191925048828, 0.21546086120605468, 0.21495603942871094, 0.21510963439941405, 0.21517414855957032, 0.21489356994628905, 0.21515058898925782, 0.21519973754882812, 0.214898681640625, 0.21508709716796875, 0.2153492431640625, 0.2149160919189453, 0.21502873229980468, 0.21509735107421876, 0.21509426879882812, 0.21496217346191407, 0.4484382629394531, 0.21479731750488282, 0.2149713897705078, 0.2148546600341797, 0.21475328063964844, 0.21487615966796875, 0.21529498291015625, 0.21497856140136717, 0.2148106231689453, 0.21494169616699219, 0.21501849365234374, 0.21517312622070311, 0.21516390991210937, 0.2153175048828125, 0.21526835632324218, 0.21509222412109374, 0.21496832275390626, 0.2149171142578125, 0.21479423522949218, 0.21496421813964844, 0.21496115112304687, 0.21497958374023438, 0.21504205322265624, 0.2148106231689453, 0.21492633056640625, 0.21496832275390626, 0.2149160919189453, 0.2148863983154297, 0.21481266784667968, 0.21477171325683594, 0.21533900451660157, 0.21499903869628906, 0.21496115112304687, 0.2150102996826172, 0.2149918670654297, 0.2151761932373047, 0.21486285400390626, 0.215046142578125, 0.21498471069335937, 0.21511065673828125, 0.21503077697753906, 0.21505126953125, 0.2149713897705078, 0.21494169616699219, 0.2152499237060547, 0.21516184997558593, 0.21492428588867188, 0.21485261535644531, 0.215046142578125, 0.215372802734375, 0.21504512023925781, 0.215119873046875, 0.21498675537109374, 0.21502156066894532, 0.21487513732910157, 0.2149959716796875, 0.21509324645996095, 0.2150891571044922, 0.21487820434570312, 0.21541171264648437, 0.21502566528320313, 0.2151208953857422, 0.21514239501953125, 0.4488765563964844, 0.21482086181640625, 0.21482496643066407, 0.21509735107421876, 0.21479014587402342, 0.21473484802246093, 0.2146693115234375, 0.21500518798828125, 0.21510758972167968, 0.21496217346191407, 0.2148106231689453, 0.21478604125976564, 0.21548748779296875, 0.21496627807617188, 0.2150328369140625, 0.21530624389648437, 0.21493862915039064, 0.2148843536376953, 0.21493145751953124, 0.21505126953125, 0.214908935546875, 0.21497958374023438, 0.21564518737792968, 0.21497343444824218, 0.21515367126464843, 0.21530931091308594, 0.21535334777832033, 0.21521817016601563, 0.21496934509277343, 0.21508096313476563, 0.2152929229736328, 0.21582028198242187, 0.21554074096679687, 0.2151751708984375, 0.2154168395996094, 0.21572300720214843, 0.21506253051757812, 0.215151611328125, 0.21505229187011718, 0.2149959716796875, 0.21501235961914061, 0.21538406372070312, 0.2150758361816406, 0.2152110137939453, 0.2150707244873047, 0.21545472717285155, 0.21499903869628906, 0.21496832275390626, 0.2150277099609375, 0.21533900451660157, 0.21492633056640625, 0.21502464294433593, 0.21509837341308594, 0.21507994079589843, 0.21537997436523437, 0.21541375732421875, 0.21506764221191407, 0.21498982238769532, 0.21500108337402343, 0.21577011108398436, 0.21502975463867188, 0.2149222412109375, 0.21507481384277344, 0.4486348876953125, 0.21474919128417969, 0.21470719909667968, 0.21471743774414062, 0.2151700439453125, 0.21507994079589843, 0.2148239288330078, 0.21487820434570312, 0.21485568237304686, 0.21500108337402343, 0.21522840881347657, 0.21483622741699218, 0.21483212280273437, 0.21519155883789062, 0.21522738647460937, 0.2150154266357422, 0.21518438720703126, 0.21501951599121094, 0.21515776062011718, 0.21541375732421875, 0.2148536376953125, 0.21507174682617186, 0.21507174682617186, 0.21522329711914062, 0.21565644836425782, 0.21497958374023438, 0.2154239959716797, 0.21499288940429687, 0.21505229187011718, 0.21485157775878908, 0.21501132202148437, 0.21518540954589843, 0.21500108337402343, 0.21493760681152344, 0.21507174682617186, 0.2150830078125, 0.2148730926513672, 0.21516697692871095, 0.21505946350097657, 0.21500314331054687, 0.21530419921875, 0.2153369598388672, 0.2151331787109375, 0.21504103088378906, 0.21514752197265624, 0.21487615966796875, 0.21510963439941405, 0.21521510314941406, 0.21491302490234376, 0.21509939575195314, 0.21494989013671875, 0.21516082763671876, 0.2149212188720703, 0.2151004180908203, 0.21516697692871095, 0.2149181365966797, 0.2149591064453125, 0.21501644897460936, 0.21512806701660156, 0.21530316162109375, 0.2154035186767578, 0.21518130493164062, 0.21506866455078125]",tokens/s,4.578036281892053,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,M,M,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -42080,28 +41978,72 @@ NameError: name 'exl_ext' is not defined File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/M/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948fd8-3123b8f004e8a25d67ac588c;b342c455-777e-4586-bdba-562372d10dcb) + +Repository Not Found for url: https://huggingface.co/M/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained - model_class = get_class_from_dynamic_module( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module - final_module = get_cached_module_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file - modules_needed = check_imports(resolved_module_file) - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports - raise ImportError( -ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + raise EnvironmentError( +OSError: M is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-12b,stabilityai/stablelm-2-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-3b,stabilityai/stablelm-base-alpha-3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1386.098688,4467.458048,0.0,3821.010944,3588.539392,s,10,2.8072667541503904,0.28072667541503904,0.0013891453980565372,0.2802557830810547,0.2808915802001953,0.2828903091430664,0.2844892922973633,"[0.2848890380859375, 0.28023013305664063, 0.2801990051269531, 0.28025711059570313, 0.2802708740234375, 0.2801849365234375, 0.2804474182128906, 0.280294189453125, 0.28023959350585936, 0.28025445556640627]",tokens/s,911.9190387643711,kWh,3.3119122141305312e-06,1.8147647802379651e-06,1.6291780008722804e-05,2.1418457003091298e-05,tokens/kWh,11952308.234110976,MB,1386.098688,4467.458048,0.0,3821.010944,3698.945536,s,10,163.89264257812502,16.389264257812503,0.003489083519208589,16.3881943359375,16.392421484375,16.3953728515625,16.3977339453125,"[16.39832421875, 16.389771484375, 16.3869296875, 16.391765625, 16.388423828125, 16.38619921875, 16.38796484375, 16.390015625, 16.3857890625, 16.387458984375]",tokens/s,3.8439797546109427,kWh,0.00019345068814485898,0.00010602696284692681,0.000949664353866678,0.0012491420048584639,tokens/kWh,50434.61812585377,,s,629,166.15247476196274,0.264153377999941,0.03329400953216876,0.260126708984375,0.26031758422851564,0.26039378051757817,0.540367294921875,"[0.2604298095703125, 0.26013287353515624, 0.26008575439453124, 0.26007962036132815, 0.26021786499023436, 0.2603202514648438, 0.2601820068359375, 0.26012875366210936, 0.2602219543457031, 0.26012368774414063, 0.2601778869628906, 0.26016357421875, 0.2602014770507812, 0.2604083251953125, 0.26030694580078123, 0.26017074584960936, 0.26030694580078123, 0.2600079345703125, 0.2600693664550781, 0.25997927856445313, 0.2600478820800781, 0.2602444763183594, 0.2602977294921875, 0.2602588195800781, 0.26022711181640623, 0.26007958984375, 0.26012161254882815, 0.26005709838867186, 0.26022503662109375, 0.26006732177734376, 0.2602147827148438, 0.2602352600097656, 0.2603049011230469, 0.26016973876953126, 0.260178955078125, 0.26042266845703127, 0.2604431457519531, 0.2602874755859375, 0.26027420043945315, 0.2602597961425781, 0.26024856567382815, 0.26021273803710937, 0.2602014770507812, 0.26022091674804687, 0.26042776489257813, 0.26031103515625, 0.2603397216796875, 0.2603745422363281, 0.2603683776855469, 0.2603018798828125, 0.26036627197265627, 0.2605783081054687, 0.2604216613769531, 0.26033352661132814, 0.260316162109375, 0.2602147827148438, 0.26032333374023436, 0.2602229614257813, 0.2604031982421875, 0.26052197265625, 0.26033868408203126, 0.260274169921875, 0.5405133056640625, 0.25998745727539063, 0.25996185302734376, 0.25998541259765623, 0.2601246643066406, 0.2599372863769531, 0.26018405151367185, 0.25999563598632813, 0.25993011474609373, 0.2600499267578125, 0.25996185302734376, 0.2602874755859375, 0.2600693664550781, 0.25998745727539063, 0.2600140686035156, 0.26008270263671873, 0.259999755859375, 0.26005197143554687, 0.2600048522949219, 0.2604021911621094, 0.2602219543457031, 0.26024551391601564, 0.26012161254882815, 0.2601471862792969, 0.26012057495117186, 0.260178955078125, 0.26022091674804687, 0.26046771240234373, 0.2601615295410156, 0.26024038696289065, 0.26021273803710937, 0.2602147827148438, 0.26016973876953126, 0.2602188720703125, 0.2601195373535156, 0.26058139038085937, 0.260274169921875, 0.2602301330566406, 0.26009088134765623, 0.26012875366210936, 0.2600478820800781, 0.260136962890625, 0.2601390075683594, 0.26003045654296875, 0.2600919189453125, 0.2601973876953125, 0.26009088134765623, 0.2600837097167969, 0.26009292602539064, 0.260305908203125, 0.26029464721679685, 0.26030899047851563, 0.2602496032714844, 0.26015640258789063, 0.26017791748046876, 0.2601666564941406, 0.26009088134765623, 0.2602219543457031, 0.26042266845703127, 0.26024346923828123, 0.2601379699707031, 0.2602014770507812, 0.2602086486816406, 0.5403678588867188, 0.2603028564453125, 0.2600447998046875, 0.2601502685546875, 0.2600048522949219, 0.26019326782226565, 0.2600621948242188, 0.2599915466308594, 0.2599700622558594, 0.2602352600097656, 0.2600621948242188, 0.26012774658203125, 0.2601891784667969, 0.26008984375, 0.2599700622558594, 0.26002740478515624, 0.25998849487304687, 0.26010009765625, 0.2601195373535156, 0.2601656188964844, 0.26014004516601563, 0.260073486328125, 0.26001715087890626, 0.2600939636230469, 0.2603970642089844, 0.26008779907226565, 0.26007040405273435, 0.26021786499023436, 0.2600970153808594, 0.2600345458984375, 0.2600058898925781, 0.2600550537109375, 0.2601164855957031, 0.260126708984375, 0.26001715087890626, 0.2600202331542969, 0.26008779907226565, 0.2600335388183594, 0.2601031799316406, 0.26019021606445314, 0.26009292602539064, 0.26026190185546877, 0.26016973876953126, 0.26018405151367185, 0.260126708984375, 0.2599700622558594, 0.260210693359375, 0.26018405151367185, 0.2603049011230469, 0.26017279052734377, 0.2600960998535156, 0.26008053588867186, 0.2600447998046875, 0.26002328491210935, 0.2600110168457031, 0.2601195373535156, 0.2600560607910156, 0.2601257019042969, 0.2600007629394531, 0.26009292602539064, 0.2601082763671875, 0.26012057495117186, 0.26048614501953127, 0.5407078247070313, 0.26011749267578127, 0.26015640258789063, 0.260136962890625, 0.260284423828125, 0.26017074584960936, 0.26010015869140624, 0.26020858764648436, 0.2601666564941406, 0.26003662109375, 0.2600970153808594, 0.26017587280273435, 0.26000897216796875, 0.26008575439453124, 0.2603550720214844, 0.26025164794921873, 0.2600058898925781, 0.2601666564941406, 0.2600345458984375, 0.2600980529785156, 0.2600058898925781, 0.2600386657714844, 0.26025982666015623, 0.2601533508300781, 0.26014617919921873, 0.2602496032714844, 0.2600744934082031, 0.2601820068359375, 0.2601922607421875, 0.2602076110839844, 0.26013592529296875, 0.26038885498046876, 0.26029364013671874, 0.26032333374023436, 0.26011239624023436, 0.26018508911132815, 0.2602854309082031, 0.2602239990234375, 0.2601471862792969, 0.2601748352050781, 0.26018405151367185, 0.260453369140625, 0.2603192443847656, 0.2602230224609375, 0.26013180541992187, 0.260316162109375, 0.2601594848632813, 0.2601441345214844, 0.26007244873046875, 0.26016973876953126, 0.2601164855957031, 0.26031103515625, 0.26038681030273436, 0.2602608642578125, 0.260073486328125, 0.26023934936523435, 0.26009906005859373, 0.2601584777832031, 0.2600621948242188, 0.26027008056640627, 0.26026904296875, 0.26036532592773437, 0.26014004516601563, 0.5404119262695313, 0.25996902465820315, 0.25991064453125, 0.2599966735839844, 0.2600755310058594, 0.2599987182617188, 0.2600939636230469, 0.26010726928710937, 0.25997927856445313, 0.26001202392578127, 0.26005197143554687, 0.26035198974609375, 0.26012261962890626, 0.2601553955078125, 0.26011544799804687, 0.26016256713867186, 0.2600048522949219, 0.26005093383789063, 0.259989501953125, 0.26000384521484377, 0.260421630859375, 0.26011749267578127, 0.26003250122070315, 0.2600284118652344, 0.2600130615234375, 0.26020556640625, 0.26025982666015623, 0.2602270812988281, 0.2600611877441406, 0.2601308288574219, 0.2600919189453125, 0.26027008056640627, 0.26002532958984376, 0.2602301330566406, 0.2600560607910156, 0.26042266845703127, 0.26021786499023436, 0.26033355712890627, 0.2601820068359375, 0.2600202331542969, 0.26016461181640627, 0.26014105224609374, 0.2602024841308594, 0.2601257019042969, 0.26028338623046876, 0.2601830749511719, 0.26015127563476564, 0.2601236572265625, 0.2601257019042969, 0.26051788330078124, 0.26029876708984373, 0.26014004516601563, 0.2600867919921875, 0.26011444091796876, 0.2600611877441406, 0.26010726928710937, 0.26002227783203125, 0.26012261962890626, 0.2603407287597656, 0.2602506103515625, 0.26011239624023436, 0.26010726928710937, 0.26004376220703124, 0.540248046875, 0.2601922607421875, 0.2599966735839844, 0.2599495544433594, 0.25990451049804686, 0.26010531616210936, 0.2599730224609375, 0.25991168212890625, 0.2599587707519531, 0.2602270812988281, 0.2600191955566406, 0.2600007629394531, 0.26014617919921873, 0.2600867919921875, 0.25993011474609373, 0.26002944946289064, 0.2599649353027344, 0.260105224609375, 0.2600478820800781, 0.2600663146972656, 0.25986868286132814, 0.25998541259765623, 0.2599813232421875, 0.2601082763671875, 0.2602352600097656, 0.2601041870117187, 0.2601082763671875, 0.2601973876953125, 0.26011749267578127, 0.2600663146972656, 0.2600140686035156, 0.2602147827148438, 0.2602076110839844, 0.2603673706054688, 0.26010009765625, 0.2600714111328125, 0.2600816650390625, 0.26017587280273435, 0.26004583740234377, 0.26028851318359375, 0.26024652099609374, 0.26011239624023436, 0.26015435791015623, 0.2601615295410156, 0.2600407104492187, 0.2600172119140625, 0.26012051391601565, 0.2601451416015625, 0.2603325500488281, 0.2601820068359375, 0.2600765380859375, 0.2600335388183594, 0.26003762817382814, 0.26007962036132815, 0.2600447998046875, 0.2601666564941406, 0.260105224609375, 0.26013388061523435, 0.26012261962890626, 0.26009906005859373, 0.2600611877441406, 0.260178955078125, 0.260537353515625, 0.5406893920898438, 0.25999563598632813, 0.26002944946289064, 0.26001202392578127, 0.2599638977050781, 0.25995263671875, 0.2599413757324219, 0.2603120727539063, 0.2600202331542969, 0.25998541259765623, 0.2599034729003906, 0.2599710693359375, 0.25996902465820315, 0.26002227783203125, 0.26024038696289065, 0.26017587280273435, 0.2601492614746094, 0.2600837097167969, 0.2600110168457031, 0.2600202331542969, 0.26000384521484377, 0.26016357421875, 0.2602168273925781, 0.2602137451171875, 0.26002740478515624, 0.2602188720703125, 0.2599925842285156, 0.2601041870117187, 0.26011651611328124, 0.26032635498046874, 0.2602158203125, 0.2603356018066406, 0.26014617919921873, 0.26028033447265625, 0.2600919189453125, 0.26025164794921873, 0.26034381103515625, 0.26021786499023436, 0.2602567749023437, 0.26020965576171873, 0.2601257019042969, 0.26006427001953125, 0.2600478820800781, 0.26008062744140625, 0.2602711181640625, 0.2601513061523438, 0.2601615295410156, 0.26016259765625, 0.260000732421875, 0.2599966735839844, 0.26008474731445314, 0.2601062316894531, 0.2602567749023437, 0.26017074584960936, 0.26014208984375, 0.2601134033203125, 0.26016461181640627, 0.2600837097167969, 0.2601308288574219, 0.2603345947265625, 0.26025369262695314, 0.260274169921875, 0.2600980529785156, 0.5405234985351562, 0.26009292602539064, 0.2600345458984375, 0.2600663146972656, 0.26004376220703124, 0.2600058898925781, 0.26000997924804686, 0.26011444091796876, 0.260068359375, 0.26003250122070315, 0.25992703247070315, 0.26030694580078123, 0.2600396728515625, 0.2602669982910156, 0.2600560607910156, 0.26017691040039065, 0.260063232421875, 0.2601308288574219, 0.260136962890625, 0.2602291259765625, 0.26010931396484377, 0.26014822387695313, 0.2599966735839844, 0.260052978515625, 0.26002740478515624, 0.2600663146972656, 0.2601533508300781, 0.260232177734375, 0.26017074584960936, 0.26018817138671874, 0.2603263854980469, 0.26019021606445314, 0.26006527709960936, 0.26017587280273435, 0.26023934936523435, 0.2603714599609375, 0.2601922607421875, 0.2601615295410156, 0.26031716918945313, 0.26016461181640627, 0.26007244873046875, 0.2601922607421875, 0.26012875366210936, 0.2601185302734375, 0.26021786499023436, 0.26016973876953126, 0.26021273803710937, 0.260136962890625, 0.2601031799316406, 0.260379638671875, 0.2602291259765625, 0.26033050537109376, 0.26011544799804687, 0.2603222961425781, 0.26023934936523435, 0.26016973876953126, 0.2601441345214844, 0.26020660400390627, 0.26016461181640627, 0.2604021911621094, 0.2601748352050781, 0.26020965576171873, 0.26023834228515624, 0.5403658447265625, 0.26022808837890626, 0.26013491821289064, 0.26002227783203125, 0.2600079345703125, 0.2600202331542969, 0.25998028564453124, 0.26002328491210935, 0.26002532958984376, 0.260173828125, 0.26014208984375, 0.2601799621582031, 0.2599915466308594, 0.26002944946289064, 0.25997720336914065, 0.26005914306640626, 0.2599342041015625, 0.25996185302734376, 0.26002944946289064, 0.2600068969726563, 0.25997515869140625, 0.26023321533203125, 0.25999563598632813, 0.26012161254882815, 0.26036224365234373, 0.26008575439453124, 0.2602362976074219, 0.2601871337890625, 0.26005810546875, 0.2601082763671875, 0.2600693664550781, 0.2600611877441406, 0.2601021423339844, 0.2602342529296875, 0.2601605224609375, 0.2600130615234375, 0.25995367431640626, 0.2600386657714844, 0.2599915466308594, 0.2601390075683594, 0.2602229614257813, 0.260105224609375, 0.2600284118652344, 0.2600478820800781, 0.25997927856445313, 0.2600284118652344, 0.260094970703125, 0.260094970703125, 0.26026190185546877, 0.26019021606445314, 0.2601257019042969, 0.26014004516601563, 0.26012161254882815, 0.2601113586425781, 0.26005197143554687, 0.2601246643066406, 0.2601041870117187, 0.26011239624023436, 0.2600488891601562, 0.2601082763671875, 0.26012979125976565, 0.2600478820800781, 0.2603417663574219, 0.5405787963867188, 0.2601574401855469, 0.2599966735839844, 0.2600396728515625, 0.2600345458984375, 0.26000180053710936, 0.260031494140625, 0.26007244873046875, 0.2600499267578125, 0.26014935302734377, 0.26003753662109375, 0.26024551391601564, 0.26003762817382814, 0.2600888366699219, 0.26008984375, 0.26002740478515624, 0.26008575439453124, 0.2600960083007812, 0.25997515869140625, 0.26009906005859373, 0.2599413757324219, 0.25995672607421877, 0.2602147827148438, 0.26008270263671873, 0.2601390075683594, 0.260126708984375, 0.25999462890625, 0.260052978515625, 0.26000384521484377, 0.26012261962890626, 0.26016256713867186, 0.26027621459960937, 0.2600560607910156, 0.26024755859375, 0.2600263671875, 0.26005093383789063, 0.26024139404296875, 0.2604267578125, 0.26019021606445314, 0.2602567749023437, 0.26005093383789063, 0.2601103210449219, 0.2600130615234375, 0.2600140686035156, 0.26001715087890626, 0.2600120849609375, 0.2602270202636719, 0.26012979125976565, 0.26007040405273435, 0.26004376220703124, 0.26005810546875, 0.260284423828125, 0.26034585571289065, 0.2601922607421875, 0.26010726928710937, 0.26014617919921873, 0.26003662109375, 0.26012057495117186, 0.2601257019042969, 0.2601308288574219, 0.2602854309082031, 0.2605189208984375, 0.2602649536132812]",tokens/s,3.7856793941897777,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-13b,huggyllama/llama-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,3013.357568,9259.450368,0.0,8613.003264,8211.364864,s,10,10.943852783203125,1.0943852783203125,0.00185809213941572,1.0943612060546875,1.0968373901367188,1.0970477233886717,1.0972159899902343,"[1.097258056640625, 1.09552197265625, 1.0923255615234375, 1.0922135009765626, 1.09405712890625, 1.091574951171875, 1.0937421875, 1.094665283203125, 1.0957034912109376, 1.0967906494140625]",tokens/s,233.92127532354476,kWh,1.2894171526034674e-05,7.065532383967365e-06,5.862768579100175e-05,7.858738970100378e-05,tokens/kWh,3257520.080180627,MB,3013.357568,9330.753536,0.0,8684.306432,8503.627264,s,10,640.7681367187499,64.07681367187499,0.020824056597130436,64.070240234375,64.11088984375,64.113944921875,64.116388984375,"[64.1102109375, 64.0801015625, 64.117, 64.0658984375, 64.065828125, 64.06840234375, 64.058859375, 64.04678125, 64.072078125, 64.0829765625]",tokens/s,0.9831949560196744,kWh,0.000756398006098138,0.0004145729534449856,0.003549850923211795,0.004720821882754919,tokens/kWh,13345.133869620864,,s,629,649.5949702148431,1.032742400977494,0.1300197569102036,1.016932373046875,1.018054443359375,1.0185316284179688,2.1104683203125,"[1.0186362915039062, 1.0175692749023437, 1.0181939086914062, 1.0167439575195312, 1.0171248779296875, 1.016279052734375, 1.0170603637695312, 1.0164469604492188, 1.019283447265625, 1.0177188110351563, 1.0175784912109376, 1.0175529174804687, 1.0177136840820313, 1.0184437866210938, 1.0184273681640625, 1.0175098876953126, 1.0180792236328124, 1.0184560546875, 1.0168545532226563, 1.0170511474609376, 1.0169282836914062, 1.0172200927734374, 1.0169989013671874, 1.016431640625, 1.01659033203125, 1.0177269897460937, 1.0169927978515625, 1.0175907592773437, 1.0173204345703124, 1.0170286254882812, 1.0172518310546874, 1.0171300048828125, 1.0176942749023437, 1.0188645629882813, 1.0181181640625, 1.0181754760742188, 1.0174935302734376, 1.0177156982421875, 1.0180280151367187, 1.0169384765625, 1.0188124389648439, 1.0189732055664062, 1.01850830078125, 1.0174976196289063, 1.0177904663085937, 1.0171678466796874, 1.0175887451171874, 1.0177188110351563, 1.017942138671875, 1.019806640625, 1.0175037231445312, 1.0165176391601562, 1.0163671264648437, 1.018239990234375, 1.0174945068359376, 1.0187335815429688, 1.0170091552734375, 1.017196533203125, 1.0169682006835938, 1.0169784545898437, 1.0177904663085937, 1.0165442504882813, 2.11431005859375, 1.017186279296875, 1.0167265014648437, 1.0168094482421874, 1.016437744140625, 1.0170368041992188, 1.0164561767578124, 1.0164777221679688, 1.01673779296875, 1.0177433471679687, 1.0164715576171874, 1.0170480346679687, 1.0178303833007813, 1.0165759887695311, 1.0164664306640625, 1.0171217651367188, 1.0163681030273437, 1.0164623413085938, 1.0167490844726563, 1.016791015625, 1.0163056640625, 1.0171576538085938, 1.0169917602539063, 1.017670654296875, 1.0177689819335938, 1.0164049682617187, 1.0167510986328125, 1.0171494140625, 1.0164398193359374, 1.0172323608398437, 1.0166558837890625, 1.0169886474609375, 1.01707470703125, 1.0176522216796875, 1.0164090576171876, 1.0175907592773437, 1.016195068359375, 1.0165288696289063, 1.0176030883789062, 1.0171300048828125, 1.0172190551757812, 1.01783447265625, 1.0167275390625, 1.0168729858398438, 1.016838134765625, 1.01656884765625, 1.0176798706054688, 1.0164961547851563, 1.0169405517578125, 1.0169313354492187, 1.0181314697265624, 1.0185051879882812, 1.0174259033203126, 1.0190386962890625, 1.0177259521484374, 1.0175364990234375, 1.01764404296875, 1.0178928833007812, 1.0174586791992188, 1.01879296875, 1.0175662231445313, 1.0174638061523438, 1.0168340454101563, 2.110869384765625, 1.0163967895507813, 1.0164827880859375, 1.0182993774414062, 1.017069580078125, 1.0174013671875, 1.017512939453125, 1.0179420166015625, 1.0180894775390625, 1.0180361938476563, 1.0178211669921875, 1.0178641967773439, 1.0179297485351562, 1.019236328125, 1.0181181640625, 1.0165933837890626, 1.0170029907226563, 1.0190684814453126, 1.0187539672851562, 1.0192598876953125, 1.0180260009765625, 1.018945556640625, 1.0177413330078124, 1.0181325073242187, 1.0181212158203126, 1.018977294921875, 1.0179379272460938, 1.0190817260742187, 1.0184038696289062, 1.0187530517578125, 1.0190274658203125, 1.0183782348632813, 1.0174586791992188, 1.0177177734375, 1.0169108276367187, 1.0171514892578124, 1.0180515747070313, 1.0181908569335938, 1.0179368896484375, 1.0182778930664063, 1.0189833984375, 1.0178088989257812, 1.0176030883789062, 1.0174474487304688, 1.01793994140625, 1.0195138549804688, 1.0180485229492187, 1.0181898193359376, 1.0169937744140625, 1.0169609985351562, 1.016900634765625, 1.0166210327148437, 1.0164254760742188, 1.0164019165039062, 1.0165575561523437, 1.0168330078125, 1.016764404296875, 1.016880126953125, 1.0165565185546874, 1.0169978637695312, 1.016406005859375, 1.0169456787109374, 1.0166640625, 2.10943701171875, 1.0166231079101562, 1.0164449462890626, 1.0163446044921876, 1.0166394653320312, 1.0180321044921874, 1.0164285278320313, 1.016468505859375, 1.0164756469726564, 1.0164132080078125, 1.0169036865234375, 1.0166927490234374, 1.0170050659179688, 1.0168923950195312, 1.0167388305664062, 1.0166712036132812, 1.016595458984375, 1.0170153198242187, 1.016637451171875, 1.0168944702148437, 1.0178826293945313, 1.0176430053710936, 1.017217041015625, 1.0173972778320313, 1.0166896362304687, 1.0168361206054688, 1.0170224609375, 1.0166179809570313, 1.0168811645507811, 1.0171064453125, 1.0169569091796875, 1.017037841796875, 1.0164387817382812, 1.0170715942382813, 1.0171002807617187, 1.0174781494140626, 1.01707470703125, 1.0163302612304688, 1.0170009765625, 1.0169763793945312, 1.0165155639648438, 1.0176727294921875, 1.0179563598632813, 1.0177484741210938, 1.0178109741210937, 1.016742919921875, 1.0165545043945312, 1.016642578125, 1.0165452880859376, 1.0169088134765625, 1.0167982177734376, 1.01705419921875, 1.0169876708984376, 1.0166353759765625, 1.01646337890625, 1.016869873046875, 1.0170398559570313, 1.0165657958984375, 1.016586181640625, 1.0168739624023437, 1.0175160522460938, 1.0169579467773437, 1.0165821533203125, 2.1117490234375, 1.016916015625, 1.017007080078125, 1.0167859497070313, 1.0164111328125, 1.016964111328125, 1.0174464111328125, 1.016838134765625, 1.016722412109375, 1.01697021484375, 1.0166876220703125, 1.0165493774414063, 1.0166353759765625, 1.0168402099609375, 1.0164602661132813, 1.016764404296875, 1.0166251220703124, 1.0166599731445312, 1.0170848999023439, 1.0168576049804687, 1.01642138671875, 1.0169517822265626, 1.01652685546875, 1.016585205078125, 1.0163035888671874, 1.0168361206054688, 1.0171637573242187, 1.01675927734375, 1.0166220703125, 1.0165278930664063, 1.0162329711914062, 1.0164930419921876, 1.0165626831054688, 1.0164500732421875, 1.0164182739257812, 1.016795166015625, 1.0171268920898437, 1.0172815551757812, 1.0167838745117188, 1.0167255249023437, 1.0174822387695313, 1.0175631103515625, 1.0172815551757812, 1.0165330200195313, 1.0170941162109375, 1.0168494262695313, 1.0168780517578124, 1.0167992553710938, 1.0165073852539062, 1.01684326171875, 1.0168442993164062, 1.0172507934570312, 1.0167459716796876, 1.0169251708984375, 1.017218017578125, 1.0175836181640625, 1.0206064453125, 1.0173880615234374, 1.017280517578125, 1.0169978637695312, 1.0173460693359375, 1.0168074340820312, 1.0165514526367188, 2.109128662109375, 1.0168524780273438, 1.01806591796875, 1.0175098876953126, 1.0182809448242187, 1.0176317138671875, 1.016975341796875, 1.0173204345703124, 1.0172610473632813, 1.0172006225585937, 1.017169921875, 1.0174801635742188, 1.0167971801757814, 1.018260498046875, 1.01722314453125, 1.0176788330078126, 1.0169375, 1.0171392211914063, 1.01722314453125, 1.01747509765625, 1.017091064453125, 1.0181314697265624, 1.0181068725585938, 1.0168790893554687, 1.0172938232421875, 1.016933349609375, 1.0170153198242187, 1.0169262084960937, 1.0168422241210937, 1.0174187622070312, 1.016806396484375, 1.0169446411132812, 1.0168545532226563, 1.0171279296875, 1.0165452880859376, 1.0166732788085937, 1.0163753051757813, 1.0164019165039062, 1.0169395141601563, 1.016479736328125, 1.0163753051757813, 1.0167285766601561, 1.016975341796875, 1.0166343383789063, 1.016521728515625, 1.0164971313476563, 1.01644287109375, 1.0162514038085937, 1.0162565307617188, 1.0164049682617187, 1.0166456298828126, 1.0162913208007813, 1.0164541625976562, 1.0166067504882812, 1.0164879150390624, 1.0165186767578125, 1.0164029541015625, 1.0165452880859376, 1.0164561767578124, 1.016764404296875, 1.0167705688476563, 1.0167193603515625, 1.016838134765625, 2.111257568359375, 1.0166507568359375, 1.0164859008789062, 1.0166497192382813, 1.0162554931640626, 1.0165023803710938, 1.0166967163085938, 1.016848388671875, 1.0164193115234375, 1.0167725830078125, 1.01661181640625, 1.0165176391601562, 1.017017333984375, 1.0167285766601561, 1.0165155639648438, 1.0169896850585938, 1.0168555297851563, 1.016900634765625, 1.0165892944335937, 1.0169630737304687, 1.0168340454101563, 1.0165022583007812, 1.01639990234375, 1.0166077270507812, 1.0167879638671875, 1.0163414916992188, 1.016711181640625, 1.016896484375, 1.0175538940429687, 1.0173655395507812, 1.01714013671875, 1.0171791381835937, 1.016394775390625, 1.0165196533203125, 1.0164090576171876, 1.0165565185546874, 1.0166087646484374, 1.0164295654296875, 1.0164623413085938, 1.016205322265625, 1.0160199584960938, 1.0161571655273438, 1.0178303833007813, 1.0175641479492188, 1.0178211669921875, 1.0177904663085937, 1.0168576049804687, 1.0169139404296874, 1.016748046875, 1.0167572631835937, 1.0166681518554688, 1.0166241455078124, 1.0170941162109375, 1.0179061889648438, 1.0177638549804688, 1.0172477416992187, 1.01701220703125, 1.017195556640625, 1.0166302490234376, 1.0166353759765625, 1.0164111328125, 1.0163353881835937, 1.0165473022460938, 2.111709228515625, 1.016605712890625, 1.0165575561523437, 1.0163179321289062, 1.0160752563476563, 1.0163681030273437, 1.0162769775390625, 1.01686376953125, 1.0165380859375, 1.01652685546875, 1.0169149169921874, 1.0168729858398438, 1.016648681640625, 1.0167265014648437, 1.0163302612304688, 1.0163599243164063, 1.0167684936523438, 1.0168627319335937, 1.0168145751953126, 1.0170839233398437, 1.0169886474609375, 1.016784912109375, 1.0166917114257812, 1.016859619140625, 1.0169098510742187, 1.0174157104492187, 1.0167152709960938, 1.0165821533203125, 1.0165196533203125, 1.0169415893554687, 1.01663232421875, 1.016784912109375, 1.0165791015625, 1.0167817993164063, 1.0162913208007813, 1.016732666015625, 1.0160650024414062, 1.0161500244140624, 1.0161346435546874, 1.0164756469726564, 1.0165278930664063, 1.0166435546875, 1.0165442504882813, 1.0163240966796876, 1.0163547973632812, 1.0165545043945312, 1.016332275390625, 1.0163927001953126, 1.0162432250976563, 1.0166128540039063, 1.01661181640625, 1.0168319702148438, 1.0166835327148438, 1.0168361206054688, 1.0165135498046876, 1.0166527709960937, 1.0165084228515624, 1.0164992065429688, 1.016553466796875, 1.0167490844726563, 1.0172364501953124, 1.0167316284179688, 1.0162698364257812, 2.113395751953125, 1.017417724609375, 1.0168319702148438, 1.016943603515625, 1.0170357666015626, 1.01726513671875, 1.016616943359375, 1.0171105346679687, 1.0168176879882813, 1.0170306396484374, 1.0163834838867187, 1.0166005859375, 1.0165791015625, 1.0170603637695312, 1.0170880126953126, 1.0176962280273438, 1.0171422729492188, 1.0168514404296876, 1.0166578979492187, 1.0166784057617186, 1.01640087890625, 1.0165043334960937, 1.0165616455078126, 1.0163988647460938, 1.016511474609375, 1.0165104370117188, 1.0166610107421874, 1.01673779296875, 1.016742919921875, 1.0167920532226562, 1.0162626342773438, 1.0163783569335938, 1.0163292236328125, 1.0166128540039063, 1.0167019653320313, 1.0171371459960938, 1.0175958862304688, 1.0170101928710937, 1.0169866333007813, 1.0172344360351562, 1.0172160034179687, 1.016932373046875, 1.0171678466796874, 1.0173429565429688, 1.0172846069335937, 1.0185523071289062, 1.0170470581054687, 1.0176522216796875, 1.017080810546875, 1.0174044189453124, 1.0174361572265624, 1.017650146484375, 1.0165667724609375, 1.0164510498046875, 1.0166917114257812, 1.0181375732421876, 1.0173368530273437, 1.0173501586914062, 1.0173982543945312, 1.0175170288085937, 1.0172129516601562, 1.0174832763671875, 1.017628662109375, 2.11508642578125, 1.01734912109375, 1.0171422729492188, 1.0165667724609375, 1.0170706176757813, 1.0171514892578124, 1.0170203857421876, 1.0170941162109375, 1.017049072265625, 1.016974365234375, 1.0170296020507812, 1.0174832763671875, 1.0167408447265625, 1.01798193359375, 1.0171473999023437, 1.016896484375, 1.0165084228515624, 1.0163824462890625, 1.016531982421875, 1.016742919921875, 1.0175529174804687, 1.0176614379882813, 1.0177628173828126, 1.0172733154296876, 1.017101318359375, 1.0169559326171875, 1.0170614013671875, 1.0167142333984376, 1.01680126953125, 1.0172303466796875, 1.0184417114257813, 1.0178109741210937, 1.0175836181640625, 1.0166937866210937, 1.016395751953125, 1.0165514526367188, 1.016395751953125, 1.0163200073242187, 1.0162093505859375, 1.0166200561523437, 1.0170992431640624, 1.0166538696289062, 1.0170900268554688, 1.0167030029296875, 1.0169343872070313, 1.0181693725585939, 1.018203125, 1.0185471801757813, 1.0176788330078126, 1.0179194946289063, 1.0182062377929688, 1.0176983032226563, 1.0169210815429688, 1.0170449829101562, 1.0173613891601563, 1.016896484375, 1.0173850708007812, 1.0171493530273437, 1.0174464111328125, 1.0179911499023437, 1.0175467529296875, 1.017291748046875, 1.0167869262695313]",tokens/s,0.9682956747524812,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-7b-hf,meta-llama/Llama-2-7b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2029.023232,5480.382464,0.0,4833.93536,4503.282688,s,10,5.706882629394531,0.5706882629394532,0.0016266379572605122,0.5707381896972656,0.5725719726562499,0.5726634887695312,0.5727367016601562,"[0.5727550048828125, 0.5716815185546875, 0.5690197143554687, 0.56878515625, 0.5694818725585937, 0.5685383911132813, 0.5697948608398438, 0.5724900512695312, 0.571784423828125, 0.5725516357421875]",tokens/s,448.58115476462876,kWh,6.716496138660996e-06,3.680318861643172e-06,3.126274105956043e-05,4.16595560598646e-05,tokens/kWh,6145048.680598735,MB,2029.023232,5480.382464,0.0,4833.93536,4688.699392,s,10,334.41517578125,33.441517578125,0.005471176707679699,33.439892578125,33.450382421875,33.4504509765625,33.4505058203125,"[33.44433203125, 33.4401328125, 33.436796875, 33.43383203125, 33.43801953125, 33.4503671875, 33.45051953125, 33.436765625, 33.4447578125, 33.43965234375]",tokens/s,1.8838857971329028,kWh,0.0003948281717245225,0.0002164000882931032,0.0018034092266768405,0.0024146374866944663,tokens/kWh,26090.872997355913,,s,629,339.0184661254883,0.5389800733314599,0.06780085317370947,0.5307340698242188,0.5313611816406251,0.5316872192382812,1.099913408203125,"[0.5303726196289062, 0.5304791259765625, 0.5303756713867187, 0.5306491088867188, 0.5304463500976563, 0.5305681762695312, 0.5304903564453125, 0.530681884765625, 0.5307289428710937, 0.530619384765625, 0.5308334350585937, 0.53085693359375, 0.5303705444335938, 0.5305958251953125, 0.5302774047851563, 0.5305548706054688, 0.5302968139648437, 0.530682861328125, 0.5306572875976563, 0.53058251953125, 0.5303828735351562, 0.5305906982421875, 0.53028759765625, 0.5303807983398438, 0.5304647827148438, 0.5309767456054687, 0.5310658569335938, 0.5310986328125, 0.5302282104492188, 0.5309931640625, 0.5306439819335937, 0.5309173583984375, 0.53104638671875, 0.5319270629882813, 0.531589111328125, 0.5317703857421875, 0.5316536254882812, 0.5319987182617187, 0.53172021484375, 0.53193115234375, 0.5317007446289063, 0.5311692504882812, 0.5306941528320313, 0.5313402709960937, 0.5311119384765625, 0.5320499267578125, 0.5308436279296875, 0.5309603881835937, 0.53089794921875, 0.5311702880859375, 0.5305272216796875, 0.5305426025390625, 0.5305640869140625, 0.5306859741210938, 0.5304647827148438, 0.5306275634765625, 0.5305589599609375, 0.5307914428710937, 0.5308579711914062, 0.530808837890625, 0.5308436279296875, 0.5311334228515625, 1.1034122314453125, 0.531583984375, 0.5308897094726562, 0.5307801513671875, 0.530830322265625, 0.5305958251953125, 0.5306961669921875, 0.5304053955078125, 0.53068798828125, 0.5302650756835937, 0.5304074096679687, 0.5301115112304687, 0.5304862670898437, 0.5300991821289063, 0.5306500854492188, 0.5302988891601562, 0.5305692138671875, 0.530218994140625, 0.5305047607421876, 0.5306592407226562, 0.5311631469726562, 0.5304155883789062, 0.5312952270507812, 0.5305374755859374, 0.530766845703125, 0.5304176635742187, 0.5306275634765625, 0.5305128784179688, 0.5309767456054687, 0.5305927734375, 0.5308180541992188, 0.5308170166015626, 0.5308436279296875, 0.530608154296875, 0.5307197265625, 0.5304832153320312, 0.5310269165039062, 0.530788330078125, 0.531056640625, 0.5312041015625, 0.5311282958984375, 0.5308856201171875, 0.5310484619140625, 0.5306941528320313, 0.5308334350585937, 0.5305599975585937, 0.5322680053710938, 0.530998291015625, 0.5309849853515625, 0.5308098754882813, 0.5307525024414063, 0.53083544921875, 0.5311477661132813, 0.5306255493164063, 0.5309736938476562, 0.531083251953125, 0.5314232177734375, 0.5308733520507812, 0.531041259765625, 0.530524169921875, 0.531251220703125, 0.5304913330078125, 0.5308006591796876, 1.0999736328125, 0.530502685546875, 0.5307003173828125, 0.5304801025390625, 0.5305569458007813, 0.5305374755859374, 0.5308016357421875, 0.5303275756835938, 0.5305835571289063, 0.5303971557617188, 0.5308845825195313, 0.5308651733398437, 0.5319014282226563, 0.5306552124023437, 0.5313453979492188, 0.5305538330078124, 0.5305252075195312, 0.5303152465820312, 0.5307760620117188, 0.5310126342773438, 0.5308641357421875, 0.5306593017578125, 0.530639892578125, 0.5305968627929688, 0.5306808471679687, 0.5308436279296875, 0.5307340698242188, 0.53047705078125, 0.5306808471679687, 0.5303255004882812, 0.53110986328125, 0.5310003051757812, 0.5306552124023437, 0.5305599975585937, 0.5308487548828125, 0.5304658203125, 0.5309296875, 0.5307279663085938, 0.5307545776367187, 0.5304330444335937, 0.5307012939453125, 0.530713623046875, 0.5310167236328125, 0.5309470825195313, 0.5307689208984375, 0.5305252075195312, 0.5307125854492187, 0.5308221435546875, 0.5308416137695312, 0.530892822265625, 0.5315543212890625, 0.5305845947265625, 0.531040283203125, 0.530492431640625, 0.5305466918945313, 0.5306337280273438, 0.530735107421875, 0.5310238647460938, 0.5306429443359375, 0.5305426025390625, 0.5307340698242188, 0.530535400390625, 0.5311631469726562, 1.09973193359375, 0.53024560546875, 0.53064501953125, 0.530534423828125, 0.5306911010742188, 0.5307279663085938, 0.5305538330078124, 0.5307115478515625, 0.5306583251953125, 0.5304094848632812, 0.5305528564453125, 0.5303408813476562, 0.530830322265625, 0.5302855834960938, 0.5308221435546875, 0.5302835083007813, 0.5305282592773437, 0.5302476806640625, 0.5306634521484375, 0.5304013061523437, 0.5309204711914063, 0.5303469848632812, 0.5309839477539062, 0.5302742919921875, 0.53121435546875, 0.5306419067382813, 0.5312420043945313, 0.5304524536132813, 0.5306388549804687, 0.5301882934570312, 0.5307074584960938, 0.5305753784179688, 0.5308630981445313, 0.530572265625, 0.5305016479492187, 0.5303705444335938, 0.5305282592773437, 0.5302476806640625, 0.5306654663085938, 0.5310330810546875, 0.531125244140625, 0.530513916015625, 0.530820068359375, 0.5313054809570312, 0.5315963134765626, 0.5308518676757813, 0.5307258911132813, 0.5309255981445312, 0.5307606811523438, 0.5307371215820312, 0.53144677734375, 0.5305640869140625, 0.5306583251953125, 0.5305569458007813, 0.53089794921875, 0.5304473876953125, 0.53081396484375, 0.5305446166992187, 0.5308446655273438, 0.5305866088867187, 0.5311211547851562, 0.5311539306640625, 0.5308313598632812, 1.1005552978515625, 0.5304330444335937, 0.5307955322265625, 0.530313232421875, 0.5304658203125, 0.5306838989257813, 0.5304944458007812, 0.5302742919921875, 0.5305692138671875, 0.530356201171875, 0.53049755859375, 0.5303019409179688, 0.5304391479492188, 0.5303101196289063, 0.5306808471679687, 0.5305149536132813, 0.5315686645507812, 0.530671630859375, 0.5310003051757812, 0.5307750244140625, 0.5311651611328125, 0.5306009521484375, 0.5306388549804687, 0.5303910522460937, 0.5305743408203125, 0.53049755859375, 0.5307238159179688, 0.5304903564453125, 0.5306675415039063, 0.5307310180664062, 0.5306060791015625, 0.5304954833984376, 0.5306849365234375, 0.5304647827148438, 0.5310084838867187, 0.531357666015625, 0.5308907470703125, 0.5313607788085938, 0.5305436401367187, 0.5303142700195312, 0.5307197265625, 0.5305866088867187, 0.5307258911132813, 0.5306911010742188, 0.530746337890625, 0.530513916015625, 0.5311181030273437, 0.5308856201171875, 0.5307627563476562, 0.5306132202148437, 0.53115185546875, 0.5308733520507812, 0.5311539306640625, 0.5306583251953125, 0.5317621459960937, 0.5305640869140625, 0.5311201171875, 0.5317539672851562, 0.5310535888671875, 0.5312788696289062, 0.5310422973632812, 0.5307166748046875, 0.5311488037109375, 1.099758544921875, 0.5304155883789062, 0.5309942016601562, 0.5306316528320313, 0.5310044555664063, 0.5309592895507812, 0.5309296875, 0.531293212890625, 0.5310361328125, 0.5315983276367188, 0.5309173583984375, 0.53089892578125, 0.5309368286132813, 0.5309173583984375, 0.5310187377929687, 0.53051904296875, 0.5308784790039063, 0.53064501953125, 0.530935791015625, 0.5305640869140625, 0.53085595703125, 0.5304842529296875, 0.5306941528320313, 0.5305200805664062, 0.5306286010742187, 0.5310453491210938, 0.5314888916015625, 0.5309019165039063, 0.5314559936523438, 0.5304483642578125, 0.5311907958984375, 0.5310607299804687, 0.53081396484375, 0.530460693359375, 0.5306798095703125, 0.5305108642578125, 0.5307340698242188, 0.5307310180664062, 0.5322465209960937, 0.5307340698242188, 0.5311016845703125, 0.5303255004882812, 0.53104541015625, 0.5311344604492187, 0.5315880737304688, 0.5312041015625, 0.5313812255859375, 0.5315963134765626, 0.5314437255859376, 0.5312255859375, 0.5312286987304687, 0.5308856201171875, 0.5311661987304688, 0.5306419067382813, 0.5310013427734375, 0.5312112426757812, 0.5314898071289063, 0.5305784301757812, 0.5307023315429688, 0.5308221435546875, 0.5309501342773437, 0.5306531982421875, 0.5310136108398438, 1.101791259765625, 0.5311979370117188, 0.5310494995117188, 0.5309296875, 0.5306951904296875, 0.5305620727539062, 0.53075146484375, 0.5304832153320312, 0.5304832153320312, 0.5304678344726562, 0.5305579223632813, 0.5303460083007813, 0.530535400390625, 0.53030810546875, 0.5306685180664062, 0.530313232421875, 0.530567138671875, 0.5305947875976562, 0.5310105590820312, 0.5304862670898437, 0.5315010375976562, 0.5307781372070313, 0.5309634399414063, 0.5304596557617187, 0.5305436401367187, 0.5304074096679687, 0.5306552124023437, 0.5303705444335938, 0.5305252075195312, 0.5304309692382813, 0.530587646484375, 0.5305272216796875, 0.5306224365234375, 0.5303101196289063, 0.5306122436523437, 0.5303859252929688, 0.53157373046875, 0.5317867431640625, 0.5306838989257813, 0.531019775390625, 0.5308037109375, 0.5315563354492188, 0.5318829956054687, 0.5318727416992187, 0.531968017578125, 0.5313167114257813, 0.5311610717773437, 0.5309112548828125, 0.5310955810546875, 0.5309736938476562, 0.531399658203125, 0.5308375244140625, 0.5309644775390625, 0.5308323974609375, 0.5311262817382812, 0.5311344604492187, 0.5315696411132812, 0.5313095703125, 0.5322188720703125, 0.5319075927734375, 0.5321328735351563, 0.53180517578125, 0.5310341186523437, 1.1037552490234375, 0.5302538452148438, 0.53066650390625, 0.5303644409179687, 0.530545654296875, 0.5308262329101563, 0.5305938110351562, 0.5302937622070313, 0.5309501342773437, 0.5304954833984376, 0.5306388549804687, 0.5307566528320312, 0.531390380859375, 0.5309030151367188, 0.5311232299804688, 0.5304494018554687, 0.5305374755859374, 0.5301544799804687, 0.5307739868164062, 0.5302302856445312, 0.5306542358398437, 0.5302691650390625, 0.5304893188476563, 0.530271240234375, 0.5304873046875, 0.530249755859375, 0.5306429443359375, 0.5304688720703125, 0.5305733032226563, 0.5302630615234375, 0.5308067626953125, 0.5304801025390625, 0.5307535400390625, 0.5306204223632812, 0.5305897216796875, 0.5304873046875, 0.5308692626953125, 0.5305548706054688, 0.531114013671875, 0.5308733520507812, 0.531294189453125, 0.5308948364257813, 0.53117236328125, 0.5310709838867187, 0.5314703369140625, 0.5308497924804687, 0.5314765014648437, 0.530946044921875, 0.5310259399414062, 0.5308795166015625, 0.5310228271484375, 0.5311436767578125, 0.530756591796875, 0.5304422607421875, 0.5306869506835937, 0.5305169677734375, 0.53072998046875, 0.5304780883789062, 0.5309317016601562, 0.5314334716796875, 0.5309531860351563, 0.5307371215820312, 0.5311385498046876, 1.1027271728515624, 0.5304412231445312, 0.5307801513671875, 0.5308590087890624, 0.5311181030273437, 0.5311273193359375, 0.5310904541015625, 0.53079345703125, 0.5309389038085938, 0.5304013061523437, 0.5307391967773437, 0.5304248046875, 0.530746337890625, 0.5302958374023438, 0.531314697265625, 0.5305169677734375, 0.5308467407226563, 0.5305415649414063, 0.5307044067382812, 0.5304258422851562, 0.5306500854492188, 0.530608154296875, 0.5310791625976562, 0.5308784790039063, 0.5317447509765625, 0.530534423828125, 0.5315819702148438, 0.5309255981445312, 0.531177490234375, 0.53104638671875, 0.5305394897460938, 0.530318359375, 0.5304934692382812, 0.5302620239257813, 0.5305006103515625, 0.5303418579101562, 0.530535400390625, 0.5304043579101563, 0.5306634521484375, 0.5306224365234375, 0.5308016357421875, 0.5306849365234375, 0.5312051391601562, 0.53136279296875, 0.5315717163085938, 0.5321359252929687, 0.5316669311523438, 0.5309634399414063, 0.5312890625, 0.5310740356445313, 0.5311795043945312, 0.531040283203125, 0.531083251953125, 0.53062451171875, 0.5307965698242187, 0.5304965209960938, 0.5307801513671875, 0.530714599609375, 0.5308016357421875, 0.5307023315429688, 0.5310259399414062, 0.5310658569335938, 0.5317560424804687, 1.103698974609375, 0.5303838500976562, 0.5308118896484375, 0.5313546142578125, 0.5313822631835937, 0.5304340209960937, 0.5307258911132813, 0.5303450317382813, 0.530662353515625, 0.5305333862304688, 0.5306746826171875, 0.5304586181640625, 0.5306736450195313, 0.5304258422851562, 0.5309183959960937, 0.53065625, 0.5313136596679687, 0.5311395874023438, 0.5308251953125, 0.5308211059570312, 0.530787353515625, 0.530513916015625, 0.5309204711914063, 0.5309265747070312, 0.5309603881835937, 0.5305927734375, 0.5307289428710937, 0.5303971557617188, 0.5306982421875, 0.5306787719726562, 0.531040283203125, 0.5307310180664062, 0.530882568359375, 0.5309470825195313, 0.5306675415039063, 0.5309173583984375, 0.5313720092773437, 0.5311057739257813, 0.5313310546875, 0.5306521606445312, 0.5313228759765625, 0.5306849365234375, 0.530766845703125, 0.5306306762695312, 0.5308231811523437, 0.5304586791992187, 0.5306050415039063, 0.530514892578125, 0.5307535400390625, 0.5304391479492188, 0.5307156372070313, 0.530545654296875, 0.5310863647460937, 0.5305620727539062, 0.530904052734375, 0.53064599609375, 0.5309317016601562, 0.53065625, 0.5311386108398437, 0.5306500244140625, 0.5308600463867188, 0.5306286010742187, 0.5308651733398437]",tokens/s,1.8553561615347953,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,-,-,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -42109,34 +42051,40 @@ ImportError: This modeling file requires the following packages that were not fo File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 106, in _inner_fn + validate_repo_id(arg_value) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 160, in validate_repo_id + raise HFValidationError( +huggingface_hub.errors.HFValidationError: Repo id must use alphanumeric chars or '-', '_', '.', '--' and '..' are forbidden, '-' and '.' cannot start or end the name, max length is 96: '-'. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 466, in cached_file + raise EnvironmentError( +OSError: Incorrect path_or_model_id: '-'. Please provide either the path to a local folder or the repo_id of a model on the Hub. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-30b,huggyllama/llama-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-410m,EleutherAI/pythia-410m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1378.24256,1340.604416,0.0,694.157312,598.498816,s,10,0.5756522903442383,0.05756522903442383,0.0016369727383896268,0.0568012638092041,0.05918429183959961,0.06064101028442383,0.061806385040283206,"[0.06209772872924805, 0.05672822570800781, 0.056688095092773436, 0.05679859161376953, 0.05886057662963867, 0.057347423553466795, 0.05689571380615235, 0.05671388626098633, 0.05680393600463867, 0.05671811294555664]",tokens/s,4447.129009890898,kWh,6.782567046937489e-07,3.716537143845926e-07,1.9805285685486103e-06,3.0304389876269517e-06,tokens/kWh,84476209.89738722,MB,1378.24256,1340.604416,0.0,694.157312,659.031552,s,10,35.66919848632813,3.566919848632813,0.03950000205433062,3.552089111328125,3.624692236328125,3.64104033203125,3.65411880859375,"[3.57450146484375, 3.532454345703125, 3.56766015625, 3.657388427734375, 3.621059326171875, 3.5402509765625, 3.56031982421875, 3.532387939453125, 3.539317626953125, 3.5438583984375]",tokens/s,17.662297633109883,kWh,4.217196008799568e-05,2.3111615147015983e-05,0.00011743306696224983,0.00018271664219726155,tokens/kWh,344796.1786205822,,s,629,36.1255710258484,0.05743334026366993,0.0068485805293125165,0.05611315155029297,0.058175487518310545,0.05834158096313477,0.11305373931884766,"[0.05799008178710938, 0.05708492660522461, 0.05782732772827148, 0.05744332885742188, 0.057527294158935545, 0.05809561538696289, 0.0565401611328125, 0.05911040115356445, 0.05911040115356445, 0.058807296752929686, 0.058791934967041014, 0.05813555145263672, 0.05813248062133789, 0.05811199951171875, 0.058054656982421876, 0.05821952056884765, 0.057041919708251954, 0.056956928253173826, 0.057338878631591796, 0.05677363204956055, 0.05590323257446289, 0.05592268753051758, 0.05590425491333008, 0.05611008071899414, 0.05601484680175781, 0.05587148666381836, 0.055932926177978515, 0.056509441375732425, 0.05619200134277344, 0.056089599609375, 0.05595647811889649, 0.055981056213378906, 0.056079360961914064, 0.05589503860473633, 0.0559554557800293, 0.056065025329589846, 0.0564029426574707, 0.05732863998413086, 0.057398273468017576, 0.05806694412231445, 0.05649203109741211, 0.05601792144775391, 0.05590425491333008, 0.05598822402954102, 0.05598310470581055, 0.05660671997070312, 0.057234432220458986, 0.05611315155029297, 0.05587251281738281, 0.055923713684082034, 0.05598822402954102, 0.056018943786621096, 0.05615820693969727, 0.05591244888305664, 0.05669478225708008, 0.05584281539916992, 0.05593395233154297, 0.05587148666381836, 0.056016895294189455, 0.056000511169433595, 0.05590016174316406, 0.05584896087646484, 0.11391897583007812, 0.056886272430419924, 0.05697945785522461, 0.05592268753051758, 0.0564951057434082, 0.05716787338256836, 0.056594432830810545, 0.05600153732299805, 0.055695358276367186, 0.05583564758300781, 0.05596057510375976, 0.055913471221923826, 0.05584896087646484, 0.05577318572998047, 0.05587148666381836, 0.056035327911376956, 0.055943168640136716, 0.05580799865722656, 0.05776486587524414, 0.057622528076171874, 0.05631180953979492, 0.055818241119384764, 0.055777278900146485, 0.05587251281738281, 0.0560118408203125, 0.05598918533325195, 0.05593395233154297, 0.05613772964477539, 0.056908798217773435, 0.05586841583251953, 0.055809024810791016, 0.05591961669921875, 0.05592063903808594, 0.05590425491333008, 0.056174591064453126, 0.05596364974975586, 0.05545369720458984, 0.05593804931640625, 0.055806976318359375, 0.05584896087646484, 0.05586431884765625, 0.055890945434570315, 0.055839744567871094, 0.05590630340576172, 0.055741439819335936, 0.05607321548461914, 0.055858177185058595, 0.05598515319824219, 0.05599641418457031, 0.056035327911376956, 0.056120319366455076, 0.05593907165527344, 0.05596364974975586, 0.055932926177978515, 0.055947265625, 0.05584076690673828, 0.05575884628295898, 0.055823360443115234, 0.05576704025268555, 0.05586636734008789, 0.055923713684082034, 0.05593088150024414, 0.0557916145324707, 0.11292671966552735, 0.05593600082397461, 0.056169471740722655, 0.055927806854248044, 0.05587558364868164, 0.05590835189819336, 0.055769088745117185, 0.056676353454589844, 0.05695078277587891, 0.05639987182617188, 0.056005630493164066, 0.05686995315551758, 0.05640902328491211, 0.05631488037109375, 0.05584588623046875, 0.057027584075927736, 0.05787955093383789, 0.05715967941284179, 0.05641113662719727, 0.05674803161621094, 0.057038848876953124, 0.05642956924438477, 0.05662105560302735, 0.05600460815429688, 0.05647359848022461, 0.056395774841308595, 0.05592473602294922, 0.05653299331665039, 0.05728460693359375, 0.056796192169189456, 0.056970207214355466, 0.05783552169799805, 0.056842239379882815, 0.05652377700805664, 0.05740031814575195, 0.056120319366455076, 0.05686272048950195, 0.05625446319580078, 0.05662105560302735, 0.056174591064453126, 0.05706854248046875, 0.056346622467041016, 0.05597798538208008, 0.05667020797729492, 0.05655551910400391, 0.05687705612182617, 0.057256961822509764, 0.05748121643066406, 0.057133056640625, 0.05615923309326172, 0.055962623596191405, 0.05652070236206055, 0.056753150939941405, 0.056771583557128906, 0.056970241546630856, 0.05616844940185547, 0.057388031005859375, 0.05657702255249023, 0.057078784942626956, 0.05769420623779297, 0.05860966491699219, 0.056180736541748044, 0.05587148666381836, 0.11307008361816406, 0.05602406311035156, 0.05604044723510742, 0.056018943786621096, 0.058791934967041014, 0.0583741455078125, 0.05816524887084961, 0.05799321746826172, 0.058156032562255856, 0.058518527984619144, 0.058423297882080075, 0.05813350296020508, 0.058103809356689455, 0.05830451202392578, 0.058180606842041016, 0.058041343688964846, 0.05809254455566406, 0.05821952056884765, 0.05822873687744141, 0.05809151840209961, 0.058120193481445315, 0.05805158233642578, 0.05811609649658203, 0.05830348968505859, 0.058006526947021485, 0.05869670486450195, 0.058369022369384765, 0.058347518920898435, 0.058028030395507815, 0.058055679321289064, 0.058210304260253906, 0.0581058578491211, 0.058054656982421876, 0.058288158416748045, 0.058100704193115235, 0.05831987380981445, 0.058275840759277345, 0.05816524887084961, 0.05805977630615235, 0.05837823867797851, 0.05834444808959961, 0.05804032135009766, 0.05805158233642578, 0.05809971237182617, 0.058052608489990234, 0.05806489562988281, 0.05809254455566406, 0.05809664154052734, 0.05816729736328125, 0.0582042236328125, 0.05809862518310547, 0.05814169692993164, 0.05818675231933594, 0.057608192443847656, 0.05821440124511719, 0.058124320983886715, 0.058272735595703125, 0.058308609008789064, 0.058169345855712894, 0.058071041107177736, 0.058175487518310545, 0.05823897552490234, 0.0583372802734375, 0.11740262603759766, 0.058298366546630856, 0.0585544319152832, 0.05803107070922851, 0.05821948623657226, 0.05826047897338867, 0.05810793685913086, 0.058076126098632816, 0.0581662712097168, 0.05814988708496094, 0.05825843048095703, 0.05809356689453125, 0.05850931167602539, 0.058336254119873046, 0.058426368713378904, 0.05825331115722656, 0.058418174743652344, 0.0581396484375, 0.05809254455566406, 0.05811097717285156, 0.05806796646118164, 0.05830144119262695, 0.05805977630615235, 0.05824512100219727, 0.058036224365234375, 0.058142719268798826, 0.05810892868041992, 0.05846227264404297, 0.058175487518310545, 0.058110912322998046, 0.05813248062133789, 0.0584089584350586, 0.05830451202392578, 0.0581396484375, 0.058211326599121094, 0.05804851150512695, 0.0581662712097168, 0.05817350387573242, 0.05801055908203125, 0.0581662712097168, 0.05825331115722656, 0.05611929702758789, 0.05594521713256836, 0.055949310302734374, 0.05611008071899414, 0.056019966125488284, 0.055982078552246094, 0.055962623596191405, 0.05608448028564453, 0.05570457458496094, 0.056204288482666016, 0.05575372695922851, 0.055787521362304686, 0.05749350357055664, 0.05674803161621094, 0.055940097808837894, 0.05600460815429688, 0.056019966125488284, 0.05588787078857422, 0.05589913558959961, 0.05583052825927735, 0.055907329559326174, 0.05695283126831055, 0.11374079895019532, 0.055927806854248044, 0.05590323257446289, 0.05608652877807617, 0.05595340728759766, 0.056174591064453126, 0.05607321548461914, 0.05605686569213867, 0.056255455017089846, 0.05570969772338867, 0.05589606475830078, 0.05596063995361328, 0.056186817169189454, 0.05588991928100586, 0.055947265625, 0.055981056213378906, 0.056204288482666016, 0.05590016174316406, 0.055982078552246094, 0.05592575836181641, 0.05591862487792969, 0.055920608520507814, 0.05575475311279297, 0.055944190979003904, 0.05595852661132812, 0.055911422729492184, 0.05676134490966797, 0.05655039978027344, 0.055940097808837894, 0.055934974670410156, 0.05602918243408203, 0.056057857513427733, 0.055940097808837894, 0.05590425491333008, 0.056027137756347656, 0.05611724853515625, 0.055994369506835937, 0.05601484680175781, 0.05608448028564453, 0.055962623596191405, 0.05571177673339844, 0.055808990478515626, 0.05793484878540039, 0.057431041717529295, 0.056551422119140625, 0.05656576156616211, 0.05593600082397461, 0.05665689468383789, 0.05718732833862305, 0.055906368255615235, 0.058727359771728514, 0.05800755310058594, 0.05647257614135742, 0.056513534545898435, 0.05671116638183594, 0.05588172912597656, 0.056030208587646485, 0.05598003387451172, 0.05590528106689453, 0.05593600082397461, 0.05535129547119141, 0.05544755172729492, 0.05648691177368164, 0.11342233276367188, 0.05600358581542969, 0.05600153732299805, 0.05581107330322266, 0.055964672088623046, 0.05609062576293945, 0.05611724853515625, 0.05599846267700195, 0.056147968292236325, 0.05704908752441406, 0.05751091384887695, 0.05676031875610352, 0.05597798538208008, 0.05692620849609375, 0.05621247863769531, 0.05710335922241211, 0.05665280151367187, 0.055989246368408206, 0.0569989128112793, 0.056965118408203126, 0.056476673126220706, 0.05757952117919922, 0.05608243179321289, 0.057240577697753904, 0.05665280151367187, 0.056497150421142575, 0.057215999603271485, 0.0573573112487793, 0.05771366500854492, 0.056035327911376956, 0.05668044662475586, 0.05652479934692383, 0.056048641204833986, 0.056766464233398435, 0.05603737640380859, 0.05681568145751953, 0.05561439895629883, 0.055951358795166016, 0.05671014404296875, 0.05602099227905273, 0.05684531021118164, 0.05712998580932617, 0.05622579193115235, 0.05718425750732422, 0.05587046432495117, 0.05815193557739258, 0.05669580841064453, 0.056288257598876956, 0.05639168167114258, 0.05692416000366211, 0.05890764617919922, 0.05709619140625, 0.055943168640136716, 0.05594521713256836, 0.05592473602294922, 0.055702529907226565, 0.05582233428955078, 0.05554380798339844, 0.05590425491333008, 0.0567193603515625, 0.05655756759643555, 0.05586636734008789, 0.05595238494873047, 0.11324825286865234, 0.056097793579101565, 0.05586841583251953, 0.0565401611328125, 0.05603737640380859, 0.05586841583251953, 0.05586841583251953, 0.055787582397460934, 0.05582944107055664, 0.05609062576293945, 0.05594524765014648, 0.05589398574829101, 0.05601484680175781, 0.05601587295532227, 0.05612851333618164, 0.056167423248291014, 0.05636508941650391, 0.05600048065185547, 0.05591449737548828, 0.05615820693969727, 0.05590425491333008, 0.056697856903076174, 0.056491008758544924, 0.05597491073608398, 0.0558837776184082, 0.055894016265869144, 0.05606195068359375, 0.056013824462890625, 0.055877632141113284, 0.0558131217956543, 0.0560445442199707, 0.05591756820678711, 0.05575478363037109, 0.05573014450073242, 0.055923713684082034, 0.05588889694213867, 0.05579673767089844, 0.05603123092651367, 0.05595340728759766, 0.05692416000366211, 0.05709721755981445, 0.0572149772644043, 0.05634969711303711, 0.0558919677734375, 0.05590528106689453, 0.0558766098022461, 0.055841793060302736, 0.05595033645629883, 0.05608448028564453, 0.05609267044067383, 0.05588479995727539, 0.05583769607543945, 0.05596160125732422, 0.0559554557800293, 0.05604556655883789, 0.05690572738647461, 0.05594214248657227, 0.055856128692626954, 0.05609267044067383, 0.05597183990478516, 0.0560076789855957, 0.05595340728759766, 0.055993408203125, 0.11313145446777344, 0.05605068969726563, 0.05714432144165039, 0.05607219314575195, 0.055894016265869144, 0.05605990219116211, 0.055856128692626954, 0.055787521362304686, 0.0557916145324707, 0.05595647811889649, 0.05597183990478516, 0.055567359924316405, 0.05594521713256836, 0.05598720169067383, 0.05587251281738281, 0.055973888397216794, 0.05577318572998047, 0.055757823944091796, 0.055972862243652347, 0.05598310470581055, 0.05603839874267578, 0.056036350250244144, 0.05586438369750977, 0.055879615783691404, 0.05582950210571289, 0.056062976837158204, 0.055747615814208985, 0.05714838409423828, 0.05821952056884765, 0.0560711669921875, 0.05586739349365234, 0.05611520004272461, 0.05608857727050781, 0.05595340728759766, 0.0560076789855957, 0.055930912017822264, 0.05865881729125977, 0.05698665618896484, 0.0559431037902832, 0.05590835189819336, 0.05589811325073242, 0.05590323257446289, 0.05572403335571289, 0.05595852661132812, 0.055923713684082034, 0.05552844619750977, 0.05647052764892578, 0.05722623825073242, 0.05685452651977539, 0.05584384155273438, 0.05696409606933594, 0.05613260650634765, 0.05573222351074219, 0.05603123092651367, 0.05594214248657227, 0.05622579193115235, 0.05601587295532227, 0.055932926177978515, 0.05593907165527344, 0.05829119873046875, 0.05608038330078125, 0.056581119537353515, 0.056043521881103515, 0.11301171112060547, 0.05596160125732422, 0.05600460815429688, 0.05594828796386719, 0.0573306884765625, 0.05730099105834961, 0.056136703491210936, 0.05597183990478516, 0.055757823944091796, 0.05651865768432617, 0.05613772964477539, 0.05588684844970703, 0.05589811325073242, 0.055934974670410156, 0.055951358795166016, 0.05582438278198242, 0.055932926177978515, 0.05587251281738281, 0.05707059097290039, 0.057232383728027345, 0.057132030487060545, 0.056750080108642575, 0.05586227035522461, 0.055964672088623046, 0.05600972747802734, 0.05593088150024414, 0.05628518295288086, 0.05651148986816406, 0.056172542572021485, 0.05634764862060547, 0.055940097808837894, 0.0572149772644043, 0.05617049789428711, 0.05602201461791992, 0.05591654586791992, 0.05619609451293945, 0.0580239372253418, 0.056460289001464846, 0.055949310302734374, 0.056018943786621096, 0.056033279418945314, 0.05574860763549805, 0.0558960952758789, 0.056247264862060546, 0.05595443344116211, 0.05688217544555664, 0.05635276794433594, 0.055982078552246094, 0.055987232208251955, 0.0560035514831543, 0.05590937423706055, 0.05664051055908203, 0.05720883178710937, 0.056853504180908204, 0.056360958099365234, 0.0558919677734375, 0.05595852661132812, 0.05596160125732422, 0.05597491073608398, 0.05603228759765625, 0.0562564811706543, 0.055975936889648435, 0.055949310302734374]",tokens/s,17.41148948344487,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,/,/,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -42148,30 +42096,27 @@ ChildProcessError: Traceback (most recent call last): report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 373, in cached_file + raise EnvironmentError( +OSError: / does not appear to have a file named config.json. Checkout 'https://huggingface.co///tree/None' for available files. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-13b,facebook/opt-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,3081.781248,9521.594368,0.0,8875.147264,8264.141824,s,10,10.63840625,1.0638406249999999,0.0011581823391520636,1.0637650756835937,1.0652460571289062,1.0654749572753905,1.0656580773925781,"[1.0649481201171875, 1.065703857421875, 1.0634771728515624, 1.0627923583984376, 1.063096435546875, 1.0621585693359374, 1.064052978515625, 1.0644849853515626, 1.0651951904296875, 1.06249658203125]",tokens/s,240.63754850497463,kWh,1.2549749844604067e-05,6.874677577252441e-06,5.877399146358986e-05,7.819841888544636e-05,tokens/kWh,3273723.479946787,MB,3081.781248,9521.594368,0.0,8875.147264,8556.643328,s,10,631.86266796875,63.186266796874996,0.007118498406389631,63.1850546875,63.19375234375,63.198333203125,63.201997890625,"[63.192734375, 63.2029140625, 63.18565625, 63.17730078125, 63.18101953125, 63.1805546875, 63.18579296875, 63.18146875, 63.1907734375, 63.184453125]",tokens/s,0.9970520999844192,kWh,0.0007460630791551536,0.0004089103833046283,0.003496975492022614,0.004651948954482396,tokens/kWh,13542.710940389017,,s,629,640.4335947265614,1.0181774160994632,0.12635276340148643,1.0029219970703125,1.0034655395507812,1.0036467651367187,2.0656750390625,"[1.00284619140625, 1.002883056640625, 1.0025042114257812, 1.0028574829101562, 1.0028175659179688, 1.002925048828125, 1.0030203247070313, 1.0030990600585938, 1.0027622680664063, 1.0032742309570313, 1.0026455078125, 1.003062255859375, 1.0025420532226563, 1.0029680786132813, 1.0027857666015625, 1.00307763671875, 1.0029732055664062, 1.0030858154296876, 1.002630126953125, 1.0030980834960936, 1.0028267822265624, 1.003293701171875, 1.0026495971679688, 1.0032005004882814, 1.0028339233398438, 1.0035537719726562, 1.0033336181640624, 1.0031492919921876, 1.0029854736328125, 1.0029179077148438, 1.0027100219726564, 1.0030469360351562, 1.0027202758789062, 1.0029025268554688, 1.002692626953125, 1.003177978515625, 1.0032864990234376, 1.0032291870117187, 1.0031237182617188, 1.0033694458007814, 1.0031052856445313, 1.0034606323242188, 1.0029014892578125, 1.0031063232421875, 1.002977294921875, 1.0030796508789062, 1.0032691040039063, 1.003052001953125, 1.003093994140625, 1.0031728515625, 1.0026219482421874, 1.003230224609375, 1.0031892700195313, 1.003472900390625, 1.0031318969726561, 1.0034933471679688, 1.0038251342773437, 1.0035701904296874, 1.0035916748046876, 1.0035220336914064, 1.0029598999023437, 1.0031124267578124, 2.068518798828125, 1.0033325805664062, 1.0031472778320312, 1.0031912841796875, 1.0029844360351563, 1.0031206665039063, 1.0034401245117188, 1.0029373168945312, 1.0032005004882814, 1.00276123046875, 1.003198486328125, 1.0033233642578125, 1.0032588500976563, 1.0031349487304688, 1.0031708374023438, 1.0031646728515624, 1.0034074096679688, 1.0032445068359375, 1.0034769897460938, 1.0028963623046876, 1.0031943969726562, 1.0029393920898437, 1.0032639770507812, 1.0037217407226562, 1.0034319458007812, 1.0026045532226562, 1.003093017578125, 1.0026946411132813, 1.0035282592773438, 1.0035670166015624, 1.0035159301757812, 1.0033766479492188, 1.0034708251953126, 1.0032630004882812, 1.0034298706054687, 1.002693603515625, 1.0028206176757812, 1.0027888793945312, 1.0029660034179688, 1.0028257446289062, 1.0030294799804687, 1.00284619140625, 1.003236328125, 1.0038517456054687, 1.0034739379882813, 1.0031769409179687, 1.003452392578125, 1.0032343139648439, 1.0034002075195312, 1.0033592529296875, 1.0034892578125, 1.003430908203125, 1.0036060180664061, 1.0037442626953126, 1.0036817626953125, 1.003325439453125, 1.0032271118164062, 1.0029475708007813, 1.0032077026367188, 1.0028257446289062, 1.0033950805664062, 1.0032373657226563, 1.0033449096679687, 2.06620166015625, 1.003240478515625, 1.0030346069335938, 1.0028810424804688, 1.0028892211914062, 1.0025840454101562, 1.0026762084960938, 1.0028451538085938, 1.0030079956054687, 1.0030458984375, 1.0029598999023437, 1.0025256958007813, 1.002809326171875, 1.0025021362304687, 1.002545166015625, 1.002588134765625, 1.0025830688476562, 1.0028103637695311, 1.002876953125, 1.0027571411132812, 1.0027847900390625, 1.0027694091796875, 1.0029219970703125, 1.0027468872070313, 1.0030151977539064, 1.002692626953125, 1.0029998168945313, 1.0028185424804688, 1.002977294921875, 1.0030653686523439, 1.0028308715820313, 1.0027254028320312, 1.0027396850585937, 1.002481689453125, 1.0026741943359374, 1.002397705078125, 1.0026148071289063, 1.0031001586914063, 1.003051025390625, 1.0032445678710937, 1.0031226806640625, 1.00276123046875, 1.0029619140625, 1.0027110595703126, 1.00299365234375, 1.0028328857421875, 1.0028206176757812, 1.0037903442382812, 1.0038609619140626, 1.0040064086914062, 1.0035978393554688, 1.0031810302734374, 1.0034503784179687, 1.0034176025390624, 1.0035722045898436, 1.0029711303710938, 1.0032793579101562, 1.003167724609375, 1.0029445190429687, 1.0031759643554687, 1.0028656616210938, 1.002893310546875, 1.0028052368164062, 2.0654345703125, 1.0026424560546876, 1.0026322021484375, 1.0025789184570313, 1.0027899169921874, 1.0024918823242188, 1.0032875366210938, 1.002587158203125, 1.002587158203125, 1.0025154418945312, 1.0026045532226562, 1.0023638916015625, 1.002629150390625, 1.0024959716796875, 1.0028257446289062, 1.0028626098632814, 1.0027550659179687, 1.0028287963867188, 1.0026536865234374, 1.0024857788085937, 1.0027151489257813, 1.0024734497070313, 1.0031738891601563, 1.0028011474609375, 1.003345947265625, 1.002503173828125, 1.0029957275390624, 1.0027591552734374, 1.003062255859375, 1.003240478515625, 1.0029967651367186, 1.002982421875, 1.0035916748046876, 1.0024970092773438, 1.0031472778320312, 1.0028124389648438, 1.0027591552734374, 1.0026690673828125, 1.0027110595703126, 1.0026762084960938, 1.0028493041992188, 1.0025471801757813, 1.0032220458984376, 1.0027745361328124, 1.0030745849609375, 1.0030172119140626, 1.0028216552734375, 1.002661865234375, 1.0027734985351562, 1.00288818359375, 1.0029906005859375, 1.00273046875, 1.0033080444335938, 1.0029434814453124, 1.0028789672851564, 1.0029700927734375, 1.0029117431640624, 1.0027509765625, 1.002767333984375, 1.0027171630859375, 1.0029578247070312, 1.002545166015625, 1.003062255859375, 2.0657685546875, 1.0028359375, 1.0028124389648438, 1.0024847412109374, 1.0028124389648438, 1.0025441284179688, 1.0027601928710939, 1.0023495483398437, 1.0028533935546875, 1.0025604858398438, 1.0030325927734376, 1.0025574340820314, 1.0029946899414062, 1.0025062255859376, 1.0027683715820312, 1.002640380859375, 1.0027284545898438, 1.0027683715820312, 1.0030612182617187, 1.002598388671875, 1.0030366821289063, 1.0028635864257813, 1.0032056274414063, 1.0027100219726564, 1.0028585205078124, 1.0025328369140625, 1.0029660034179688, 1.0023075561523438, 1.0032752685546875, 1.002946533203125, 1.0032271118164062, 1.0027387084960937, 1.0030264282226562, 1.0025748291015626, 1.0029188842773438, 1.0027284545898438, 1.002767333984375, 1.0028052368164062, 1.0030530395507813, 1.0026967163085938, 1.0031349487304688, 1.0030233764648437, 1.0033059692382813, 1.002514404296875, 1.0027438354492189, 1.0027816772460938, 1.0031032104492188, 1.0027970581054688, 1.0033837890625, 1.0027315063476563, 1.0034063110351563, 1.0029496459960938, 1.0030530395507813, 1.0026383056640624, 1.00305615234375, 1.0027919311523437, 1.0027427978515624, 1.0032557983398438, 1.0037903442382812, 1.0031646728515624, 1.003399169921875, 1.0027448120117188, 1.0029649658203126, 2.064649169921875, 1.0027888793945312, 1.0026015014648437, 1.0022328491210937, 1.0030059814453125, 1.0026045532226562, 1.0029281005859374, 1.0032117919921875, 1.0038660888671875, 1.0030458984375, 1.0028523559570313, 1.00279296875, 1.0029219970703125, 1.00295068359375, 1.0030786743164062, 1.00269775390625, 1.0029230346679687, 1.0029240112304687, 1.0026373291015624, 1.0023751220703125, 1.0028328857421875, 1.0023956298828125, 1.002513427734375, 1.002144775390625, 1.003087890625, 1.0024324951171875, 1.0031769409179687, 1.0026843872070312, 1.0027018432617187, 1.0026710815429687, 1.0026076049804689, 1.0026281127929688, 1.00263525390625, 1.0025758666992188, 1.00335107421875, 1.0025952758789063, 1.0027919311523437, 1.0030172119140626, 1.0029312133789063, 1.0026270751953126, 1.0026127319335938, 1.0024099731445313, 1.0028635864257813, 1.0025287475585938, 1.003124755859375, 1.0027868041992187, 1.0029752197265625, 1.0032691040039063, 1.0028994750976563, 1.0029813842773438, 1.0031022338867188, 1.0025799560546875, 1.0030069580078125, 1.0030786743164062, 1.0034902954101563, 1.00322509765625, 1.0034298706054687, 1.0037340087890625, 1.0030960693359374, 1.00282470703125, 1.0031349487304688, 1.0028359375, 1.0032772827148437, 2.06746826171875, 1.0032711791992188, 1.00282470703125, 1.0029578247070312, 1.0026793212890626, 1.0024990844726562, 1.0027325439453125, 1.0022778930664062, 1.0023464965820312, 1.0023444213867188, 1.0030346069335938, 1.0042449951171875, 1.0037616577148438, 1.0032691040039063, 1.0031185913085938, 1.0024017944335937, 1.0026875, 1.0032916259765625, 1.0031452026367187, 1.0032855224609376, 1.0035599365234376, 1.0035138549804687, 1.0038927612304687, 1.0032435302734375, 1.002841064453125, 1.0024775390625, 1.0027438354492189, 1.0022512817382812, 1.002450927734375, 1.00248779296875, 1.002692626953125, 1.0029946899414062, 1.0030489501953126, 1.0032496337890624, 1.0034002075195312, 1.003052001953125, 1.0032271118164062, 1.0028707885742187, 1.0030796508789062, 1.0030028686523438, 1.0040872802734375, 1.00299365234375, 1.0028626098632814, 1.00265576171875, 1.002756103515625, 1.002808349609375, 1.0027335815429688, 1.0026813354492188, 1.00265673828125, 1.002919921875, 1.0032476196289062, 1.0029752197265625, 1.0029025268554688, 1.00297216796875, 1.0027991333007813, 1.0026178588867187, 1.002767333984375, 1.0026639404296875, 1.0027540283203125, 1.0026741943359374, 1.0029127807617189, 1.002988525390625, 1.0027018432617187, 2.066872314453125, 1.0026639404296875, 1.00259228515625, 1.0022307739257812, 1.0025277709960938, 1.0030377197265625, 1.0026045532226562, 1.002482666015625, 1.0029168701171876, 1.002771484375, 1.0028124389648438, 1.0024642333984375, 1.0027807006835938, 1.0025420532226563, 1.0025379638671874, 1.002556396484375, 1.002534912109375, 1.0028687133789063, 1.002840087890625, 1.0028328857421875, 1.0028451538085938, 1.0025236206054688, 1.0027632446289063, 1.0025379638671874, 1.0027888793945312, 1.0026751708984376, 1.003261962890625, 1.0027161865234375, 1.0028973999023438, 1.0030325927734376, 1.00279296875, 1.0027479248046876, 1.0025471801757813, 1.0023690185546874, 1.0029291381835939, 1.0029486083984376, 1.0027970581054688, 1.0028840942382813, 1.0029475708007813, 1.0030294799804687, 1.0031657104492187, 1.0029014892578125, 1.003304931640625, 1.0028472290039063, 1.0032578735351563, 1.0034647216796875, 1.0028277587890626, 1.0030632934570312, 1.0030980834960936, 1.00314111328125, 1.0028748779296874, 1.002660888671875, 1.0028431396484374, 1.0028472290039063, 1.0029691162109375, 1.0030172119140626, 1.002925048828125, 1.0033325805664062, 1.0035189819335937, 1.0036541137695312, 1.004179443359375, 1.0036951293945313, 1.002919921875, 2.06862841796875, 1.0036357421875, 1.0038538208007812, 1.0032230224609375, 1.0033796997070312, 1.002618896484375, 1.002708984375, 1.0022072143554688, 1.0026813354492188, 1.0022891235351563, 1.002555419921875, 1.0025963745117188, 1.00295166015625, 1.0026690673828125, 1.002914794921875, 1.003019287109375, 1.0031646728515624, 1.002956787109375, 1.0028861694335938, 1.0026751708984376, 1.003303955078125, 1.0028124389648438, 1.0030386962890625, 1.0028052368164062, 1.00309912109375, 1.0027315063476563, 1.0034688110351562, 1.0020556640625, 1.003325439453125, 1.0033530883789064, 1.003283447265625, 1.0034749145507813, 1.0035108032226563, 1.0035435791015626, 1.0037903442382812, 1.0029168701171876, 1.0031943969726562, 1.0024591064453126, 1.0026526489257812, 1.0026332397460938, 1.0027837524414063, 1.0034381103515626, 1.0032527465820313, 1.0027008056640625, 1.0030745849609375, 1.002945556640625, 1.0031943969726562, 1.0027479248046876, 1.0030663452148438, 1.002672119140625, 1.0029179077148438, 1.0026751708984376, 1.002841064453125, 1.0025738525390624, 1.0032977905273437, 1.0027786254882813, 1.0031134643554687, 1.00257177734375, 1.0031124267578124, 1.0026741943359374, 1.0032947387695312, 1.0030386962890625, 1.0032332763671874, 2.068487060546875, 1.0029629516601561, 1.0030684204101563, 1.0028482666015626, 1.0030899047851562, 1.0025728149414062, 1.0029260864257812, 1.0024949951171875, 1.0026229858398437, 1.0027960205078126, 1.003514892578125, 1.0023598022460938, 1.0027949829101563, 1.0025420532226563, 1.0026260375976563, 1.00259228515625, 1.0028103637695311, 1.002603515625, 1.00250830078125, 1.002608642578125, 1.0032783203125, 1.0025861206054687, 1.0032824096679687, 1.0027950439453126, 1.0030663452148438, 1.0023987426757812, 1.0027417602539062, 1.0023075561523438, 1.0025850830078125, 1.0028851318359375, 1.003109375, 1.0031339721679688, 1.003430908203125, 1.0028308715820313, 1.00331005859375, 1.0026096801757813, 1.0028687133789063, 1.0031749267578125, 1.003378662109375, 1.0034810791015625, 1.0036776733398438, 1.0027991333007813, 1.0026577758789061, 1.0023618774414063, 1.002555419921875, 1.0025308227539063, 1.00274072265625, 1.0025973510742188, 1.0027908935546874, 1.003040771484375, 1.0038589477539062, 1.002471435546875, 1.003072509765625, 1.0029865112304688, 1.0029404296875, 1.0026116943359376, 1.003293701171875, 1.00347802734375, 1.0035588989257813, 1.00347802734375, 1.0037841796875, 1.0034053344726563, 1.0032077026367188]",tokens/s,0.9821471034300691,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.4b,EleutherAI/pythia-1.4b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,,MB,1625.034752,2254.962688,0.0,1608.515584,1463.6928,s,10,1.2100343170166015,0.12100343170166014,0.001022141281647672,0.12073452758789063,0.12208388671874999,0.1227883918762207,0.12335199600219726,"[0.1234928970336914, 0.12192733001708984, 0.12002118682861328, 0.12029216003417968, 0.12038220977783202, 0.1198985595703125, 0.1206871337890625, 0.12078192138671875, 0.12138086700439453, 0.12117005157470703]",tokens/s,2115.6424772413106,kWh,1.4169729851856437e-06,7.764314618920512e-07,6.3009111253815796e-06,8.494315572459274e-06,tokens/kWh,30137801.90013389,MB,1625.034752,2254.962688,0.0,1608.515584,1560.974848,s,10,70.266875,7.0266874999999995,0.015802312461115554,7.021189208984375,7.04873154296875,7.0518982421875,7.0544316015624995,"[7.05506494140625, 7.04802783203125, 7.0200771484375, 7.04010400390625, 7.03416455078125, 7.01334814453125, 7.0082919921875, 7.02230126953125, 7.0167861328125, 7.008708984375]",tokens/s,8.965817819562917,kWh,8.271868514320838e-05,4.533574606695635e-05,0.00036366391262401533,0.0004917183438341799,tokens/kWh,128122.12680282927,,s,629,71.24009573364258,0.11325929369418533,0.01441184935436087,0.111351806640625,0.11215667266845704,0.11239075622558593,0.2323562939453125,"[0.11357389068603516, 0.11349612426757813, 0.11200812530517579, 0.11255910491943359, 0.1121167984008789, 0.11198560333251953, 0.11219558715820313, 0.11200819396972657, 0.11196825408935547, 0.11275468444824219, 0.11222630310058594, 0.11180441284179687, 0.11134464263916016, 0.11147980499267578, 0.11213721466064454, 0.11178495788574219, 0.11166719818115234, 0.11174092864990234, 0.11117977905273438, 0.1110456314086914, 0.11137638092041016, 0.11204710388183593, 0.11143679809570313, 0.11129449462890625, 0.11121353912353515, 0.1112074203491211, 0.11121561431884766, 0.11156582641601563, 0.11124736022949219, 0.1111910400390625, 0.1112965087890625, 0.11185664367675781, 0.11158732604980469, 0.1118187484741211, 0.11172659301757812, 0.11204096221923829, 0.11242803192138671, 0.11206655883789063, 0.11170611572265625, 0.1124925765991211, 0.11240444946289062, 0.11224883270263672, 0.11220172882080078, 0.11224473571777344, 0.11245168304443359, 0.11209001922607421, 0.11190579223632813, 0.11188838195800781, 0.11227750396728516, 0.11232051086425782, 0.11256114959716797, 0.11237478637695313, 0.11200921630859376, 0.11215462493896484, 0.1119549789428711, 0.11200611114501953, 0.11207987213134765, 0.11194371032714844, 0.11197846221923828, 0.11205836486816406, 0.11220787048339843, 0.11210034942626954, 0.2345594940185547, 0.1117286376953125, 0.11186585235595703, 0.11204914855957031, 0.11177677154541016, 0.1115832290649414, 0.11116851043701172, 0.1114071044921875, 0.11131391906738282, 0.11137741088867187, 0.11209728240966797, 0.11197542572021485, 0.11190681457519532, 0.11151052856445312, 0.11113471984863281, 0.11245875549316406, 0.11208191680908203, 0.11218540954589844, 0.11216889953613281, 0.11212287902832031, 0.11191302490234376, 0.11190470123291016, 0.11167948913574219, 0.11192729949951172, 0.11203174591064453, 0.11200819396972657, 0.11200409698486329, 0.11204198455810546, 0.11203584289550782, 0.11207577514648437, 0.11203174591064453, 0.11206861114501954, 0.11190476989746094, 0.11196518707275391, 0.11201945495605468, 0.11220070648193359, 0.1121239013671875, 0.11213619232177735, 0.11214745330810547, 0.11210034942626954, 0.11117158508300781, 0.11123609924316406, 0.11129138946533203, 0.11250688171386719, 0.11131903839111328, 0.11113369750976562, 0.11244338989257813, 0.11134259033203125, 0.11169075012207032, 0.11205427551269531, 0.11214745330810547, 0.11191705322265624, 0.11207884979248046, 0.11197849273681641, 0.11211673736572265, 0.11211161804199218, 0.11191500854492188, 0.11222118377685547, 0.11239730834960937, 0.11132415771484375, 0.11126681518554687, 0.1112985610961914, 0.11182182312011718, 0.23266201782226562, 0.11202662658691406, 0.11120025634765625, 0.11109683227539062, 0.11149005126953125, 0.11119513702392578, 0.11112754821777343, 0.11123916625976563, 0.11105177307128906, 0.1111900177001953, 0.11129036712646484, 0.11116851043701172, 0.11114803314208985, 0.11196927642822266, 0.11116134643554687, 0.11125965118408203, 0.11103539276123046, 0.11127398681640625, 0.11154434967041016, 0.11195798492431641, 0.11191193389892579, 0.1111377944946289, 0.1111562271118164, 0.11188735961914062, 0.11112754821777343, 0.11104972839355469, 0.11122278594970703, 0.11126271820068359, 0.11140402984619141, 0.11229183959960938, 0.11202559661865234, 0.11156588745117188, 0.1111817626953125, 0.11196927642822266, 0.11145932769775391, 0.11130470275878906, 0.11111219024658203, 0.11142041778564453, 0.11112140655517579, 0.11115110778808594, 0.11208601379394531, 0.11188428497314454, 0.11182284545898437, 0.11141017913818359, 0.11125043487548827, 0.11123404693603516, 0.11116646575927734, 0.11186994934082031, 0.11114189147949219, 0.11129446411132812, 0.11111833953857422, 0.1112442855834961, 0.11120845031738281, 0.11120435333251953, 0.11193344116210938, 0.11145116424560547, 0.11117052459716797, 0.11132723236083984, 0.11132109069824218, 0.1112074203491211, 0.11136307525634766, 0.11232870483398437, 0.11170201873779297, 0.2324981689453125, 0.11132723236083984, 0.11152384185791016, 0.11143577575683594, 0.11334963226318359, 0.11229798126220703, 0.11186176300048828, 0.11187916564941407, 0.11197337341308594, 0.11203993225097657, 0.11198976135253906, 0.11205836486816406, 0.11139788818359375, 0.11115929412841796, 0.11112754821777343, 0.11136921691894532, 0.11119513702392578, 0.11117056274414062, 0.11119206237792968, 0.11117465972900391, 0.11126067352294922, 0.11122380828857421, 0.11115827178955077, 0.11134873962402343, 0.1123768310546875, 0.11169586944580077, 0.11113676452636718, 0.11131903839111328, 0.11172249603271485, 0.11171635437011719, 0.11152793884277344, 0.11154022216796874, 0.11121971130371094, 0.11125247955322265, 0.11109174346923828, 0.11109065246582031, 0.111283203125, 0.11159961700439452, 0.11181670379638672, 0.11218841552734375, 0.11207065582275391, 0.11193856048583985, 0.11212083435058594, 0.11199385833740234, 0.11282943725585938, 0.11240140533447265, 0.11203072357177735, 0.11216486358642579, 0.11200102233886719, 0.11202969360351563, 0.112, 0.11213005065917969, 0.11189555358886719, 0.11197647857666015, 0.11237065887451173, 0.11224269104003906, 0.11207270050048829, 0.11202355194091797, 0.11200204467773438, 0.11213520050048828, 0.1117081298828125, 0.11131187438964844, 0.11138969421386719, 0.23215206909179686, 0.11141426849365234, 0.11262156677246093, 0.11177779388427735, 0.11186585235595703, 0.11191295623779297, 0.11129036712646484, 0.11202355194091797, 0.11225702667236329, 0.11216793823242187, 0.11205120086669922, 0.11202252960205078, 0.11183513641357422, 0.11183513641357422, 0.1118361587524414, 0.11228672027587891, 0.11196723175048828, 0.11265023803710937, 0.11201439666748046, 0.11204192352294921, 0.11198668670654296, 0.11204812622070312, 0.1128499526977539, 0.11216585540771484, 0.11173174285888672, 0.11194057464599609, 0.11185971069335937, 0.11190889739990234, 0.11204195404052734, 0.11242700958251953, 0.1118361587524414, 0.11156070709228516, 0.11167436981201172, 0.11125555419921875, 0.11129446411132812, 0.11137535858154297, 0.1112125473022461, 0.11132723236083984, 0.11112652587890624, 0.11121356964111329, 0.11136511993408203, 0.11127808380126954, 0.11119308471679687, 0.11122278594970703, 0.11130265808105469, 0.11126374053955078, 0.11110604858398437, 0.11118386840820313, 0.11117158508300781, 0.11144499206542968, 0.11132316589355469, 0.11124323272705078, 0.11118899536132812, 0.11127705383300782, 0.11124531555175782, 0.11131084442138672, 0.11114189147949219, 0.11251712036132812, 0.11123916625976563, 0.1111562271118164, 0.11102105712890625, 0.111172607421875, 0.11132518768310547, 0.23168409729003905, 0.11126067352294922, 0.11120333099365234, 0.11120333099365234, 0.11132112121582032, 0.11132003021240235, 0.1112279052734375, 0.11117772674560547, 0.11110399627685547, 0.1111541748046875, 0.1111695327758789, 0.11118796539306641, 0.11124940490722657, 0.11112960052490234, 0.11125452423095702, 0.11125759887695312, 0.11122585296630859, 0.11124224090576172, 0.11116646575927734, 0.11114598083496094, 0.11131494140625, 0.11128832244873046, 0.11116134643554687, 0.11131391906738282, 0.11123404693603516, 0.11126681518554687, 0.11123916625976563, 0.1112985610961914, 0.11178495788574219, 0.11137741088867187, 0.11124121856689453, 0.11152281951904297, 0.11121766662597657, 0.11117362976074219, 0.1112125473022461, 0.11121868896484376, 0.111098876953125, 0.1111900177001953, 0.11227442932128906, 0.11120025634765625, 0.11103846740722656, 0.11157708740234375, 0.11146240234375, 0.11182284545898437, 0.11149517059326172, 0.111499267578125, 0.11131289672851563, 0.11149209594726563, 0.11197853088378906, 0.11136713409423828, 0.11115724945068359, 0.11126067352294922, 0.11121151733398438, 0.11126067352294922, 0.11109478759765624, 0.11183001708984375, 0.11150643157958984, 0.11150745391845703, 0.11111833953857422, 0.11116544342041015, 0.11122994995117187, 0.11125452423095702, 0.1113088607788086, 0.23280429077148437, 0.11111014556884766, 0.11133030700683594, 0.11111119842529296, 0.11112957000732422, 0.11102105712890625, 0.11110809326171875, 0.11106201934814453, 0.11103334045410156, 0.11108870697021485, 0.11110905456542969, 0.11238092803955078, 0.11154227447509765, 0.11123506927490234, 0.11109273529052735, 0.11120333099365234, 0.11103129577636718, 0.11100672149658203, 0.11094937896728516, 0.1110487060546875, 0.11100672149658203, 0.1109534683227539, 0.11100569915771484, 0.11172767639160157, 0.11108550262451172, 0.11122688293457031, 0.11107020568847656, 0.11119721221923828, 0.11113673400878907, 0.11125043487548827, 0.1111562271118164, 0.11116236877441406, 0.1111551971435547, 0.11128012847900391, 0.11118694305419922, 0.11127091217041016, 0.11107123565673828, 0.11122994995117187, 0.11122380828857421, 0.1111551971435547, 0.11100466918945312, 0.11141836547851562, 0.11136511993408203, 0.11123814392089844, 0.11123302459716797, 0.11117670440673828, 0.11112960052490234, 0.11146444702148438, 0.11135078430175781, 0.11130470275878906, 0.11135897827148437, 0.11127808380126954, 0.11142451477050781, 0.11136716461181641, 0.1120901107788086, 0.11140300750732422, 0.11124326324462891, 0.11130985260009765, 0.111257568359375, 0.1111551971435547, 0.1111756820678711, 0.11127295684814453, 0.11109580993652343, 0.23243571472167968, 0.11107839965820313, 0.11138361358642578, 0.11138758087158203, 0.111172607421875, 0.11116441345214843, 0.11112754821777343, 0.11145728302001953, 0.11120230102539062, 0.11218739318847656, 0.11158425903320313, 0.11142348480224609, 0.11124326324462891, 0.11134566497802735, 0.11134770965576171, 0.11127603149414063, 0.11175628662109376, 0.11245772552490234, 0.11182899475097656, 0.11139379119873047, 0.11116031646728515, 0.11131187438964844, 0.11135897827148437, 0.11138253021240234, 0.11129446411132812, 0.11140914916992188, 0.1112995834350586, 0.11167334747314453, 0.11146444702148438, 0.11127398681640625, 0.1114286117553711, 0.11160883331298828, 0.111388671875, 0.11126783752441406, 0.111283203125, 0.11141529846191406, 0.11138355255126953, 0.11169382476806641, 0.111425537109375, 0.11148297882080078, 0.11134454345703125, 0.11160371398925781, 0.11167334747314453, 0.11133235168457031, 0.11129036712646484, 0.11148089599609375, 0.11127085113525391, 0.11113471984863281, 0.11119821166992187, 0.11146444702148438, 0.1114419174194336, 0.11144499206542968, 0.11137741088867187, 0.11137126159667969, 0.11174604797363281, 0.11149619293212891, 0.11148902130126953, 0.1114419174194336, 0.1115525131225586, 0.11180646514892578, 0.11210854339599609, 0.11200819396972657, 0.11173580932617187, 0.2335253143310547, 0.11135481262207031, 0.11140300750732422, 0.11150540924072265, 0.11128627014160156, 0.11110707092285156, 0.11116851043701172, 0.11114393615722656, 0.1112995834350586, 0.11127808380126954, 0.11109273529052735, 0.11120953369140625, 0.1113087387084961, 0.11121971130371094, 0.11118284606933594, 0.11124736022949219, 0.1122508773803711, 0.11217715454101562, 0.1113733139038086, 0.11129344177246094, 0.11147058868408204, 0.11150335693359376, 0.111351806640625, 0.11135897827148437, 0.11148492431640625, 0.11133952331542969, 0.11130675506591797, 0.11139481353759766, 0.11144703674316406, 0.11154124450683593, 0.11132825469970703, 0.11111219024658203, 0.11122073364257813, 0.11118386840820313, 0.11125971221923828, 0.1125447006225586, 0.11146546936035157, 0.11134361267089844, 0.11123097229003906, 0.11145728302001953, 0.11127091217041016, 0.1112074203491211, 0.1114224624633789, 0.11159859466552734, 0.11146854400634766, 0.11118284606933594, 0.11170816040039062, 0.11130777740478516, 0.11138662719726562, 0.11138253021240234, 0.11114701080322266, 0.11128729248046874, 0.11132109069824218, 0.11136102294921875, 0.11118284606933594, 0.11117881774902344, 0.11109677124023437, 0.11118796539306641, 0.11113267517089843, 0.11119411468505859, 0.111246337890625, 0.1112279052734375, 0.11181465911865235, 0.23307980346679688, 0.11142041778564453, 0.1113538589477539, 0.11121561431884766, 0.11131903839111328, 0.11121561431884766, 0.11105689239501954, 0.111246337890625, 0.11114291381835938, 0.1110835189819336, 0.1110241928100586, 0.11124934387207032, 0.11121561431884766, 0.11143475341796875, 0.11115007781982422, 0.11116031646728515, 0.11110912322998047, 0.11113881683349609, 0.11112754821777343, 0.11146137237548828, 0.11116646575927734, 0.1111173095703125, 0.11114291381835938, 0.11114495849609375, 0.11101900482177735, 0.11122176361083984, 0.11194265747070313, 0.11108147430419922, 0.11138662719726562, 0.11130368041992188, 0.11116748809814453, 0.11115110778808594, 0.11116649627685547, 0.11112751770019531, 0.1111695327758789, 0.11108454132080078, 0.11120127868652344, 0.11118796539306641, 0.11125555419921875, 0.11124018859863281, 0.11112140655517579, 0.11123712158203125, 0.11195391845703125, 0.1116231689453125, 0.111388671875, 0.11123404693603516, 0.11115110778808594, 0.11121459197998047, 0.1111562271118164, 0.11116748809814453, 0.11117772674560547, 0.11126374053955078, 0.1111910400390625, 0.11120333099365234, 0.11108454132080078, 0.11108761596679688, 0.1111203842163086, 0.1111357421875, 0.11103231811523437, 0.11127603149414063, 0.11121868896484376, 0.11217817687988281, 0.11138457489013671]",tokens/s,8.829297511779728,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-1_6b,stabilityai/stablelm-2-1_6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1452.249088,2449.997824,0.0,1803.55072,1664.521216,s,10,1.3683243865966794,0.13683243865966793,0.001337233378547869,0.13643169403076172,0.13770939025878906,0.13902387695312501,0.14007546630859374,"[0.14033836364746094, 0.13655836486816406, 0.13525657653808593, 0.13630502319335938, 0.13605914306640626, 0.13580105590820313, 0.13619818115234375, 0.13698959350585938, 0.1374172821044922, 0.1374008026123047]",tokens/s,1870.9013922987058,kWh,1.6058788441859926e-06,8.799470783644112e-07,6.656266586270105e-06,9.14209250882051e-06,tokens/kWh,28002341.887593575,MB,1453.084672,2449.997824,0.0,1803.55072,1763.593728,s,10,81.66558447265625,8.166558447265626,0.005684297838363884,8.165376708984375,8.17551572265625,8.17556669921875,8.17560748046875,"[8.17105712890625, 8.1615234375, 8.15890625, 8.16109033203125, 8.165703125, 8.16225, 8.16505029296875, 8.17550439453125, 8.1688818359375, 8.17561767578125]",tokens/s,7.714387940380691,kWh,9.658040946623585e-05,5.293287202049287e-05,0.0003923776359739301,0.0005418909174606587,tokens/kWh,116259.56067915421,,s,629,82.76125488281265,0.13157592191226153,0.016262281457391132,0.129438720703125,0.13028741455078124,0.1309923309326172,0.26588740966796875,"[0.1330462646484375, 0.13207244873046875, 0.13133619689941406, 0.12958412170410155, 0.1294899139404297, 0.1299087371826172, 0.12952166748046876, 0.12904652404785155, 0.12932403564453124, 0.12959437561035156, 0.12922367858886719, 0.13178367614746095, 0.12983705139160157, 0.12965171813964843, 0.12943974304199218, 0.12977151489257813, 0.12933529663085938, 0.12956877136230469, 0.1295636444091797, 0.12963430786132812, 0.12953907775878906, 0.12950630187988282, 0.12945408630371094, 0.12915711975097657, 0.12958924865722657, 0.12955238342285155, 0.12918885803222657, 0.12946330261230468, 0.1300633544921875, 0.12945613098144532, 0.12942131042480468, 0.130693115234375, 0.1296414794921875, 0.12933836364746093, 0.129259521484375, 0.1293465576171875, 0.12949095153808593, 0.12932199096679686, 0.12919705200195314, 0.129396728515625, 0.12944178771972656, 0.12925645446777342, 0.12930149841308594, 0.12936805725097655, 0.12971110534667968, 0.12947967529296875, 0.1293475799560547, 0.12937420654296874, 0.12945510864257812, 0.12943974304199218, 0.12923904418945312, 0.12946636962890626, 0.12930047607421874, 0.12932710266113281, 0.12942848205566407, 0.1293578186035156, 0.12930149841308594, 0.12927488708496093, 0.12947865295410158, 0.12933529663085938, 0.12928306579589843, 0.12944178771972656, 0.2679490661621094, 0.12944281005859376, 0.12929330444335937, 0.1295994873046875, 0.1293639678955078, 0.12922061157226564, 0.1296312255859375, 0.1300070343017578, 0.129291259765625, 0.1292584991455078, 0.12935987854003905, 0.12954214477539064, 0.12965989685058593, 0.12922880554199218, 0.12928102111816406, 0.13002546691894531, 0.13103411865234374, 0.12998860168457033, 0.12921856689453126, 0.12967832946777344, 0.12930764770507813, 0.1296117706298828, 0.12917861938476563, 0.12936805725097655, 0.12924006652832032, 0.13045452880859376, 0.12976127624511719, 0.12940185546875, 0.129154052734375, 0.129870849609375, 0.12965274047851563, 0.12968447875976563, 0.12930560302734376, 0.129406982421875, 0.12957696533203125, 0.12942848205566407, 0.12912844848632812, 0.12938957214355468, 0.12942131042480468, 0.1295319061279297, 0.12902093505859374, 0.12939776611328124, 0.12929023742675783, 0.1295431671142578, 0.12914994812011718, 0.131240966796875, 0.1315758056640625, 0.12955442810058593, 0.12934962463378907, 0.12950119018554687, 0.1294192657470703, 0.12930560302734376, 0.12917555236816405, 0.12942745971679687, 0.12936909484863282, 0.1293506622314453, 0.1292216339111328, 0.12930560302734376, 0.12932710266113281, 0.12941722106933592, 0.12931890869140625, 0.1293260803222656, 0.12920217895507813, 0.26541976928710936, 0.12952268981933593, 0.12942335510253905, 0.129438720703125, 0.12940083312988282, 0.12945613098144532, 0.12953599548339845, 0.12932095336914062, 0.1292216339111328, 0.12939776611328124, 0.12944178771972656, 0.12960153198242189, 0.129470458984375, 0.13039923095703124, 0.1294571533203125, 0.12955955505371095, 0.12928614807128908, 0.1294202880859375, 0.129259521484375, 0.12932095336914062, 0.12926258850097655, 0.12934144592285157, 0.12937420654296874, 0.12949708557128906, 0.12930149841308594, 0.12997734069824218, 0.12926771545410157, 0.1293711395263672, 0.12937318420410157, 0.13014016723632812, 0.1300695037841797, 0.12950630187988282, 0.12973773193359375, 0.12933529663085938, 0.12930458068847656, 0.1293711395263672, 0.12979302978515625, 0.12978994750976564, 0.12939366149902343, 0.13079551696777345, 0.12929330444335937, 0.12930458068847656, 0.12950425720214845, 0.1293291473388672, 0.12928306579589843, 0.12939468383789063, 0.12921139526367187, 0.13056614685058593, 0.1297909698486328, 0.12958822631835937, 0.12945613098144532, 0.12936703491210938, 0.1293086700439453, 0.12931173706054688, 0.12922265625, 0.129512451171875, 0.12923802185058594, 0.12934144592285157, 0.13001522827148437, 0.1295636444091797, 0.1292533721923828, 0.12930458068847656, 0.12924517822265624, 0.2659522705078125, 0.1293527069091797, 0.129328125, 0.12934860229492187, 0.1293148193359375, 0.12935679626464844, 0.12930560302734376, 0.12933734130859376, 0.12967628479003906, 0.12982579040527345, 0.12926463317871092, 0.12944793701171875, 0.12915916442871095, 0.12936090087890625, 0.1293506622314453, 0.1294264373779297, 0.12922061157226564, 0.12930047607421874, 0.12926258850097655, 0.1294448699951172, 0.12934349060058595, 0.129328125, 0.12933836364746093, 0.12944383239746093, 0.12915711975097657, 0.12933938598632813, 0.1303726043701172, 0.1295083465576172, 0.1293885498046875, 0.12941107177734376, 0.12947763061523437, 0.12969778442382812, 0.12942848205566407, 0.12960972595214842, 0.13009408569335937, 0.1296506805419922, 0.12932095336914062, 0.12933631896972655, 0.1293148193359375, 0.12935577392578124, 0.12930149841308594, 0.129944580078125, 0.1299752960205078, 0.13082009887695312, 0.13123277282714843, 0.129976318359375, 0.12939776611328124, 0.12972647094726564, 0.1297725372314453, 0.12937522888183595, 0.12929843139648436, 0.12931686401367187, 0.12993843078613282, 0.12966297912597657, 0.129470458984375, 0.12965274047851563, 0.12924826049804689, 0.1299988555908203, 0.12943359375, 0.12968345642089843, 0.12955853271484374, 0.12938957214355468, 0.12927590942382813, 0.2658734130859375, 0.1293506622314453, 0.12944691467285158, 0.1293885498046875, 0.12947354125976562, 0.12939981079101562, 0.12928819274902345, 0.12991282653808595, 0.12973670959472655, 0.12963430786132812, 0.12942233276367188, 0.129364990234375, 0.12963226318359375, 0.12936090087890625, 0.12928819274902345, 0.12908441162109374, 0.12943565368652343, 0.1296312255859375, 0.1292093505859375, 0.12931993103027345, 0.12937216186523437, 0.1293834228515625, 0.12934553527832032, 0.12939263916015625, 0.12918988037109375, 0.12930252075195312, 0.1292359619140625, 0.12959027099609374, 0.12928306579589843, 0.12924313354492187, 0.1291550750732422, 0.129617919921875, 0.12926258850097655, 0.1292359619140625, 0.1293322296142578, 0.12940800476074218, 0.12928819274902345, 0.12947967529296875, 0.12928512573242187, 0.13084877014160157, 0.12966297912597657, 0.12936294555664063, 0.12929536437988282, 0.12989439392089844, 0.1293639678955078, 0.1298913269042969, 0.12968038940429688, 0.12977459716796874, 0.1292738494873047, 0.1299230651855469, 0.12984115600585938, 0.1298524169921875, 0.12960870361328125, 0.12983091735839844, 0.12971725463867187, 0.12981964111328126, 0.13102899169921875, 0.13176730346679688, 0.13048524475097656, 0.13046885681152343, 0.12975410461425782, 0.12993125915527343, 0.130081787109375, 0.2661335144042969, 0.1312348175048828, 0.13016166687011718, 0.12974490356445312, 0.12950425720214845, 0.12989849853515625, 0.13022105407714843, 0.13010943603515626, 0.12975205993652345, 0.13035621643066406, 0.12987493896484376, 0.1298892822265625, 0.13020057678222657, 0.13007872009277344, 0.12971827697753907, 0.12933427429199218, 0.1293506622314453, 0.12941619873046875, 0.12931277465820312, 0.12941311645507814, 0.12987596130371093, 0.12993434143066407, 0.12928921508789062, 0.12916940307617186, 0.12927897644042968, 0.129470458984375, 0.12943359375, 0.12916326904296874, 0.12934962463378907, 0.12948069763183595, 0.12918476867675782, 0.12958412170410155, 0.12934451293945312, 0.12950936889648437, 0.12927180480957032, 0.12952268981933593, 0.129328125, 0.1293578186035156, 0.13088050842285157, 0.12939878845214844, 0.12924006652832032, 0.12944178771972656, 0.12921856689453126, 0.12951962280273438, 0.12917759704589843, 0.12927488708496093, 0.12930047607421874, 0.1292359619140625, 0.12929638671875, 0.12937318420410157, 0.1292584991455078, 0.1293639678955078, 0.12952986145019532, 0.12940902709960939, 0.12924826049804689, 0.12945613098144532, 0.12931071472167968, 0.12931993103027345, 0.12928614807128908, 0.12941619873046875, 0.12934860229492187, 0.12924620056152344, 0.12929536437988282, 0.2658928527832031, 0.12976742553710938, 0.12933836364746093, 0.1294448699951172, 0.12936192321777343, 0.1305374755859375, 0.1294581756591797, 0.12936909484863282, 0.13020774841308594, 0.1295667266845703, 0.12935577392578124, 0.1293516845703125, 0.12933836364746093, 0.12947456359863282, 0.13004389953613282, 0.13297048950195312, 0.12997836303710938, 0.12952268981933593, 0.1292922821044922, 0.12959642028808593, 0.12940185546875, 0.1293527069091797, 0.1293834228515625, 0.13002546691894531, 0.12959129333496094, 0.1294202880859375, 0.1293854675292969, 0.12959744262695314, 0.12931686401367187, 0.1293711395263672, 0.1293516845703125, 0.1293291473388672, 0.12929638671875, 0.1294264373779297, 0.13180621337890625, 0.12990361022949218, 0.1295431671142578, 0.12950323486328125, 0.1293824005126953, 0.12971417236328125, 0.1290260467529297, 0.129438720703125, 0.1293291473388672, 0.12946022033691407, 0.12919398498535156, 0.12934860229492187, 0.12931993103027345, 0.1294571533203125, 0.12999270629882811, 0.12952677917480468, 0.12935679626464844, 0.1295800323486328, 0.12942950439453124, 0.13058047485351562, 0.12943463134765626, 0.1296117706298828, 0.12902093505859374, 0.1293578186035156, 0.12931788635253907, 0.12939366149902343, 0.12926054382324217, 0.129364990234375, 0.1295247344970703, 0.26704998779296873, 0.13152255249023437, 0.12972236633300782, 0.1295697937011719, 0.12936703491210938, 0.12935987854003905, 0.13026611328125, 0.130302978515625, 0.12928819274902345, 0.129544189453125, 0.12924006652832032, 0.1293322296142578, 0.12927999877929688, 0.12953599548339845, 0.12984831237792968, 0.12931993103027345, 0.12948480224609374, 0.1293824005126953, 0.13099110412597656, 0.1302159423828125, 0.12943052673339844, 0.12947148132324218, 0.12942233276367188, 0.12940083312988282, 0.12913253784179687, 0.12946022033691407, 0.1293096923828125, 0.12943463134765626, 0.1309276123046875, 0.13064703369140626, 0.12926873779296874, 0.129396728515625, 0.13017190551757812, 0.12957901000976563, 0.12975001525878907, 0.13083033752441406, 0.13063987731933593, 0.12994560241699218, 0.12968345642089843, 0.12934349060058595, 0.129364990234375, 0.12946022033691407, 0.12915711975097657, 0.1293260803222656, 0.13071565246582031, 0.1304012756347656, 0.12986265563964844, 0.13138021850585938, 0.13076173400878907, 0.12949197387695313, 0.12930560302734376, 0.1294520263671875, 0.12977049255371093, 0.12957183837890626, 0.12964454650878907, 0.13065728759765624, 0.12959437561035156, 0.12931788635253907, 0.12932199096679686, 0.1294929962158203, 0.12976025390625, 0.1295626220703125, 0.12928306579589843, 0.2670551147460937, 0.13002035522460936, 0.12955033874511718, 0.12985139465332032, 0.12954725646972656, 0.12931277465820312, 0.12925645446777342, 0.13027226257324218, 0.1294694366455078, 0.1295308837890625, 0.1293824005126953, 0.12973260498046876, 0.1293701171875, 0.13028352355957032, 0.13105357360839845, 0.13017805480957031, 0.1294264373779297, 0.1304217529296875, 0.12934144592285157, 0.12950425720214845, 0.12933836364746093, 0.12946124267578124, 0.1294581756591797, 0.12975514221191406, 0.12941107177734376, 0.1294151611328125, 0.12950527954101562, 0.12952064514160155, 0.12930560302734376, 0.12943052673339844, 0.12936703491210938, 0.1306746826171875, 0.12937625122070312, 0.1297418212890625, 0.12938957214355468, 0.12986880493164063, 0.1292728271484375, 0.12953497314453125, 0.13047296142578124, 0.1296373748779297, 0.1293711395263672, 0.13099314880371093, 0.1300480041503906, 0.12995071411132814, 0.12928102111816406, 0.12935475158691406, 0.12918988037109375, 0.12929843139648436, 0.12932301330566406, 0.1293711395263672, 0.12942745971679687, 0.1291304931640625, 0.12926976013183594, 0.12948684692382811, 0.12928102111816406, 0.12931993103027345, 0.1292728271484375, 0.12934860229492187, 0.1300746307373047, 0.1295749053955078, 0.13162393188476562, 0.12988621520996094, 0.1299630126953125, 0.2670069885253906, 0.1296711730957031, 0.12933734130859376, 0.129396728515625, 0.1302415313720703, 0.1293096923828125, 0.12932301330566406, 0.12936909484863282, 0.1292728271484375, 0.12964659118652344, 0.1292410888671875, 0.12936090087890625, 0.129227783203125, 0.12946124267578124, 0.12994969177246093, 0.12929536437988282, 0.12978585815429688, 0.12964659118652344, 0.1294264373779297, 0.1293639678955078, 0.12969676208496095, 0.12943052673339844, 0.1292349395751953, 0.1293148193359375, 0.1295564727783203, 0.12957594299316405, 0.13105255126953125, 0.131240966796875, 0.13059481811523438, 0.1293588409423828, 0.1293588409423828, 0.12939059448242188, 0.129328125, 0.12935577392578124, 0.12926463317871092, 0.1297838134765625, 0.13002546691894531, 0.12994969177246093, 0.1295677490234375, 0.12959642028808593, 0.12966297912597657, 0.12990054321289063, 0.1307125701904297, 0.12997222900390626, 0.13009202575683593, 0.12955955505371095, 0.12987187194824218, 0.13022822570800782, 0.1295114288330078, 0.12963328552246095, 0.12929638671875, 0.12961587524414062, 0.12946841430664063, 0.1294254150390625, 0.131989501953125, 0.131093505859375, 0.12946226501464844, 0.129470458984375, 0.13014732360839842, 0.13120204162597657, 0.13035110473632813, 0.12946124267578124, 0.13090509033203124]",tokens/s,7.600174754365983,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-rw-1b,tiiuae/falcon-rw-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -42189,24 +42134,93 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation + cls._check_and_enable_flash_attn_2( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 + raise ValueError( +ValueError: FalconForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpb_ykafi2/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-2b,google/gemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/gemma-2b/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status + raise HfHubHTTPError(message, response=response) from e +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-6694812a-10ce2a3d2f4cf6aa71b5736a;9d3ee60d-36f8-4d2c-967d-24d6f4ce493a) + +403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. +Cannot access content at: https://huggingface.co/google/gemma-2b/resolve/main/config.json. +If you are trying to create or update content,make sure you have a token with the `write` role. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error + raise LocalEntryNotFoundError( +huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file + raise EnvironmentError( +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/gemma-2b is not the path to a directory containing a file named config.json. +Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-8B,meta-llama/Meta-Llama-3-8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-7b,tiiuae/falcon-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -42224,24 +42238,19 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation + cls._check_and_enable_flash_attn_2( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 + raise ValueError( +ValueError: FalconForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpxmn1wkr8/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,x,x,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-12b,EleutherAI/pythia-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1531.768832,9676.783616,0.0,9030.336512,8583.572992,s,10,9.471071899414062,0.9471071899414062,0.0007865321197485112,0.9470617980957031,0.9481417907714844,0.9482434417724609,0.9483247625732422,"[0.9481192016601563, 0.9483450927734375, 0.9464827270507813, 0.9463027954101563, 0.9464989624023438, 0.9459486694335938, 0.9466808471679687, 0.9474427490234375, 0.9474686889648437, 0.9477821655273437]",tokens/s,270.2967549172948,kWh,1.1175276083175583e-05,6.1235719211254035e-06,5.30962293456365e-05,7.039507734993748e-05,tokens/kWh,3636617.9232591945,MB,1531.768832,9676.783616,0.0,9030.336512,8872.966144,s,10,564.2868125,56.42868125,0.005902619636999738,56.430064453125,56.434701171875,56.4354833984375,56.4361091796875,"[56.42066796875, 56.42100390625, 56.427828125, 56.43380078125, 56.436265625, 56.4306328125, 56.43452734375, 56.42949609375, 56.41955859375, 56.43303125]",tokens/s,1.116453523357858,kWh,0.0006659982151861745,0.00036502579988969956,0.003165337650954964,0.004196361666030838,tokens/kWh,15013.005316004865,,s,629,571.914466552734,0.9092439849804999,0.11250283527003516,0.8956805419921875,0.8961118286132812,0.8962535400390624,1.84229025390625,"[0.8955299682617187, 0.8956344604492188, 0.8952893676757813, 0.8954654541015625, 0.8952473754882813, 0.8954511108398437, 0.8954111938476562, 0.895388671875, 0.8953507690429687, 0.8954296264648437, 0.8954921264648438, 0.8958034057617188, 0.8957071533203125, 0.895331298828125, 0.89537841796875, 0.8954317016601563, 0.895688720703125, 0.8951869506835938, 0.89523095703125, 0.895341552734375, 0.8953385009765625, 0.89526171875, 0.8952105712890625, 0.8952554931640625, 0.8955637817382812, 0.8952135620117188, 0.895278076171875, 0.89569384765625, 0.8954439697265625, 0.8954368286132812, 0.8953395385742188, 0.895320068359375, 0.895224853515625, 0.8956580200195312, 0.8956251220703125, 0.895593505859375, 0.8955872802734375, 0.895393798828125, 0.89556591796875, 0.8955975341796875, 0.8953139038085938, 0.8952350463867188, 0.8954644775390626, 0.8952453002929688, 0.8950845336914063, 0.89560888671875, 0.8954244384765625, 0.8954317016601563, 0.8957972412109375, 0.8959805297851563, 0.8959723510742188, 0.896089111328125, 0.8958925170898437, 0.8958883666992188, 0.8961648559570312, 0.8958853149414062, 0.896374755859375, 0.896205810546875, 0.8961065063476562, 0.89630517578125, 0.89601025390625, 0.8961126098632812, 1.844611083984375, 0.8954337158203125, 0.89558837890625, 0.8955914306640625, 0.8959385375976563, 0.8956160278320312, 0.8950343627929688, 0.8949083862304688, 0.8952064208984375, 0.895373291015625, 0.8951787719726563, 0.895162353515625, 0.8951439208984375, 0.895182861328125, 0.895109130859375, 0.8953907470703125, 0.8957255859375, 0.8957091674804688, 0.8956385498046875, 0.8958136596679688, 0.8958320922851563, 0.8952658081054687, 0.8952637329101563, 0.8951807861328125, 0.8952391967773438, 0.8951900024414062, 0.8952842407226562, 0.8955750122070313, 0.89556787109375, 0.8954613647460937, 0.895562744140625, 0.8955679321289063, 0.8955903930664062, 0.8953548583984375, 0.8952647705078125, 0.8954501342773438, 0.8954869995117187, 0.89586181640625, 0.8957409057617187, 0.8956713256835938, 0.8955576171875, 0.8954132690429687, 0.8955822143554687, 0.89568359375, 0.8954531860351562, 0.8953220825195313, 0.89735986328125, 0.8953026733398437, 0.8954552612304687, 0.8961781616210938, 0.8958126220703125, 0.8957644653320312, 0.8956436767578125, 0.8958248901367187, 0.896047119140625, 0.8958515014648437, 0.8958351440429687, 0.8958453979492188, 0.895657958984375, 0.8957132568359375, 0.8961444091796875, 0.8957071533203125, 0.8954951782226562, 1.842377685546875, 0.895404052734375, 0.8950650634765625, 0.8951746826171875, 0.8952135620117188, 0.895152099609375, 0.8950364379882813, 0.8954869995117187, 0.8951756591796876, 0.8951070556640625, 0.89539794921875, 0.8955360717773437, 0.8956303100585937, 0.895278076171875, 0.8953108520507812, 0.895466552734375, 0.8955247802734375, 0.8954808349609376, 0.89577880859375, 0.8958197631835938, 0.8954214477539062, 0.8957296752929688, 0.8957849731445312, 0.8969154663085938, 0.8955699462890625, 0.8955740356445312, 0.8955402221679688, 0.8957010498046875, 0.8956046752929687, 0.8959457397460937, 0.89588427734375, 0.895657958984375, 0.8959969482421875, 0.8955279541015625, 0.89569384765625, 0.8956375122070312, 0.8958167114257812, 0.89558837890625, 0.895529052734375, 0.89546337890625, 0.8958197631835938, 0.8958023681640624, 0.895668212890625, 0.895762451171875, 0.8955596923828125, 0.89588427734375, 0.8957982788085938, 0.896742431640625, 0.8959180297851562, 0.895889404296875, 0.8958699340820313, 0.8959774780273437, 0.8961423950195313, 0.8960029907226562, 0.895941650390625, 0.8961116333007813, 0.8960184326171875, 0.8960419921875, 0.8958904418945313, 0.8957849731445312, 0.8956774291992188, 0.8956559448242187, 0.8954009399414062, 1.84203369140625, 0.8953282470703126, 0.8955074462890625, 0.8958883666992188, 0.895805419921875, 0.895224853515625, 0.8955054321289062, 0.89569482421875, 0.8954593505859375, 0.895592529296875, 0.89609619140625, 0.89571533203125, 0.89652734375, 0.8958136596679688, 0.8957890625, 0.8957183837890625, 0.8957440185546875, 0.8959334106445312, 0.895752197265625, 0.8961761474609375, 0.8955248413085938, 0.896421875, 0.895963134765625, 0.895330322265625, 0.8955340576171875, 0.8957603759765626, 0.8954306640625, 0.8958146362304688, 0.895805419921875, 0.8954982299804688, 0.8955299682617187, 0.8953681640625, 0.8958136596679688, 0.8957706298828125, 0.89615869140625, 0.8956036987304687, 0.8954429321289062, 0.895578125, 0.8957962036132813, 0.8954183959960937, 0.8954849243164062, 0.89569384765625, 0.8957583618164062, 0.8959283447265625, 0.8975103759765625, 0.8956825561523437, 0.8957440185546875, 0.895594482421875, 0.8960829467773438, 0.8958392333984375, 0.8954531860351562, 0.8957625122070313, 0.8960316772460938, 0.8954849243164062, 0.8954644775390626, 0.8962181396484376, 0.895805419921875, 0.8961618041992188, 0.8958760986328125, 0.8960430297851563, 0.89603173828125, 0.8957348022460937, 0.8958709716796875, 1.8425006103515624, 0.8954132690429687, 0.8952770385742187, 0.8951552124023437, 0.8951265258789063, 0.8949452514648437, 0.8951756591796876, 0.8958238525390625, 0.895236083984375, 0.895140869140625, 0.8951900024414062, 0.8952207641601563, 0.895283203125, 0.8956876831054688, 0.8953272094726562, 0.89558837890625, 0.8958331298828125, 0.896849853515625, 0.8957357788085938, 0.8959354858398437, 0.8956190795898438, 0.8957183837890625, 0.89544189453125, 0.8957081298828125, 0.8961085205078125, 0.8960030517578125, 0.895741943359375, 0.8960706787109375, 0.8960758056640625, 0.8956846313476563, 0.8959539794921875, 0.8957930908203126, 0.8956805419921875, 0.8956405639648437, 0.8957777709960938, 0.895805419921875, 0.8960061645507813, 0.8956876831054688, 0.8957982788085938, 0.8960235595703125, 0.896294921875, 0.8963491821289062, 0.8959744262695313, 0.8960379028320312, 0.8958555908203125, 0.8957880249023438, 0.8960327758789063, 0.8959774780273437, 0.8963082275390625, 0.8961085205078125, 0.8957849731445312, 0.8961433715820313, 0.896015380859375, 0.8959569702148438, 0.89592626953125, 0.895857666015625, 0.89588427734375, 0.8977633056640625, 0.8960972900390625, 0.8961024169921875, 0.8960040893554687, 0.8959642333984374, 0.895754150390625, 1.8420654296875, 0.895541259765625, 0.8955330810546875, 0.895551513671875, 0.8954542846679687, 0.89588525390625, 0.8957655639648437, 0.8955913696289063, 0.8954900512695313, 0.895973388671875, 0.8957081298828125, 0.895446044921875, 0.8953692016601562, 0.8954695434570312, 0.8955350952148438, 0.8955064086914063, 0.8957685546875, 0.895510498046875, 0.8955617065429687, 0.89569384765625, 0.8958258666992187, 0.8956436767578125, 0.8955709228515625, 0.8953487548828125, 0.895425537109375, 0.89541015625, 0.8953661499023438, 0.8959344482421875, 0.8957112426757813, 0.8955719604492187, 0.8957173461914063, 0.8952852783203125, 0.895425537109375, 0.8956323852539062, 0.8953405151367188, 0.8953170166015625, 0.8956170043945313, 0.89562109375, 0.8976466064453125, 0.8961249389648438, 0.8960225830078125, 0.8955401611328125, 0.8958443603515625, 0.8955822143554687, 0.8957726440429687, 0.8958177490234375, 0.8958822631835938, 0.8957255859375, 0.89603173828125, 0.8960040893554687, 0.8958167114257812, 0.8959232177734375, 0.8961556396484375, 0.895921142578125, 0.8957132568359375, 0.8960726928710937, 0.8958699340820313, 0.8956088256835938, 0.8956508178710938, 0.8958750610351562, 0.8959140014648438, 0.896184326171875, 0.8957747192382812, 1.8425538330078124, 0.8953139038085938, 0.8954296264648437, 0.8954317016601563, 0.8954019775390625, 0.8954296264648437, 0.895804443359375, 0.89565185546875, 0.8956016845703125, 0.8954736938476563, 0.8951910400390625, 0.8951807861328125, 0.8956160278320312, 0.8953865966796875, 0.895224853515625, 0.8951572265625, 0.895447021484375, 0.8951286010742188, 0.8952534790039063, 0.8959088745117187, 0.8953425903320312, 0.8954378051757812, 0.8953170166015625, 0.8966533203125, 0.8956589965820313, 0.8957174072265625, 0.8958781127929687, 0.8958924560546875, 0.89592626953125, 0.895657958984375, 0.8963993530273437, 0.8960133056640625, 0.8955350952148438, 0.895636474609375, 0.8958023681640624, 0.8959241943359375, 0.8960481567382812, 0.8959610595703125, 0.8962498779296875, 0.8960297241210937, 0.8959395751953125, 0.8961136474609375, 0.896173095703125, 0.8961300048828125, 0.8959856567382812, 0.8956856079101563, 0.8959078369140625, 0.8958648071289063, 0.8959365234375, 0.8959959106445312, 0.89580029296875, 0.8960338134765625, 0.8962744140625, 0.8961085205078125, 0.896195556640625, 0.8962867431640625, 0.8956589965820313, 0.896268310546875, 0.8962437133789063, 0.896083984375, 0.895952880859375, 0.8960859985351562, 0.8958607177734375, 1.8435286865234375, 0.8953579711914063, 0.8959723510742188, 0.895552490234375, 0.8962406616210937, 0.895710205078125, 0.8959600830078125, 0.895594482421875, 0.8955453491210937, 0.8953630981445313, 0.8957020263671875, 0.8955637817382812, 0.895478759765625, 0.8956026611328125, 0.89554736328125, 0.8955330810546875, 0.8961474609375, 0.895688720703125, 0.8956405639648437, 0.89556787109375, 0.8954163208007813, 0.8957962036132813, 0.8957061157226562, 0.8955453491210937, 0.895515625, 0.8955586547851563, 0.8955166625976563, 0.8954368286132812, 0.8956876831054688, 0.8957532348632813, 0.8957552490234375, 0.89554638671875, 0.8954439697265625, 0.8958248901367187, 0.8957378540039063, 0.8956109008789063, 0.895552490234375, 0.8955668334960938, 0.8956426391601563, 0.8957552490234375, 0.8958330688476562, 0.8957849731445312, 0.8957276000976563, 0.895825927734375, 0.8963133544921875, 0.8962559814453125, 0.89609423828125, 0.8956958618164063, 0.8961679077148438, 0.8956907348632812, 0.8954450073242187, 0.8954439697265625, 0.8957511596679687, 0.8955791625976562, 0.8954685668945312, 0.8961618041992188, 0.8959201049804687, 0.8955299682617187, 0.8956661987304687, 0.8956989135742187, 0.8956763916015625, 0.895662109375, 0.8958924560546875, 1.8434007568359374, 0.8952268676757813, 0.8956057739257812, 0.8958668823242187, 0.8953005981445312, 0.8950661010742188, 0.8951449584960938, 0.8954685668945312, 0.8951981811523437, 0.8952791137695313, 0.8951910400390625, 0.895224853515625, 0.8951367797851563, 0.8953661499023438, 0.8954818725585938, 0.8955637817382812, 0.8956846313476563, 0.8963553466796875, 0.8955187377929688, 0.89537841796875, 0.8953743286132813, 0.895267822265625, 0.8952647705078125, 0.8953159790039062, 0.895520751953125, 0.8957470703125, 0.8953702392578125, 0.8953262329101562, 0.8954111938476562, 0.8956661987304687, 0.8953436279296875, 0.8954030151367187, 0.895283203125, 0.8952268676757813, 0.89514599609375, 0.8952166137695312, 0.8958832397460937, 0.89552587890625, 0.8954111938476562, 0.895561767578125, 0.8955135498046874, 0.895520751953125, 0.8956928100585938, 0.8956426391601563, 0.8954716186523437, 0.8955125732421875, 0.8955330810546875, 0.8961566772460937, 0.8961351928710938, 0.8959539184570312, 0.8957091674804688, 0.89584228515625, 0.8958197631835938, 0.8957470703125, 0.8957593383789062, 0.8957214965820313, 0.8955811767578125, 0.8955985717773437, 0.8961331176757813, 0.8957828979492187, 0.8960563354492187, 0.8956763916015625, 0.8957511596679687, 1.8439761962890624, 0.8954634399414062, 0.89548388671875, 0.8955084838867188, 0.89558837890625, 0.895562744140625, 0.8955801391601562, 0.895515625, 0.8953907470703125, 0.8954337158203125, 0.8955177001953125, 0.8955903930664062, 0.8959283447265625, 0.8955166625976563, 0.89547265625, 0.8954685668945312, 0.895752197265625, 0.895425537109375, 0.8954317016601563, 0.8954531860351562, 0.8953671875, 0.89560986328125, 0.8953211059570313, 0.8955269165039063, 0.8957849731445312, 0.8958924560546875, 0.8968284301757813, 0.8958668823242187, 0.8959989624023438, 0.8959027099609375, 0.8958955688476562, 0.8957982788085938, 0.8957511596679687, 0.895730712890625, 0.8959959106445312, 0.8958034057617188, 0.895724609375, 0.8958135375976563, 0.8960409545898438, 0.8961474609375, 0.8957860107421876, 0.8955709228515625, 0.8958484497070313, 0.89590576171875, 0.895847412109375, 0.895763427734375, 0.8960266723632813, 0.8961084594726563, 0.8961710205078125, 0.89615869140625, 0.8962139892578125, 0.895963134765625, 0.8957614135742188, 0.8957449951171875, 0.8958822631835938, 0.8960726928710937, 0.8957849731445312, 0.8957849731445312, 0.895599609375, 0.895626220703125, 0.8956661987304687, 0.8960829467773438, 0.8956692504882813]",tokens/s,1.09981480935664,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-180B,tiiuae/falcon-180B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -42253,21 +42262,11 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/x/resolve/main/config.json +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json The above exception was the direct cause of the following exception: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn @@ -42278,13 +42277,28 @@ Traceback (most recent call last): response = _request_wrapper( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669492ec-390f1a4214ed187e48fc3ce4;4970d307-6071-4f1a-9cca-1cc4a8d6c351) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status + raise HfHubHTTPError(message, response=response) from e +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66949941-15319ee233ca581836f6074e;b3d9eb1e-b318-4073-a1d6-3dbbb7c11305) -Repository Not Found for url: https://huggingface.co/x/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. +403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. +Cannot access content at: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json. +If you are trying to create or update content,make sure you have a token with the `write` role. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error + raise LocalEntryNotFoundError( +huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. The above exception was the direct cause of the following exception: @@ -42305,13 +42319,14 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file raise EnvironmentError( -OSError: x is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like tiiuae/falcon-180B is not the path to a directory containing a file named config.json. +Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,i,i,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,TencentARC/Mistral_Pro_8B_v0.1,TencentARC/Mistral_Pro_8B_v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2454.69184,7298.613248,0.0,6652.166144,6323.221504,s,10,7.735312255859376,0.7735312255859375,0.0028429451285762273,0.7729794311523437,0.7762465698242188,0.7783619323730468,0.7800542224121094,"[0.780477294921875, 0.7757764892578125, 0.7711934204101563, 0.770524658203125, 0.7719502563476562, 0.7706873168945313, 0.7725225219726563, 0.7734363403320312, 0.7744036254882812, 0.77434033203125]",tokens/s,330.9497943099635,kWh,9.102796527565035e-06,4.9879214771863185e-06,4.3937086431680494e-05,5.802780443643185e-05,tokens/kWh,4411678.202997362,MB,2454.69184,7298.613248,0.0,6652.166144,6382.564864,s,10,458.5464296875,45.85464296875,0.0073453057278341505,45.852935546875,45.866698828124996,45.8672068359375,45.8676132421875,"[45.8568515625, 45.857828125, 45.85469140625, 45.8511796875, 45.845234375, 45.8491953125, 45.85046484375, 45.84668359375, 45.8665859375, 45.86771484375]",tokens/s,1.3739066738112995,kWh,0.0005414656486152074,0.00029677022395511814,0.002569976393586324,0.003408212266156649,tokens/kWh,18484.764175514054,,s,629,464.77344433593714,0.7389084965595191,0.09178579233429768,0.727773193359375,0.7285446655273438,0.7288094848632812,1.4987512353515624,"[0.72828515625, 0.7276810302734374, 0.7278029174804688, 0.72793701171875, 0.7272877807617187, 0.727383056640625, 0.7272335205078125, 0.7274444580078125, 0.7278551025390625, 0.727720947265625, 0.7276083374023438, 0.7281663818359375, 0.7275867919921875, 0.72804248046875, 0.72800048828125, 0.7276687622070312, 0.7281151733398438, 0.7279267578125, 0.7276728515625, 0.7276615600585937, 0.7278981323242187, 0.7287255249023438, 0.7286405029296875, 0.7275847778320312, 0.7281510620117188, 0.7281069946289063, 0.7279093627929687, 0.7283015747070313, 0.7283804321289062, 0.7276973876953124, 0.7277127685546875, 0.7276400756835938, 0.7282882690429687, 0.7277936401367188, 0.7284705200195313, 0.727784423828125, 0.727952392578125, 0.727930908203125, 0.728369140625, 0.728827880859375, 0.7278551025390625, 0.72924365234375, 0.7275161743164062, 0.7274977416992188, 0.7274014892578125, 0.727947265625, 0.7273707275390625, 0.7273738403320312, 0.7270891723632813, 0.72770458984375, 0.727604248046875, 0.7274721069335938, 0.728226806640625, 0.7281571655273438, 0.7279820556640625, 0.7282749633789063, 0.7275151977539063, 0.7279564208984375, 0.7273912353515625, 0.7277537231445312, 0.7282349853515625, 0.7278714599609375, 1.503824951171875, 0.72740966796875, 0.7277650146484375, 0.7272868041992188, 0.7274219360351563, 0.7278981323242187, 0.7287039794921875, 0.7276185302734375, 0.7274321899414062, 0.7271383056640625, 0.72722021484375, 0.7271024780273437, 0.7274373168945313, 0.7272499389648438, 0.7280332641601562, 0.7276113891601562, 0.7276943359375, 0.7272652587890625, 0.7283251342773438, 0.7285104370117188, 0.7281961059570312, 0.7280137939453125, 0.7283834838867187, 0.7276124267578125, 0.7279022216796875, 0.7284910278320312, 0.7285155639648437, 0.728142822265625, 0.7280394287109375, 0.7274547119140625, 0.7279277954101563, 0.7275509643554687, 0.7277987670898437, 0.7278591918945313, 0.728226806640625, 0.7301795654296875, 0.726887451171875, 0.727372802734375, 0.7274393310546875, 0.7276984252929688, 0.72789404296875, 0.7279503173828125, 0.7277659912109375, 0.7282677612304688, 0.7285678100585937, 0.7279226684570312, 0.7286671142578125, 0.7283712158203125, 0.7282360229492187, 0.727741455078125, 0.7277588500976563, 0.7276482543945313, 0.727857177734375, 0.7283681030273438, 0.7278796997070313, 0.7283937377929688, 0.727920654296875, 0.7278295288085938, 0.728015869140625, 0.7276452026367187, 0.7281694946289062, 0.7286343383789062, 0.7274926147460937, 1.4987724609375, 0.7273533325195313, 0.727457763671875, 0.7278960571289063, 0.7272560424804687, 0.7277005004882813, 0.7277772827148438, 0.7281305541992188, 0.7275653076171875, 0.727499755859375, 0.7276851196289063, 0.7280271606445312, 0.7270768432617187, 0.7270553588867188, 0.7272847290039063, 0.7274874877929688, 0.7273748779296875, 0.727520263671875, 0.727920654296875, 0.7277373657226562, 0.7273338623046876, 0.728322021484375, 0.7278253784179688, 0.7282452392578125, 0.72855859375, 0.7283507080078125, 0.7274547119140625, 0.727931884765625, 0.7276277465820312, 0.7273011474609375, 0.7271905517578126, 0.727736328125, 0.7286302490234375, 0.728036376953125, 0.727710693359375, 0.7286405029296875, 0.728036376953125, 0.7283230590820312, 0.72854833984375, 0.7284182739257813, 0.7284367065429688, 0.729618408203125, 0.7277322387695313, 0.7279042358398438, 0.7280332641601562, 0.7283035888671875, 0.7280281372070313, 0.7276656494140625, 0.7277639770507812, 0.7281858520507812, 0.7287337036132813, 0.7282145385742187, 0.7282606201171875, 0.7274495849609375, 0.727203857421875, 0.7272243041992188, 0.727235595703125, 0.7272662963867188, 0.7274495849609375, 0.727531494140625, 0.7289282836914063, 0.7277404174804688, 0.7281520385742187, 1.498346435546875, 0.7277035522460937, 0.7284224243164062, 0.7275243530273438, 0.727741455078125, 0.727731201171875, 0.7279708251953125, 0.7275581665039063, 0.7280773315429687, 0.7281356811523437, 0.7283568725585937, 0.7276912841796875, 0.7285411987304687, 0.7277701416015625, 0.7284715576171875, 0.72749462890625, 0.7280516967773437, 0.7273963623046875, 0.7273779296875, 0.7273543701171875, 0.7274270629882813, 0.7274116821289063, 0.727689208984375, 0.7282974853515625, 0.7277066040039063, 0.7288258666992188, 0.72807421875, 0.727720947265625, 0.728501220703125, 0.7287817993164063, 0.728057861328125, 0.7277598876953125, 0.72751513671875, 0.7276728515625, 0.7286773681640625, 0.7274321899414062, 0.7279042358398438, 0.727920654296875, 0.727573486328125, 0.7276513061523437, 0.7273072509765625, 0.7275028686523437, 0.7276226806640625, 0.727731201171875, 0.7275745239257813, 0.727709716796875, 0.7274833984375, 0.7272919311523437, 0.7273953247070313, 0.7276328735351563, 0.7272529907226563, 0.7279380493164063, 0.7277659912109375, 0.7278837890625, 0.7274598388671875, 0.7278622436523438, 0.727636962890625, 0.7282718505859375, 0.7279830932617187, 0.7275888671875, 0.72747314453125, 0.7274137573242188, 0.7276810302734374, 1.500190673828125, 0.7274137573242188, 0.727794677734375, 0.72776806640625, 0.7275325317382813, 0.728131591796875, 0.7274035034179688, 0.7273656616210937, 0.727741455078125, 0.7269683227539062, 0.7274475708007813, 0.727498779296875, 0.7274158325195312, 0.7276226806640625, 0.7277803344726562, 0.7272796020507812, 0.7277967529296875, 0.7278120727539062, 0.7281182861328125, 0.7282227172851562, 0.729248779296875, 0.7279073486328125, 0.727394287109375, 0.7274772338867187, 0.7273768920898438, 0.7279462280273438, 0.7280506591796875, 0.7277485961914063, 0.7276800537109375, 0.7273492431640625, 0.7277352905273438, 0.7280148315429688, 0.7277557983398437, 0.7279503173828125, 0.72796875, 0.727677978515625, 0.7273717651367188, 0.7274014892578125, 0.7277393798828125, 0.7273564453125, 0.7273922729492187, 0.7276431274414062, 0.7273267211914063, 0.727183349609375, 0.7276964111328125, 0.7270574340820313, 0.7279892578125, 0.7274506225585937, 0.7283281860351563, 0.7276236572265625, 0.7274864501953126, 0.7277271118164063, 0.7274741821289062, 0.7276431274414062, 0.727984130859375, 0.7277352905273438, 0.727568359375, 0.7290419311523437, 0.7279063110351562, 0.7274669799804687, 0.7279380493164063, 0.7273656616210937, 0.727736328125, 1.4986966552734375, 0.7277783203125, 0.7279697875976563, 0.7273380126953125, 0.7279759521484375, 0.7274772338867187, 0.7276113891601562, 0.72751513671875, 0.727520263671875, 0.7276339111328125, 0.7279185791015625, 0.7278212890625, 0.7281500244140625, 0.7277086791992188, 0.7276032104492187, 0.7277926635742188, 0.7276728515625, 0.7275827026367188, 0.7275140991210938, 0.7280179443359375, 0.7281879272460937, 0.7278212890625, 0.727699462890625, 0.72736767578125, 0.7276728515625, 0.7279083251953125, 0.7273850708007813, 0.7275069580078125, 0.7274024658203125, 0.7273922729492187, 0.7274700927734375, 0.7275847778320312, 0.7282288818359375, 0.7278090209960938, 0.7279667358398437, 0.7283240966796874, 0.7274004516601562, 0.7275899047851563, 0.729038818359375, 0.728173583984375, 0.727530517578125, 0.7272581176757813, 0.727572509765625, 0.7277127685546875, 0.72736767578125, 0.7276503295898438, 0.7283455810546875, 0.72766259765625, 0.7285360717773437, 0.7277281494140625, 0.72745166015625, 0.7276943359375, 0.7278653564453125, 0.7278253784179688, 0.7273615112304688, 0.7273717651367188, 0.7274547119140625, 0.7275899047851563, 0.7274557495117188, 0.7279779663085938, 0.7282565307617187, 0.728158203125, 0.7288606567382813, 1.500291015625, 0.7285186767578125, 0.7282554931640625, 0.727962646484375, 0.72707275390625, 0.7270717163085938, 0.7278837890625, 0.7273738403320312, 0.7277557983398437, 0.7276339111328125, 0.728394775390625, 0.7282606201171875, 0.728369140625, 0.727878662109375, 0.7280169067382812, 0.727794677734375, 0.7282175903320313, 0.7275038452148438, 0.7273502807617187, 0.7271946411132812, 0.7275499267578125, 0.7277998046875, 0.7273502807617187, 0.7283394775390625, 0.7281551513671874, 0.7276728515625, 0.729017333984375, 0.7274383544921875, 0.7284019165039063, 0.7275847778320312, 0.727709716796875, 0.7274024658203125, 0.7274024658203125, 0.7272263793945313, 0.7275448608398437, 0.727203857421875, 0.7272734985351562, 0.7281172485351562, 0.72766259765625, 0.7277854614257813, 0.7278192749023438, 0.7277168579101563, 0.7283128051757812, 0.7274014892578125, 0.7279892578125, 0.7273103637695313, 0.7277905883789062, 0.72785302734375, 0.7278776245117188, 0.727984130859375, 0.7275591430664062, 0.7280732421875, 0.728015869140625, 0.7281817626953125, 0.7277322387695313, 0.72749365234375, 0.7281449584960937, 0.7275447387695313, 0.7287470092773437, 0.727857177734375, 0.727446533203125, 0.7272703857421875, 0.7274813232421875, 1.5015628662109375, 0.7280670776367187, 0.7274475708007813, 0.7279002075195312, 0.7276564331054688, 0.727930908203125, 0.7274649658203125, 0.7278028564453125, 0.7277875366210937, 0.7275980834960938, 0.7279329223632812, 0.7276553955078126, 0.7276932983398438, 0.7277240600585938, 0.7281275024414062, 0.7278305053710937, 0.7283988647460937, 0.727973876953125, 0.7275120849609376, 0.7283138427734375, 0.7280885620117188, 0.728431640625, 0.7279882202148438, 0.7285555419921875, 0.727773193359375, 0.7274137573242188, 0.727572509765625, 0.7277168579101563, 0.7279124755859375, 0.7280169067382812, 0.7274721069335938, 0.7271577758789063, 0.7273502807617187, 0.7277578125, 0.72791552734375, 0.7280302124023438, 0.7272263793945313, 0.727066650390625, 0.7275479125976563, 0.7274383544921875, 0.727099365234375, 0.7272929077148438, 0.7277578125, 0.728215576171875, 0.727783447265625, 0.7276656494140625, 0.72743115234375, 0.7274690551757812, 0.7273277587890625, 0.7281571655273438, 0.7275397338867188, 0.727414794921875, 0.7275867919921875, 0.7271116943359375, 0.727257080078125, 0.727667724609375, 0.7276851196289063, 0.7272703857421875, 0.7279493408203125, 0.7277250366210938, 0.7286610107421875, 0.7273246459960937, 0.7279380493164063, 1.50266162109375, 0.72736767578125, 0.7276441650390625, 0.727141357421875, 0.7274188842773438, 0.7278018798828125, 0.727625732421875, 0.727541748046875, 0.7280783081054687, 0.7277342529296875, 0.72876953125, 0.728369140625, 0.7288411865234375, 0.7279749145507812, 0.7283046264648437, 0.72797900390625, 0.7282718505859375, 0.7281930541992188, 0.728658935546875, 0.7289108276367188, 0.7287183227539062, 0.7283169555664063, 0.7286814575195313, 0.7278428344726563, 0.7285463256835938, 0.72789404296875, 0.72875830078125, 0.72804248046875, 0.7291146240234375, 0.7289763793945313, 0.7286661376953125, 0.728784912109375, 0.728363037109375, 0.7279595336914062, 0.7274700927734375, 0.7275233154296875, 0.7272816772460937, 0.7279974365234375, 0.7284090576171875, 0.72762060546875, 0.728300537109375, 0.727457763671875, 0.7274711303710938, 0.727183349609375, 0.7278960571289063, 0.7272171630859375, 0.7289682006835938, 0.7285933837890625, 0.7276564331054688, 0.7285442504882812, 0.7269273681640624, 0.72795751953125, 0.7275642700195313, 0.7277936401367188, 0.7290480346679687, 0.72764208984375, 0.727804931640625, 0.7280322265625, 0.7278858032226563, 0.727383056640625, 0.7281940307617187, 0.7273421020507812, 0.72789404296875, 1.502066650390625, 0.7280179443359375, 0.7290101928710937, 0.7292303466796874, 0.7280660400390625, 0.728395751953125, 0.72835791015625, 0.72821142578125, 0.7285330200195312, 0.7277250366210938, 0.728616943359375, 0.7284172973632812, 0.7285718994140625, 0.728131591796875, 0.7278837890625, 0.7286558837890625, 0.7279124755859375, 0.7291678466796875, 0.728326171875, 0.7273584594726562, 0.7271588134765625, 0.7275980834960938, 0.7273738403320312, 0.7279912719726562, 0.72772607421875, 0.7297515258789062, 0.7277824096679687, 0.7272632446289062, 0.7278909301757812, 0.7273318481445312, 0.7274424438476562, 0.7272509155273438, 0.7275796508789063, 0.7279483032226562, 0.7278059692382812, 0.7278919677734375, 0.7276881713867187, 0.7284940795898438, 0.7285985107421875, 0.7283128051757812, 0.7282175903320313, 0.7282974853515625, 0.728426513671875, 0.7279165649414062, 0.7284940795898438, 0.7287070922851563, 0.7288955078125, 0.7288780517578125, 0.7277035522460937, 0.72800048828125, 0.72765234375, 0.728056884765625, 0.7274495849609375, 0.7280240478515625, 0.727583740234375, 0.727520263671875, 0.7282698364257812, 0.7273543701171875, 0.7287091064453125, 0.7278960571289063, 0.7277035522460937, 0.7276973876953124, 0.727141357421875]",tokens/s,1.3533475452727455,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,m,m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -42323,7 +42338,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/i/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/m/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -42350,9 +42365,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694903f-36aa65bd66fc1618112f4c74;29748bff-44b6-49df-828e-0890bfcfdea6) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948c60-36fa4198483b6e6d79ee734e;1e77eff2-4763-42e9-b267-c09febf359ff) -Repository Not Found for url: https://huggingface.co/i/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/m/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -42377,75 +42392,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: i is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: m is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-72B,Qwen/Qwen-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained - model_class = get_class_from_dynamic_module( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module - final_module = get_cached_module_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file - modules_needed = check_imports(resolved_module_file) - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports - raise ImportError( -ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.4b,EleutherAI/pythia-1.4b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-3B-v1,togethercomputer/RedPajama-INCITE-Base-3B-v1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-72B,Qwen/Qwen1.5-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -42465,22 +42416,29 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-0.5B,Qwen/Qwen1.5-0.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-70b-hf,meta-llama/Llama-2-70b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -42500,22 +42458,31 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 112.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-7B,Qwen/Qwen-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-13b-hf,meta-llama/Llama-2-13b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,3011.678208,9259.450368,0.0,8613.003264,8211.364864,s,10,10.948309448242187,1.0948309448242186,0.0017810888898920402,1.0946644287109375,1.0975797607421875,1.097637109375,1.09768298828125,"[1.0947955322265626, 1.0975670166015625, 1.0945333251953124, 1.09283447265625, 1.093535400390625, 1.0924375, 1.0933472900390624, 1.0952611083984376, 1.0963033447265624, 1.0976944580078125]",tokens/s,233.8260543422092,kWh,1.2896189077032937e-05,7.064633461468475e-06,6.102240992899577e-05,8.098323246749718e-05,tokens/kWh,3161148.20562079,MB,3011.678208,9330.753536,0.0,8684.306432,8503.627264,s,10,640.83317578125,64.083317578125,0.01786692489370897,64.076908203125,64.113046875,64.1131875,64.1133,"[64.113015625, 64.113328125, 64.1000546875, 64.0766796875, 64.07603515625, 64.07292578125, 64.06015625, 64.0786328125, 64.0652109375, 64.07713671875]",tokens/s,0.983095170177413,kWh,0.0007565677230060101,0.0004146680905150424,0.003575465860370403,0.0047467016738914555,tokens/kWh,13272.374024793335,,s,629,649.6630466918949,1.0328506306707386,0.1300798719514248,1.0170562744140625,1.01796640625,1.0183720947265624,2.11047625,"[1.0181212158203126, 1.0173245239257813, 1.0185758666992188, 1.0180556640625, 1.018123291015625, 1.0182379760742188, 1.0183464965820312, 1.0172989501953125, 1.0187325439453125, 1.0184806518554688, 1.0173450317382813, 1.0169671630859376, 1.0177156982421875, 1.016869873046875, 1.0170828857421874, 1.0171054077148438, 1.017406494140625, 1.0178303833007813, 1.0179625244140624, 1.0176153564453125, 1.0172446899414063, 1.0175590209960939, 1.0186322021484375, 1.0177269897460937, 1.017723876953125, 1.0172518310546874, 1.0174484252929688, 1.0174822387695313, 1.0188011474609375, 1.0174320678710937, 1.0174351196289062, 1.0169671630859376, 1.0170900268554688, 1.0175518798828125, 1.0169671630859376, 1.0169815063476562, 1.01698046875, 1.017164794921875, 1.0184673461914062, 1.0172026977539061, 1.0175672607421875, 1.017354248046875, 1.0178375854492188, 1.01718017578125, 1.0172631225585937, 1.0175252685546874, 1.0175877075195312, 1.0180198364257813, 1.01806591796875, 1.0169200439453125, 1.0169722900390625, 1.0176399536132812, 1.0175457153320313, 1.0184530029296874, 1.0189946899414062, 1.017486328125, 1.0173870239257812, 1.0177218627929687, 1.0176204833984375, 1.0178468017578124, 1.0180025024414063, 1.0178231811523437, 2.115484619140625, 1.0167900390625, 1.0173245239257813, 1.0184478759765625, 1.0185051879882812, 1.018660888671875, 1.0180894775390625, 1.01798193359375, 1.0169508056640626, 1.0166098022460937, 1.0167337036132813, 1.0166784057617186, 1.0166610107421874, 1.0168370971679688, 1.0182635498046875, 1.017359375, 1.017260009765625, 1.0175375366210937, 1.0179983520507812, 1.0172620849609375, 1.0179829711914063, 1.0172477416992187, 1.0176378784179687, 1.0178222045898437, 1.018113037109375, 1.0180044555664063, 1.0183690185546874, 1.0185379638671874, 1.017069580078125, 1.0172241821289063, 1.0169231567382813, 1.0170255126953125, 1.016953857421875, 1.0170449829101562, 1.0174218139648437, 1.0171945190429688, 1.0167879638671875, 1.0176768188476562, 1.0178262939453124, 1.017734130859375, 1.01724365234375, 1.0175989990234375, 1.0170029907226563, 1.0170224609375, 1.0177013549804688, 1.0169600219726562, 1.0178672485351563, 1.0179348754882813, 1.01819287109375, 1.0178980102539064, 1.0185748291015626, 1.0183229370117188, 1.0191605834960937, 1.0187940063476562, 1.0190294799804687, 1.018576904296875, 1.0186598510742189, 1.0183741455078126, 1.0177904663085937, 1.0180341796875, 1.0173480834960937, 1.0171412353515625, 1.017723876953125, 2.11309765625, 1.0174781494140626, 1.0174166870117187, 1.0177935180664062, 1.0169886474609375, 1.0179368896484375, 1.01819189453125, 1.0179256591796875, 1.01707568359375, 1.0180884399414063, 1.0175416259765624, 1.0177484741210938, 1.01865673828125, 1.01788671875, 1.0186629028320313, 1.0175426635742189, 1.0182052001953126, 1.0181621704101562, 1.017913330078125, 1.0183598022460938, 1.0172467041015625, 1.0170460205078125, 1.0173931274414063, 1.0176419677734374, 1.0177720336914062, 1.016953857421875, 1.01732763671875, 1.0172713012695314, 1.01722216796875, 1.0184335327148437, 1.0174474487304688, 1.0173317260742187, 1.017807861328125, 1.0172548828125, 1.0176010131835938, 1.0181068725585938, 1.0175713500976562, 1.0182727661132813, 1.0180116577148437, 1.0184151000976562, 1.0177402954101562, 1.017481201171875, 1.0176061401367187, 1.0172026977539061, 1.016680419921875, 1.0167982177734376, 1.016784912109375, 1.0172897338867188, 1.0168883056640625, 1.01704296875, 1.0168678588867188, 1.0165729370117187, 1.0167131958007813, 1.0166456298828126, 1.0165667724609375, 1.0168145751953126, 1.016875, 1.0166814575195313, 1.0167070922851562, 1.0168309936523436, 1.0168156127929688, 1.01669580078125, 1.01747607421875, 2.11044970703125, 1.0169733276367188, 1.0170706176757813, 1.0172846069335937, 1.0169989013671874, 1.0167142333984376, 1.01673779296875, 1.0168524780273438, 1.0172088623046875, 1.017069580078125, 1.0166159057617188, 1.0165391235351562, 1.0165780639648438, 1.016901611328125, 1.0178887939453125, 1.0169794311523437, 1.0168237915039062, 1.017164794921875, 1.017049072265625, 1.0169600219726562, 1.0166497192382813, 1.0166763305664062, 1.0166876220703125, 1.017296875, 1.0177669067382813, 1.0170214233398438, 1.01680126953125, 1.0170153198242187, 1.0169190673828126, 1.0170368041992188, 1.0171064453125, 1.0172354736328124, 1.0170460205078125, 1.0172548828125, 1.017270263671875, 1.01686474609375, 1.016853515625, 1.01725390625, 1.0170050659179688, 1.0172303466796875, 1.01722314453125, 1.01692724609375, 1.0170449829101562, 1.0169825439453124, 1.0179143676757811, 1.0177525634765625, 1.0174228515625, 1.0177669067382813, 1.0174218139648437, 1.017470947265625, 1.016974365234375, 1.01671728515625, 1.0168442993164062, 1.01711669921875, 1.0169733276367188, 1.017064453125, 1.016784912109375, 1.0175057983398437, 1.0172620849609375, 1.0171259155273438, 1.0172252197265625, 1.0170562744140625, 1.0171351318359374, 2.110795654296875, 1.0166190185546875, 1.0167347412109375, 1.0169712524414063, 1.0166886596679687, 1.016806396484375, 1.0165883178710937, 1.0169190673828126, 1.0171340942382812, 1.0177515258789063, 1.0171422729492188, 1.0173849487304687, 1.0172548828125, 1.0168411865234375, 1.0169845581054688, 1.0166845703125, 1.0168084716796875, 1.017049072265625, 1.0166876220703125, 1.0172395629882813, 1.016953857421875, 1.016732666015625, 1.0170419311523438, 1.016896484375, 1.016853515625, 1.0166179809570313, 1.0168473510742186, 1.0165565185546874, 1.0171422729492188, 1.0176635131835938, 1.0167357177734375, 1.0171463623046875, 1.017027587890625, 1.0171187133789064, 1.0174617309570313, 1.0175324096679688, 1.01707568359375, 1.017122802734375, 1.0175518798828125, 1.0175703125, 1.0169467163085937, 1.0168923950195312, 1.0171740112304688, 1.0170286254882812, 1.0166773681640624, 1.0171105346679687, 1.0168504028320313, 1.0169476928710937, 1.0173501586914062, 1.0176942138671874, 1.0172774658203125, 1.0176573486328124, 1.01741259765625, 1.0166753540039062, 1.0169313354492187, 1.0168473510742186, 1.016975341796875, 1.0182573852539063, 1.0172119140625, 1.017554931640625, 1.017101318359375, 1.0170040283203126, 1.0173255615234376, 2.110369873046875, 1.0170951538085937, 1.0169763793945312, 1.0166558837890625, 1.017407470703125, 1.0166405029296874, 1.0165350341796875, 1.0173060913085938, 1.0170572509765625, 1.0168780517578124, 1.0168340454101563, 1.0168545532226563, 1.0169609985351562, 1.0170890502929688, 1.0174730224609374, 1.0169528198242188, 1.0169354248046876, 1.0171760864257813, 1.0170286254882812, 1.0169978637695312, 1.0167285766601561, 1.016795166015625, 1.0171883544921876, 1.0171248779296875, 1.0169425659179687, 1.0167398681640625, 1.016647705078125, 1.017091064453125, 1.0167838745117188, 1.0169794311523437, 1.0168053588867187, 1.0165780639648438, 1.0166886596679687, 1.0169876708984376, 1.016974365234375, 1.017037841796875, 1.0167971801757814, 1.0169210815429688, 1.0174884033203124, 1.0167941284179687, 1.0167725830078125, 1.0167675170898438, 1.0176215209960937, 1.0169835815429686, 1.017260009765625, 1.0171054077148438, 1.017228271484375, 1.01694873046875, 1.0170050659179688, 1.017069580078125, 1.017248779296875, 1.01722216796875, 1.0173972778320313, 1.017143310546875, 1.0172692260742187, 1.0171156616210937, 1.0175375366210937, 1.0173552856445311, 1.0170654907226562, 1.0171207885742188, 1.017069580078125, 1.0168463134765624, 1.0169405517578125, 2.110486572265625, 1.0164469604492188, 1.0168002319335938, 1.016369140625, 1.0169415893554687, 1.0168094482421874, 1.016580078125, 1.0167101440429687, 1.0166886596679687, 1.0167756958007812, 1.0168053588867187, 1.0167296142578126, 1.0168402099609375, 1.01680126953125, 1.0167633666992189, 1.0166968383789063, 1.01671630859375, 1.0167347412109375, 1.0167684936523438, 1.01724365234375, 1.016858642578125, 1.01710546875, 1.0170787353515625, 1.0171729736328126, 1.0169989013671874, 1.0165247802734374, 1.0167285766601561, 1.0167684936523438, 1.0166016235351563, 1.0166517944335938, 1.0164653930664063, 1.0165411987304687, 1.0165831909179688, 1.01671630859375, 1.0165924072265624, 1.0165606689453126, 1.016543212890625, 1.0166599731445312, 1.0167716064453125, 1.0168186645507813, 1.01701123046875, 1.0169200439453125, 1.0169108276367187, 1.0166343383789063, 1.016553466796875, 1.0164080810546876, 1.0169200439453125, 1.016774658203125, 1.01694873046875, 1.0167030029296875, 1.016711181640625, 1.017343994140625, 1.0178682861328125, 1.017290771484375, 1.0172057495117188, 1.0169927978515625, 1.016964111328125, 1.0171351318359374, 1.0170265502929687, 1.0169200439453125, 1.0168862915039063, 1.0171627807617187, 1.0168002319335938, 2.112787353515625, 1.0166026000976562, 1.0169682006835938, 1.0167654418945313, 1.0172047119140626, 1.0169948120117187, 1.0164418334960938, 1.0169876708984376, 1.0169866333007813, 1.0173931274414063, 1.0172119140625, 1.017186279296875, 1.0169815063476562, 1.0177986450195313, 1.0174259033203126, 1.017359375, 1.0174873657226562, 1.0177362060546875, 1.01767578125, 1.017439208984375, 1.0174658813476563, 1.01768701171875, 1.0180730590820313, 1.0177741088867187, 1.0177136840820313, 1.0177843017578125, 1.0180269775390625, 1.0175682373046875, 1.0174586791992188, 1.0174105834960938, 1.01734912109375, 1.0172139282226562, 1.0173184204101562, 1.0173480834960937, 1.0167736206054687, 1.0164807739257813, 1.0166026000976562, 1.0172415771484375, 1.01684326171875, 1.0170951538085937, 1.0171576538085938, 1.0169251708984375, 1.0167306518554688, 1.0167562255859375, 1.0166569213867187, 1.0165821533203125, 1.0164367065429687, 1.0164756469726564, 1.016543212890625, 1.0165913696289062, 1.0170572509765625, 1.0170706176757813, 1.0169989013671874, 1.0169262084960937, 1.0167183227539063, 1.01669580078125, 1.0168842163085938, 1.0169262084960937, 1.016958984375, 1.0170848999023439, 1.0168914184570312, 1.0169169921875, 1.017260009765625, 2.113946533203125, 1.0165718994140625, 1.0166046752929687, 1.016953857421875, 1.0168678588867188, 1.0169241333007812, 1.0169292602539062, 1.0173470458984375, 1.0169763793945312, 1.0174136352539063, 1.0167705688476563, 1.017006103515625, 1.0173532104492187, 1.0174310302734375, 1.0171514892578124, 1.017064453125, 1.0168955078125, 1.0172467041015625, 1.016848388671875, 1.016911865234375, 1.016647705078125, 1.0169364624023438, 1.0165985107421875, 1.0165892944335937, 1.0166067504882812, 1.0164940795898438, 1.0166220703125, 1.0168770751953125, 1.0167285766601561, 1.0169609985351562, 1.0163701782226562, 1.0168135375976564, 1.01677978515625, 1.01676953125, 1.0166210327148437, 1.016521728515625, 1.0165770263671876, 1.0167521362304688, 1.0170449829101562, 1.0166937866210937, 1.0167091064453124, 1.01682177734375, 1.0167613525390624, 1.0167510986328125, 1.0168627319335937, 1.016816650390625, 1.0168186645507813, 1.0168770751953125, 1.0175191040039062, 1.0170839233398437, 1.0171156616210937, 1.0169978637695312, 1.0167551879882812, 1.0168893432617188, 1.0166149291992188, 1.0167460327148437, 1.0174617309570313, 1.0178723754882812, 1.0175508422851562, 1.0171740112304688, 1.0164818115234375, 1.016890380859375, 1.0167900390625, 2.115039306640625, 1.0166619873046876, 1.0170449829101562, 1.0170029907226563, 1.0168207397460938, 1.0171340942382812, 1.0175303955078125, 1.0170664672851562, 1.0168944702148437, 1.0170839233398437, 1.0168811645507811, 1.0166190185546875, 1.0173521728515624, 1.0172764282226563, 1.0172467041015625, 1.0180219116210938, 1.0176358642578125, 1.0167941284179687, 1.0168053588867187, 1.016974365234375, 1.0168657836914063, 1.0167101440429687, 1.0172078247070313, 1.017523193359375, 1.0172088623046875, 1.0169343872070313, 1.0170183715820313, 1.0173358154296874, 1.0169886474609375, 1.0170839233398437, 1.0169886474609375, 1.0171361083984376, 1.0170203857421876, 1.0177321166992188, 1.01720166015625, 1.0167777099609374, 1.0169886474609375, 1.0173583374023438, 1.0168914184570312, 1.0169722900390625, 1.0168985595703126, 1.0167562255859375, 1.016875, 1.0164859008789062, 1.0166527709960937, 1.01667431640625, 1.0164827880859375, 1.0166220703125, 1.0165606689453126, 1.0166558837890625, 1.016774658203125, 1.0169169921875, 1.0172507934570312, 1.0167654418945313, 1.0169661254882814, 1.0170787963867187, 1.0171719970703126, 1.0167449340820311, 1.0168955078125, 1.016932373046875, 1.0169548950195313, 1.0173470458984375, 1.0174095458984376]",tokens/s,0.968194209602791,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-7b,stabilityai/stablelm-base-alpha-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1477.30432,8196.194304,0.0,7549.7472,6941.631488,s,10,6.0462579345703125,0.6046257934570314,0.0007435687799022576,0.604391815185547,0.6052782531738281,0.6058451202392579,0.6062986138916016,"[0.6064119873046875, 0.6051522827148438, 0.6040460205078125, 0.6039584350585937, 0.6041729736328125, 0.603818603515625, 0.6042236328125, 0.6045599975585938, 0.6048197021484375, 0.6050942993164062]",tokens/s,423.4023800676526,kWh,7.135871880584294e-06,3.909028176627437e-06,3.5656695191997026e-05,4.670159524920876e-05,tokens/kWh,5481611.466030966,MB,1477.30432,8196.194304,0.0,7549.7472,7094.078464,s,10,357.59960156249997,35.759960156249996,0.0025836315483325416,35.759828125,35.7629109375,35.7636703125,35.7642778125,"[35.7644296875, 35.76244140625, 35.755375, 35.758703125, 35.75703515625, 35.75961328125, 35.7587890625, 35.76004296875, 35.7604296875, 35.7627421875]",tokens/s,1.7617469293793129,kWh,0.0004221709076563517,0.00023138749488215953,0.002133793484811199,0.0027873518873497106,tokens/kWh,22602.097814030254,,s,629,362.47207647705085,0.5762672122051682,0.07178708636540315,0.567605224609375,0.5678377075195312,0.5679312866210938,1.1716501220703124,"[0.5675867919921875, 0.5674536743164063, 0.5675294799804688, 0.5675069580078125, 0.5674711303710938, 0.56766259765625, 0.5675397338867187, 0.567414794921875, 0.5675397338867187, 0.567857177734375, 0.5676984252929688, 0.5676615600585937, 0.5676932983398437, 0.567741455078125, 0.567667724609375, 0.5677650146484375, 0.5679800415039062, 0.5678551025390625, 0.5676390380859375, 0.5676298217773438, 0.567710693359375, 0.567710693359375, 0.567568359375, 0.567900146484375, 0.5677824096679688, 0.567510009765625, 0.56774755859375, 0.5680036010742188, 0.56772607421875, 0.5676021728515624, 0.5675284423828125, 0.5676349487304687, 0.5676973876953125, 0.567857177734375, 0.5677864990234375, 0.5676759033203125, 0.5677332763671875, 0.567736328125, 0.5676236572265625, 0.5676482543945313, 0.5678510131835938, 0.5677496337890625, 0.5674977416992187, 0.5674495849609374, 0.5680199584960938, 0.5677691040039062, 0.5677250366210937, 0.5677158203125, 0.5677281494140625, 0.5677322387695313, 0.5676615600585937, 0.5676973876953125, 0.5678653564453126, 0.5677117309570312, 0.5676216430664063, 0.56771484375, 0.5676461791992188, 0.5675673828125, 0.5677025146484375, 0.5677178955078125, 0.5677588500976563, 0.5677485961914063, 1.1728394775390625, 0.5675120849609375, 0.5672499389648438, 0.5673809814453125, 0.567425048828125, 0.5678643188476562, 0.5675172119140625, 0.5675909423828125, 0.5675530395507813, 0.5675233154296875, 0.5674926147460938, 0.567546875, 0.5676093139648437, 0.567673828125, 0.5677547607421874, 0.56760009765625, 0.56751513671875, 0.5678336181640625, 0.5675867919921875, 0.567462890625, 0.5675970458984375, 0.5676533813476563, 0.56762060546875, 0.5676195678710938, 0.5676820678710938, 0.5676759033203125, 0.5675878295898438, 0.5676216430664063, 0.5675888671875, 0.5675222778320312, 0.567667724609375, 0.5676400756835938, 0.5675427856445312, 0.567562255859375, 0.5677056274414063, 0.567699462890625, 0.5677117309570312, 0.5678643188476562, 0.56776806640625, 0.5677557983398438, 0.5678028564453125, 0.5681766357421875, 0.5678325805664063, 0.5677014770507812, 0.5676093139648437, 0.5677567749023438, 0.5677496337890625, 0.5676830444335937, 0.5678008422851563, 0.5677178955078125, 0.5676165161132812, 0.5676011352539062, 0.5678192749023437, 0.5676881713867188, 0.5675899047851563, 0.5676656494140625, 0.5677383422851563, 0.5676973876953125, 0.5679749145507812, 0.5676431274414062, 0.567762939453125, 0.5677230224609375, 0.567647216796875, 1.1716873779296875, 0.5677588500976563, 0.5675479125976562, 0.567457763671875, 0.5674711303710938, 0.5678981323242187, 0.5679073486328124, 0.5674229736328125, 0.5675980834960938, 0.5674864501953125, 0.56749462890625, 0.5673656616210937, 0.5676482543945313, 0.5675530395507813, 0.5675089721679687, 0.5674639282226562, 0.5674158325195312, 0.5674301147460937, 0.5674035034179687, 0.5674526977539063, 0.567446533203125, 0.5673840942382813, 0.567498779296875, 0.56760009765625, 0.5675858154296874, 0.5674158325195312, 0.56747314453125, 0.567436279296875, 0.5673809814453125, 0.567546875, 0.5677117309570312, 0.5675601806640626, 0.5675089721679687, 0.5675140991210937, 0.5675765991210937, 0.5675919189453125, 0.5674424438476563, 0.5677158203125, 0.5675878295898438, 0.56744140625, 0.5677056274414063, 0.5677404174804688, 0.5675233154296875, 0.5674649658203125, 0.567341064453125, 0.5675530395507813, 0.5674721069335937, 0.5675714721679688, 0.5675264282226562, 0.5675673828125, 0.5675612182617188, 0.5674956665039063, 0.5675284423828125, 0.5675427856445312, 0.5675919189453125, 0.567605224609375, 0.5675079956054687, 0.5675581665039062, 0.5677537231445312, 0.5677322387695313, 0.5675714721679688, 0.5675407104492187, 0.5676267700195312, 1.1715543212890625, 0.56745166015625, 0.5672324829101563, 0.5672796020507812, 0.5673430786132813, 0.5674086303710938, 0.5673318481445313, 0.56740966796875, 0.5675089721679687, 0.5676113891601563, 0.5675950317382813, 0.5674301147460937, 0.5677127685546876, 0.5675438232421876, 0.5674536743164063, 0.5673994140625, 0.5674403686523437, 0.5674127197265625, 0.5678090209960938, 0.5673983764648437, 0.5675172119140625, 0.5676820678710938, 0.5676349487304687, 0.5673932495117188, 0.567530517578125, 0.5676093139648437, 0.5676400756835938, 0.5676165161132812, 0.56760009765625, 0.5676707763671875, 0.5676339111328125, 0.567583740234375, 0.567468017578125, 0.5675867919921875, 0.5676011352539062, 0.5675888671875, 0.5676216430664063, 0.5679401245117187, 0.5675479125976562, 0.5676113891601563, 0.56771484375, 0.5675612182617188, 0.567562255859375, 0.5677076416015625, 0.5675817260742188, 0.5677230224609375, 0.5677875366210937, 0.56810595703125, 0.5677905883789063, 0.5677076416015625, 0.56764111328125, 0.5676318969726563, 0.5676728515625, 0.5677659912109375, 0.567630859375, 0.5676646118164063, 0.5677199096679687, 0.567635986328125, 0.5677271118164062, 0.567751708984375, 0.5676656494140625, 0.5677987670898438, 0.5677404174804688, 1.171937255859375, 0.5675632934570313, 0.567510009765625, 0.5676011352539062, 0.5675110473632813, 0.5675509643554687, 0.5675704345703125, 0.5676400756835938, 0.5673451538085937, 0.5674536743164063, 0.5673789672851562, 0.5673011474609375, 0.5673953247070312, 0.567414794921875, 0.5674506225585938, 0.5674485473632812, 0.5674711303710938, 0.5674024658203125, 0.5676707763671875, 0.5677967529296875, 0.5677352905273437, 0.5674874877929688, 0.5676021728515624, 0.5673779296875, 0.5679329223632813, 0.5678540649414062, 0.5675560913085937, 0.5674352416992188, 0.5675601806640626, 0.5673789672851562, 0.5673871459960937, 0.5673840942382813, 0.5674967041015625, 0.5679431762695313, 0.5675222778320312, 0.5674014892578125, 0.5675642700195312, 0.5678223266601562, 0.5675274047851563, 0.5674485473632812, 0.5675612182617188, 0.5675130615234375, 0.5677005004882812, 0.5681069946289062, 0.5675448608398438, 0.56759912109375, 0.5675233154296875, 0.5674772338867188, 0.5674833984375, 0.5675765991210937, 0.5675601806640626, 0.5674649658203125, 0.567468017578125, 0.5676585083007812, 0.5677854614257812, 0.5675899047851563, 0.567546875, 0.5675213012695313, 0.5679288330078125, 0.567762939453125, 0.5678182373046875, 0.5676216430664063, 0.5676011352539062, 1.17129931640625, 0.5673502807617188, 0.567215087890625, 0.5675376586914063, 0.56736767578125, 0.5673421020507813, 0.5673707275390625, 0.567426025390625, 0.5676564331054688, 0.5675714721679688, 0.5674864501953125, 0.5673482055664063, 0.5674526977539063, 0.5674854125976563, 0.5675048828125, 0.5674536743164063, 0.5673359375, 0.56749462890625, 0.5675018310546875, 0.5674526977539063, 0.5674557495117187, 0.5676062622070313, 0.5678377075195312, 0.5674813232421875, 0.5677189331054687, 0.5678090209960938, 0.5677772827148437, 0.5675213012695313, 0.567751708984375, 0.5677783203125, 0.5676656494140625, 0.5676830444335937, 0.5675755615234375, 0.5678561401367187, 0.567636962890625, 0.5677291259765626, 0.5675059204101562, 0.567667724609375, 0.56776806640625, 0.5675161743164062, 0.5675540771484375, 0.5675079956054687, 0.5677742309570313, 0.5676452026367188, 0.56749462890625, 0.5674864501953125, 0.567593994140625, 0.56757861328125, 0.5675172119140625, 0.5676615600585937, 0.56762060546875, 0.5679359741210938, 0.5679605712890625, 0.5678868408203125, 0.5678858032226562, 0.567710693359375, 0.5680302124023437, 0.5678018798828125, 0.5676083374023437, 0.5676615600585937, 0.5680117797851563, 0.5678970947265625, 0.56764111328125, 1.1718861083984375, 0.5675161743164062, 0.5677250366210937, 0.5673861694335938, 0.567342041015625, 0.5673369750976562, 0.5673584594726563, 0.5674086303710938, 0.5673850708007813, 0.5677219848632813, 0.56757861328125, 0.56755712890625, 0.5675601806640626, 0.5676646118164063, 0.5676544189453125, 0.5674854125976563, 0.5673922729492188, 0.567499755859375, 0.5677189331054687, 0.5675161743164062, 0.5676431274414062, 0.56751513671875, 0.567520263671875, 0.5674598388671875, 0.5675693969726563, 0.5675233154296875, 0.5675233154296875, 0.5677301635742188, 0.5675919189453125, 0.5674035034179687, 0.5674905395507812, 0.5677189331054687, 0.5676380004882813, 0.5675653076171875, 0.567541748046875, 0.5674424438476563, 0.5674383544921875, 0.5678059692382813, 0.567689208984375, 0.56762060546875, 0.5675601806640626, 0.5675079956054687, 0.5674854125976563, 0.5674926147460938, 0.56753564453125, 0.5678244018554688, 0.56768408203125, 0.5676267700195312, 0.5678377075195312, 0.5678120727539062, 0.567804931640625, 0.5675601806640626, 0.5677752075195313, 0.5677711181640624, 0.5676748657226562, 0.5678848266601563, 0.5678233642578125, 0.5676984252929688, 0.5676134643554688, 0.56768408203125, 0.5676605224609375, 0.56764111328125, 0.5679544067382812, 1.172231201171875, 0.5673134155273437, 0.5675560913085937, 0.5677117309570312, 0.567499755859375, 0.5674158325195312, 0.5673758544921875, 0.56732568359375, 0.5674649658203125, 0.5678387451171875, 0.5675479125976562, 0.5674649658203125, 0.5675950317382813, 0.5675284423828125, 0.5674014892578125, 0.5673430786132813, 0.5677230224609375, 0.5675120849609375, 0.5674485473632812, 0.5674014892578125, 0.5676533813476563, 0.5676400756835938, 0.567568359375, 0.5674219360351562, 0.5676533813476563, 0.567604248046875, 0.5677455444335937, 0.5675950317382813, 0.5676881713867188, 0.567636962890625, 0.5676769409179687, 0.5676810302734375, 0.56772607421875, 0.567942138671875, 0.5678171997070313, 0.5677557983398438, 0.5677598876953125, 0.5678653564453126, 0.568068115234375, 0.5676103515625, 0.5676461791992188, 0.5675264282226562, 0.5675867919921875, 0.56753564453125, 0.5677793579101562, 0.567762939453125, 0.567562255859375, 0.5676615600585937, 0.5673656616210937, 0.5675407104492187, 0.5676349487304687, 0.567783447265625, 0.5676871948242187, 0.567531494140625, 0.5677056274414063, 0.5678079833984375, 0.5679267578125, 0.5676380004882813, 0.5675755615234375, 0.567530517578125, 0.5676113891601563, 0.5678325805664063, 0.5676062622070313, 1.172675537109375, 0.567414794921875, 0.56749462890625, 0.5675540771484375, 0.5675540771484375, 0.5675079956054687, 0.5674649658203125, 0.5674332275390624, 0.5676083374023437, 0.5674967041015625, 0.5675346069335937, 0.567309326171875, 0.5674373168945313, 0.5676553955078125, 0.5676759033203125, 0.5677711181640624, 0.5675499267578125, 0.5675806884765625, 0.5676011352539062, 0.5674813232421875, 0.5675172119140625, 0.5674291381835938, 0.567647216796875, 0.5675264282226562, 0.5675950317382813, 0.5675899047851563, 0.5676093139648437, 0.5676820678710938, 0.5677025146484375, 0.567605224609375, 0.5676226806640625, 0.5677219848632813, 0.5676124267578125, 0.5677138061523438, 0.5676380004882813, 0.5676656494140625, 0.5676482543945313, 0.56774658203125, 0.5677158203125, 0.5675950317382813, 0.5677445068359375, 0.5677701416015625, 0.5675632934570313, 0.567531494140625, 0.56770458984375, 0.5677557983398438, 0.5675817260742188, 0.5675407104492187, 0.5675028686523438, 0.567583740234375, 0.5677485961914063, 0.5675714721679688, 0.56776806640625, 0.5676380004882813, 0.5676871948242187, 0.5676564331054688, 0.5675089721679687, 0.5678407592773438, 0.567920654296875, 0.56778955078125, 0.5677639770507813, 0.5679882202148437, 0.5677393798828125, 1.17273193359375, 0.56749365234375, 0.5674434814453125, 0.5675346069335937, 0.5677537231445312, 0.5674434814453125, 0.5675059204101562, 0.5675284423828125, 0.567583740234375, 0.5678008422851563, 0.567736328125, 0.5674874877929688, 0.5675048828125, 0.567436279296875, 0.5674956665039063, 0.5676564331054688, 0.567647216796875, 0.567720947265625, 0.56751513671875, 0.5676380004882813, 0.5676185302734374, 0.5676134643554688, 0.5674403686523437, 0.5674761962890625, 0.5675120849609375, 0.5675899047851563, 0.5674024658203125, 0.5674649658203125, 0.5675560913085937, 0.5677567749023438, 0.5676615600585937, 0.5677230224609375, 0.56781005859375, 0.567562255859375, 0.5678551025390625, 0.5675980834960938, 0.5675233154296875, 0.5675581665039062, 0.5675059204101562, 0.5674721069335937, 0.5674967041015625, 0.567530517578125, 0.5675007934570313, 0.5675028686523438, 0.5679646606445312, 0.567546875, 0.5677957153320312, 0.567920654296875, 0.567794677734375, 0.5679216918945312, 0.5680087280273437, 0.5677936401367187, 0.56793701171875, 0.5678694458007812, 0.5679564819335937, 0.56789404296875, 0.5677813720703125, 0.5679912719726562, 0.5678223266601562, 0.5678090209960938, 0.5678837890625, 0.5678981323242187, 0.5679011840820313]",tokens/s,1.7353060851290814,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-72B,Qwen/Qwen-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -42543,43 +42510,8 @@ ChildProcessError: Traceback (most recent call last): raise ImportError( ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-14B,Qwen/Qwen2-beta-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-7b,google/recurrentgemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,0,0,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -42591,7 +42523,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/google/recurrentgemma-7b/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/0/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -42618,9 +42550,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694827a-76afe2bd12238ae5791ab1e5;c14281ad-9f6d-4207-a978-fe4cbe3250f2) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949500-07e242b56a1f32ec76792080;e3fc2d0e-9368-41ac-96e0-04d21929e4fe) -Repository Not Found for url: https://huggingface.co/google/recurrentgemma-7b/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/0/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -42645,11 +42577,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: google/recurrentgemma-7b is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: 0 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-rw-1b,tiiuae/falcon-rw-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-7b,google/gemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -42657,112 +42589,74 @@ If this is a private repository, make sure to pass a token having permission to File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation - cls._check_and_enable_flash_attn_2( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 - raise ValueError( -ValueError: FalconForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmprcrhg91d/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/gemma-7b/resolve/main/config.json -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-70B,meta-llama/Meta-Llama-3-70B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU +The above exception was the direct cause of the following exception: -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-65b,huggyllama/llama-65b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status + raise HfHubHTTPError(message, response=response) from e +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66948188-61698c3155d92a4641002213;cb1b519a-94d7-4b05-b855-768da720d205) + +403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. +Cannot access content at: https://huggingface.co/google/gemma-7b/resolve/main/config.json. +If you are trying to create or update content,make sure you have a token with the `write` role. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error + raise LocalEntryNotFoundError( +huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 86.00 MiB. GPU + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file + raise EnvironmentError( +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/gemma-7b is not the path to a directory containing a file named config.json. +Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,l,l,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,x,x,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -42774,7 +42668,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/l/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/x/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -42801,9 +42695,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669491e2-6ca0ac411b0e535c5d450960;d366e3c5-63dc-4d39-b796-571c449dc05e) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669492dc-0b78ae6813f5de6f676b55b5;76c09d7c-92b9-4864-8f20-c75ed288e03c) -Repository Not Found for url: https://huggingface.co/l/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/x/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -42828,40 +42722,15 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: l is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: x is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-4.5B,facebook/xglm-4.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation - cls._check_and_enable_flash_attn_2( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 - raise ValueError( -ValueError: XGLMForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpi4hzcsjj/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-110B,Qwen/Qwen1.5-110B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm2-20b,internlm/internlm2-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,4008.419328,15760.621568,0.0,15114.174464,14046.123008,s,10,15.848047607421876,1.5848047607421876,0.001058458314234293,1.584490295410156,1.5859812255859376,1.5864652832031252,1.5868525292968751,"[1.5851588134765624, 1.583447265625, 1.5845269775390625, 1.583828125, 1.58445361328125, 1.583693603515625, 1.5843594970703125, 1.5857567138671875, 1.5869493408203126, 1.5858736572265626]",tokens/s,161.53409324698862,kWh,1.869280167751842e-05,1.0243654597979911e-05,8.793465368099884e-05,0.00011687110995649717,tokens/kWh,2190447.23794692,MB,4008.419328,15760.621568,0.0,15114.174464,14170.904576,s,10,927.2718203125,92.72718203125001,0.005797509915113206,92.7283046875,92.73256640625,92.73465820312501,92.736331640625,"[92.7307421875, 92.72909375, 92.73675, 92.7321015625, 92.7264921875, 92.7241015625, 92.7158671875, 92.7194609375, 92.7296953125, 92.727515625]",tokens/s,0.6794124292353493,kWh,0.0010946948910421795,0.0005999896856933628,0.005209015139431006,0.006903699716166547,tokens/kWh,9125.541751543959,,s,629,940.0627094726563,1.494535309177514,0.18825786848907494,1.47182177734375,1.4724240966796875,1.4726346923828124,3.055808037109375,"[1.4722620849609376, 1.4717921142578125, 1.47181982421875, 1.4719560546875, 1.4718125, 1.4717183837890624, 1.472183349609375, 1.47190576171875, 1.4715218505859375, 1.47171630859375, 1.47156787109375, 1.4714951171875, 1.471922119140625, 1.4721187744140625, 1.4715177001953126, 1.47153515625, 1.4718924560546875, 1.4718126220703125, 1.4714593505859375, 1.4722181396484375, 1.4722314453125, 1.4714234619140625, 1.471951904296875, 1.4719990234375, 1.471762451171875, 1.4720880126953124, 1.472605224609375, 1.471382568359375, 1.4716119384765625, 1.471868896484375, 1.4716876220703126, 1.4716446533203125, 1.472257080078125, 1.4723829345703126, 1.472047119140625, 1.4720819091796875, 1.47234716796875, 1.4716507568359376, 1.47162109375, 1.471951904296875, 1.472247802734375, 1.472111572265625, 1.471752197265625, 1.4720460205078125, 1.4718433837890625, 1.471847412109375, 1.473238037109375, 1.4716826171875, 1.4716129150390624, 1.471711181640625, 1.4720286865234375, 1.4715771484375, 1.47129443359375, 1.4723441162109374, 1.47237890625, 1.4720123291015625, 1.4720389404296874, 1.4725570068359375, 1.4715821533203124, 1.47163232421875, 1.472152587890625, 1.4719139404296875, 3.055659912109375, 1.4719190673828124, 1.4714122314453124, 1.4715750732421875, 1.4726441650390625, 1.4716497802734374, 1.4719395751953126, 1.4714327392578126, 1.4716334228515624, 1.4717982177734374, 1.4725570068359375, 1.472247802734375, 1.4715555419921875, 1.4713795166015624, 1.47167431640625, 1.4718515625, 1.471489990234375, 1.4721033935546874, 1.4721280517578126, 1.471662109375, 1.47139990234375, 1.4714696044921876, 1.471595458984375, 1.4714849853515626, 1.472489501953125, 1.4717716064453126, 1.471542236328125, 1.4713282470703124, 1.4715074462890625, 1.4714327392578126, 1.4716241455078125, 1.4727454833984375, 1.4718914794921876, 1.472322509765625, 1.4719334716796875, 1.47182177734375, 1.4713436279296874, 1.4722703857421875, 1.47228466796875, 1.471656982421875, 1.471455322265625, 1.4724454345703124, 1.4727833251953124, 1.472058349609375, 1.472762939453125, 1.4725816650390624, 1.47173583984375, 1.4722109375, 1.4722037353515625, 1.4719927978515626, 1.4716068115234375, 1.4723389892578125, 1.4720194091796874, 1.4716221923828126, 1.4717747802734376, 1.47186279296875, 1.4714490966796876, 1.471636474609375, 1.4723154296875, 1.471784912109375, 1.47171533203125, 1.4717327880859374, 1.472248779296875, 3.057259521484375, 1.47224267578125, 1.4718597412109375, 1.472489501953125, 1.4721064453125, 1.4717808837890625, 1.471899658203125, 1.4724228515625, 1.472541748046875, 1.47203173828125, 1.472416748046875, 1.47173583984375, 1.471767578125, 1.4718350830078124, 1.472779296875, 1.4719927978515626, 1.47137841796875, 1.4718525390625, 1.4718648681640625, 1.4717603759765625, 1.4714869384765625, 1.47251611328125, 1.4720552978515624, 1.47161083984375, 1.4713856201171875, 1.4714736328125, 1.4710916748046876, 1.471134765625, 1.4725887451171875, 1.4723441162109374, 1.4716630859375, 1.471782958984375, 1.4716395263671875, 1.4718515625, 1.4722734375, 1.472278564453125, 1.4714920654296875, 1.47167431640625, 1.47209423828125, 1.4719703369140624, 1.47245263671875, 1.4724505615234376, 1.47195703125, 1.47188525390625, 1.472077880859375, 1.4723031005859375, 1.4720552978515624, 1.4719139404296875, 1.4722252197265624, 1.4726502685546874, 1.4722242431640624, 1.471540283203125, 1.472048095703125, 1.4718955078125, 1.4713743896484375, 1.47283154296875, 1.4720828857421875, 1.472143310546875, 1.472288818359375, 1.4720460205078125, 1.4718065185546876, 1.471910888671875, 1.472711669921875, 3.055857666015625, 1.471562744140625, 1.4717071533203125, 1.471541259765625, 1.4722652587890626, 1.47290625, 1.4720972900390625, 1.4717244873046875, 1.4717379150390626, 1.47239111328125, 1.4715084228515625, 1.4723399658203125, 1.47213720703125, 1.47205224609375, 1.472205810546875, 1.4718515625, 1.471974365234375, 1.4717972412109375, 1.472838623046875, 1.472647216796875, 1.47232666015625, 1.47219970703125, 1.4716876220703126, 1.4716630859375, 1.4720552978515624, 1.4729554443359374, 1.471932373046875, 1.471942626953125, 1.471614990234375, 1.4719990234375, 1.4717265625, 1.4722620849609376, 1.47253857421875, 1.47146337890625, 1.4715965576171874, 1.4714061279296875, 1.471909912109375, 1.4716488037109374, 1.4721239013671874, 1.472101318359375, 1.4714869384765625, 1.471604736328125, 1.4719661865234375, 1.4716927490234375, 1.4718228759765626, 1.471889404296875, 1.4719180908203124, 1.4718177490234374, 1.4717174072265624, 1.471542236328125, 1.471983642578125, 1.4715238037109375, 1.4717327880859374, 1.472067626953125, 1.471873046875, 1.4716876220703126, 1.4719764404296876, 1.4723194580078125, 1.4719017333984374, 1.4723870849609375, 1.4717716064453126, 1.4715146484375, 1.4714757080078125, 3.056364501953125, 1.4723338623046875, 1.472585693359375, 1.4714593505859375, 1.471646728515625, 1.4715494384765626, 1.4717880859375, 1.472016357421875, 1.4726204833984375, 1.4721822509765625, 1.4717747802734376, 1.4717244873046875, 1.4717716064453126, 1.47205322265625, 1.4717276611328125, 1.472067626953125, 1.471805419921875, 1.4715555419921875, 1.471551513671875, 1.4714962158203124, 1.47133544921875, 1.4717747802734376, 1.471994873046875, 1.47158837890625, 1.471520751953125, 1.4713466796875, 1.4714747314453125, 1.4717276611328125, 1.4718135986328125, 1.4724290771484374, 1.4716488037109374, 1.4714132080078124, 1.4716231689453125, 1.4723389892578125, 1.4713077392578124, 1.47160888671875, 1.471899658203125, 1.4723778076171874, 1.471910888671875, 1.4719447021484375, 1.47195703125, 1.47152685546875, 1.472251953125, 1.471962158203125, 1.4716077880859375, 1.471457275390625, 1.4723092041015624, 1.4719969482421875, 1.4716549072265626, 1.4718648681640625, 1.47160986328125, 1.4718760986328125, 1.471826904296875, 1.4713251953125, 1.47182177734375, 1.4716077880859375, 1.472786376953125, 1.472522216796875, 1.4720809326171875, 1.4717982177734374, 1.4721248779296876, 1.471731689453125, 1.4721033935546874, 3.055680419921875, 1.4718280029296875, 1.4716129150390624, 1.4713046875, 1.4718914794921876, 1.4720511474609375, 1.4723931884765624, 1.471605712890625, 1.4720911865234374, 1.47203173828125, 1.4718822021484375, 1.4717869873046876, 1.4723829345703126, 1.4720809326171875, 1.471552490234375, 1.4721136474609375, 1.471494140625, 1.4717767333984375, 1.471177734375, 1.472689208984375, 1.4716497802734374, 1.4718802490234375, 1.4714306640625, 1.472184326171875, 1.4717860107421874, 1.47194677734375, 1.47276904296875, 1.4713814697265626, 1.4714398193359375, 1.471753173828125, 1.472689208984375, 1.472320556640625, 1.472069580078125, 1.47273828125, 1.4716497802734374, 1.4718289794921875, 1.4717060546875, 1.471951904296875, 1.4716866455078126, 1.47211669921875, 1.471942626953125, 1.4714388427734375, 1.471298583984375, 1.4713538818359375, 1.4712965087890626, 1.4712689208984375, 1.4717244873046875, 1.472357421875, 1.471731689453125, 1.4715218505859375, 1.471215576171875, 1.4711285400390626, 1.4713046875, 1.47230615234375, 1.4722723388671874, 1.4720819091796875, 1.471382568359375, 1.4713026123046875, 1.472006103515625, 1.47163232421875, 1.472415771484375, 1.471131591796875, 1.4713272705078124, 3.056773193359375, 1.4716077880859375, 1.4716282958984375, 1.471858642578125, 1.4712208251953125, 1.4718197021484376, 1.472443359375, 1.4715648193359374, 1.471594482421875, 1.472443359375, 1.4719036865234374, 1.47152587890625, 1.4711285400390626, 1.4714869384765625, 1.4713077392578124, 1.4713907470703125, 1.47195703125, 1.47201123046875, 1.4714542236328125, 1.4714757080078125, 1.471456298828125, 1.471595458984375, 1.47175732421875, 1.4725191650390625, 1.4716539306640626, 1.4716416015625, 1.47211474609375, 1.4713333740234376, 1.47162109375, 1.4716436767578125, 1.4722816162109376, 1.47161083984375, 1.471515625, 1.4715064697265625, 1.4715709228515625, 1.47129345703125, 1.4712586669921874, 1.4722181396484375, 1.471456298828125, 1.4713170166015626, 1.4715576171875, 1.47175732421875, 1.47146337890625, 1.472247802734375, 1.471603759765625, 1.4716273193359375, 1.4715709228515625, 1.472047119140625, 1.4721197509765624, 1.472300048828125, 1.4724617919921874, 1.472036865234375, 1.4715872802734375, 1.47150537109375, 1.47152685546875, 1.4712227783203125, 1.4709483642578125, 1.4714481201171874, 1.4717808837890625, 1.4714285888671874, 1.4712176513671875, 1.4715013427734376, 1.471331298828125, 3.058272216796875, 1.4714920654296875, 1.4712022705078125, 1.47119921875, 1.4717470703125, 1.471373291015625, 1.4719886474609376, 1.4716968994140625, 1.4716273193359375, 1.4718914794921876, 1.471751220703125, 1.4717174072265624, 1.471711181640625, 1.472184326171875, 1.472363525390625, 1.471656982421875, 1.4721873779296875, 1.4718863525390624, 1.4719764404296876, 1.4720511474609375, 1.4719754638671876, 1.4718924560546875, 1.4713037109375, 1.4712841796875, 1.47162109375, 1.4717725830078126, 1.472, 1.4716497802734374, 1.4716558837890625, 1.4713426513671874, 1.471215576171875, 1.4712484130859376, 1.47142041015625, 1.471537109375, 1.4719190673828124, 1.4712698974609375, 1.471478759765625, 1.47183203125, 1.4715013427734376, 1.4721925048828124, 1.47177978515625, 1.472447509765625, 1.4714500732421876, 1.4717501220703124, 1.47160888671875, 1.4718299560546875, 1.471974365234375, 1.4720081787109376, 1.472126953125, 1.4715023193359376, 1.4715084228515625, 1.47169482421875, 1.471330322265625, 1.471171630859375, 1.4719794921875, 1.4723297119140626, 1.471705078125, 1.4717818603515624, 1.4718740234375, 1.4721126708984376, 1.471266845703125, 1.472437255859375, 1.4715064697265625, 3.05955126953125, 1.4719764404296876, 1.47195703125, 1.47245361328125, 1.472227294921875, 1.4713221435546875, 1.4720296630859375, 1.4715545654296875, 1.4716138916015624, 1.4715606689453125, 1.47230517578125, 1.4725037841796875, 1.471837158203125, 1.47186376953125, 1.47192724609375, 1.4720911865234374, 1.47192626953125, 1.4723450927734374, 1.4718555908203126, 1.47135791015625, 1.4716026611328126, 1.471425537109375, 1.4714224853515625, 1.4716395263671875, 1.4727669677734374, 1.4724013671875, 1.4724403076171875, 1.47211669921875, 1.4722672119140625, 1.472236572265625, 1.47209423828125, 1.4720142822265625, 1.471340576171875, 1.4719610595703125, 1.471952880859375, 1.4716343994140626, 1.4717020263671876, 1.472510009765625, 1.4722958984375, 1.47205322265625, 1.471494140625, 1.471520751953125, 1.4711224365234374, 1.4714521484375, 1.471753173828125, 1.4722447509765626, 1.4713282470703124, 1.47150341796875, 1.472290771484375, 1.471889404296875, 1.4715074462890625, 1.4724771728515624, 1.4729246826171876, 1.4722078857421874, 1.4716180419921876, 1.471309814453125, 1.47177978515625, 1.47196923828125, 1.4722120361328126, 1.471774658203125, 1.4713466796875, 1.471520751953125, 1.4712811279296876, 3.058113525390625, 1.4730526123046874, 1.4717235107421875, 1.4721668701171875, 1.471916015625, 1.472654296875, 1.4716385498046876, 1.4719088134765625, 1.4720716552734374, 1.4713763427734374, 1.471236083984375, 1.471573974609375, 1.4717041015625, 1.471826904296875, 1.4721710205078125, 1.472248779296875, 1.471709228515625, 1.47167333984375, 1.4722354736328125, 1.47183203125, 1.4724495849609376, 1.47257861328125, 1.4722344970703125, 1.471520751953125, 1.4716630859375, 1.47169384765625, 1.472069580078125, 1.4725938720703124, 1.472268310546875, 1.471952880859375, 1.4720880126953124, 1.4720225830078124, 1.471952880859375, 1.4723450927734374, 1.472373779296875, 1.472194580078125, 1.4716927490234375, 1.471921142578125, 1.471922119140625, 1.472109619140625, 1.471762451171875, 1.4723779296875, 1.4719671630859374, 1.4716590576171875, 1.47093603515625, 1.4710968017578125, 1.4713907470703125, 1.47113671875, 1.471277099609375, 1.4721495361328125, 1.4713795166015624, 1.4710025634765624, 1.471087646484375, 1.47147265625, 1.4714593505859375, 1.4727730712890625, 1.472385986328125, 1.4715115966796875, 1.47182177734375, 1.471372314453125, 1.471321044921875, 1.4717603759765625, 1.47186181640625]",tokens/s,0.6691042987470994,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1373.622272,6237.454336,0.0,5591.007232,5346.100224,s,10,5.623939697265624,0.5623939697265625,0.0018664729250946,0.5620524597167968,0.563123095703125,0.5654235778808594,0.5672639636230469,"[0.5677240600585938, 0.5623804931640625, 0.5615673828125, 0.5610968627929688, 0.561818603515625, 0.5608659057617188, 0.5612388305664062, 0.5622863159179687, 0.562349365234375, 0.5626118774414063]",tokens/s,455.19691493930475,kWh,6.624708389058526e-06,3.630042331800116e-06,3.1119932303329425e-05,4.1374683024188065e-05,tokens/kWh,6187358.57989147,MB,1373.622272,6237.454336,0.0,5591.007232,5555.342336,s,10,326.497560546875,32.649756054687494,0.006483931910806726,32.650626953125,32.658396484375,32.6586953125,32.658934375,"[32.65203515625, 32.6462578125, 32.658994140625, 32.65576953125, 32.658330078125, 32.651564453125, 32.649689453125, 32.63969140625, 32.6434453125, 32.641783203125]",tokens/s,1.9295703126993242,kWh,0.0003854154377200722,0.00021124086242082436,0.0017644989764128718,0.0023611552765537684,tokens/kWh,26681.853847389422,,s,629,331.03564239501964,0.5262887796423203,0.06675128508752028,0.51820849609375,0.5186688842773437,0.5188689819335938,1.07959478515625,"[0.5180374755859375, 0.5182678833007812, 0.5178931274414063, 0.5179525146484375, 0.517771240234375, 0.5180712890625, 0.5179750366210938, 0.5180805053710937, 0.5178931274414063, 0.51806103515625, 0.5181265869140625, 0.5183170776367187, 0.5182382202148438, 0.5182545776367188, 0.5179371337890625, 0.5179320068359375, 0.5178828735351563, 0.5182423095703125, 0.5177661743164063, 0.5184501953125, 0.5183272705078125, 0.5182412719726562, 0.518329345703125, 0.5184378662109375, 0.51814501953125, 0.518319091796875, 0.5182443237304688, 0.518181884765625, 0.5181737060546875, 0.5180671997070313, 0.5180620727539063, 0.5182228393554688, 0.518096923828125, 0.5180733642578125, 0.5180712890625, 0.5181204223632813, 0.518097900390625, 0.51814501953125, 0.5181767578125, 0.5185771484375, 0.518513671875, 0.5182904052734375, 0.5183529052734375, 0.5182494506835937, 0.5183231811523438, 0.518898681640625, 0.5186907958984375, 0.5187061767578125, 0.5188659057617188, 0.5184491577148438, 0.5182515258789062, 0.5187911376953125, 0.518445068359375, 0.518139892578125, 0.5181849365234374, 0.518667236328125, 0.518803466796875, 0.5185535888671875, 0.5189119873046875, 0.518846435546875, 0.518677490234375, 0.518724609375, 1.0810408935546876, 0.518350830078125, 0.51835595703125, 0.5182074584960937, 0.518297607421875, 0.5182279663085938, 0.5184102172851562, 0.5181460571289063, 0.5180006103515625, 0.5179330444335938, 0.5180252075195313, 0.5179064331054688, 0.5179320068359375, 0.5177804565429688, 0.5182894287109375, 0.5181163330078125, 0.5180518188476563, 0.5180508422851563, 0.5179484252929687, 0.5180457153320313, 0.5182883911132813, 0.5182054443359375, 0.5181962280273438, 0.5179832153320313, 0.5181480712890625, 0.518150146484375, 0.5184532470703125, 0.5180272827148438, 0.5180825805664062, 0.518097900390625, 0.5182258911132812, 0.5182105712890624, 0.5181552734375, 0.5183569946289063, 0.518529052734375, 0.518128662109375, 0.5181829223632812, 0.5179422607421875, 0.5181511840820312, 0.518192138671875, 0.5183323974609375, 0.5181368408203125, 0.5180845947265625, 0.5180733642578125, 0.5180211181640625, 0.5182935180664062, 0.5184542846679687, 0.5183917846679688, 0.5182208251953125, 0.5182781372070312, 0.5181317138671875, 0.5180057373046875, 0.51827099609375, 0.5181931762695312, 0.5183539428710937, 0.5180200805664062, 0.5180907592773437, 0.518160400390625, 0.5181306762695312, 0.518550537109375, 0.5182576904296875, 0.5182935180664062, 0.5190768432617188, 1.0802135009765625, 0.5184102172851562, 0.5183016967773437, 0.5183057861328125, 0.518302734375, 0.5182258911132812, 0.5182843017578125, 0.5182535400390625, 0.5182894287109375, 0.5180989379882812, 0.5188106079101562, 0.5188167724609375, 0.5182730102539063, 0.5184215087890625, 0.5188740844726563, 0.518466552734375, 0.5184788208007812, 0.5185781860351563, 0.518593505859375, 0.5185474853515625, 0.5185228881835937, 0.5185556640625, 0.5184358520507812, 0.5184542846679687, 0.5182996215820312, 0.518150146484375, 0.5181685791015626, 0.5181951904296875, 0.5183805541992188, 0.5179638061523437, 0.5181430053710937, 0.5183969116210938, 0.518614013671875, 0.5185802001953125, 0.518518798828125, 0.5182832641601562, 0.5184378662109375, 0.5184542846679687, 0.5183897705078125, 0.5185802001953125, 0.5184993286132813, 0.518413330078125, 0.518582275390625, 0.5183180541992187, 0.5183262939453125, 0.5186201782226563, 0.5186109619140625, 0.5183580322265625, 0.5184757690429688, 0.5184901123046874, 0.5186160888671875, 0.5187286987304688, 0.5188710327148438, 0.5184942016601563, 0.5181839599609375, 0.5181829223632812, 0.5181522216796876, 0.518096923828125, 0.5179955444335937, 0.5181552734375, 0.51811328125, 0.5180682373046875, 0.5181757202148437, 1.07947314453125, 0.5179699096679687, 0.5179678955078125, 0.51793408203125, 0.5179218139648437, 0.5176954956054688, 0.517823486328125, 0.517739501953125, 0.51822900390625, 0.5179279174804687, 0.517939208984375, 0.5180466918945312, 0.517918701171875, 0.5178296508789062, 0.5179985961914062, 0.5177743530273438, 0.5179566040039062, 0.5178408813476563, 0.5179791259765625, 0.5178828735351563, 0.5179432983398438, 0.5181634521484375, 0.5181337890625, 0.5179771118164063, 0.5182044067382813, 0.51795556640625, 0.5179996337890626, 0.5179801635742187, 0.5180671997070313, 0.518134765625, 0.5181143188476562, 0.5187368774414063, 0.5187942504882812, 0.5189273681640625, 0.5193850708007812, 0.5187921752929687, 0.5189058837890625, 0.5189734497070313, 0.5189846801757813, 0.5192017822265625, 0.5188218994140625, 0.5181880493164063, 0.5183334350585938, 0.518235107421875, 0.5181430053710937, 0.5183231811523438, 0.5186498413085937, 0.5190901489257812, 0.5187317504882812, 0.51865087890625, 0.5185198364257813, 0.5186201782226563, 0.5188372192382813, 0.51859765625, 0.518645751953125, 0.5186754760742187, 0.518487060546875, 0.5186324462890625, 0.5185587158203125, 0.5188239135742188, 0.5186519165039063, 0.5187880859375, 0.5186846923828125, 1.0807930908203125, 0.51770166015625, 0.51816650390625, 0.5179269409179688, 0.518044677734375, 0.5178726196289063, 0.5178777465820312, 0.5178327026367188, 0.5186160888671875, 0.5184112548828125, 0.5178265380859375, 0.5183109130859375, 0.518076416015625, 0.5183846435546875, 0.5180590209960938, 0.5186488037109375, 0.5181992797851562, 0.5183733520507813, 0.5187184448242188, 0.5183948974609375, 0.5185996704101562, 0.518761474609375, 0.518898681640625, 0.5185392456054687, 0.5188966674804687, 0.51905126953125, 0.519035888671875, 0.5190471801757812, 0.5186109619140625, 0.5184972534179687, 0.5185576782226563, 0.5184890747070312, 0.518635498046875, 0.5185792236328125, 0.5188178100585937, 0.5181685791015626, 0.51841845703125, 0.5182699584960937, 0.5182064819335938, 0.518287353515625, 0.5185095825195313, 0.5183477783203125, 0.5183303833007813, 0.51831396484375, 0.5182330932617187, 0.51831396484375, 0.5185115966796875, 0.5181265869140625, 0.5181378784179688, 0.5181726684570312, 0.5181337890625, 0.5182105712890624, 0.51820849609375, 0.518345703125, 0.51832421875, 0.5183549194335938, 0.518307861328125, 0.5184307250976562, 0.5182935180664062, 0.5186068725585937, 0.5185156860351563, 0.5184860229492188, 0.5183590698242188, 1.079120849609375, 0.5180108642578125, 0.5178880004882812, 0.5183908081054688, 0.5182914428710937, 0.5184788208007812, 0.5184235229492188, 0.518445068359375, 0.518530029296875, 0.51832421875, 0.5184675903320313, 0.51827099609375, 0.5184603881835937, 0.5187942504882812, 0.5182791748046875, 0.518677490234375, 0.51831396484375, 0.5182689208984375, 0.5182883911132813, 0.5182525634765625, 0.5183006591796875, 0.5184860229492188, 0.51837646484375, 0.5183355102539062, 0.5185433349609375, 0.5184737548828126, 0.518582275390625, 0.5182945556640625, 0.5185679321289063, 0.5183539428710937, 0.5182320556640625, 0.5178674926757812, 0.5180487670898437, 0.5178419189453125, 0.518265869140625, 0.5178624267578125, 0.5180108642578125, 0.5179617309570312, 0.5181962280273438, 0.5183150024414063, 0.5182945556640625, 0.51801806640625, 0.5179739990234375, 0.5180282592773438, 0.5179627685546875, 0.5179453735351562, 0.5180723266601562, 0.5182699584960937, 0.5180877075195313, 0.5185106201171875, 0.51859765625, 0.5188925170898437, 0.5190215454101562, 0.51888232421875, 0.5181071166992187, 0.5179473876953125, 0.5181839599609375, 0.5182371826171875, 0.5180457153320313, 0.5183866577148437, 0.5179750366210938, 0.518129638671875, 0.51801806640625, 1.07964208984375, 0.5178245239257813, 0.51821875, 0.5180845947265625, 0.5184706420898437, 0.5179371337890625, 0.5181102294921875, 0.5177528076171874, 0.5178818359375, 0.5179115600585937, 0.5181040649414063, 0.51799755859375, 0.5179422607421875, 0.517833740234375, 0.5180364990234375, 0.5180262451171875, 0.5184931640625, 0.518465576171875, 0.518752197265625, 0.5185177612304688, 0.5182627563476563, 0.51831396484375, 0.5179750366210938, 0.5179299926757812, 0.518255615234375, 0.5179238891601563, 0.5180384521484375, 0.5178255615234375, 0.5182105712890624, 0.5178951416015625, 0.5179678955078125, 0.5183211669921876, 0.518451171875, 0.5179801635742187, 0.5185515747070313, 0.518012939453125, 0.5183160400390625, 0.5181572875976562, 0.518414306640625, 0.51803955078125, 0.5180856323242188, 0.5184501953125, 0.5183150024414063, 0.5181255493164062, 0.517992431640625, 0.5180579833984374, 0.5187839965820312, 0.5185628051757812, 0.518540283203125, 0.518202392578125, 0.518066162109375, 0.5179484252929687, 0.5179596557617188, 0.518540283203125, 0.5186969604492188, 0.518518798828125, 0.518950927734375, 0.5188731079101563, 0.5186795654296875, 0.5185914916992187, 0.5187307739257813, 0.5183908081054688, 0.51898876953125, 1.0808607177734375, 0.5182371826171875, 0.5184461059570312, 0.5177640991210938, 0.5177876586914063, 0.517739501953125, 0.5178665161132813, 0.5178562622070313, 0.5178859252929687, 0.5180989379882812, 0.5182730102539063, 0.5177979125976563, 0.5178357543945312, 0.5179658203125, 0.517981201171875, 0.517939208984375, 0.5179945068359375, 0.5179227905273438, 0.518240234375, 0.5178214111328125, 0.5179320068359375, 0.5179780883789062, 0.5183355102539062, 0.5180651245117187, 0.5181480712890625, 0.5180057373046875, 0.5182074584960937, 0.5179883422851562, 0.518451171875, 0.5178818359375, 0.5180845947265625, 0.5179965209960937, 0.51812353515625, 0.5180364990234375, 0.5182320556640625, 0.5181358032226563, 0.5180743408203125, 0.5179351196289063, 0.518034423828125, 0.51783984375, 0.5181317138671875, 0.518181884765625, 0.5181368408203125, 0.518096923828125, 0.5181122436523438, 0.5180252075195313, 0.5180845947265625, 0.5183109130859375, 0.5181265869140625, 0.5181849365234374, 0.5181675415039062, 0.51801904296875, 0.5181522216796876, 0.5180067749023437, 0.5182208251953125, 0.5181409301757812, 0.5182740478515625, 0.5183969116210938, 0.5182013549804687, 0.5183569946289063, 0.518540283203125, 0.5182197875976563, 0.5181859741210938, 1.08067431640625, 0.5179432983398438, 0.5182156982421875, 0.5180016479492188, 0.5179719848632812, 0.51789208984375, 0.5180518188476563, 0.5180037231445312, 0.5178480834960938, 0.5180877075195313, 0.5180457153320313, 0.517917724609375, 0.5178644409179688, 0.5178849487304688, 0.518024169921875, 0.518054931640625, 0.5180067749023437, 0.5178900756835938, 0.5179576416015625, 0.5179576416015625, 0.5179586791992188, 0.5180856323242188, 0.5181337890625, 0.5180282592773438, 0.5181214599609375, 0.5182494506835937, 0.518319091796875, 0.5179115600585937, 0.5183477783203125, 0.5183272705078125, 0.5182802124023438, 0.5183600463867187, 0.5181358032226563, 0.5181696166992188, 0.518255615234375, 0.5183529052734375, 0.5181572875976562, 0.5181859741210938, 0.5181696166992188, 0.51808154296875, 0.51820849609375, 0.5184255981445313, 0.5182371826171875, 0.5183518676757812, 0.5184041137695312, 0.5182156982421875, 0.518381591796875, 0.5181542358398438, 0.5183303833007813, 0.5183754272460938, 0.5185751342773437, 0.5181276245117188, 0.51801904296875, 0.517982177734375, 0.5183969116210938, 0.5180518188476563, 0.5181931762695312, 0.5182013549804687, 0.51814501953125, 0.5182044067382813, 0.5184788208007812, 0.5181685791015626, 0.5182545776367188, 1.0810133056640625, 0.5179525146484375, 0.5181378784179688, 0.5180538940429688, 0.51814501953125, 0.517855224609375, 0.5180466918945312, 0.5178275756835937, 0.5180252075195313, 0.51799755859375, 0.5179699096679687, 0.5178880004882812, 0.5178541870117187, 0.5178347778320312, 0.51806103515625, 0.5181675415039062, 0.5181859741210938, 0.5180692749023438, 0.5179873046875, 0.5182177124023437, 0.518108154296875, 0.5182166748046875, 0.5182371826171875, 0.5179218139648437, 0.5183621215820312, 0.5186570434570312, 0.5182105712890624, 0.5181808471679688, 0.5182515258789062, 0.5181306762695312, 0.5180211181640625, 0.5178193969726562, 0.5181091918945312, 0.5179535522460937, 0.5180016479492188, 0.5181306762695312, 0.518223876953125, 0.5179525146484375, 0.5181911010742187, 0.5179227905273438, 0.5183364868164062, 0.5182883911132813, 0.5184389038085937, 0.5180641479492187, 0.5185689697265625, 0.5180364990234375, 0.5181071166992187, 0.5180067749023437, 0.5183314208984375, 0.5180825805664062, 0.5181122436523438, 0.5179945068359375, 0.5179750366210938, 0.5179535522460937, 0.5183303833007813, 0.5182197875976563, 0.5182955322265625, 0.5183119506835937, 0.51829248046875, 0.518128662109375, 0.518055908203125, 0.5183754272460938, 0.5182371826171875]",tokens/s,1.9000975104953335,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-6.7b,facebook/opt-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2034.978816,5539.10272,0.0,4892.655616,4542.610432,s,10,5.622600402832031,0.5622600402832031,0.0013230028627895694,0.5620163879394531,0.5633294921875001,0.564493603515625,0.565424892578125,"[0.56565771484375, 0.5620866088867188, 0.5614910888671875, 0.5609406127929687, 0.5618070678710938, 0.5607069091796875, 0.5619461669921875, 0.5621692504882813, 0.5627241821289063, 0.56307080078125]",tokens/s,455.30534211724546,kWh,6.621943920114895e-06,3.6285156736691226e-06,3.075088879823785e-05,4.100134839202187e-05,tokens/kWh,6243697.098747441,MB,2035.28192,5539.10272,0.0,4892.655616,4726.279168,s,10,331.3280078125,33.13280078125,0.008409894982587748,33.12982421875,33.142355468750004,33.145203125,33.14748125,"[33.14805078125, 33.124625, 33.1231640625, 33.1260859375, 33.14172265625, 33.1400703125, 33.12555859375, 33.12609375, 33.13908203125, 33.1335546875]",tokens/s,1.9014390125344305,kWh,0.00039121345305516403,0.00021441890828907464,0.0018001254370127661,0.0024057577983570048,tokens/kWh,26187.174803309546,,s,629,335.85907128906234,0.5339571880589229,0.06674281532897068,0.5258792724609375,0.5263243408203125,0.5265016845703125,1.0872363134765626,"[0.5258577880859375, 0.5256417236328125, 0.5264219970703125, 0.5263196411132812, 0.5257113647460937, 0.5258464965820312, 0.525486083984375, 0.5262151489257813, 0.5262940063476562, 0.52614453125, 0.5258035278320312, 0.52607080078125, 0.5257379760742188, 0.5260421142578126, 0.5259489135742188, 0.526060546875, 0.5258331909179688, 0.5260062866210937, 0.5258424072265625, 0.52600732421875, 0.5258045654296875, 0.5261404418945312, 0.5261957397460938, 0.5260748901367187, 0.5259468994140625, 0.5261731567382812, 0.5258363037109375, 0.5262284545898438, 0.5258250122070313, 0.5260421142578126, 0.526023681640625, 0.526244873046875, 0.52615576171875, 0.5261332397460937, 0.52611376953125, 0.5259898681640625, 0.526482421875, 0.526271484375, 0.5264271240234375, 0.5263646850585938, 0.5265366821289063, 0.52632373046875, 0.5263370361328125, 0.5259735107421875, 0.5261414184570312, 0.526107666015625, 0.5262571411132813, 0.5263308715820313, 0.5263267822265625, 0.5261199340820313, 0.52626025390625, 0.5261434936523437, 0.526482421875, 0.5264199829101562, 0.5262622680664063, 0.5264076538085938, 0.5264937133789063, 0.5264998168945313, 0.5264230346679688, 0.5268643798828125, 0.5268623657226562, 0.526497802734375, 1.0878065185546875, 0.5256908569335937, 0.5257564086914063, 0.5259059448242187, 0.5258055419921875, 0.5255567626953125, 0.52566015625, 0.5258875122070312, 0.526002197265625, 0.5259949951171875, 0.5256663208007812, 0.5261107177734375, 0.5259857788085938, 0.5258189086914062, 0.525576171875, 0.525970458984375, 0.5256294555664063, 0.5262294921875, 0.5257728271484375, 0.5257666625976563, 0.525465576171875, 0.5258946533203125, 0.5259468994140625, 0.5260144653320312, 0.5255526123046875, 0.5257932739257812, 0.5255004272460938, 0.5259530029296875, 0.52562841796875, 0.5257584838867188, 0.5257738037109375, 0.525844482421875, 0.5255690307617188, 0.5256724243164063, 0.5258956909179687, 0.5257461547851563, 0.5255751953125, 0.5257482299804688, 0.5255536499023438, 0.5257677001953125, 0.5256314697265625, 0.5257533569335937, 0.5254666137695313, 0.52566015625, 0.5253980102539062, 0.5257482299804688, 0.5259049072265625, 0.5260809936523437, 0.5258383178710937, 0.5262018432617187, 0.5256294555664063, 0.525750244140625, 0.525849609375, 0.5261281127929688, 0.5256796264648438, 0.5259478759765625, 0.5256181640625, 0.5258219604492187, 0.5256539916992188, 0.525886474609375, 0.5259243774414063, 0.5260851440429688, 0.5258331909179688, 1.087382568359375, 0.526060546875, 0.5257789306640624, 0.5258936157226562, 0.5258137817382813, 0.5256263427734374, 0.525675537109375, 0.5257164916992187, 0.525739013671875, 0.525718505859375, 0.5260646362304687, 0.5256406860351562, 0.5256908569335937, 0.5256744995117187, 0.525433837890625, 0.525717529296875, 0.5254287109375, 0.5256908569335937, 0.5254031372070312, 0.5255137329101562, 0.5256263427734374, 0.525770751953125, 0.5254891357421875, 0.5259683837890625, 0.5255454711914063, 0.5256990966796875, 0.5255372924804688, 0.5261035766601563, 0.5256632080078125, 0.5258690795898437, 0.5257625732421874, 0.525728759765625, 0.5260155029296875, 0.5258189086914062, 0.5256539916992188, 0.5256417236328125, 0.5256273803710938, 0.5258055419921875, 0.5257083129882812, 0.525971435546875, 0.5258916015625, 0.52600830078125, 0.5256673583984375, 0.5257686767578125, 0.5254942626953125, 0.52560791015625, 0.5257482299804688, 0.5258803100585937, 0.5259755249023438, 0.5260676879882813, 0.5256151123046875, 0.5258536987304687, 0.5258526611328125, 0.5258741455078125, 0.5255966796875, 0.5259386596679687, 0.5257666625976563, 0.5259059448242187, 0.5259223022460937, 0.5260523681640625, 0.52583935546875, 0.5260933227539063, 0.5256048583984375, 1.0868602294921874, 0.5259120483398437, 0.5255465087890625, 0.5258884887695312, 0.5255741577148437, 0.525613037109375, 0.5256007690429687, 0.5258076171875, 0.5256734619140625, 0.5257328491210937, 0.5254573974609374, 0.525791259765625, 0.525454345703125, 0.5258527221679687, 0.5255577392578125, 0.525912109375, 0.5255772094726563, 0.525727783203125, 0.5255833129882812, 0.5263431396484375, 0.5257984008789063, 0.525792236328125, 0.525896728515625, 0.52569189453125, 0.5255977172851563, 0.52600732421875, 0.525549560546875, 0.5257738037109375, 0.5256058959960938, 0.5258147583007813, 0.52556494140625, 0.5260534057617188, 0.5259837646484375, 0.5260646362304687, 0.5258803100585937, 0.5260369873046875, 0.5255034790039063, 0.5258485717773438, 0.5255608520507813, 0.52600830078125, 0.52562841796875, 0.52608203125, 0.5257349243164062, 0.5257574462890625, 0.5256406860351562, 0.5257717895507813, 0.5257625732421874, 0.5258875122070312, 0.525686767578125, 0.5260492553710937, 0.5258639526367187, 0.5261209716796875, 0.5259990844726562, 0.5260728149414062, 0.5258884887695312, 0.5258946533203125, 0.52564990234375, 0.5258731689453126, 0.5256837158203125, 0.5259202270507812, 0.5259827270507812, 0.5264097290039063, 0.526213134765625, 1.0886195068359374, 0.5266964721679688, 0.5265223388671875, 0.52691455078125, 0.5266104125976563, 0.5267548217773438, 0.5260175170898438, 0.5263544311523437, 0.5261270751953125, 0.5263964233398437, 0.5262694702148437, 0.5260482788085937, 0.5259909057617187, 0.5260492553710937, 0.5259929809570313, 0.5264066772460938, 0.525787109375, 0.5257963256835938, 0.5255126953125, 0.5257431030273437, 0.5255669555664062, 0.5256345825195312, 0.5254779052734375, 0.5258198852539062, 0.5258219604492187, 0.5260687255859375, 0.5260800170898438, 0.525802490234375, 0.5258506469726563, 0.525781005859375, 0.5256857299804687, 0.5258485717773438, 0.52577587890625, 0.5258373413085937, 0.5261895751953125, 0.52682958984375, 0.526614501953125, 0.52650390625, 0.5255485229492187, 0.5258424072265625, 0.525549560546875, 0.5258352661132812, 0.5255639038085937, 0.525822998046875, 0.5257195434570312, 0.525739013671875, 0.5257267456054687, 0.5263533935546875, 0.5261547241210938, 0.5263810424804688, 0.5262264404296875, 0.526551025390625, 0.5261895751953125, 0.5266165771484375, 0.5261998291015625, 0.5261404418945312, 0.5261486206054687, 0.5264189453125, 0.52577587890625, 0.5259304809570312, 0.5256898803710938, 0.5258782958984375, 0.5257636108398438, 1.08657666015625, 0.5256980590820313, 0.52586083984375, 0.5259304809570312, 0.5256939697265625, 0.5258782958984375, 0.5258782958984375, 0.52608203125, 0.5260462036132812, 0.5260513305664063, 0.525549560546875, 0.5258875122070312, 0.5257984008789063, 0.5262018432617187, 0.5257328491210937, 0.5260298461914062, 0.5255608520507813, 0.5259683837890625, 0.52613427734375, 0.52609228515625, 0.5256028442382813, 0.52607080078125, 0.5256304931640625, 0.5257891845703125, 0.525643798828125, 0.5260062866210937, 0.5256611938476563, 0.5261844482421875, 0.5262510375976562, 0.5261025390625, 0.5262673950195312, 0.5262622680664063, 0.5260779418945313, 0.5261721801757813, 0.5261353149414062, 0.5261588745117187, 0.5259642944335937, 0.52661865234375, 0.52625, 0.5263790283203125, 0.5262643432617188, 0.5265131225585937, 0.5259069213867188, 0.526286865234375, 0.5260626220703125, 0.5262888793945313, 0.52619775390625, 0.526224365234375, 0.5260155029296875, 0.526613525390625, 0.526581787109375, 0.5259366455078125, 0.5256642456054688, 0.5257686767578125, 0.5256632080078125, 0.5258198852539062, 0.5258588256835938, 0.5261209716796875, 0.525928466796875, 0.5265029296875, 0.5259878540039062, 0.5262069702148438, 0.5264834594726563, 1.088301025390625, 0.5262653198242188, 0.5256724243164063, 0.5255659790039062, 0.525475830078125, 0.5257636108398438, 0.5255300903320312, 0.5257246704101562, 0.5256058959960938, 0.5256345825195312, 0.5254676513671875, 0.5258137817382813, 0.5256581420898437, 0.5258731689453126, 0.526055419921875, 0.526497802734375, 0.5257297973632813, 0.5260103759765625, 0.5256406860351562, 0.5259428100585938, 0.5259376831054687, 0.5261486206054687, 0.5255321655273437, 0.5259735107421875, 0.5258168334960938, 0.52605029296875, 0.5256571044921875, 0.5257420654296875, 0.5257471923828125, 0.525717529296875, 0.525749267578125, 0.5258168334960938, 0.5255885009765625, 0.5259366455078125, 0.5256325073242187, 0.5258721313476562, 0.5255454711914063, 0.5259120483398437, 0.5255874633789063, 0.5258823852539063, 0.5260584716796874, 0.5260093383789063, 0.525638671875, 0.5257984008789063, 0.5254819946289062, 0.5257584838867188, 0.5255413818359375, 0.5256263427734374, 0.5254993896484375, 0.5260482788085937, 0.5255536499023438, 0.5256744995117187, 0.5257471923828125, 0.5260912475585937, 0.5257963256835938, 0.526045166015625, 0.5258997802734375, 0.5258854370117187, 0.5258956909179687, 0.526097412109375, 0.5258956909179687, 0.52596630859375, 0.525486083984375, 1.0877613525390626, 0.525769775390625, 0.5254829711914063, 0.5259612426757813, 0.525929443359375, 0.5262827758789063, 0.5257748413085938, 0.5258516235351562, 0.5254768676757813, 0.5256775512695312, 0.5254871215820313, 0.5258475341796875, 0.525770751953125, 0.5260123901367187, 0.5260103759765625, 0.52575537109375, 0.525591552734375, 0.5260431518554688, 0.5255874633789063, 0.5257769165039062, 0.52560693359375, 0.5258577880859375, 0.5256089477539062, 0.5257195434570312, 0.52571337890625, 0.5260534057617188, 0.5259540405273437, 0.526023681640625, 0.5256468505859375, 0.5257000732421875, 0.5256878051757813, 0.5258270874023437, 0.5255669555664062, 0.5259325561523438, 0.5256478881835938, 0.5259059448242187, 0.5256539916992188, 0.5259171752929688, 0.525533203125, 0.5258956909179687, 0.5256396484375, 0.5259151611328124, 0.5259089965820313, 0.5258045654296875, 0.525470703125, 0.526087158203125, 0.525570068359375, 0.526012451171875, 0.5258239135742188, 0.526266357421875, 0.5257000732421875, 0.5258916015625, 0.5262540893554688, 0.525970458984375, 0.5258168334960938, 0.5259356079101563, 0.5257216186523438, 0.5257953491210937, 0.5261250610351562, 0.5259458618164062, 0.5255300903320312, 0.5259765625, 0.5258004760742188, 1.0886134033203125, 0.52569189453125, 0.5255536499023438, 0.5258383178710937, 0.5257799682617188, 0.5257584838867188, 0.5256837158203125, 0.5262305297851563, 0.5256099853515624, 0.525781005859375, 0.5258270874023437, 0.5262387084960938, 0.5258424072265625, 0.5259765625, 0.5260114135742188, 0.5261588745117187, 0.5259622192382812, 0.5260318603515625, 0.5257083129882812, 0.526166015625, 0.5256325073242187, 0.52587109375, 0.5258260498046875, 0.5261178588867188, 0.5256458129882813, 0.525897705078125, 0.5261752319335937, 0.5257431030273437, 0.5257799682617188, 0.526298095703125, 0.5260574951171875, 0.52619775390625, 0.52611279296875, 0.526271484375, 0.5262151489257813, 0.5269708862304687, 0.5263012084960937, 0.52657666015625, 0.5264937133789063, 0.5267752685546875, 0.5261527099609375, 0.5262315673828125, 0.5261690673828125, 0.5258997802734375, 0.5257728271484375, 0.5265807495117187, 0.525681640625, 0.5258721313476562, 0.5259049072265625, 0.525970458984375, 0.525633544921875, 0.5261414184570312, 0.5260697631835938, 0.5258782958984375, 0.5258792724609375, 0.52611376953125, 0.5257523193359375, 0.5261752319335937, 0.5259192504882813, 0.52607080078125, 0.5259898681640625, 0.5263278198242187, 0.5262356567382812, 1.089292236328125, 0.5257205810546876, 0.5256959838867188, 0.5258516235351562, 0.525675537109375, 0.525707275390625, 0.525644775390625, 0.5258741455078125, 0.5256427612304687, 0.52611376953125, 0.5256857299804687, 0.5256929321289062, 0.525865966796875, 0.5259274291992188, 0.5254942626953125, 0.52583935546875, 0.5259089965820313, 0.5260984497070312, 0.5255659790039062, 0.52596630859375, 0.5255341796875, 0.5257932739257812, 0.5256161499023437, 0.5257615356445312, 0.5255608520507813, 0.5256908569335937, 0.5256058959960938, 0.5258137817382813, 0.525822998046875, 0.5260390625, 0.5258168334960938, 0.526033935546875, 0.5262326049804688, 0.5259100341796875, 0.5258065795898438, 0.52625, 0.5258567504882813, 0.52642919921875, 0.5261015014648438, 0.525955078125, 0.5256345825195312, 0.5259990844726562, 0.5259017944335938, 0.525970458984375, 0.5258311767578125, 0.5259765625, 0.5258895263671876, 0.5263216552734375, 0.5260062866210937, 0.5263206176757812, 0.5261220092773438, 0.5258639526367187, 0.5263790283203125, 0.52634521484375, 0.52650390625, 0.5263104248046875, 0.5256294555664063, 0.5261782836914063, 0.5257164916992187, 0.526087158203125, 0.526256103515625, 0.52645068359375, 0.5261045532226563]",tokens/s,1.8728093232254581,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-14B,Qwen/Qwen2-beta-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,3956.158464,12732.33408,0.0,12085.886976,11337.370624,s,10,10.987366088867189,1.098736608886719,0.001768964710489349,1.0985178833007812,1.1007381103515623,1.101008154296875,1.101224189453125,"[1.1001180419921874, 1.1012781982421875, 1.0972359619140626, 1.0976529541015625, 1.097395263671875, 1.09569873046875, 1.0975172119140626, 1.0993828125, 1.1004088134765626, 1.1006781005859374]",tokens/s,232.99487605076595,kWh,1.295269936323166e-05,7.0975890679255816e-06,6.178085498018682e-05,8.183114341134406e-05,tokens/kWh,3128393.2904756567,MB,3956.158464,12732.33408,0.0,12085.886976,11686.804992,s,10,644.0755078125,64.40755078125,0.02043927244380867,64.406017578125,64.42852109374999,64.437791796875,64.445208359375,"[64.41949609375, 64.4215078125, 64.3984453125, 64.3965, 64.3855703125, 64.37932421875, 64.38755078125, 64.41358984375, 64.4470625, 64.4264609375]",tokens/s,0.9781461837288221,kWh,0.0007606077267395126,0.000416880381825722,0.003642305219397435,0.00481979332796267,tokens/kWh,13071.09988191758,,s,629,652.9415617065439,1.038062896194822,0.13045675837303516,1.0222479248046874,1.02322421875,1.0235658081054688,2.119142734375,"[1.0216539916992187, 1.0224589233398438, 1.0223789672851562, 1.0224598999023438, 1.0228684692382812, 1.0230978393554688, 1.0232852783203126, 1.0228684692382812, 1.0223707885742188, 1.0226544799804687, 1.0221055908203125, 1.022455810546875, 1.0223565063476563, 1.0220953369140624, 1.02287255859375, 1.0226544799804687, 1.0230180053710938, 1.0228029174804687, 1.022360595703125, 1.0219008178710938, 1.02221826171875, 1.0227445678710938, 1.0227865600585937, 1.0227056884765624, 1.0226657104492187, 1.0222479248046874, 1.0227005615234375, 1.0229114990234376, 1.0229288940429688, 1.0229381103515625, 1.0223861694335938, 1.0226493530273437, 1.0219724731445312, 1.02327294921875, 1.0225264892578125, 1.021897705078125, 1.0218536987304687, 1.0230333251953125, 1.0221629638671874, 1.022266357421875, 1.0232105102539062, 1.0222919921875, 1.0218916015625, 1.0232176513671876, 1.0224496459960937, 1.0222622680664062, 1.0223595581054687, 1.0233876342773438, 1.0225960693359375, 1.0226697998046874, 1.0229954833984376, 1.0221025390625, 1.0217092895507813, 1.0235074462890625, 1.0223370361328126, 1.0225868530273436, 1.0227589111328126, 1.0223380737304688, 1.0219468994140626, 1.02196533203125, 1.0226288452148438, 1.0231378173828125, 2.124905517578125, 1.0222356567382813, 1.021960205078125, 1.022509033203125, 1.0222704467773438, 1.0222008056640626, 1.0229309692382813, 1.0228899536132812, 1.0222418212890625, 1.022761962890625, 1.0235012817382811, 1.0224527587890626, 1.0228264770507813, 1.0230067138671874, 1.022603271484375, 1.022150634765625, 1.0228582153320311, 1.0227486572265625, 1.0225458984375, 1.023267822265625, 1.0228500366210938, 1.0230599975585937, 1.02280908203125, 1.0225940551757813, 1.0225387573242188, 1.0220328979492188, 1.0222684326171876, 1.0227660522460937, 1.0227394409179686, 1.0236610717773438, 1.0233159790039061, 1.02287158203125, 1.0244444580078125, 1.0236958618164063, 1.022750732421875, 1.0225233764648438, 1.0231818237304688, 1.0220595092773437, 1.0220052490234375, 1.0232534790039063, 1.0219489135742188, 1.02171337890625, 1.0222592163085937, 1.0224414672851563, 1.023140869140625, 1.0223493041992187, 1.0228746337890624, 1.0218157958984375, 1.02228173828125, 1.02193359375, 1.0220175170898438, 1.0220697631835938, 1.02232470703125, 1.0216427612304688, 1.0218946533203126, 1.0215690307617187, 1.022439453125, 1.02179736328125, 1.0224251098632813, 1.0220114135742187, 1.0223197021484376, 1.0227127685546875, 1.0225541381835936, 2.119232421875, 1.0225018920898437, 1.022055419921875, 1.0218680419921875, 1.0223175659179689, 1.0221229858398437, 1.0219366455078125, 1.0225018920898437, 1.0220114135742187, 1.0218792724609376, 1.0220257568359374, 1.0222643432617187, 1.0220001220703125, 1.0221516723632813, 1.0221260986328125, 1.0216611938476563, 1.0218567504882812, 1.0222837524414063, 1.022792724609375, 1.0223380737304688, 1.0225889282226563, 1.0225274658203125, 1.0219089965820312, 1.0221567993164062, 1.0223544311523438, 1.0222837524414063, 1.0220943603515624, 1.022055419921875, 1.0220431518554687, 1.0217420654296876, 1.022118896484375, 1.0222120971679687, 1.02186083984375, 1.0227660522460937, 1.0224302368164062, 1.0219202270507812, 1.0222950439453125, 1.022434326171875, 1.0217748413085936, 1.0216837158203125, 1.021929443359375, 1.0220933227539062, 1.0220226440429687, 1.0222172241210938, 1.021971435546875, 1.0217420654296876, 1.0220123901367189, 1.0219243774414062, 1.0223441772460937, 1.022044189453125, 1.022455810546875, 1.0223093872070312, 1.0240828857421875, 1.0233630981445312, 1.0228223876953124, 1.0220809936523438, 1.022814208984375, 1.0219632568359376, 1.0219100341796874, 1.021834228515625, 1.0227333374023437, 1.0218475341796875, 1.0219889526367187, 2.119702392578125, 1.0218157958984375, 1.0222847900390626, 1.0225991821289062, 1.0219386596679687, 1.0222909545898438, 1.0225694580078124, 1.02200732421875, 1.0223073120117188, 1.0221957397460937, 1.0222427978515625, 1.0221383666992188, 1.0221312255859376, 1.022075927734375, 1.0216263427734376, 1.0212208862304688, 1.02229296875, 1.0224076538085938, 1.023636474609375, 1.0234900512695313, 1.023056884765625, 1.0234654541015624, 1.0236641235351562, 1.02160791015625, 1.0215352172851562, 1.0216673583984375, 1.021822998046875, 1.0217000732421875, 1.022213134765625, 1.02185986328125, 1.0224988403320312, 1.022687255859375, 1.0223042602539063, 1.0217113647460938, 1.0225919799804688, 1.022482421875, 1.022055419921875, 1.0219806518554688, 1.023088623046875, 1.0223472900390624, 1.021929443359375, 1.0223493041992187, 1.0222120971679687, 1.0214901733398438, 1.0219417724609374, 1.0221721801757813, 1.0221773071289062, 1.0221752319335937, 1.0220165405273438, 1.0218884887695312, 1.0218833618164063, 1.0219745483398437, 1.0215157470703125, 1.0211686401367188, 1.0218997802734375, 1.0223994750976562, 1.0220114135742187, 1.022298095703125, 1.02169189453125, 1.0218690795898437, 1.021822998046875, 1.0221168823242188, 1.0219120483398438, 2.118912109375, 1.0223964233398437, 1.0216151123046875, 1.022171142578125, 1.0217677001953125, 1.0219642944335938, 1.0219970703125, 1.0222827758789061, 1.0216611938476563, 1.021549560546875, 1.0215291137695313, 1.0223114013671875, 1.022255126953125, 1.0225100708007813, 1.0217799682617188, 1.02200830078125, 1.0224179077148436, 1.0221260986328125, 1.0218782958984376, 1.0218884887695312, 1.0225499877929687, 1.022076904296875, 1.0219366455078125, 1.0222387084960938, 1.0217011108398437, 1.0217328491210937, 1.02257666015625, 1.0215403442382813, 1.0214144287109375, 1.0214072265625, 1.0221701049804688, 1.0217277221679688, 1.0222387084960938, 1.0218997802734375, 1.0216539916992187, 1.0216837158203125, 1.0219857788085938, 1.0216980590820313, 1.0217205810546874, 1.0214840087890624, 1.02214453125, 1.0218076171875, 1.0222633056640624, 1.0221834106445313, 1.0223790283203125, 1.0221107177734374, 1.022223388671875, 1.0214297485351562, 1.0217717895507812, 1.0216028442382812, 1.0226585693359376, 1.0215946044921875, 1.0224056396484376, 1.0217778930664063, 1.0220472412109376, 1.0222387084960938, 1.0221731567382812, 1.0224568481445313, 1.0223892211914063, 1.021928466796875, 1.0224486694335937, 1.0220421142578124, 1.022455810546875, 2.117295166015625, 1.0219315185546876, 1.0214788818359375, 1.0215782470703125, 1.021528076171875, 1.0218690795898437, 1.0219069213867187, 1.0218506469726563, 1.0224097290039063, 1.0219745483398437, 1.0218424072265626, 1.021686767578125, 1.0215823364257812, 1.0215782470703125, 1.021676513671875, 1.0219089965820312, 1.02179736328125, 1.0221465454101561, 1.0219561157226562, 1.021676513671875, 1.0220635986328126, 1.0227415161132813, 1.0216591186523438, 1.0214799194335937, 1.021432861328125, 1.0216959838867188, 1.021422607421875, 1.0225029296875, 1.0220267333984374, 1.021981689453125, 1.022392333984375, 1.0219192504882812, 1.021675537109375, 1.0215321655273437, 1.0215844116210937, 1.0223329467773437, 1.0216427612304688, 1.0223380737304688, 1.0223411254882813, 1.0224465942382812, 1.0220513305664063, 1.021770751953125, 1.0217267456054688, 1.0211819458007811, 1.0219478759765626, 1.0219786376953126, 1.0217195434570312, 1.02196533203125, 1.0216980590820313, 1.0216949462890625, 1.0220328979492188, 1.02213427734375, 1.0221680908203126, 1.02171337890625, 1.0219458618164063, 1.021823974609375, 1.022129150390625, 1.0220892333984375, 1.0217769165039063, 1.022181396484375, 1.0221486206054688, 1.0219581298828124, 1.0223165283203124, 2.1193359375, 1.021507568359375, 1.0222807006835937, 1.0218096923828126, 1.0217789306640626, 1.0224578857421875, 1.0224793701171875, 1.0222202758789063, 1.0224015502929686, 1.0220513305664063, 1.0227291870117188, 1.0218936157226564, 1.0227210083007812, 1.0215659790039062, 1.021507568359375, 1.0218588256835937, 1.0215946044921875, 1.0212608032226562, 1.0221383666992188, 1.021644775390625, 1.0220400390625, 1.0219151611328126, 1.0219458618164063, 1.0218168334960938, 1.0220155029296876, 1.0220830688476563, 1.0217257080078126, 1.0215249633789063, 1.0215782470703125, 1.0214522705078124, 1.021971435546875, 1.0216908569335938, 1.0222796630859374, 1.0217891845703124, 1.0220093383789062, 1.0221598510742187, 1.0217533569335937, 1.021591552734375, 1.021834228515625, 1.0217297973632813, 1.0220697631835938, 1.0221373291015625, 1.021681640625, 1.021823974609375, 1.022286865234375, 1.0229125366210938, 1.0224752807617188, 1.0218772583007814, 1.0224363403320313, 1.02299853515625, 1.021749267578125, 1.022983154296875, 1.0218731689453124, 1.0215403442382813, 1.022688232421875, 1.0222745361328125, 1.0221066284179687, 1.021812744140625, 1.0228449096679688, 1.0219735107421875, 1.0219089965820312, 1.0222427978515625, 1.0222807006835937, 2.121678955078125, 1.0220349731445313, 1.0220318603515626, 1.022308349609375, 1.0220912475585937, 1.0223062744140625, 1.0220667114257813, 1.0221168823242188, 1.0219243774414062, 1.0236375122070311, 1.0226729125976564, 1.022350341796875, 1.0221209716796875, 1.0218065795898437, 1.0220042114257812, 1.02285107421875, 1.0233190307617188, 1.0220626220703124, 1.0221178588867188, 1.0219304809570313, 1.0225458984375, 1.0225377197265626, 1.0221055908203125, 1.0222172241210938, 1.0222172241210938, 1.0232381591796875, 1.0236713256835936, 1.02211376953125, 1.0223145141601562, 1.0224046020507813, 1.0224127807617187, 1.0221404418945312, 1.0220615844726562, 1.0223544311523438, 1.0224671020507812, 1.0220564575195312, 1.02242919921875, 1.0219437866210936, 1.0222633056640624, 1.0225182495117187, 1.0220728149414062, 1.0216908569335938, 1.0225111083984375, 1.0221690673828125, 1.0233764038085937, 1.0224005126953124, 1.0228797607421876, 1.022582763671875, 1.0221362915039063, 1.0220574951171875, 1.0226176147460937, 1.023177734375, 1.022688232421875, 1.0220369873046875, 1.0229730224609375, 1.0224833984375, 1.0232719116210938, 1.0233231201171875, 1.0232688598632813, 1.0227711791992187, 1.02242919921875, 1.0218782958984376, 1.0227630004882813, 2.123450439453125, 1.0225910034179688, 1.022224365234375, 1.0221588745117187, 1.0227947387695313, 1.0223759155273437, 1.0220062866210937, 1.021928466796875, 1.0225244140625, 1.0222254028320312, 1.0220328979492188, 1.0240491943359376, 1.0243778076171874, 1.0222274780273437, 1.0225735473632813, 1.02270361328125, 1.0226463012695313, 1.0230241088867187, 1.023151123046875, 1.0230661010742188, 1.022940185546875, 1.0235166625976562, 1.0226575317382813, 1.0224097290039063, 1.02308349609375, 1.0247874755859374, 1.0235719604492188, 1.0233917236328125, 1.023362060546875, 1.0236497802734374, 1.0237828979492187, 1.0238555908203124, 1.024322509765625, 1.0232586059570312, 1.0231644287109376, 1.023604736328125, 1.0232422485351562, 1.0228469848632813, 1.0233712768554688, 1.0233978881835937, 1.0237593383789063, 1.02187109375, 1.0220492553710938, 1.0218803100585938, 1.023657958984375, 1.0220001220703125, 1.0220830688476563, 1.0218035278320312, 1.02250390625, 1.02404296875, 1.0239928588867186, 1.0232227783203125, 1.0231644287109376, 1.0232197265625, 1.0240625, 1.0235238647460938, 1.022983154296875, 1.0219345703125, 1.0223042602539063, 1.022192626953125, 1.0235565795898438, 1.0230742797851562, 1.0222684326171876, 2.122977294921875, 1.021991943359375, 1.0222418212890625, 1.022287841796875, 1.0231869506835938, 1.0230241088867187, 1.022814208984375, 1.022866455078125, 1.0224425048828125, 1.0229033203125, 1.0226390991210939, 1.0222633056640624, 1.0229155883789063, 1.0221915893554687, 1.0231552124023438, 1.0233661499023436, 1.0227711791992187, 1.0222151489257814, 1.0229217529296875, 1.0231818237304688, 1.0223114013671875, 1.0220543823242187, 1.02232373046875, 1.0222356567382813, 1.0230077514648437, 1.0234613647460937, 1.0228264770507813, 1.0229319458007813, 1.024480224609375, 1.0225131225585937, 1.0220369873046875, 1.0220902099609375, 1.0221383666992188, 1.0218895263671874, 1.0225633544921875, 1.0228480224609375, 1.0221834106445313, 1.0225643310546875, 1.0235330810546874, 1.02322998046875, 1.0229186401367187, 1.0226974487304688, 1.0228060302734374, 1.022993408203125, 1.023494140625, 1.0230015869140625, 1.0222899169921875, 1.0222520141601563, 1.0227855224609375, 1.0226903076171876, 1.022087158203125, 1.0217963256835938, 1.0218424072265626, 1.0221260986328125, 1.0221178588867188, 1.0227445678710938, 1.023115234375, 1.0224527587890626, 1.0226483154296875, 1.022645263671875, 1.022792724609375, 1.0225899658203126, 1.0227425537109376]",tokens/s,0.9633327649660273,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-110B,Qwen/Qwen1.5-110B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -42902,8 +42771,37 @@ ChildProcessError: Traceback (most recent call last): return t.to( torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 32.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,8,8,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-564M,facebook/xglm-564M,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation + cls._check_and_enable_flash_attn_2( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 + raise ValueError( +ValueError: XGLMForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpiuu1nskh/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,t,t,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -42915,7 +42813,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/8/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/t/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -42942,9 +42840,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949295-5e3b7acd50cc194f42a607fa;c240b588-f5a2-42c2-be4a-a16f526ecd6c) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669490db-788bfdd346c246970b272408;6726043a-18bf-4853-8e91-9bfb259d80f9) -Repository Not Found for url: https://huggingface.co/8/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/t/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -42969,11 +42867,13 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: 8 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: t is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/rho-math-1b-v0.1,microsoft/rho-math-1b-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neox-20b,EleutherAI/gpt-neox-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,,MB,2108.223488,15043.395584,0.0,14396.94848,13898.251776,s,10,16.774060791015625,1.6774060791015626,0.0018297475804955295,1.6770918579101561,1.6789085327148436,1.6804502990722656,1.6816837121582031,"[1.6819920654296876, 1.67540869140625, 1.6774444580078125, 1.676206298828125, 1.6767392578125, 1.6753848876953126, 1.6765943603515625, 1.6776787109375, 1.67856591796875, 1.678046142578125]",tokens/s,152.61659248136053,kWh,1.9787035716904537e-05,1.0841899168262898e-05,9.527879844519888e-05,0.0001259077333303663,tokens/kWh,2033234.919163287,MB,2108.223488,15043.395584,0.0,14396.94848,14315.959808,s,10,982.2773984375,98.22773984375,0.006322715714689567,98.22801562500001,98.23432265625,98.236829296875,98.238834609375,"[98.233765625, 98.224484375, 98.2393359375, 98.2251640625, 98.22903125, 98.2138984375, 98.2302578125, 98.2295859375, 98.224875, 98.227]",tokens/s,0.6413666862356148,kWh,0.001159520428114467,0.0006355184711477705,0.005722492522434801,0.0075175314216970384,tokens/kWh,8380.410598374077,,s,629,995.810533813476,1.5831646006573552,0.19919555203142542,1.559141357421875,1.55962734375,1.5598268310546874,3.23526474609375,"[1.5585750732421875, 1.55860986328125, 1.5594239501953124, 1.5595242919921875, 1.558529052734375, 1.5586417236328125, 1.559109619140625, 1.5591219482421874, 1.5598243408203125, 1.5595867919921875, 1.55911572265625, 1.5588905029296876, 1.5587757568359375, 1.5587236328125, 1.559189453125, 1.558750244140625, 1.5590482177734375, 1.5591536865234374, 1.5591956787109376, 1.55924169921875, 1.558993896484375, 1.559488525390625, 1.559013427734375, 1.5594393310546875, 1.5592908935546874, 1.5589068603515626, 1.55905126953125, 1.559194580078125, 1.5587266845703125, 1.5591065673828124, 1.5589693603515624, 1.558802490234375, 1.558849609375, 1.559245849609375, 1.5592437744140626, 1.559234619140625, 1.55915771484375, 1.5592222900390624, 1.5598233642578125, 1.55966162109375, 1.559911376953125, 1.5597353515625, 1.559793701171875, 1.5596707763671875, 1.55985302734375, 1.55943115234375, 1.5597127685546874, 1.5593175048828125, 1.55945263671875, 1.559732177734375, 1.559920654296875, 1.5596063232421875, 1.5595447998046874, 1.5596646728515624, 1.559162841796875, 1.5595458984375, 1.55953662109375, 1.5590595703125, 1.559057373046875, 1.5596236572265625, 1.5592509765625, 1.559478271484375, 3.234529296875, 1.55871337890625, 1.5585946044921875, 1.5587962646484375, 1.5588270263671875, 1.558576171875, 1.558561767578125, 1.55837744140625, 1.5585587158203125, 1.5589652099609375, 1.5587061767578125, 1.55881787109375, 1.558748046875, 1.5588065185546875, 1.5585740966796875, 1.5593819580078125, 1.5591004638671875, 1.558873046875, 1.5587451171875, 1.5594066162109375, 1.559108642578125, 1.55873583984375, 1.5592396240234374, 1.559013427734375, 1.558961181640625, 1.5588013916015624, 1.5588310546875, 1.5591044921875, 1.5594649658203126, 1.558951904296875, 1.5591546630859374, 1.55907177734375, 1.5593482666015626, 1.5590062255859376, 1.559110595703125, 1.5595079345703124, 1.55951513671875, 1.5589560546875, 1.5587255859375, 1.5589560546875, 1.559404541015625, 1.5599503173828124, 1.5588074951171875, 1.5591341552734375, 1.5587113037109375, 1.55890380859375, 1.561585693359375, 1.5592509765625, 1.5593123779296876, 1.5594271240234374, 1.55922021484375, 1.5592386474609374, 1.559277587890625, 1.559350341796875, 1.5596614990234374, 1.5596533203125, 1.559194580078125, 1.5592427978515624, 1.5593604736328126, 1.5594066162109375, 1.559331787109375, 1.5592806396484375, 1.559973876953125, 3.23797607421875, 1.5602718505859374, 1.559963623046875, 1.5592427978515624, 1.5589161376953125, 1.5587706298828126, 1.5589017333984374, 1.559024658203125, 1.559089111328125, 1.5593585205078124, 1.5589334716796874, 1.5592069091796874, 1.5589990234375, 1.5592745361328124, 1.5593963623046876, 1.559119873046875, 1.5596800537109374, 1.5589478759765625, 1.5588074951171875, 1.5590042724609374, 1.558916015625, 1.55900927734375, 1.5591424560546876, 1.559677978515625, 1.5591373291015624, 1.559119873046875, 1.5591474609375, 1.5588157958984374, 1.5592601318359376, 1.5591690673828125, 1.559141357421875, 1.5591485595703125, 1.55908203125, 1.559183349609375, 1.55915576171875, 1.559400390625, 1.5592960205078126, 1.5591761474609376, 1.5593154296875, 1.5590482177734375, 1.558973388671875, 1.559626708984375, 1.559330810546875, 1.5593973388671876, 1.5593338623046875, 1.559593994140625, 1.5598807373046875, 1.5612364501953124, 1.55947412109375, 1.5594168701171875, 1.5596483154296874, 1.5595643310546874, 1.559582763671875, 1.55965234375, 1.5598623046875, 1.559635986328125, 1.5595242919921875, 1.5597813720703124, 1.5598643798828125, 1.5591075439453126, 1.5595611572265624, 1.55919873046875, 1.5593585205078124, 3.23542333984375, 1.55846044921875, 1.558307861328125, 1.5589805908203125, 1.558640625, 1.5585218505859375, 1.55879833984375, 1.558877197265625, 1.5586907958984375, 1.5587757568359375, 1.5589539794921874, 1.559329833984375, 1.559342041015625, 1.5588546142578126, 1.5590174560546874, 1.559341064453125, 1.558877197265625, 1.5588382568359376, 1.55911474609375, 1.5592764892578126, 1.5589847412109374, 1.5587337646484376, 1.55911376953125, 1.5587901611328125, 1.5588280029296875, 1.5588690185546874, 1.5593216552734375, 1.559299072265625, 1.559120849609375, 1.558898681640625, 1.5588414306640626, 1.55898876953125, 1.5588966064453125, 1.5587901611328125, 1.558739990234375, 1.5589232177734376, 1.5593912353515624, 1.55947314453125, 1.559403564453125, 1.559525390625, 1.559373779296875, 1.5593902587890625, 1.5591658935546875, 1.559456787109375, 1.5621683349609374, 1.558978515625, 1.5591126708984375, 1.55909326171875, 1.5591383056640624, 1.5590767822265625, 1.55901025390625, 1.5589765625, 1.559456787109375, 1.5590185546875, 1.55949462890625, 1.55913623046875, 1.5593287353515626, 1.559487548828125, 1.559192626953125, 1.55945263671875, 1.5594342041015625, 1.5596298828125, 1.5594813232421876, 3.236599853515625, 1.5593328857421875, 1.5589642333984375, 1.55854541015625, 1.558728759765625, 1.558466552734375, 1.55877783203125, 1.5593133544921876, 1.5591546630859374, 1.5588116455078125, 1.5587174072265626, 1.5586641845703124, 1.558667236328125, 1.558561767578125, 1.5583734130859375, 1.558703125, 1.5588648681640624, 1.55964111328125, 1.5586856689453126, 1.558662109375, 1.5585587158203125, 1.558540283203125, 1.5592540283203125, 1.558740966796875, 1.559257080078125, 1.5590430908203126, 1.5589775390625, 1.558866943359375, 1.5591044921875, 1.5596021728515626, 1.559546875, 1.55960009765625, 1.55951513671875, 1.5589847412109374, 1.5592540283203125, 1.559413818359375, 1.5594434814453124, 1.5591956787109376, 1.559342041015625, 1.5589847412109374, 1.5589805908203125, 1.5593165283203125, 1.559119873046875, 1.5594117431640624, 1.5589334716796874, 1.5593184814453125, 1.559287841796875, 1.5593902587890625, 1.5601192626953124, 1.5590482177734375, 1.559271484375, 1.559646240234375, 1.5597353515625, 1.5595601806640624, 1.5594761962890624, 1.559477294921875, 1.5593011474609375, 1.5621007080078124, 1.559258056640625, 1.5594239501953124, 1.559357421875, 1.5594639892578126, 1.559361572265625, 3.23485693359375, 1.5584061279296875, 1.5584429931640624, 1.558455322265625, 1.558666259765625, 1.5583436279296874, 1.5583365478515625, 1.55860888671875, 1.55905224609375, 1.558590576171875, 1.558578125, 1.5587183837890626, 1.55867236328125, 1.5587255859375, 1.5585269775390624, 1.5587215576171876, 1.558656982421875, 1.5586744384765625, 1.5588331298828124, 1.559310302734375, 1.558556640625, 1.5583118896484376, 1.5588935546875, 1.5596380615234375, 1.559288818359375, 1.558983642578125, 1.559357421875, 1.559225341796875, 1.558750244140625, 1.558867919921875, 1.5587225341796875, 1.5589283447265625, 1.5586417236328125, 1.5587911376953125, 1.5586907958984375, 1.559267333984375, 1.5594957275390624, 1.558765625, 1.5612979736328125, 1.5589273681640625, 1.5587225341796875, 1.558982666015625, 1.5588209228515626, 1.5590604248046875, 1.558908935546875, 1.5590697021484374, 1.5586539306640625, 1.5587706298828126, 1.5595069580078125, 1.559635986328125, 1.5590185546875, 1.55902978515625, 1.5588546142578126, 1.5590277099609375, 1.5595592041015625, 1.5593226318359374, 1.5589283447265625, 1.5589744873046876, 1.5589171142578124, 1.5588587646484375, 1.5594556884765625, 1.5590963134765625, 1.5595478515625, 3.235958740234375, 1.5587061767578125, 1.5582955322265626, 1.558918212890625, 1.559405517578125, 1.5590072021484376, 1.559066650390625, 1.559258056640625, 1.558982666015625, 1.5591373291015624, 1.5590123291015625, 1.559109619140625, 1.5587010498046876, 1.5590697021484374, 1.558677490234375, 1.558846435546875, 1.559234619140625, 1.55937890625, 1.558992919921875, 1.5595223388671875, 1.559162841796875, 1.5587706298828126, 1.559435302734375, 1.560753173828125, 1.55900830078125, 1.5587052001953126, 1.5587420654296875, 1.55875634765625, 1.5585545654296875, 1.55881884765625, 1.5590809326171875, 1.559193603515625, 1.559277587890625, 1.55932568359375, 1.55913623046875, 1.5592764892578126, 1.559235595703125, 1.5595654296875, 1.559406494140625, 1.5591424560546876, 1.558719482421875, 1.55981103515625, 1.5590491943359375, 1.5598408203125, 1.55958984375, 1.55905029296875, 1.5590296630859375, 1.5592437744140626, 1.559709716796875, 1.559160888671875, 1.5592642822265625, 1.55951513671875, 1.559525390625, 1.55964111328125, 1.559710693359375, 1.5596390380859375, 1.5594691162109375, 1.55936767578125, 1.5593133544921876, 1.5591116943359375, 1.5594761962890624, 1.5594700927734375, 1.5595284423828124, 3.23728076171875, 1.558865966796875, 1.5586630859375, 1.5593482666015626, 1.5598438720703125, 1.559294921875, 1.559099365234375, 1.5591485595703125, 1.558935546875, 1.55944970703125, 1.558636474609375, 1.5588331298828124, 1.5585986328125, 1.558814697265625, 1.55905224609375, 1.5590338134765624, 1.56031591796875, 1.5590655517578125, 1.5592652587890625, 1.5588966064453125, 1.5590400390625, 1.5587420654296875, 1.5598909912109375, 1.559056396484375, 1.5592652587890625, 1.5594056396484375, 1.5589385986328126, 1.5587860107421876, 1.55886083984375, 1.5590543212890624, 1.559300048828125, 1.5590921630859376, 1.559215087890625, 1.5589744873046876, 1.5589600830078125, 1.5591177978515625, 1.5594957275390624, 1.5592960205078126, 1.558877197265625, 1.5592017822265625, 1.5588270263671875, 1.5589222412109376, 1.5591588134765626, 1.559298095703125, 1.5588055419921876, 1.5590748291015626, 1.559099365234375, 1.5595028076171875, 1.5594915771484374, 1.5594495849609376, 1.559300048828125, 1.55938916015625, 1.5596697998046876, 1.5595755615234375, 1.5595201416015625, 1.5593564453125, 1.5596134033203124, 1.55945263671875, 1.5595294189453126, 1.5592764892578126, 1.559214111328125, 1.55919873046875, 1.5595919189453125, 3.238277099609375, 1.5593380126953125, 1.558845458984375, 1.559089111328125, 1.5596502685546876, 1.559151611328125, 1.55905126953125, 1.5589949951171875, 1.558698974609375, 1.5589119873046875, 1.559118896484375, 1.5591055908203124, 1.5588433837890625, 1.55887109375, 1.559098388671875, 1.559488525390625, 1.5590921630859376, 1.5589212646484376, 1.5586201171875, 1.5587542724609376, 1.5588372802734376, 1.5583734130859375, 1.559034912109375, 1.5590389404296876, 1.5593184814453125, 1.559047119140625, 1.559078857421875, 1.5590113525390625, 1.5589908447265626, 1.5593114013671876, 1.559214111328125, 1.559314453125, 1.5593348388671875, 1.5594014892578125, 1.5593011474609375, 1.55919873046875, 1.5591455078125, 1.559130126953125, 1.5589488525390625, 1.55922021484375, 1.5590164794921875, 1.55928369140625, 1.5593359375, 1.55940869140625, 1.5589334716796874, 1.5590072021484376, 1.5590543212890624, 1.5592960205078126, 1.5591453857421875, 1.5592960205078126, 1.55916796875, 1.55928271484375, 1.559329833984375, 1.5590318603515625, 1.5594649658203126, 1.5592314453125, 1.55926123046875, 1.5591290283203125, 1.5590205078125, 1.5590174560546874, 1.559034912109375, 1.5591658935546875, 1.559373779296875, 3.237329833984375, 1.558613037109375, 1.5583804931640626, 1.5587542724609376, 1.5585423583984375, 1.559004150390625, 1.5588382568359376, 1.55866015625, 1.5590809326171875, 1.558877197265625, 1.558772705078125, 1.558992919921875, 1.558794189453125, 1.559083984375, 1.55869287109375, 1.5590604248046875, 1.55894580078125, 1.5587255859375, 1.5587962646484375, 1.558877197265625, 1.5590615234375, 1.558513671875, 1.5592530517578125, 1.5587318115234374, 1.5593697509765625, 1.559119873046875, 1.5611954345703125, 1.559103515625, 1.5589058837890626, 1.5593779296875, 1.559484375, 1.5593184814453125, 1.5594208984375, 1.5591065673828124, 1.559189453125, 1.5593656005859375, 1.5593656005859375, 1.55962060546875, 1.5591669921875, 1.5591322021484375, 1.559208984375, 1.5593665771484375, 1.559109619140625, 1.5592222900390624, 1.5591434326171876, 1.559194580078125, 1.5592008056640625, 1.55911376953125, 1.55950390625, 1.5590687255859375, 1.559582763671875, 1.5593564453125, 1.5598284912109375, 1.5596851806640626, 1.55951513671875, 1.55947216796875, 1.5594691162109375, 1.5591895751953124, 1.5594127197265626, 1.55911572265625, 1.559299072265625, 1.5592508544921875, 1.5591474609375]",tokens/s,0.6316462606508407,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-6B,,cuda,0,42,,,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,MB,1608.957952,5448.925184,0.0,4802.47808,4489.12128,s,10,5.066485656738281,0.5066485656738281,0.0011948895817140703,0.5068220977783202,0.5079840667724609,0.5080279983520508,0.5080631436157227,"[0.5075723266601563, 0.5061219482421875, 0.504515380859375, 0.5053372497558594, 0.5061441345214843, 0.5055963745117188, 0.5075000610351562, 0.5076519470214844, 0.5080719299316406, 0.5079743041992187]",tokens/s,505.2812093912223,kWh,5.964234835571714e-06,3.2679267622643234e-06,2.7223952334698433e-05,3.6456113932534466e-05,tokens/kWh,7022141.758547072,MB,1610.637312,5448.925184,0.0,4802.47808,4557.793792,s,10,299.1010234375,29.910102343749998,0.01023537902845777,29.913578125,29.921135546875,29.9219037109375,29.9225182421875,"[29.899591796875, 29.901322265625, 29.913013671875, 29.890712890625, 29.920396484375, 29.922671875, 29.92096484375, 29.9152421875, 29.90296484375, 29.914142578125]",tokens/s,2.106311749654192,kWh,0.00035296389131082433,0.00019345485010443554,0.0015722178549955057,0.0021186365964107655,tokens/kWh,29736.104864198915,,s,629,303.18425177001956,0.4820099392210167,0.06023141623810366,0.4746004333496094,0.4757639221191406,0.4761423828125,0.98077423828125,"[0.474365966796875, 0.47431475830078124, 0.4748533630371094, 0.47396148681640626, 0.47435162353515625, 0.47414068603515624, 0.47463320922851565, 0.47518923950195313, 0.47532952880859375, 0.4745502624511719, 0.4740556945800781, 0.47391131591796876, 0.47444989013671873, 0.47430245971679685, 0.4739420166015625, 0.4737402954101563, 0.473987060546875, 0.47486770629882813, 0.4739993591308594, 0.475114501953125, 0.47402597045898437, 0.4752353210449219, 0.47403109741210936, 0.4739563598632813, 0.4750960693359375, 0.4755916748046875, 0.4742686767578125, 0.47484210205078126, 0.4754851989746094, 0.4751022033691406, 0.4755619812011719, 0.4745973815917969, 0.47523736572265624, 0.474829833984375, 0.474850341796875, 0.47421026611328126, 0.4759234619140625, 0.47534796142578123, 0.4750888977050781, 0.4741591186523437, 0.4745441284179687, 0.473744384765625, 0.4741099548339844, 0.473807861328125, 0.47429119873046877, 0.4740597839355469, 0.4742881164550781, 0.47400347900390627, 0.4744253234863281, 0.47619073486328123, 0.4757626953125, 0.4742860717773438, 0.47489535522460935, 0.47489950561523436, 0.47460345458984377, 0.4742686767578125, 0.4739921875, 0.4739420166015625, 0.47433624267578123, 0.4748810119628906, 0.4744110107421875, 0.47424615478515625, 0.980806640625, 0.4736993408203125, 0.47429733276367186, 0.4741478271484375, 0.4741099548339844, 0.47420416259765624, 0.4742000732421875, 0.47553228759765626, 0.4755077209472656, 0.4747817077636719, 0.47485235595703124, 0.4747202453613281, 0.4752384033203125, 0.4742318115234375, 0.4740137023925781, 0.4751011962890625, 0.47453387451171875, 0.4759981994628906, 0.4747898864746094, 0.4742266845703125, 0.47406185913085935, 0.4743239440917969, 0.4744366149902344, 0.47420416259765624, 0.47499981689453125, 0.47433114624023437, 0.47446322631835935, 0.47578317260742187, 0.47489739990234375, 0.4754503784179688, 0.4746977233886719, 0.47437005615234373, 0.4743680114746094, 0.47590194702148436, 0.47595211791992187, 0.47569818115234375, 0.474777587890625, 0.474113037109375, 0.4756346740722656, 0.4741652526855469, 0.47452056884765625, 0.4742778930664063, 0.474176513671875, 0.47388363647460935, 0.473754638671875, 0.47433624267578123, 0.474029052734375, 0.47412841796875, 0.4740433654785156, 0.47558758544921875, 0.4756910400390625, 0.4747693786621094, 0.47467111206054685, 0.4742625427246094, 0.4742799377441406, 0.473807861328125, 0.474387451171875, 0.47398092651367185, 0.4740495300292969, 0.47483187866210935, 0.4742236022949219, 0.4746342468261719, 0.4739717102050781, 0.98069091796875, 0.4739993591308594, 0.4743341979980469, 0.4740321350097656, 0.4741048278808594, 0.47378021240234375, 0.4756019287109375, 0.4752998352050781, 0.47476327514648436, 0.47476531982421877, 0.47458303833007814, 0.474603515625, 0.4745164794921875, 0.47447552490234374, 0.4745482177734375, 0.47400344848632814, 0.4754913330078125, 0.47445709228515626, 0.4743076171875, 0.4742041320800781, 0.47417855834960937, 0.4741171264648438, 0.47425332641601564, 0.47636785888671873, 0.4741949462890625, 0.4747110290527344, 0.4743659973144531, 0.47549435424804687, 0.47543499755859375, 0.4749854736328125, 0.4751646728515625, 0.4754985046386719, 0.4756643981933594, 0.475114501953125, 0.4750315551757813, 0.47576882934570314, 0.47484927368164065, 0.47597467041015623, 0.4747806701660156, 0.47479296875, 0.47538177490234373, 0.4749906005859375, 0.47488409423828126, 0.4746322021484375, 0.4749168701171875, 0.47477862548828126, 0.4759582824707031, 0.47688909912109373, 0.47617330932617186, 0.47571865844726563, 0.4744898681640625, 0.4741591186523437, 0.47446939086914064, 0.4745513000488281, 0.4750899047851562, 0.4740403137207031, 0.474461181640625, 0.4741929016113281, 0.47546676635742186, 0.47404339599609374, 0.474176513671875, 0.47427685546875, 0.47412841796875, 0.979821533203125, 0.4742574157714844, 0.4741734313964844, 0.47405874633789064, 0.47411508178710937, 0.47479910278320314, 0.476015625, 0.47458816528320313, 0.4742225952148437, 0.47418679809570313, 0.4743782043457031, 0.47417138671875, 0.4748810119628906, 0.47444174194335936, 0.4738058166503906, 0.4744478759765625, 0.47413861083984377, 0.47446221923828125, 0.47416116333007813, 0.47388262939453124, 0.47408843994140626, 0.47393484497070315, 0.4740771789550781, 0.47400857543945313, 0.47406695556640627, 0.4738518981933594, 0.4751022033691406, 0.4763402099609375, 0.47449191284179687, 0.4742512512207031, 0.4740157470703125, 0.4743352355957031, 0.47394509887695313, 0.473849853515625, 0.47430963134765625, 0.4738713684082031, 0.47423590087890627, 0.4743987121582031, 0.47423590087890627, 0.4738887634277344, 0.4744407043457031, 0.4742297668457031, 0.4740741271972656, 0.47423590087890627, 0.47649996948242185, 0.4742901611328125, 0.4741949462890625, 0.47464346313476563, 0.476073974609375, 0.47489022827148436, 0.4758292541503906, 0.47497113037109373, 0.47431890869140625, 0.4741651916503906, 0.4740843505859375, 0.47435162353515625, 0.47437310791015624, 0.4743291015625, 0.47532852172851564, 0.474313720703125, 0.474640380859375, 0.47469473266601564, 0.4747908630371094, 0.9814691772460937, 0.4747683715820312, 0.4747376708984375, 0.4743690185546875, 0.4749127807617187, 0.4760391540527344, 0.4749434814453125, 0.4753387451171875, 0.4744488830566406, 0.4743935852050781, 0.4743935852050781, 0.47374334716796873, 0.47430349731445315, 0.47411404418945313, 0.47499264526367185, 0.47437823486328123, 0.4740597839355469, 0.4755292053222656, 0.474429443359375, 0.4746004333496094, 0.47424716186523436, 0.4757176208496094, 0.474365966796875, 0.4744038391113281, 0.47409765625, 0.47461581420898435, 0.47587124633789063, 0.47467724609375, 0.47449700927734373, 0.4752076721191406, 0.47526400756835935, 0.4758815002441406, 0.4752086791992188, 0.4745318298339844, 0.4740362548828125, 0.47401980590820314, 0.474777587890625, 0.47447760009765627, 0.47450723266601563, 0.4745646057128906, 0.4748257141113281, 0.4746987609863281, 0.4746670227050781, 0.4746844177246094, 0.4750899047851562, 0.474967041015625, 0.4748011474609375, 0.47588555908203123, 0.47625112915039064, 0.4750325622558594, 0.4751790161132812, 0.47611801147460936, 0.4751523742675781, 0.4750223388671875, 0.4746065979003906, 0.4746875, 0.47461068725585936, 0.47841998291015625, 0.4753489990234375, 0.47590911865234375, 0.4750417785644531, 0.474998779296875, 0.47562240600585937, 0.9817487182617187, 0.47520870971679685, 0.4753449096679688, 0.47469158935546873, 0.4756121520996094, 0.47580160522460935, 0.47535000610351563, 0.47563983154296874, 0.47536431884765623, 0.4756459655761719, 0.4758149108886719, 0.47476327514648436, 0.47486669921875, 0.4744960021972656, 0.4750315551757813, 0.4745902099609375, 0.4752404479980469, 0.4754586181640625, 0.47481234741210937, 0.47426150512695314, 0.4745635986328125, 0.4747796630859375, 0.4742758483886719, 0.4749291381835937, 0.4753070068359375, 0.4757319641113281, 0.47559988403320314, 0.4744366149902344, 0.4746649475097656, 0.47449087524414063, 0.47499365234375, 0.47450009155273437, 0.47397579956054686, 0.47451034545898435, 0.47416116333007813, 0.4750878601074219, 0.47417752075195313, 0.47466085815429687, 0.4771686401367187, 0.4746567687988281, 0.47440997314453126, 0.4744816589355469, 0.4743618469238281, 0.47448269653320313, 0.47479705810546874, 0.47491070556640624, 0.47615179443359373, 0.4757442626953125, 0.4753827819824219, 0.4749906005859375, 0.4746219482421875, 0.4746925964355469, 0.4743485412597656, 0.4746967163085937, 0.47494552612304686, 0.4743270263671875, 0.47532647705078124, 0.47462603759765626, 0.4751585388183594, 0.4746270751953125, 0.47493734741210936, 0.47487387084960936, 0.4749823913574219, 0.9828372192382813, 0.4750807189941406, 0.4744366149902344, 0.4755558471679687, 0.47547698974609376, 0.47533465576171874, 0.4759132080078125, 0.4759879760742188, 0.47586407470703124, 0.4761640930175781, 0.4759255065917969, 0.4748451843261719, 0.474919921875, 0.476189697265625, 0.4745257263183594, 0.4750560913085938, 0.475325439453125, 0.474986572265625, 0.4742686157226563, 0.4745994262695313, 0.4747817077636719, 0.4749609069824219, 0.4750120849609375, 0.47644467163085935, 0.47719833374023435, 0.47524453735351563, 0.4750530700683594, 0.4744356384277344, 0.47469769287109376, 0.4745891418457031, 0.47447756958007814, 0.4750274658203125, 0.47433831787109376, 0.47436083984375, 0.4751431579589844, 0.4747120666503906, 0.474977294921875, 0.47543295288085935, 0.4742215576171875, 0.47395327758789063, 0.474292236328125, 0.473849853515625, 0.4742840270996094, 0.4745062255859375, 0.47460455322265627, 0.475863037109375, 0.4749680786132813, 0.4751790161132812, 0.4745482177734375, 0.47489227294921876, 0.4745994873046875, 0.47445599365234375, 0.47442022705078124, 0.47415603637695314, 0.47442739868164063, 0.474777587890625, 0.47418060302734377, 0.4745369567871094, 0.47485952758789063, 0.4748001708984375, 0.474187744140625, 0.47446221923828125, 0.47530703735351565, 0.9833133544921875, 0.4750899047851562, 0.4764405822753906, 0.47526705932617186, 0.4746055603027344, 0.47418368530273436, 0.4742369384765625, 0.4743475341796875, 0.474524658203125, 0.474323974609375, 0.4742778930664063, 0.47433010864257813, 0.4754462585449219, 0.47468850708007815, 0.474829833984375, 0.4747304992675781, 0.47638424682617186, 0.4761231994628906, 0.47679379272460937, 0.4750878601074219, 0.4745164794921875, 0.47426150512695314, 0.4747745361328125, 0.47573504638671876, 0.4750520324707031, 0.474893310546875, 0.4743792724609375, 0.4743096923828125, 0.474462158203125, 0.47433831787109376, 0.4749609069824219, 0.4743250427246094, 0.4742419738769531, 0.47488204956054686, 0.47455438232421876, 0.4743075866699219, 0.4756408386230469, 0.47438339233398436, 0.4743741760253906, 0.47458706665039063, 0.47492404174804687, 0.47545547485351564, 0.47435980224609375, 0.47457485961914064, 0.4752353210449219, 0.47622964477539065, 0.47467416381835936, 0.47408126831054687, 0.47500799560546875, 0.47463320922851565, 0.4743915405273437, 0.4742758483886719, 0.47516363525390626, 0.47539404296875, 0.4750796813964844, 0.4738518981933594, 0.4742266845703125, 0.477939697265625, 0.474281982421875, 0.47408126831054687, 0.4742758483886719, 0.4744366149902344, 0.4743372802734375, 0.9826785278320312, 0.4751769714355469, 0.47564697265625, 0.47452569580078124, 0.4744765319824219, 0.47413861083984377, 0.47415090942382815, 0.4741754760742187, 0.4749885559082031, 0.47412017822265623, 0.4737423400878906, 0.4744488830566406, 0.4739051513671875, 0.4738478088378906, 0.4745400390625, 0.47486770629882813, 0.47466085815429687, 0.47589376831054686, 0.47535205078125, 0.4755548095703125, 0.4743424072265625, 0.47426663208007813, 0.47488409423828126, 0.47611911010742186, 0.47500384521484373, 0.4744591369628906, 0.47539813232421874, 0.47478475952148436, 0.47490567016601565, 0.47446112060546874, 0.475104248046875, 0.4745164794921875, 0.47489535522460935, 0.47453900146484373, 0.4745594787597656, 0.47434445190429686, 0.47417752075195313, 0.47448269653320313, 0.4744724731445312, 0.4748072509765625, 0.47473458862304685, 0.4740843505859375, 0.4747591552734375, 0.4748912658691406, 0.4760514526367188, 0.47554150390625, 0.4754565124511719, 0.47558041381835936, 0.4751912841796875, 0.47503564453125, 0.47414990234375, 0.4742850646972656, 0.47414886474609375, 0.47481036376953123, 0.47404852294921873, 0.4742584228515625, 0.4739358825683594, 0.4744171447753906, 0.4741263427734375, 0.47414169311523435, 0.4739491882324219, 0.47383755493164065, 0.4742522888183594, 0.983693359375, 0.47566241455078123, 0.47446722412109377, 0.4746977233886719, 0.4751247253417969, 0.47474688720703123, 0.47455032348632814, 0.4745143737792969, 0.474745849609375, 0.4746485900878906, 0.4754575500488281, 0.47418881225585935, 0.474029052734375, 0.47392666625976565, 0.4740771789550781, 0.4740321350097656, 0.4739317626953125, 0.4744591369628906, 0.47454925537109377, 0.47516058349609375, 0.47410687255859374, 0.4743935852050781, 0.4761661376953125, 0.4749885559082031, 0.47419699096679685, 0.47460250854492186, 0.47660543823242185, 0.4745430908203125, 0.4743280639648437, 0.47440179443359376, 0.4743813171386719, 0.47454721069335937, 0.4742799377441406, 0.4744407043457031, 0.4743854064941406, 0.47423898315429686, 0.47517593383789064, 0.4753879089355469, 0.47501516723632814, 0.47492202758789065, 0.4744867858886719, 0.47409762573242187, 0.47553741455078125, 0.4761282653808594, 0.47627365112304687, 0.47592141723632814, 0.474745849609375, 0.47454931640625, 0.47427374267578126, 0.47429937744140627, 0.47435775756835935, 0.47429937744140627, 0.475188232421875, 0.4755568542480469, 0.4755281982421875, 0.4754483337402344, 0.4758005676269531, 0.47536639404296877, 0.4753592224121094, 0.4763494567871094, 0.47446011352539064, 0.4744376220703125, 0.4739686279296875]",tokens/s,2.074646015839662,,,main,False,False +4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-72B,Qwen/Qwen2-beta-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -42993,22 +42893,31 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-7b-hf,meta-llama/Llama-2-7b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-7B,Qwen/Qwen1.5-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2832.146432,8389.132288,0.0,7742.685184,7007.0144,s,10,5.830655212402344,0.5830655212402344,0.0011864011955084602,0.5831084289550781,0.5846742309570313,0.5847881042480468,0.5848792028808594,"[0.5832706909179688, 0.5849019775390625, 0.5821006469726563, 0.5817232055664062, 0.582320068359375, 0.5811737670898437, 0.5829461669921875, 0.5834404907226562, 0.5841292724609375, 0.58464892578125]",tokens/s,439.05871754423805,kWh,6.867315049892591e-06,3.7630052303029514e-06,3.309072091699999e-05,4.372104119719553e-05,tokens/kWh,5855304.288051151,MB,2832.146432,8389.132288,0.0,7742.685184,7283.984384,s,10,342.646671875,34.264667187499995,0.008129823876006116,34.26347265625,34.275117968749996,34.278303125,34.28085125,"[34.26221484375, 34.28148828125, 34.27441015625, 34.256734375, 34.26859765625, 34.26473046875, 34.2578125, 34.267296875, 34.25966015625, 34.2537265625]",tokens/s,1.8386286857904421,kWh,0.0004044825890237167,0.00022169153025011835,0.0019209350367467965,0.002547109156020632,tokens/kWh,24733.92231781122,,s,629,347.34827374267576,0.5522230107196754,0.06935218607240677,0.5438034057617187,0.5445187377929688,0.5449166748046874,1.1266134716796876,"[0.54485400390625, 0.5438034057617187, 0.543246337890625, 0.5442498779296875, 0.5438187255859375, 0.544405517578125, 0.5433927612304688, 0.5439907836914063, 0.5433046875, 0.5437378540039063, 0.5438269653320312, 0.5440072021484375, 0.543795166015625, 0.544226318359375, 0.5433211059570312, 0.5441300659179688, 0.54451708984375, 0.5443307495117188, 0.5436416015625, 0.5442396240234375, 0.5436170043945312, 0.545089599609375, 0.543943603515625, 0.5440245971679688, 0.5435012817382813, 0.54389453125, 0.543447021484375, 0.544269287109375, 0.5434480590820312, 0.5442416381835937, 0.5436282958984375, 0.5436856079101563, 0.5433425903320312, 0.5441137084960938, 0.5437623901367188, 0.5438228759765625, 0.54314599609375, 0.543266845703125, 0.5434480590820312, 0.54394677734375, 0.543478759765625, 0.544342041015625, 0.5433477172851563, 0.5437071533203125, 0.5434163208007813, 0.5436990356445313, 0.5434121704101562, 0.5436589965820312, 0.5431746826171875, 0.5436907348632812, 0.5431572265625, 0.5437921142578125, 0.5443922119140625, 0.5438034057617187, 0.5433538818359375, 0.5437992553710937, 0.54312548828125, 0.5436221313476562, 0.5442550048828125, 0.5447546997070313, 0.5435003051757813, 0.544110595703125, 1.129606201171875, 0.5438555908203125, 0.5446000366210938, 0.5434962158203125, 0.5441279907226563, 0.5435760498046875, 0.5443614501953125, 0.5440512084960938, 0.5445314331054687, 0.544, 0.544395263671875, 0.5442437133789062, 0.5449338989257813, 0.5445150756835937, 0.5455985107421875, 0.5442651977539062, 0.5440481567382812, 0.5437183837890625, 0.5441484985351562, 0.5433558959960938, 0.544912353515625, 0.5442252807617187, 0.544775146484375, 0.5442785034179688, 0.5442467651367188, 0.5443768310546875, 0.544701416015625, 0.5438463745117188, 0.5441720581054688, 0.543763427734375, 0.5439447021484375, 0.5434183959960938, 0.5442539672851563, 0.543873046875, 0.5442447509765626, 0.5435484008789062, 0.544189453125, 0.5435852661132813, 0.5441228637695312, 0.5439774780273438, 0.5444413452148438, 0.5440932006835938, 0.5443020629882812, 0.5437276000976563, 0.5443696899414062, 0.5436436767578126, 0.5473484497070312, 0.5439129638671875, 0.5444976806640625, 0.54388427734375, 0.5441033935546875, 0.5436795043945313, 0.5439283447265625, 0.5437163696289062, 0.5439866943359375, 0.5433651123046875, 0.5438566284179688, 0.5434593505859375, 0.5443276977539062, 0.5436395263671875, 0.54405224609375, 0.5434828491210938, 0.5446829833984375, 1.1269549560546874, 0.5436589965820312, 0.5440983276367187, 0.5438801879882813, 0.5444874267578125, 0.544152587890625, 0.5444679565429688, 0.5439887084960937, 0.5441515502929688, 0.5438320922851563, 0.54458984375, 0.5438555908203125, 0.544068603515625, 0.5435648193359375, 0.5439713134765625, 0.5431132202148438, 0.5440512084960938, 0.54389453125, 0.5443778686523437, 0.543446044921875, 0.5438597412109375, 0.5438648071289063, 0.5439907836914063, 0.5458063354492187, 0.5444915161132813, 0.543572998046875, 0.5443184814453125, 0.5437357788085937, 0.543878173828125, 0.5435125732421875, 0.5439928588867188, 0.5434962158203125, 0.544068603515625, 0.5433712768554687, 0.5437890625, 0.5446963500976563, 0.5459650268554688, 0.5440255737304688, 0.5438883666992187, 0.5443931884765625, 0.5446287231445313, 0.5444362182617187, 0.5449840698242188, 0.5441444091796875, 0.5444034423828125, 0.543510498046875, 0.5440491333007812, 0.5454448852539062, 0.5443717041015625, 0.5432412109375, 0.5437112426757813, 0.5432013549804687, 0.5434971313476562, 0.5437726440429688, 0.5439866943359375, 0.5433477172851563, 0.5437194213867188, 0.5431173095703125, 0.5434132690429687, 0.5431746826171875, 0.544648193359375, 0.5442304077148438, 0.5442119750976563, 1.1263170166015626, 0.5434583129882813, 0.5442969360351563, 0.543373291015625, 0.5437562866210938, 0.543373291015625, 0.5437644653320313, 0.5435750122070313, 0.5440972900390625, 0.5432647705078125, 0.5439580078125, 0.5433252563476563, 0.5438104858398437, 0.5432924194335937, 0.5439324340820313, 0.5438750610351563, 0.5440696411132813, 0.543283203125, 0.543783935546875, 0.54326171875, 0.5440430297851563, 0.543267822265625, 0.5438822631835938, 0.54329443359375, 0.5437296752929688, 0.5433179931640625, 0.5443358764648437, 0.5437020263671875, 0.5440706787109375, 0.5436016845703125, 0.5435985717773437, 0.54325244140625, 0.5440829467773437, 0.5445253295898438, 0.5435402221679687, 0.54327294921875, 0.5437296752929688, 0.5436436767578126, 0.54380029296875, 0.5434234619140625, 0.5437747192382812, 0.5434429321289063, 0.5436068115234375, 0.543056884765625, 0.5473935546875, 0.54410546875, 0.5440604248046875, 0.5434931030273438, 0.5439365234375, 0.5433773803710937, 0.5438289794921874, 0.5436354370117188, 0.5443809204101563, 0.5432913818359375, 0.5437869873046876, 0.5433190307617187, 0.5438975830078125, 0.54358837890625, 0.543973388671875, 0.5433487548828125, 0.5437777709960937, 0.5435279541015625, 0.5438392333984375, 1.126728759765625, 0.5433446655273437, 0.544162841796875, 0.5432760620117187, 0.5441720581054688, 0.5443881225585937, 0.54490625, 0.54394677734375, 0.5442590942382812, 0.5439252319335938, 0.544701416015625, 0.5439826049804688, 0.5446226196289062, 0.5433385009765626, 0.5438064575195313, 0.5434009399414063, 0.5440983276367187, 0.5450567626953124, 0.5439652099609374, 0.5432319946289063, 0.5438095092773437, 0.5432586059570312, 0.5437614135742187, 0.543435791015625, 0.544484375, 0.5434317016601562, 0.5437009887695312, 0.5431490478515625, 0.5438167114257813, 0.543298583984375, 0.5435801391601562, 0.5435494995117187, 0.5441719970703125, 0.5433681640625, 0.5436928100585937, 0.5437245483398437, 0.5445037841796875, 0.5434193725585937, 0.5443307495117188, 0.543531005859375, 0.5440133056640625, 0.5436139526367187, 0.5439487915039063, 0.54411572265625, 0.5449932861328125, 0.5437962036132813, 0.5439794921875, 0.543466552734375, 0.5439456787109375, 0.543562744140625, 0.5440255737304688, 0.5437542114257813, 0.5439508666992188, 0.5435565795898437, 0.5450424194335938, 0.5437081298828125, 0.5441198120117188, 0.5460613403320312, 0.5440328369140625, 0.5436876220703125, 0.5439970092773437, 0.5443685913085937, 0.5439518432617187, 1.1256268310546875, 0.5433876342773437, 0.5439027099609375, 0.5437491455078125, 0.5440143432617187, 0.5435873413085938, 0.5440634765625, 0.5435217895507812, 0.544837646484375, 0.5441290283203125, 0.5442662353515625, 0.5436077880859375, 0.5440040893554687, 0.5432811279296875, 0.5437716674804688, 0.5439754028320313, 0.543921142578125, 0.5436795043945313, 0.5448601684570312, 0.543963134765625, 0.5444270629882813, 0.5435064086914062, 0.5439723510742187, 0.5439713134765625, 0.5442775268554687, 0.5437449951171875, 0.544595947265625, 0.5438966064453125, 0.5437860107421875, 0.5432279052734375, 0.5435350952148438, 0.5433651123046875, 0.5438668823242188, 0.5433426513671875, 0.5449727783203125, 0.5435340576171875, 0.5439334106445313, 0.54326171875, 0.5467739868164062, 0.5434767456054688, 0.5440921630859376, 0.5435054931640625, 0.544133056640625, 0.5435484008789062, 0.5440020751953125, 0.5437808837890625, 0.5440993041992187, 0.5436477661132812, 0.5438197631835937, 0.5434757690429688, 0.54377978515625, 0.5431531372070313, 0.5442908325195313, 0.5436088256835937, 0.5439539184570312, 0.54348291015625, 0.54430517578125, 0.5432504272460937, 0.5439170532226563, 0.5432053833007813, 0.5438597412109375, 0.5436006469726562, 0.543825927734375, 1.1284039306640625, 0.5435811767578125, 0.54392626953125, 0.5432975463867188, 0.5440030517578125, 0.5434276123046875, 0.5444700317382812, 0.5436016845703125, 0.5438228759765625, 0.5433507690429688, 0.5437460327148438, 0.5433599853515625, 0.5435975952148437, 0.5432709350585937, 0.54407373046875, 0.5433487548828125, 0.5436477661132812, 0.5439201049804687, 0.544205810546875, 0.5434214477539062, 0.543847412109375, 0.5432391967773438, 0.5437501220703125, 0.54501171875, 0.543856689453125, 0.5445160522460938, 0.544321533203125, 0.5439661865234375, 0.5444495849609375, 0.5435463256835937, 0.543562744140625, 0.5435699462890625, 0.5438617553710937, 0.5433108520507812, 0.5436497802734375, 0.5432432861328125, 0.5446655883789062, 0.5437214965820313, 0.5437655029296875, 0.543151123046875, 0.5436876831054688, 0.54325146484375, 0.5437511596679687, 0.5447864379882813, 0.5438218994140624, 0.5431879272460938, 0.543825927734375, 0.543182861328125, 0.5435903930664062, 0.54308349609375, 0.5436334228515625, 0.5431613159179688, 0.5436016845703125, 0.5431839599609375, 0.5440931396484375, 0.544869384765625, 0.543978515625, 0.5436641235351563, 0.5438402709960938, 0.54329443359375, 0.5435975952148437, 0.5432872924804687, 0.5449031982421875, 1.12785302734375, 0.5432197265625, 0.5443031005859374, 0.543805419921875, 0.5440696411132813, 0.543562744140625, 0.5437880249023438, 0.5434265747070313, 0.54437890625, 0.5443410034179688, 0.5438085327148438, 0.5433548583984374, 0.5437552490234375, 0.5441167602539062, 0.5438873901367187, 0.5431286010742188, 0.5460684814453125, 0.5433446655273437, 0.54401123046875, 0.5432525024414062, 0.5443113403320312, 0.5433211059570312, 0.5440449829101562, 0.54329443359375, 0.5437286376953125, 0.5433364868164062, 0.5437962036132813, 0.5443225708007813, 0.544879638671875, 0.543446044921875, 0.543447021484375, 0.5436170043945312, 0.5437798461914063, 0.543077392578125, 0.5447864379882813, 0.5435914306640625, 0.5437706298828126, 0.5436293334960938, 0.5449195556640625, 0.5433282470703125, 0.544373779296875, 0.543984619140625, 0.54413720703125, 0.5432801513671875, 0.5436323852539062, 0.5439119262695312, 0.5450363159179688, 0.543909912109375, 0.5446492309570312, 0.5441402587890625, 0.5445682983398438, 0.5445365600585937, 0.5437798461914063, 0.5442201538085938, 0.5439365234375, 0.5434225463867187, 0.5440900268554687, 0.5439365844726562, 0.5439845581054688, 0.5436405639648437, 0.5438587036132813, 0.5438146362304688, 0.5440071411132813, 1.1298836669921875, 0.5435586547851563, 0.5440675659179688, 0.5432913818359375, 0.5438289794921874, 0.5433005981445312, 0.5437767944335937, 0.544300048828125, 0.54409521484375, 0.543405029296875, 0.54519091796875, 0.5432658081054688, 0.5438023681640625, 0.5436221313476562, 0.5439180908203125, 0.5432565307617188, 0.5435023193359375, 0.5447024536132813, 0.54401953125, 0.5435442504882813, 0.5441484985351562, 0.5433333740234375, 0.5439180908203125, 0.5433262329101562, 0.5437921142578125, 0.5436846313476562, 0.5451581420898437, 0.54331494140625, 0.5439129638671875, 0.5431747436523438, 0.5436364135742188, 0.543467529296875, 0.5444925537109375, 0.5434685668945313, 0.5439539184570312, 0.543331298828125, 0.5441863403320313, 0.5441474609375, 0.5438177490234375, 0.5437880249023438, 0.5436282958984375, 0.5433865966796875, 0.5437327270507812, 0.5433026733398437, 0.5443440551757812, 0.5432484130859375, 0.5437440185546875, 0.5434849243164063, 0.5438463745117188, 0.5431654663085937, 0.5436897583007813, 0.5432340698242187, 0.5437265625, 0.5432975463867188, 0.543541259765625, 0.5436201171875, 0.5445703735351562, 0.543752197265625, 0.5440389404296875, 0.5439641723632812, 0.5437122802734375, 0.543457275390625, 0.5449390258789063, 1.1290306396484375, 0.5434531860351562, 0.5440993041992187, 0.5435391845703125, 0.5443635864257812, 0.54331591796875, 0.5436958618164063, 0.54315625, 0.54371533203125, 0.5437439575195312, 0.544100341796875, 0.5435381469726562, 0.5437388916015625, 0.5432217407226563, 0.5436754150390625, 0.54318896484375, 0.5440829467773437, 0.544564208984375, 0.543515625, 0.5431910400390625, 0.5438494873046875, 0.54326171875, 0.5435248413085938, 0.5433456420898437, 0.5437112426757813, 0.5435238647460937, 0.5456578369140626, 0.5435504760742188, 0.5442672729492187, 0.543446044921875, 0.54443212890625, 0.5432156372070313, 0.5440870971679688, 0.5433077392578125, 0.5435750122070313, 0.5440040893554687, 0.5438587036132813, 0.5430794067382813, 0.5436282958984375, 0.5436846313476562, 0.5436190795898438, 0.5430947875976563, 0.5436282958984375, 0.5432340698242187, 0.5435166625976563, 0.5432954711914062, 0.5439907836914063, 0.5439354858398437, 0.5442140502929688, 0.543595458984375, 0.544216064453125, 0.5438013305664062, 0.5442723999023438, 0.5444034423828125, 0.5439794921875, 0.54333642578125, 0.5436118774414063, 0.5431787719726563, 0.5439519653320313, 0.5432032470703125, 0.5435668334960938, 0.5430866088867188, 0.5438269653320312]",tokens/s,1.810862605483909,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-32B,Qwen/Qwen1.5-32B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,4397.162496,24111.480832,0.0,23465.033728,21690.932224,s,10,26.23831787109375,2.623831787109375,0.003031033246657479,2.6228023681640624,2.627721069335937,2.628540100097656,2.629195324707031,"[2.629359130859375, 2.621765380859375, 2.6223037109375, 2.621092041015625, 2.623301025390625, 2.620621826171875, 2.62457861328125, 2.6205380859375, 2.627218994140625, 2.6275390625]",tokens/s,97.56723020801203,kWh,3.09448529779911e-05,1.6958929474258183e-05,0.00014797261837800056,0.00019587640083024984,tokens/kWh,1306946.619985398,MB,4397.162496,24111.480832,0.0,23465.033728,21890.217984,s,10,1555.758796875,155.5758796875,0.01362531366110068,155.577890625,155.5897375,155.594603125,155.598495625,"[155.55940625, 155.57425, 155.583734375, 155.59946875, 155.58153125, 155.58503125, 155.568875, 155.58865625, 155.564453125, 155.553390625]",tokens/s,0.4049470915835152,kWh,0.0018369476799004608,0.0010068097738273171,0.008895798588855384,0.011739556042583163,tokens/kWh,5366.4721026484,,s,629,1576.8986267089822,2.50699304723209,0.31148250553470674,2.46929931640625,2.47089541015625,2.471475439453125,5.08945892578125,"[2.468798583984375, 2.46915185546875, 2.46936669921875, 2.469295166015625, 2.469130126953125, 2.468601806640625, 2.46879638671875, 2.46974560546875, 2.468950927734375, 2.468516845703125, 2.468890625, 2.469065673828125, 2.468599853515625, 2.46870947265625, 2.468912109375, 2.469274658203125, 2.468938720703125, 2.46896337890625, 2.4693310546875, 2.46970068359375, 2.469392333984375, 2.46949072265625, 2.47088330078125, 2.4697119140625, 2.469168212890625, 2.468552734375, 2.4692490234375, 2.4690791015625, 2.47006005859375, 2.46929931640625, 2.46951123046875, 2.46925, 2.469129150390625, 2.468915283203125, 2.46999560546875, 2.4695, 2.46917724609375, 2.4696279296875, 2.469708740234375, 2.469084228515625, 2.46938427734375, 2.468663330078125, 2.46932275390625, 2.468631591796875, 2.468556884765625, 2.46858447265625, 2.46909326171875, 2.46888232421875, 2.46854248046875, 2.469202880859375, 2.469517333984375, 2.468483154296875, 2.468864013671875, 2.46881494140625, 2.468998046875, 2.469455810546875, 2.469496826171875, 2.469419921875, 2.4694599609375, 2.469094482421875, 2.47101025390625, 2.468877197265625, 5.09138330078125, 2.468682861328125, 2.468284423828125, 2.471290771484375, 2.471075927734375, 2.47086279296875, 2.470519775390625, 2.471779296875, 2.4712724609375, 2.470220703125, 2.469166015625, 2.47142919921875, 2.469087158203125, 2.470717529296875, 2.469718994140625, 2.4686796875, 2.468135986328125, 2.469396484375, 2.47069482421875, 2.469185546875, 2.46943359375, 2.4694208984375, 2.469435302734375, 2.472340576171875, 2.46964404296875, 2.4692294921875, 2.4692080078125, 2.4687861328125, 2.4688701171875, 2.468831298828125, 2.468864013671875, 2.468359130859375, 2.468737060546875, 2.4681728515625, 2.46879345703125, 2.47047265625, 2.471103515625, 2.4709150390625, 2.469086181640625, 2.467948486328125, 2.46850244140625, 2.46847998046875, 2.468877197265625, 2.47016845703125, 2.472048583984375, 2.471004150390625, 2.46881689453125, 2.46902783203125, 2.469129150390625, 2.468443115234375, 2.468276123046875, 2.46843603515625, 2.468770751953125, 2.46885888671875, 2.468476806640625, 2.46837255859375, 2.46976318359375, 2.4682578125, 2.468187255859375, 2.467946533203125, 2.4700517578125, 2.468588623046875, 2.468370361328125, 5.09084375, 2.46865625, 2.4686162109375, 2.471500732421875, 2.47128173828125, 2.47047265625, 2.470948974609375, 2.46904638671875, 2.46915283203125, 2.468949951171875, 2.469103515625, 2.469283935546875, 2.46955615234375, 2.46936669921875, 2.46929931640625, 2.469792724609375, 2.46934521484375, 2.468339599609375, 2.469074951171875, 2.46917724609375, 2.46955322265625, 2.469060546875, 2.471446533203125, 2.471505859375, 2.471520263671875, 2.46911376953125, 2.470220703125, 2.46964111328125, 2.46999658203125, 2.469699462890625, 2.469473388671875, 2.4692724609375, 2.469899169921875, 2.469782470703125, 2.47012158203125, 2.469866455078125, 2.4691630859375, 2.46879345703125, 2.469590087890625, 2.47096533203125, 2.471996337890625, 2.46934326171875, 2.468957275390625, 2.468894775390625, 2.468242431640625, 2.470201416015625, 2.46946923828125, 2.469783447265625, 2.469652587890625, 2.469385009765625, 2.4691455078125, 2.469442626953125, 2.46881494140625, 2.470005859375, 2.469909423828125, 2.46930224609375, 2.469780517578125, 2.46929296875, 2.468728759765625, 2.46875146484375, 2.468708251953125, 2.469340087890625, 2.468431884765625, 5.08925537109375, 2.469267333984375, 2.4689326171875, 2.468461669921875, 2.470912841796875, 2.47052294921875, 2.47040625, 2.4696259765625, 2.470639404296875, 2.470507568359375, 2.469961669921875, 2.4698583984375, 2.470289306640625, 2.470327392578125, 2.470380615234375, 2.470289306640625, 2.47063037109375, 2.4716962890625, 2.4711904296875, 2.469096435546875, 2.46898583984375, 2.469234619140625, 2.46925927734375, 2.469075927734375, 2.468787109375, 2.470892578125, 2.468845458984375, 2.470190185546875, 2.470021240234375, 2.46980908203125, 2.469390380859375, 2.469427001953125, 2.469474365234375, 2.46984912109375, 2.468821044921875, 2.46932470703125, 2.46972412109375, 2.470828125, 2.470804443359375, 2.47084228515625, 2.471381103515625, 2.471739501953125, 2.4696513671875, 2.469551025390625, 2.46862744140625, 2.468588623046875, 2.468927490234375, 2.469970947265625, 2.469509033203125, 2.468726806640625, 2.470922119140625, 2.47033642578125, 2.470152099609375, 2.47086181640625, 2.469655517578125, 2.469350341796875, 2.469897216796875, 2.4691435546875, 2.468494384765625, 2.469423095703125, 2.470116455078125, 2.470024169921875, 2.4697353515625, 5.09418994140625, 2.47079833984375, 2.471482421875, 2.470703125, 2.4698798828125, 2.469234619140625, 2.469583984375, 2.469041259765625, 2.469078125, 2.468781982421875, 2.469856201171875, 2.470139892578125, 2.4699013671875, 2.46999853515625, 2.469337158203125, 2.4686396484375, 2.46900732421875, 2.46865625, 2.4688505859375, 2.46949365234375, 2.468842529296875, 2.469308349609375, 2.469699462890625, 2.469474365234375, 2.46980810546875, 2.470485107421875, 2.470642578125, 2.470287353515625, 2.46951220703125, 2.46904931640625, 2.47022900390625, 2.470436767578125, 2.46926025390625, 2.469675048828125, 2.47014306640625, 2.46932275390625, 2.468830322265625, 2.469003173828125, 2.469866455078125, 2.46951123046875, 2.468826171875, 2.469062744140625, 2.469338134765625, 2.469421142578125, 2.468864013671875, 2.4689970703125, 2.469686279296875, 2.468821044921875, 2.468958251953125, 2.46921533203125, 2.4694580078125, 2.468634521484375, 2.46913232421875, 2.4693955078125, 2.469814208984375, 2.468588623046875, 2.469433349609375, 2.470032470703125, 2.470792236328125, 2.469285888671875, 2.469370849609375, 2.469603271484375, 2.46991357421875, 5.0895380859375, 2.472522705078125, 2.472004638671875, 2.469856201171875, 2.468981689453125, 2.469172119140625, 2.46925, 2.4692265625, 2.469295166015625, 2.46936376953125, 2.47034765625, 2.468842529296875, 2.470485107421875, 2.471478271484375, 2.469750732421875, 2.468664306640625, 2.471371826171875, 2.468883544921875, 2.471439453125, 2.469444580078125, 2.46917626953125, 2.469329833984375, 2.469687255859375, 2.46869091796875, 2.469650390625, 2.468767822265625, 2.46934619140625, 2.46850048828125, 2.46826806640625, 2.46904443359375, 2.4693974609375, 2.469318603515625, 2.47453076171875, 2.469267333984375, 2.470331298828125, 2.4707685546875, 2.469550048828125, 2.46943017578125, 2.469969970703125, 2.469962646484375, 2.46923486328125, 2.468137939453125, 2.468229248046875, 2.46898779296875, 2.468890625, 2.468874267578125, 2.469168212890625, 2.470299560546875, 2.47147119140625, 2.469370849609375, 2.469350341796875, 2.470095947265625, 2.469555419921875, 2.46888232421875, 2.4688681640625, 2.469992431640625, 2.468869140625, 2.469044189453125, 2.469062744140625, 2.469525390625, 2.468809814453125, 2.46928076171875, 2.468957275390625, 5.09382470703125, 2.469845947265625, 2.4695244140625, 2.469098388671875, 2.46944677734375, 2.469396484375, 2.470770751953125, 2.469032958984375, 2.469140380859375, 2.468855712890625, 2.469170166015625, 2.469623779296875, 2.469095458984375, 2.4704697265625, 2.47050244140625, 2.4702392578125, 2.469874755859375, 2.4695224609375, 2.469214111328125, 2.469747802734375, 2.46868896484375, 2.469425048828125, 2.468915283203125, 2.4693955078125, 2.468820068359375, 2.46910986328125, 2.468548583984375, 2.4704716796875, 2.469411865234375, 2.4691220703125, 2.468193359375, 2.468788330078125, 2.4683017578125, 2.46884033203125, 2.470220703125, 2.4702197265625, 2.468990966796875, 2.468908935546875, 2.4688486328125, 2.4704501953125, 2.470517822265625, 2.470140869140625, 2.469308349609375, 2.470096923828125, 2.469972900390625, 2.4689111328125, 2.468103271484375, 2.468663330078125, 2.468252685546875, 2.468338623046875, 2.467991455078125, 2.468906982421875, 2.46822802734375, 2.468630615234375, 2.469042236328125, 2.469347412109375, 2.47062939453125, 2.471343017578125, 2.467967041015625, 2.468644775390625, 2.46843701171875, 2.4686162109375, 2.473323486328125, 5.0889111328125, 2.468672607421875, 2.4683642578125, 2.468341796875, 2.468705322265625, 2.468413330078125, 2.46852197265625, 2.468662353515625, 2.468912109375, 2.46987158203125, 2.470073486328125, 2.46920068359375, 2.469920654296875, 2.46879638671875, 2.4687412109375, 2.4697333984375, 2.4695244140625, 2.4696298828125, 2.4695244140625, 2.470005859375, 2.468862060546875, 2.47003125, 2.4691630859375, 2.468483154296875, 2.4710625, 2.469022705078125, 2.46885888671875, 2.4692705078125, 2.469971923828125, 2.47102783203125, 2.47071435546875, 2.4704482421875, 2.471227294921875, 2.470994873046875, 2.469182373046875, 2.46873095703125, 2.47003125, 2.468622314453125, 2.4721171875, 2.468535400390625, 2.47090673828125, 2.470928466796875, 2.470781982421875, 2.470194091796875, 2.470340576171875, 2.468509765625, 2.468907958984375, 2.469888916015625, 2.469969970703125, 2.47013671875, 2.472005859375, 2.47183740234375, 2.47176708984375, 2.471166015625, 2.471228515625, 2.4702783203125, 2.47012451171875, 2.468314208984375, 2.46890087890625, 2.46814208984375, 2.46915283203125, 2.467857421875, 2.46899609375, 5.0967275390625, 2.468865966796875, 2.47231494140625, 2.4689765625, 2.469561279296875, 2.469706787109375, 2.468801513671875, 2.468005859375, 2.46970068359375, 2.469357666015625, 2.470153076171875, 2.47166455078125, 2.4716962890625, 2.47134716796875, 2.4716728515625, 2.469540771484375, 2.46961865234375, 2.46875439453125, 2.468744140625, 2.469203857421875, 2.46841748046875, 2.469667724609375, 2.4690810546875, 2.46848828125, 2.468600830078125, 2.469570556640625, 2.46897265625, 2.468644775390625, 2.46887109375, 2.46993310546875, 2.469518310546875, 2.468893798828125, 2.469458740234375, 2.4689755859375, 2.469214111328125, 2.468822998046875, 2.468765625, 2.469544921875, 2.46893359375, 2.46794140625, 2.46793115234375, 2.468474853515625, 2.468509765625, 2.469032958984375, 2.468798583984375, 2.46907177734375, 2.469205078125, 2.46849853515625, 2.468729736328125, 2.469506103515625, 2.4690390625, 2.4686376953125, 2.4710419921875, 2.469719970703125, 2.4685322265625, 2.468116455078125, 2.468727783203125, 2.4698369140625, 2.46875244140625, 2.46940869140625, 2.469123046875, 2.47010205078125, 2.468192138671875, 5.09570947265625, 2.469843994140625, 2.469245849609375, 2.46862939453125, 2.469123046875, 2.470595703125, 2.46889990234375, 2.468484130859375, 2.468884521484375, 2.469498779296875, 2.46938720703125, 2.468440185546875, 2.4687841796875, 2.46934326171875, 2.468601806640625, 2.469178466796875, 2.46820654296875, 2.469718017578125, 2.469128173828125, 2.468865966796875, 2.468513671875, 2.46963525390625, 2.468724609375, 2.4697353515625, 2.468211669921875, 2.468957275390625, 2.4694794921875, 2.46911083984375, 2.4683447265625, 2.4698837890625, 2.468577392578125, 2.468810791015625, 2.468404296875, 2.46858251953125, 2.469440673828125, 2.469866455078125, 2.468959228515625, 2.4695625, 2.46875732421875, 2.46845849609375, 2.469051513671875, 2.46925830078125, 2.470119384765625, 2.468737060546875, 2.468697998046875, 2.469822509765625, 2.469697509765625, 2.4686376953125, 2.4682802734375, 2.468843505859375, 2.471318603515625, 2.4700693359375, 2.469341064453125, 2.469017578125, 2.469211181640625, 2.469179443359375, 2.468263916015625, 2.46847998046875, 2.4693955078125, 2.468968505859375, 2.469316650390625, 2.46883740234375, 2.46984814453125]",tokens/s,0.39888423348603846,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-40b,tiiuae/falcon-40b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -43026,24 +42935,21 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation + cls._check_and_enable_flash_attn_2( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 + raise ValueError( +ValueError: FalconForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpdp6k6q32/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-13b-hf,meta-llama/Llama-2-13b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-160m,EleutherAI/pythia-160m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1312.858112,1030.22592,0.0,383.778816,312.280064,s,10,0.275944766998291,0.0275944766998291,0.0013350624992567249,0.0271289119720459,0.027794796180725095,0.02969363794326782,0.031212711353302003,"[0.03159247970581055, 0.027166879653930665, 0.027137279510498047, 0.02737283134460449, 0.02710416030883789, 0.02712054443359375, 0.027108831405639647, 0.027081024169921874, 0.027172767639160156, 0.027087968826293947]",tokens/s,9277.218871905097,kWh,3.2455721808658853e-07,1.778424162839056e-07,7.707522954780324e-07,1.2731519298485266e-06,tokens/kWh,201075766.3702066,MB,1312.858112,1030.22592,0.0,383.778816,347.089408,s,10,16.864729003906252,1.6864729003906251,0.020323100201592524,1.6794135742187501,1.6910009521484375,1.7188808471679686,1.7411847631835937,"[1.7467607421875, 1.67984912109375, 1.6774495849609374, 1.678377685546875, 1.67897802734375, 1.6768824462890626, 1.6750291748046875, 1.684479248046875, 1.684805419921875, 1.6821175537109374]",tokens/s,37.356070165970515,kWh,1.9882176955741114e-05,1.0895638286132514e-05,4.512764553432279e-05,7.590546077619641e-05,tokens/kWh,829979.8111462949,,s,629,17.07843275070189,0.027151721384263763,0.003315017386101685,0.026595327377319337,0.0273623046875,0.02783129653930664,0.05417021270751953,"[0.029247488021850586, 0.027447296142578126, 0.028238847732543947, 0.029016063690185546, 0.02889727973937988, 0.028690431594848635, 0.028497919082641602, 0.029652992248535157, 0.028964864730834962, 0.02876518440246582, 0.029016063690185546, 0.02860851287841797, 0.02900480079650879, 0.029263872146606446, 0.02835353660583496, 0.028241920471191406, 0.02977484893798828, 0.031457279205322264, 0.028201984405517577, 0.02774220848083496, 0.027778047561645508, 0.02750464057922363, 0.027625471115112304, 0.027877376556396483, 0.027576320648193358, 0.027623424530029295, 0.027853824615478515, 0.027623424530029295, 0.02755583953857422, 0.027467775344848632, 0.027467775344848632, 0.027464704513549806, 0.02751692771911621, 0.027671552658081053, 0.028444671630859376, 0.02751081657409668, 0.027527168273925783, 0.02693833541870117, 0.02656768035888672, 0.02656051254272461, 0.026586111068725587, 0.026575904846191406, 0.02656355285644531, 0.026597375869750976, 0.02668339157104492, 0.026562559127807618, 0.0265799674987793, 0.02705510330200195, 0.02689945602416992, 0.02673766326904297, 0.026646528244018555, 0.026635263442993166, 0.02674892807006836, 0.026631168365478516, 0.026613759994506835, 0.026697727203369142, 0.026650623321533205, 0.02710323143005371, 0.026925119400024414, 0.02659014320373535, 0.027423744201660157, 0.027077632904052733, 0.05460070419311523, 0.026619903564453123, 0.026565631866455077, 0.026629119873046874, 0.026554399490356446, 0.02660246467590332, 0.026628095626831053, 0.02656768035888672, 0.026635263442993166, 0.0266527042388916, 0.026569696426391603, 0.026598463058471678, 0.026578880310058593, 0.0265799674987793, 0.02658406448364258, 0.026687488555908204, 0.026688512802124024, 0.02656358337402344, 0.02654003143310547, 0.026614784240722656, 0.026625024795532228, 0.02652672004699707, 0.026619903564453123, 0.028004352569580077, 0.02753945541381836, 0.02736332893371582, 0.027281408309936524, 0.02712678337097168, 0.026574848175048828, 0.026603519439697267, 0.02654310417175293, 0.026565631866455077, 0.0265031681060791, 0.026557439804077147, 0.02653388786315918, 0.026556415557861326, 0.02654412841796875, 0.02655948829650879, 0.02668441581726074, 0.026625024795532228, 0.02655948829650879, 0.026588159561157225, 0.02654310417175293, 0.026572799682617186, 0.02655129623413086, 0.02656768035888672, 0.026604543685913085, 0.02655955123901367, 0.026596288681030273, 0.026562559127807618, 0.026596351623535155, 0.026594303131103517, 0.026558464050292968, 0.02655232048034668, 0.02659328079223633, 0.02651238441467285, 0.026549247741699217, 0.026588159561157225, 0.02657587242126465, 0.02659328079223633, 0.026556415557861326, 0.02650726318359375, 0.02656870460510254, 0.0541736946105957, 0.026597375869750976, 0.026587135314941408, 0.02655232048034668, 0.026550271987915038, 0.026600448608398438, 0.026652671813964843, 0.026689535140991212, 0.02655129623413086, 0.02653081512451172, 0.02658406448364258, 0.026677248001098632, 0.02651548767089844, 0.02671510314941406, 0.027616256713867186, 0.027520000457763674, 0.026843135833740234, 0.026626047134399415, 0.026536991119384765, 0.02662294387817383, 0.026621952056884765, 0.02655129623413086, 0.026534912109375, 0.026634239196777345, 0.026594303131103517, 0.02670182418823242, 0.0265799674987793, 0.02651136016845703, 0.02654003143310547, 0.02653388786315918, 0.02654412841796875, 0.026617855072021485, 0.026968063354492186, 0.02676736068725586, 0.026615808486938477, 0.02655539131164551, 0.02651545524597168, 0.026661888122558593, 0.026573823928833007, 0.026454015731811522, 0.02652470397949219, 0.026513376235961915, 0.0265031681060791, 0.02651852798461914, 0.026694656372070313, 0.026492927551269533, 0.026570751190185548, 0.026505216598510743, 0.026565631866455077, 0.026583040237426758, 0.026574848175048828, 0.02650931167602539, 0.02651033592224121, 0.026664960861206056, 0.026570751190185548, 0.02651238441467285, 0.026582015991210937, 0.02654515266418457, 0.02649087905883789, 0.02654719924926758, 0.026638336181640625, 0.02657689666748047, 0.026598400115966796, 0.05530112075805664, 0.027283456802368163, 0.027225088119506836, 0.02709503936767578, 0.026944511413574217, 0.02655436706542969, 0.02654310417175293, 0.026695680618286134, 0.026656768798828126, 0.0265850887298584, 0.026588191986083986, 0.02655023956298828, 0.026674175262451173, 0.026564607620239256, 0.026580991744995116, 0.026611711502075194, 0.026570751190185548, 0.0265533447265625, 0.026611711502075194, 0.026570751190185548, 0.026529792785644532, 0.02669977569580078, 0.026549247741699217, 0.02660767936706543, 0.02659424018859863, 0.02671001625061035, 0.02650111961364746, 0.02655539131164551, 0.026587135314941408, 0.02655232048034668, 0.026657791137695314, 0.0265533447265625, 0.026541055679321288, 0.026558464050292968, 0.02651238441467285, 0.026514432907104493, 0.026467327117919923, 0.026565631866455077, 0.02692403221130371, 0.026690559387207033, 0.02655436706542969, 0.026600448608398438, 0.026719232559204102, 0.02657689666748047, 0.026662912368774414, 0.02651136016845703, 0.026564607620239256, 0.026537984848022462, 0.026505216598510743, 0.02651238441467285, 0.02656358337402344, 0.02652262306213379, 0.026663936614990235, 0.026497024536132813, 0.026646528244018555, 0.02652876853942871, 0.026637311935424804, 0.02657587242126465, 0.02652672004699707, 0.02657177543640137, 0.026604543685913085, 0.026583040237426758, 0.026484735488891603, 0.054171646118164066, 0.02660147285461426, 0.026550271987915038, 0.02656972885131836, 0.02654515266418457, 0.02658406448364258, 0.026532863616943358, 0.02650726318359375, 0.02657792091369629, 0.02667622375488281, 0.0265799674987793, 0.02656153678894043, 0.026580991744995116, 0.026556480407714845, 0.02659833526611328, 0.026598400115966796, 0.026611711502075194, 0.026615808486938477, 0.026514432907104493, 0.02654207992553711, 0.02656768035888672, 0.02656870460510254, 0.026633216857910157, 0.026589183807373046, 0.02657177543640137, 0.02655436706542969, 0.026660863876342773, 0.026614784240722656, 0.026558464050292968, 0.02655436706542969, 0.026617855072021485, 0.026604543685913085, 0.026554399490356446, 0.026611679077148436, 0.026650623321533205, 0.026488832473754883, 0.02629631996154785, 0.02631372833251953, 0.0275230712890625, 0.027797504425048827, 0.02753023910522461, 0.02730803108215332, 0.02698854446411133, 0.026604543685913085, 0.02653081512451172, 0.026624000549316407, 0.02660147285461426, 0.026764287948608398, 0.026658815383911134, 0.02656870460510254, 0.026557439804077147, 0.02654617691040039, 0.026639360427856446, 0.026580991744995116, 0.026534912109375, 0.02653593635559082, 0.026594303131103517, 0.026620927810668944, 0.026596351623535155, 0.02657587242126465, 0.026604543685913085, 0.026604543685913085, 0.02653388786315918, 0.05420851135253906, 0.0265677433013916, 0.02660960006713867, 0.02667519950866699, 0.026580991744995116, 0.026594303131103517, 0.026562559127807618, 0.026665983200073243, 0.026590208053588867, 0.02653900718688965, 0.026637311935424804, 0.026638336181640625, 0.02654617691040039, 0.026590208053588867, 0.026562559127807618, 0.026696704864501954, 0.026629119873046874, 0.02652774429321289, 0.02652057647705078, 0.02653081512451172, 0.0265533447265625, 0.02654207992553711, 0.026694656372070313, 0.02658406448364258, 0.026640384674072266, 0.02657792091369629, 0.026534912109375, 0.02651545524597168, 0.026521600723266602, 0.02656153678894043, 0.02651852798461914, 0.026580991744995116, 0.02653388786315918, 0.026529792785644532, 0.0265799674987793, 0.026592256546020508, 0.026693632125854492, 0.02651545524597168, 0.026639360427856446, 0.027520000457763674, 0.02674380874633789, 0.026613759994506835, 0.026694656372070313, 0.026521600723266602, 0.026641408920288087, 0.026607616424560547, 0.026558464050292968, 0.026610687255859376, 0.026630144119262695, 0.02669260787963867, 0.026634271621704102, 0.02657072067260742, 0.02654003143310547, 0.02657587242126465, 0.026605567932128905, 0.026534912109375, 0.026697727203369142, 0.026587135314941408, 0.02652060890197754, 0.026654687881469727, 0.026598400115966796, 0.026714111328125, 0.02658406448364258, 0.054166526794433595, 0.02671615982055664, 0.026641408920288087, 0.026625024795532228, 0.0265994873046875, 0.026596288681030273, 0.02654719924926758, 0.026572799682617186, 0.026620927810668944, 0.026605567932128905, 0.02669977569580078, 0.02654316711425781, 0.026589120864868164, 0.026582015991210937, 0.026604543685913085, 0.026550271987915038, 0.026619903564453123, 0.02656051254272461, 0.026521600723266602, 0.026631168365478516, 0.02628505516052246, 0.02677350425720215, 0.026702848434448243, 0.02657177543640137, 0.02660966491699219, 0.02656358337402344, 0.02651545524597168, 0.0265533447265625, 0.026504192352294922, 0.02660147285461426, 0.02653900718688965, 0.026639360427856446, 0.0265850887298584, 0.026626047134399415, 0.02654003143310547, 0.026556447982788087, 0.026569696426391603, 0.026558464050292968, 0.02659328079223633, 0.026556415557861326, 0.02654617691040039, 0.02668339157104492, 0.026589183807373046, 0.026498048782348634, 0.026669055938720702, 0.026529792785644532, 0.026572799682617186, 0.02655129623413086, 0.0265164794921875, 0.026590208053588867, 0.02657792091369629, 0.026616832733154298, 0.026598400115966796, 0.026660863876342773, 0.026573823928833007, 0.026595327377319337, 0.026570751190185548, 0.0265164794921875, 0.02639366340637207, 0.026553279876708986, 0.02658406448364258, 0.026657791137695314, 0.02649497604370117, 0.05412044906616211, 0.026598400115966796, 0.026583040237426758, 0.026651647567749022, 0.02652262306213379, 0.026586111068725587, 0.02655129623413086, 0.026594303131103517, 0.02712678337097168, 0.02734489631652832, 0.026644479751586913, 0.026637311935424804, 0.026594303131103517, 0.026646528244018555, 0.026602495193481446, 0.027348991394042968, 0.027696128845214843, 0.027305984497070314, 0.027241472244262696, 0.02698854446411133, 0.026565631866455077, 0.026608640670776368, 0.027296768188476563, 0.027320320129394532, 0.027320320129394532, 0.027268096923828124, 0.02708684730529785, 0.026829824447631836, 0.026608640670776368, 0.02674073600769043, 0.02660147285461426, 0.026590208053588867, 0.02655129623413086, 0.02654207992553711, 0.02661075210571289, 0.0265860481262207, 0.02667622375488281, 0.026572799682617186, 0.026582015991210937, 0.026586111068725587, 0.02653081512451172, 0.026566656112670898, 0.02655232048034668, 0.026702848434448243, 0.026602495193481446, 0.02654617691040039, 0.026550271987915038, 0.026645503997802734, 0.026550271987915038, 0.026616832733154298, 0.02660966491699219, 0.026596351623535155, 0.026595327377319337, 0.026586111068725587, 0.02654617691040039, 0.02654617691040039, 0.026786815643310546, 0.02656153678894043, 0.026608640670776368, 0.026602495193481446, 0.026529792785644532, 0.026586111068725587, 0.026638336181640625, 0.05429862213134766, 0.026634239196777345, 0.026537984848022462, 0.026639360427856446, 0.02672127914428711, 0.02692915153503418, 0.027014144897460936, 0.026755071640014647, 0.026573823928833007, 0.026562559127807618, 0.026572799682617186, 0.026690559387207033, 0.02657177543640137, 0.026617855072021485, 0.026610687255859376, 0.026606592178344726, 0.026598400115966796, 0.026573823928833007, 0.026597375869750976, 0.026514432907104493, 0.026582015991210937, 0.02659328079223633, 0.026673152923583986, 0.027404319763183593, 0.026896352767944335, 0.026578943252563478, 0.026537984848022462, 0.026552352905273437, 0.02658710479736328, 0.026514432907104493, 0.02651238441467285, 0.026514432907104493, 0.02652262306213379, 0.02651238441467285, 0.02653081512451172, 0.026626047134399415, 0.026565631866455077, 0.026716224670410155, 0.026623935699462892, 0.026580991744995116, 0.02654617691040039, 0.026556415557861326, 0.026479616165161132, 0.02652876853942871, 0.026670080184936523, 0.026643455505371092, 0.026827775955200195, 0.026611711502075194, 0.027028480529785157, 0.027226112365722657, 0.027289600372314454, 0.02755583953857422, 0.0273623046875, 0.0273623046875, 0.02728550338745117, 0.02791116714477539, 0.027173887252807616, 0.0267775993347168, 0.026597375869750976, 0.02654515266418457, 0.02656153678894043, 0.026599424362182617, 0.026617855072021485, 0.05418803024291992, 0.026620927810668944, 0.026647552490234375, 0.02657689666748047, 0.02651238441467285, 0.026595327377319337, 0.026607616424560547, 0.026603519439697267, 0.026594303131103517, 0.026619903564453123, 0.02672230339050293, 0.026630144119262695, 0.026639360427856446, 0.02667622375488281, 0.026677248001098632, 0.026631168365478516, 0.026617855072021485, 0.026565631866455077, 0.026587135314941408, 0.0265164794921875, 0.026616832733154298, 0.026588159561157225, 0.026612735748291014, 0.026612735748291014, 0.02656768035888672, 0.026558464050292968, 0.026629119873046874, 0.026508287429809572, 0.026702848434448243, 0.02671615982055664, 0.0265533447265625, 0.026586111068725587, 0.026626047134399415, 0.02655232048034668, 0.02658406448364258, 0.02654412841796875, 0.02653081512451172, 0.0265799674987793, 0.026612735748291014, 0.026603519439697267, 0.02635366439819336, 0.026727424621582032, 0.02656153678894043, 0.026595327377319337, 0.026583040237426758, 0.026492927551269533, 0.026572799682617186, 0.02653593635559082, 0.026678272247314453, 0.02653900718688965, 0.02690559959411621, 0.02734284782409668, 0.02688102340698242, 0.026624000549316407, 0.02656358337402344, 0.026578943252563478, 0.027030527114868166, 0.027415552139282227, 0.02731724739074707, 0.027236352920532225, 0.027314176559448244, 0.027259904861450194, 0.027412479400634765]",tokens/s,36.83007739537158,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.3b,EleutherAI/pythia-1.3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,,MB,1610.354688,2254.962688,0.0,1608.515584,1463.6928,s,10,1.209205665588379,0.1209205665588379,0.0011005379634326184,0.1205662727355957,0.1215480598449707,0.12274063606262207,0.12369469703674317,"[0.12393321228027344, 0.12128304290771484, 0.12008969879150391, 0.12004278564453125, 0.12018284606933594, 0.12025001525878906, 0.12034620666503906, 0.12078633880615235, 0.12113209533691406, 0.121159423828125]",tokens/s,2117.0922969124094,kWh,1.4171419990441157e-06,7.762810317477228e-07,6.305967346357218e-06,8.499390377149056e-06,tokens/kWh,30119807.261502665,MB,1610.952704,2254.962688,0.0,1608.515584,1560.974848,s,10,70.14807763671874,7.0148077636718735,0.00472223733563277,7.012995361328125,7.0220806640625,7.0226084472656245,7.023030673828125,"[7.017875, 7.0128837890625, 7.0119638671875, 7.01192919921875, 7.01310693359375, 7.0105234375, 7.0078984375, 7.02196337890625, 7.01679736328125, 7.02313623046875]",tokens/s,8.981001635748731,kWh,8.273579535030184e-05,4.5345370896494765e-05,0.0003660393860852451,0.0004941205523320418,tokens/kWh,127499.25034015773,,s,629,71.1210855636597,0.11307008833650187,0.01439647456429658,0.11126681518554687,0.11167272796630859,0.11198136138916015,0.23187720581054685,"[0.11166719818115234, 0.11130470275878906, 0.11149517059326172, 0.11213107299804688, 0.11133849334716797, 0.11115827178955077, 0.11096371459960938, 0.11128832244873046, 0.11117977905273438, 0.11118182373046875, 0.11122688293457031, 0.1112647705078125, 0.11119513702392578, 0.11100774383544922, 0.111087646484375, 0.11108963012695312, 0.11133439636230469, 0.11160678100585937, 0.11127910614013672, 0.1123737564086914, 0.1114972152709961, 0.11121971130371094, 0.11113676452636718, 0.1111009292602539, 0.11132621002197265, 0.11129344177246094, 0.11116851043701172, 0.11124531555175782, 0.1112442855834961, 0.11126681518554687, 0.11126579284667969, 0.11136102294921875, 0.11114291381835938, 0.11164262390136719, 0.1114081268310547, 0.11137843322753906, 0.11116134643554687, 0.11157810974121093, 0.1113333740234375, 0.11127091217041016, 0.11125965118408203, 0.11129241943359375, 0.11120745849609374, 0.11137942504882813, 0.11125247955322265, 0.11137229156494141, 0.11129138946533203, 0.11126988983154297, 0.11214335632324218, 0.11184333038330078, 0.11213414764404298, 0.11166515350341796, 0.11144300842285157, 0.11137529754638673, 0.11148185729980468, 0.11138457489013671, 0.11156582641601563, 0.1114777603149414, 0.1114081268310547, 0.11125965118408203, 0.11127603149414063, 0.11128425598144531, 0.2332733154296875, 0.11126271820068359, 0.11134259033203125, 0.1112136001586914, 0.11113475036621094, 0.1112872314453125, 0.11119516754150391, 0.11118179321289062, 0.11123712158203125, 0.11110195159912109, 0.11118694305419922, 0.11108454132080078, 0.11117158508300781, 0.1111357421875, 0.1112248306274414, 0.11135078430175781, 0.1113016357421875, 0.11121049499511719, 0.11146649932861329, 0.11143270111083985, 0.11139379119873047, 0.11125862121582031, 0.11111116790771484, 0.11113369750976562, 0.11115213012695313, 0.11124736022949219, 0.11156070709228516, 0.11131289672851563, 0.11127193450927735, 0.11115929412841796, 0.11136819458007813, 0.11125145721435546, 0.11122073364257813, 0.11129753875732422, 0.11136614227294922, 0.11128217315673829, 0.11125145721435546, 0.11142047882080078, 0.11116230773925781, 0.11125759887695312, 0.1110487060546875, 0.11122994995117187, 0.11132518768310547, 0.1113026885986328, 0.11126576232910156, 0.11120947265625, 0.11332198333740234, 0.11140608215332032, 0.11135590362548828, 0.11126579284667969, 0.11120845031738281, 0.11143065643310547, 0.1113917465209961, 0.11126988983154297, 0.11125350189208984, 0.11131187438964844, 0.11131903839111328, 0.11127091217041016, 0.11129446411132812, 0.11129446411132812, 0.11138969421386719, 0.1114603500366211, 0.11127808380126954, 0.23181004333496094, 0.11102105712890625, 0.1111910400390625, 0.11175424194335938, 0.11164672088623047, 0.11138969421386719, 0.11125247955322265, 0.11111219024658203, 0.11101798248291016, 0.11089920043945313, 0.11102413177490235, 0.11136723327636719, 0.1116630401611328, 0.11121561431884766, 0.11134259033203125, 0.11122585296630859, 0.11111116790771484, 0.11116339111328125, 0.11112857818603515, 0.11112242889404297, 0.11111014556884766, 0.11112966156005859, 0.11107218933105469, 0.11174297332763672, 0.11127603149414063, 0.11119821166992187, 0.11121663665771485, 0.11118080139160157, 0.11127808380126954, 0.1111583023071289, 0.11111011505126953, 0.11111014556884766, 0.11128832244873046, 0.11131903839111328, 0.1111562271118164, 0.11147058868408204, 0.11126681518554687, 0.1112279052734375, 0.11108051300048828, 0.11122681427001953, 0.11114086151123047, 0.11119923400878906, 0.11140201568603515, 0.11115004730224609, 0.1115494384765625, 0.11138969421386719, 0.11126886749267578, 0.11192524719238281, 0.111351806640625, 0.11120127868652344, 0.11122994995117187, 0.11163238525390624, 0.11214540863037109, 0.11136921691894532, 0.11118592071533204, 0.11130879974365235, 0.11120845031738281, 0.11130470275878906, 0.1112442855834961, 0.11167743682861328, 0.11148799896240234, 0.11126988983154297, 0.11132012939453124, 0.23181817626953125, 0.11116236877441406, 0.11126585388183594, 0.11114182281494141, 0.11116748809814453, 0.1111695327758789, 0.11111014556884766, 0.11164057922363281, 0.11159449768066407, 0.11120127868652344, 0.11121766662597657, 0.11119206237792968, 0.11146649932861329, 0.11107635498046875, 0.11124121856689453, 0.11109375762939454, 0.11119718170166015, 0.11117465972900391, 0.11109478759765624, 0.11113471984863281, 0.11132415771484375, 0.11108249664306641, 0.11122585296630859, 0.11124838256835938, 0.11113267517089843, 0.11119821166992187, 0.11118386840820313, 0.11122380828857421, 0.11127808380126954, 0.11117056274414062, 0.11127500915527344, 0.111388671875, 0.11147878265380859, 0.111246337890625, 0.11121868896484376, 0.1112616958618164, 0.1112811508178711, 0.11174400329589844, 0.11160575866699218, 0.11130368041992188, 0.11123001861572265, 0.11139884948730469, 0.11166207885742188, 0.11131187438964844, 0.11219455718994141, 0.11126377868652344, 0.11129955291748046, 0.11126886749267578, 0.11122278594970703, 0.11126886749267578, 0.1113169937133789, 0.11135282897949218, 0.11117362976074219, 0.1112442855834961, 0.11130060577392578, 0.11121766662597657, 0.11142655944824219, 0.111246337890625, 0.11133132934570313, 0.11140409851074219, 0.11129542541503906, 0.11128422546386718, 0.11133952331542969, 0.23190016174316405, 0.11121459197998047, 0.11119718170166015, 0.11123302459716797, 0.11124736022949219, 0.1111551971435547, 0.1117624282836914, 0.11134259033203125, 0.11116851043701172, 0.11123609924316406, 0.11112960052490234, 0.11113983917236328, 0.11123097229003906, 0.11135692596435547, 0.11133030700683594, 0.1111756820678711, 0.11099750518798829, 0.11165388488769531, 0.11119923400878906, 0.11110399627685547, 0.11134361267089844, 0.11165695953369141, 0.11130470275878906, 0.11117874908447266, 0.11137843322753906, 0.11113881683349609, 0.11112754821777343, 0.11104460906982422, 0.11110195159912109, 0.1110456314086914, 0.11133542633056641, 0.11121971130371094, 0.11121459197998047, 0.11156275177001954, 0.11139590454101563, 0.11135379028320312, 0.11121868896484376, 0.11118592071533204, 0.11130982208251954, 0.11158528137207031, 0.11178291320800782, 0.11122176361083984, 0.11130470275878906, 0.11126681518554687, 0.111246337890625, 0.11125452423095702, 0.11126374053955078, 0.11133030700683594, 0.11145932769775391, 0.11136000061035156, 0.11132621002197265, 0.11127705383300782, 0.11152998352050782, 0.1112442855834961, 0.11130265808105469, 0.11128729248046874, 0.11133952331542969, 0.11251200103759766, 0.11131084442138672, 0.1113221435546875, 0.11128931427001953, 0.11129036712646484, 0.11130879974365235, 0.2321817626953125, 0.11112652587890624, 0.11125247955322265, 0.11120230102539062, 0.11118284606933594, 0.11110912322998047, 0.11104768371582031, 0.11113471984863281, 0.11123814392089844, 0.11114495849609375, 0.11111321258544922, 0.11121971130371094, 0.11117874908447266, 0.11118592071533204, 0.11127603149414063, 0.11113369750976562, 0.11118796539306641, 0.11104364776611328, 0.11120121765136719, 0.11109683227539062, 0.11134873962402343, 0.11129241943359375, 0.11124531555175782, 0.11129138946533203, 0.1111695327758789, 0.11111936187744141, 0.11120230102539062, 0.11098214721679688, 0.11109478759765624, 0.11121772766113282, 0.11126573181152344, 0.11151564788818359, 0.11180134582519531, 0.1111551971435547, 0.11124018859863281, 0.11106508636474609, 0.11120845031738281, 0.11125452423095702, 0.11243007659912109, 0.11165286254882813, 0.11120947265625, 0.11119308471679687, 0.11124224090576172, 0.11133747100830078, 0.1112647705078125, 0.11123200225830078, 0.11110912322998047, 0.11123097229003906, 0.11112140655517579, 0.11116134643554687, 0.11120230102539062, 0.11124838256835938, 0.11131597137451171, 0.11115929412841796, 0.11126681518554687, 0.11124326324462891, 0.11124940490722657, 0.11136819458007813, 0.1113364486694336, 0.11219558715820313, 0.11167436981201172, 0.11133542633056641, 0.11132006072998046, 0.23260365295410157, 0.1113016357421875, 0.11109069061279297, 0.11130675506591797, 0.11117772674560547, 0.11111116790771484, 0.11099852752685548, 0.11096575927734376, 0.11118592071533204, 0.11106201934814453, 0.11124940490722657, 0.1109964828491211, 0.11128729248046874, 0.11114086151123047, 0.11112041473388672, 0.11092476654052734, 0.11116646575927734, 0.11122585296630859, 0.11110297393798828, 0.11115929412841796, 0.1110282211303711, 0.11134361267089844, 0.11134054565429688, 0.11161497497558594, 0.11118796539306641, 0.11125145721435546, 0.1112965087890625, 0.11122898864746093, 0.11125344085693359, 0.11107839965820313, 0.1114081268310547, 0.11136511993408203, 0.11113164520263671, 0.11111936187744141, 0.11107635498046875, 0.11111628723144532, 0.1109964828491211, 0.11101900482177735, 0.11115827178955077, 0.11171942138671875, 0.11166413116455078, 0.11109580993652343, 0.11116649627685547, 0.11109782409667969, 0.11119821166992187, 0.11115110778808594, 0.11119206237792968, 0.11109580993652343, 0.1113333740234375, 0.111388671875, 0.11111014556884766, 0.11112242889404297, 0.11119926452636719, 0.11117769622802734, 0.11110707092285156, 0.11125350189208984, 0.111246337890625, 0.11176140594482421, 0.11179315185546874, 0.11137229156494141, 0.1111234588623047, 0.1113917465209961, 0.11129138946533203, 0.23285554504394532, 0.11228876495361328, 0.1119969253540039, 0.11132012939453124, 0.1113087387084961, 0.1110118408203125, 0.11107635498046875, 0.11119821166992187, 0.11114905548095703, 0.11114291381835938, 0.11154227447509765, 0.111283203125, 0.11145011138916015, 0.11127091217041016, 0.11112140655517579, 0.11115110778808594, 0.11166719818115234, 0.11149517059326172, 0.11157708740234375, 0.11116441345214843, 0.11162931060791016, 0.11222220611572266, 0.11127398681640625, 0.11119721221923828, 0.11121660614013672, 0.11111833953857422, 0.11153817749023437, 0.11167436981201172, 0.11123817443847656, 0.11156681823730469, 0.11157299041748046, 0.11123200225830078, 0.11113267517089843, 0.11120339202880859, 0.11119302368164062, 0.11129446411132812, 0.11130265808105469, 0.11117874908447266, 0.11140914916992188, 0.11178803253173829, 0.11143987274169923, 0.111388671875, 0.11134054565429688, 0.11126271820068359, 0.11172557067871093, 0.11178189086914063, 0.11163648223876953, 0.11228876495361328, 0.11165491485595704, 0.11137843322753906, 0.11123712158203125, 0.11235433959960937, 0.11163645172119141, 0.11138969421386719, 0.11162419128417969, 0.11138253021240234, 0.11193548583984375, 0.11135289764404296, 0.11133433532714844, 0.11140198516845704, 0.11156582641601563, 0.11123814392089844, 0.11139584350585938, 0.23310745239257813, 0.11154329681396484, 0.11122585296630859, 0.11103334045410156, 0.11112242889404297, 0.11111321258544922, 0.11110502624511719, 0.11125759887695312, 0.11132006072998046, 0.11105689239501954, 0.11160371398925781, 0.11119308471679687, 0.11138662719726562, 0.11129039764404297, 0.11160777282714844, 0.1111203842163086, 0.11147058868408204, 0.11210137939453126, 0.11113471984863281, 0.11226214599609376, 0.11134054565429688, 0.11112960052490234, 0.11109683227539062, 0.11101696014404297, 0.11132927703857422, 0.11150438690185546, 0.11192934417724609, 0.11167231750488281, 0.11156684875488282, 0.11118489837646485, 0.11123814392089844, 0.11113683319091797, 0.11117254638671875, 0.11120333099365234, 0.11124940490722657, 0.11127398681640625, 0.11138355255126953, 0.11188531494140624, 0.11153510284423829, 0.11116134643554687, 0.11122892761230468, 0.11117874908447266, 0.11126892852783203, 0.11124422454833985, 0.11132723236083984, 0.111246337890625, 0.1125038070678711, 0.11145523071289062, 0.1111695327758789, 0.11121663665771485, 0.11127193450927735, 0.11120537567138672, 0.11170098876953125, 0.11128729248046874, 0.11114701080322266, 0.112110595703125, 0.11148185729980468, 0.11123916625976563, 0.1111910400390625, 0.11130879974365235, 0.11141222381591796, 0.11127603149414063, 0.11140608215332032, 0.23328665161132814, 0.11162009429931641, 0.11125350189208984, 0.11111116790771484, 0.11114086151123047, 0.1111234588623047, 0.11114803314208985, 0.11112454223632813, 0.11118073272705079, 0.11184435272216797, 0.11149311828613281, 0.1110835189819336, 0.11113676452636718, 0.11192729949951172, 0.11148902130126953, 0.1111900177001953, 0.1112074203491211, 0.11114393615722656, 0.11168256378173828, 0.11129446411132812, 0.11139584350585938, 0.11125043487548827, 0.11120435333251953, 0.11126886749267578, 0.11185561370849609, 0.11130675506591797, 0.11252838134765625, 0.11186688232421875, 0.11209420776367188, 0.11134873962402343, 0.11136819458007813, 0.11132006072998046, 0.11117056274414062, 0.1115688934326172, 0.111425537109375, 0.11140096282958985, 0.11195801544189453, 0.11133439636230469, 0.11169280242919923, 0.11158016204833984, 0.11150745391845703, 0.11149209594726563, 0.11174915313720703, 0.11140297698974609, 0.11168153381347656, 0.11251609802246093, 0.11149823760986328, 0.1112125473022461, 0.11124947357177735, 0.11128211212158202, 0.11113369750976562, 0.11132518768310547, 0.11279666900634766, 0.11159654235839844, 0.11184844970703126, 0.11136102294921875, 0.11125350189208984, 0.11140096282958985, 0.11135078430175781, 0.11131084442138672, 0.11126579284667969, 0.11146348571777344, 0.111246337890625]",tokens/s,8.844071979708314,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-1.8B,Qwen/Qwen1.5-1.8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1866.50624,3328.704512,0.0,2682.257408,2578.238464,s,10,1.4175592651367188,0.14175592651367186,0.0022402045159939975,0.14135794067382812,0.14292337188720702,0.14542544631958007,0.1474271058654785,"[0.14792752075195312, 0.14161701965332033, 0.1391898193359375, 0.1415839385986328, 0.14236735534667969, 0.14101449584960937, 0.13986236572265626, 0.1410111083984375, 0.14185369873046874, 0.14113194274902344]",tokens/s,1805.9209677932563,kWh,1.6547061226986076e-06,9.066846465884736e-07,6.786722250360737e-06,9.348113019647817e-06,tokens/kWh,27385205.919305906,MB,1866.50624,3328.704512,0.0,2682.257408,2667.0976,s,10,83.8020732421875,8.38020732421875,0.04772557025936409,8.37658544921875,8.433103320312501,8.4430912109375,8.4510815234375,"[8.4288447265625, 8.39970703125, 8.4144833984375, 8.4530791015625, 8.4308837890625, 8.3407841796875, 8.3356474609375, 8.31612109375, 8.32905859375, 8.3534638671875]",tokens/s,7.51771377038971,kWh,9.806880771561905e-05,5.3749043913185225e-05,0.00039216448579924195,0.0005439823374280462,tokens/kWh,115812.5837281126,,s,629,84.93340989685055,0.1350292685164556,0.016826908436194207,0.13322035217285155,0.13436354370117187,0.1346594787597656,0.27325439575195315,"[0.1383321533203125, 0.13691903686523438, 0.13555609130859375, 0.1336924133300781, 0.1340948486328125, 0.13436006164550782, 0.1343426513671875, 0.1342003173828125, 0.13426687622070313, 0.13448089599609375, 0.13400473022460938, 0.13385011291503907, 0.13449215698242187, 0.13411634826660157, 0.13182975769042968, 0.13270323181152344, 0.13469491577148437, 0.13397605895996093, 0.13359616088867188, 0.13410610961914063, 0.13234483337402345, 0.13145497131347655, 0.13187686157226564, 0.1315246124267578, 0.13338418579101563, 0.13427098083496095, 0.13404261779785157, 0.13425152587890626, 0.13394534301757813, 0.13425050354003906, 0.1328660430908203, 0.1342433319091797, 0.13415116882324218, 0.13333401489257812, 0.1342013397216797, 0.13399346923828126, 0.1340968933105469, 0.134508544921875, 0.13404876708984376, 0.1326940155029297, 0.1316812744140625, 0.13177658081054688, 0.13164845275878906, 0.13489971923828126, 0.13331251525878907, 0.1342248992919922, 0.13452799987792968, 0.13407334899902343, 0.13159321594238282, 0.13165260314941407, 0.13322035217285155, 0.13399244689941406, 0.13447474670410156, 0.13405696105957032, 0.13407948303222655, 0.13395046997070312, 0.13439283752441405, 0.1342300109863281, 0.13573222351074218, 0.1321625671386719, 0.13170687866210937, 0.13169970703125, 0.2737838134765625, 0.13152255249023437, 0.13275955200195313, 0.13433351135253907, 0.1345811767578125, 0.13403852844238281, 0.13368319702148437, 0.13302169799804686, 0.13411737060546874, 0.13280256652832031, 0.13474508666992188, 0.13335859680175782, 0.1340590057373047, 0.13169459533691405, 0.13173248291015624, 0.13171405029296876, 0.13407743835449218, 0.1342689208984375, 0.13365248107910158, 0.13403340148925783, 0.1339299774169922, 0.13434367370605468, 0.1315061798095703, 0.13148466491699218, 0.13182156372070314, 0.1337518005371094, 0.1333534698486328, 0.1340999755859375, 0.13400575256347655, 0.13407852172851562, 0.1340497283935547, 0.13159117126464845, 0.13308108520507814, 0.13406515502929686, 0.13437747192382812, 0.1340518341064453, 0.1342433319091797, 0.13421466064453125, 0.13415834045410155, 0.1342986297607422, 0.13406617736816406, 0.13197926330566406, 0.1316177978515625, 0.13170687866210937, 0.13170687866210937, 0.13363917541503906, 0.13486598205566405, 0.13352549743652345, 0.13383468627929687, 0.13421055603027343, 0.13174989318847657, 0.13169973754882813, 0.13152662658691405, 0.13283226013183594, 0.13399142456054688, 0.13478297424316407, 0.13450035095214843, 0.1341460418701172, 0.1339115447998047, 0.13337496948242186, 0.134002685546875, 0.13234687805175782, 0.13289779663085938, 0.2724710388183594, 0.13155020141601562, 0.13163827514648438, 0.131810302734375, 0.1316618194580078, 0.13126144409179688, 0.13352549743652345, 0.13428326416015626, 0.13351628112792968, 0.13398326110839845, 0.1340497589111328, 0.1338419189453125, 0.13386444091796876, 0.13370777893066407, 0.13431910705566405, 0.1338470458984375, 0.13402931213378907, 0.13414399719238282, 0.13386752319335937, 0.13391973876953125, 0.13366067504882811, 0.13545677185058594, 0.13440921020507812, 0.13534104919433593, 0.13244415283203126, 0.134466552734375, 0.13180108642578126, 0.131599365234375, 0.13178880310058594, 0.13154098510742188, 0.13177754211425782, 0.13156147766113283, 0.13368832397460936, 0.134044677734375, 0.13403347778320313, 0.13381727600097656, 0.13421772766113282, 0.1335265350341797, 0.13435289001464842, 0.133959716796875, 0.13362889099121095, 0.1339842529296875, 0.13384602355957032, 0.13403443908691406, 0.13420748901367188, 0.13402316284179688, 0.1340590057373047, 0.13474713134765626, 0.13409791564941406, 0.13352960205078124, 0.13388697814941405, 0.1340088348388672, 0.13404978942871093, 0.13377023315429687, 0.13412864685058593, 0.13397708129882813, 0.13398016357421874, 0.13395968627929689, 0.1340712890625, 0.13423004150390624, 0.13353570556640626, 0.13389414978027345, 0.13325209045410155, 0.27623629760742185, 0.134403076171875, 0.13430271911621094, 0.13406105041503907, 0.1344286651611328, 0.1346447296142578, 0.13446553039550782, 0.13406207275390625, 0.13451161193847655, 0.13428941345214843, 0.1343856658935547, 0.13401190185546874, 0.134466552734375, 0.13412249755859376, 0.13459762573242187, 0.1339463653564453, 0.13446553039550782, 0.13476864624023438, 0.1342044219970703, 0.13403443908691406, 0.13416653442382812, 0.134276123046875, 0.13387055969238282, 0.13414707946777343, 0.13453106689453126, 0.13373338317871095, 0.13383680725097657, 0.13395046997070312, 0.133791748046875, 0.13404570007324218, 0.1341265869140625, 0.13388697814941405, 0.1346693115234375, 0.1340518341064453, 0.1335562286376953, 0.1343969268798828, 0.13446348571777345, 0.1351065673828125, 0.1340641326904297, 0.13445733642578125, 0.13435903930664062, 0.1340631103515625, 0.1340518341064453, 0.13444816589355468, 0.13536051940917967, 0.13402621459960937, 0.13327052307128906, 0.13432012939453125, 0.1344593963623047, 0.13412249755859376, 0.1338419189453125, 0.13387469482421874, 0.13338726806640624, 0.13416653442382812, 0.13386854553222657, 0.13441127014160156, 0.13412351989746094, 0.13347328186035157, 0.13382246398925782, 0.13420338439941407, 0.1338275909423828, 0.13340467834472655, 0.1342750701904297, 0.27683428955078127, 0.13397196960449217, 0.1343129577636719, 0.1338665008544922, 0.13388082885742186, 0.1340958709716797, 0.1340712890625, 0.13391871643066405, 0.13356646728515625, 0.1333104705810547, 0.13409178161621094, 0.133396484375, 0.1351403503417969, 0.13372825622558593, 0.13417575073242188, 0.13519052124023437, 0.1343938903808594, 0.1338654327392578, 0.133359619140625, 0.1340712890625, 0.13396890258789063, 0.1339894104003906, 0.1338838653564453, 0.13374668884277344, 0.133538818359375, 0.13404876708984376, 0.13366169738769532, 0.1339351043701172, 0.13478195190429687, 0.13399859619140625, 0.13399449157714843, 0.13394432067871093, 0.13413682556152343, 0.1340262451171875, 0.13399449157714843, 0.13403546142578124, 0.13435289001464842, 0.1340712890625, 0.13406112670898437, 0.1335233917236328, 0.13358387756347656, 0.13382553100585937, 0.13504620361328126, 0.13462828063964843, 0.13439897155761718, 0.13393516540527345, 0.13389511108398439, 0.1334097900390625, 0.13408767700195312, 0.13458636474609376, 0.13346713256835938, 0.13414297485351562, 0.13160243225097656, 0.1317795867919922, 0.13214413452148438, 0.13376716613769532, 0.133718017578125, 0.13606605529785157, 0.13217485046386718, 0.13167718505859374, 0.13171302795410156, 0.13281280517578126, 0.13389926147460937, 0.27561163330078126, 0.1342044219970703, 0.13399655151367187, 0.13381837463378907, 0.13696818542480468, 0.13187277221679689, 0.13215437316894532, 0.13239193725585938, 0.1329521026611328, 0.13212156677246092, 0.13276876831054688, 0.132463623046875, 0.13214002990722656, 0.13234072875976563, 0.13270118713378906, 0.13262847900390626, 0.1321871337890625, 0.1320509490966797, 0.13238067626953126, 0.13276876831054688, 0.1321564178466797, 0.1327431640625, 0.1328158721923828, 0.13263360595703125, 0.1317580871582031, 0.1315215301513672, 0.13196083068847655, 0.1318225860595703, 0.13159117126464845, 0.13150003051757814, 0.13156454467773437, 0.13174887084960937, 0.1325496368408203, 0.1326755828857422, 0.13302169799804686, 0.13294898986816406, 0.1324881896972656, 0.13196800231933595, 0.13392588806152345, 0.1337159729003906, 0.13316915893554687, 0.1326755828857422, 0.13233255004882813, 0.13182054138183594, 0.13182566833496093, 0.13186253356933594, 0.13180519104003907, 0.1316822967529297, 0.13177548217773438, 0.13161984252929687, 0.1317611541748047, 0.131852294921875, 0.13162086486816407, 0.1321553955078125, 0.13262950134277343, 0.13191372680664062, 0.13178265380859375, 0.13150515747070313, 0.13170176696777344, 0.1315205078125, 0.13172735595703125, 0.13178778076171874, 0.13167103576660155, 0.2728120422363281, 0.13346815490722655, 0.1335142364501953, 0.1333534698486328, 0.13239910888671874, 0.13167616271972657, 0.13235302734375, 0.1338050537109375, 0.13347225952148437, 0.1334886474609375, 0.1320120391845703, 0.1320816650390625, 0.13306573486328124, 0.13341183471679688, 0.13176934814453126, 0.13158195495605468, 0.13284147644042968, 0.13212979125976562, 0.1316290588378906, 0.1317058563232422, 0.13171098327636718, 0.13157887268066407, 0.13160960388183593, 0.13298486328125, 0.13236732482910157, 0.13162188720703125, 0.13165260314941407, 0.13161062622070313, 0.13162495422363282, 0.13157376098632811, 0.13175910949707031, 0.13201100158691406, 0.13279539489746095, 0.13196493530273437, 0.13224140930175782, 0.13323365783691407, 0.13173248291015624, 0.13189529418945312, 0.133254150390625, 0.13235711669921876, 0.1316505584716797, 0.13167922973632812, 0.13156556701660158, 0.13257522583007814, 0.1328158721923828, 0.13173350524902344, 0.13212261962890626, 0.13244415283203126, 0.13331968688964843, 0.1319720916748047, 0.13162188720703125, 0.1338275909423828, 0.13188710021972655, 0.13169049072265626, 0.1329100799560547, 0.13289677429199218, 0.13157273864746094, 0.13191987609863282, 0.1330063934326172, 0.13177952575683594, 0.1324830780029297, 0.1317232666015625, 0.132210693359375, 0.2737438659667969, 0.13398220825195312, 0.13256195068359375, 0.13281686401367188, 0.13316409301757812, 0.13165664672851562, 0.131557373046875, 0.1315246124267578, 0.1316116485595703, 0.13375692749023438, 0.13275033569335937, 0.13160755920410155, 0.13167514038085937, 0.1316546630859375, 0.13151744079589844, 0.1325260772705078, 0.13415525817871093, 0.13211955261230468, 0.13158604431152343, 0.13158706665039063, 0.131599365234375, 0.13191885375976561, 0.13164959716796876, 0.13163615417480468, 0.131557373046875, 0.1315635223388672, 0.13156454467773437, 0.13150822448730468, 0.13155328369140626, 0.131778564453125, 0.13244825744628907, 0.13156761169433595, 0.13152870178222656, 0.13237452697753907, 0.13321420288085936, 0.1316188507080078, 0.13167100524902345, 0.13171507263183593, 0.13173043823242186, 0.13229055786132812, 0.13326028442382812, 0.13208883666992188, 0.13159730529785157, 0.13276570129394533, 0.13298074340820312, 0.13150210571289062, 0.13231517028808593, 0.13168019104003906, 0.1316177978515625, 0.13166490173339843, 0.13228031921386718, 0.131704833984375, 0.13154815673828124, 0.1315246124267578, 0.13159117126464845, 0.13162803649902344, 0.13144985961914063, 0.13153074645996093, 0.13159423828125, 0.13154304504394532, 0.1314959411621094, 0.13150822448730468, 0.13215335083007812, 0.2743265380859375, 0.13167922973632812, 0.13160243225097656, 0.13170278930664062, 0.13161068725585937, 0.13170375061035156, 0.13167820739746094, 0.13153996276855467, 0.13159628295898437, 0.13154917907714844, 0.13170994567871094, 0.13149491882324219, 0.1311682586669922, 0.1336678466796875, 0.13168333435058593, 0.1315020751953125, 0.13163827514648438, 0.1326510009765625, 0.13166490173339843, 0.131599365234375, 0.1316054992675781, 0.1315574035644531, 0.1316433563232422, 0.13159321594238282, 0.13151744079589844, 0.13169664001464843, 0.13158604431152343, 0.13171609497070313, 0.13180723571777345, 0.13306982421875, 0.1319505920410156, 0.13152665710449218, 0.1316188201904297, 0.13160755920410155, 0.13153485107421875, 0.1316321258544922, 0.13152255249023437, 0.13150413513183593, 0.13162393188476562, 0.13158604431152343, 0.13178880310058594, 0.13175398254394532, 0.13282815551757812, 0.13279335021972657, 0.1332623291015625, 0.13260493469238283, 0.1335029754638672, 0.1333217315673828, 0.13349990844726561, 0.13284454345703126, 0.13330943298339842, 0.13328793334960937, 0.13312818908691407, 0.13345382690429688, 0.13288447570800782, 0.13335142517089843, 0.1332725830078125, 0.1326561279296875, 0.13411943054199219, 0.1333104705810547, 0.13202330017089844, 0.1328404541015625, 0.13351219177246093, 0.27342642211914064, 0.1317181396484375, 0.131778564453125, 0.1316300811767578, 0.13164851379394532, 0.13157376098632811, 0.13182464599609375, 0.1316505584716797, 0.1314580535888672, 0.1316853790283203, 0.13220352172851563, 0.13342617797851564, 0.13168435668945314, 0.1316259765625, 0.13177754211425782, 0.13159423828125, 0.13173356628417968, 0.1318133087158203, 0.1316444091796875, 0.1315082550048828, 0.13163209533691406, 0.13170994567871094, 0.13161062622070313, 0.13163929748535155, 0.13251788330078124, 0.13330738830566408, 0.13480653381347657, 0.13196902465820312, 0.1324451904296875, 0.13310054016113282, 0.13354290771484376, 0.13340882873535156, 0.1336657257080078, 0.13366886901855468, 0.133396484375, 0.13281893920898438, 0.13362892150878905, 0.13327769470214842, 0.1322239990234375, 0.13191474914550783, 0.13346099853515625, 0.1332162628173828, 0.13334835815429688, 0.13336679077148436, 0.13285171508789062, 0.13309132385253905, 0.13161369323730468, 0.13310464477539063, 0.13307391357421874, 0.13365248107910158, 0.13310464477539063, 0.13244313049316406, 0.1326376953125, 0.13354908752441405, 0.13300936889648438, 0.13332179260253907, 0.13388691711425782, 0.13313023376464844, 0.1333780517578125, 0.13311077880859376, 0.13335551452636718, 0.13207347106933592, 0.1331865539550781]",tokens/s,7.405801801245284,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-6B-nl,Salesforce/codegen-6B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -43063,22 +42969,17 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained + config = cls._autoset_attn_implementation( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation + cls._check_and_enable_flash_attn_2( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 + raise ValueError( +ValueError: CodeGenForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpf6kne3cj/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mistral-7B-v0.1,mistralai/Mistral-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2,openai-community/gpt2,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1232.244736,1005.060096,0.0,358.612992,318.913024,s,24,0.17188252639770507,0.007161771933237711,0.0003243953015149955,0.0070352799892425535,0.007393788623809815,0.007410750222206116,0.00821779634475708,"[0.008458335876464844, 0.007218272209167481, 0.007377503871917724, 0.007035391807556152, 0.006997471809387207, 0.006964863777160645, 0.006896895885467529, 0.006932159900665283, 0.006920639991760254, 0.006907519817352295, 0.0068839678764343265, 0.006967360019683838, 0.007303135871887207, 0.007367551803588867, 0.007091263771057129, 0.007035168170928955, 0.0072576642036437985, 0.006943456172943115, 0.007412511825561524, 0.007331488132476807, 0.006977695941925049, 0.007400767803192139, 0.00699567985534668, 0.007205760002136231]",tokens/s,35745.34380408103,kWh,8.272282266742969e-08,4.5327846553754305e-08,1.771287987213526e-07,3.051794679425366e-07,tokens/kWh,838850666.2191416,MB,1232.539648,1005.060096,0.0,358.612992,328.804864,s,24,10.164368652343752,0.4235153605143229,0.013402359087444363,0.4229962463378906,0.43468231201171875,0.43530513000488286,0.46083279296875,"[0.4684530029296875, 0.4353216552734375, 0.431840576171875, 0.4128219909667969, 0.41338916015625, 0.4116455383300781, 0.41182235717773436, 0.41141156005859375, 0.41097488403320315, 0.4117151794433594, 0.41143212890625, 0.4306710510253906, 0.4334475708007812, 0.43521148681640626, 0.41144964599609374, 0.4190294189453125, 0.4116963806152344, 0.4119750061035156, 0.43146246337890626, 0.4310239562988281, 0.42696307373046877, 0.4310359191894531, 0.43171932983398437, 0.42785531616210937]",tokens/s,148.7549351775386,kWh,4.88881335726806e-06,2.6788370271125138e-06,8.551130498695033e-06,1.611878088307561e-05,tokens/kWh,3908484.1748887296,,s,1511,10.320183299064633,0.006830035274033512,0.0009334458342907997,0.006691840171813965,0.006923264026641846,0.007306751966476441,0.013799629211425782,"[0.007993343830108643, 0.008039423942565918, 0.007952383995056152, 0.007895040035247802, 0.007833600044250488, 0.007610367774963379, 0.007690271854400635, 0.007604191780090332, 0.007493631839752197, 0.007529471874237061, 0.007613440036773681, 0.007756800174713135, 0.007661568164825439, 0.007654399871826172, 0.0076687679290771485, 0.007647200107574463, 0.007772160053253174, 0.007723008155822754, 0.00773632001876831, 0.007501823902130127, 0.0075970559120178225, 0.007692287921905518, 0.007699456214904785, 0.007568384170532226, 0.0075038719177246095, 0.0075335679054260255, 0.007614528179168701, 0.007336895942687988, 0.007300096035003662, 0.007535615921020508, 0.00753868818283081, 0.007528448104858398, 0.007377920150756836, 0.0075038719177246095, 0.007502848148345947, 0.007266304016113281, 0.007370751857757568, 0.007285759925842285, 0.007271423816680909, 0.007333888053894043, 0.007404543876647949, 0.007350272178649903, 0.007293951988220215, 0.0070860800743103025, 0.007158783912658692, 0.007108607769012451, 0.007090176105499267, 0.007136256217956543, 0.0072202239036560055, 0.007285759925842285, 0.007223296165466309, 0.007193600177764893, 0.007156735897064209, 0.007122943878173828, 0.007145472049713135, 0.007048223972320557, 0.006976480007171631, 0.0068577280044555666, 0.006855679988861084, 0.007054336071014404, 0.006946815967559815, 0.0066406397819519045, 0.01427455997467041, 0.0069928960800170895, 0.007123968124389648, 0.0074291200637817386, 0.007486495971679687, 0.007579616069793701, 0.007607327938079834, 0.007285791873931885, 0.007080895900726318, 0.006916096210479736, 0.00690176010131836, 0.006837247848510742, 0.006814720153808594, 0.006848512172698974, 0.006859776020050049, 0.006823935985565186, 0.006833151817321777, 0.006855679988861084, 0.006862847805023193, 0.006806528091430664, 0.006830080032348633, 0.0068351998329162595, 0.006816768169403077, 0.00682700777053833, 0.006862847805023193, 0.006846528053283691, 0.006804416179656983, 0.006821887969970703, 0.006904831886291504, 0.0068351998329162595, 0.006896639823913574, 0.006830080032348633, 0.006900735855102539, 0.006841343879699707, 0.00683622407913208, 0.006845439910888672, 0.006834176063537598, 0.006814720153808594, 0.006823935985565186, 0.00682700777053833, 0.006820864200592041, 0.006845439910888672, 0.00684441614151001, 0.006830080032348633, 0.006867968082427979, 0.006841343879699707, 0.006922239780426025, 0.006859776020050049, 0.006872064113616944, 0.006855679988861084, 0.006818816184997558, 0.006988800048828125, 0.006820864200592041, 0.006837247848510742, 0.006816768169403077, 0.006854656219482422, 0.00682700777053833, 0.0068055038452148435, 0.006838272094726563, 0.006840320110321045, 0.006822912216186523, 0.0068351998329162595, 0.006842368125915528, 0.014609408378601075, 0.006852608203887939, 0.006833151817321777, 0.006881279945373535, 0.006899712085723877, 0.006879231929779053, 0.006865920066833496, 0.006904831886291504, 0.006851583957672119, 0.006899712085723877, 0.006859776020050049, 0.006854656219482422, 0.006852608203887939, 0.006855679988861084, 0.0068618240356445315, 0.0068249602317810056, 0.006856768131256103, 0.006852543830871582, 0.006809599876403808, 0.0068280320167541505, 0.006817791938781738, 0.006834176063537598, 0.006813695907592773, 0.006920191764831543, 0.0068915200233459475, 0.0068280320167541505, 0.006845439910888672, 0.00683622407913208, 0.0068618240356445315, 0.0068351998329162595, 0.006834176063537598, 0.0068076162338256835, 0.006836160182952881, 0.006854656219482422, 0.006830080032348633, 0.006843391895294189, 0.006821887969970703, 0.0068689918518066405, 0.00683622407913208, 0.006937600135803222, 0.00690176010131836, 0.00684441614151001, 0.006833151817321777, 0.006840320110321045, 0.0069324798583984375, 0.006849535942077637, 0.0068280320167541505, 0.006894591808319092, 0.006841343879699707, 0.006843391895294189, 0.006812672138214112, 0.006821887969970703, 0.00682700777053833, 0.006804480075836182, 0.006867968082427979, 0.006823935985565186, 0.006815743923187256, 0.006767615795135498, 0.006802432060241699, 0.0069324798583984375, 0.006825984001159668, 0.006831103801727295, 0.006831103801727295, 0.013900799751281738, 0.00653004789352417, 0.006533120155334473, 0.006556672096252441, 0.006542335987091064, 0.00651478385925293, 0.0065207362174987795, 0.006524928092956543, 0.006504447937011719, 0.0065157442092895505, 0.0065392317771911625, 0.0065146880149841305, 0.006575104236602783, 0.0065136637687683106, 0.006525951862335205, 0.006525951862335205, 0.006590464115142822, 0.006534143924713135, 0.006563839912414551, 0.006557695865631104, 0.006511616230010986, 0.006556672096252441, 0.006681600093841553, 0.0066375679969787596, 0.006707200050354004, 0.006534143924713135, 0.006488096237182617, 0.0064992961883544925, 0.006550528049468994, 0.006586368083953857, 0.0065075201988220215, 0.006549503803253174, 0.006560768127441406, 0.006505472183227539, 0.00653107213973999, 0.00653107213973999, 0.0065136637687683106, 0.006508543968200684, 0.006520832061767578, 0.006533120155334473, 0.0065146880149841305, 0.006519807815551758, 0.006543360233306885, 0.006706175804138184, 0.006556672096252441, 0.006560768127441406, 0.006526976108551025, 0.00652185583114624, 0.0065146880149841305, 0.0065443840026855465, 0.006526976108551025, 0.006536191940307618, 0.006510591983795166, 0.006647808074951172, 0.0066109437942504885, 0.006515711784362793, 0.00653107213973999, 0.006625279903411865, 0.006593535900115967, 0.006519807815551758, 0.006575104236602783, 0.0065474557876586915, 0.006552576065063476, 0.013965312004089356, 0.006725632190704346, 0.006696959972381592, 0.006689792156219483, 0.006518784046173095, 0.006554624080657959, 0.006492159843444824, 0.0065484800338745115, 0.006560768127441406, 0.006615039825439453, 0.0065443840026855465, 0.006516736030578613, 0.0066344962120056155, 0.006715392112731934, 0.00669593620300293, 0.00672051191329956, 0.006722591876983643, 0.006665184020996094, 0.00653004789352417, 0.0065413122177124024, 0.006516736030578613, 0.0065484800338745115, 0.006526976108551025, 0.006519807815551758, 0.0065710082054138185, 0.006595583915710449, 0.006533120155334473, 0.006511616230010986, 0.006498303890228272, 0.006542335987091064, 0.006518784046173095, 0.006569983959197998, 0.006553599834442139, 0.006550528049468994, 0.00653004789352417, 0.0065075201988220215, 0.0065136637687683106, 0.006527999877929688, 0.0065136637687683106, 0.006504447937011719, 0.006568960189819336, 0.006516736030578613, 0.006509568214416504, 0.006617087841033936, 0.006519807815551758, 0.0065382399559021, 0.006511616230010986, 0.006516736030578613, 0.006520832061767578, 0.0065443840026855465, 0.0065075201988220215, 0.006515711784362793, 0.0065064959526062015, 0.00652185583114624, 0.006533120155334473, 0.0065146880149841305, 0.006527999877929688, 0.006569983959197998, 0.006503424167633057, 0.006500351905822754, 0.006516736030578613, 0.006496255874633789, 0.006520832061767578, 0.013800448417663574, 0.0065484800338745115, 0.006523903846740723, 0.006492159843444824, 0.006493184089660644, 0.006494207859039307, 0.006560768127441406, 0.006505472183227539, 0.006500351905822754, 0.006540287971496582, 0.006510591983795166, 0.006511616230010986, 0.00652185583114624, 0.006496255874633789, 0.0065710082054138185, 0.006529024124145508, 0.006532095909118653, 0.0066119680404663084, 0.006691840171813965, 0.006487040042877197, 0.006536191940307618, 0.00648089599609375, 0.00653107213973999, 0.0066078720092773435, 0.006512639999389648, 0.006558720111846924, 0.006624256134033203, 0.006502463817596436, 0.006521791934967041, 0.006515711784362793, 0.006665215969085693, 0.006515711784362793, 0.0065064959526062015, 0.006520832061767578, 0.006500351905822754, 0.006518784046173095, 0.006551551818847656, 0.00653004789352417, 0.006560768127441406, 0.0065259838104248045, 0.006515679836273193, 0.006488096237182617, 0.006514656066894531, 0.006523903846740723, 0.006515711784362793, 0.0065075201988220215, 0.006520832061767578, 0.006516736030578613, 0.006495232105255127, 0.006559743881225586, 0.006502399921417237, 0.006503424167633057, 0.006516736030578613, 0.00652185583114624, 0.006478879928588867, 0.0065075201988220215, 0.0064992961883544925, 0.006602752208709717, 0.006545407772064209, 0.006527999877929688, 0.006510591983795166, 0.006556672096252441, 0.006497280120849609, 0.013763584136962891, 0.006534143924713135, 0.006526976108551025, 0.006529024124145508, 0.0065064959526062015, 0.00652288007736206, 0.006519807815551758, 0.006511616230010986, 0.006551551818847656, 0.006550528049468994, 0.006493184089660644, 0.00652185583114624, 0.006499328136444092, 0.0065669121742248536, 0.006535168170928955, 0.006510591983795166, 0.006533120155334473, 0.0065484800338745115, 0.006524928092956543, 0.00657203197479248, 0.006549503803253174, 0.0065146880149841305, 0.006523903846740723, 0.006582272052764892, 0.006560768127441406, 0.006545407772064209, 0.006491136074066162, 0.006533120155334473, 0.006532095909118653, 0.006486015796661377, 0.006552576065063476, 0.006518784046173095, 0.006516736030578613, 0.006542335987091064, 0.0065064959526062015, 0.006583295822143555, 0.006563839912414551, 0.006527999877929688, 0.0065484800338745115, 0.006523903846740723, 0.006543360233306885, 0.0065413122177124024, 0.00653926420211792, 0.0065177597999572755, 0.00653107213973999, 0.006545407772064209, 0.00653107213973999, 0.006542335987091064, 0.0065064959526062015, 0.006540287971496582, 0.0065484800338745115, 0.006519807815551758, 0.006502399921417237, 0.006603775978088379, 0.006535168170928955, 0.0065669121742248536, 0.006512639999389648, 0.00652185583114624, 0.006523903846740723, 0.006495232105255127, 0.00653107213973999, 0.006523903846740723, 0.006518784046173095, 0.013785087585449218, 0.006524928092956543, 0.006550528049468994, 0.006527999877929688, 0.006502399921417237, 0.006593535900115967, 0.006502399921417237, 0.006545407772064209, 0.0065474557876586915, 0.006515711784362793, 0.006556672096252441, 0.0065495681762695315, 0.006510528087615966, 0.006535168170928955, 0.006501376152038574, 0.0065413122177124024, 0.006576128005981445, 0.006512639999389648, 0.0065177597999572755, 0.006511616230010986, 0.006504479885101318, 0.006548448085784912, 0.006603775978088379, 0.0065146880149841305, 0.006516736030578613, 0.006497280120849609, 0.00653004789352417, 0.006505472183227539, 0.006496255874633789, 0.006533152103424073, 0.006500319957733154, 0.006509568214416504, 0.00652185583114624, 0.006504447937011719, 0.006512639999389648, 0.006512639999389648, 0.006487040042877197, 0.00652185583114624, 0.006524928092956543, 0.006500351905822754, 0.006516736030578613, 0.006619135856628418, 0.006508543968200684, 0.006534143924713135, 0.0065413122177124024, 0.0065382399559021, 0.0065382399559021, 0.006491136074066162, 0.006525951862335205, 0.00652288007736206, 0.006512639999389648, 0.006525951862335205, 0.006505536079406738, 0.006543295860290527, 0.00653926420211792, 0.006500351905822754, 0.006529024124145508, 0.006589439868927002, 0.0065146880149841305, 0.0065064959526062015, 0.0065147199630737306, 0.006502367973327637, 0.006497280120849609, 0.013766655921936035, 0.006527999877929688, 0.00652185583114624, 0.006518784046173095, 0.006512639999389648, 0.006503424167633057, 0.00652185583114624, 0.00652185583114624, 0.006498303890228272, 0.006508543968200684, 0.006535168170928955, 0.0065064959526062015, 0.006542399883270263, 0.006519743919372559, 0.006504447937011719, 0.006533120155334473, 0.00653107213973999, 0.006560768127441406, 0.006490111827850342, 0.0065146880149841305, 0.006509568214416504, 0.006500351905822754, 0.0065177597999572755, 0.0065413122177124024, 0.0065064959526062015, 0.006504447937011719, 0.006474751949310303, 0.00652185583114624, 0.006520864009857178, 0.006483935832977295, 0.006499328136444092, 0.006504447937011719, 0.006525951862335205, 0.0065177597999572755, 0.00652185583114624, 0.0065177597999572755, 0.006525951862335205, 0.006589439868927002, 0.0064880638122558594, 0.006551551818847656, 0.006508543968200684, 0.0065443840026855465, 0.006529024124145508, 0.006518784046173095, 0.006505472183227539, 0.006511616230010986, 0.006496255874633789, 0.006481919765472412, 0.006491136074066162, 0.006533120155334473, 0.00653107213973999, 0.006512639999389648, 0.00652288007736206, 0.0065075201988220215, 0.006501376152038574, 0.006582272052764892, 0.006552576065063476, 0.006540287971496582, 0.00652185583114624, 0.006492159843444824, 0.0065372161865234375, 0.006520895957946777, 0.006529983997344971, 0.013715456008911133, 0.006525951862335205, 0.006534143924713135, 0.006516736030578613, 0.006515711784362793, 0.00652288007736206, 0.006479872226715088, 0.006540287971496582, 0.006534143924713135, 0.006509568214416504, 0.006516736030578613, 0.006504447937011719, 0.006498303890228272, 0.00652185583114624, 0.0065064959526062015, 0.00653004789352417, 0.0065781760215759275, 0.0065075201988220215, 0.0065443840026855465, 0.006538271903991699, 0.006487008094787598, 0.006527999877929688, 0.006557695865631104, 0.006527999877929688, 0.006519807815551758, 0.006497280120849609, 0.006681600093841553, 0.0065669121742248536, 0.006529024124145508, 0.006519807815551758, 0.006519807815551758, 0.0065075201988220215, 0.00653926420211792, 0.006518784046173095, 0.00658739185333252, 0.0065075201988220215, 0.006497280120849609, 0.006516736030578613, 0.006512639999389648, 0.006494207859039307, 0.006525951862335205, 0.00653107213973999, 0.006519807815551758, 0.006552576065063476, 0.0065474557876586915, 0.006553599834442139, 0.0065474557876586915, 0.006501376152038574, 0.006543360233306885, 0.0065443840026855465, 0.0065064959526062015, 0.006554624080657959, 0.006540287971496582, 0.0065413122177124024, 0.0065372161865234375, 0.006603775978088379, 0.006525951862335205, 0.006563839912414551, 0.006503424167633057, 0.006545407772064209, 0.006515711784362793, 0.006534143924713135, 0.006552576065063476, 0.013682687759399414, 0.006536191940307618, 0.0065270400047302245, 0.006512576103210449, 0.006529024124145508, 0.006494207859039307, 0.00653004789352417, 0.006556672096252441, 0.006519807815551758, 0.006551551818847656, 0.0065474557876586915, 0.0065372161865234375, 0.006563839912414551, 0.006561791896820069, 0.006527999877929688, 0.006533120155334473, 0.00653004789352417, 0.006553599834442139, 0.006523903846740723, 0.006510591983795166, 0.006527999877929688, 0.00653107213973999, 0.006479936122894287, 0.0065289602279663085, 0.006498303890228272, 0.00653926420211792, 0.00672051191329956, 0.006555647850036621, 0.006533120155334473, 0.0065382399559021, 0.006508543968200684, 0.00653004789352417, 0.0065382399559021, 0.006503424167633057, 0.006499328136444092, 0.006526976108551025, 0.0065064959526062015, 0.0065146880149841305, 0.006526976108551025, 0.006509568214416504, 0.006527999877929688, 0.006505472183227539, 0.006520832061767578, 0.006573056221008301, 0.006516736030578613, 0.0065075201988220215, 0.006510591983795166, 0.006519807815551758, 0.006508543968200684, 0.006491136074066162, 0.00652288007736206, 0.006520832061767578, 0.0065064959526062015, 0.006519807815551758, 0.006508543968200684, 0.006501376152038574, 0.006516736030578613, 0.0065146880149841305, 0.006532095909118653, 0.006524928092956543, 0.006520832061767578, 0.006516736030578613, 0.006501376152038574, 0.013792256355285644, 0.0065710082054138185, 0.00652288007736206, 0.006676544189453125, 0.007540671825408935, 0.007066624164581299, 0.0068392958641052244, 0.006879231929779053, 0.006876160144805908, 0.006834176063537598, 0.006880256175994873, 0.006866943836212158, 0.006873087882995605, 0.006825984001159668, 0.006841343879699707, 0.0068249602317810056, 0.006807551860809326, 0.006838272094726563, 0.006795263767242431, 0.006808576107025147, 0.0068055038452148435, 0.006918144226074219, 0.0068280320167541505, 0.006778880119323731, 0.006833151817321777, 0.006814720153808594, 0.006817791938781738, 0.006815743923187256, 0.006845439910888672, 0.006854656219482422, 0.00682092809677124, 0.0068156800270080566, 0.0067983360290527345, 0.0068249602317810056, 0.006822912216186523, 0.006814720153808594, 0.006783999919891357, 0.006845439910888672, 0.006808576107025147, 0.006819839954376221, 0.006809599876403808, 0.006944767951965332, 0.006852608203887939, 0.006819839954376221, 0.006840320110321045, 0.00683622407913208, 0.00681990385055542, 0.006798272132873535, 0.006862847805023193, 0.006880320072174072, 0.006816703796386719, 0.0068055038452148435, 0.006820864200592041, 0.006815743923187256, 0.006790143966674805, 0.0068577280044555666, 0.006776832103729248, 0.006856704235076904, 0.006820864200592041, 0.006874112129211426, 0.006807551860809326, 0.006838272094726563, 0.006872064113616944, 0.01447321605682373, 0.0068392958641052244, 0.006914048194885254, 0.006894591808319092, 0.006840320110321045, 0.006819839954376221, 0.006793216228485107, 0.006817791938781738, 0.0068392958641052244, 0.006800384044647217, 0.006812672138214112, 0.006815743923187256, 0.00682700777053833, 0.0067983360290527345, 0.0068055038452148435, 0.0068392958641052244, 0.006866943836212158, 0.006837247848510742, 0.006831103801727295, 0.0068392958641052244, 0.00678604793548584, 0.006795263767242431, 0.006829055786132812, 0.006802432060241699, 0.006811647891998291, 0.006818816184997558, 0.006819839954376221, 0.007336959838867187, 0.007061503887176514, 0.006850560188293457, 0.006797311782836914, 0.0069816322326660156, 0.006795263767242431, 0.006820864200592041, 0.006807551860809326, 0.006803455829620361, 0.006829055786132812, 0.006796288013458252, 0.006837247848510742, 0.006790143966674805, 0.006817791938781738, 0.006819839954376221, 0.006802432060241699, 0.00679423999786377, 0.006817791938781738, 0.006881279945373535, 0.0067696962356567384, 0.006842336177825928, 0.006814720153808594, 0.00678604793548584, 0.006843391895294189, 0.0073134078979492185, 0.00707583999633789, 0.0068884482383728025, 0.007676928043365478, 0.007090176105499267, 0.0069212160110473635, 0.006817791938781738, 0.006964223861694336, 0.00703385591506958, 0.0068392958641052244, 0.00682700777053833, 0.006873087882995605, 0.01455513572692871, 0.006838272094726563, 0.006873087882995605, 0.0068280320167541505, 0.006850560188293457, 0.006773759841918945, 0.006806528091430664, 0.006809599876403808, 0.006825984001159668, 0.006817791938781738, 0.006823935985565186, 0.0071198720932006835, 0.006949888229370117, 0.007005184173583984, 0.008019968032836914, 0.007243775844573975, 0.006923264026641846, 0.00713318395614624, 0.007066624164581299, 0.006996992111206054, 0.006957056045532227, 0.006958079814910889, 0.006940671920776367, 0.006837247848510742, 0.006847487926483154, 0.006825984001159668, 0.007000063896179199, 0.007004159927368164, 0.007004159927368164, 0.0069027838706970214, 0.006880256175994873, 0.006895679950714112, 0.006774720191955567, 0.0068392958641052244, 0.006806528091430664, 0.006803455829620361, 0.006842368125915528, 0.006960127830505371, 0.006965248107910156, 0.0068618240356445315, 0.006854656219482422, 0.006937600135803222, 0.00684441614151001, 0.006890495777130127, 0.006914048194885254, 0.006811647891998291, 0.006814720153808594, 0.006846464157104492, 0.0068280320167541505, 0.006800384044647217, 0.006813695907592773, 0.006837247848510742, 0.006803455829620361, 0.00679423999786377, 0.0068392958641052244, 0.006813695907592773, 0.006801407814025879, 0.006912000179290771, 0.006808576107025147, 0.006809599876403808, 0.006806528091430664, 0.006800384044647217, 0.007064576148986816, 0.013950976371765136, 0.006559743881225586, 0.006540351867675781, 0.006517695903778076, 0.006505472183227539, 0.006495232105255127, 0.006523903846740723, 0.006510591983795166, 0.00659660816192627, 0.006633471965789795, 0.006639616012573242, 0.006500351905822754, 0.006551551818847656, 0.0065372161865234375, 0.00653926420211792, 0.006533120155334473, 0.006512639999389648, 0.006516736030578613, 0.006492159843444824, 0.006520832061767578, 0.006509568214416504, 0.00653107213973999, 0.006512639999389648, 0.006523903846740723, 0.006508543968200684, 0.006549503803253174, 0.006542335987091064, 0.0064839677810668945, 0.006533120155334473, 0.006533120155334473, 0.006512639999389648, 0.0065075201988220215, 0.006558720111846924, 0.0064839677810668945, 0.006508543968200684, 0.006649856090545654, 0.006551551818847656, 0.0065146880149841305, 0.006499360084533692, 0.006588384151458741, 0.00653107213973999, 0.006508543968200684, 0.006524991989135742, 0.006502336025238037, 0.006525951862335205, 0.006500351905822754, 0.006506559848785401, 0.0065586562156677245, 0.0065146880149841305, 0.006532095909118653, 0.0065382399559021, 0.00653004789352417, 0.006519807815551758, 0.006494207859039307, 0.006496255874633789, 0.006491136074066162, 0.0064880638122558594, 0.0065064959526062015, 0.006510623931884766, 0.0065361599922180175, 0.006493184089660644, 0.0065075201988220215, 0.0064839677810668945, 0.013864959716796875, 0.006532095909118653, 0.00653926420211792, 0.006496255874633789, 0.006491136074066162, 0.006524928092956543, 0.00652288007736206, 0.006497280120849609, 0.006524928092956543, 0.006515711784362793, 0.0064849920272827145, 0.0065474557876586915, 0.006524928092956543, 0.006529024124145508, 0.006545407772064209, 0.006533120155334473, 0.0065064959526062015, 0.006496255874633789, 0.006502399921417237, 0.006509568214416504, 0.006509568214416504, 0.006526976108551025, 0.006535168170928955, 0.006474751949310303, 0.006523903846740723, 0.0065075201988220215, 0.006489088058471679, 0.00653107213973999, 0.0066447358131408694, 0.0065136637687683106, 0.006546432018280029, 0.006527999877929688, 0.006535200119018555, 0.0065586881637573246, 0.006535168170928955, 0.006546432018280029, 0.006505472183227539, 0.006532095909118653, 0.00653107213973999, 0.006519807815551758, 0.006527999877929688, 0.006552576065063476, 0.006491136074066162, 0.006564864158630371, 0.0065075201988220215, 0.006528031826019287, 0.006522848129272461, 0.006523903846740723, 0.0065064959526062015, 0.00743936014175415, 0.008608799934387207, 0.0074587841033935546, 0.007060480117797851, 0.006941696166992187, 0.0068280320167541505, 0.006870016098022461, 0.006840320110321045, 0.00690176010131836, 0.006821887969970703, 0.006807551860809326, 0.0068351998329162595, 0.006849535942077637, 0.0068280320167541505, 0.014097408294677734, 0.006561791896820069, 0.006553599834442139, 0.00653004789352417, 0.006556672096252441, 0.006526976108551025, 0.0065177597999572755, 0.006543360233306885, 0.00652185583114624, 0.006516736030578613, 0.006516736030578613, 0.006520832061767578, 0.006527999877929688, 0.006533120155334473, 0.006500351905822754, 0.0065372161865234375, 0.006552576065063476, 0.006498303890228272, 0.00653004789352417, 0.006487040042877197, 0.00653107213973999, 0.006527999877929688, 0.006502399921417237, 0.00653004789352417, 0.006520832061767578, 0.0064839677810668945, 0.006499328136444092, 0.006510591983795166, 0.006546432018280029, 0.006532095909118653, 0.006508543968200684, 0.006543360233306885, 0.0065413122177124024, 0.00653004789352417, 0.0066109437942504885, 0.006540287971496582, 0.00652288007736206, 0.006557695865631104, 0.006511616230010986, 0.0066406397819519045, 0.0065372161865234375, 0.006504447937011719, 0.006589439868927002, 0.006603775978088379, 0.0064839677810668945, 0.006511616230010986, 0.00653004789352417, 0.006542335987091064, 0.006554624080657959, 0.006504447937011719, 0.006520832061767578, 0.006527999877929688, 0.006511616230010986, 0.006516736030578613, 0.006532095909118653, 0.006487040042877197, 0.006592544078826904, 0.006533120155334473, 0.0065361599922180175, 0.0065064959526062015, 0.006512639999389648, 0.006505472183227539, 0.006549503803253174, 0.013765631675720215, 0.006526976108551025, 0.0065382399559021, 0.0065484800338745115, 0.006520832061767578, 0.006501376152038574, 0.006524928092956543, 0.006593535900115967, 0.006523903846740723, 0.006598656177520752, 0.006499328136444092, 0.006542335987091064, 0.006536191940307618, 0.00653004789352417, 0.0065136637687683106, 0.00653926420211792, 0.006533120155334473, 0.006525951862335205, 0.006525951862335205, 0.006510591983795166, 0.006510591983795166, 0.006495232105255127, 0.006550528049468994, 0.006529024124145508, 0.00648089599609375, 0.006518784046173095, 0.006536191940307618, 0.0065146880149841305, 0.0065064959526062015, 0.006486015796661377, 0.0066979842185974124, 0.006559743881225586, 0.006510591983795166, 0.006525951862335205, 0.006543360233306885, 0.006523903846740723, 0.006526976108551025, 0.0065413122177124024, 0.00653004789352417, 0.006499328136444092, 0.006524928092956543, 0.00653004789352417, 0.006540287971496582, 0.006515711784362793, 0.006534143924713135, 0.006490111827850342, 0.006504447937011719, 0.006503424167633057, 0.006680575847625733, 0.006489088058471679, 0.006542335987091064, 0.00648089599609375, 0.0065484800338745115, 0.006479872226715088, 0.006515711784362793, 0.006545407772064209, 0.006503424167633057, 0.006809599876403808, 0.0065669121742248536, 0.006527999877929688, 0.006543360233306885, 0.006518784046173095, 0.0065413122177124024, 0.014844927787780762, 0.006867968082427979, 0.007014400005340577, 0.006895616054534912, 0.006855679988861084, 0.006817791938781738, 0.0067983360290527345, 0.0068280320167541505, 0.006812672138214112, 0.0068280320167541505, 0.006944767951965332, 0.006852608203887939, 0.006920191764831543, 0.006803455829620361, 0.006838272094726563, 0.006853631973266602, 0.006814720153808594, 0.006803455829620361, 0.006814720153808594, 0.006807551860809326, 0.006799359798431396, 0.00679423999786377, 0.006817791938781738, 0.006821887969970703, 0.00683622407913208, 0.0068249602317810056, 0.006795263767242431, 0.006770688056945801, 0.006814720153808594, 0.006854656219482422, 0.006831103801727295, 0.006865920066833496, 0.006854656219482422, 0.0068351998329162595, 0.0068351998329162595, 0.006831103801727295, 0.006831103801727295, 0.006838272094726563, 0.0068392958641052244, 0.006834176063537598, 0.0068249602317810056, 0.006810624122619629, 0.006847487926483154, 0.006812672138214112, 0.007004159927368164, 0.006865920066833496, 0.006843391895294189, 0.006852608203887939, 0.006821887969970703, 0.006858751773834228, 0.006813695907592773, 0.006807551860809326, 0.006823935985565186, 0.006848512172698974, 0.006816768169403077, 0.006859776020050049, 0.006837247848510742, 0.006851583957672119, 0.006810624122619629, 0.006855679988861084, 0.006823935985565186, 0.006811647891998291, 0.006850592136383057, 0.014511072158813476, 0.006811647891998291, 0.006855679988861084, 0.006822912216186523, 0.006848512172698974, 0.006813695907592773, 0.006862847805023193, 0.006793216228485107, 0.006822912216186523, 0.006864895820617676, 0.006845439910888672, 0.006826015949249267, 0.006809567928314209, 0.006840320110321045, 0.006837247848510742, 0.006806528091430664, 0.006859776020050049, 0.006813695907592773, 0.006849599838256836, 0.006807487964630127, 0.006851583957672119, 0.006814720153808594, 0.006834176063537598, 0.006840320110321045, 0.006829055786132812, 0.006846464157104492, 0.006884352207183838, 0.006825984001159668, 0.006845439910888672, 0.006814720153808594, 0.006846464157104492, 0.0068618240356445315, 0.00677785587310791, 0.006863872051239014, 0.006830080032348633, 0.0068280320167541505, 0.006810624122619629, 0.006864895820617676, 0.0067983360290527345, 0.006937600135803222, 0.006856704235076904, 0.00683622407913208, 0.006834176063537598, 0.006809599876403808, 0.006858751773834228, 0.006840320110321045, 0.006808640003204346, 0.0068607358932495114, 0.006880256175994873, 0.006843391895294189, 0.00681171178817749, 0.006853568077087402, 0.006813695907592773, 0.006850560188293457, 0.006812672138214112, 0.006823935985565186, 0.0068249602317810056, 0.0069027838706970214, 0.006849535942077637, 0.00682700777053833, 0.006840320110321045, 0.006843391895294189, 0.006808576107025147, 0.013846528053283692, 0.006520832061767578, 0.006509568214416504, 0.006534143924713135, 0.006516736030578613, 0.006527008056640625, 0.006534111976623535, 0.006515711784362793, 0.006516736030578613, 0.006543360233306885, 0.006533120155334473, 0.006516736030578613, 0.006518784046173095, 0.006505472183227539, 0.006532095909118653, 0.0065443840026855465, 0.006529024124145508, 0.006532095909118653, 0.006526976108551025, 0.006515711784362793, 0.006546432018280029, 0.006532095909118653, 0.006558720111846924, 0.006774784088134766, 0.006849535942077637, 0.006837247848510742, 0.006949888229370117, 0.007171072006225586, 0.0071311678886413574, 0.00744547176361084, 0.007161856174468994, 0.0074414081573486324, 0.007116799831390381, 0.0068986878395080565, 0.0068618240356445315, 0.006876160144805908, 0.00684441614151001, 0.00683622407913208, 0.0068628802299499515, 0.0068576960563659665, 0.006879231929779053, 0.006804480075836182, 0.006847487926483154, 0.006843391895294189, 0.006845439910888672, 0.006879231929779053, 0.006862847805023193, 0.006822912216186523, 0.006791168212890625, 0.007130112171173096, 0.006842368125915528, 0.006853631973266602, 0.006847487926483154, 0.006822912216186523, 0.006852608203887939, 0.006838272094726563, 0.006830080032348633, 0.0068321280479431154, 0.006811647891998291, 0.006845439910888672, 0.006819839954376221, 0.00684441614151001, 0.0068321280479431154, 0.014599167823791503, 0.006838272094726563, 0.006821887969970703, 0.0068321280479431154, 0.006842368125915528, 0.006843391895294189, 0.00684441614151001, 0.0068249602317810056, 0.006851615905761718, 0.006811615943908692, 0.006864927768707276, 0.0068269758224487305, 0.006820864200592041, 0.006862847805023193, 0.006830080032348633, 0.0068884482383728025, 0.006837247848510742, 0.006840320110321045, 0.006854656219482422, 0.006791232109069824, 0.006830016136169434, 0.006804480075836182, 0.006800384044647217, 0.006840320110321045, 0.0068280320167541505, 0.006809599876403808, 0.00676966381072998, 0.006829055786132812, 0.006815743923187256, 0.00679423999786377, 0.006838272094726563, 0.006829055786132812, 0.006801407814025879, 0.006876160144805908, 0.006797311782836914, 0.006789120197296142, 0.00678604793548584, 0.006810624122619629, 0.006821887969970703, 0.00682700777053833, 0.006837247848510742, 0.006804480075836182, 0.006830080032348633, 0.006811647891998291, 0.006975488185882568, 0.006833151817321777, 0.006806528091430664, 0.006866943836212158, 0.00692633581161499, 0.006884352207183838, 0.006833151817321777, 0.006858751773834228, 0.006841343879699707, 0.006834176063537598, 0.006867968082427979, 0.0068618240356445315, 0.006867968082427979, 0.006899712085723877, 0.006859776020050049, 0.0068249602317810056, 0.0068321280479431154, 0.0068577280044555666, 0.006837247848510742, 0.013855744361877441, 0.006562880039215088, 0.00689247989654541, 0.006939712047576904, 0.006982592105865479, 0.006859776020050049, 0.006833151817321777, 0.006833151817321777, 0.006905888080596924, 0.006889440059661865, 0.006778880119323731, 0.0068351998329162595, 0.0068249602317810056, 0.0069621758460998535, 0.0068055357933044435, 0.0068873920440673825, 0.0068618240356445315, 0.006809599876403808, 0.006841343879699707, 0.006985727787017822, 0.006808576107025147, 0.006840320110321045, 0.006838272094726563, 0.006924287796020508, 0.006774784088134766, 0.006858751773834228, 0.006848512172698974, 0.006866943836212158, 0.006783999919891357, 0.006855679988861084, 0.006812672138214112, 0.006789120197296142, 0.006813695907592773, 0.006794271945953369, 0.006850527763366699, 0.0068055038452148435, 0.007599103927612305, 0.0069632000923156735, 0.006883327960968018, 0.006840320110321045, 0.006845439910888672, 0.006845439910888672, 0.00679423999786377, 0.006895616054534912, 0.006833151817321777, 0.006796288013458252, 0.006781951904296875, 0.006810624122619629, 0.006819839954376221, 0.0067983360290527345, 0.006820864200592041, 0.006903903961181641, 0.006820767879486084, 0.006845439910888672, 0.006820864200592041, 0.006811647891998291, 0.006808576107025147, 0.00684441614151001, 0.006811647891998291, 0.006816768169403077, 0.006833151817321777, 0.0068392958641052244, 0.006854656219482422, 0.014112768173217773, 0.006528031826019287, 0.006518752098083496, 0.006535168170928955, 0.0066826238632202144, 0.006511616230010986, 0.006540287971496582, 0.006558720111846924, 0.0065146880149841305, 0.006554624080657959, 0.006533120155334473, 0.006774784088134766, 0.006858751773834228, 0.006843391895294189, 0.006834176063537598, 0.006846464157104492, 0.006812672138214112, 0.006800384044647217, 0.006847487926483154, 0.006813695907592773, 0.006833151817321777, 0.006821887969970703, 0.006822912216186523, 0.006803455829620361, 0.006812672138214112, 0.006829055786132812, 0.006812672138214112, 0.006818816184997558, 0.0068321280479431154, 0.00682700777053833, 0.0068249602317810056, 0.006820864200592041, 0.0068351998329162595, 0.00683622407913208, 0.006767615795135498, 0.006837247848510742, 0.006819839954376221, 0.006820864200592041, 0.006815743923187256, 0.006843391895294189, 0.006804480075836182, 0.006821887969970703, 0.00683523178100586, 0.006829023838043213, 0.006842368125915528, 0.0068321280479431154, 0.006810624122619629, 0.0068392958641052244, 0.006783999919891357, 0.007003136157989502, 0.006883327960968018, 0.006802432060241699, 0.006848512172698974, 0.00683622407913208, 0.006863872051239014, 0.006843391895294189, 0.006842368125915528, 0.006903808116912841, 0.006806528091430664, 0.006872064113616944, 0.006909952163696289, 0.006910975933074951, 0.006916096210479736]",tokens/s,146.412128177699,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-14B,Qwen/Qwen-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -43096,24 +42997,18 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained + model_class = get_class_from_dynamic_module( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module + final_module = get_cached_module_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file + modules_needed = check_imports(resolved_module_file) + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports + raise ImportError( +ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-32B,Qwen/Qwen1.5-32B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-7B,Qwen/Qwen-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -43131,24 +43026,18 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained + model_class = get_class_from_dynamic_module( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module + final_module = get_cached_module_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file + modules_needed = check_imports(resolved_module_file) + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports + raise ImportError( +ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,r,r,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,v,v,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -43160,7 +43049,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/r/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/v/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -43187,9 +43076,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949139-133786530bb9da5b413c96aa;ac686b55-2c86-4f0e-88a6-9bbd00c42b3a) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669494a6-18dccbfa372ab65852cd8251;5c29abb0-3b1f-43f3-b115-1af2e4d377dc) -Repository Not Found for url: https://huggingface.co/r/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/v/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -43214,40 +43103,12 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: r is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: v is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-564M,facebook/xglm-564M,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation - cls._check_and_enable_flash_attn_2( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 - raise ValueError( -ValueError: XGLMForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpizvfil_q/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-2.7B,EleutherAI/gpt-neo-2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-125m,,cuda,0,42,,,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,,,,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,MB,1273.409536,921.174016,0.0,274.726912,220.646912,s,10,0.326115104675293,0.032611510467529296,0.0012484582231843272,0.03218409538269043,0.032784641265869136,0.034564048767089836,0.035987574768066403,"[0.036343456268310544, 0.03226867294311524, 0.03213779067993164, 0.032141822814941406, 0.03203395080566406, 0.03214742279052735, 0.032220767974853515, 0.03238921737670898, 0.03208832168579102, 0.032343681335449216]",tokens/s,7849.989047728858,kWh,3.834838485734976e-07,2.1012961289151069e-07,8.25654520552228e-07,1.419267982017236e-06,tokens/kWh,180374674.2994524,MB,1273.409536,921.174016,0.0,274.726912,250.722304,s,10,20.085640136718748,2.008564013671875,0.006065788108395492,2.006720520019531,2.0181213745117184,2.0185785705566404,2.018944327392578,"[2.018019775390625, 2.006443115234375, 2.0069979248046876, 2.0103148193359375, 2.0040799560546874, 2.00180322265625, 2.00428125, 2.0133179931640623, 2.0013463134765623, 2.0190357666015624]",tokens/s,31.36569189290069,kWh,2.3731767884623614e-05,1.3005590929520364e-05,4.874369069043466e-05,8.548104950457861e-05,tokens/kWh,737005.457526882,,s,629,20.34066634368894,0.03233810229521298,0.0038819833531807996,0.03179007911682129,0.0323544822692871,0.032856268310546874,0.06427897552490235,"[0.03209625625610352, 0.031882240295410154, 0.031893503189086916, 0.032045055389404296, 0.03220787048339844, 0.031922176361083986, 0.031958015441894534, 0.03196518325805664, 0.031784959793090824, 0.03223756790161133, 0.031974399566650394, 0.031955968856811526, 0.03202969741821289, 0.03302809524536133, 0.03192835235595703, 0.031831008911132816, 0.03254272079467774, 0.033226783752441404, 0.032270305633544924, 0.032140289306640625, 0.031940607070922854, 0.032451583862304685, 0.03203788757324219, 0.03188531112670898, 0.032231422424316404, 0.031936511993408204, 0.03298099136352539, 0.03213516616821289, 0.03167948722839355, 0.031526912689208986, 0.031693824768066405, 0.03172966384887695, 0.03170918464660644, 0.03180953598022461, 0.03179929542541504, 0.031628288269042966, 0.031508480072021484, 0.03155660820007324, 0.03158937644958496, 0.03198259162902832, 0.03151974487304687, 0.03146342468261719, 0.031752191543579104, 0.03203481674194336, 0.03182796859741211, 0.03228160095214844, 0.03201331329345703, 0.03220377731323242, 0.03181056022644043, 0.031865856170654294, 0.031473663330078124, 0.031682559967041016, 0.031628288269042966, 0.03277414321899414, 0.03190790367126465, 0.0320777587890625, 0.03253350448608398, 0.032473087310791016, 0.032159744262695314, 0.03166924858093262, 0.03159654426574707, 0.031492095947265625, 0.06451507568359376, 0.032, 0.03342745590209961, 0.032282623291015625, 0.03176243209838867, 0.0318525447845459, 0.03180646324157715, 0.03143065643310547, 0.03154841613769531, 0.03168870353698731, 0.031514623641967776, 0.03150643157958984, 0.03214438247680664, 0.033160190582275394, 0.03213312149047851, 0.03156684875488281, 0.031958015441894534, 0.03179110336303711, 0.03184332847595215, 0.03142963218688965, 0.03191705513000488, 0.031768575668334964, 0.03164057540893555, 0.0317573127746582, 0.03179827117919922, 0.031731712341308595, 0.03301375961303711, 0.031920127868652344, 0.03172352027893066, 0.03289395141601562, 0.031927295684814457, 0.03162521553039551, 0.03168358421325684, 0.03179110336303711, 0.031666175842285156, 0.03177369689941406, 0.031678464889526366, 0.03179315185546875, 0.031765504837036135, 0.031699968338012696, 0.03142860794067383, 0.03162419128417969, 0.031615999221801756, 0.03140505599975586, 0.03147776031494141, 0.031458303451538085, 0.03143987274169922, 0.03174399948120117, 0.0317255687713623, 0.03142758369445801, 0.03156991958618164, 0.031783935546875, 0.03183616065979004, 0.0317890567779541, 0.03189248085021973, 0.03191910362243652, 0.031932416915893554, 0.032277503967285154, 0.032382976531982424, 0.0317706241607666, 0.03181260871887207, 0.031749120712280275, 0.03174502372741699, 0.06404198455810547, 0.03170611190795898, 0.031704063415527346, 0.031628288269042966, 0.03138764762878418, 0.031698944091796875, 0.03154022407531738, 0.03150540733337402, 0.03196416091918945, 0.03177881622314453, 0.032020481109619144, 0.03214233779907227, 0.03199692726135254, 0.031780864715576174, 0.03226009750366211, 0.032115711212158206, 0.03199180793762207, 0.03156787109375, 0.031453184127807614, 0.03144908714294434, 0.0314839038848877, 0.03146649551391602, 0.031458303451538085, 0.03172147178649903, 0.031893503189086916, 0.0328007698059082, 0.03156787109375, 0.031731712341308595, 0.031849472045898435, 0.03165388870239258, 0.03178700828552246, 0.03168259239196777, 0.03179311943054199, 0.031783935546875, 0.03212083053588867, 0.03178188705444336, 0.03179724884033203, 0.033549312591552735, 0.03284889602661133, 0.031834112167358396, 0.03212492752075195, 0.03198259162902832, 0.03174297523498535, 0.031731712341308595, 0.031753215789794925, 0.03182387161254883, 0.031473663330078124, 0.03165388870239258, 0.03157196807861328, 0.031453184127807614, 0.031734783172607424, 0.03165695953369141, 0.03180953598022461, 0.03184537506103516, 0.03207372665405273, 0.032285694122314454, 0.032556095123291016, 0.0321484146118164, 0.0324956169128418, 0.03182592010498047, 0.03148287963867188, 0.03179110336303711, 0.03181056022644043, 0.06443007659912109, 0.03183001518249512, 0.03196928024291992, 0.03182694435119629, 0.03170099258422852, 0.03181056022644043, 0.0315043830871582, 0.03177881622314453, 0.03177574348449707, 0.03191910362243652, 0.0321710090637207, 0.03204403305053711, 0.03181875228881836, 0.031703039169311525, 0.03174604797363281, 0.03175526428222656, 0.031764480590820314, 0.031731712341308595, 0.03183923149108887, 0.03340390396118164, 0.032922622680664065, 0.032161792755126956, 0.03223756790161133, 0.031734783172607424, 0.03291340637207031, 0.032074752807617186, 0.03202150344848633, 0.031716352462768556, 0.03155046463012695, 0.031692800521850584, 0.03226828765869141, 0.03171737670898438, 0.03140505599975586, 0.03134976005554199, 0.03197952079772949, 0.03200307083129883, 0.031696895599365234, 0.03169484710693359, 0.03176755142211914, 0.0321710090637207, 0.03153919982910156, 0.03143987274169922, 0.03146444892883301, 0.03160371208190918, 0.03245568084716797, 0.0314337272644043, 0.03163545608520508, 0.03231846237182617, 0.03222323226928711, 0.031942655563354495, 0.03174399948120117, 0.03162112045288086, 0.03139788818359375, 0.032302078247070314, 0.03218841552734375, 0.03275161743164062, 0.0322529296875, 0.03198361587524414, 0.03178803253173828, 0.031665151596069335, 0.03129241561889649, 0.03186073684692383, 0.031955968856811526, 0.06424063873291015, 0.03157811164855957, 0.03165695953369141, 0.03165081596374512, 0.03146854400634766, 0.031693824768066405, 0.03204095840454101, 0.03246182250976563, 0.03183103942871094, 0.03218636703491211, 0.03204095840454101, 0.031784959793090824, 0.03218431854248047, 0.03177779197692871, 0.031698944091796875, 0.03156684875488281, 0.031731712341308595, 0.03239424133300781, 0.03142758369445801, 0.03172966384887695, 0.03203379058837891, 0.03207167816162109, 0.03187302398681641, 0.033006591796875, 0.03175526428222656, 0.0316180477142334, 0.031959039688110355, 0.031514623641967776, 0.031884288787841795, 0.03161497688293457, 0.031440895080566404, 0.031442943572998046, 0.03174092864990234, 0.03172966384887695, 0.03197747230529785, 0.03176755142211914, 0.03205222320556641, 0.03165695953369141, 0.03194777679443359, 0.03171327972412109, 0.031562751770019534, 0.03168972778320313, 0.031731712341308595, 0.03172966384887695, 0.03186483192443847, 0.032143360137939454, 0.03146240043640137, 0.03147776031494141, 0.03138355255126953, 0.0313753604888916, 0.03180646324157715, 0.0317255687713623, 0.03186380767822266, 0.03160678482055664, 0.032494590759277346, 0.03222528076171875, 0.032045055389404296, 0.03183206367492676, 0.03183206367492676, 0.03180851173400879, 0.03134464073181152, 0.031470592498779294, 0.031731712341308595, 0.06429388427734375, 0.03167436790466309, 0.031923200607299806, 0.03159756851196289, 0.03151667213439941, 0.031647743225097655, 0.031802400588989255, 0.03235427093505859, 0.03198259162902832, 0.03172147178649903, 0.031888383865356446, 0.03179417610168457, 0.031507455825805664, 0.03172761535644531, 0.031579135894775394, 0.031692800521850584, 0.0315156478881836, 0.031440895080566404, 0.03173990440368652, 0.03155356788635254, 0.031624160766601565, 0.03153510475158691, 0.033051647186279294, 0.03177369689941406, 0.031783935546875, 0.03135897636413574, 0.03179007911682129, 0.031714303970336914, 0.031848447799682614, 0.031476736068725586, 0.03139993667602539, 0.03133440017700195, 0.03155763244628906, 0.03146956825256347, 0.03141024017333984, 0.031344575881958006, 0.03177574348449707, 0.03194675254821777, 0.03219046401977539, 0.03170918464660644, 0.031678464889526366, 0.03172249603271484, 0.03172147178649903, 0.031513599395751955, 0.03161497688293457, 0.03177779197692871, 0.03177574348449707, 0.03137228775024414, 0.03147369575500488, 0.031712223052978515, 0.03170918464660644, 0.03205222320556641, 0.03178803253173828, 0.03221299362182617, 0.03220889663696289, 0.03131391906738281, 0.03146956825256347, 0.03166720008850098, 0.031661056518554685, 0.03207376098632812, 0.03320111846923828, 0.032717823028564456, 0.032519168853759765, 0.06434508514404297, 0.031736831665039066, 0.031752191543579104, 0.031851520538330076, 0.03142963218688965, 0.03157196807861328, 0.032121856689453124, 0.03311513519287109, 0.03222534561157227, 0.03178079986572266, 0.03179827117919922, 0.03183206367492676, 0.03181465530395508, 0.03183206367492676, 0.03177267265319824, 0.03184025573730469, 0.031542272567749025, 0.03150540733337402, 0.03178598403930664, 0.03185663986206055, 0.03176038360595703, 0.03312639999389649, 0.03152179145812988, 0.032102401733398435, 0.03188019180297851, 0.03193036842346191, 0.031324159622192385, 0.031851520538330076, 0.03158016014099121, 0.031389696121215824, 0.03189555168151856, 0.03170099258422852, 0.03173785591125488, 0.031285247802734374, 0.03177068710327149, 0.031356864929199216, 0.03158527946472168, 0.031526912689208986, 0.03160985565185547, 0.03185868835449219, 0.031848447799682614, 0.031437824249267575, 0.0317388801574707, 0.03174297523498535, 0.0319866886138916, 0.03175014305114746, 0.031922176361083986, 0.031817728042602536, 0.03180544090270996, 0.03139072036743164, 0.03181260871887207, 0.03197952079772949, 0.03224166488647461, 0.03209011077880859, 0.03164057540893555, 0.03165184020996094, 0.031438848495483396, 0.03207372665405273, 0.03194675254821777, 0.03155148887634277, 0.03187302398681641, 0.03263488006591797, 0.03184025573730469, 0.06429801940917969, 0.03187299156188965, 0.03203276824951172, 0.032094207763671875, 0.03197849655151367, 0.031958015441894534, 0.031926271438598636, 0.031834112167358396, 0.03189452743530274, 0.03218841552734375, 0.032353279113769534, 0.0318791675567627, 0.03179315185546875, 0.031887359619140625, 0.03185868835449219, 0.03156480026245117, 0.03182796859741211, 0.0322426872253418, 0.032043006896972655, 0.03181670379638672, 0.03299020767211914, 0.032031742095947266, 0.03186892890930176, 0.032304126739501955, 0.03237171173095703, 0.0319866886138916, 0.031454208374023435, 0.031525888442993165, 0.03151155281066895, 0.031492095947265625, 0.03167334365844727, 0.031730688095092774, 0.03897753524780274, 0.032933887481689454, 0.031889408111572266, 0.03211980819702148, 0.031719423294067385, 0.031352832794189454, 0.03140505599975586, 0.031687711715698244, 0.031402975082397463, 0.03169177627563476, 0.031749120712280275, 0.03167948722839355, 0.03165695953369141, 0.0316753921508789, 0.03172659111022949, 0.03139072036743164, 0.03140812873840332, 0.03175526428222656, 0.03156684875488281, 0.03263590240478516, 0.03202252960205078, 0.03183923149108887, 0.0319682559967041, 0.031649791717529296, 0.031784959793090824, 0.03172352027893066, 0.03167129516601563, 0.0314337272644043, 0.03163443183898926, 0.03186483192443847, 0.03146137619018555, 0.06431948852539063, 0.03137843132019043, 0.03158016014099121, 0.031425535202026365, 0.031645696640014646, 0.031730688095092774, 0.03186486434936524, 0.031797216415405276, 0.0318156795501709, 0.03175628852844238, 0.031699968338012696, 0.031410175323486327, 0.03138355255126953, 0.03278540802001953, 0.03300454330444336, 0.032178176879882815, 0.0318156795501709, 0.031855615615844726, 0.031870975494384765, 0.03283967971801758, 0.0314204158782959, 0.0314081916809082, 0.031652799606323244, 0.03211775970458984, 0.031666175842285156, 0.03154022407531738, 0.031373311996459964, 0.03173785591125488, 0.031546367645263675, 0.0316753921508789, 0.0315043830871582, 0.031529983520507815, 0.031764480590820314, 0.03139481544494629, 0.03133440017700195, 0.03138559913635254, 0.03137843132019043, 0.031735807418823245, 0.031543296813964845, 0.03143065643310547, 0.03159859275817871, 0.031936511993408204, 0.031735807418823245, 0.03193548774719238, 0.031458303451538085, 0.031456256866455076, 0.031716352462768556, 0.0317388801574707, 0.032037952423095706, 0.031414207458496095, 0.0326901741027832, 0.03216793441772461, 0.031585344314575194, 0.03156883239746094, 0.03191398429870605, 0.031631359100341795, 0.031903743743896484, 0.03156076812744141, 0.03184736061096191, 0.03181363105773926, 0.03224371337890625, 0.03225702285766602, 0.031955968856811526, 0.06444134521484375, 0.03154431915283203, 0.031665151596069335, 0.03288780975341797, 0.031886335372924804, 0.03204403305053711, 0.03172659111022949, 0.031509504318237305, 0.03173785591125488, 0.032, 0.032320510864257815, 0.03182387161254883, 0.03230003356933594, 0.03187404823303223, 0.032198688507080075, 0.03247203063964844, 0.03235532760620117, 0.032702465057373044, 0.03311718368530273, 0.03155148887634277, 0.03170201683044434, 0.03225094223022461, 0.03220576095581055, 0.03237580871582031, 0.032230400085449216, 0.03218431854248047, 0.03240447998046875, 0.032449535369873043, 0.03225600051879883, 0.03243622589111328, 0.0319498233795166, 0.03165081596374512, 0.031528959274291994, 0.03161702346801758, 0.0321003532409668, 0.03190784072875977, 0.03203788757324219, 0.032328704833984374, 0.032467967987060545, 0.03184435272216797, 0.031665151596069335, 0.03177369689941406, 0.03174604797363281, 0.03233894348144531, 0.031704063415527346, 0.03172454452514648, 0.032039936065673826, 0.03196211242675781, 0.031926271438598636, 0.0328611831665039, 0.03221200180053711, 0.03217712020874024, 0.03181056022644043, 0.03184332847595215, 0.032064510345458985, 0.03207372665405273, 0.03184339141845703, 0.03191596794128418, 0.031817760467529294, 0.031796192169189455, 0.03153408050537109, 0.032161792755126956, 0.03232460784912109]",tokens/s,30.92327406447812,,,main,False,False +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,.,.,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -43259,30 +43120,24 @@ ChildProcessError: Traceback (most recent call last): report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 373, in cached_file + raise EnvironmentError( +OSError: . does not appear to have a file named config.json. Checkout 'https://huggingface.co/./tree/None' for available files. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-410m,EleutherAI/pythia-410m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/phi-1_5,microsoft/phi-1_5,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -43308,16 +43163,16 @@ ChildProcessError: Traceback (most recent call last): return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,0,0,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,s,s,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -43329,7 +43184,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/0/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/s/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -43356,9 +43211,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949513-18f7095e1c0a0dd50cfbd6e8;08addee7-113b-40f5-9f9e-480d6dbc74ac) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948ce0-3444eee579eb976d15e1ea5a;0e4b7586-4890-4e0f-8cf6-08242a5926a3) -Repository Not Found for url: https://huggingface.co/0/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/s/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -43383,11 +43238,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: 0 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: s is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-6B-nl,Salesforce/codegen-6B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -43407,16 +43262,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation - cls._check_and_enable_flash_attn_2( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 - raise ValueError( -ValueError: CodeGenForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpyigjym7_/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-70b-hf,meta-llama/Llama-2-70b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-66b,facebook/opt-66b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -43455,80 +43316,10 @@ ChildProcessError: Traceback (most recent call last): self._buffers[key] = fn(buf) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 112.00 MiB. GPU - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,2,2,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/2/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669493a1-02192fe012f8ec46150875d6;6840c524-3d96-4f6d-8fe9-94973540ecb8) - -Repository Not Found for url: https://huggingface.co/2/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file - raise EnvironmentError( -OSError: 2 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 162.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,a,a,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,i,i,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -43540,7 +43331,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/a/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/i/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -43567,9 +43358,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694918d-64cec4f566f3d39b311c3360;ba53cb0d-2431-423c-a60f-3d6c2c367cea) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949009-0f5883156c63c2794cf9eeb6;2468f1ff-3ca9-4800-855c-7fe4321cfa1a) -Repository Not Found for url: https://huggingface.co/a/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/i/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -43594,11 +43385,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: a is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: i is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-350m,facebook/opt-350m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-6.7b,EleutherAI/pythia-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -43624,16 +43415,16 @@ ChildProcessError: Traceback (most recent call last): return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/phi-1_5,microsoft/phi-1_5,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-0.5B,Qwen/Qwen1.5-0.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -43659,16 +43450,16 @@ ChildProcessError: Traceback (most recent call last): return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-2.7b,facebook/opt-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-16B-nl,Salesforce/codegen-16B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -43694,16 +43485,16 @@ ChildProcessError: Traceback (most recent call last): return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-13b,huggyllama/llama-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-j-6b,EleutherAI/gpt-j-6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -43729,16 +43520,17 @@ ChildProcessError: Traceback (most recent call last): return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-7b,tiiuae/falcon-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2-large,openai-community/gpt2-large,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1282.564096,2645.03296,0.0,1998.585856,1692.285952,s,10,0.2531576633453369,0.02531576633453369,0.002450285014570774,0.024608816146850586,0.025783482170104975,0.02917710142135619,0.031891996822357174,"[0.03257072067260742, 0.02457766342163086, 0.02456787109375, 0.024639968872070313, 0.023735296249389647, 0.02453727912902832, 0.02502934455871582, 0.024820192337036133, 0.024842975616455078, 0.02383635139465332]",tokens/s,10112.275355093076,kWh,2.792075205920154e-07,1.529921474871729e-07,8.369050561796469e-07,1.2691047242588353e-06,tokens/kWh,201717001.84120387,MB,1282.859008,2645.03296,0.0,1998.585856,1740.091904,s,10,14.224613037109373,1.4224613037109373,0.007999866488579442,1.4226959228515625,1.4288772583007814,1.4350930480957031,1.4400656799316405,"[1.441308837890625, 1.4159813232421874, 1.4227452392578126, 1.4274959716796876, 1.4234324951171875, 1.4254453125, 1.42061181640625, 1.4226466064453125, 1.410975341796875, 1.4139700927734375]",tokens/s,44.28942976209244,kWh,1.649391267739289e-05,9.038513698214438e-06,3.331084448422058e-05,5.884327085982791e-05,tokens/kWh,1070640.6880418654,,s,629,14.421040109634406,0.022926931811819394,0.002966066291432769,0.022564863204956053,0.022848736572265625,0.023248467254638677,0.047059558868408236,"[0.02345062446594238, 0.023438335418701172, 0.023334911346435547, 0.02593791961669922, 0.023631872177124022, 0.023432191848754884, 0.023536640167236327, 0.022730752944946288, 0.02284752082824707, 0.022558687210083007, 0.022576128005981445, 0.022565887451171874, 0.022806528091430665, 0.02365644836425781, 0.023848960876464844, 0.023938047409057618, 0.023386144638061525, 0.023298015594482423, 0.023143423080444335, 0.023015424728393553, 0.02310758399963379, 0.022743040084838868, 0.022743040084838868, 0.02262937545776367, 0.022384639739990234, 0.022402048110961914, 0.022543359756469726, 0.02267136001586914, 0.022543359756469726, 0.022590463638305663, 0.022413312911987306, 0.02251468849182129, 0.022372352600097657, 0.022536191940307617, 0.022580223083496095, 0.022455327987670897, 0.02253718376159668, 0.022559743881225586, 0.022518783569335937, 0.022353919982910156, 0.023468063354492186, 0.02273072052001953, 0.0225167350769043, 0.022666240692138673, 0.022587392807006838, 0.022557695388793944, 0.022419456481933595, 0.022979583740234375, 0.0226375675201416, 0.022574079513549804, 0.02263039970397949, 0.022649856567382814, 0.023013376235961915, 0.022584320068359375, 0.022502399444580077, 0.022550527572631835, 0.022541311264038084, 0.022582271575927734, 0.02264371109008789, 0.022633472442626954, 0.022517759323120116, 0.022525951385498046, 0.0473620491027832, 0.022525951385498046, 0.02267238426208496, 0.02266009521484375, 0.022524927139282228, 0.022616064071655274, 0.022587392807006838, 0.022130687713623046, 0.02282598304748535, 0.022890495300292968, 0.02264575958251953, 0.022579200744628908, 0.022518783569335937, 0.022551551818847656, 0.02265088081359863, 0.02282700729370117, 0.022845439910888672, 0.02262937545776367, 0.022577152252197266, 0.022571008682250978, 0.02287615966796875, 0.02270515251159668, 0.022545408248901368, 0.022587392807006838, 0.02253004837036133, 0.02262118339538574, 0.022649856567382814, 0.022642688751220705, 0.02253926467895508, 0.022557695388793944, 0.02247065544128418, 0.021695487976074217, 0.0216494083404541, 0.021728256225585937, 0.02169343948364258, 0.021741567611694337, 0.02169753646850586, 0.021777408599853516, 0.0221265926361084, 0.02168832015991211, 0.021707775115966797, 0.021751808166503905, 0.022738943099975584, 0.022576128005981445, 0.02267750358581543, 0.02270412826538086, 0.022567935943603516, 0.022503423690795898, 0.022580223083496095, 0.022568960189819336, 0.022582271575927734, 0.02268876838684082, 0.02267955207824707, 0.022681600570678712, 0.022557695388793944, 0.02259660720825195, 0.022569984436035157, 0.02267033576965332, 0.022801408767700194, 0.02265292739868164, 0.02266111946105957, 0.022509567260742186, 0.022838272094726563, 0.047782913208007816, 0.022707199096679686, 0.022584320068359375, 0.022564863204956053, 0.022674432754516603, 0.022626304626464845, 0.022611967086791994, 0.0224849910736084, 0.02268262481689453, 0.022615039825439453, 0.02254643249511719, 0.022516767501831056, 0.022648799896240236, 0.022920192718505858, 0.02280243110656738, 0.022716415405273437, 0.02269696044921875, 0.022509567260742186, 0.02259660720825195, 0.02186240005493164, 0.02168524742126465, 0.02166988754272461, 0.02171494483947754, 0.021893119812011717, 0.021777408599853516, 0.022468608856201173, 0.022656000137329102, 0.022567935943603516, 0.022509567260742186, 0.02251468849182129, 0.022665216445922853, 0.022495231628417968, 0.022585344314575196, 0.022890495300292968, 0.022707199096679686, 0.022599679946899414, 0.0224901123046875, 0.022616064071655274, 0.022360063552856444, 0.021804031372070314, 0.023768064498901367, 0.023956480026245116, 0.02288128089904785, 0.022603776931762694, 0.0226713924407959, 0.023395296096801757, 0.022510591506958007, 0.02287718391418457, 0.02255462455749512, 0.022599679946899414, 0.022701055526733398, 0.022611967086791994, 0.022558719635009765, 0.022564863204956053, 0.022536191940307617, 0.022574079513549804, 0.022587392807006838, 0.022669343948364257, 0.022663135528564454, 0.022517759323120116, 0.022557695388793944, 0.022557695388793944, 0.02261299133300781, 0.047557632446289064, 0.022609920501708985, 0.02284339141845703, 0.022714399337768556, 0.022558687210083007, 0.02247065544128418, 0.022534143447875975, 0.02250752067565918, 0.0227061767578125, 0.022619136810302733, 0.02262937545776367, 0.022804479598999023, 0.022742015838623047, 0.022770687103271483, 0.022768640518188478, 0.022951936721801756, 0.02267852783203125, 0.022591487884521484, 0.022607872009277344, 0.022577152252197266, 0.022529024124145508, 0.02264678382873535, 0.022737920761108397, 0.022552576065063477, 0.02267136001586914, 0.022562816619873048, 0.022501375198364256, 0.022537216186523438, 0.022494207382202147, 0.02264678382873535, 0.02247987174987793, 0.022520832061767578, 0.022560768127441407, 0.02410700798034668, 0.02294988822937012, 0.022955007553100586, 0.022804479598999023, 0.022603776931762694, 0.022517759323120116, 0.02248806381225586, 0.022510591506958007, 0.022556671142578123, 0.022529024124145508, 0.022588415145874022, 0.022787071228027343, 0.022559743881225586, 0.0224901123046875, 0.022579200744628908, 0.02262118339538574, 0.022518783569335937, 0.022634496688842775, 0.022610944747924806, 0.02249113655090332, 0.02265907287597656, 0.022619136810302733, 0.022478847503662108, 0.0225167350769043, 0.023174144744873046, 0.02269388771057129, 0.022603776931762694, 0.022579200744628908, 0.022594560623168947, 0.02265292739868164, 0.046281726837158206, 0.022588415145874022, 0.022619136810302733, 0.022642688751220705, 0.022658048629760744, 0.022820863723754883, 0.022597631454467772, 0.022796287536621093, 0.022675455093383787, 0.022595584869384764, 0.02252288055419922, 0.022564863204956053, 0.0224849910736084, 0.02255462455749512, 0.022748159408569335, 0.02264678382873535, 0.02248294448852539, 0.022684671401977538, 0.02248908805847168, 0.022733823776245117, 0.022589439392089843, 0.022492160797119142, 0.02248089599609375, 0.022501375198364256, 0.022565887451171874, 0.022586368560791017, 0.02262428855895996, 0.022853599548339844, 0.022603776931762694, 0.022559743881225586, 0.02252288055419922, 0.022573055267333983, 0.022579200744628908, 0.02252390480041504, 0.022502399444580077, 0.02264473533630371, 0.022536191940307617, 0.022897663116455077, 0.022585344314575196, 0.02255564880371094, 0.022405120849609376, 0.022467584609985353, 0.022635520935058592, 0.022593536376953126, 0.0225218563079834, 0.022452224731445314, 0.022436864852905275, 0.022429695129394533, 0.02269696044921875, 0.022748159408569335, 0.02262015914916992, 0.022977535247802734, 0.022610944747924806, 0.022665216445922853, 0.022550527572631835, 0.022545440673828125, 0.022626272201538088, 0.02249830436706543, 0.02253926467895508, 0.02264371109008789, 0.022418432235717774, 0.02254745674133301, 0.022605823516845702, 0.04739276885986328, 0.02246143913269043, 0.022681600570678712, 0.02274406433105469, 0.022584320068359375, 0.022503423690795898, 0.02266828727722168, 0.02253824043273926, 0.02254643249511719, 0.022562816619873048, 0.022585344314575196, 0.022560768127441407, 0.02247987174987793, 0.022607872009277344, 0.022597631454467772, 0.022610944747924806, 0.022567935943603516, 0.022563840866088865, 0.02281881523132324, 0.022563840866088865, 0.0224849910736084, 0.02272051239013672, 0.0226375675201416, 0.02251263999938965, 0.022478847503662108, 0.022413312911987306, 0.02251468849182129, 0.0224901123046875, 0.02249113655090332, 0.02434867286682129, 0.023407615661621094, 0.022523935317993165, 0.022494176864624023, 0.022559743881225586, 0.022478847503662108, 0.022961151123046874, 0.022486015319824217, 0.022556671142578123, 0.02263859176635742, 0.022518783569335937, 0.022518783569335937, 0.02246451187133789, 0.02289356803894043, 0.022587392807006838, 0.022529024124145508, 0.02253926467895508, 0.022483968734741212, 0.022623231887817383, 0.022536191940307617, 0.022718463897705078, 0.02246451187133789, 0.022972415924072266, 0.02262835121154785, 0.0225167350769043, 0.022565887451171874, 0.022534143447875975, 0.022614015579223632, 0.02248192024230957, 0.02244812774658203, 0.022526975631713866, 0.022551551818847656, 0.022509567260742186, 0.022915071487426757, 0.04775833511352539, 0.02229145622253418, 0.022557695388793944, 0.02253107261657715, 0.022478847503662108, 0.0224399356842041, 0.02260479927062988, 0.022494207382202147, 0.02253004837036133, 0.022792192459106447, 0.02268057632446289, 0.02263039970397949, 0.022606847763061523, 0.022649856567382814, 0.022525951385498046, 0.022591487884521484, 0.022524927139282228, 0.022495231628417968, 0.022508544921875, 0.02243174362182617, 0.02255564880371094, 0.022437887191772463, 0.02250547218322754, 0.022789119720458984, 0.022580223083496095, 0.022500352859497072, 0.022552576065063477, 0.022320127487182616, 0.022432767868041992, 0.022403072357177735, 0.02246963119506836, 0.022459392547607423, 0.0224901123046875, 0.02248089599609375, 0.022550527572631835, 0.022467584609985353, 0.022548479080200197, 0.022475776672363282, 0.022477823257446287, 0.02252288055419922, 0.0224849910736084, 0.022486015319824217, 0.022814720153808594, 0.02265500831604004, 0.022472671508789063, 0.022571008682250978, 0.02265395164489746, 0.02249830436706543, 0.022722560882568358, 0.02262118339538574, 0.022388736724853517, 0.02170572853088379, 0.021612543106079102, 0.021695487976074217, 0.022331392288208008, 0.022533119201660155, 0.022584320068359375, 0.022502399444580077, 0.022580223083496095, 0.022626304626464845, 0.022617088317871094, 0.023888896942138672, 0.023900159835815428, 0.048435199737548826, 0.022572032928466795, 0.022586368560791017, 0.022606847763061523, 0.02252390480041504, 0.02247065544128418, 0.022392831802368163, 0.022492160797119142, 0.022527999877929687, 0.02246143913269043, 0.02269900894165039, 0.022972415924072266, 0.022939647674560547, 0.02273689651489258, 0.022567935943603516, 0.02269388771057129, 0.02290380859375, 0.022779903411865234, 0.022605823516845702, 0.022666240692138673, 0.02265497589111328, 0.022666240692138673, 0.02287308883666992, 0.022775808334350587, 0.022595584869384764, 0.02246963119506836, 0.0227061767578125, 0.022598655700683593, 0.02247987174987793, 0.0224532470703125, 0.02243174362182617, 0.022486015319824217, 0.022541343688964845, 0.022189023971557618, 0.021953535079956055, 0.02270515251159668, 0.022633472442626954, 0.02249625587463379, 0.022388736724853517, 0.022459392547607423, 0.022429695129394533, 0.022640640258789063, 0.02250444793701172, 0.022399999618530272, 0.022501375198364256, 0.022605823516845702, 0.0224399356842041, 0.022534143447875975, 0.02251468849182129, 0.02254745674133301, 0.022427648544311524, 0.0224716796875, 0.022389759063720704, 0.02249318313598633, 0.022563840866088865, 0.02271334457397461, 0.02255462455749512, 0.022589439392089843, 0.022642688751220705, 0.0231014404296875, 0.02254745674133301, 0.022579200744628908, 0.02269696044921875, 0.04771123123168945, 0.022592512130737305, 0.02264371109008789, 0.022725631713867187, 0.02244915199279785, 0.02268671989440918, 0.02250547218322754, 0.022475776672363282, 0.022564863204956053, 0.02251468849182129, 0.022571008682250978, 0.02249728012084961, 0.022548479080200197, 0.022580223083496095, 0.022772735595703125, 0.022789119720458984, 0.022508544921875, 0.022747135162353514, 0.022509567260742186, 0.022601728439331056, 0.022254592895507814, 0.022381568908691408, 0.022518783569335937, 0.02252288055419922, 0.022477823257446287, 0.02253209686279297, 0.02265292739868164, 0.02251571273803711, 0.022641664505004884, 0.0224532470703125, 0.022544384002685547, 0.022437887191772463, 0.02270207977294922, 0.022600704193115235, 0.022566911697387695, 0.02243071937561035, 0.022535167694091796, 0.02248089599609375, 0.02253824043273926, 0.022527999877929687, 0.02228531265258789, 0.02247987174987793, 0.022460416793823244, 0.02248806381225586, 0.022437887191772463, 0.02251571273803711, 0.022404096603393556, 0.022582271575927734, 0.02262118339538574, 0.02246143913269043, 0.022376447677612304, 0.02247270393371582, 0.021943296432495117, 0.02165862464904785, 0.021585920333862304, 0.02163609504699707, 0.021603328704833984, 0.021702655792236326, 0.021951488494873047, 0.02187980842590332, 0.021659648895263672, 0.02163609504699707, 0.021739519119262696, 0.045930496215820314, 0.021621759414672852, 0.02165247917175293, 0.021627904891967774, 0.0216944637298584, 0.021584896087646483, 0.02169343948364258, 0.021748735427856446, 0.021755903244018555, 0.022071296691894532, 0.021841920852661133, 0.021811199188232423, 0.022022144317626953, 0.022518783569335937, 0.022567935943603516, 0.022632448196411133, 0.02263654327392578, 0.022412288665771486, 0.022459392547607423, 0.022587392807006838, 0.022642688751220705, 0.022559743881225586, 0.022419456481933595, 0.022595584869384764, 0.022737920761108397, 0.02244812774658203, 0.022764543533325195, 0.02286591911315918, 0.022866943359375, 0.022540288925170897, 0.022541311264038084, 0.022564863204956053, 0.02249932861328125, 0.022607872009277344, 0.02301644706726074, 0.02265292739868164, 0.02348646354675293, 0.02287718391418457, 0.022573055267333983, 0.022571008682250978, 0.023392255783081056, 0.02261299133300781, 0.022563840866088865, 0.02254745674133301, 0.022725631713867187, 0.022534143447875975, 0.022619136810302733, 0.022601728439331056, 0.022498336791992188, 0.02250441551208496, 0.02248192024230957, 0.0224901123046875, 0.022467584609985353, 0.022432767868041992, 0.022517759323120116, 0.022550527572631835, 0.022475776672363282, 0.0225218563079834, 0.02246963119506836, 0.02247987174987793, 0.022467584609985353, 0.022591487884521484, 0.022592512130737305]",tokens/s,43.61682619409526,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -43746,28 +43538,32 @@ NameError: name 'exl_ext' is not defined File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code + answer = input( +EOFError: EOF when reading a line + +During handling of the above exception, another exception occurred: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation - cls._check_and_enable_flash_attn_2( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights + self.create_no_weights_model() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model + meta_model = self.automodel_class.from_config(self.pretrained_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config + trust_remote_code = resolve_trust_remote_code( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code raise ValueError( -ValueError: FalconForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmp5sj3r5_q/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new +ValueError: The repository for Deci/DeciCoder-1b contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/Deci/DeciCoder-1b. +Please pass the argument `trust_remote_code=True` to allow custom code to be run. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-MoE-A2.7B,Qwen/Qwen1.5-MoE-A2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mistral-7B-v0.1,mistralai/Mistral-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -43793,16 +43589,16 @@ ChildProcessError: Traceback (most recent call last): return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-7b,huggyllama/llama-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,r,r,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -43810,34 +43606,69 @@ NameError: name 'exl_ext' is not defined File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/r/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694910a-1fc585f87c96f8c55bf20dc7;210cbf51-6bfb-4b75-828d-c24cb5bad6ac) + +Repository Not Found for url: https://huggingface.co/r/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + raise EnvironmentError( +OSError: r is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,l,l,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -43845,34 +43676,69 @@ NameError: name 'exl_ext' is not defined File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/l/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669491b0-327a16341b2f51a514e18177;e075165f-03de-49cf-b752-40507cae6236) + +Repository Not Found for url: https://huggingface.co/l/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + raise EnvironmentError( +OSError: l is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-2b,google/recurrentgemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,a,a,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -43884,11 +43750,21 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/a/resolve/main/config.json The above exception was the direct cause of the following exception: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn @@ -43899,13 +43775,52 @@ Traceback (most recent call last): response = _request_wrapper( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status - raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-669481ff-551622401da134c31e980f63;aacf66f4-10d4-468f-b4da-4ffaa2b351af) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694915d-39ab4dc675e32efe6561cfed;e47ddd1a-35c8-40f3-a7eb-3ff9fadfc81d) -403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json. -If you are trying to create or update content,make sure you have a token with the `write` role. +Repository Not Found for url: https://huggingface.co/a/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + raise EnvironmentError( +OSError: a is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,1,1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/1/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -43918,9 +43833,25 @@ Traceback (most recent call last): return _hf_hub_download_to_cache_dir( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error - raise LocalEntryNotFoundError( -huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669495ac-5e42e51857eede2b456eb4b4;ad0329de-34e3-47a5-bb01-63405db8328a) + +Repository Not Found for url: https://huggingface.co/1/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. The above exception was the direct cause of the following exception: @@ -43941,13 +43872,13 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/recurrentgemma-2b is not the path to a directory containing a file named config.json. -Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. +OSError: 1 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-30b,facebook/opt-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-7b,huggyllama/llama-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -43973,16 +43904,16 @@ ChildProcessError: Traceback (most recent call last): return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-160m,EleutherAI/pythia-160m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-2.7b,EleutherAI/pythia-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -44008,16 +43939,86 @@ ChildProcessError: Traceback (most recent call last): return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,B,B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status + response.raise_for_status() + File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status + raise HTTPError(http_error_msg, response=self) +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/B/resolve/main/config.json + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error + raise head_call_error + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error + metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata + r = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper + response = _request_wrapper( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper + hf_raise_for_status(response) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status + raise RepositoryNotFoundError(message, response) from e +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669493c4-3b2e74dc6e607ee34f0464bc;6a9f2d1a-1120-492e-a51c-9bf5c063028a) + +Repository Not Found for url: https://huggingface.co/B/resolve/main/config.json. +Please make sure you specified the correct `repo_id` and `repo_type`. +If you are trying to access a private or gated repo, make sure you are authenticated. + +The above exception was the direct cause of the following exception: -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-7b,stabilityai/stablelm-base-alpha-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ + super().__init__(config) + File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ + self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) + File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config + return AutoConfig.from_pretrained(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained + config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict + config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict + resolved_config_file = cached_file( + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + raise EnvironmentError( +OSError: B is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-30b,huggyllama/llama-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -44043,16 +44044,16 @@ ChildProcessError: Traceback (most recent call last): return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,m,m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,2,2,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -44064,7 +44065,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/m/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/2/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -44091,9 +44092,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948c6d-6b9ca4037afd9e181c826e56;07f6a07c-afc9-405b-96b7-10926cccde8d) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949363-46ab8ed24e41d8cc04a7d32c;cae9269f-014e-4011-83ce-e993e098b454) -Repository Not Found for url: https://huggingface.co/m/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/2/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -44118,11 +44119,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: m is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: 2 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-3b-4e1t,stabilityai/stablelm-3b-4e1t,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-350m,facebook/opt-350m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -44148,16 +44149,16 @@ ChildProcessError: Traceback (most recent call last): return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-125m,EleutherAI/gpt-neo-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-MoE-A2.7B,Qwen/Qwen1.5-MoE-A2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -44183,17 +44184,16 @@ ChildProcessError: Traceback (most recent call last): return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2,openai-community/gpt2,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1214.447616,1005.060096,0.0,358.612992,318.913024,s,23,0.16858035135269164,0.007329580493595289,0.0002587299119465544,0.007231008052825927,0.007471584033966065,0.007511299371719361,0.00818978693008423,"[0.008380064010620117, 0.007363743782043457, 0.007418399810791016, 0.007246111869812012, 0.007178239822387696, 0.007166944026947022, 0.007157599925994873, 0.007199552059173584, 0.007136896133422852, 0.007476480007171631, 0.007105247974395752, 0.0071660480499267576, 0.007231008052825927, 0.007161407947540283, 0.007184447765350342, 0.007153855800628662, 0.007515168190002442, 0.007452000141143799, 0.007419456005096436, 0.007367104053497314, 0.007440927982330322, 0.007213119983673096, 0.00744652795791626]",tokens/s,34926.964813838546,kWh,8.452715794226453e-08,4.6316905321826644e-08,1.8026361583691486e-07,3.11107679101006e-07,tokens/kWh,822866220.2738029,MB,1214.447616,1005.060096,0.0,358.612992,328.804864,s,23,9.953621459960937,0.4327661504330842,0.010704234458509567,0.429077880859375,0.44030704345703126,0.44415710449218754,0.4681292211914063,"[0.47477725219726563, 0.4445589294433594, 0.42644979858398435, 0.4242642822265625, 0.42919677734375, 0.42827423095703127, 0.42818402099609376, 0.4242230834960937, 0.42831201171875, 0.429077880859375, 0.4333373718261719, 0.4317017822265625, 0.437157470703125, 0.4248154602050781, 0.42390850830078125, 0.43650335693359377, 0.4387818298339844, 0.4320978088378906, 0.43937249755859376, 0.4277911987304687, 0.42581710815429685, 0.4244781188964844, 0.44054067993164064]",tokens/s,145.5751563216155,kWh,5.077228334491569e-06,2.782076962048813e-06,8.839489976768277e-06,1.6698795273308658e-05,tokens/kWh,3772727.2518095453,,s,1448,10.106253310203536,0.0069794567059416794,0.000952161877616497,0.006773759841918945,0.0070439937591552735,0.007432703852653502,0.014228009071350098,"[0.007984127998352051, 0.007874559879302979, 0.007838719844818116, 0.00810905647277832, 0.007803904056549072, 0.0076360321044921875, 0.007531455993652344, 0.007589888095855713, 0.007426047801971435, 0.007560192108154297, 0.0076063361167907715, 0.007623616218566894, 0.0076574721336364745, 0.007613440036773681, 0.0075335679054260255, 0.007480319976806641, 0.0076472959518432615, 0.007611328125, 0.0075428481101989745, 0.0075550079345703125, 0.00753868818283081, 0.007555071830749512, 0.007600128173828125, 0.0074065918922424315, 0.007469056129455566, 0.0074403839111328125, 0.007422976016998291, 0.0075304961204528805, 0.007518208026885987, 0.007624703884124756, 0.007686143875122071, 0.007682047843933106, 0.007307263851165771, 0.007299071788787842, 0.007363584041595459, 0.007319551944732666, 0.007326720237731933, 0.0074065918922424315, 0.0074741759300231934, 0.007550975799560547, 0.007709695816040039, 0.007379968166351319, 0.007514111995697022, 0.007488512039184571, 0.007510015964508057, 0.007669760227203369, 0.007569407939910889, 0.007693312168121338, 0.0076687359809875484, 0.0076277761459350585, 0.007525375843048096, 0.007512063980102539, 0.007461887836456299, 0.00764415979385376, 0.007400447845458984, 0.0072427520751953125, 0.007208960056304932, 0.007473152160644531, 0.00729702377319336, 0.00703385591506958, 0.007020544052124023, 0.007089183807373047, 0.014714847564697266, 0.007219200134277344, 0.007350272178649903, 0.007436287879943848, 0.007600128173828125, 0.007280640125274658, 0.007155712127685547, 0.007156735897064209, 0.007203839778900147, 0.007258111953735351, 0.00719974422454834, 0.007029759883880615, 0.007017471790313721, 0.007067647933959961, 0.007037951946258545, 0.0069918718338012695, 0.007010335922241211, 0.006995999813079834, 0.006998976230621338, 0.006979584217071533, 0.0070348801612854, 0.007015423774719238, 0.00698367977142334, 0.006958079814910889, 0.006994944095611572, 0.00698367977142334, 0.006978559970855713, 0.006947840213775635, 0.0070348801612854, 0.006961152076721191, 0.007020544052124023, 0.0069683518409729, 0.007003104209899903, 0.007001088142395019, 0.006972415924072266, 0.006957056045532227, 0.007001088142395019, 0.006966271877288818, 0.006965248107910156, 0.007002111911773682, 0.0069816322326660156, 0.007114751815795899, 0.007004159927368164, 0.007090176105499267, 0.007002111911773682, 0.006996992111206054, 0.007081984043121338, 0.007012351989746094, 0.006987775802612305, 0.006988800048828125, 0.0069928960800170895, 0.007177216053009033, 0.007015423774719238, 0.006977536201477051, 0.007003136157989502, 0.007126016139984131, 0.007016448020935059, 0.006986752033233643, 0.006990848064422607, 0.0069632000923156735, 0.0070041918754577635, 0.007000031948089599, 0.007019519805908203, 0.014730239868164062, 0.007007232189178467, 0.0069550080299377445, 0.007005216121673584, 0.0070368962287902835, 0.006977536201477051, 0.006851583957672119, 0.006823935985565186, 0.006765567779541016, 0.006767615795135498, 0.006763519763946534, 0.006762495994567871, 0.0068055038452148435, 0.006909952163696289, 0.006785024166107178, 0.00677785587310791, 0.006772736072540283, 0.0067420158386230465, 0.006738944053649902, 0.006725632190704346, 0.0067010560035705566, 0.006772736072540283, 0.006744063854217529, 0.006779903888702392, 0.006756351947784424, 0.006751232147216797, 0.006719488143920899, 0.006737919807434082, 0.0067758078575134275, 0.006755328178405762, 0.006710271835327148, 0.006716415882110595, 0.006723584175109864, 0.006725632190704346, 0.00672051191329956, 0.0067123198509216305, 0.006694911956787109, 0.006738944053649902, 0.006696959972381592, 0.00672051191329956, 0.006724607944488525, 0.006721536159515381, 0.00674508810043335, 0.006755328178405762, 0.006785024166107178, 0.006756351947784424, 0.006723584175109864, 0.006751232147216797, 0.0067573761940002445, 0.006761472225189209, 0.006666240215301514, 0.006661119937896728, 0.006723584175109864, 0.006661119937896728, 0.006654975891113281, 0.0066375679969787596, 0.006723584175109864, 0.006718463897705078, 0.006703104019165039, 0.006754303932189941, 0.006707200050354004, 0.006717440128326416, 0.006744063854217529, 0.014316543579101563, 0.0067348480224609375, 0.006750207901000976, 0.0067870721817016606, 0.006694911956787109, 0.006708223819732666, 0.0067010560035705566, 0.00672051191329956, 0.0067276802062988285, 0.0066979842185974124, 0.006687744140625, 0.006713344097137451, 0.006761472225189209, 0.006749184131622315, 0.0067645440101623535, 0.006747136116027832, 0.006710271835327148, 0.006718463897705078, 0.006700032234191895, 0.006749184131622315, 0.006680575847625733, 0.006717440128326416, 0.00667852783203125, 0.006739967823028564, 0.006696959972381592, 0.0067010560035705566, 0.006673408031463623, 0.006703104019165039, 0.006800384044647217, 0.00672051191329956, 0.006776832103729248, 0.006722559928894043, 0.006737919807434082, 0.006756351947784424, 0.0067717118263244626, 0.006748159885406494, 0.006724607944488525, 0.00672870397567749, 0.006800384044647217, 0.006699007987976074, 0.0067276802062988285, 0.006737919807434082, 0.0067041277885437015, 0.006756351947784424, 0.006843391895294189, 0.006760447978973389, 0.006755328178405762, 0.006778880119323731, 0.006690815925598144, 0.006692863941192627, 0.006652927875518798, 0.006653952121734619, 0.006666240215301514, 0.006660096168518067, 0.0066375679969787596, 0.006724607944488525, 0.00674508810043335, 0.006793216228485107, 0.006758399963378906, 0.006758399963378906, 0.006765567779541016, 0.006729728221893311, 0.006829055786132812, 0.014258175849914552, 0.006754303932189941, 0.006767615795135498, 0.006770688056945801, 0.006714367866516113, 0.006759424209594727, 0.006788095951080322, 0.006724607944488525, 0.006732800006866455, 0.006737919807434082, 0.006708223819732666, 0.006724607944488525, 0.006731776237487793, 0.0067010560035705566, 0.0067420158386230465, 0.0067717118263244626, 0.006756351947784424, 0.00674508810043335, 0.0067358717918396, 0.00672870397567749, 0.006722623825073242, 0.006734784126281738, 0.006726655960083008, 0.006713344097137451, 0.00687718391418457, 0.006709248065948486, 0.0067051520347595215, 0.006795263767242431, 0.006717440128326416, 0.00669593620300293, 0.00674508810043335, 0.0067338237762451176, 0.00672051191329956, 0.0067758078575134275, 0.006737919807434082, 0.006726655960083008, 0.006694911956787109, 0.0067358717918396, 0.006706175804138184, 0.006700032234191895, 0.006766592025756836, 0.0067348480224609375, 0.0067348480224609375, 0.006829055786132812, 0.0067276802062988285, 0.006977536201477051, 0.006985727787017822, 0.007014400005340577, 0.0069816322326660156, 0.006931456089019775, 0.006980607986450196, 0.006937600135803222, 0.006938623905181885, 0.0069324798583984375, 0.006961152076721191, 0.006959104061126709, 0.006976511955261231, 0.0069847040176391605, 0.006971392154693603, 0.0069550080299377445, 0.006982656002044678, 0.007070720195770264, 0.007047167778015137, 0.014191616058349609, 0.0067123198509216305, 0.006912000179290771, 0.006758399963378906, 0.0068055038452148435, 0.006760447978973389, 0.006781951904296875, 0.006699007987976074, 0.0068280320167541505, 0.006811647891998291, 0.00673689603805542, 0.006723584175109864, 0.006774784088134766, 0.006723584175109864, 0.006739967823028564, 0.0067358717918396, 0.006739967823028564, 0.006717440128326416, 0.006739967823028564, 0.0067051520347595215, 0.006780928134918213, 0.006706175804138184, 0.006874112129211426, 0.006763519763946534, 0.006729728221893311, 0.006726655960083008, 0.006752255916595459, 0.0067010560035705566, 0.006756351947784424, 0.006718463897705078, 0.006817791938781738, 0.007201791763305664, 0.006953983783721924, 0.007018496036529541, 0.006915071964263916, 0.006966271877288818, 0.006953983783721924, 0.006956031799316406, 0.006920191764831543, 0.00694374418258667, 0.00709939193725586, 0.006912000179290771, 0.006710271835327148, 0.006819839954376221, 0.006730751991271973, 0.006739967823028564, 0.0067276802062988285, 0.006729728221893311, 0.006692863941192627, 0.0067051520347595215, 0.0067358717918396, 0.006722559928894043, 0.006740992069244385, 0.006744063854217529, 0.006699007987976074, 0.006892543792724609, 0.006709248065948486, 0.006807551860809326, 0.0067983360290527345, 0.006761472225189209, 0.006715392112731934, 0.00672051191329956, 0.006797311782836914, 0.014218239784240723, 0.0067358717918396, 0.0069621758460998535, 0.007168000221252442, 0.007048192024230957, 0.007046144008636474, 0.006990848064422607, 0.006974463939666748, 0.006982656002044678, 0.006985727787017822, 0.006969344139099121, 0.006968319892883301, 0.006947840213775635, 0.0068249602317810056, 0.006723584175109864, 0.0067348480224609375, 0.0067276802062988285, 0.006848512172698974, 0.00674508810043335, 0.0067051520347595215, 0.006748223781585693, 0.006714303970336914, 0.0067276802062988285, 0.006804480075836182, 0.006754303932189941, 0.0067758078575134275, 0.006685696125030518, 0.006730751991271973, 0.006726655960083008, 0.0067276802062988285, 0.006749216079711914, 0.006711264133453369, 0.006721536159515381, 0.00672870397567749, 0.006696959972381592, 0.006729728221893311, 0.006738944053649902, 0.0067358717918396, 0.006718463897705078, 0.006738944053649902, 0.00674508810043335, 0.0067010560035705566, 0.00672051191329956, 0.0068055038452148435, 0.0067758078575134275, 0.006834176063537598, 0.00673689603805542, 0.0067051520347595215, 0.006752255916595459, 0.006779903888702392, 0.006749184131622315, 0.006716415882110595, 0.006848512172698974, 0.006749184131622315, 0.00676966381072998, 0.006834176063537598, 0.006716415882110595, 0.006725632190704346, 0.00672054386138916, 0.0067338237762451176, 0.006743008136749267, 0.0067686400413513184, 0.006751232147216797, 0.014236672401428223, 0.006725632190704346, 0.0067348480224609375, 0.006715456008911133, 0.006762432098388672, 0.006743040084838867, 0.006689792156219483, 0.006709248065948486, 0.006738944053649902, 0.006714431762695312, 0.006792128086090088, 0.0067686400413513184, 0.006730751991271973, 0.00672870397567749, 0.006724607944488525, 0.006722559928894043, 0.006778880119323731, 0.006765567779541016, 0.006713344097137451, 0.006707200050354004, 0.006724607944488525, 0.006759424209594727, 0.006701087951660157, 0.006740960121154785, 0.006726687908172608, 0.0067266240119934085, 0.006749184131622315, 0.006730751991271973, 0.006681600093841553, 0.006766592025756836, 0.006635519981384277, 0.006624256134033203, 0.006654975891113281, 0.006649856090545654, 0.006687744140625, 0.006709248065948486, 0.006715392112731934, 0.006750207901000976, 0.006752255916595459, 0.006715392112731934, 0.006703104019165039, 0.006806528091430664, 0.006752255916595459, 0.006755328178405762, 0.006747136116027832, 0.006730751991271973, 0.006707200050354004, 0.006713344097137451, 0.006737919807434082, 0.006721536159515381, 0.0067348480224609375, 0.006743040084838867, 0.006743040084838867, 0.006818816184997558, 0.0067358717918396, 0.006817791938781738, 0.006703104019165039, 0.006765567779541016, 0.006790143966674805, 0.0066938881874084475, 0.006729728221893311, 0.006721536159515381, 0.006699007987976074, 0.01420083236694336, 0.00677785587310791, 0.006897664070129395, 0.006767615795135498, 0.0068392958641052244, 0.00672051191329956, 0.006792191982269287, 0.0068351998329162595, 0.006717504024505615, 0.006688704013824463, 0.006752255916595459, 0.006723584175109864, 0.0067870721817016606, 0.00678604793548584, 0.0068884482383728025, 0.007054336071014404, 0.006791168212890625, 0.006876160144805908, 0.007169023990631103, 0.006994944095611572, 0.006714367866516113, 0.006750207901000976, 0.006793216228485107, 0.006711296081542969, 0.006751232147216797, 0.00672870397567749, 0.00667955207824707, 0.006749184131622315, 0.006797311782836914, 0.006726655960083008, 0.006689792156219483, 0.006719488143920899, 0.006754303932189941, 0.0067010560035705566, 0.006744063854217529, 0.00672051191329956, 0.006690815925598144, 0.006833151817321777, 0.0067276802062988285, 0.006732800006866455, 0.00674508810043335, 0.006746111869812011, 0.006723584175109864, 0.006754303932189941, 0.00673689603805542, 0.006783008098602295, 0.006755296230316162, 0.006714367866516113, 0.006714367866516113, 0.006867968082427979, 0.006754303932189941, 0.006830143928527832, 0.006731711864471436, 0.006782976150512696, 0.0067717118263244626, 0.006706175804138184, 0.00684441614151001, 0.006978559970855713, 0.006996992111206054, 0.006918144226074219, 0.006971392154693603, 0.0068853759765625, 0.006964223861694336, 0.015036416053771973, 0.007065599918365479, 0.006990848064422607, 0.007023615837097168, 0.006948863983154297, 0.006990848064422607, 0.006958079814910889, 0.007014400005340577, 0.00693452787399292, 0.006964223861694336, 0.0069253120422363285, 0.006949888229370117, 0.006964223861694336, 0.006959104061126709, 0.006947840213775635, 0.006916096210479736, 0.006853631973266602, 0.006752255916595459, 0.006746111869812011, 0.006703104019165039, 0.006756351947784424, 0.006773759841918945, 0.00672051191329956, 0.006751232147216797, 0.00672051191329956, 0.0067123198509216305, 0.006843391895294189, 0.006763519763946534, 0.006758399963378906, 0.006754303932189941, 0.0067358717918396, 0.006692863941192627, 0.006746111869812011, 0.00674508810043335, 0.006715392112731934, 0.00674508810043335, 0.006738944053649902, 0.006743040084838867, 0.006750207901000976, 0.00672979211807251, 0.00669484806060791, 0.006716415882110595, 0.006749184131622315, 0.006749184131622315, 0.006710271835327148, 0.006737919807434082, 0.006803455829620361, 0.0067051520347595215, 0.006708223819732666, 0.006780928134918213, 0.006688767910003662, 0.0067348480224609375, 0.006717440128326416, 0.006715392112731934, 0.006817791938781738, 0.0067420158386230465, 0.0067870721817016606, 0.006800384044647217, 0.006766592025756836, 0.006739999771118164, 0.006708191871643066, 0.006755328178405762, 0.006746111869812011, 0.014143487930297852, 0.006750207901000976, 0.006739967823028564, 0.006726655960083008, 0.006748159885406494, 0.0067246718406677244, 0.006729663848876953, 0.0067717118263244626, 0.006810624122619629, 0.006706175804138184, 0.006749184131622315, 0.00673689603805542, 0.006711296081542969, 0.0067420158386230465, 0.006732800006866455, 0.006719488143920899, 0.0067645440101623535, 0.006759424209594727, 0.006724607944488525, 0.00672870397567749, 0.006749184131622315, 0.006729728221893311, 0.006677504062652588, 0.006738944053649902, 0.006686751842498779, 0.0066969280242919925, 0.006802432060241699, 0.006756351947784424, 0.007007232189178467, 0.007004159927368164, 0.006947840213775635, 0.007006207942962647, 0.006967296123504638, 0.006986752033233643, 0.006968319892883301, 0.0070553598403930665, 0.006969344139099121, 0.006975488185882568, 0.006986752033233643, 0.0069632000923156735, 0.006961152076721191, 0.006985727787017822, 0.006971392154693603, 0.007068672180175781, 0.006986752033233643, 0.006994944095611572, 0.006972415924072266, 0.006941696166992187, 0.006953983783721924, 0.006989823818206787, 0.006973440170288086, 0.006994944095611572, 0.006929408073425293, 0.006985727787017822, 0.006967296123504638, 0.0070522880554199216, 0.006951935768127441, 0.007003136157989502, 0.006975488185882568, 0.006987775802612305, 0.006959104061126709, 0.00694374418258667, 0.00694271993637085, 0.014244864463806153, 0.006744063854217529, 0.006746111869812011, 0.0067276802062988285, 0.006718463897705078, 0.006841343879699707, 0.006713344097137451, 0.00678604793548584, 0.006906879901885986, 0.006791168212890625, 0.006716415882110595, 0.006849535942077637, 0.006762495994567871, 0.006692863941192627, 0.006747136116027832, 0.006708223819732666, 0.006703104019165039, 0.00679423999786377, 0.006711296081542969, 0.006789120197296142, 0.006779903888702392, 0.00676358413696289, 0.0067491202354431155, 0.006688767910003662, 0.0067420477867126466, 0.00675222396850586, 0.006725632190704346, 0.006752255916595459, 0.0067420158386230465, 0.006717504024505615, 0.006833087921142578, 0.007392255783081054, 0.007624703884124756, 0.007074816226959229, 0.00697654390335083, 0.007215072154998779, 0.006989823818206787, 0.006999040126800537, 0.007142399787902832, 0.006996992111206054, 0.006988800048828125, 0.006978559970855713, 0.006941696166992187, 0.006982656002044678, 0.00693555212020874, 0.006973440170288086, 0.006958079814910889, 0.006959104061126709, 0.006960127830505371, 0.0069959678649902345, 0.0069632000923156735, 0.006716415882110595, 0.006729728221893311, 0.0067062082290649415, 0.006729695796966553, 0.0067348480224609375, 0.006683648109436035, 0.006800384044647217, 0.006818816184997558, 0.006718463897705078, 0.006850560188293457, 0.0067420158386230465, 0.006748159885406494, 0.014536704063415527, 0.006968319892883301, 0.006966271877288818, 0.00695091199874878, 0.00704204797744751, 0.006987775802612305, 0.006970367908477783, 0.006851583957672119, 0.006754303932189941, 0.0068884482383728025, 0.006730751991271973, 0.006762495994567871, 0.006744063854217529, 0.006726655960083008, 0.00675328016281128, 0.006760447978973389, 0.006747136116027832, 0.006714367866516113, 0.006825984001159668, 0.006810624122619629, 0.006713344097137451, 0.006802432060241699, 0.0073820161819458, 0.0069918718338012695, 0.007038976192474365, 0.007009280204772949, 0.006915071964263916, 0.006946815967559815, 0.0069027838706970214, 0.006979584217071533, 0.007037951946258545, 0.0069847040176391605, 0.007095295906066895, 0.006979584217071533, 0.006982656002044678, 0.006957056045532227, 0.006939648151397705, 0.007016448020935059, 0.007017471790313721, 0.006959104061126709, 0.007007232189178467, 0.006953983783721924, 0.006958079814910889, 0.006985727787017822, 0.007005184173583984, 0.00695091199874878, 0.0069959678649902345, 0.006952960014343262, 0.006946815967559815, 0.006927360057830811, 0.006949888229370117, 0.006945792198181152, 0.006974463939666748, 0.007023615837097168, 0.006964223861694336, 0.006966271877288818, 0.006936575889587402, 0.007049215793609619, 0.007016448020935059, 0.006938623905181885, 0.006959104061126709, 0.006936575889587402, 0.006927360057830811, 0.014215167999267577, 0.006761472225189209, 0.006815743923187256, 0.006685696125030518, 0.006874112129211426, 0.006820864200592041, 0.006779903888702392, 0.006732800006866455, 0.006800384044647217, 0.006703104019165039, 0.00673689603805542, 0.006716415882110595, 0.0066979842185974124, 0.006699007987976074, 0.006696959972381592, 0.006717440128326416, 0.006749184131622315, 0.006707200050354004, 0.00672870397567749, 0.006694911956787109, 0.006708223819732666, 0.0066938881874084475, 0.006688767910003662, 0.006703104019165039, 0.006685696125030518, 0.006864895820617676, 0.006916096210479736, 0.0067983360290527345, 0.006809599876403808, 0.006807551860809326, 0.00673689603805542, 0.006708223819732666, 0.006715392112731934, 0.006714367866516113, 0.00678607988357544, 0.006709216117858886, 0.006750207901000976, 0.0067123198509216305, 0.006722591876983643, 0.006701024055480957, 0.006739007949829102, 0.006764480113983154, 0.006756351947784424, 0.006732800006866455, 0.006713344097137451, 0.006716415882110595, 0.006711296081542969, 0.006681600093841553, 0.006714367866516113, 0.006699007987976074, 0.006694911956787109, 0.006732800006866455, 0.006689792156219483, 0.006703104019165039, 0.0067758078575134275, 0.006743040084838867, 0.006756351947784424, 0.006776832103729248, 0.006760447978973389, 0.006729728221893311, 0.006706175804138184, 0.00673689603805542, 0.00672051191329956, 0.014218239784240723, 0.0067010560035705566, 0.006730751991271973, 0.006715392112731934, 0.006696959972381592, 0.006707200050354004, 0.006708223819732666, 0.006744063854217529, 0.006721536159515381, 0.006673408031463623, 0.006746111869812011, 0.006691840171813965, 0.006708223819732666, 0.006749184131622315, 0.006730751991271973, 0.006725696086883545, 0.006710207939147949, 0.006713344097137451, 0.0067041277885437015, 0.006717440128326416, 0.0067051520347595215, 0.006686719894409179, 0.00669593620300293, 0.006739967823028564, 0.006729728221893311, 0.006884352207183838, 0.0067573761940002445, 0.006692863941192627, 0.006700032234191895, 0.006709248065948486, 0.006714367866516113, 0.006707200050354004, 0.006751232147216797, 0.006714367866516113, 0.0067870721817016606, 0.0067420158386230465, 0.006709248065948486, 0.006677504062652588, 0.0067123198509216305, 0.0067041277885437015, 0.0068351998329162595, 0.006729728221893311, 0.006744063854217529, 0.006694911956787109, 0.006737919807434082, 0.0067348480224609375, 0.00672870397567749, 0.006865920066833496, 0.006730751991271973, 0.0067041277885437015, 0.006690815925598144, 0.0067420158386230465, 0.006709248065948486, 0.006683648109436035, 0.006721536159515381, 0.006699007987976074, 0.006702079772949219, 0.006723584175109864, 0.006755328178405762, 0.0067573761940002445, 0.006694911956787109, 0.006703104019165039, 0.0066826238632202144, 0.014199808120727539, 0.006708223819732666, 0.006726655960083008, 0.006726655960083008, 0.0067051520347595215, 0.006708223819732666, 0.006747136116027832, 0.006862847805023193, 0.00672051191329956, 0.00674508810043335, 0.006713344097137451, 0.006717440128326416, 0.006710271835327148, 0.006726655960083008, 0.006721536159515381, 0.006719488143920899, 0.006707200050354004, 0.006739967823028564, 0.006916096210479736, 0.006788095951080322, 0.006837247848510742, 0.006850560188293457, 0.0070225920677185055, 0.007953407764434815, 0.007171072006225586, 0.006988800048828125, 0.0069632000923156735, 0.007014400005340577, 0.00724889612197876, 0.007015423774719238, 0.006952960014343262, 0.007001088142395019, 0.007005184173583984, 0.006944767951965332, 0.00694374418258667, 0.007057407855987549, 0.006978559970855713, 0.006953983783721924, 0.006904831886291504, 0.006892543792724609, 0.006957056045532227, 0.006884352207183838, 0.006863872051239014, 0.00689356803894043, 0.006924287796020508, 0.006998015880584717, 0.006892543792724609, 0.006951935768127441, 0.007155712127685547, 0.007081984043121338, 0.006960127830505371, 0.007018496036529541, 0.0070522880554199216, 0.007150591850280762, 0.0070860800743103025, 0.0070522880554199216, 0.00693452787399292, 0.007058432102203369, 0.006945792198181152, 0.006958079814910889, 0.006944767951965332, 0.006970367908477783, 0.006941696166992187, 0.014789631843566894, 0.0069632000923156735, 0.006973440170288086, 0.006958079814910889, 0.0069632000923156735, 0.0069621758460998535, 0.006931456089019775, 0.006985727787017822, 0.006957056045532227, 0.006941696166992187, 0.006929408073425293, 0.006923264026641846, 0.006958079814910889, 0.006957056045532227, 0.006990848064422607, 0.006978559970855713, 0.00698367977142334, 0.006944767951965332, 0.006917119979858399, 0.00695091199874878, 0.006904831886291504, 0.006956031799316406, 0.006967296123504638, 0.006953983783721924, 0.006938623905181885, 0.006903808116912841, 0.006965248107910156, 0.006949888229370117, 0.00693555212020874, 0.006973440170288086, 0.006994944095611572, 0.006939648151397705, 0.0069816322326660156, 0.006960127830505371, 0.006980607986450196, 0.0070563840866088865, 0.006985727787017822, 0.006752287864685059, 0.0067337918281555175, 0.006853695869445801, 0.006733759880065918, 0.006716415882110595, 0.006744063854217529, 0.006700032234191895, 0.006732800006866455, 0.006743040084838867, 0.006779903888702392, 0.007061503887176514, 0.007062528133392334, 0.006999040126800537, 0.006979584217071533, 0.006915071964263916, 0.006968319892883301, 0.00692633581161499, 0.0069283838272094726, 0.006938623905181885, 0.00801689624786377, 0.007638016223907471, 0.00704307222366333, 0.007014400005340577, 0.006941696166992187, 0.0070225920677185055, 0.007076863765716553, 0.014768128395080566, 0.006933504104614257, 0.006961152076721191, 0.006966271877288818, 0.006978559970855713, 0.006912000179290771, 0.0067358717918396, 0.006732800006866455, 0.0066979842185974124, 0.006715392112731934, 0.006730751991271973, 0.006721536159515381, 0.006842368125915528, 0.00672870397567749, 0.006711296081542969, 0.006741055965423584, 0.00674399995803833, 0.0067758078575134275, 0.006959104061126709, 0.006964223861694336, 0.006971392154693603, 0.006915135860443115, 0.006940608024597168, 0.006872064113616944, 0.0069959678649902345, 0.007156735897064209, 0.006993919849395752, 0.006974463939666748, 0.006920191764831543, 0.006889472007751465, 0.00695091199874878, 0.006952960014343262, 0.00695091199874878, 0.006915071964263916, 0.0070830078125, 0.006978559970855713, 0.006952960014343262, 0.0069632000923156735, 0.006980607986450196, 0.007064576148986816, 0.0069918718338012695, 0.006924287796020508, 0.006948863983154297, 0.006966271877288818, 0.006948863983154297, 0.00679423999786377, 0.006752319812774658, 0.006724544048309326, 0.006639616012573242, 0.0066641921997070315, 0.006675456047058105, 0.006716415882110595, 0.006661119937896728, 0.006628352165222168, 0.006649856090545654, 0.006746111869812011, 0.006722559928894043, 0.006972415924072266, 0.006773759841918945, 0.0067686400413513184, 0.006724607944488525, 0.006721536159515381, 0.006733888149261474, 0.014669759750366211, 0.007174143791198731, 0.007038976192474365, 0.006959104061126709, 0.006977536201477051, 0.007017471790313721, 0.006961152076721191, 0.006960127830505371, 0.007027711868286133, 0.00693452787399292, 0.007000063896179199, 0.006951935768127441, 0.006958079814910889, 0.006951935768127441, 0.006952960014343262, 0.006959104061126709, 0.006951935768127441, 0.006958079814910889, 0.0069816322326660156, 0.006946815967559815, 0.006924287796020508, 0.00698367977142334, 0.006944767951965332, 0.006986752033233643, 0.006969344139099121, 0.006968319892883301, 0.006915103912353515, 0.0069242558479309085, 0.006949888229370117, 0.007111680030822754, 0.007015423774719238, 0.006973440170288086, 0.006959104061126709, 0.007012351989746094, 0.006980607986450196, 0.006960127830505371, 0.00693555212020874, 0.006985727787017822, 0.006936575889587402, 0.006973440170288086, 0.006958079814910889, 0.0069959678649902345, 0.006958079814910889, 0.006933504104614257, 0.007006207942962647, 0.006975552082061767, 0.006967232227325439, 0.006929408073425293, 0.006957056045532227, 0.006936575889587402, 0.006938623905181885, 0.006901792049407959, 0.0069539518356323245, 0.006959104061126709, 0.006945792198181152, 0.006958079814910889, 0.007050240039825439, 0.006960127830505371, 0.00695091199874878, 0.006949888229370117, 0.006945792198181152, 0.006960127830505371, 0.006976511955261231, 0.014671872138977051, 0.00683622407913208, 0.006738944053649902, 0.006726655960083008, 0.006732800006866455, 0.006713344097137451, 0.006724607944488525, 0.006717440128326416, 0.00672051191329956, 0.006718463897705078, 0.006726655960083008, 0.006715392112731934, 0.006681600093841553, 0.006816768169403077, 0.006746111869812011, 0.006716415882110595, 0.006724607944488525, 0.00672051191329956, 0.006711296081542969, 0.006715392112731934, 0.0067123198509216305, 0.006715392112731934, 0.006703104019165039, 0.00672870397567749, 0.0068392958641052244, 0.0067348480224609375, 0.006721536159515381, 0.006716415882110595, 0.006694911956787109, 0.006722559928894043, 0.0067338237762451176, 0.006718463897705078, 0.0066979842185974124, 0.006731776237487793, 0.006715392112731934, 0.006724607944488525, 0.006729728221893311, 0.00672870397567749, 0.0066938881874084475, 0.006746111869812011, 0.006687744140625, 0.006737919807434082, 0.0067010560035705566, 0.0067041277885437015, 0.007002111911773682, 0.006776832103729248, 0.006823935985565186, 0.00672870397567749, 0.0067983360290527345, 0.006721536159515381, 0.006727744102478028, 0.006747072219848633, 0.007356416225433349, 0.006988800048828125, 0.006908927917480469, 0.0069304962158203125, 0.006955967903137207, 0.007030784130096435, 0.00693452787399292, 0.006971392154693603, 0.00694374418258667, 0.007005184173583984, 0.006920191764831543, 0.014754816055297852, 0.00694374418258667, 0.006967296123504638, 0.006953983783721924, 0.007035903930664063, 0.006876160144805908, 0.0067123198509216305, 0.006750207901000976, 0.0067276802062988285, 0.0067276802062988285, 0.006765567779541016, 0.006766592025756836, 0.006710271835327148, 0.006762495994567871, 0.006740992069244385, 0.006776832103729248, 0.006737919807434082, 0.0067276802062988285, 0.006760447978973389, 0.006696959972381592, 0.006744063854217529, 0.006744063854217529, 0.006723584175109864, 0.0068076162338256835, 0.006731711864471436, 0.0067358717918396, 0.006700064182281494, 0.006725599765777588, 0.006718463897705078, 0.006722591876983643, 0.0067337918281555175, 0.0066938881874084475, 0.006730751991271973, 0.006706175804138184, 0.006865920066833496, 0.006724607944488525, 0.006740992069244385, 0.006723584175109864, 0.0067041277885437015, 0.006717440128326416, 0.006737919807434082, 0.006715392112731934, 0.006823935985565186, 0.006739967823028564, 0.006714367866516113, 0.006762495994567871, 0.0067420477867126466, 0.006771679878234863, 0.006731776237487793, 0.006722559928894043, 0.006687744140625, 0.0067338237762451176, 0.006725632190704346, 0.006715392112731934, 0.006706175804138184, 0.006725632190704346, 0.006715392112731934, 0.006710271835327148, 0.006723584175109864, 0.006709248065948486, 0.006684671878814697, 0.006709248065948486, 0.0067123198509216305, 0.01426643180847168, 0.0067255678176879885, 0.006780928134918213, 0.006709248065948486, 0.006739967823028564, 0.006708223819732666, 0.00673689603805542, 0.006763519763946534, 0.006716415882110595, 0.0067051520347595215, 0.006726655960083008, 0.006707200050354004, 0.006721536159515381, 0.00673689603805542, 0.0067348480224609375, 0.006732800006866455, 0.006763519763946534, 0.0067123198509216305, 0.006706175804138184, 0.006708223819732666, 0.0067010560035705566, 0.00676966381072998, 0.00679423999786377, 0.006707200050354004, 0.006684671878814697, 0.00669593620300293, 0.006684671878814697, 0.006699007987976074, 0.006675456047058105, 0.006808576107025147, 0.006714367866516113, 0.006790143966674805, 0.00673689603805542, 0.0067686400413513184, 0.006692863941192627, 0.006718463897705078, 0.0067123198509216305, 0.006731776237487793, 0.006737919807434082, 0.006729728221893311, 0.006708223819732666, 0.0067420158386230465, 0.0067358717918396, 0.006760447978973389, 0.00672870397567749, 0.006732800006866455, 0.006722559928894043, 0.006713344097137451, 0.006749184131622315, 0.006750207901000976, 0.006699007987976074, 0.0067420158386230465, 0.006740992069244385, 0.006699007987976074, 0.006751232147216797, 0.006732800006866455, 0.006831103801727295, 0.0068055038452148435, 0.006739967823028564, 0.006724607944488525, 0.006737919807434082, 0.006761504173278809, 0.006738912105560302, 0.01487667179107666, 0.006949888229370117, 0.00692633581161499, 0.006870016098022461, 0.007027711868286133, 0.006979584217071533, 0.0069632000923156735, 0.006959104061126709, 0.007003136157989502, 0.007009280204772949, 0.006994976043701172, 0.006966303825378418, 0.007005119800567627, 0.007029759883880615, 0.006985727787017822, 0.007004159927368164, 0.007013376235961914, 0.007021567821502686, 0.0069847040176391605, 0.007036928176879883, 0.007038976192474365, 0.006982656002044678, 0.006987775802612305, 0.006975488185882568, 0.007032832145690918, 0.006986752033233643, 0.006975488185882568, 0.006973440170288086, 0.006967296123504638, 0.006989823818206787, 0.006965248107910156, 0.006952960014343262, 0.006985727787017822, 0.006965248107910156, 0.006945792198181152, 0.006945824146270752, 0.0069508800506591795, 0.007271423816680909, 0.0069928960800170895, 0.006933504104614257, 0.0069621758460998535, 0.0069847040176391605, 0.006964223861694336, 0.006957056045532227, 0.007038976192474365, 0.006969344139099121, 0.0069816322326660156, 0.00694374418258667, 0.006977536201477051, 0.006970367908477783, 0.006953983783721924, 0.006970367908477783, 0.006973440170288086, 0.00693555212020874, 0.007002111911773682, 0.0070553598403930665, 0.0070256638526916505, 0.006982656002044678, 0.006973440170288086, 0.007006207942962647, 0.006969344139099121, 0.0069918718338012695, 0.006994944095611572]",tokens/s,143.27762777705752,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-j-6b,EleutherAI/gpt-j-6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-70B,meta-llama/Meta-Llama-3-70B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -44213,22 +44213,29 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-16B-nl,Salesforce/codegen-16B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/polyglot-ko-12.8b,EleutherAI/polyglot-ko-12.8b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -44248,16 +44255,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1481, in _autoset_attn_implementation - cls._check_and_enable_flash_attn_2( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1572, in _check_and_enable_flash_attn_2 - raise ValueError( -ValueError: CodeGenForCausalLM does not support Flash Attention 2.0 yet. Please request to add support where the model is hosted, on its model hub page: https://huggingface.co//tmp/tmpf1joci74/no_weights_model/discussions/new or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-6.7b,facebook/opt-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-65b,huggyllama/llama-65b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -44277,22 +44290,29 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained - hf_quantizer.postprocess_model(model) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model - return self._process_model_after_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading - model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 86.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-14B,Qwen/Qwen1.5-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -44318,16 +44338,16 @@ ChildProcessError: Traceback (most recent call last): return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm2-20b,internlm/internlm2-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-12b,stabilityai/stablelm-2-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -44345,7 +44365,7 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained hf_quantizer.postprocess_model(model) @@ -44353,16 +44373,16 @@ ChildProcessError: Traceback (most recent call last): return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 462, in post_init_awq_exllama_modules - model = exllama_post_init(model) - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init - submodule.post_init() - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init - self.q4 = exl_ext.make_q4( -NameError: name 'exl_ext' is not defined + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,t,t,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,8,8,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -44374,7 +44394,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/t/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/8/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -44401,9 +44421,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669490e8-1ae525a45983b25275f3212e;8282a1b1-aac1-4d8b-b2cc-5b778ad71580) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949264-2f8b59776239e9fd092109d4;3fc6b401-c54c-4b1e-a2d6-62cfccdac636) -Repository Not Found for url: https://huggingface.co/t/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/8/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -44428,11 +44448,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: t is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: 8 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-66b,facebook/opt-66b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-8B,meta-llama/Meta-Llama-3-8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -44452,58 +44472,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 162.00 MiB. GPU - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,.,.,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 373, in cached_file - raise EnvironmentError( -OSError: . does not appear to have a file named config.json. Checkout 'https://huggingface.co/./tree/None' for available files. + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mixtral-8x7B-v0.1,mistralai/Mixtral-8x7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/rho-math-1b-v0.1,microsoft/rho-math-1b-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -44523,29 +44507,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-72B,Qwen/Qwen2-beta-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-70m,EleutherAI/pythia-70m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -44565,29 +44542,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-180B,tiiuae/falcon-180B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,databricks/dbrx-base,databricks/dbrx-base,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -44599,7 +44569,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -44616,10 +44586,10 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66949924-4e03e7531ba0feba6dc8a9ed;57175d6d-b9ff-4445-9bdc-e97db273007e) +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66947b2f-6ae9874027ec04660f185aff;3e73d25b-ebc4-46c2-86d8-67ed0854a12f) 403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json. +Cannot access content at: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json. If you are trying to create or update content,make sure you have a token with the `write` role. The above exception was the direct cause of the following exception: @@ -44658,12 +44628,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like tiiuae/falcon-180B is not the path to a directory containing a file named config.json. +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like databricks/dbrx-base is not the path to a directory containing a file named config.json. Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-4B,Qwen/Qwen1.5-4B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,3149.217792,5128.060928,0.0,4481.613824,4276.256768,s,10,3.149311706542969,0.3149311706542969,0.0015717060185626956,0.31493319702148437,0.3165461700439453,0.3169147476196289,0.31720960968017575,"[0.3172833251953125, 0.3164642639160156, 0.3132740478515625, 0.3144434814453125, 0.31399490356445314, 0.3119559020996094, 0.3140972900390625, 0.31542291259765626, 0.3162637023925781, 0.31611187744140623]",tokens/s,812.8760308741042,kWh,3.694201881686847e-06,2.024221956560268e-06,1.6665230346062446e-05,2.238365418430956e-05,tokens/kWh,11436917.220578322,MB,3149.217792,5128.060928,0.0,4481.613824,4465.661952,s,10,184.204947265625,18.420494726562502,0.008042192397515377,18.4165078125,18.4298185546875,18.432060644531248,18.433854316406247,"[18.41758203125, 18.4293203125, 18.415013671875, 18.434302734375, 18.41543359375, 18.427755859375, 18.427966796875, 18.41258203125, 18.409763671875, 18.4152265625]",tokens/s,3.420103582188457,kWh,0.0002180770655886995,0.00011952181134027568,0.0009648250270677349,0.00130242390399671,tokens/kWh,48371.3480739057,,s,629,186.7401061401367,0.2968841115105512,0.03741416455160097,0.29225473022460935,0.29295676879882815,0.29340855712890623,0.6063264038085938,"[0.29236837768554685, 0.29334426879882813, 0.29221682739257815, 0.29205914306640623, 0.2920222778320313, 0.2922946472167969, 0.2924492797851562, 0.2926929931640625, 0.29193624877929686, 0.2920509338378906, 0.29204376220703127, 0.2921123962402344, 0.291873779296875, 0.2915205078125, 0.29172222900390626, 0.29199871826171875, 0.2923089904785156, 0.2930401306152344, 0.2921902160644531, 0.29266842651367186, 0.29187994384765625, 0.2924564514160156, 0.2924277648925781, 0.2920263671875, 0.29210009765625, 0.2922608642578125, 0.2919096374511719, 0.29193624877929686, 0.29192294311523437, 0.29198541259765626, 0.29212261962890623, 0.29261724853515625, 0.2921973571777344, 0.29344256591796875, 0.2920785827636719, 0.2922250366210937, 0.29242059326171876, 0.2925332336425781, 0.2925537414550781, 0.29240524291992187, 0.2921902160644531, 0.2919741516113281, 0.29227825927734374, 0.2922506103515625, 0.2918768615722656, 0.29220248413085936, 0.29238067626953124, 0.29187481689453126, 0.29204788208007815, 0.2923376770019531, 0.2920396728515625, 0.29325619506835937, 0.2925700988769531, 0.29266226196289064, 0.29220452880859377, 0.2922823791503906, 0.2919710693359375, 0.29259878540039064, 0.2924472351074219, 0.29214208984375, 0.2923765869140625, 0.2920519714355469, 0.6092022705078125, 0.29223724365234377, 0.2937958374023438, 0.29247589111328126, 0.29319781494140623, 0.2925875244140625, 0.2924288024902344, 0.29230181884765627, 0.29243902587890624, 0.2923919372558594, 0.2927564697265625, 0.29259161376953124, 0.29243084716796874, 0.29296743774414064, 0.2923427734375, 0.29186456298828123, 0.2922250366210937, 0.29213082885742186, 0.29205810546875, 0.2923417663574219, 0.2929213562011719, 0.2921850891113281, 0.2936012878417969, 0.29257931518554686, 0.29359002685546876, 0.29242059326171876, 0.2921574401855469, 0.2920642700195312, 0.2926080017089844, 0.29214617919921876, 0.2923816833496094, 0.29216973876953123, 0.29204684448242185, 0.2921922607421875, 0.2923284606933594, 0.2922137451171875, 0.2923929748535156, 0.292546630859375, 0.2926417236328125, 0.2925137939453125, 0.2924062805175781, 0.2922659912109375, 0.29193319702148435, 0.29348370361328124, 0.29205792236328126, 0.2921850891113281, 0.2963548278808594, 0.292305908203125, 0.2925137939453125, 0.2923642883300781, 0.2921707458496094, 0.2921430969238281, 0.2926448669433594, 0.2927411193847656, 0.29220761108398435, 0.292232177734375, 0.29215130615234375, 0.2934067077636719, 0.29257626342773435, 0.29231924438476564, 0.2922465209960938, 0.2922557373046875, 0.2923213195800781, 0.6058434448242187, 0.2923243408203125, 0.29236737060546875, 0.2920919189453125, 0.2922966918945312, 0.2922536926269531, 0.2924298095703125, 0.29252813720703125, 0.29234893798828127, 0.2925455322265625, 0.2922403869628906, 0.29219635009765627, 0.2920130615234375, 0.29205810546875, 0.2921932678222656, 0.2922680358886719, 0.2919772033691406, 0.29201919555664063, 0.29235302734375, 0.2921318359375, 0.29199154663085936, 0.2918656005859375, 0.29201611328125, 0.294361083984375, 0.2921062316894531, 0.29225473022460935, 0.2920929260253906, 0.2933616638183594, 0.29293466186523437, 0.29222708129882813, 0.292073486328125, 0.29259878540039064, 0.2922178649902344, 0.29183078002929685, 0.29233355712890624, 0.2924349365234375, 0.291989501953125, 0.29248818969726564, 0.29223526000976563, 0.29176217651367187, 0.2918082580566406, 0.2931097717285156, 0.29253836059570315, 0.29301043701171875, 0.2920130615234375, 0.2920407409667969, 0.2919710388183594, 0.29457406616210935, 0.2923519897460938, 0.2923028564453125, 0.2920929260253906, 0.2918901672363281, 0.29224755859375, 0.2919526672363281, 0.291937255859375, 0.29211032104492185, 0.29193011474609376, 0.29155224609375, 0.2918410339355469, 0.2920980529785156, 0.292168701171875, 0.29260595703125, 0.292453369140625, 0.6075504760742187, 0.2925127563476563, 0.2923765869140625, 0.29210931396484374, 0.29227825927734374, 0.2921656188964844, 0.29187890625, 0.29214105224609377, 0.29254144287109374, 0.29202023315429687, 0.29206732177734374, 0.293718017578125, 0.2936227722167969, 0.29316915893554685, 0.29292236328125, 0.29260595703125, 0.292431884765625, 0.2927585144042969, 0.2929725341796875, 0.29310772705078125, 0.29271142578125, 0.2924615783691406, 0.29305242919921876, 0.29276776123046877, 0.2925915832519531, 0.29245440673828127, 0.29250765991210936, 0.2925107116699219, 0.29247589111328126, 0.29257830810546875, 0.29249331665039063, 0.2926243896484375, 0.2935541687011719, 0.2926243896484375, 0.29202532958984373, 0.2919198608398437, 0.292021240234375, 0.29210418701171875, 0.2919884948730469, 0.2921758728027344, 0.2921983947753906, 0.292052978515625, 0.2918523254394531, 0.2925229797363281, 0.2951219177246094, 0.2927698059082031, 0.2923653259277344, 0.29271551513671873, 0.2925813903808594, 0.29277389526367187, 0.2923816833496094, 0.2925250549316406, 0.2931272277832031, 0.2930205993652344, 0.29253631591796875, 0.2923786315917969, 0.2930882568359375, 0.2928087158203125, 0.29209906005859376, 0.2928845520019531, 0.29307998657226564, 0.2928609313964844, 0.2925823974609375, 0.6065142211914063, 0.2926080322265625, 0.29234066772460937, 0.29249432373046874, 0.2920980529785156, 0.2918707275390625, 0.2923858032226562, 0.2918133850097656, 0.2919024963378906, 0.2923048706054687, 0.29231924438476564, 0.29207757568359377, 0.29218612670898436, 0.29211032104492185, 0.29206936645507814, 0.29310873413085936, 0.2925721740722656, 0.2921850891113281, 0.292738037109375, 0.2921891784667969, 0.2920550537109375, 0.2918143920898438, 0.2921983947753906, 0.29208370971679687, 0.29210214233398435, 0.29210214233398435, 0.2925189208984375, 0.2919208984375, 0.29203353881835936, 0.2927615966796875, 0.291736572265625, 0.29209701538085936, 0.2920550537109375, 0.2918656005859375, 0.2918370056152344, 0.2924051818847656, 0.2920263671875, 0.2931199951171875, 0.29166488647460936, 0.29208370971679687, 0.2922158203125, 0.2921277465820312, 0.2917294006347656, 0.29210012817382813, 0.29211541748046876, 0.29188607788085935, 0.29205810546875, 0.29206732177734374, 0.29190142822265625, 0.2926776428222656, 0.29242471313476565, 0.2921656188964844, 0.29246054077148437, 0.2923315124511719, 0.29213287353515627, 0.2920325012207031, 0.2924195861816406, 0.29780581665039063, 0.29234072875976563, 0.2921574401855469, 0.29292031860351564, 0.2927329406738281, 0.2922823791503906, 0.6048440551757812, 0.29242266845703124, 0.29194342041015625, 0.2922823791503906, 0.29246875, 0.2921922607421875, 0.2924472351074219, 0.2927779846191406, 0.29216461181640624, 0.29211953735351565, 0.29237759399414065, 0.29223526000976563, 0.2919372863769531, 0.2918973388671875, 0.2923294982910156, 0.2918020935058594, 0.29216152954101565, 0.2923212890625, 0.29266021728515623, 0.2927503356933594, 0.2927216491699219, 0.29210418701171875, 0.2921973876953125, 0.29242471313476565, 0.29217279052734374, 0.29210931396484374, 0.2921912231445313, 0.292021240234375, 0.29214617919921876, 0.29203866577148435, 0.29192190551757813, 0.2918973388671875, 0.29224346923828126, 0.291884033203125, 0.291857421875, 0.29202532958984373, 0.2921379699707031, 0.2925025329589844, 0.2959308776855469, 0.2924974060058594, 0.2935582580566406, 0.2933534851074219, 0.2929541015625, 0.29257931518554686, 0.2927984619140625, 0.29274725341796876, 0.29252197265625, 0.29275750732421874, 0.2934097900390625, 0.29243289184570315, 0.2923284606933594, 0.2925189208984375, 0.2929377136230469, 0.29240524291992187, 0.2938306579589844, 0.29293670654296877, 0.29282302856445314, 0.29310772705078125, 0.2923100280761719, 0.2923991088867188, 0.29276568603515624, 0.2923294677734375, 0.2927698059082031, 0.6069278564453126, 0.2922486267089844, 0.29226181030273435, 0.29200384521484374, 0.29218099975585937, 0.2922465209960938, 0.29204376220703127, 0.2927329406738281, 0.2925977478027344, 0.292210693359375, 0.29327462768554685, 0.2930093994140625, 0.29313638305664064, 0.29303192138671874, 0.292389892578125, 0.29288653564453127, 0.29291519165039065, 0.29289266967773436, 0.2928721923828125, 0.292701171875, 0.29249331665039063, 0.29188607788085935, 0.29253631591796875, 0.29483929443359375, 0.2933084106445312, 0.29292849731445314, 0.2923530883789062, 0.29386029052734375, 0.29232742309570314, 0.2925465698242187, 0.29262130737304687, 0.292274169921875, 0.2924564514160156, 0.292242431640625, 0.2929407958984375, 0.2920704040527344, 0.2924810791015625, 0.292454345703125, 0.2922188720703125, 0.29238885498046874, 0.29204888916015626, 0.2919598083496094, 0.2920232849121094, 0.2920048522949219, 0.29257220458984373, 0.29197512817382815, 0.2930882568359375, 0.29200384521484374, 0.292384765625, 0.2927626342773437, 0.2920519714355469, 0.2919045104980469, 0.2923561096191406, 0.29254348754882814, 0.2925537414550781, 0.2922148132324219, 0.292211669921875, 0.2919024658203125, 0.29274008178710936, 0.29211032104492185, 0.29219430541992186, 0.2925619201660156, 0.2921574401855469, 0.6078638305664062, 0.2920642700195312, 0.29204171752929686, 0.29206219482421875, 0.2920550537109375, 0.2921185302734375, 0.29250149536132813, 0.29204888916015626, 0.29186456298828123, 0.2920867919921875, 0.29199871826171875, 0.29200689697265625, 0.29195059204101564, 0.2919956359863281, 0.2926612548828125, 0.291999755859375, 0.29500723266601564, 0.2922413940429687, 0.2919342041015625, 0.2922650146484375, 0.2921286926269531, 0.29177548217773436, 0.2920263671875, 0.29223629760742187, 0.2919342041015625, 0.2920151062011719, 0.29193624877929686, 0.29171505737304687, 0.29255679321289063, 0.29226290893554685, 0.29204888916015626, 0.29261932373046873, 0.2921389465332031, 0.2924472351074219, 0.292569091796875, 0.29272988891601565, 0.2924666442871094, 0.29255474853515623, 0.2924288024902344, 0.29235711669921877, 0.29266842651367186, 0.2926305236816406, 0.292279296875, 0.29281585693359374, 0.29269195556640626, 0.2922127380371094, 0.2923765869140625, 0.29226190185546874, 0.29332275390625, 0.29225677490234375, 0.2925455322265625, 0.29204684448242185, 0.2919465026855469, 0.29239501953125, 0.292094970703125, 0.2916546630859375, 0.29185330200195314, 0.2919178161621094, 0.29201202392578124, 0.2919045104980469, 0.2917683715820312, 0.29191879272460936, 0.29268173217773436, 0.609132568359375, 0.2924984436035156, 0.2927001647949219, 0.29203353881835936, 0.2919598083496094, 0.29245440673828127, 0.29231411743164065, 0.2920304565429688, 0.29216973876953123, 0.2918604736328125, 0.2920816650390625, 0.29198541259765626, 0.29182769775390627, 0.29221478271484375, 0.29226290893554685, 0.29183078002929685, 0.2922137451171875, 0.2939207763671875, 0.29266226196289064, 0.292632568359375, 0.2929541015625, 0.29197210693359377, 0.2920867919921875, 0.29224346923828126, 0.2920704040527344, 0.292126708984375, 0.2921769104003906, 0.2920243225097656, 0.292173828125, 0.2919126892089844, 0.2919823303222656, 0.2920867919921875, 0.2925608825683594, 0.29213287353515627, 0.29228546142578127, 0.29201608276367186, 0.2929305725097656, 0.2924963989257813, 0.2920181884765625, 0.2923519897460938, 0.29213082885742186, 0.2921359252929687, 0.29183795166015625, 0.29199258422851565, 0.2920724487304687, 0.29192807006835936, 0.292031494140625, 0.2920294494628906, 0.292173828125, 0.2920765380859375, 0.29200689697265625, 0.2918758544921875, 0.2921349182128906, 0.29268896484375, 0.2934025573730469, 0.292505615234375, 0.2919270324707031, 0.29225164794921876, 0.292105224609375, 0.29204071044921875, 0.2915840148925781, 0.2917908630371094, 0.2920570983886719, 0.6085621948242188, 0.2921451416015625, 0.29239706420898437, 0.29239501953125, 0.29228955078125, 0.2920243225097656, 0.2924892272949219, 0.2920345458984375, 0.2921123962402344, 0.291962890625, 0.2920796203613281, 0.29241549682617185, 0.29221682739257815, 0.2918553466796875, 0.291915771484375, 0.29186663818359376, 0.2920427551269531, 0.2920980529785156, 0.29218817138671876, 0.29189529418945315, 0.29189837646484373, 0.29198028564453127, 0.29211953735351565, 0.29269195556640626, 0.2930841674804687, 0.2925148010253906, 0.29509222412109376, 0.29249127197265623, 0.2924369812011719, 0.29232537841796874, 0.2920162048339844, 0.29203448486328126, 0.29213900756835937, 0.2920243225097656, 0.29217279052734374, 0.2922342529296875, 0.2917130126953125, 0.2923991088867188, 0.29214718627929687, 0.2926458740234375, 0.2934947814941406, 0.2932357177734375, 0.2925066223144531, 0.2929162292480469, 0.29218817138671876, 0.2923735046386719, 0.2922332153320312, 0.2920325012207031, 0.2919761962890625, 0.29228543090820314, 0.29216461181640624, 0.29214718627929687, 0.29235302734375, 0.292274169921875, 0.2920376281738281, 0.29199154663085936, 0.2923724670410156, 0.2924646301269531, 0.29217279052734374, 0.29284454345703126, 0.29187277221679686, 0.2919321594238281, 0.29226495361328125]",tokens/s,3.368317674233167,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm-20b,internlm/internlm-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-2.7B,EleutherAI/gpt-neo-2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -44681,23 +44650,92 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3710, in from_pretrained - model = cls(config, *model_args, **model_kwargs) - File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 906, in __init__ - self.model = InternLMModel(config) - File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 729, in __init__ - self.layers = nn.ModuleList([InternLMDecoderLayer(config) for _ in range(config.num_hidden_layers)]) - File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 729, in - self.layers = nn.ModuleList([InternLMDecoderLayer(config) for _ in range(config.num_hidden_layers)]) - File ""/root/.cache/huggingface/modules/transformers_modules/internlm/internlm-20b/80729bcf52fbc4553d965926b27304ac5e156d98/modeling_internlm.py"", line 545, in __init__ - self.self_attn = INTERNLM_ATTENTION_CLASSES[config.attn_implementation](config=config) -KeyError: 'sdpa' + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-2.7b,facebook/opt-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciLM-7B,Deci/DeciLM-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code + answer = input( +EOFError: EOF when reading a line + +During handling of the above exception, another exception occurred: + +Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights + self.create_no_weights_model() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model + meta_model = self.automodel_class.from_config(self.pretrained_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config + trust_remote_code = resolve_trust_remote_code( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code + raise ValueError( +ValueError: The repository for Deci/DeciLM-7B contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/Deci/DeciLM-7B. +Please pass the argument `trust_remote_code=True` to allow custom code to be run. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-1_6b,stabilityai/stablelm-2-1_6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1448.177664,2449.997824,0.0,1803.55072,1664.521216,s,10,1.3644380798339844,0.13644380798339845,0.0014011159264243525,0.13627196502685546,0.13786112670898437,0.13869882049560547,0.13936897552490235,"[0.13953651428222658, 0.13767497253417968, 0.1349912567138672, 0.13507321166992187, 0.13563778686523437, 0.13482015991210938, 0.13582060241699218, 0.13672332763671874, 0.13708172607421876, 0.13707852172851562]",tokens/s,1876.2302502664566,kWh,1.5975721627921314e-06,8.753909460972716e-07,6.686964809027082e-06,9.159927917916485e-06,tokens/kWh,27947818.180891287,MB,1448.472576,2449.997824,0.0,1803.55072,1763.593728,s,10,81.3460283203125,8.13460283203125,0.011946610722273996,8.1315908203125,8.150488769531249,8.15235205078125,8.153842675781249,"[8.13529541015625, 8.1396748046875, 8.11939111328125, 8.1203115234375, 8.14693603515625, 8.12648193359375, 8.12576123046875, 8.15007470703125, 8.15421533203125, 8.12788623046875]",tokens/s,7.744692801955592,kWh,9.601664840011627e-05,5.262418258723866e-05,0.0003946831618423715,0.0005433239928297265,tokens/kWh,115952.91360479954,,s,629,82.4390829467774,0.13106372487563966,0.01624326295714781,0.1289318389892578,0.12986593322753906,0.13038284606933595,0.2649074096679688,"[0.13380709838867189, 0.1322936248779297, 0.13054360961914063, 0.1302783966064453, 0.12868301391601564, 0.12876185607910157, 0.12865126037597657, 0.12903424072265626, 0.12871475219726564, 0.12893490600585938, 0.1289205780029297, 0.12972032165527345, 0.1293711395263672, 0.12937216186523437, 0.1286614990234375, 0.12999168395996094, 0.12912229919433593, 0.1288099822998047, 0.12900044250488282, 0.12889395141601562, 0.12870246887207032, 0.12895744323730468, 0.12921856689453126, 0.128795654296875, 0.12864614868164062, 0.12892466735839844, 0.1287782440185547, 0.1288970184326172, 0.12859596252441408, 0.13040333557128905, 0.1292042236328125, 0.12866867065429688, 0.12910386657714842, 0.12879667663574218, 0.12910797119140624, 0.12875161743164062, 0.12865228271484375, 0.12910182189941405, 0.12855398559570314, 0.12869017028808594, 0.1285877685546875, 0.12864717102050782, 0.12905984497070314, 0.12876800537109376, 0.1286492156982422, 0.128606201171875, 0.12849868774414064, 0.12877619934082032, 0.12863282775878906, 0.1288140869140625, 0.12869119262695314, 0.12871987915039063, 0.1286246337890625, 0.12838092041015625, 0.12851097106933593, 0.12944383239746093, 0.1286277160644531, 0.1287710723876953, 0.12888677978515625, 0.12879052734375, 0.12854885864257812, 0.1299640350341797, 0.2665809936523437, 0.12871066284179689, 0.12894105529785158, 0.1295984649658203, 0.12898304748535155, 0.12851507568359374, 0.12878950500488281, 0.12854783630371094, 0.12850688171386718, 0.12838911437988282, 0.12960768127441405, 0.12967936706542968, 0.1298472900390625, 0.1296302032470703, 0.13025894165039062, 0.13039308166503907, 0.1289871368408203, 0.1294192657470703, 0.1304954833984375, 0.12884991455078126, 0.12983807373046874, 0.1289390106201172, 0.12923085021972655, 0.1289871368408203, 0.12885401916503905, 0.12969369506835937, 0.12940800476074218, 0.12860415649414061, 0.12912844848632812, 0.12885093688964844, 0.12888882446289063, 0.1289707489013672, 0.12897279357910157, 0.12949708557128906, 0.1289758758544922, 0.12905471801757812, 0.12891751098632812, 0.1290301513671875, 0.1288406982421875, 0.1292779541015625, 0.12873216247558594, 0.1292216339111328, 0.12959539794921876, 0.12929945373535157, 0.12899020385742188, 0.1289697265625, 0.13126144409179688, 0.12883660888671875, 0.12922367858886719, 0.12980940246582032, 0.12895846557617188, 0.12943463134765626, 0.12903321838378906, 0.1292216339111328, 0.1292656707763672, 0.12897279357910157, 0.1300193328857422, 0.12942233276367188, 0.12876185607910157, 0.12872601318359375, 0.1286103057861328, 0.12886732482910157, 0.128753662109375, 0.2649610290527344, 0.1289195556640625, 0.12843621826171875, 0.12883558654785157, 0.12871475219726564, 0.12869529724121093, 0.12869325256347655, 0.12878950500488281, 0.1287209014892578, 0.12903117370605469, 0.12896153259277343, 0.1297407989501953, 0.12884378051757814, 0.12859085083007812, 0.12871270751953126, 0.1286604766845703, 0.12877926635742187, 0.12865126037597657, 0.12881817626953124, 0.12926361083984375, 0.12863999938964843, 0.1286297607421875, 0.1285550079345703, 0.12893798828125, 0.128932861328125, 0.12907008361816405, 0.12877516174316406, 0.12867584228515624, 0.12991897583007814, 0.1287045135498047, 0.12865843200683594, 0.12990669250488282, 0.1296609344482422, 0.12844236755371094, 0.12855091857910156, 0.12866867065429688, 0.12861337280273438, 0.1286871032714844, 0.12876185607910157, 0.12873420715332032, 0.1288775634765625, 0.12874342346191406, 0.1287720947265625, 0.12879257202148436, 0.1287915496826172, 0.1290198974609375, 0.12967730712890624, 0.129797119140625, 0.12876390075683594, 0.128795654296875, 0.12886834716796874, 0.128932861328125, 0.12865437316894532, 0.12863279724121093, 0.1286420440673828, 0.12882432556152343, 0.12872703552246093, 0.12905267333984374, 0.12885299682617188, 0.1287772216796875, 0.1287188415527344, 0.12861439514160156, 0.1287772216796875, 0.26476953125, 0.12873829650878907, 0.12883148193359376, 0.12851199340820313, 0.12869631958007813, 0.12847923278808593, 0.12853042602539064, 0.12893798828125, 0.12854988098144532, 0.12875263977050783, 0.128505859375, 0.12852224731445314, 0.12876800537109376, 0.12872909545898437, 0.12887347412109376, 0.12867584228515624, 0.12863282775878906, 0.1286860809326172, 0.1286614990234375, 0.12861952209472657, 0.12875570678710938, 0.12855398559570314, 0.12889599609375, 0.12875263977050783, 0.12984013366699218, 0.1295626220703125, 0.12891545104980467, 0.1287720947265625, 0.12863282775878906, 0.12864717102050782, 0.12877311706542968, 0.12869529724121093, 0.12856422424316405, 0.1285201873779297, 0.1286625213623047, 0.1287720947265625, 0.12851199340820313, 0.1287403564453125, 0.1289318389892578, 0.12899635314941407, 0.12849664306640626, 0.12876902770996093, 0.13012684631347657, 0.12892160034179687, 0.1313116149902344, 0.13377740478515626, 0.12898611450195313, 0.12884889221191406, 0.12867481994628907, 0.1287475128173828, 0.1288089599609375, 0.12871168518066406, 0.12876390075683594, 0.12973362731933594, 0.12869223022460938, 0.12912229919433593, 0.12858781433105468, 0.12859286499023437, 0.128395263671875, 0.12851199340820313, 0.12858982849121095, 0.1285191650390625, 0.12845773315429687, 0.26590206909179687, 0.13000090026855468, 0.1293588409423828, 0.1295380554199219, 0.12994560241699218, 0.12998042297363283, 0.12985958862304686, 0.13036749267578124, 0.12995071411132814, 0.1288765411376953, 0.12879974365234376, 0.12941722106933592, 0.12930047607421874, 0.12891136169433592, 0.12978790283203126, 0.12877619934082032, 0.12878746032714844, 0.12919500732421876, 0.12896255493164063, 0.1289134063720703, 0.1290373077392578, 0.12975308227539062, 0.12882841491699218, 0.1290198974609375, 0.12901478576660155, 0.12898918151855468, 0.12967628479003906, 0.12916940307617186, 0.12887449645996094, 0.12921139526367187, 0.12869631958007813, 0.12922880554199218, 0.12872909545898437, 0.12871168518066406, 0.12892979431152343, 0.129185791015625, 0.12892672729492188, 0.1294254150390625, 0.13041868591308595, 0.12922265625, 0.12881613159179686, 0.12874342346191406, 0.12914994812011718, 0.12993023681640625, 0.12914892578125, 0.12977766418457032, 0.1297592315673828, 0.12924826049804689, 0.12885197448730468, 0.12885606384277343, 0.12906803894042967, 0.12960665893554688, 0.12895333862304686, 0.1296312255859375, 0.12864512634277345, 0.13046885681152343, 0.12909056091308593, 0.13064703369140626, 0.12966400146484375, 0.13024972534179688, 0.12901683044433593, 0.12863385009765624, 0.1289738311767578, 0.2638612365722656, 0.1288478698730469, 0.1288151092529297, 0.12867584228515624, 0.1286604766845703, 0.12864102172851563, 0.12869223022460938, 0.12870553588867187, 0.1286871032714844, 0.12933427429199218, 0.12895846557617188, 0.1287362518310547, 0.12880487060546875, 0.12846080017089845, 0.12952064514160155, 0.12865740966796874, 0.12858982849121095, 0.1286840362548828, 0.128827392578125, 0.12865228271484375, 0.13033267211914062, 0.1298913269042969, 0.12930662536621093, 0.12879769897460938, 0.12924006652832032, 0.12911514282226563, 0.12893696594238283, 0.12896563720703125, 0.1286840362548828, 0.12859596252441408, 0.1286553649902344, 0.12849356079101562, 0.12909567260742189, 0.129185791015625, 0.12871168518066406, 0.12875161743164062, 0.12851199340820313, 0.12922265625, 0.1306798095703125, 0.12952780151367188, 0.129396728515625, 0.12962509155273438, 0.12861952209472657, 0.12871168518066406, 0.1286543426513672, 0.12885708618164063, 0.12871475219726564, 0.12898918151855468, 0.12887551879882814, 0.12875263977050783, 0.1291130828857422, 0.12952268981933593, 0.13002137756347656, 0.12975410461425782, 0.12933427429199218, 0.12950425720214845, 0.1291673583984375, 0.12911001586914062, 0.12872294616699217, 0.12854170227050782, 0.12845362854003906, 0.12869223022460938, 0.12868812561035156, 0.26576177978515625, 0.12924826049804689, 0.12867788696289062, 0.1287782440185547, 0.12968960571289062, 0.12889497375488282, 0.12866969299316405, 0.1288099822998047, 0.12962098693847657, 0.12901580810546875, 0.12879359436035157, 0.12876390075683594, 0.1289564208984375, 0.12874240112304688, 0.1286871032714844, 0.12908851623535156, 0.1289134063720703, 0.12863591003417968, 0.1290577850341797, 0.1289635772705078, 0.12908441162109374, 0.12881715393066406, 0.12893798828125, 0.1303019561767578, 0.12936192321777343, 0.12894105529785158, 0.1289318389892578, 0.129227783203125, 0.12891136169433592, 0.12872294616699217, 0.1287587890625, 0.1295083465576172, 0.1288826904296875, 0.1295636444091797, 0.1291714630126953, 0.12932505798339844, 0.1291663360595703, 0.12864614868164062, 0.12883148193359376, 0.12890419006347656, 0.12887962341308593, 0.12895846557617188, 0.12895333862304686, 0.12924826049804689, 0.12880793762207032, 0.12882330322265625, 0.12863282775878906, 0.12880076599121093, 0.12866764831542968, 0.1288140869140625, 0.12918885803222657, 0.12923085021972655, 0.12873216247558594, 0.12884378051757814, 0.128822265625, 0.12880793762207032, 0.12889190673828124, 0.12862361145019532, 0.12879872131347656, 0.12901785278320313, 0.12870655822753907, 0.12871168518066406, 0.1288826904296875, 0.26630654907226564, 0.1309654998779297, 0.1296506805419922, 0.1291356201171875, 0.128932861328125, 0.12939263916015625, 0.12916326904296874, 0.1299814453125, 0.1290997772216797, 0.12907008361816405, 0.12940390014648437, 0.12927078247070312, 0.12884991455078126, 0.12983091735839844, 0.13016986083984375, 0.1290373077392578, 0.12927999877929688, 0.129438720703125, 0.13061734008789064, 0.12889190673828124, 0.12984831237792968, 0.13007769775390626, 0.13092965698242187, 0.12898611450195313, 0.1293158416748047, 0.12955955505371095, 0.12935475158691406, 0.1288478698730469, 0.1289697265625, 0.12932403564453124, 0.12959744262695314, 0.12883763122558595, 0.1288212432861328, 0.12967628479003906, 0.12876287841796874, 0.12947251892089845, 0.12944998168945313, 0.12905574035644532, 0.12925234985351564, 0.12954010009765626, 0.12926771545410157, 0.12993536376953124, 0.12876185607910157, 0.12890725708007814, 0.12937216186523437, 0.12992716979980468, 0.13034597778320312, 0.12930764770507813, 0.12888064575195313, 0.12883865356445312, 0.12890316772460939, 0.12986265563964844, 0.12991384887695312, 0.1290188751220703, 0.1290076141357422, 0.12887962341308593, 0.1289758758544922, 0.12898611450195313, 0.1288642578125, 0.12870758056640624, 0.12963226318359375, 0.1289932861328125, 0.12938035583496094, 0.26711550903320314, 0.12889395141601562, 0.12987904357910157, 0.12996607971191407, 0.12963941955566408, 0.12896461486816407, 0.12874444580078126, 0.12914175415039061, 0.129512451171875, 0.12889804077148437, 0.12933938598632813, 0.12918885803222657, 0.1291653137207031, 0.12967526245117186, 0.13058149719238282, 0.12971212768554688, 0.12983705139160157, 0.1312491455078125, 0.12968960571289062, 0.1296855010986328, 0.12951449584960936, 0.12930458068847656, 0.12980633544921874, 0.12941004943847656, 0.12944691467285158, 0.12926669311523437, 0.12979507446289062, 0.12961485290527344, 0.1289553985595703, 0.12896563720703125, 0.12977459716796874, 0.13095936584472656, 0.13045452880859376, 0.13097267150878905, 0.12978483581542968, 0.13107609558105468, 0.13026611328125, 0.1297100830078125, 0.12907212829589843, 0.1287209014892578, 0.12875468444824217, 0.12891647338867188, 0.1297838134765625, 0.1291980743408203, 0.1292410888671875, 0.12913253784179687, 0.12873420715332032, 0.12888986206054687, 0.12877516174316406, 0.12898611450195313, 0.1289144287109375, 0.12875059509277345, 0.12870040893554688, 0.12886015319824218, 0.12891647338867188, 0.12871270751953126, 0.12871372985839843, 0.12924620056152344, 0.12940083312988282, 0.12916120910644532, 0.129939453125, 0.12903526306152344, 0.128827392578125, 0.2668564453125, 0.1297244110107422, 0.129291259765625, 0.12891647338867188, 0.1289871368408203, 0.12860211181640624, 0.1287884826660156, 0.12873420715332032, 0.12900863647460936, 0.12901683044433593, 0.1291663360595703, 0.1291724853515625, 0.12918885803222657, 0.12881715393066406, 0.12899122619628905, 0.1286604766845703, 0.1290997772216797, 0.12963839721679687, 0.12860415649414061, 0.12885299682617188, 0.1286973419189453, 0.128901123046875, 0.12870758056640624, 0.12876185607910157, 0.12874855041503908, 0.1287393341064453, 0.12990669250488282, 0.13078732299804688, 0.1296609344482422, 0.12924006652832032, 0.12881715393066406, 0.12901580810546875, 0.1292769317626953, 0.1289758758544922, 0.12890316772460939, 0.12894514465332033, 0.12875672912597655, 0.12894720458984374, 0.12874137878417968, 0.12878437805175783, 0.12906803894042967, 0.12887347412109376, 0.12873829650878907, 0.1290496063232422, 0.1295636444091797, 0.12900044250488282, 0.12882432556152343, 0.12890931701660155, 0.12891853332519532, 0.1297643585205078, 0.1288028106689453, 0.12875570678710938, 0.12874137878417968, 0.12874444580078126, 0.12869017028808594, 0.12901274108886718, 0.12943257141113282, 0.12871270751953126, 0.12867071533203125, 0.12885708618164063, 0.12893594360351562, 0.1285867462158203, 0.12889292907714844]",tokens/s,7.629876237294903,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,1,1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-7b,google/recurrentgemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -44709,7 +44747,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/1/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/google/recurrentgemma-7b/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -44736,9 +44774,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669495b3-2dbd359a484a8b0753338cd2;6ef125c4-ed05-4db1-8b9e-6083dc65104f) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948234-0b6b1da752c6eafa11f86275;8c3679d8-ef5d-4d1f-9643-6ce65ed5db5d) -Repository Not Found for url: https://huggingface.co/1/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/google/recurrentgemma-7b/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -44763,12 +44801,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: 1 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: google/recurrentgemma-7b is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-1.8B,Qwen/Qwen1.5-1.8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1869.656064,3326.60736,0.0,2682.257408,2578.238464,s,10,1.3870304412841796,0.13870304412841797,0.00244373759901306,0.13811017608642578,0.14131588592529296,0.14323313064575197,0.14476692642211916,"[0.14515037536621095, 0.13752809143066405, 0.1378865966796875, 0.13688485717773438, 0.13833375549316407, 0.13642874145507813, 0.13711347961425782, 0.13835682678222655, 0.1384578857421875, 0.14088983154296875]",tokens/s,1845.6696578554026,kWh,1.6179650182774805e-06,8.864855210497944e-07,6.8487079142743225e-06,9.353158453601597e-06,tokens/kWh,27370433.342912387,MB,1869.656064,3328.704512,0.0,2682.257408,2667.0976,s,10,82.21512695312498,8.2215126953125,0.02726168309176718,8.22408544921875,8.254994140625,8.26155078125,8.26679609375,"[8.218158203125, 8.2300126953125, 8.231037109375, 8.253537109375, 8.2426494140625, 8.18561865234375, 8.1915498046875, 8.18607568359375, 8.268107421875, 8.208380859375]",tokens/s,7.662823416415751,kWh,9.660354430590225e-05,5.294595236465346e-05,0.0003949548913061273,0.000544504387976683,tokens/kWh,115701.54693169857,,s,629,83.32182740783702,0.1324671341936994,0.01648122008836376,0.13012069702148438,0.13181768188476561,0.13225840454101562,0.2677710559082031,"[0.1353492431640625, 0.13449932861328126, 0.13354396057128906, 0.13218812561035156, 0.1321062469482422, 0.132279296875, 0.1320765380859375, 0.1297838134765625, 0.12942950439453124, 0.13008486938476563, 0.1297357482910156, 0.12950111389160157, 0.12954214477539064, 0.12996812438964844, 0.12972236633300782, 0.129586181640625, 0.12967730712890624, 0.12944589233398437, 0.12974386596679688, 0.12966400146484375, 0.12964044189453125, 0.12967730712890624, 0.13006745910644532, 0.13016166687011718, 0.12972647094726564, 0.13020672607421874, 0.1301012420654297, 0.13006541442871095, 0.1300264892578125, 0.13026918029785156, 0.1298155517578125, 0.12965580749511718, 0.12980120849609375, 0.13100137329101563, 0.12973667907714845, 0.12997222900390626, 0.12998655700683595, 0.13009100341796875, 0.13086618041992187, 0.13041253662109376, 0.13003570556640626, 0.13003366088867188, 0.12998655700683595, 0.13012069702148438, 0.12974899291992187, 0.1296711730957031, 0.13009510803222657, 0.13012582397460937, 0.13009408569335937, 0.129723388671875, 0.12967532348632813, 0.13028140258789062, 0.1303726043701172, 0.13008793640136718, 0.13204173278808592, 0.13000090026855468, 0.1302650909423828, 0.12970188903808594, 0.13084979248046874, 0.12998963928222657, 0.12973773193359375, 0.13070130920410156, 0.26767672729492187, 0.13097874450683594, 0.12999679565429687, 0.1298524169921875, 0.12990463256835938, 0.12967730712890624, 0.130735107421875, 0.12993740844726562, 0.12993843078613282, 0.12966195678710937, 0.13075456237792968, 0.1301739501953125, 0.1298462677001953, 0.12979507446289062, 0.12965171813964843, 0.12960255432128906, 0.12983296203613282, 0.1297029113769531, 0.12987289428710938, 0.13024870300292968, 0.12961074829101563, 0.12961587524414062, 0.1304627227783203, 0.13114883422851562, 0.13138124084472655, 0.13123989868164063, 0.1312419891357422, 0.1315799102783203, 0.13145703125, 0.1315246124267578, 0.13152359008789063, 0.13154917907714844, 0.13147648620605468, 0.13150822448730468, 0.1314273223876953, 0.1317058563232422, 0.1314283447265625, 0.13160345458984374, 0.13148159790039063, 0.13152767944335939, 0.13164851379394532, 0.13085594177246093, 0.13025791931152345, 0.12963226318359375, 0.13061222839355469, 0.12971110534667968, 0.1318850860595703, 0.13038383483886717, 0.12956982421875, 0.13069512939453126, 0.12964761352539061, 0.1297664337158203, 0.1301851806640625, 0.13052313232421875, 0.1300756530761719, 0.131198974609375, 0.1302650909423828, 0.13156045532226562, 0.13132595825195312, 0.13137612915039062, 0.13114163208007812, 0.13150822448730468, 0.13148774719238282, 0.26988442993164063, 0.1297592315673828, 0.1303961639404297, 0.13102079772949218, 0.13180621337890625, 0.1311805419921875, 0.131198974609375, 0.1320120391845703, 0.13153382873535155, 0.13055078125, 0.13116621398925782, 0.13224858093261718, 0.1315379180908203, 0.13149183654785157, 0.13085594177246093, 0.1307740173339844, 0.13012069702148438, 0.13034701538085938, 0.13029273986816406, 0.12967219543457031, 0.12965785217285156, 0.13052621459960936, 0.1309951934814453, 0.13132908630371093, 0.12980528259277344, 0.12976431274414063, 0.130735107421875, 0.1307904052734375, 0.13091941833496093, 0.13070028686523438, 0.13097164916992188, 0.13049139404296875, 0.13055282592773437, 0.13094093322753905, 0.1304883270263672, 0.13196185302734376, 0.13015142822265624, 0.13110272216796875, 0.1304780731201172, 0.13022618103027345, 0.13066342163085937, 0.1300070343017578, 0.1298851776123047, 0.12999679565429687, 0.13136691284179688, 0.13021286010742186, 0.1300305938720703, 0.13127577209472657, 0.12978688049316406, 0.12988313293457032, 0.12990975952148437, 0.13098086547851562, 0.12965785217285156, 0.13045555114746094, 0.1315246124267578, 0.1313638458251953, 0.12958309936523438, 0.12952677917480468, 0.12959642028808593, 0.13055795288085936, 0.13012889099121094, 0.13161677551269532, 0.13049856567382812, 0.2679295959472656, 0.13007772827148437, 0.1300623016357422, 0.1296732177734375, 0.1302405090332031, 0.13101568603515626, 0.13053543090820313, 0.12958309936523438, 0.12989543151855468, 0.13040640258789063, 0.12972032165527345, 0.12959744262695314, 0.12965682983398438, 0.12967628479003906, 0.1296046142578125, 0.12968960571289062, 0.1309102020263672, 0.13147955322265625, 0.13136282348632813, 0.13167820739746094, 0.1325506591796875, 0.1314693145751953, 0.1313454132080078, 0.1313280029296875, 0.13255577087402343, 0.1314273223876953, 0.13156965637207033, 0.13132698059082032, 0.1305374755859375, 0.1306746826171875, 0.1309071350097656, 0.13065113830566405, 0.13108326721191407, 0.1307310333251953, 0.13129315185546875, 0.13122866821289061, 0.13088768005371093, 0.13070541381835937, 0.1310146484375, 0.13133619689941406, 0.1298104248046875, 0.13102490234375, 0.13102694702148437, 0.13097779846191407, 0.13345689392089843, 0.13114060974121095, 0.13085081481933594, 0.13208985900878906, 0.13153689575195313, 0.13162701416015626, 0.13186355590820312, 0.13157069396972657, 0.13132492065429688, 0.13146829223632814, 0.13144781494140625, 0.13143244934082032, 0.13133209228515624, 0.13199154663085938, 0.13162086486816407, 0.13136589050292968, 0.13134745788574217, 0.13149900817871094, 0.13125018310546874, 0.27049984741210936, 0.13173965454101563, 0.13157376098632811, 0.13129933166503907, 0.13149183654785157, 0.13152255249023437, 0.13144268798828124, 0.13151744079589844, 0.13144781494140625, 0.1312665557861328, 0.1313638458251953, 0.1312542724609375, 0.13116621398925782, 0.1316812744140625, 0.1304279022216797, 0.13107609558105468, 0.13173452758789062, 0.13157273864746094, 0.13156761169433595, 0.131114013671875, 0.13155325317382813, 0.13144883728027343, 0.13135667419433594, 0.1312972869873047, 0.13135154724121093, 0.13139456176757813, 0.13143653869628907, 0.13130137634277345, 0.13196800231933595, 0.1318707275390625, 0.131631103515625, 0.1325455322265625, 0.13174578857421876, 0.13033779907226561, 0.12979814147949217, 0.129902587890625, 0.13098188781738282, 0.13004287719726562, 0.13019442749023438, 0.12989439392089844, 0.13051187133789063, 0.12981350708007813, 0.12995890808105467, 0.13021900939941405, 0.12963839721679687, 0.12967628479003906, 0.13002546691894531, 0.13009510803222657, 0.1296711730957031, 0.13236019897460938, 0.12973362731933594, 0.13032858276367187, 0.13070643615722657, 0.1302425537109375, 0.1299220428466797, 0.12974490356445312, 0.12966812133789063, 0.12980630493164064, 0.129623046875, 0.13014938354492187, 0.13049958801269532, 0.12993023681640625, 0.1298841552734375, 0.26678680419921874, 0.1296680908203125, 0.12964556884765624, 0.12968447875976563, 0.12973260498046876, 0.129765380859375, 0.1300142059326172, 0.1296855010986328, 0.12954725646972656, 0.1295247344970703, 0.12960870361328125, 0.1295667266845703, 0.12963941955566408, 0.12973158264160156, 0.13008895874023438, 0.13011558532714843, 0.12971827697753907, 0.12998963928222657, 0.12966706848144532, 0.12973568725585938, 0.12970803833007813, 0.1298350067138672, 0.1297090606689453, 0.12965274047851563, 0.12967730712890624, 0.13019648742675782, 0.12975820922851564, 0.12972854614257812, 0.12970799255371093, 0.1302794189453125, 0.12972647094726564, 0.12966400146484375, 0.12970086669921874, 0.12959333801269532, 0.1299220428466797, 0.1300633544921875, 0.1296537628173828, 0.12968038940429688, 0.1319403839111328, 0.12973974609375, 0.13016064453125, 0.13014527893066405, 0.1306234893798828, 0.1300377655029297, 0.13088461303710938, 0.13168946838378906, 0.1299251251220703, 0.12965580749511718, 0.12978688049316406, 0.13135565185546874, 0.13036749267578124, 0.12981248474121093, 0.1297510986328125, 0.1297816925048828, 0.12961383056640624, 0.1298667449951172, 0.12978175354003907, 0.12962611389160156, 0.13000294494628906, 0.12986572265625, 0.1298462677001953, 0.12970803833007813, 0.12991897583007814, 0.2678077392578125, 0.13065216064453125, 0.12982272338867187, 0.13018418884277344, 0.13069625854492187, 0.12963424682617186, 0.12971827697753907, 0.12956063842773438, 0.13137094116210937, 0.13036647033691406, 0.12986265563964844, 0.12970803833007813, 0.1298462677001953, 0.12968447875976563, 0.1297029113769531, 0.12973670959472655, 0.12944793701171875, 0.12968345642089843, 0.1307125701904297, 0.12972134399414062, 0.12976742553710938, 0.12971929931640624, 0.12958309936523438, 0.13087026977539062, 0.12964659118652344, 0.1298032684326172, 0.12998757934570312, 0.13012275695800782, 0.12993536376953124, 0.1304698944091797, 0.1299988555908203, 0.12983807373046874, 0.13000192260742188, 0.13018623352050782, 0.1299199981689453, 0.13019648742675782, 0.13000090026855468, 0.13050265502929687, 0.12989645385742188, 0.12952677917480468, 0.12986778259277343, 0.13002546691894531, 0.13098597717285157, 0.129828857421875, 0.12967730712890624, 0.13003981018066407, 0.1295636444091797, 0.12984115600585938, 0.12994764709472656, 0.13031321716308594, 0.12971315002441405, 0.12961485290527344, 0.12971417236328125, 0.12996202087402345, 0.13037257385253906, 0.12986061096191406, 0.12995584106445313, 0.13010226440429687, 0.1315707550048828, 0.1297571258544922, 0.12957183837890626, 0.12970188903808594, 0.13077810668945314, 0.2692198486328125, 0.13007154846191407, 0.12988313293457032, 0.12971212768554688, 0.12965481567382814, 0.12962608337402343, 0.12967219543457031, 0.12959231567382812, 0.12979200744628908, 0.1296680908203125, 0.13002957153320313, 0.12997938537597656, 0.12960153198242189, 0.13012786865234374, 0.13016986083984375, 0.12967219543457031, 0.1310576629638672, 0.12998348999023437, 0.12976332092285156, 0.1300869140625, 0.1296824951171875, 0.13126751708984374, 0.12993536376953124, 0.13007359313964845, 0.12969984436035156, 0.12999679565429687, 0.1298698272705078, 0.1300858917236328, 0.1298913269042969, 0.1299404754638672, 0.13012275695800782, 0.13052313232421875, 0.1302425537109375, 0.13017805480957031, 0.12996812438964844, 0.12995071411132814, 0.13004083251953125, 0.130302978515625, 0.1300623321533203, 0.13056716918945313, 0.1300695037841797, 0.1299261474609375, 0.12973260498046876, 0.13010330200195314, 0.1296855010986328, 0.13009613037109374, 0.12976742553710938, 0.12981350708007813, 0.12980429077148437, 0.12988723754882814, 0.1295564727783203, 0.12995277404785155, 0.12949913024902343, 0.12956877136230469, 0.129870849609375, 0.13016371154785156, 0.12968754577636718, 0.1295667266845703, 0.12944383239746093, 0.1296282196044922, 0.1295543670654297, 0.12969778442382812, 0.12969062805175782, 0.26870681762695314, 0.1297827911376953, 0.1297592315673828, 0.131557373046875, 0.12989439392089844, 0.13009408569335937, 0.1305999298095703, 0.1311446990966797, 0.13035110473632813, 0.13046885681152343, 0.1303521270751953, 0.13139045715332032, 0.1301749725341797, 0.1304627227783203, 0.13010841369628906, 0.1311856689453125, 0.1305753936767578, 0.1308395233154297, 0.12992515563964843, 0.13041970825195312, 0.13009100341796875, 0.1309265594482422, 0.130155517578125, 0.13011354064941405, 0.12959437561035156, 0.1299148864746094, 0.13058047485351562, 0.13014527893066405, 0.13060198974609374, 0.12966400146484375, 0.12963533020019533, 0.1295380554199219, 0.12953395080566407, 0.1297786865234375, 0.13530213928222656, 0.13242477416992188, 0.13271443176269532, 0.1324779510498047, 0.13233970642089843, 0.13220352172851563, 0.1323294677734375, 0.13220556640625, 0.1319833526611328, 0.1321994171142578, 0.13245542907714844, 0.132347900390625, 0.13226495361328125, 0.13233561706542968, 0.13197415161132814, 0.13208883666992188, 0.13216461181640626, 0.1321881561279297, 0.13220249938964843, 0.13227622985839843, 0.1321246795654297, 0.13223423767089842, 0.13205606079101562, 0.13206629943847656, 0.13218611145019532, 0.13227622985839843, 0.13237759399414062, 0.13250457763671875, 0.13218917846679687, 0.27291647338867187, 0.13057228088378905, 0.12985139465332032, 0.12977766418457032, 0.12981146240234376, 0.1296363525390625, 0.12980120849609375, 0.12959642028808593, 0.12995993041992188, 0.129691650390625, 0.12974592590332032, 0.12970086669921874, 0.12972647094726564, 0.1295984649658203, 0.12972032165527345, 0.13100953674316407, 0.13002957153320313, 0.13050367736816407, 0.13074021911621095, 0.13157478332519532, 0.12986880493164063, 0.12991693115234376, 0.12960050964355468, 0.12965682983398438, 0.13195468139648436, 0.13054464721679687, 0.1317058563232422, 0.13119078063964842, 0.13114982604980469, 0.1297049560546875, 0.12969573974609375, 0.12971315002441405, 0.12958412170410155, 0.1308958740234375, 0.1309696044921875, 0.12978994750976564, 0.12954112243652344, 0.12962713623046876, 0.12967832946777344, 0.12949913024902343, 0.12971827697753907, 0.12982989501953124, 0.1297622985839844, 0.12973464965820314, 0.12974490356445312, 0.1297244110107422, 0.13159628295898437, 0.13082418823242187, 0.1297407989501953, 0.12985548400878907, 0.1299814453125, 0.13154815673828124, 0.13089791870117187, 0.12983602905273436, 0.1315010528564453, 0.13150003051757814, 0.132068359375, 0.13167718505859374, 0.13150309753417969, 0.13090509033203124, 0.12976332092285156, 0.1298053741455078, 0.1295963592529297]",tokens/s,7.549042304619914,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -44778,46 +44815,32 @@ If this is a private repository, make sure to pass a token having permission to ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run - report = scenario.run(backend) - File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 105, in run - _ = backend.generate(self.inputs, self.config.generate_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 400, in generate - return self.pretrained_model.generate(**inputs, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context - return func(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1914, in generate - result = self._sample( - File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2651, in _sample - outputs = self( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1174, in forward - outputs = self.model( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 978, in forward - layer_outputs = decoder_layer( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 718, in forward - hidden_states, self_attn_weights, present_key_value = self.self_attn( - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl - return self._call_impl(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl - return forward_call(*args, **kwargs) -TypeError: DeciCoderAttention.forward() got an unexpected keyword argument 'cache_position' + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,s,s,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-4B,Qwen/Qwen1.5-4B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -44825,73 +44848,104 @@ TypeError: DeciCoderAttention.forward() got an unexpected keyword argument 'cach File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/s/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948ce7-7540ffbc4c32cf5c23cc57ca;da49da9d-686c-4114-897b-61c7820ec048) - -Repository Not Found for url: https://huggingface.co/s/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -The above exception was the direct cause of the following exception: +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-4.5B,facebook/xglm-4.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-3b-4e1t,stabilityai/stablelm-3b-4e1t,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file - raise EnvironmentError( -OSError: s is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,TencentARC/Mistral_Pro_8B_v0.1,TencentARC/Mistral_Pro_8B_v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2452.258816,7298.613248,0.0,6652.166144,6323.221504,s,10,7.6798339843750005,0.7679833984375,0.0025974055850476797,0.7679208068847656,0.7711121887207032,0.7721169158935547,0.772920697631836,"[0.7685753173828125, 0.7731216430664063, 0.7647974853515624, 0.7675167846679688, 0.76627783203125, 0.7641251220703125, 0.7666953735351563, 0.7683248291015625, 0.770888916015625, 0.7695106811523438]",tokens/s,333.34053902837564,kWh,9.039419593792114e-06,4.95321018510627e-06,4.32610068310048e-05,5.725363660990319e-05,tokens/kWh,4471331.694513176,MB,2452.258816,7298.613248,0.0,6652.166144,6382.564864,s,10,455.74574609375,45.57457460937499,0.015546779743152406,45.57488671875,45.595179296874996,45.5973923828125,45.5991628515625,"[45.5867109375, 45.5946875, 45.59960546875, 45.58337109375, 45.55990625, 45.5529375, 45.558640625, 45.56011328125, 45.5776015625, 45.572171875]",tokens/s,1.3823497101175461,kWh,0.000537889561981909,0.0002948106017116671,0.0025152069288305857,0.0033479070925241613,tokens/kWh,18817.726495660016,,s,629,461.93301361083974,0.7343927084433065,0.09125959398126374,0.7233239135742188,0.7243169799804687,0.7247333496093751,1.4901356689453125,"[0.7238604736328125, 0.7241830444335937, 0.7225497436523437, 0.7234365234375, 0.7223142700195313, 0.7223203735351562, 0.7245137939453125, 0.7236771850585938, 0.7226992797851562, 0.723535888671875, 0.7234600830078125, 0.7246929931640625, 0.7229706420898437, 0.7237723999023438, 0.7233392944335938, 0.7235133666992187, 0.7225231323242187, 0.7234631958007812, 0.723367919921875, 0.7226572875976562, 0.7243929443359375, 0.7232921752929687, 0.7236546630859375, 0.7240488891601562, 0.7235286865234375, 0.7245383911132812, 0.7233167114257812, 0.7230576782226562, 0.7237959594726563, 0.7243140869140625, 0.722629638671875, 0.7226122436523438, 0.7224381713867187, 0.7233873901367187, 0.7249028930664062, 0.7240294189453125, 0.723904541015625, 0.7241912231445312, 0.7243069458007813, 0.7245864868164062, 0.7234006958007813, 0.723114990234375, 0.7231324462890625, 0.7226593017578125, 0.7241062622070312, 0.7237662963867187, 0.7239597778320312, 0.724094970703125, 0.7240611572265625, 0.7237017822265625, 0.7238123779296874, 0.72437451171875, 0.7245363159179687, 0.7248076782226562, 0.7224637451171875, 0.7232000122070312, 0.7239700317382812, 0.7240325317382813, 0.7229603881835938, 0.7228866577148437, 0.7229910888671875, 0.7245496215820313, 1.497416748046875, 0.7238062133789063, 0.7237662963867187, 0.7238911743164063, 0.7240550537109375, 0.7237857055664062, 0.7238358764648437, 0.7228784790039062, 0.72378369140625, 0.7233925170898438, 0.7229235229492188, 0.722534423828125, 0.7236341552734376, 0.723399658203125, 0.7241830444335937, 0.7228897094726563, 0.7232071533203125, 0.7245209350585937, 0.7240325317382813, 0.7224688720703125, 0.7228262329101562, 0.7225323486328125, 0.7236700439453125, 0.7239026489257813, 0.72288037109375, 0.7225128784179687, 0.7245783081054687, 0.7235983276367187, 0.7235532836914063, 0.725017578125, 0.724094970703125, 0.7250708618164062, 0.7244400634765625, 0.7243571166992188, 0.7240745239257812, 0.7232041015625, 0.7236218872070312, 0.7237877807617188, 0.7239588012695313, 0.7241809692382812, 0.7240929565429688, 0.7230279541015625, 0.7229634399414062, 0.7229419555664063, 0.72318359375, 0.7240601806640625, 0.7232184448242187, 0.7226746826171875, 0.7235880737304687, 0.724453369140625, 0.7243407592773438, 0.7238184814453125, 0.7240242919921875, 0.7247308959960937, 0.7247349853515626, 0.7235543212890625, 0.7233402709960938, 0.7242977294921875, 0.7243202514648438, 0.723862548828125, 0.724084716796875, 0.723768310546875, 0.7227473754882813, 1.490913330078125, 0.7229655151367187, 0.7226480712890625, 0.7240775756835938, 0.7235686645507813, 0.7231815795898437, 0.72302490234375, 0.7227381591796875, 0.7236761474609374, 0.724653076171875, 0.724200439453125, 0.7239618530273437, 0.7246776123046875, 0.7250585327148438, 0.7243140869140625, 0.7238225708007813, 0.7248977661132813, 0.725359619140625, 0.7238379516601563, 0.7237171020507812, 0.724158447265625, 0.7239188232421875, 0.7248445434570312, 0.7251189575195313, 0.7247544555664063, 0.7250022583007812, 0.7248936767578125, 0.7236198120117188, 0.7234979858398437, 0.723462158203125, 0.7234559936523437, 0.724263916015625, 0.7227955322265625, 0.7225702514648438, 0.7241932983398438, 0.7234805908203125, 0.7234949340820312, 0.72275146484375, 0.7225385131835937, 0.7228804931640626, 0.7242403564453125, 0.7236218872070312, 0.7236986694335937, 0.723472412109375, 0.724126708984375, 0.7239505615234375, 0.7238901977539063, 0.7237283935546875, 0.7242025146484375, 0.724116455078125, 0.7241031494140625, 0.72374169921875, 0.7228671875, 0.7233228759765625, 0.7237857055664062, 0.7240171508789063, 0.72399462890625, 0.7229276123046875, 0.7241410522460937, 0.7236751098632812, 0.7226521606445313, 0.7233648681640625, 0.7235952758789063, 1.49184814453125, 0.7231047973632813, 0.7224780883789063, 0.7224258422851563, 0.72266650390625, 0.7234283447265625, 0.72353076171875, 0.7227269287109375, 0.7243991088867188, 0.7234119873046875, 0.72285595703125, 0.7229951782226562, 0.7234692993164062, 0.7242373046875, 0.7239915771484375, 0.7242465209960938, 0.7243253784179687, 0.7225200805664063, 0.7226972045898438, 0.7227289428710938, 0.7236956176757813, 0.7238881225585938, 0.7240274047851563, 0.7241492309570312, 0.7236741333007812, 0.7231661987304687, 0.723114990234375, 0.7243571166992188, 0.7238656005859375, 0.723240966796875, 0.7226122436523438, 0.7238615112304687, 0.7242168579101562, 0.7235440673828125, 0.7236239624023437, 0.723926025390625, 0.7243919067382812, 0.7229173583984375, 0.7226542358398438, 0.7227238159179687, 0.7229859619140625, 0.7234990234375, 0.7239567260742188, 0.7231416015625, 0.7239454956054687, 0.7230084838867188, 0.7233607788085937, 0.7238359375, 0.7240099487304688, 0.7241431274414063, 0.7246141357421875, 0.7241359252929688, 0.7245772705078125, 0.7245137939453125, 0.725411865234375, 0.723578857421875, 0.7241543579101563, 0.7230054321289062, 0.7233526000976562, 0.7226992797851562, 0.7232420043945312, 0.7230075073242187, 0.7230187377929688, 1.490323486328125, 0.7229685668945313, 0.723535888671875, 0.72338330078125, 0.723409912109375, 0.7233341674804687, 0.7232112426757813, 0.72279345703125, 0.7230853271484375, 0.7230105590820313, 0.7226060791015625, 0.723346435546875, 0.7229296875, 0.72382568359375, 0.7241666259765625, 0.72303515625, 0.7230812377929687, 0.7226583251953125, 0.7230535888671875, 0.7229890747070312, 0.7228118896484375, 0.7222753295898438, 0.7228641357421876, 0.722740234375, 0.72254052734375, 0.7228671875, 0.7227391967773438, 0.7233505249023438, 0.722619384765625, 0.72300439453125, 0.7234150390625, 0.7230556030273437, 0.7235297241210937, 0.722819091796875, 0.723610595703125, 0.7228836059570313, 0.7235348510742188, 0.7226911010742187, 0.7227914428710938, 0.7233935546875, 0.7231590576171875, 0.7238717651367188, 0.72331982421875, 0.7227811889648438, 0.7233136596679688, 0.7229542236328125, 0.7231754150390625, 0.7233607788085937, 0.7233925170898438, 0.7229081420898438, 0.7231047973632813, 0.7224483642578124, 0.723252197265625, 0.722640869140625, 0.7238778686523437, 0.7232604370117187, 0.7231641845703125, 0.7244615478515625, 0.7236874389648438, 0.72321533203125, 0.7241400146484375, 0.7235686645507813, 0.7226695556640625, 1.48693603515625, 0.7224832153320313, 0.7234774780273437, 0.7231426391601562, 0.724173828125, 0.7240755004882813, 0.7229542236328125, 0.72241357421875, 0.7228876953125, 0.7233106079101562, 0.7236618041992188, 0.7231641845703125, 0.7225897216796875, 0.7224903564453125, 0.7225599975585938, 0.7225702514648438, 0.7227361450195312, 0.7226112060546875, 0.7231498413085937, 0.723304443359375, 0.722703369140625, 0.7227955322265625, 0.7233474731445313, 0.7234703369140625, 0.7267368774414062, 0.7227781982421875, 0.7225128173828125, 0.7224033203125, 0.7225589599609376, 0.7226634521484375, 0.7223306274414063, 0.7225364990234375, 0.7230811767578125, 0.72255078125, 0.7227003173828125, 0.7224832153320313, 0.7223961791992187, 0.7230310668945312, 0.7257907104492187, 0.7230904541015625, 0.7228538818359375, 0.7229788208007812, 0.7225180053710938, 0.7223818359375, 0.7229481201171875, 0.7229378662109375, 0.72367822265625, 0.7230084838867188, 0.7230146484375, 0.7226326904296875, 0.7231416015625, 0.7237335205078125, 0.7241860961914063, 0.7245127563476562, 0.722572265625, 0.7229020385742188, 0.72300341796875, 0.72266650390625, 0.7228159790039063, 0.7224207153320312, 0.7239270629882812, 0.72285693359375, 0.722966552734375, 1.4896527099609376, 0.7232348022460937, 0.7239567260742188, 0.7227739868164063, 0.723078125, 0.7226429443359375, 0.7226798095703125, 0.7228703002929687, 0.7228917846679688, 0.7229112548828125, 0.722935791015625, 0.7229030151367187, 0.7226050415039063, 0.7226798095703125, 0.7230105590820313, 0.7234058227539063, 0.7233239135742188, 0.7225077514648437, 0.7225938110351563, 0.7227412719726563, 0.7225303344726562, 0.72310888671875, 0.7248046264648438, 0.7248180541992187, 0.723907470703125, 0.72346826171875, 0.7232081909179687, 0.7231743774414062, 0.7237877807617188, 0.7234160766601563, 0.7235860595703125, 0.7227647705078125, 0.7225620727539063, 0.7228334350585938, 0.7226992797851562, 0.7227996215820313, 0.7227381591796875, 0.7233106079101562, 0.723267578125, 0.7230556030273437, 0.7226695556640625, 0.723061767578125, 0.7235317993164062, 0.7233689575195312, 0.7238010864257812, 0.7234078979492188, 0.7232849731445312, 0.7231876831054688, 0.7232327880859375, 0.7230422973632813, 0.7230341186523438, 0.7235563354492187, 0.7233157348632813, 0.7235266723632813, 0.723040283203125, 0.7234692993164062, 0.7238154296875, 0.7239547119140625, 0.7235758056640625, 0.7227924194335937, 0.7224013061523438, 0.7225753784179687, 0.7224832153320313, 1.4909122314453125, 0.7237437744140625, 0.7234396362304687, 0.7226849365234375, 0.7229102172851563, 0.7227125854492188, 0.7236638793945313, 0.7237918701171875, 0.722882568359375, 0.7225845947265624, 0.7231959228515625, 0.7231826171875, 0.722893798828125, 0.7226316528320312, 0.7233382568359376, 0.7234171142578125, 0.7229818725585937, 0.722428955078125, 0.7228836059570313, 0.722682861328125, 0.7232973022460938, 0.7227125854492188, 0.7229685668945313, 0.723040283203125, 0.7242997436523437, 0.7234037475585937, 0.7232604370117187, 0.7234345092773438, 0.72426904296875, 0.7237816162109375, 0.7232747802734375, 0.7224575805664063, 0.7224043579101562, 0.7228845825195312, 0.7226439819335938, 0.7229317016601563, 0.722651123046875, 0.7223142700195313, 0.7236024169921875, 0.7237283935546875, 0.7242454833984375, 0.72339453125, 0.7232337646484375, 0.7232767944335937, 0.7239905395507813, 0.7230320434570312, 0.7228037109375, 0.7227996215820313, 0.722904052734375, 0.7226705932617188, 0.7241994018554687, 0.7242670288085937, 0.7234703369140625, 0.723314697265625, 0.7229102172851563, 0.722967529296875, 0.7240089721679688, 0.723979248046875, 0.7236167602539062, 0.7229450073242187, 0.7226654663085937, 0.7226122436523438, 0.722820068359375, 1.495736328125, 0.724738037109375, 0.7240570678710937, 0.72363623046875, 0.72394140625, 0.7237017822265625, 0.7253534545898438, 0.7251988525390625, 0.7241973876953125, 0.7238829956054688, 0.7238615112304687, 0.7239464721679687, 0.7240714111328125, 0.7241809692382812, 0.7237929077148437, 0.72289892578125, 0.7232706298828125, 0.722914306640625, 0.7235338134765625, 0.7231948852539063, 0.7239393310546876, 0.7230525512695313, 0.7231815795898437, 0.7229603881835938, 0.7230853271484375, 0.72344677734375, 0.7233054809570313, 0.72283544921875, 0.7226583251953125, 0.7230003051757813, 0.72287744140625, 0.722608154296875, 0.7231324462890625, 0.7233526000976562, 0.7234529418945312, 0.72300439453125, 0.7229020385742188, 0.7233484497070313, 0.723610595703125, 0.7233925170898438, 0.72308837890625, 0.7229317016601563, 0.7229389038085937, 0.7231682739257812, 0.7229910888671875, 0.7232286987304688, 0.72271875, 0.723019775390625, 0.723493896484375, 0.72239208984375, 0.722845703125, 0.7230084838867188, 0.7235686645507813, 0.7236188354492188, 0.7237345581054687, 0.72363623046875, 0.7234805908203125, 0.7234385986328125, 0.7238164672851563, 0.724041748046875, 0.723356689453125, 0.723030029296875, 0.7237140502929688, 1.4925987548828126, 0.7230996704101562, 0.72384716796875, 0.7239147338867188, 0.7256944580078125, 0.7247103881835938, 0.7244021606445312, 0.7243776245117187, 0.724316162109375, 0.7242546997070313, 0.7244994506835938, 0.724832275390625, 0.7239239501953125, 0.723041259765625, 0.7240745239257812, 0.7239096069335937, 0.723515380859375, 0.7226603393554687, 0.7232348022460937, 0.7224627075195312, 0.7226132202148438, 0.7228047485351563, 0.72265625, 0.7226470947265625, 0.7226756591796875, 0.7231713256835938, 0.72317236328125, 0.722787353515625, 0.7223971557617187, 0.7228057861328125, 0.7233065185546875, 0.7235245971679688, 0.7238748168945313, 0.72374169921875, 0.7234816284179687, 0.7235297241210937, 0.7231426391601562, 0.7237867431640626, 0.7235635375976562, 0.7232808837890625, 0.72345703125, 0.7230924682617188, 0.72296142578125, 0.7232747802734375, 0.7239485473632813, 0.724284423828125, 0.722783203125, 0.7224873046875, 0.7223971557617187, 0.7222200927734375, 0.7224954833984375, 0.7242076416015625, 0.722787353515625, 0.7238604736328125, 0.7227545776367188, 0.7224268798828125, 0.7232020263671874, 0.7240253295898438, 0.722998291015625, 0.7229900512695312, 0.72289892578125, 0.7227340698242187, 0.7230996704101562]",tokens/s,1.36166929287697,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-12b,EleutherAI/pythia-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.42.3,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,1542.070272,9574.023168,0.0,8927.576064,8585.053184,s,10,9.482604919433594,0.9482604919433595,0.0008260811719636861,0.9479547424316406,0.94941376953125,0.9494473327636719,0.9494741833496094,"[0.9490130004882813, 0.94773095703125, 0.947888427734375, 0.9473400268554687, 0.9480210571289063, 0.9470042114257813, 0.94784326171875, 0.9488767700195313, 0.9494063110351563, 0.9494808959960938]",tokens/s,269.9680121391065,kWh,1.1186615084156847e-05,6.129816613698998e-06,5.138228858054715e-05,6.8698720278403e-05,tokens/kWh,3726415.848250952,MB,1542.070272,9574.023168,0.0,8927.576064,8848.595456,s,10,563.8236953125,56.382369531250006,0.006341033853176846,56.382623046875,56.388686328125,56.3898587890625,56.390796757812495,"[56.388078125, 56.37173828125, 56.37409375, 56.38842578125, 56.3804140625, 56.38051171875, 56.384734375, 56.39103125, 56.376703125, 56.38796484375]",tokens/s,1.1173705632410884,kWh,0.0006656233578544073,0.00036482027414217567,0.0030422669085590557,0.0040727105405556395,tokens/kWh,15468.813551233847,,s,629,571.4626268310548,0.9085256388411044,0.1125877667908229,0.8949237670898438,0.8955600952148438,0.8957106079101562,1.8423289111328125,"[0.8947117919921875, 0.8944906005859375, 0.894487548828125, 0.8946493530273437, 0.8944937133789063, 0.8946043701171875, 0.8949923095703125, 0.8949176025390625, 0.89470361328125, 0.8947046508789063, 0.8949002075195313, 0.8946964721679688, 0.894624755859375, 0.8946841430664062, 0.8946831665039062, 0.8945592041015625, 0.8946094360351563, 0.8955238647460938, 0.8949595947265625, 0.8950548706054687, 0.8953436279296875, 0.8954111938476562, 0.8952739868164062, 0.8949595947265625, 0.89497802734375, 0.895678466796875, 0.89542041015625, 0.8951244506835937, 0.8955187377929688, 0.8954183959960937, 0.8956139526367187, 0.895541259765625, 0.8952381591796875, 0.8951981811523437, 0.894613525390625, 0.8951449584960938, 0.89522998046875, 0.8949349975585937, 0.8950794067382812, 0.8955852661132813, 0.8955136108398437, 0.8957040405273438, 0.89653759765625, 0.895425537109375, 0.8957429809570312, 0.8955657958984375, 0.8946759643554687, 0.8947702026367188, 0.8948060302734375, 0.8948029174804687, 0.8947312622070313, 0.8949166259765625, 0.894961669921875, 0.894698486328125, 0.8946677856445312, 0.8949760131835938, 0.8948101196289062, 0.8951265258789063, 0.8949155883789063, 0.8949125366210937, 0.8952319946289062, 0.8952125244140625, 1.84270849609375, 0.8942510375976562, 0.8942520141601562, 0.8943861694335937, 0.8943790283203125, 0.89421826171875, 0.8942530517578124, 0.8943472900390625, 0.8943073120117188, 0.8942039184570313, 0.8943523559570312, 0.8947466430664063, 0.8944496459960938, 0.8944578857421875, 0.8946176147460938, 0.8945325927734376, 0.8944998168945313, 0.8944578857421875, 0.8943411254882813, 0.8944066772460938, 0.8947333374023437, 0.8947742919921875, 0.8952371215820313, 0.8951920776367187, 0.8950742797851563, 0.8953036499023438, 0.8958607177734375, 0.8951480102539062, 0.894561279296875, 0.8945745849609374, 0.89464013671875, 0.89449267578125, 0.8947291870117188, 0.8946995239257812, 0.8953272094726562, 0.8949248046875, 0.8945797119140625, 0.894581787109375, 0.8946227416992187, 0.89453466796875, 0.8946360473632813, 0.8944865112304687, 0.894972900390625, 0.8946022338867188, 0.8948131713867188, 0.89630615234375, 0.8950855712890625, 0.8945735473632812, 0.89509375, 0.894877685546875, 0.8948623657226562, 0.8948592529296875, 0.8950701904296875, 0.8948326416015625, 0.8948951416015625, 0.8951039428710937, 0.8956979370117187, 0.8953681640625, 0.8951326904296875, 0.895341552734375, 0.8950026245117187, 0.89509375, 0.89504052734375, 1.842423828125, 0.8941260986328124, 0.8945520629882813, 0.8947220458984375, 0.894656494140625, 0.8945305786132812, 0.89499853515625, 0.8945592041015625, 0.8945950927734375, 0.8945172729492188, 0.8946370849609375, 0.8945059814453125, 0.8944046630859375, 0.8946636352539062, 0.8949012451171875, 0.8946749267578125, 0.8944148559570313, 0.8946463012695313, 0.8946493530273437, 0.8948449096679687, 0.8946841430664062, 0.89457666015625, 0.8946165771484375, 0.8945653686523437, 0.8947998657226562, 0.8951336669921875, 0.89472509765625, 0.8945254516601563, 0.8946647338867187, 0.8947496948242187, 0.8945458984375, 0.8946483154296875, 0.8947752685546875, 0.8946513671875, 0.89472412109375, 0.8949534912109375, 0.89493505859375, 0.8949319458007813, 0.8946903076171875, 0.8946851806640626, 0.8947425537109375, 0.8946165771484375, 0.8947568359375, 0.8950374145507812, 0.8954019775390625, 0.8953005981445312, 0.8949186401367187, 0.895477783203125, 0.8955760498046875, 0.8952893676757813, 0.8947711791992188, 0.8951603393554688, 0.8951644287109375, 0.8949258422851563, 0.8947702026367188, 0.895045654296875, 0.894966796875, 0.8951286010742188, 0.8954326782226563, 0.8955955200195312, 0.8950845336914063, 0.89493505859375, 0.8953036499023438, 1.8420848388671875, 0.8943739013671875, 0.8944742431640625, 0.8944588623046875, 0.8943021850585937, 0.8945551147460937, 0.8949002075195313, 0.8946370849609375, 0.894671875, 0.8950026245117187, 0.8946104125976563, 0.8944783325195312, 0.8946043090820313, 0.894730224609375, 0.8949268188476562, 0.8950210571289062, 0.8947999267578125, 0.8947742309570312, 0.894740478515625, 0.8947445678710938, 0.8951439208984375, 0.8945285034179687, 0.894718994140625, 0.8944946899414062, 0.8946565551757812, 0.8951868896484375, 0.895405029296875, 0.8954634399414062, 0.8955699462890625, 0.89556591796875, 0.8955718994140625, 0.8953794555664063, 0.8954337158203125, 0.8954337158203125, 0.8955197143554687, 0.895415283203125, 0.8947374267578125, 0.8948316040039063, 0.8948848876953125, 0.89493603515625, 0.89607373046875, 0.8953927612304687, 0.8954030151367187, 0.8950763549804688, 0.8948746337890625, 0.8950906982421875, 0.8951173706054687, 0.8950875244140625, 0.8950517578125, 0.895193115234375, 0.8957860107421876, 0.8957142944335937, 0.89510400390625, 0.8949442749023437, 0.8955504760742188, 0.8954183959960937, 0.8954265747070312, 0.8953282470703126, 0.8952658081054687, 0.8953344116210937, 0.8951910400390625, 0.8952115478515625, 0.895372314453125, 1.842798583984375, 0.894867431640625, 0.8944486694335938, 0.8947363891601563, 0.8945643310546875, 0.894624755859375, 0.8943779907226562, 0.8944629516601562, 0.894593017578125, 0.8946360473632813, 0.8946360473632813, 0.8945499877929688, 0.8949258422851563, 0.8945899658203125, 0.8943206176757813, 0.8943810424804688, 0.8943441772460937, 0.8944210205078125, 0.8943964233398437, 0.8946442260742188, 0.8948121337890625, 0.8950394897460937, 0.894508056640625, 0.8946288452148438, 0.894761962890625, 0.894445556640625, 0.894666748046875, 0.8947322998046875, 0.8947803955078125, 0.8947783813476563, 0.8950272216796875, 0.8951142578125, 0.8951838989257812, 0.895194091796875, 0.8952688598632812, 0.8949923706054688, 0.894941162109375, 0.8948592529296875, 0.895120361328125, 0.89495654296875, 0.894834716796875, 0.8950067138671876, 0.8949268188476562, 0.8954276123046875, 0.895098876953125, 0.8948489990234375, 0.89508251953125, 0.8947149047851563, 0.8947844848632812, 0.8949176025390625, 0.8951572265625, 0.8954265747070312, 0.8949329833984375, 0.8952186889648438, 0.89586279296875, 0.8956856079101563, 0.8956375732421875, 0.8958504028320312, 0.8958607177734375, 0.8957890625, 0.896090087890625, 0.8952207641601563, 0.8950046997070312, 1.8418104248046876, 0.894635009765625, 0.8949862670898437, 0.8942847900390625, 0.8947527465820313, 0.89474560546875, 0.8949237670898438, 0.895009765625, 0.8947005615234375, 0.894540771484375, 0.8944691162109375, 0.8947548217773438, 0.8950394897460937, 0.8950814819335937, 0.8949442749023437, 0.8952811279296875, 0.8954982299804688, 0.8953876342773438, 0.8947916870117187, 0.894793701171875, 0.894424072265625, 0.8944189453125, 0.8946421508789062, 0.8948480224609375, 0.8949166259765625, 0.8948336791992187, 0.8950661010742188, 0.894693359375, 0.8947220458984375, 0.8945428466796875, 0.8945264892578125, 0.8946483154296875, 0.8945428466796875, 0.8949534912109375, 0.8950947875976563, 0.8949801025390625, 0.894793701171875, 0.8944804077148437, 0.8948326416015625, 0.8947886352539063, 0.8946463012695313, 0.8950374145507812, 0.8950548706054687, 0.8947046508789063, 0.8948521118164062, 0.8947947387695312, 0.8950343627929688, 0.896016357421875, 0.89537841796875, 0.8949534912109375, 0.8948264770507812, 0.8947291870117188, 0.8948469848632813, 0.8950374145507812, 0.8955863037109375, 0.895625244140625, 0.8950077514648438, 0.8963041381835938, 0.8954111938476562, 0.8953671875, 0.8954623413085937, 0.894798828125, 0.894887939453125, 1.8426265869140626, 0.8947097778320312, 0.8943308715820313, 0.8946094360351563, 0.89487255859375, 0.8948531494140625, 0.8943810424804688, 0.8948029174804687, 0.8945305786132812, 0.894403564453125, 0.8944967651367187, 0.8945111083984375, 0.894256103515625, 0.8942643432617188, 0.8944465942382812, 0.8944373779296875, 0.8948449096679687, 0.8945623168945313, 0.8946790161132813, 0.8952760620117187, 0.8952442626953125, 0.8954480590820313, 0.895604736328125, 0.8951316528320312, 0.895373291015625, 0.8952965087890625, 0.8952135620117188, 0.8954982299804688, 0.89461962890625, 0.894635009765625, 0.89516748046875, 0.8950435791015625, 0.895288330078125, 0.8951705322265625, 0.8953231201171875, 0.8952504272460937, 0.8954859619140625, 0.8955873413085937, 0.8957020874023438, 0.8951807250976562, 0.8950128784179687, 0.8955391845703125, 0.8951060180664062, 0.8948285522460937, 0.8950609741210938, 0.8948336791992187, 0.895288330078125, 0.8960173950195313, 0.8961146850585937, 0.8949033203125, 0.8948756713867188, 0.8947322998046875, 0.8947599487304687, 0.8946739501953125, 0.8947794189453125, 0.89483056640625, 0.8950394897460937, 0.8949503784179688, 0.8951633911132812, 0.895013916015625, 0.8956754150390625, 0.89516748046875, 0.8950999145507812, 1.8436168212890625, 0.8943912963867188, 0.8948367309570312, 0.8948541259765626, 0.8944517211914063, 0.8943073120117188, 0.8948643798828125, 0.8947589111328125, 0.8948408203125, 0.8943790283203125, 0.8945469360351562, 0.8947906494140625, 0.8946472778320312, 0.89457763671875, 0.8946227416992187, 0.8944599609375, 0.8943308715820313, 0.8947947387695312, 0.89451416015625, 0.8946759643554687, 0.8953764038085937, 0.8954818725585938, 0.8954224853515625, 0.8949595947265625, 0.894798828125, 0.89508251953125, 0.89493603515625, 0.8948899536132813, 0.8954071044921875, 0.8956600341796875, 0.8955228271484375, 0.8945531005859375, 0.895091796875, 0.894426025390625, 0.8945940551757813, 0.8949483642578125, 0.8954695434570312, 0.8954337158203125, 0.8955617065429687, 0.895705078125, 0.8956774291992188, 0.8955668334960938, 0.8957470703125, 0.895783935546875, 0.8958381958007813, 0.8955484008789063, 0.8957245483398437, 0.8957757568359375, 0.8956160278320312, 0.8955596923828125, 0.8956641235351562, 0.894929931640625, 0.8956354370117188, 0.8957890625, 0.895720458984375, 0.8952330322265625, 0.8950875854492187, 0.8949013061523438, 0.8949912719726563, 0.8950056762695312, 0.8950292358398437, 0.8950947875976563, 0.895425537109375, 1.844294677734375, 0.8944813842773438, 0.8946903076171875, 0.8944793701171875, 0.8943154907226563, 0.8944281616210937, 0.8947394409179688, 0.8945684204101563, 0.89459814453125, 0.8946411743164062, 0.8946442260742188, 0.8948531494140625, 0.8943698120117187, 0.89447216796875, 0.8945315551757812, 0.894613525390625, 0.8944015502929688, 0.894519287109375, 0.8946494140625, 0.8943318481445313, 0.894856201171875, 0.8947066650390625, 0.8946043090820313, 0.8954736938476563, 0.894951416015625, 0.8945725708007812, 0.8944384155273437, 0.8945336303710938, 0.894424072265625, 0.89456640625, 0.8948255615234375, 0.8949267578125, 0.8951398315429687, 0.8949749755859375, 0.8952821655273437, 0.8951060180664062, 0.8951029663085938, 0.89509375, 0.8948869018554687, 0.89470361328125, 0.8949053344726563, 0.8949002075195313, 0.8952289428710938, 0.8951848754882813, 0.8950517578125, 0.8951705322265625, 0.89493505859375, 0.895046630859375, 0.8949483642578125, 0.895025146484375, 0.8951019287109375, 0.895046630859375, 0.8949944458007812, 0.8952371215820313, 0.8952401733398437, 0.8950508422851563, 0.8953936767578125, 0.8952227783203125, 0.8954398803710938, 0.8953220825195313, 0.8954224853515625, 0.8953753662109375, 0.8951367797851563, 1.844548583984375, 0.8944896240234375, 0.8949319458007813, 0.89477734375, 0.8948880004882812, 0.8951592407226563, 0.8949964599609375, 0.8950630493164062, 0.8949033203125, 0.8947374267578125, 0.8947835083007812, 0.8947149047851563, 0.8950487060546874, 0.8947804565429688, 0.8947496337890625, 0.8945151977539062, 0.89474560546875, 0.894519287109375, 0.894666748046875, 0.8947998657226562, 0.89482958984375, 0.8946575317382812, 0.89470361328125, 0.89495654296875, 0.8948951416015625, 0.8947322387695312, 0.8947548217773438, 0.89498828125, 0.8947803955078125, 0.894624755859375, 0.8946534423828125, 0.8946217041015625, 0.8947435302734374, 0.8945428466796875, 0.8952791137695313, 0.8954193725585937, 0.8954695434570312, 0.8955166625976563, 0.89563134765625, 0.8954306640625, 0.8954142456054688, 0.89560986328125, 0.8953190307617187, 0.8954153442382813, 0.8953906860351563, 0.8954869995117187, 0.8954685668945312, 0.8954306640625, 0.8956671752929688, 0.8955023193359375, 0.8956805419921875, 0.8953036499023438, 0.895129638671875, 0.8948295288085938, 0.8949370727539062, 0.8949995727539063, 0.8952125244140625, 0.8953599853515625, 0.8954337158203125, 0.8954173583984375, 0.8950763549804688, 0.895267822265625, 0.8950804443359375]",tokens/s,1.1006844025619116,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/polyglot-ko-12.8b,EleutherAI/polyglot-ko-12.8b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.42.3,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,1719.15264,9941.024768,0.0,9294.577664,8911.746048,s,10,10.544145263671874,1.0544145263671874,0.0010263685969407418,1.0538491821289062,1.0558189086914063,1.056022979736328,1.0561862365722656,"[1.0548157958984374, 1.055557861328125, 1.0534412841796874, 1.0533297119140625, 1.0538177490234375, 1.05368359375, 1.0536180419921874, 1.05622705078125, 1.053880615234375, 1.0557735595703126]",tokens/s,242.7887643790399,kWh,1.2439715911944707e-05,6.81644635683667e-06,5.731321251720156e-05,7.656937478598295e-05,tokens/kWh,3343373.2574614706,MB,1719.15264,9941.024768,0.0,9294.577664,9207.169536,s,10,625.9803984374998,62.598039843749994,0.0064857424668782184,62.597361328125,62.608881640625,62.6090521484375,62.6091885546875,"[62.5915, 62.5971171875, 62.60001171875, 62.5950546875, 62.60922265625, 62.59760546875, 62.5876328125, 62.59442578125, 62.60884375, 62.598984375]",tokens/s,1.0064212898239837,kWh,0.0007390174119340049,0.000405046892581094,0.0033900267953525963,0.004534091099867695,tokens/kWh,13894.736257469185,,s,629,634.4764850463862,1.0087066534918707,0.1252696003233685,0.9935564575195313,0.9942255615234376,0.994458203125,2.047124262695313,"[0.9932533569335937, 0.993554443359375, 0.9934541015625, 0.9934970703125, 0.993522705078125, 0.9933742065429687, 0.9931765747070312, 0.9935513305664062, 0.9936742553710938, 0.9934131469726563, 0.99338134765625, 0.9935011596679687, 0.9932554321289062, 0.9931090087890625, 0.9931304931640625, 0.9932892456054687, 0.9933352661132813, 0.9934735107421875, 0.9935462646484375, 0.993201171875, 0.9934755859375, 0.9933844604492188, 0.99399169921875, 0.9942271728515625, 0.9945016479492188, 0.9934305419921875, 0.9931151123046875, 0.9933302001953125, 0.9932943115234375, 0.993154052734375, 0.9932830810546875, 0.9939834594726562, 0.9932789916992187, 0.9933536987304687, 0.9933199462890625, 0.9932779541015625, 0.9934039306640625, 0.993575927734375, 0.9934479370117187, 0.9935789794921875, 0.9932236938476563, 0.9937623291015625, 0.9932841186523438, 0.9933956909179688, 0.9934428100585937, 0.9935053100585938, 0.9933148193359375, 0.9936640014648438, 0.9938964233398437, 0.993997802734375, 0.993818603515625, 0.9943306274414062, 0.9934089965820313, 0.9936957397460937, 0.9934878540039063, 0.993517578125, 0.993406982421875, 0.9937264404296875, 0.9937561645507812, 0.9935595703125, 0.993470458984375, 0.994150390625, 2.049156005859375, 0.9941790771484375, 0.9928366088867188, 0.9927720947265625, 0.992954345703125, 0.9932196044921875, 0.992901123046875, 0.9929287719726563, 0.9937110595703125, 0.9937469482421875, 0.99350732421875, 0.993523681640625, 0.9935032348632813, 0.9931919555664063, 0.9934089965820313, 0.993375244140625, 0.9931519775390625, 0.9932297973632812, 0.99370703125, 0.9943889770507812, 0.9939599609375, 0.9944320068359375, 0.9945589599609375, 0.9943388061523437, 0.9938411865234374, 0.9933147583007812, 0.9931079711914063, 0.993070068359375, 0.993491943359375, 0.9930404052734375, 0.9930618896484374, 0.9932410888671875, 0.9931898803710938, 0.9932615966796875, 0.99338134765625, 0.9934192504882813, 0.9932717895507812, 0.9932431640625, 0.9937141723632813, 0.9942671508789063, 0.994344970703125, 0.9942804565429687, 0.9934131469726563, 0.993133544921875, 0.9934315795898437, 0.9938145141601562, 0.99424560546875, 0.9943848876953125, 0.99461328125, 0.9945005493164063, 0.9941248168945312, 0.9932974243164062, 0.993386474609375, 0.9932850952148438, 0.9934642944335937, 0.9933834228515624, 0.9939906616210937, 0.9948251953125, 0.9943306274414062, 0.9936486206054688, 0.9934315795898437, 0.9933772583007813, 0.9934315795898437, 2.0469842529296876, 0.99340185546875, 0.9938616333007813, 0.993259521484375, 0.9934468994140625, 0.9933701171875, 0.9933557739257812, 0.9932922973632813, 0.993364990234375, 0.993280029296875, 0.9933721313476562, 0.993448974609375, 0.99376025390625, 0.993455078125, 0.9935195922851563, 0.9930925903320312, 0.993028076171875, 0.992974853515625, 0.9931939697265625, 0.9932113647460937, 0.993269775390625, 0.9935667114257812, 0.9935780029296875, 0.9939630126953125, 0.9940654296875, 0.9936220092773438, 0.993196044921875, 0.9931427612304687, 0.99349609375, 0.9934161987304687, 0.9942200317382812, 0.9941903076171875, 0.9942251586914063, 0.9941360473632812, 0.9942907104492188, 0.99439208984375, 0.9937581787109375, 0.993448974609375, 0.993428466796875, 0.9934581909179687, 0.9935697631835938, 0.9937991943359376, 0.9938134765625, 0.9933875122070313, 0.9936414794921875, 0.9939404907226562, 0.993712158203125, 0.9935503540039062, 0.9940111083984375, 0.9935881958007813, 0.9936742553710938, 0.9938831176757813, 0.9940234375, 0.9937172241210938, 0.9938462524414062, 0.9939876098632813, 0.9938677978515625, 0.9941268310546875, 0.9940326538085937, 0.9937705078125, 0.9937592163085938, 0.9941647338867188, 0.9940643920898438, 2.0465888671875, 0.993291259765625, 0.9930659790039063, 0.9929953002929688, 0.9930301513671875, 0.9929625854492188, 0.9931141357421875, 0.9938667602539063, 0.9938483276367187, 0.9934500122070312, 0.9932410888671875, 0.9937684326171875, 0.9930966796875, 0.9929779663085937, 0.9930065307617187, 0.9930025024414062, 0.99308544921875, 0.9939855346679688, 0.9937489624023438, 0.993122314453125, 0.9932236938476563, 0.9935472412109375, 0.9931898803710938, 0.9932113647460937, 0.9934725341796875, 0.9931591796875, 0.9933363037109375, 0.9935697631835938, 0.9940367431640625, 0.9934243774414062, 0.993396728515625, 0.9935011596679687, 0.9935503540039062, 0.9933609008789063, 0.9936404418945313, 0.993280029296875, 0.9932615966796875, 0.993560546875, 0.993607666015625, 0.9932369995117187, 0.9933373413085937, 0.9933363037109375, 0.9936138305664063, 0.9941299438476563, 0.9947095336914062, 0.9946358032226562, 0.9948703002929687, 0.9945211181640625, 0.9942548217773437, 0.9943377685546875, 0.994208740234375, 0.9939722290039062, 0.9937797241210937, 0.9933690795898438, 0.9936834716796875, 0.9937991943359376, 0.9935728759765625, 0.9937192993164062, 0.993850341796875, 0.9936292114257812, 0.993522705078125, 0.9938278198242188, 0.9938964233398437, 2.047667236328125, 0.9933219604492187, 0.993249267578125, 0.9937152099609375, 0.993607666015625, 0.9934929809570312, 0.9934458618164063, 0.9934561157226562, 0.9934202880859375, 0.9931448364257812, 0.9932482299804688, 0.993133544921875, 0.9932185668945313, 0.9933486328125, 0.9932113647460937, 0.9930239868164062, 0.9931499633789063, 0.993385498046875, 0.993623046875, 0.9931847534179687, 0.9931407470703125, 0.9933311767578125, 0.9933025512695313, 0.9935738525390625, 0.9934878540039063, 0.9931028442382812, 0.993291259765625, 0.9935390625, 0.9940121459960938, 0.9939404907226562, 0.9939844970703124, 0.99399169921875, 0.9939630126953125, 0.99418212890625, 0.9944033203125, 0.99441357421875, 0.9945497436523437, 0.9946542358398438, 0.994677734375, 0.9946644287109375, 0.9946214599609375, 0.9943961791992187, 0.9941852416992187, 0.9934417724609375, 0.993924072265625, 0.9936271362304687, 0.9935360107421874, 0.99349609375, 0.9938565063476562, 0.9935574951171875, 0.9935206298828125, 0.9936732177734375, 0.9935462646484375, 0.9937049560546874, 0.9939435424804688, 0.9951979370117188, 0.9946101684570312, 0.9944935302734375, 0.9945128173828125, 0.9944463500976563, 0.994735107421875, 0.9944514770507813, 0.9943807983398437, 2.048078857421875, 0.993028076171875, 0.9930137329101563, 0.993206298828125, 0.9933762817382813, 0.9939036254882813, 0.9938851928710938, 0.993755126953125, 0.9937858276367187, 0.9940326538085937, 0.9939876098632813, 0.9934868774414063, 0.9936414794921875, 0.9939988403320312, 0.9935923461914062, 0.9933240356445312, 0.9931847534179687, 0.9932779541015625, 0.9934714965820313, 0.9930844116210937, 0.9936578369140625, 0.9938052978515625, 0.993322998046875, 0.9932216186523437, 0.9935308837890625, 0.99378076171875, 0.993306640625, 0.9932584838867188, 0.9932144775390624, 0.9931376342773437, 0.993728515625, 0.993671142578125, 0.9932789916992187, 0.99370703125, 0.9934725341796875, 0.9934192504882813, 0.9932841186523438, 0.9932666625976563, 0.9934161987304687, 0.9933086547851563, 0.994081787109375, 0.9937469482421875, 0.9935452270507813, 0.9935267944335937, 0.9936803588867188, 0.9936640014648438, 0.9933844604492188, 0.993386474609375, 0.9936271362304687, 0.9933690795898438, 0.9941544799804688, 0.9938729248046875, 0.9938770141601563, 0.9938646850585937, 0.9941729125976563, 0.9941309204101563, 0.9941688232421875, 0.9943121948242187, 0.9938104248046875, 0.99384326171875, 0.9937837524414063, 0.9938462524414062, 0.9935820922851563, 2.0471787109375, 0.9933516845703125, 0.993239013671875, 0.9932574462890625, 0.9932349243164063, 0.9929584350585937, 0.9934888916015625, 0.9937141723632813, 0.9931510009765625, 0.9934397583007812, 0.9934541015625, 0.993349609375, 0.9931478881835938, 0.9930997924804688, 0.9930321655273437, 0.9929564208984375, 0.99333837890625, 0.9933394165039062, 0.9931058959960938, 0.9935267944335937, 0.9934131469726563, 0.993406982421875, 0.9932113647460937, 0.9931427612304687, 0.9933762817382813, 0.99306494140625, 0.9933988037109375, 0.9935216674804688, 0.9931868286132812, 0.9932021484375, 0.9934817504882812, 0.993249267578125, 0.9933035278320312, 0.9930823974609375, 0.993165283203125, 0.9931611938476562, 0.9935851440429687, 0.9936312255859375, 0.9937080078125, 0.9935677490234375, 0.993924072265625, 0.9938779907226563, 0.9935370483398438, 0.9933721313476562, 0.9934315795898437, 0.9933414306640626, 0.9936466064453126, 0.9936640014648438, 0.9939773559570313, 0.9937377319335937, 0.9939671020507812, 0.9938831176757813, 0.9938268432617188, 0.9936035766601562, 0.99350732421875, 0.9936937255859375, 0.9939087524414062, 0.9935697631835938, 0.9935523681640624, 0.9934110717773438, 0.99375, 0.9941063842773438, 0.9937572021484375, 2.049478759765625, 0.9928888549804687, 0.9935093994140625, 0.9934356689453125, 0.99312744140625, 0.9929881591796875, 0.9932820434570313, 0.9932564697265625, 0.99310693359375, 0.9931765747070312, 0.9931530151367187, 0.9932451782226562, 0.9936434936523437, 0.993344482421875, 0.9931212768554688, 0.99290625, 0.9931212768554688, 0.9929718017578125, 0.9932113647460937, 0.9932083129882813, 0.9932031860351562, 0.9932339477539063, 0.9936619873046875, 0.9933270263671875, 0.9931744995117188, 0.9932288208007812, 0.993723388671875, 0.9935257568359375, 0.9934970703125, 0.993238037109375, 0.9932687377929688, 0.9936260986328125, 0.9937100830078125, 0.9936373901367187, 0.9935585327148437, 0.9932482299804688, 0.99365380859375, 0.9933915405273438, 0.9938831176757813, 0.9936926879882813, 0.9938933715820313, 0.9934356689453125, 0.9937561645507812, 0.9936506958007812, 0.9939199829101563, 0.9936773071289062, 0.9938401489257812, 0.99349609375, 0.994255859375, 0.994904052734375, 0.99376953125, 0.9936199340820312, 0.9937572021484375, 0.9941176147460937, 0.9938462524414062, 0.9936619262695312, 0.9941596069335937, 0.9936865234375, 0.99378173828125, 0.9937141723632813, 0.9936803588867188, 0.9935554809570313, 0.9938104248046875, 2.051559326171875, 0.9941268310546875, 0.9940828247070312, 0.994271240234375, 0.9940510864257812, 0.9941145629882813, 0.9936506958007812, 0.9942886352539062, 0.9940695190429687, 0.9944586181640624, 0.9935769653320312, 0.9936854858398437, 0.9932533569335937, 0.99340185546875, 0.9937705078125, 0.9931049194335938, 0.9933690795898438, 0.9936537475585937, 0.9935462646484375, 0.993891357421875, 0.99378173828125, 0.993122314453125, 0.9931417846679688, 0.993490966796875, 0.9935994873046875, 0.9932892456054687, 0.9932687377929688, 0.9935841064453125, 0.9936168823242187, 0.9935554809570313, 0.9935769653320312, 0.993480712890625, 0.993385498046875, 0.99350732421875, 0.9935564575195313, 0.99364453125, 0.9936558227539063, 0.9939107666015625, 0.9939158935546875, 0.9941985473632813, 0.9941432495117187, 0.9936455688476562, 0.9938226928710937, 0.9939691772460938, 0.9941217041015625, 0.9938595581054688, 0.9940776977539062, 0.993892333984375, 0.9935165405273437, 0.994145263671875, 0.9943971557617187, 0.9939005737304687, 0.9939691772460938, 0.9940899658203125, 0.9944524536132813, 0.9939476318359375, 0.994008056640625, 0.9935984497070313, 0.9936322631835938, 0.9937469482421875, 0.9941473388671875, 0.993839111328125, 0.9936773071289062, 2.049173583984375, 0.9932349243164063, 0.9930895385742188, 0.9929584350585937, 0.993112060546875, 0.9935626220703125, 0.9935841674804687, 0.9931212768554688, 0.9931560668945313, 0.9936353149414062, 0.9933639526367187, 0.993328125, 0.9930321655273437, 0.993048583984375, 0.9930782470703124, 0.9932236938476563, 0.9934100341796875, 0.9942405395507813, 0.9938800659179687, 0.9939517211914063, 0.9939046630859375, 0.9933926391601563, 0.9930547485351563, 0.9930239868164062, 0.99312841796875, 0.9933936767578125, 0.9935728759765625, 0.9934264526367188, 0.9932861328125, 0.9937889404296875, 0.9936240844726563, 0.9943818359375, 0.9941749877929688, 0.9940623168945313, 0.9940439453125, 0.9943009033203125, 0.9939138793945312, 0.9936312255859375, 0.9932615966796875, 0.9934940185546876, 0.99378173828125, 0.9934970703125, 0.9934868774414063, 0.9932533569335937, 0.9932605590820313, 0.9939199829101563, 0.994492431640625, 0.9941585693359375, 0.9941483764648438, 0.9944913940429687, 0.9944575805664062, 0.9941248168945312, 0.9935923461914062, 0.9933486328125, 0.9937080078125, 0.9940858764648437, 0.9940858764648437, 0.9938626708984375, 0.9938104248046875, 0.99388623046875, 0.9936803588867188, 0.9938411254882813, 0.993755126953125]",tokens/s,0.9913684980051132,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-3b,stabilityai/stablelm-base-alpha-3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.42.3,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,1368.358912,4467.458048,0.0,3821.010944,3588.539392,s,10,2.8067558593750004,0.2806755859375,0.0006520085456073243,0.28042581176757814,0.28102059326171874,0.2818000457763672,0.28242360778808595,"[0.28257949829101564, 0.2808473815917969, 0.2804600830078125, 0.28033602905273436, 0.28030355834960935, 0.2803615417480469, 0.280387939453125, 0.2803915405273438, 0.2805464172363281, 0.2805418701171875]",tokens/s,912.0850292159193,kWh,3.3146340721919215e-06,1.8157278611973394e-06,1.546479632244524e-05,2.05951582558345e-05,tokens/kWh,12430105.989958903,MB,1368.358912,4467.458048,0.0,3821.010944,3673.094656,s,10,163.922755859375,16.3922755859375,0.0036930693849752424,16.39014453125,16.397535546874998,16.3983634765625,16.399025820312502,"[16.39692578125, 16.3973515625, 16.3902265625, 16.3898671875, 16.389916015625, 16.38983203125, 16.388861328125, 16.390521484375, 16.3900625, 16.39919140625]",tokens/s,3.8432735997951397,kWh,0.00019353930944461886,0.00010607578792378326,0.0008956917659355523,0.0011953068633039545,tokens/kWh,52706.1308975181,,s,629,166.186866668701,0.26420805511717194,0.03331598698154965,0.2601615295410156,0.260431884765625,0.26055332641601564,0.5405375170898438,"[0.2604738464355469, 0.2601553955078125, 0.2602137451171875, 0.2602014770507812, 0.26009906005859373, 0.2600960083007812, 0.2601891784667969, 0.260052978515625, 0.26007244873046875, 0.26023117065429685, 0.26028134155273436, 0.2602239990234375, 0.260178955078125, 0.2603960266113281, 0.26044927978515625, 0.26019122314453125, 0.2603632507324219, 0.2602874755859375, 0.2603694152832031, 0.26010931396484377, 0.2601082763671875, 0.2601553955078125, 0.26012261962890626, 0.26017691040039065, 0.260384765625, 0.26000897216796875, 0.26050048828125, 0.2604451904296875, 0.2605189208984375, 0.2606510009765625, 0.26038885498046876, 0.26014208984375, 0.26037350463867187, 0.26012875366210936, 0.26038168334960937, 0.26016256713867186, 0.26014309692382814, 0.2602557373046875, 0.26028338623046876, 0.26035711669921874, 0.260173828125, 0.260274169921875, 0.26040423583984373, 0.2602352600097656, 0.2601103210449219, 0.26028646850585935, 0.26021273803710937, 0.2600837097167969, 0.2600867919921875, 0.26013287353515624, 0.26008062744140625, 0.2601809997558594, 0.26045849609375, 0.26033767700195315, 0.2603550720214844, 0.26027316284179686, 0.260358154296875, 0.26017791748046876, 0.26013287353515624, 0.26070016479492186, 0.2606714782714844, 0.2604800109863281, 0.5413314819335937, 0.26024755859375, 0.260279296875, 0.26044723510742185, 0.2606909484863281, 0.2603417663574219, 0.2602362976074219, 0.2602874755859375, 0.26026904296875, 0.26027825927734377, 0.2603980712890625, 0.2603550720214844, 0.26029876708984373, 0.2603970642089844, 0.2604031982421875, 0.2602977294921875, 0.2602874755859375, 0.2606069641113281, 0.2604349365234375, 0.2605721740722656, 0.26039398193359375, 0.2601553955078125, 0.26009088134765623, 0.26001202392578127, 0.26004583740234377, 0.2601062316894531, 0.2600140686035156, 0.26019122314453125, 0.2603263854980469, 0.26014822387695313, 0.26062744140625, 0.2606827392578125, 0.260453369140625, 0.2604513244628906, 0.2603345947265625, 0.260274169921875, 0.2604247131347656, 0.2603755493164063, 0.260379638671875, 0.26031512451171873, 0.26023834228515624, 0.260242431640625, 0.26064486694335937, 0.260105224609375, 0.26019839477539064, 0.2601584777832031, 0.26008779907226565, 0.2601379699707031, 0.26007858276367185, 0.26006427001953125, 0.2601451416015625, 0.26012261962890626, 0.2601871337890625, 0.260168701171875, 0.26012875366210936, 0.26016357421875, 0.260094970703125, 0.26018508911132815, 0.2601615295410156, 0.26018405151367185, 0.2601185302734375, 0.2602147827148438, 0.2601390075683594, 0.5406546020507812, 0.26011239624023436, 0.2602711181640625, 0.2600499267578125, 0.2601041870117187, 0.2603049011230469, 0.2602168273925781, 0.26013388061523435, 0.26018405151367185, 0.26004376220703124, 0.2601246643066406, 0.2600919189453125, 0.260063232421875, 0.260063232421875, 0.26024551391601564, 0.26033050537109376, 0.2602772521972656, 0.26050970458984374, 0.26012057495117186, 0.26016973876953126, 0.26012979125976565, 0.260068359375, 0.2601308288574219, 0.26012875366210936, 0.2602158203125, 0.26017279052734377, 0.26003558349609374, 0.26014822387695313, 0.26015640258789063, 0.2601134033203125, 0.26012774658203125, 0.26010726928710937, 0.2601185302734375, 0.2603263854980469, 0.260105224609375, 0.26043597412109376, 0.26021273803710937, 0.26012979125976565, 0.2602721252441406, 0.26023117065429685, 0.2602301330566406, 0.2601082763671875, 0.26006732177734376, 0.2601082763671875, 0.2602874755859375, 0.26014208984375, 0.2600263671875, 0.2604247131347656, 0.26013592529296875, 0.26005401611328127, 0.2600181884765625, 0.260031494140625, 0.26013491821289064, 0.26009088134765623, 0.2600028076171875, 0.26041241455078123, 0.26015640258789063, 0.2601062316894531, 0.260031494140625, 0.2600693664550781, 0.26033151245117186, 0.2602291259765625, 0.2600919189453125, 0.5405234985351562, 0.25998745727539063, 0.260173828125, 0.26001202392578127, 0.26014105224609374, 0.2600028076171875, 0.26002944946289064, 0.2601031799316406, 0.26008984375, 0.26006527709960936, 0.26004583740234377, 0.26007757568359374, 0.2599424133300781, 0.25997927856445313, 0.26033355712890627, 0.26021170043945313, 0.2601973876953125, 0.26019839477539064, 0.2602711181640625, 0.260389892578125, 0.2600560607910156, 0.2602014770507812, 0.26017279052734377, 0.26028237915039065, 0.26020965576171873, 0.2603263854980469, 0.26026803588867187, 0.26026803588867187, 0.2602158203125, 0.2604656677246094, 0.2606540832519531, 0.26019021606445314, 0.2601605224609375, 0.260173828125, 0.2600714111328125, 0.260063232421875, 0.26014617919921873, 0.26014105224609374, 0.26012261962890626, 0.2600744934082031, 0.2600284118652344, 0.2600663146972656, 0.2600960083007812, 0.26000897216796875, 0.26003762817382814, 0.2601021423339844, 0.26015640258789063, 0.2602014770507812, 0.2601257019042969, 0.26007757568359374, 0.26020352172851563, 0.2601605224609375, 0.26020965576171873, 0.260463623046875, 0.26010009765625, 0.2601164855957031, 0.26010113525390627, 0.26030081176757813, 0.2601236572265625, 0.2600980529785156, 0.2600284118652344, 0.2602229614257813, 0.26016461181640627, 0.54054296875, 0.2599915466308594, 0.2600621948242188, 0.2600335388183594, 0.26055374145507815, 0.26001715087890626, 0.25995367431640626, 0.2599915466308594, 0.25993215942382814, 0.2599864196777344, 0.260073486328125, 0.2600755310058594, 0.2600130615234375, 0.26003250122070315, 0.25998233032226564, 0.26010726928710937, 0.26006427001953125, 0.2600693664550781, 0.2599362487792969, 0.26019021606445314, 0.2601021423339844, 0.26002432250976565, 0.25996697998046875, 0.26015640258789063, 0.26016256713867186, 0.2601584777832031, 0.26004376220703124, 0.2603673706054688, 0.2601922607421875, 0.26005401611328127, 0.26012774658203125, 0.26035711669921874, 0.260073486328125, 0.26015640258789063, 0.2600867919921875, 0.26006427001953125, 0.2600867919921875, 0.26011544799804687, 0.26028646850585935, 0.2602239990234375, 0.26033355712890627, 0.2601922607421875, 0.2602926025390625, 0.2606766052246094, 0.2603632507324219, 0.2603049011230469, 0.2601574401855469, 0.260431884765625, 0.26024038696289065, 0.2603397216796875, 0.260284423828125, 0.2601809997558594, 0.26024551391601564, 0.2603182067871094, 0.26009088134765623, 0.26022503662109375, 0.2602547302246094, 0.2602168273925781, 0.2601441345214844, 0.260168701171875, 0.26013491821289064, 0.2601379699707031, 0.2601062316894531, 0.54051123046875, 0.2601390075683594, 0.2601922607421875, 0.25996697998046875, 0.260052978515625, 0.260136962890625, 0.260094970703125, 0.2600407104492187, 0.2599987182617188, 0.2599987182617188, 0.26010009765625, 0.26005914306640626, 0.26003558349609374, 0.2600110168457031, 0.26003045654296875, 0.26005401611328127, 0.26007858276367185, 0.2603427734375, 0.26014208984375, 0.2601748352050781, 0.2600499267578125, 0.26007757568359374, 0.2600714111328125, 0.26015435791015623, 0.26024856567382815, 0.26022503662109375, 0.26021990966796876, 0.26020452880859374, 0.260316162109375, 0.26029876708984373, 0.26020556640625, 0.260210693359375, 0.26008575439453124, 0.2604656677246094, 0.2604400634765625, 0.2601594848632813, 0.26012774658203125, 0.2602557373046875, 0.260242431640625, 0.26018405151367185, 0.2602342529296875, 0.26016769409179685, 0.260094970703125, 0.26014004516601563, 0.2603407287597656, 0.26011749267578127, 0.26007244873046875, 0.26017074584960936, 0.2601666564941406, 0.2601195373535156, 0.2601523132324219, 0.26002432250976565, 0.26015640258789063, 0.2602721252441406, 0.2601236572265625, 0.2602659912109375, 0.2604195861816406, 0.26026904296875, 0.260105224609375, 0.26010009765625, 0.26001715087890626, 0.26015435791015623, 0.26013592529296875, 0.5406597290039062, 0.25996798706054686, 0.26000384521484377, 0.25998233032226564, 0.26013388061523435, 0.26001611328125, 0.2601871337890625, 0.2602270812988281, 0.2600140686035156, 0.25994854736328127, 0.26010931396484377, 0.2600417175292969, 0.26012161254882815, 0.26007858276367185, 0.2603612060546875, 0.26019021606445314, 0.2600335388183594, 0.2600048522949219, 0.26028851318359375, 0.26029568481445314, 0.2600263671875, 0.2601584777832031, 0.26007244873046875, 0.26013287353515624, 0.26012161254882815, 0.2601451416015625, 0.25998849487304687, 0.2601113586425781, 0.26011444091796876, 0.26016256713867186, 0.26076263427734375, 0.2601973876953125, 0.26007962036132815, 0.26019122314453125, 0.2599557189941406, 0.26013388061523435, 0.26014822387695313, 0.2600744934082031, 0.26005709838867186, 0.2601041870117187, 0.2599925842285156, 0.2600140686035156, 0.260052978515625, 0.26012261962890626, 0.26014309692382814, 0.26016769409179685, 0.26023117065429685, 0.26024551391601564, 0.2600980529785156, 0.260031494140625, 0.26009088134765623, 0.2600816650390625, 0.2601891784667969, 0.26030694580078123, 0.26020660400390627, 0.2601471862792969, 0.26018405151367185, 0.26039398193359375, 0.2601134033203125, 0.2601236572265625, 0.26024551391601564, 0.2604605407714844, 0.2602229614257813, 0.54063818359375, 0.26014309692382814, 0.2600407104492187, 0.26005914306640626, 0.26034481811523436, 0.26052197265625, 0.26023321533203125, 0.26015435791015623, 0.26017691040039065, 0.2602239990234375, 0.26020660400390627, 0.260242431640625, 0.2601533508300781, 0.26014208984375, 0.2602905578613281, 0.26014309692382814, 0.260068359375, 0.2601471862792969, 0.2600407104492187, 0.2601021423339844, 0.2601871337890625, 0.2600888366699219, 0.26002227783203125, 0.25998541259765623, 0.2601748352050781, 0.2601195373535156, 0.26006732177734376, 0.2601502685546875, 0.26017691040039065, 0.2601451416015625, 0.2601615295410156, 0.26021170043945313, 0.26003250122070315, 0.26021786499023436, 0.2601871337890625, 0.2601533508300781, 0.2600130615234375, 0.2600744934082031, 0.260063232421875, 0.26030899047851563, 0.26002944946289064, 0.26009292602539064, 0.26021990966796876, 0.2603765869140625, 0.26019534301757813, 0.26014004516601563, 0.26009088134765623, 0.26026190185546877, 0.26006527709960936, 0.26020452880859374, 0.2601113586425781, 0.2602567749023437, 0.26019021606445314, 0.2602219543457031, 0.2601748352050781, 0.2601943054199219, 0.26019534301757813, 0.26018508911132815, 0.2603212890625, 0.26023934936523435, 0.2601021423339844, 0.2602352600097656, 0.26024856567382815, 0.5407201538085937, 0.260105224609375, 0.260252685546875, 0.2601451416015625, 0.26007858276367185, 0.2602147827148438, 0.26014309692382814, 0.2600284118652344, 0.26005197143554687, 0.25995162963867186, 0.2601553955078125, 0.26008062744140625, 0.2599710693359375, 0.26005914306640626, 0.26005197143554687, 0.2600980529785156, 0.26014822387695313, 0.26045849609375, 0.2603468933105469, 0.26027621459960937, 0.2603212890625, 0.2601441345214844, 0.2602076110839844, 0.2600888366699219, 0.26023934936523435, 0.2602362976074219, 0.2600765380859375, 0.2601891784667969, 0.26019635009765624, 0.26020452880859374, 0.2600396728515625, 0.2601318359375, 0.2600939636230469, 0.26023321533203125, 0.26005810546875, 0.26002328491210935, 0.26006427001953125, 0.260068359375, 0.2600181884765625, 0.2600980529785156, 0.26037042236328123, 0.260126708984375, 0.26012261962890626, 0.2602014770507812, 0.26039910888671874, 0.2602444763183594, 0.2600447998046875, 0.2602997741699219, 0.260210693359375, 0.2601021423339844, 0.2600488891601562, 0.2600816650390625, 0.2602577819824219, 0.2600980529785156, 0.2601891784667969, 0.26029568481445314, 0.26044723510742185, 0.26029464721679685, 0.26002944946289064, 0.2600939636230469, 0.26015435791015623, 0.26023321533203125, 0.26021170043945313, 0.5409474487304687, 0.25998745727539063, 0.2600058898925781, 0.26006427001953125, 0.26001715087890626, 0.25991986083984375, 0.2600611877441406, 0.2601082763671875, 0.26007962036132815, 0.260021240234375, 0.2601134033203125, 0.2601533508300781, 0.2600079345703125, 0.26007858276367185, 0.2602997741699219, 0.26022604370117186, 0.2600488891601562, 0.260200439453125, 0.26017791748046876, 0.26030694580078123, 0.26000897216796875, 0.260173828125, 0.2601164855957031, 0.260173828125, 0.2601441345214844, 0.26056805419921875, 0.2605014953613281, 0.2605014953613281, 0.2604789733886719, 0.2605363159179688, 0.2607964172363281, 0.2606684265136719, 0.2602915954589844, 0.2604461975097656, 0.2603263854980469, 0.26024652099609374, 0.26027825927734377, 0.260305908203125, 0.2603970642089844, 0.26023834228515624, 0.26024856567382815, 0.26026904296875, 0.26051275634765625, 0.26044110107421875, 0.2605823974609375, 0.260569091796875, 0.2605455322265625, 0.26085888671875, 0.26055270385742185, 0.26060595703125, 0.26059674072265626, 0.2604236755371094, 0.2606295166015625, 0.26085479736328127, 0.26018304443359375, 0.26017279052734377, 0.2602342529296875, 0.260431884765625, 0.26019839477539064, 0.26014208984375, 0.2601103210449219, 0.2603325500488281, 0.2602669982910156]",tokens/s,3.7848959584389523,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,/,/,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-30b,facebook/opt-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -44903,25 +44957,30 @@ ChildProcessError: Traceback (most recent call last): report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 373, in cached_file - raise EnvironmentError( -OSError: / does not appear to have a file named config.json. Checkout 'https://huggingface.co///tree/None' for available files. + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-70m,EleutherAI/pythia-70m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.42.3,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,1263.857664,872.93952,0.0,226.492416,184.528384,s,12,0.17770700836181638,0.014808917363484699,0.0007458121254662319,0.014730735778808594,0.015585615634918212,0.016198500156402586,0.016727724933624268,"[0.01686003112792969, 0.014940928459167481, 0.014185312271118165, 0.014250240325927734, 0.014782591819763184, 0.01479747200012207, 0.014225376129150391, 0.01565724754333496, 0.014866304397583009, 0.014252096176147462, 0.014678879737854004, 0.014210528373718261]",tokens/s,17286.881526615558,kWh,1.717408794130004e-07,9.410611709969618e-08,3.064682684303119e-07,5.723152649430085e-07,tokens/kWh,447305909.3146723,MB,1263.857664,872.93952,0.0,226.492416,184.530944,s,12,10.442449340820314,0.8702041117350262,0.008126167996174669,0.869532958984375,0.87863642578125,0.8844940338134766,0.8896149688720703,"[0.8908952026367187, 0.8730538330078125, 0.8646798095703125, 0.8587084350585937, 0.870618896484375, 0.8792567138671875, 0.8648596801757813, 0.8676231079101563, 0.8708908081054687, 0.868447021484375, 0.8618011474609375, 0.8716146850585937]",tokens/s,72.39680800219347,kWh,1.0212165763734822e-05,5.594490671040206e-06,1.7625837744070347e-05,3.3432494178845375e-05,tokens/kWh,1884394.2561684093,,s,755,10.587394044876108,0.014023038470034567,0.0018357835916675285,0.013768704414367675,0.014138367652893067,0.01426595821380615,0.028149206199645997,"[0.01590272045135498, 0.015169535636901856, 0.013799424171447755, 0.013592576026916504, 0.013566975593566894, 0.013568032264709472, 0.013549535751342774, 0.013544447898864746, 0.013549568176269532, 0.01500057601928711, 0.014542847633361817, 0.015096832275390625, 0.014296064376831055, 0.014089216232299804, 0.014114815711975098, 0.014088191986083985, 0.014008319854736329, 0.014020607948303223, 0.01397862434387207, 0.013996031761169434, 0.013991935729980469, 0.014033920288085937, 0.014502911567687989, 0.014139391899108887, 0.014253055572509766, 0.01410972785949707, 0.014130144119262696, 0.01405951976776123, 0.014032896041870118, 0.014044159889221192, 0.014107647895812989, 0.01409331226348877, 0.014196736335754395, 0.014124032020568847, 0.01380352020263672, 0.013652992248535157, 0.014197759628295899, 0.014205951690673829, 0.014385215759277344, 0.014391231536865234, 0.01419264030456543, 0.014195712089538574, 0.014110719680786133, 0.014142463684082032, 0.014052351951599122, 0.014109696388244629, 0.014038016319274902, 0.013868032455444336, 0.013783040046691895, 0.014055423736572266, 0.014000127792358399, 0.014098464012145996, 0.014048224449157714, 0.014029824256896972, 0.013983743667602539, 0.014000127792358399, 0.014010368347167968, 0.01409945583343506, 0.01408512020111084, 0.014088191986083985, 0.013898752212524413, 0.013739007949829102, 0.029507583618164062, 0.014137344360351562, 0.014060544013977052, 0.014026752471923828, 0.014106623649597168, 0.014073856353759765, 0.013790207862854004, 0.013739007949829102, 0.013693951606750488, 0.013793279647827148, 0.013578240394592284, 0.013528063774108886, 0.013835264205932616, 0.014154751777648926, 0.013549568176269532, 0.013612031936645508, 0.01356492805480957, 0.013528063774108886, 0.013546496391296388, 0.013410304069519043, 0.01346457576751709, 0.013619199752807617, 0.014065664291381836, 0.014048255920410157, 0.01399500846862793, 0.014000127792358399, 0.014065664291381836, 0.013827072143554688, 0.013361151695251466, 0.013429759979248047, 0.013656064033508301, 0.0135731201171875, 0.013530112266540528, 0.013545472145080567, 0.013538304328918458, 0.013493247985839844, 0.013543423652648925, 0.01358950424194336, 0.013771776199340821, 0.01408614444732666, 0.01386393642425537, 0.01419878387451172, 0.014858240127563477, 0.014154784202575684, 0.014159839630126953, 0.014034943580627441, 0.014146559715270996, 0.014025728225708007, 0.014043135643005371, 0.014113792419433594, 0.014020607948303223, 0.014134271621704102, 0.014055423736572266, 0.01397862434387207, 0.013842432022094727, 0.013796352386474609, 0.013836288452148437, 0.014095359802246094, 0.014161919593811035, 0.014041088104248046, 0.013948927879333496, 0.013541376113891602, 0.013576191902160644, 0.02812518310546875, 0.013533184051513672, 0.013554688453674316, 0.01355571174621582, 0.01355571174621582, 0.013507583618164062, 0.01354751968383789, 0.013560832023620606, 0.01354751968383789, 0.013593600273132325, 0.01355571174621582, 0.013528063774108886, 0.013491231918334961, 0.014089183807373047, 0.01396224021911621, 0.014020607948303223, 0.014097408294677734, 0.014039039611816406, 0.014054400444030762, 0.014026752471923828, 0.014045215606689454, 0.014015487670898438, 0.014002143859863281, 0.01407795238494873, 0.014055423736572266, 0.014014464378356933, 0.014206975936889648, 0.014147583961486816, 0.014009344100952148, 0.014095359802246094, 0.014009344100952148, 0.01458796787261963, 0.013855680465698243, 0.013546496391296388, 0.013480959892272949, 0.01354854393005371, 0.013485055923461914, 0.013527039527893067, 0.01358950424194336, 0.013511712074279786, 0.013557727813720704, 0.013578240394592284, 0.013524991989135742, 0.013562879562377929, 0.01353932762145996, 0.013575167655944824, 0.013516799926757812, 0.013549568176269532, 0.013531135559082032, 0.013541376113891602, 0.01349120044708252, 0.013478912353515626, 0.013517824172973633, 0.013557760238647461, 0.013520895957946777, 0.013494272232055664, 0.013519871711730956, 0.013518848419189454, 0.013554688453674316, 0.013521984100341796, 0.013955007553100586, 0.014013440132141113, 0.013520895957946777, 0.02814566421508789, 0.013528063774108886, 0.013505536079406738, 0.013579263687133789, 0.014011391639709473, 0.01377894401550293, 0.013514752388000489, 0.0134717435836792, 0.013480959892272949, 0.013486080169677735, 0.013496319770812988, 0.013534208297729493, 0.013576191902160644, 0.013510656356811524, 0.013544447898864746, 0.01370419216156006, 0.01357209587097168, 0.013484031677246093, 0.01358233642578125, 0.013533184051513672, 0.013503487586975099, 0.013554688453674316, 0.013522944450378417, 0.013522944450378417, 0.013629440307617188, 0.01337446403503418, 0.013472767829895019, 0.01358233642578125, 0.013496319770812988, 0.013522944450378417, 0.013493247985839844, 0.013541376113891602, 0.013524991989135742, 0.01356390380859375, 0.013475839614868163, 0.013526016235351563, 0.013596672058105469, 0.013507583618164062, 0.01349120044708252, 0.013430815696716308, 0.013491168022155761, 0.01347481632232666, 0.013444095611572266, 0.013515775680541992, 0.013492223739624023, 0.013515775680541992, 0.013526016235351563, 0.0134901762008667, 0.013553664207458497, 0.013494272232055664, 0.013554688453674316, 0.01418239974975586, 0.014006272315979004, 0.013982720375061035, 0.013683712005615235, 0.014056447982788087, 0.013996031761169434, 0.014000160217285156, 0.013957088470458984, 0.014022656440734863, 0.014030847549438476, 0.014040063858032227, 0.014070783615112305, 0.029281280517578126, 0.014043135643005371, 0.013820927619934082, 0.013874176025390626, 0.013810688018798829, 0.014020607948303223, 0.014101504325866699, 0.014052351951599122, 0.014024703979492188, 0.014104576110839843, 0.014031871795654297, 0.014309375762939454, 0.014042143821716308, 0.014036959648132324, 0.014081024169921874, 0.013678591728210449, 0.013590527534484862, 0.013532159805297851, 0.013518848419189454, 0.013528063774108886, 0.013536255836486816, 0.01349836826324463, 0.01350656032562256, 0.013479935646057128, 0.013532159805297851, 0.013505536079406738, 0.01360588836669922, 0.013565952301025391, 0.013524031639099121, 0.013553600311279296, 0.01353932762145996, 0.014235648155212402, 0.014135295867919923, 0.014071807861328126, 0.014183423995971679, 0.013936639785766602, 0.013384703636169434, 0.013356032371520997, 0.013511679649353027, 0.013528063774108886, 0.013531135559082032, 0.013515775680541992, 0.013584383964538574, 0.013509632110595703, 0.013478912353515626, 0.01356390380859375, 0.013512703895568847, 0.013569024085998535, 0.013583359718322753, 0.014160896301269531, 0.014122048377990722, 0.014047167778015136, 0.014003199577331543, 0.014025728225708007, 0.014043135643005371, 0.014055423736572266, 0.014096384048461913, 0.014112768173217773, 0.014035967826843262, 0.014054400444030762, 0.014088224411010743, 0.01405129623413086, 0.014038016319274902, 0.029211648941040037, 0.014095359802246094, 0.014023679733276367, 0.014079999923706055, 0.014004223823547364, 0.014013440132141113, 0.014130175590515137, 0.014094335556030273, 0.014038016319274902, 0.014025728225708007, 0.014000127792358399, 0.014019583702087402, 0.014023679733276367, 0.014055423736572266, 0.014143487930297852, 0.01405951976776123, 0.014072832107543945, 0.014009344100952148, 0.014002176284790039, 0.014034943580627441, 0.014028800010681153, 0.01406771183013916, 0.014094335556030273, 0.014021632194519042, 0.014028800010681153, 0.014054400444030762, 0.01419264030456543, 0.014105600357055664, 0.01405951976776123, 0.014128128051757812, 0.01420902442932129, 0.014044159889221192, 0.014138367652893067, 0.013905920028686524, 0.013549568176269532, 0.014351360321044922, 0.013802495956420899, 0.0140697603225708, 0.014033920288085937, 0.014023679733276367, 0.014018560409545898, 0.01395199966430664, 0.014052351951599122, 0.014125056266784668, 0.013990912437438965, 0.01408409595489502, 0.014056447982788087, 0.014020607948303223, 0.014041088104248046, 0.014120960235595703, 0.013915200233459473, 0.013513664245605468, 0.013510656356811524, 0.013613056182861329, 0.013559807777404785, 0.01358233642578125, 0.013644800186157227, 0.01355059242248535, 0.013569024085998535, 0.013546496391296388, 0.013520895957946777, 0.013541376113891602, 0.013530112266540528, 0.02814975929260254, 0.01353932762145996, 0.013537280082702637, 0.01354751968383789, 0.013501503944396972, 0.013505472183227538, 0.013517824172973633, 0.013566975593566894, 0.013507583618164062, 0.01358233642578125, 0.013467647552490235, 0.013643775939941406, 0.013494272232055664, 0.013504511833190918, 0.01354854393005371, 0.013565952301025391, 0.01353932762145996, 0.013536255836486816, 0.013529088020324707, 0.013622271537780761, 0.013521920204162598, 0.013693951606750488, 0.014116864204406738, 0.01409126377105713, 0.01376255989074707, 0.013542400360107423, 0.013549568176269532, 0.013579263687133789, 0.013540351867675781, 0.013524991989135742, 0.013511679649353027, 0.01353932762145996, 0.013500415802001953, 0.01354751968383789, 0.013590527534484862, 0.013543423652648925, 0.013552639961242676, 0.013552639961242676, 0.013570048332214356, 0.013590527534484862, 0.013536288261413574, 0.01353212833404541, 0.013485055923461914, 0.013488127708435058, 0.013817855834960938, 0.014138367652893067, 0.014079999923706055, 0.014411775588989258, 0.014155839920043945, 0.014061504364013672, 0.014072832107543945, 0.014124032020568847, 0.014048255920410157, 0.013993984222412109, 0.014065664291381836, 0.013975584030151367, 0.013948896408081054, 0.014000127792358399, 0.014117888450622559, 0.013784064292907714, 0.013839360237121581, 0.01419878387451172, 0.01437491226196289, 0.030264320373535155, 0.014108672142028808, 0.01397862434387207, 0.014050304412841797, 0.013996031761169434, 0.014062591552734375, 0.013642751693725585, 0.013524031639099121, 0.0135730562210083, 0.01356601619720459, 0.013521856307983398, 0.013789183616638183, 0.013531135559082032, 0.013470720291137696, 0.013502464294433594, 0.013459456443786622, 0.013676544189453126, 0.013512703895568847, 0.013513728141784668, 0.013510656356811524, 0.013524991989135742, 0.0134717435836792, 0.013549599647521973, 0.013559807777404785, 0.013570015907287597, 0.013513728141784668, 0.013535231590270995, 0.013509632110595703, 0.013495295524597169, 0.013510656356811524, 0.013502464294433594, 0.013839360237121581, 0.01392851161956787, 0.013561792373657226, 0.013512703895568847, 0.013534208297729493, 0.013538304328918458, 0.01350656032562256, 0.01354854393005371, 0.01351478385925293, 0.013458399772644044, 0.013501440048217773, 0.013503520011901856, 0.013499360084533691, 0.013486080169677735, 0.013538304328918458, 0.01348300838470459, 0.013515775680541992, 0.014631936073303223, 0.015512576103210449, 0.014542847633361817, 0.01419059181213379, 0.014310400009155273, 0.014002176284790039, 0.014158847808837891, 0.014009344100952148, 0.013933631896972656, 0.01369593620300293, 0.014564352035522461, 0.014092288017272948, 0.014072832107543945, 0.014104576110839843, 0.014041088104248046, 0.029276159286499022, 0.014034943580627441, 0.013997056007385255, 0.014071807861328126, 0.013996031761169434, 0.013958144187927245, 0.01397862434387207, 0.015081472396850586, 0.014701567649841308, 0.014668800354003907, 0.013993984222412109, 0.01417728042602539, 0.014112768173217773, 0.01437388801574707, 0.014112768173217773, 0.014028800010681153, 0.014118911743164063, 0.014029824256896972, 0.014139391899108887, 0.014566399574279786, 0.014102527618408203, 0.014079999923706055, 0.014047231674194336, 0.014014464378356933, 0.014028800010681153, 0.013956095695495606, 0.014009344100952148, 0.014114815711975098, 0.014044159889221192, 0.01359769630432129, 0.013529088020324707, 0.013566975593566894, 0.013596672058105469, 0.013494272232055664, 0.01353932762145996, 0.01356390380859375, 0.013559807777404785, 0.013463552474975587, 0.013546496391296388, 0.013578240394592284, 0.013587455749511718, 0.013480959892272949, 0.013545472145080567, 0.013477888107299805, 0.013524991989135742, 0.013486080169677735, 0.013546496391296388, 0.013487104415893555, 0.013461503982543945, 0.013484031677246093, 0.013544511795043946, 0.013510592460632324, 0.013520895957946777, 0.013590527534484862, 0.013477888107299805, 0.013493247985839844, 0.013519871711730956, 0.013566975593566894, 0.01355571174621582, 0.013488127708435058, 0.01353932762145996, 0.013544447898864746, 0.013489151954650879, 0.028542015075683595, 0.01350444793701172, 0.01350656032562256, 0.013545503616333008, 0.013851615905761719, 0.013469696044921875, 0.013505536079406738, 0.013469696044921875, 0.013545472145080567, 0.01398476791381836, 0.014100480079650878, 0.014065664291381836, 0.013980671882629395, 0.014014464378356933, 0.014029824256896972, 0.01397657585144043, 0.014020607948303223, 0.013973504066467286, 0.013846528053283692, 0.013362175941467285, 0.013513728141784668, 0.013600768089294434, 0.013557760238647461, 0.0134901762008667, 0.013462528228759766, 0.013511679649353027, 0.013615103721618652, 0.013508607864379883, 0.013500415802001953, 0.013559807777404785, 0.013534208297729493, 0.013486080169677735, 0.01354854393005371, 0.013780991554260253, 0.014002176284790039, 0.013959168434143066, 0.014021632194519042, 0.014008319854736329, 0.013988863945007325, 0.013999103546142578, 0.01400115203857422, 0.013963264465332031, 0.014003199577331543, 0.013998080253601074, 0.014146559715270996, 0.01407590389251709, 0.014002176284790039, 0.014013440132141113, 0.014163968086242675, 0.014083104133605957, 0.013996000289916993, 0.013991935729980469, 0.014025728225708007, 0.013792256355285644, 0.01354854393005371, 0.013505536079406738, 0.013533184051513672, 0.01348198413848877, 0.013488127708435058, 0.013557760238647461, 0.013664256095886231, 0.013599743843078613, 0.014167039871215821, 0.029051904678344728, 0.014051327705383301, 0.014191616058349609, 0.014185471534729004, 0.014052351951599122, 0.014104576110839843, 0.014022720336914063, 0.014039999961853027, 0.013798399925231934, 0.013768704414367675, 0.013875200271606445, 0.013957119941711426, 0.014002176284790039, 0.014022656440734863, 0.013963264465332031, 0.01395206356048584, 0.013903807640075684, 0.013497344017028809, 0.013495295524597169, 0.0134717435836792, 0.0135731201171875, 0.013503487586975099, 0.013528063774108886, 0.0134901762008667, 0.013510656356811524, 0.013513728141784668, 0.013542400360107423, 0.013566975593566894, 0.013360128402709961, 0.013392895698547362, 0.013500415802001953, 0.013462528228759766, 0.013599743843078613, 0.013531135559082032, 0.013561856269836426, 0.013949952125549316, 0.014019583702087402, 0.014110719680786133, 0.013762623786926269, 0.013502400398254394, 0.013551615715026855, 0.013466624259948731, 0.013542400360107423, 0.013495295524597169, 0.013476863861083984, 0.013543423652648925, 0.013522944450378417, 0.013475839614868163, 0.013612031936645508, 0.01353321647644043, 0.013546463966369628, 0.013493247985839844, 0.013521920204162598, 0.01353932762145996, 0.013508607864379883, 0.01353932762145996, 0.013549568176269532, 0.013532159805297851, 0.013557760238647461, 0.013508607864379883, 0.013493247985839844, 0.013567999839782715, 0.013578240394592284, 0.02814873504638672, 0.013509632110595703, 0.01349836826324463, 0.013489151954650879, 0.013528063774108886, 0.013495295524597169, 0.013513824462890626, 0.013567904472351074, 0.013513728141784668, 0.013622271537780761, 0.013479935646057128, 0.013486080169677735, 0.013485055923461914, 0.013629440307617188, 0.013565952301025391, 0.013479935646057128, 0.013392895698547362, 0.01337446403503418, 0.014511103630065919, 0.014114815711975098, 0.014020607948303223, 0.014053376197814941, 0.014180352210998535, 0.014109696388244629, 0.013961215972900391, 0.014033920288085937, 0.014102527618408203, 0.013990912437438965, 0.014018560409545898, 0.014072832107543945, 0.01418239974975586, 0.014221311569213867, 0.014842880249023438, 0.014110719680786133, 0.014094335556030273, 0.014072832107543945, 0.014045184135437011, 0.013964287757873535, 0.013947903633117676, 0.013545472145080567, 0.013396991729736327, 0.013604864120483399, 0.01397043228149414, 0.014063615798950196, 0.014005248069763183, 0.014004223823547364, 0.014024703979492188, 0.013560832023620606, 0.013507583618164062, 0.013520895957946777, 0.013496383666992188, 0.013994943618774415, 0.013971455574035644, 0.014010368347167968, 0.013985792160034179, 0.014003199577331543, 0.014017536163330077, 0.014043135643005371, 0.014005248069763183, 0.013945856094360352, 0.01354854393005371, 0.013531135559082032, 0.013667327880859375]",tokens/s,71.31122132602515,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-2b,google/gemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-2b,google/recurrentgemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -44933,7 +44992,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/gemma-2b/resolve/main/config.json +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -44950,10 +45009,10 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-6694810d-01e8adbd1d9d990f66604f76;e02ab593-2d28-465f-bce4-90aefffa5f9c) +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-669481c6-7de5cf01677919b4242aab6c;3ad2d841-515a-4781-8edf-860ae04b15bd) 403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/google/gemma-2b/resolve/main/config.json. +Cannot access content at: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json. If you are trying to create or update content,make sure you have a token with the `write` role. The above exception was the direct cause of the following exception: @@ -44992,11 +45051,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/gemma-2b is not the path to a directory containing a file named config.json. +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/recurrentgemma-2b is not the path to a directory containing a file named config.json. Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciLM-7B,Deci/DeciLM-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mixtral-8x7B-v0.1,mistralai/Mixtral-8x7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -45014,18 +45073,31 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: DeciLMForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,databricks/dbrx-base,databricks/dbrx-base,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-125m,facebook/opt-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -45033,74 +45105,102 @@ ValueError: DeciLMForCausalLM does not support an attention implementation throu File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status - raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66947b36-46ef82bf569cfee26bd6c651;20ba95d5-dae9-4b7a-b2bb-e5c1b69baff7) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/databricks/dbrx-base/resolve/main/config.json. -If you are trying to create or update content,make sure you have a token with the `write` role. +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm-20b,internlm/internlm-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code + answer = input( +EOFError: EOF when reading a line -The above exception was the direct cause of the following exception: +During handling of the above exception, another exception occurred: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error - raise LocalEntryNotFoundError( -huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. - -The above exception was the direct cause of the following exception: + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights + self.create_no_weights_model() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model + meta_model = self.automodel_class.from_config(self.pretrained_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config + trust_remote_code = resolve_trust_remote_code( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code + raise ValueError( +ValueError: The repository for internlm/internlm-20b contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/internlm/internlm-20b. +Please pass the argument `trust_remote_code=True` to allow custom code to be run. -Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-7.5B,facebook/xglm-7.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file - raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like databricks/dbrx-base is not the path to a directory containing a file named config.json. -Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-7.5B,facebook/xglm-7.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-3B-v1,togethercomputer/RedPajama-INCITE-Base-3B-v1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -45120,88 +45220,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: XGLMForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,B,B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/B/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669493ca-33a0f5b720e70cf7333a0e93;3193f618-aee8-4b60-a74d-5a6f8b0af6dd) - -Repository Not Found for url: https://huggingface.co/B/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file - raise EnvironmentError( -OSError: B is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-14B,Qwen/Qwen1.5-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,3984.965632,12732.33408,0.0,12085.886976,11337.364992,s,10,10.92237109375,1.092237109375,0.0021117743883837157,1.0918812255859374,1.0945805541992188,1.0956890197753906,1.0965757922363282,"[1.0967974853515625, 1.094334228515625, 1.0893026123046874, 1.090765625, 1.0907347412109376, 1.09039990234375, 1.0912408447265625, 1.09275048828125, 1.0935235595703126, 1.0925216064453125]",tokens/s,234.38134247836382,kWh,1.2875690162181854e-05,7.054504655134223e-06,6.32269116926043e-05,8.315710650992037e-05,tokens/kWh,3078510.1928655975,MB,3984.965632,12732.33408,0.0,12085.886976,11686.79936,s,10,637.5050507812499,63.75050507812499,0.0049395574759148195,63.749460937500004,63.757564453125,63.759594726562504,63.7612189453125,"[63.74835546875, 63.7478046875, 63.75041796875, 63.7437265625, 63.75711328125, 63.74664453125, 63.761625, 63.75044140625, 63.74853515625, 63.75038671875]",tokens/s,0.9882274645949038,kWh,0.0007525312550531495,0.00041245463154615205,0.0037184816692274027,0.004883467555826704,tokens/kWh,12900.669305119396,,s,629,646.3186791381836,1.027533671125888,0.12973576665422035,1.0118389892578126,1.012325793457031,1.0126516357421875,2.103177431640625,"[1.0117550048828126, 1.0119987182617187, 1.0120816650390625, 1.0120765991210938, 1.0125403442382812, 1.011704833984375, 1.0115768432617187, 1.0117868041992188, 1.01175390625, 1.0114559936523437, 1.0114959106445311, 1.0115798950195312, 1.0117611694335937, 1.01186865234375, 1.0123243408203124, 1.0116085815429687, 1.01121435546875, 1.0115245971679687, 1.0116761474609375, 1.011673095703125, 1.0115952758789062, 1.0115348510742188, 1.011820556640625, 1.0118010864257811, 1.0121104125976563, 1.0117160034179689, 1.0116536254882813, 1.0114908447265625, 1.0122445068359376, 1.0119515991210937, 1.0117140502929687, 1.011957763671875, 1.0116392822265625, 1.0119588012695313, 1.0129981689453125, 1.011984375, 1.0124021606445313, 1.01186865234375, 1.0122096557617188, 1.0120274047851563, 1.0117069091796875, 1.0121103515625, 1.0121615600585938, 1.0125332641601563, 1.0121226196289062, 1.01194140625, 1.0114242553710937, 1.0118287353515625, 1.011631103515625, 1.0119935913085938, 1.0117672729492186, 1.0120878295898437, 1.0116167602539063, 1.0122476196289063, 1.0120057983398438, 1.0121021728515625, 1.011689453125, 1.0124891967773437, 1.0117969970703125, 1.0116424560546875, 1.0114559326171875, 1.0116290283203124, 2.106623046875, 1.0121912841796874, 1.012216796875, 1.0120878295898437, 1.01224755859375, 1.0123724365234374, 1.0121103515625, 1.011904541015625, 1.0120908813476563, 1.0119536743164061, 1.0122240600585937, 1.0117017211914063, 1.0118287353515625, 1.0117017822265626, 1.0116792602539062, 1.0114119873046874, 1.0114088745117187, 1.01127783203125, 1.011852294921875, 1.01174169921875, 1.011968994140625, 1.0117713623046876, 1.0116188354492188, 1.0120038452148437, 1.011915771484375, 1.0112901000976562, 1.0112747802734374, 1.0113668823242188, 1.01144677734375, 1.0113177490234375, 1.0119198608398436, 1.0120233154296876, 1.0116013793945313, 1.0115082397460937, 1.0116761474609375, 1.0115245971679687, 1.0114263305664062, 1.0112634887695313, 1.011557373046875, 1.0114109497070312, 1.0121984252929688, 1.0121513061523437, 1.01176318359375, 1.0114232177734375, 1.011726318359375, 1.011304443359375, 1.0149703979492188, 1.0115143432617189, 1.012031494140625, 1.0119803466796875, 1.0133125, 1.0118717651367188, 1.0115481567382814, 1.0116792602539062, 1.0120653076171875, 1.0115502319335938, 1.0118072509765625, 1.0117089233398437, 1.0117550048828126, 1.0120355834960937, 1.0122034912109374, 1.011757080078125, 1.0119905395507813, 2.102846435546875, 1.0113546142578125, 1.0115645141601564, 1.011766357421875, 1.0118368530273438, 1.011746826171875, 1.0118656005859374, 1.0115020751953125, 1.0114826049804688, 1.0119618530273438, 1.01157373046875, 1.0117109985351562, 1.0118194580078126, 1.0120345458984374, 1.0119188232421874, 1.0118768920898438, 1.0121174926757812, 1.0112481079101563, 1.011708984375, 1.011843017578125, 1.011999755859375, 1.0120202026367187, 1.0120222778320314, 1.0137774047851562, 1.011525634765625, 1.0120479125976563, 1.011984375, 1.0118092651367188, 1.0117805786132812, 1.0120990600585937, 1.0119854125976562, 1.01212158203125, 1.0122670288085938, 1.0120601806640626, 1.0118174438476562, 1.0118410034179688, 1.0115552978515625, 1.011240966796875, 1.011661865234375, 1.0114876708984375, 1.011441650390625, 1.01127783203125, 1.0116198120117188, 1.0113597412109374, 1.0116414184570313, 1.0120242309570313, 1.0122291259765626, 1.013486572265625, 1.0116536254882813, 1.0121564331054687, 1.0123980712890626, 1.0119321899414062, 1.012010009765625, 1.0122987670898438, 1.0121973876953125, 1.0126295166015624, 1.0126663818359376, 1.0119352416992187, 1.0116690063476563, 1.0120150756835937, 1.0120540771484374, 1.01182666015625, 1.0116351928710938, 2.10330615234375, 1.0118348999023437, 1.0117386474609376, 1.0117161254882812, 1.01167822265625, 1.0121646118164063, 1.0119137573242187, 1.01201611328125, 1.0119761962890625, 1.0122608032226563, 1.0121830444335937, 1.0119669799804687, 1.0134896850585937, 1.0120386352539064, 1.0123622436523438, 1.0113034057617187, 1.0113535766601562, 1.011219482421875, 1.0112798461914063, 1.0111006469726562, 1.0113710327148437, 1.0122311401367188, 1.0115225830078125, 1.0115430297851562, 1.0117457885742187, 1.0114498291015626, 1.0119761962890625, 1.0120970458984375, 1.0119505615234374, 1.0119619140625, 1.0121400146484374, 1.0117672729492186, 1.0114600830078124, 1.0114866943359375, 1.011557373046875, 1.011900390625, 1.0118594360351563, 1.01203662109375, 1.0116956176757812, 1.0115460815429687, 1.0117755126953125, 1.0116608276367187, 1.01161474609375, 1.0111918334960937, 1.0146948852539062, 1.01151953125, 1.011521484375, 1.0112010498046875, 1.01165771484375, 1.0114376220703125, 1.01186865234375, 1.0118800048828125, 1.0115624389648437, 1.0114273071289062, 1.011641357421875, 1.0113966064453126, 1.0116741333007813, 1.011451904296875, 1.0115655517578126, 1.011557373046875, 1.012046875, 1.0120038452148437, 1.011968017578125, 2.10362060546875, 1.0117232666015625, 1.0121318359375, 1.0118696899414064, 1.0120601806640626, 1.0119393310546876, 1.012031494140625, 1.0123212890625, 1.0119556884765626, 1.01214208984375, 1.0124891967773437, 1.0119710693359374, 1.0119178466796874, 1.0113935546875, 1.0116761474609375, 1.0115359497070313, 1.011611572265625, 1.01361767578125, 1.0116761474609375, 1.0114703369140625, 1.0116137084960937, 1.011589111328125, 1.0115932006835937, 1.0114774780273437, 1.0115348510742188, 1.0114713745117188, 1.0118184814453124, 1.0116055297851563, 1.01148876953125, 1.0116792602539062, 1.0118379516601563, 1.0119649047851562, 1.0117376708984376, 1.011568603515625, 1.0120294189453125, 1.01218505859375, 1.0119823608398437, 1.0122332153320313, 1.011926025390625, 1.0118748168945313, 1.0124400634765625, 1.01216357421875, 1.011631103515625, 1.0115266723632812, 1.0125834350585938, 1.0121605224609376, 1.0119229736328126, 1.0119270629882813, 1.01148876953125, 1.0118287353515625, 1.011999755859375, 1.011862548828125, 1.0116915283203125, 1.0118143920898437, 1.011768310546875, 1.0122393798828124, 1.0125045776367188, 1.0162032470703124, 1.0122127075195313, 1.0123765869140624, 1.0122915649414062, 1.012389892578125, 1.0124400634765625, 2.102681640625, 1.0123212280273437, 1.0120990600585937, 1.0122465209960938, 1.0117007446289064, 1.012094970703125, 1.0112553100585937, 1.0112625122070313, 1.0114201049804687, 1.0113854370117188, 1.01134228515625, 1.0119854125976562, 1.0117590942382813, 1.0113126220703126, 1.0112696533203125, 1.011483642578125, 1.0116823120117187, 1.0114539794921875, 1.0115082397460937, 1.0114959106445311, 1.0115481567382814, 1.0120242919921876, 1.0115635375976562, 1.0115850219726563, 1.0117254028320313, 1.0121840209960937, 1.0118276977539062, 1.0116751098632812, 1.0118184814453124, 1.0114385986328125, 1.0118215942382813, 1.0118092651367188, 1.0117406616210938, 1.011473388671875, 1.0117386474609376, 1.0118164672851562, 1.01148876953125, 1.0114867553710938, 1.0149037475585938, 1.0118359375, 1.0122781982421876, 1.0117642211914062, 1.0119249877929688, 1.011294189453125, 1.0117027587890626, 1.0116690063476563, 1.0123939819335936, 1.0120908813476563, 1.0122567749023437, 1.0120653076171875, 1.0122485961914063, 1.012369384765625, 1.012421630859375, 1.0119987182617187, 1.0126663818359376, 1.0115481567382814, 1.0117089233398437, 1.0119823608398437, 1.0117867431640626, 1.0115614624023437, 1.0122546997070312, 1.0117652587890624, 1.012073486328125, 2.104281005859375, 1.011789794921875, 1.0118133544921875, 1.0122199096679687, 1.01174169921875, 1.0117130126953124, 1.0126079711914062, 1.0127093505859375, 1.0125383911132813, 1.0122393798828124, 1.01216357421875, 1.0123182373046875, 1.0122199096679687, 1.0121246948242189, 1.0119669799804687, 1.0121113891601563, 1.0128097534179688, 1.01222705078125, 1.012335693359375, 1.0115757446289062, 1.0118441162109375, 1.0118328247070312, 1.011631103515625, 1.0136719360351563, 1.0121174926757812, 1.01250048828125, 1.012552734375, 1.0127390747070313, 1.0122342529296875, 1.0118225708007813, 1.0121768798828126, 1.0121298217773438, 1.0121860961914062, 1.0118389892578126, 1.012316162109375, 1.0120714111328124, 1.0119198608398436, 1.0119669799804687, 1.0115543823242188, 1.0116760864257812, 1.0120601806640626, 1.0119342041015624, 1.0120653076171875, 1.0115552978515625, 1.0121380004882812, 1.0123212890625, 1.0120806274414063, 1.0117672729492186, 1.0117805786132812, 1.0118287353515625, 1.0118615112304687, 1.0117703857421876, 1.0114365234375, 1.0116065063476563, 1.0118512573242187, 1.0121676635742187, 1.0124697875976563, 1.0122608642578126, 1.0120376586914062, 1.0119403686523438, 1.0120181884765624, 1.0120386352539064, 1.01167822265625, 2.1052109375, 1.0120621948242188, 1.01188916015625, 1.0118225708007813, 1.01174169921875, 1.012010009765625, 1.0117171020507814, 1.0117847290039061, 1.0114641723632813, 1.01161474609375, 1.0114928588867187, 1.0118482055664062, 1.0115112915039062, 1.0117078857421875, 1.0117007446289064, 1.011862548828125, 1.0131630249023438, 1.0117345581054686, 1.0117489013671874, 1.0116443481445312, 1.0115972900390624, 1.0121307983398438, 1.01167822265625, 1.0120202026367187, 1.0114754638671875, 1.012262939453125, 1.0119618530273438, 1.0120448608398438, 1.01155224609375, 1.0120181884765624, 1.0120068969726563, 1.0124298095703126, 1.0118533325195314, 1.0121185302734375, 1.0118779296875, 1.0119566650390626, 1.0118379516601563, 1.0119434204101563, 1.0118062133789063, 1.0120775756835938, 1.0119024658203124, 1.0125721435546875, 1.0118563842773438, 1.0118348999023437, 1.0117273559570312, 1.01222705078125, 1.011905517578125, 1.0115379028320313, 1.0121062622070311, 1.0116116333007812, 1.011979248046875, 1.012168701171875, 1.0120171508789062, 1.01224658203125, 1.0122731323242187, 1.0115819091796876, 1.0118994140625, 1.0117642211914062, 1.0116351928710938, 1.011962890625, 1.0119782104492188, 1.01182568359375, 1.012173828125, 2.105998291015625, 1.0114345092773438, 1.0115174560546876, 1.0114590454101562, 1.0117990112304687, 1.011937255859375, 1.0119331665039062, 1.011800048828125, 1.0117058715820313, 1.0113648681640626, 1.0117181396484376, 1.0116608276367187, 1.0114611206054687, 1.0114600830078124, 1.0114508666992188, 1.0114754638671875, 1.0120274047851563, 1.0133237915039062, 1.0123274536132814, 1.0115994262695311, 1.0119392700195313, 1.011694580078125, 1.0119700317382812, 1.0124237060546875, 1.0117488403320312, 1.0116751098632812, 1.0119721069335939, 1.011651611328125, 1.01169970703125, 1.0113812255859376, 1.0121625366210938, 1.0115175170898438, 1.0117620849609374, 1.011493896484375, 1.0118062133789063, 1.0119086303710938, 1.01222607421875, 1.0115870971679688, 1.0119854125976562, 1.0115471801757812, 1.0122720336914062, 1.0117857055664063, 1.0124462280273439, 1.0115880737304688, 1.0122782592773438, 1.0121298217773438, 1.0129663696289062, 1.011736572265625, 1.0120570678710938, 1.0118963623046875, 1.0122628784179688, 1.0121093139648438, 1.0120888061523436, 1.011789794921875, 1.0123253784179687, 1.0119198608398436, 1.0131046142578124, 1.0120990600585937, 1.0116629028320312, 1.0112337646484375, 1.0118236083984375, 1.0113085327148437, 1.0116392822265625, 2.104349609375, 1.0117294311523437, 1.0120775756835938, 1.0116546630859375, 1.01159423828125, 1.0118696899414064, 1.0115491943359376, 1.0113505249023438, 1.0112051391601562, 1.0120068969726563, 1.0118911743164063, 1.011857421875, 1.01180419921875, 1.0114385375976562, 1.011646484375, 1.011788818359375, 1.0118615112304687, 1.0118656005859374, 1.0119014282226562, 1.0118348999023437, 1.011794921875, 1.011900390625, 1.0119556884765626, 1.0122608642578126, 1.0124257202148437, 1.0121984252929688, 1.0144102172851563, 1.011820556640625, 1.0118195190429689, 1.0117386474609376, 1.0117069091796875, 1.0122393798828124, 1.011646484375, 1.0119147338867187, 1.011462158203125, 1.012073486328125, 1.0115911865234375, 1.011684326171875, 1.0119321899414062, 1.0118062133789063, 1.0121994018554688, 1.0123673706054688, 1.0117744750976563, 1.011873779296875, 1.0116044921875, 1.011989501953125, 1.0118911743164063, 1.01174169921875, 1.011662841796875, 1.0115194702148438, 1.0117089233398437, 1.0126878662109375, 1.0129653930664062, 1.0122413940429686, 1.0118389892578126, 1.0119505615234374, 1.0117611694335937, 1.01174169921875, 1.0118338623046874, 1.0117755126953125, 1.0121144409179688, 1.0123131103515626, 1.0117294311523437]",tokens/s,0.973204117879934,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-6B,,cuda,0,42,,,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,MB,1571.749888,5448.925184,0.0,4802.47808,4489.12128,s,10,5.0903373718261715,0.5090337371826171,0.0024963690031113454,0.5090882415771485,0.5114007537841796,0.5133009628295898,0.514821130065918,"[0.515201171875, 0.5058653564453125, 0.5075380249023438, 0.5109784851074218, 0.5074734191894531, 0.5066469421386719, 0.5090344543457032, 0.5092752685546875, 0.5091822204589844, 0.5091420288085937]",tokens/s,502.91362104386286,kWh,5.98198832737075e-06,3.277856253707796e-06,2.697877158300277e-05,3.623861616408132e-05,tokens/kWh,7064287.412104325,MB,1571.749888,5448.925184,0.0,4802.47808,4557.793792,s,10,299.8803828125,29.98803828125,0.03808075694133287,29.9707392578125,30.046216015625,30.058939062500002,30.0691175,"[29.972552734375, 30.043388671875, 30.071662109375, 30.010330078125, 29.96, 29.95865625, 29.96925, 29.972228515625, 29.963451171875, 29.95886328125]",tokens/s,2.1008376543053404,kWh,0.00035374844759702685,0.00019388459414373753,0.001556149911585597,0.0021037829533263617,tokens/kWh,29946.05498651303,,s,629,303.97862612915014,0.48327285553124066,0.06045359810307915,0.47556915283203127,0.47775867309570313,0.47801220703124997,0.9833881201171876,"[0.4750715026855469, 0.4762265625, 0.4773417053222656, 0.47625729370117187, 0.47571148681640624, 0.47557223510742186, 0.47629312133789065, 0.47471615600585937, 0.475789306640625, 0.47461376953125, 0.4746967163085937, 0.474913818359375, 0.47592657470703126, 0.47551071166992187, 0.47595623779296875, 0.47574118041992186, 0.4750817260742187, 0.47586611938476564, 0.4771154479980469, 0.47594082641601565, 0.4757462768554688, 0.47569818115234375, 0.4764293212890625, 0.475978759765625, 0.47632794189453126, 0.47545343017578123, 0.47498138427734377, 0.47522305297851564, 0.47550360107421874, 0.47533575439453124, 0.4750652770996094, 0.4751790161132812, 0.47525888061523436, 0.4754544677734375, 0.4752803955078125, 0.4756971435546875, 0.4763504638671875, 0.4758845520019531, 0.47809332275390626, 0.475462646484375, 0.47741644287109375, 0.47680307006835937, 0.47630642700195314, 0.47653070068359377, 0.47590911865234375, 0.4751380615234375, 0.47556710815429687, 0.475146240234375, 0.47564901733398435, 0.4757647399902344, 0.47530291748046877, 0.4750807189941406, 0.47518719482421873, 0.47629925537109374, 0.4754646911621094, 0.4754155578613281, 0.4753121337890625, 0.4750469055175781, 0.47505612182617185, 0.4759122009277344, 0.47506842041015623, 0.4758763427734375, 0.9829324951171875, 0.4772618103027344, 0.47679385375976563, 0.4752302551269531, 0.47515850830078127, 0.4750141296386719, 0.4753879089355469, 0.47504486083984376, 0.47488204956054686, 0.47477862548828126, 0.4748114013671875, 0.47600946044921877, 0.4750940246582031, 0.4750837707519531, 0.4750745544433594, 0.4750592041015625, 0.47484109497070315, 0.4761292724609375, 0.4751933288574219, 0.4750182495117187, 0.475357177734375, 0.47510528564453125, 0.4762142639160156, 0.47762432861328125, 0.4771512451171875, 0.478097412109375, 0.47743179321289064, 0.4781097106933594, 0.4774246520996094, 0.47769497680664064, 0.4778270568847656, 0.4778741760253906, 0.47795404052734375, 0.47758233642578124, 0.47754238891601564, 0.47758438110351564, 0.4775854187011719, 0.4776581115722656, 0.4781363220214844, 0.47784140014648435, 0.4785827941894531, 0.4778670043945312, 0.478013427734375, 0.4813271179199219, 0.4787435607910156, 0.4778823547363281, 0.4775577697753906, 0.47766937255859376, 0.4776509399414062, 0.47802163696289063, 0.4775925903320313, 0.4771829833984375, 0.47707955932617185, 0.4779130859375, 0.47752191162109375, 0.4774225769042969, 0.47764581298828124, 0.47809228515625, 0.47725054931640626, 0.47956683349609375, 0.47532647705078124, 0.47634738159179685, 0.4757237854003906, 0.9846497192382813, 0.4779151306152344, 0.47775845336914063, 0.4778516540527344, 0.4773468017578125, 0.47776461791992186, 0.47770932006835937, 0.4769669189453125, 0.4777676696777344, 0.4777635803222656, 0.47618765258789064, 0.4749752197265625, 0.4755538024902344, 0.4747980651855469, 0.4747796630859375, 0.4748114013671875, 0.47680514526367185, 0.4753622741699219, 0.47532440185546876, 0.4750438537597656, 0.4750325622558594, 0.47742669677734373, 0.4790394897460937, 0.47991500854492186, 0.4776028137207031, 0.4770672607421875, 0.47781991577148436, 0.4773304443359375, 0.4778946533203125, 0.4778496398925781, 0.4774788818359375, 0.4779632568359375, 0.47771136474609377, 0.47775640869140623, 0.47768267822265625, 0.47796121215820314, 0.4775454711914062, 0.4780103759765625, 0.4779438171386719, 0.4773253173828125, 0.4780001220703125, 0.47749530029296877, 0.478482421875, 0.4767160339355469, 0.47870156860351565, 0.47761203002929686, 0.47860427856445314, 0.47783221435546874, 0.4779366149902344, 0.4776212463378906, 0.4775301208496094, 0.477328369140625, 0.478376953125, 0.4772362365722656, 0.47751168823242185, 0.47775955200195314, 0.47782699584960936, 0.47732632446289064, 0.47806362915039063, 0.4772454528808594, 0.4775782775878906, 0.47722698974609373, 0.477765625, 0.9892290649414063, 0.47758950805664063, 0.47766937255859376, 0.47711026000976564, 0.4785479736328125, 0.4779674072265625, 0.47848751831054687, 0.4773918762207031, 0.47714407348632815, 0.475968505859375, 0.47733248901367187, 0.4777830505371094, 0.4774912109375, 0.4774410095214844, 0.4776990661621094, 0.47711026000976564, 0.47647540283203127, 0.4762900390625, 0.47571044921875, 0.47531622314453126, 0.47745126342773436, 0.4778526611328125, 0.4754595947265625, 0.4753295593261719, 0.47519024658203124, 0.47728536987304687, 0.4776847229003906, 0.47796734619140624, 0.47679693603515627, 0.4769525756835937, 0.47623678588867185, 0.47598489379882813, 0.47588760375976563, 0.47573504638671876, 0.4752127990722656, 0.47496600341796874, 0.4763709411621094, 0.47549542236328124, 0.4751493225097656, 0.4747591552734375, 0.47531109619140627, 0.47625933837890627, 0.47604122924804687, 0.4752691345214844, 0.478866455078125, 0.4751441650390625, 0.4752322692871094, 0.47499981689453125, 0.47643954467773436, 0.4755630187988281, 0.4757166137695312, 0.47565005493164064, 0.476015625, 0.4754155578613281, 0.4754124755859375, 0.47525070190429686, 0.47504281616210936, 0.4759347229003906, 0.47554763793945315, 0.47518923950195313, 0.47525274658203126, 0.475404296875, 0.47679489135742187, 0.9835653076171875, 0.4750100708007812, 0.47497518920898435, 0.47521792602539065, 0.47529168701171876, 0.47549435424804687, 0.47515341186523435, 0.47609548950195313, 0.47539712524414063, 0.47541351318359376, 0.47511859130859374, 0.47484622192382814, 0.47537664794921874, 0.475104248046875, 0.47634738159179685, 0.4752896118164063, 0.47548724365234374, 0.4761077880859375, 0.4751452026367188, 0.4771768188476562, 0.4755333251953125, 0.4755230712890625, 0.4750796813964844, 0.4751923217773438, 0.4752496643066406, 0.4748308410644531, 0.47501516723632814, 0.47498751831054686, 0.4759531555175781, 0.4754883117675781, 0.47538067626953123, 0.4753909912109375, 0.47539712524414063, 0.4753735656738281, 0.475494384765625, 0.47589376831054686, 0.4761006164550781, 0.47518206787109374, 0.4750602111816406, 0.47489434814453124, 0.47634228515625, 0.47604940795898437, 0.47567974853515627, 0.47519744873046876, 0.4751749267578125, 0.47551077270507813, 0.4754002685546875, 0.47505914306640623, 0.47493426513671877, 0.475788330078125, 0.4752465515136719, 0.47501516723632814, 0.47556915283203127, 0.4761507873535156, 0.47565823364257814, 0.47601458740234376, 0.47671194458007815, 0.478308349609375, 0.4755906677246094, 0.47542578125, 0.4754708557128906, 0.4771061706542969, 0.4754810791015625, 0.9827368774414063, 0.47548416137695315, 0.4752916564941406, 0.4750274658203125, 0.4750274658203125, 0.47477658081054686, 0.4755199890136719, 0.47510833740234376, 0.4752332763671875, 0.47511962890625, 0.4750837707519531, 0.47506329345703124, 0.4751718444824219, 0.477048828125, 0.4756756591796875, 0.475315185546875, 0.47508685302734377, 0.474925048828125, 0.476084228515625, 0.4754022521972656, 0.47531417846679686, 0.47490765380859373, 0.47505612182617185, 0.4752547912597656, 0.47493939208984376, 0.4751216735839844, 0.4752363586425781, 0.47553741455078125, 0.47550872802734373, 0.4752025451660156, 0.47503768920898437, 0.47521588134765624, 0.47512063598632814, 0.4751523742675781, 0.4767621154785156, 0.4764487609863281, 0.47532235717773436, 0.4752414855957031, 0.47862374877929686, 0.47638223266601565, 0.47562542724609375, 0.47544525146484373, 0.47627877807617186, 0.47506329345703124, 0.47538995361328124, 0.4754227294921875, 0.47551693725585936, 0.4754288635253906, 0.47596337890625, 0.4758896789550781, 0.4756899719238281, 0.4755988464355469, 0.4755916748046875, 0.4752066650390625, 0.4755640258789062, 0.47575653076171875, 0.47548416137695315, 0.4752998962402344, 0.4755332336425781, 0.4752363586425781, 0.4765552673339844, 0.4758056945800781, 0.47643853759765625, 0.9858508911132813, 0.4760975341796875, 0.4763627624511719, 0.47618048095703125, 0.47583026123046873, 0.4758814697265625, 0.47627365112304687, 0.47550360107421874, 0.4748226623535156, 0.4754380798339844, 0.4754176025390625, 0.47634841918945314, 0.47666278076171875, 0.4759449462890625, 0.47538177490234373, 0.475430908203125, 0.4754606018066406, 0.4765736999511719, 0.47562957763671876, 0.47619277954101563, 0.4762623901367187, 0.47586407470703124, 0.4763156433105469, 0.47800421142578126, 0.47563058471679687, 0.47566949462890623, 0.4764661865234375, 0.47568487548828126, 0.4763525085449219, 0.47546881103515626, 0.4754503784179688, 0.47535821533203126, 0.4751155090332031, 0.476685302734375, 0.4755333251953125, 0.4750540771484375, 0.4750325622558594, 0.4753387451171875, 0.47632281494140627, 0.47543603515625, 0.47514727783203126, 0.47536947631835935, 0.4750110778808594, 0.4750960693359375, 0.47505816650390625, 0.47526605224609375, 0.47514215087890627, 0.47597158813476564, 0.47550054931640623, 0.47509503173828127, 0.47519845581054687, 0.4751452026367188, 0.4753704833984375, 0.474967041015625, 0.47536639404296877, 0.47516876220703125, 0.47490457153320315, 0.4751523742675781, 0.47530905151367187, 0.4764610595703125, 0.47634228515625, 0.47607601928710935, 0.4758845520019531, 0.9857208251953125, 0.4755548095703125, 0.47583026123046873, 0.4755302734375, 0.4761640625, 0.4756316223144531, 0.475904052734375, 0.4751758728027344, 0.47539813232421874, 0.475536376953125, 0.4755210266113281, 0.475514892578125, 0.4755937805175781, 0.47548818969726564, 0.47541656494140627, 0.47544216918945315, 0.477454345703125, 0.4756387939453125, 0.4758138732910156, 0.47603302001953124, 0.47580465698242186, 0.47644158935546876, 0.4751994934082031, 0.47532339477539065, 0.4750745544433594, 0.47546981811523437, 0.4754565124511719, 0.47503768920898437, 0.47527935791015624, 0.4750858154296875, 0.4753018798828125, 0.4747683715820312, 0.4749916076660156, 0.47602789306640625, 0.4755906677246094, 0.4751790161132812, 0.47570123291015626, 0.477876220703125, 0.477338623046875, 0.4760637512207031, 0.4767999877929687, 0.47610983276367186, 0.47703347778320315, 0.47675802612304685, 0.47620712280273436, 0.4752158508300781, 0.47609036254882814, 0.4771328125, 0.4762552185058594, 0.4760504455566406, 0.47554458618164064, 0.475283447265625, 0.47543603515625, 0.4751523742675781, 0.475335693359375, 0.4752138366699219, 0.47528140258789064, 0.475109375, 0.47681332397460935, 0.47562240600585937, 0.47532339477539065, 0.47533465576171874, 0.47510833740234376, 0.984848388671875, 0.4750960693359375, 0.47506024169921873, 0.4759930419921875, 0.47555789184570313, 0.4750254211425781, 0.47533978271484373, 0.4758394775390625, 0.475610107421875, 0.47590911865234375, 0.4757596130371094, 0.4766791687011719, 0.4766371765136719, 0.4757176208496094, 0.4764549255371094, 0.4773990478515625, 0.4758917236328125, 0.476790771484375, 0.47595416259765627, 0.4752404479980469, 0.47515545654296876, 0.475030517578125, 0.4752916564941406, 0.4751278076171875, 0.4755138549804688, 0.47549234008789065, 0.47554150390625, 0.4758425598144531, 0.47556607055664063, 0.4752015380859375, 0.47505612182617185, 0.4750540771484375, 0.47509811401367186, 0.4751697998046875, 0.4750817260742187, 0.4752066650390625, 0.4769587097167969, 0.4757596130371094, 0.47552410888671875, 0.4753387451171875, 0.4751247253417969, 0.47600946044921877, 0.47491787719726564, 0.47531417846679686, 0.47513394165039063, 0.4757739562988281, 0.4750469055175781, 0.475030517578125, 0.4758507385253906, 0.4755599365234375, 0.47600741577148437, 0.4752414855957031, 0.4751247253417969, 0.47610470581054687, 0.4753530883789063, 0.475404296875, 0.4752005004882813, 0.476626953125, 0.4756654052734375, 0.47670578002929687, 0.4761466979980469, 0.4752547912597656, 0.4752209777832031, 0.9850972290039063, 0.47500698852539064, 0.47586099243164065, 0.475536376953125, 0.4751933288574219, 0.4753070068359375, 0.47523434448242186, 0.475157470703125, 0.4753039245605469, 0.4752762756347656, 0.4760606689453125, 0.47565216064453125, 0.4750796203613281, 0.47518106079101563, 0.4763607177734375, 0.47558758544921875, 0.47543499755859375, 0.47558349609375, 0.4752384033203125, 0.47536639404296877, 0.47527423095703125, 0.47547494506835936, 0.4750335998535156, 0.4753049621582031, 0.47516571044921874, 0.4754155578613281, 0.4772812805175781, 0.4751769714355469, 0.4758814697265625, 0.4761343994140625, 0.4757074279785156, 0.4766033630371094, 0.47504281616210936, 0.47508480834960937, 0.4752629699707031, 0.47697714233398436, 0.4764979248046875, 0.4756357421875, 0.4753837890625, 0.4751473083496094, 0.475273193359375, 0.475177978515625, 0.47527835083007813, 0.4753541259765625, 0.4753623046875, 0.4753930358886719, 0.4750796813964844, 0.47559576416015625, 0.47536334228515625, 0.4764241943359375, 0.47548724365234374, 0.47530087280273436, 0.47603302001953124, 0.4752906188964844, 0.47511962890625, 0.47501516723632814, 0.4768563232421875, 0.4758026123046875, 0.47588864135742187, 0.4753950805664062, 0.4752138366699219, 0.47535000610351563, 0.4750120849609375]",tokens/s,2.069224432025556,,,,,,main,False,False -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,v,v,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,M,M,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -45213,7 +45247,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/v/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/M/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -45240,9 +45274,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949482-3719cd0645f9a8c14f888ff0;b01adc61-02a6-4d1d-8afa-ae53d5ffe983) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948fb6-14aa653006bdca2765c97850;3e155ea7-f331-4aeb-9ad7-8e41408fd669) -Repository Not Found for url: https://huggingface.co/v/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/M/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -45267,12 +45301,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: v is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: M is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.3b,EleutherAI/pythia-1.3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.42.3,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,1587.982336,2204.63104,0.0,1558.183936,1460.94592,s,10,1.2122179565429687,0.12122179565429687,0.0013469234018574053,0.12083382415771485,0.12219305953979492,0.12357574729919434,0.12468189750671387,"[0.12495843505859375, 0.12104054260253906, 0.12057548522949219, 0.12037449645996094, 0.12039497375488281, 0.11999222564697265, 0.12062710571289062, 0.12108892822265625, 0.12127996826171875, 0.12188579559326172]",tokens/s,2111.8314459725275,kWh,1.4224020360165804e-06,7.790973572291746e-07,6.068685410500128e-06,8.270184803745883e-06,tokens/kWh,30954568.25632818,MB,1587.982336,2204.63104,0.0,1558.183936,1532.626432,s,10,69.92014404296876,6.992014404296876,0.006727859419007241,6.99023779296875,7.000593994140624,7.004389770507812,7.007426391601562,"[6.99975048828125, 7.008185546875, 6.98858837890625, 6.986208984375, 6.9851357421875, 6.99374658203125, 6.98664404296875, 6.99031103515625, 6.99016455078125, 6.99140869140625]",tokens/s,9.010278920661827,kWh,8.274091382308927e-05,4.5348256432790435e-05,0.0003488542096386977,0.00047694337989457746,tokens/kWh,132091.15097461964,,s,629,70.89538343048102,0.112711261415709,0.014361343558964127,0.11091452789306641,0.11135979766845704,0.11152422943115234,0.2312941162109375,"[0.11260415649414063, 0.11204608154296875, 0.11146956634521485, 0.11088588714599609, 0.1111009292602539, 0.11083468627929688, 0.11089715576171875, 0.11064217376708985, 0.11076403045654297, 0.11082137298583984, 0.1107609634399414, 0.11087155151367188, 0.11063091278076172, 0.11059814453125, 0.11085517120361328, 0.11080703735351563, 0.11068621063232421, 0.11079782104492188, 0.11078246307373046, 0.11077222442626954, 0.11091353607177734, 0.11159961700439452, 0.11078144073486328, 0.11073638153076172, 0.11068006134033204, 0.11083161926269532, 0.11083673858642579, 0.11088690948486328, 0.11075276947021484, 0.11083673858642579, 0.11077632141113282, 0.11068621063232421, 0.11071183776855469, 0.11085411071777344, 0.1114419174194336, 0.11082854461669922, 0.11074559783935548, 0.11080089569091797, 0.1116968994140625, 0.11094118499755859, 0.11080806732177734, 0.11078758239746093, 0.11085107421875, 0.11109375762939454, 0.11160063934326171, 0.11135692596435547, 0.11146137237548828, 0.1114777603149414, 0.11146444702148438, 0.11149005126953125, 0.11145423889160157, 0.1115258560180664, 0.11139177703857422, 0.11129033660888672, 0.11130060577392578, 0.11138253021240234, 0.111531005859375, 0.11130368041992188, 0.11148185729980468, 0.11152178955078125, 0.11143679809570313, 0.11145728302001953, 0.23240191650390624, 0.11125657653808593, 0.11134259033203125, 0.11128422546386718, 0.11129036712646484, 0.1112063980102539, 0.111388671875, 0.111494140625, 0.11130060577392578, 0.11108249664306641, 0.11072716522216797, 0.11124531555175782, 0.11140300750732422, 0.11135897827148437, 0.11131391906738282, 0.11140505981445313, 0.11139686584472656, 0.11118386840820313, 0.11124326324462891, 0.11125350189208984, 0.11120230102539062, 0.11123506927490234, 0.1113855972290039, 0.11118592071533204, 0.11209420776367188, 0.11132621002197265, 0.11162521362304688, 0.11137433624267579, 0.11121459197998047, 0.11121868896484376, 0.11114701080322266, 0.11115007781982422, 0.11130572509765625, 0.1112442855834961, 0.11130060577392578, 0.11130879974365235, 0.11134054565429688, 0.11200409698486329, 0.11145523071289062, 0.11124121856689453, 0.1113733139038086, 0.11126783752441406, 0.11100364685058593, 0.11117977905273438, 0.11108147430419922, 0.111246337890625, 0.11108761596679688, 0.11105996704101563, 0.11184435272216797, 0.1111009292602539, 0.11088896179199219, 0.11092991638183594, 0.11088076782226562, 0.110919677734375, 0.11087155151367188, 0.11093504333496093, 0.11084390258789062, 0.1109719009399414, 0.11107532501220703, 0.11094834899902344, 0.11092889404296875, 0.11180748748779297, 0.11107635498046875, 0.23147418212890625, 0.11071794891357421, 0.11122892761230468, 0.11095040130615234, 0.11085721588134766, 0.11081318664550781, 0.11099545288085938, 0.11087974548339843, 0.11081625366210937, 0.11067084503173828, 0.11092377471923828, 0.1108449249267578, 0.1108848648071289, 0.11079167938232422, 0.11096473693847657, 0.11096063995361329, 0.1108705291748047, 0.11078348541259765, 0.11086438751220704, 0.11078860473632812, 0.1108479995727539, 0.110814208984375, 0.11086540985107422, 0.11114393615722656, 0.11088076782226562, 0.11085004425048828, 0.11089305877685547, 0.11083161926269532, 0.11099545288085938, 0.11088697814941406, 0.11098617553710938, 0.11086438751220704, 0.11098419189453125, 0.11145216369628906, 0.1108828125, 0.11083366394042969, 0.11092684936523438, 0.11094425964355469, 0.110814208984375, 0.11094528198242187, 0.1110087661743164, 0.1107927017211914, 0.11096678161621094, 0.11096678161621094, 0.11110297393798828, 0.11113471984863281, 0.11093913269042968, 0.11126271820068359, 0.11096371459960938, 0.11096166229248047, 0.11107737731933594, 0.11087872314453125, 0.11096985626220703, 0.11090943908691406, 0.11095859527587891, 0.110887939453125, 0.11089417266845703, 0.11090525054931641, 0.11086540985107422, 0.11097702026367187, 0.11102207946777344, 0.11098214721679688, 0.11105177307128906, 0.23123660278320313, 0.1107066879272461, 0.11069132995605468, 0.11077017974853516, 0.1106851806640625, 0.11081011199951171, 0.1107988510131836, 0.11065446472167968, 0.11082444763183594, 0.11065446472167968, 0.1107558364868164, 0.11116544342041015, 0.11103641510009765, 0.11059302520751953, 0.1107240982055664, 0.11067903900146485, 0.11058995056152343, 0.11075788879394531, 0.11065856170654297, 0.11070771026611329, 0.11082342529296875, 0.11079065704345703, 0.11078144073486328, 0.11115724945068359, 0.1109401626586914, 0.11073126220703125, 0.11080089569091797, 0.11085004425048828, 0.11101388549804687, 0.11086131286621094, 0.11091865539550781, 0.11091251373291015, 0.11143782043457032, 0.11103030395507812, 0.11083977508544922, 0.1108449249267578, 0.11086438751220704, 0.11087155151367188, 0.11083570861816407, 0.11086847686767579, 0.11088690948486328, 0.1110804443359375, 0.11092889404296875, 0.11091046142578125, 0.1115863037109375, 0.11088998413085938, 0.11093504333496093, 0.11090739440917968, 0.11090636444091796, 0.11097702026367187, 0.11095142364501953, 0.11091046142578125, 0.110919677734375, 0.11080191802978516, 0.11134054565429688, 0.11100774383544922, 0.11119206237792968, 0.11088690948486328, 0.11100364685058593, 0.11100057220458984, 0.11100057220458984, 0.11090841674804687, 0.11100466918945312, 0.23131648254394532, 0.11071078491210938, 0.11071897888183593, 0.11086233520507813, 0.110740478515625, 0.11082444763183594, 0.11087564849853515, 0.1107240982055664, 0.11075993347167969, 0.1107589111328125, 0.11076914978027344, 0.11082649230957031, 0.11070873260498047, 0.11081728363037109, 0.1108111343383789, 0.11080601501464844, 0.11072306823730468, 0.11097907257080078, 0.1107435531616211, 0.11080703735351563, 0.11061555480957032, 0.11081215667724609, 0.11066265869140625, 0.11081523132324218, 0.11085926055908203, 0.11076300811767578, 0.1107609634399414, 0.11074457550048829, 0.1105950698852539, 0.11098009490966797, 0.11077836608886718, 0.11077632141113282, 0.11076812744140625, 0.11072614288330078, 0.11080397033691407, 0.11082240295410156, 0.11096166229248047, 0.11143270111083985, 0.11085209655761719, 0.11084595489501953, 0.11080191802978516, 0.11091046142578125, 0.11078758239746093, 0.1108746566772461, 0.11085001373291016, 0.11092991638183594, 0.1108111343383789, 0.11094834899902344, 0.1108695068359375, 0.11100774383544922, 0.11099954986572266, 0.1109381103515625, 0.1110487060546875, 0.11092173004150391, 0.11100262451171874, 0.11102413177490235, 0.11090431976318359, 0.11215052795410156, 0.11126271820068359, 0.11105894470214844, 0.11091763305664062, 0.11097087860107421, 0.110919677734375, 0.23087001037597657, 0.11094732666015625, 0.11078963470458984, 0.11091149139404297, 0.11068927764892578, 0.11086438751220704, 0.11078656005859375, 0.11087872314453125, 0.11075993347167969, 0.11079782104492188, 0.11075071716308593, 0.11108659362792969, 0.11072306823730468, 0.11085414123535156, 0.1107558364868164, 0.11082649230957031, 0.11118899536132812, 0.11099954986572266, 0.1111203842163086, 0.11085107421875, 0.11103948974609375, 0.11162419128417969, 0.11094528198242187, 0.11086438751220704, 0.1111756820678711, 0.11122380828857421, 0.1109381103515625, 0.11092582702636719, 0.11080806732177734, 0.11080191802978516, 0.11078758239746093, 0.11109792327880859, 0.11111417388916016, 0.11162726593017579, 0.11107225799560547, 0.11119206237792968, 0.11101081848144531, 0.11101907348632813, 0.11168351745605469, 0.11117772674560547, 0.11115007781982422, 0.11107328033447265, 0.11089510345458985, 0.11141017913818359, 0.11118694305419922, 0.11109478759765624, 0.11088690948486328, 0.11098111724853515, 0.1110149154663086, 0.11100774383544922, 0.11092173004150391, 0.11092991638183594, 0.11092889404296875, 0.11095552062988281, 0.1108848648071289, 0.11096166229248047, 0.11103743743896484, 0.11111219024658203, 0.11098419189453125, 0.11095552062988281, 0.11087974548339843, 0.1110302734375, 0.11111424255371094, 0.23252377319335937, 0.11073945617675782, 0.11071078491210938, 0.1107619857788086, 0.11067596435546875, 0.11072512054443359, 0.11079167938232422, 0.11081215667724609, 0.11079167938232422, 0.11069951629638672, 0.11086643218994141, 0.11136307525634766, 0.11100774383544922, 0.1108479995727539, 0.11097293090820312, 0.11082752227783203, 0.1111695327758789, 0.11093408203125, 0.11092269134521485, 0.11094118499755859, 0.11074457550048829, 0.11095040130615234, 0.1107957763671875, 0.11132006072998046, 0.11097805023193359, 0.11088588714599609, 0.11095449829101563, 0.1108828125, 0.11095040130615234, 0.11084185791015624, 0.1109032974243164, 0.11080300903320313, 0.11090118408203126, 0.1108479995727539, 0.11090022277832032, 0.11081932830810547, 0.11081932830810547, 0.11082035064697265, 0.11080806732177734, 0.11085721588134766, 0.11085619354248047, 0.11086335754394532, 0.11097087860107421, 0.11086438751220704, 0.11089817810058594, 0.11083878326416016, 0.11082342529296875, 0.11165081787109375, 0.1110835189819336, 0.1108828125, 0.11089202880859375, 0.11087769317626953, 0.11091353607177734, 0.11080499267578126, 0.11088690948486328, 0.11074150085449219, 0.11088690948486328, 0.11083776092529297, 0.110993408203125, 0.11085004425048828, 0.11094834899902344, 0.11091661071777344, 0.11094937896728516, 0.23204966735839844, 0.1106872329711914, 0.11069849395751953, 0.11082956695556641, 0.11078144073486328, 0.11082342529296875, 0.11082854461669922, 0.11079376220703124, 0.11085718536376953, 0.11064422607421875, 0.11098521423339844, 0.11083878326416016, 0.11085926055908203, 0.11075686645507812, 0.11085311889648437, 0.11100364685058593, 0.11110502624511719, 0.11081011199951171, 0.11087872314453125, 0.11080499267578126, 0.11087974548339843, 0.1108326416015625, 0.11086335754394532, 0.11092889404296875, 0.11091558074951172, 0.1112279052734375, 0.11199488067626953, 0.11085414123535156, 0.11087462615966796, 0.11084902191162109, 0.11083673858642579, 0.11081523132324218, 0.1108479995727539, 0.11087769317626953, 0.11084185791015624, 0.11078656005859375, 0.11094732666015625, 0.11140509033203125, 0.11115721893310547, 0.11089920043945313, 0.11119821166992187, 0.11126681518554687, 0.11108249664306641, 0.11089612579345703, 0.11095552062988281, 0.11087155151367188, 0.11136819458007813, 0.11114701080322266, 0.11097907257080078, 0.1109227523803711, 0.11113369750976562, 0.11089612579345703, 0.11105280303955078, 0.11134566497802735, 0.11094322967529296, 0.11105689239501954, 0.11099750518798829, 0.11082035064697265, 0.11092377471923828, 0.11092173004150391, 0.11097705841064454, 0.110930908203125, 0.11121868896484376, 0.2321387481689453, 0.11072819519042969, 0.11069235229492187, 0.11076505279541016, 0.11068006134033204, 0.1108674545288086, 0.11114189147949219, 0.11086029052734375, 0.11097805023193359, 0.11142041778564453, 0.11087257385253907, 0.11068313598632812, 0.11082854461669922, 0.11079782104492188, 0.11100057220458984, 0.11087974548339843, 0.11062271881103515, 0.1111910400390625, 0.11069951629638672, 0.11069747161865234, 0.11072000122070312, 0.11083570861816407, 0.11088998413085938, 0.11100978851318359, 0.11074253082275391, 0.11108249664306641, 0.11088896179199219, 0.11087155151367188, 0.11092787170410157, 0.1107558364868164, 0.11087059020996094, 0.11099231719970704, 0.11096268463134766, 0.11093504333496093, 0.11110399627685547, 0.11086029052734375, 0.1108111343383789, 0.11096268463134766, 0.11103948974609375, 0.11202969360351563, 0.11105792236328126, 0.1110292510986328, 0.11090841674804687, 0.11127295684814453, 0.11102105712890625, 0.1109012451171875, 0.11093401336669922, 0.11088998413085938, 0.11083478546142578, 0.1109031982421875, 0.11108454132080078, 0.111067138671875, 0.11216793823242187, 0.11090943908691406, 0.1109012451171875, 0.11096268463134766, 0.11092070770263672, 0.11093299102783204, 0.11096575927734376, 0.11093401336669922, 0.11090841674804687, 0.11118182373046875, 0.11094528198242187, 0.23299072265625, 0.1107957763671875, 0.11074969482421874, 0.11083776092529297, 0.11094118499755859, 0.11186585235595703, 0.11088690948486328, 0.11068211364746093, 0.11145830535888672, 0.11130879974365235, 0.11078348541259765, 0.11109069061279297, 0.11089408111572266, 0.11126681518554687, 0.1109381103515625, 0.1113169937133789, 0.11098009490966797, 0.11079065704345703, 0.11102003479003907, 0.11084902191162109, 0.11073535919189453, 0.11083878326416016, 0.11077120208740235, 0.11114393615722656, 0.11094528198242187, 0.11090943908691406, 0.11164876556396484, 0.11096575927734376, 0.11078656005859375, 0.11130572509765625, 0.11101900482177735, 0.11106201934814453, 0.11099852752685548, 0.11108454132080078, 0.11094118499755859, 0.11127295684814453, 0.11090431976318359, 0.11078656005859375, 0.11078451538085937, 0.11092889404296875, 0.1109032974243164, 0.11096575927734376, 0.11088179016113281, 0.1108848648071289, 0.11105996704101563, 0.11092684936523438, 0.11082546997070312, 0.11094528198242187, 0.11090022277832032, 0.11093401336669922, 0.11086137390136719, 0.11093910217285156, 0.11091452789306641, 0.1108674545288086, 0.11074150085449219, 0.11088384246826172, 0.1108705291748047, 0.11097907257080078, 0.11091149139404297, 0.11094118499755859, 0.11102003479003907, 0.11086335754394532, 0.11101081848144531]",tokens/s,8.872227916177204,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-40b,tiiuae/falcon-40b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-3b,stabilityai/stablelm-base-alpha-3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -45290,19 +45323,24 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: FalconForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neox-20b,EleutherAI/gpt-neox-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.42.3,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,1950.920704,15045.492736,0.0,14399.045632,13900.420096,s,10,16.790244384765625,1.6790244384765625,0.0010486142582281257,1.6790367431640625,1.6804459716796873,1.6805005737304688,1.6805442553710939,"[1.679192626953125, 1.6789603271484375, 1.6780438232421875, 1.678517333984375, 1.680433837890625, 1.67788916015625, 1.6791131591796875, 1.680181640625, 1.6773572998046875, 1.68055517578125]",tokens/s,152.46949010002365,kWh,1.9813106258710223e-05,1.0857679242523961e-05,9.179171232219785e-05,0.00012246249782343202,tokens/kWh,2090435.8848625156,MB,1950.920704,15045.492736,0.0,14399.045632,14292.420096,s,10,981.8734921875001,98.18734921875,0.011000398968485372,98.1860859375,98.20038515625,98.204403515625,98.207618203125,"[98.184484375, 98.208421875, 98.1873671875, 98.1855078125, 98.1994921875, 98.1972734375, 98.1793359375, 98.1732421875, 98.171703125, 98.1866640625]",tokens/s,0.6416305206452139,kWh,0.0011591991291774646,0.0006353437306229187,0.005368699933845403,0.007163242793645786,tokens/kWh,8794.899435195004,,s,629,995.4237821044923,1.5825497330755043,0.19938333773778583,1.55846142578125,1.5592523681640624,1.559604833984375,3.2361203808593753,"[1.5580538330078124, 1.5583099365234374, 1.558223876953125, 1.55838671875, 1.55867138671875, 1.558048828125, 1.5581358642578125, 1.55835693359375, 1.55815625, 1.5579002685546874, 1.5581112060546876, 1.5579954833984375, 1.5578941650390625, 1.5584471435546876, 1.5588095703125, 1.559251953125, 1.5590963134765625, 1.558498291015625, 1.5594239501953124, 1.559110595703125, 1.558477783203125, 1.5582054443359374, 1.5585330810546876, 1.5583743896484374, 1.558171630859375, 1.5580078125, 1.5581695556640625, 1.5581890869140624, 1.5580272216796875, 1.5581531982421875, 1.5582095947265624, 1.5581317138671875, 1.558971435546875, 1.558867919921875, 1.5581644287109375, 1.5584481201171876, 1.558408203125, 1.558391845703125, 1.558349853515625, 1.5588013916015624, 1.558470703125, 1.558509521484375, 1.5585679931640626, 1.55841943359375, 1.558540283203125, 1.5586170654296876, 1.5587318115234374, 1.558656982421875, 1.558823974609375, 1.5588424072265625, 1.5585596923828124, 1.5589283447265625, 1.5587532958984376, 1.55822900390625, 1.5586396484375, 1.5583641357421876, 1.55864990234375, 1.5585484619140626, 1.5585382080078125, 1.5590430908203126, 1.5587666015625, 1.5589632568359375, 3.237376953125, 1.5580640869140625, 1.558181884765625, 1.557844970703125, 1.5580006103515625, 1.5579954833984375, 1.5581123046875, 1.5579893798828126, 1.558107177734375, 1.5582781982421876, 1.5594127197265626, 1.559099365234375, 1.559131103515625, 1.5585341796875, 1.5591177978515625, 1.55886279296875, 1.5582791748046876, 1.558634521484375, 1.55941064453125, 1.559609375, 1.5590020751953124, 1.5593431396484374, 1.559488525390625, 1.5587420654296875, 1.5596728515625, 1.5594976806640626, 1.5597445068359375, 1.5597117919921875, 1.55930322265625, 1.5584010009765625, 1.5583519287109375, 1.558445068359375, 1.55962060546875, 1.5594803466796876, 1.5595396728515625, 1.5590604248046875, 1.55877783203125, 1.55829150390625, 1.5592386474609374, 1.559795654296875, 1.5599677734375, 1.559572509765625, 1.5594322509765626, 1.5586314697265624, 1.560300537109375, 1.5584686279296875, 1.55837646484375, 1.5587890625, 1.558540283203125, 1.558470703125, 1.5584583740234375, 1.558497314453125, 1.5582698974609375, 1.558455322265625, 1.5591485595703125, 1.5591710205078124, 1.5590338134765624, 1.5596605224609374, 1.5584798583984374, 1.5588690185546874, 1.5584910888671875, 1.5581890869140624, 1.55858740234375, 3.2361298828125, 1.558045654296875, 1.5582381591796874, 1.558180908203125, 1.5579576416015626, 1.5579566650390626, 1.55797705078125, 1.5577784423828125, 1.5582259521484374, 1.5582371826171875, 1.5580057373046876, 1.55856591796875, 1.5581695556640625, 1.5578818359375, 1.55877783203125, 1.5584163818359376, 1.558245361328125, 1.5582525634765625, 1.5581624755859376, 1.5581583251953126, 1.5581051025390624, 1.558556640625, 1.5584256591796875, 1.558476806640625, 1.558287353515625, 1.5582464599609376, 1.558298583984375, 1.5586898193359375, 1.558340576171875, 1.55793505859375, 1.5584154052734376, 1.5581326904296875, 1.55810205078125, 1.558065185546875, 1.5584481201171876, 1.5580743408203126, 1.5586007080078126, 1.558350830078125, 1.558640625, 1.558423583984375, 1.5587113037109375, 1.5584420166015625, 1.55839794921875, 1.5586263427734375, 1.5582689208984375, 1.5584296875, 1.5582177734375, 1.55880859375, 1.558539306640625, 1.558929443359375, 1.558582275390625, 1.558930419921875, 1.558613037109375, 1.55983251953125, 1.56031689453125, 1.5597752685546875, 1.5597598876953125, 1.5601285400390625, 1.55953564453125, 1.5596953125, 1.5594854736328125, 1.55881884765625, 1.5586212158203125, 3.237253173828125, 1.5578316650390625, 1.5583251953125, 1.55785009765625, 1.558055908203125, 1.5579197998046874, 1.5578603515625, 1.55808154296875, 1.558330322265625, 1.55824951171875, 1.5579053955078126, 1.557854248046875, 1.557908447265625, 1.5580303955078125, 1.558086669921875, 1.5586058349609375, 1.55808154296875, 1.5584583740234375, 1.5582320556640625, 1.5581337890625, 1.5581746826171874, 1.5581737060546874, 1.5594495849609376, 1.5593502197265625, 1.55987353515625, 1.559400390625, 1.558656982421875, 1.5581593017578126, 1.558519775390625, 1.5582698974609375, 1.558197265625, 1.558408203125, 1.5585330810546876, 1.5579146728515625, 1.558423583984375, 1.5582259521484374, 1.55835595703125, 1.55822802734375, 1.5586058349609375, 1.5585423583984375, 1.5584420166015625, 1.558414306640625, 1.558656982421875, 1.5590482177734375, 1.55839892578125, 1.5587000732421874, 1.558583251953125, 1.5587010498046876, 1.558455322265625, 1.558435791015625, 1.55865087890625, 1.5584051513671875, 1.5583887939453125, 1.5587010498046876, 1.558929443359375, 1.558476806640625, 1.5586846923828126, 1.5584317626953126, 1.558667236328125, 1.5589652099609375, 1.559405517578125, 1.559698486328125, 1.56028515625, 3.24001904296875, 1.559047119140625, 1.5582115478515626, 1.559482421875, 1.55951416015625, 1.557960693359375, 1.558873046875, 1.5592540283203125, 1.5592652587890625, 1.558792236328125, 1.5587071533203125, 1.5585771484375, 1.557887939453125, 1.5581942138671876, 1.5579146728515625, 1.5587696533203126, 1.5585545654296875, 1.5591290283203125, 1.558961181640625, 1.5583519287109375, 1.558830078125, 1.5593133544921876, 1.5585177001953125, 1.5584798583984374, 1.5584490966796876, 1.558161376953125, 1.5583846435546875, 1.5586396484375, 1.5587840576171874, 1.55858740234375, 1.5587706298828126, 1.5585311279296874, 1.5585853271484376, 1.558718505859375, 1.55877783203125, 1.5583519287109375, 1.5585361328125, 1.5583436279296874, 1.5583160400390625, 1.5586314697265624, 1.55827197265625, 1.5586263427734375, 1.558256591796875, 1.5586048583984375, 1.56061083984375, 1.55869189453125, 1.5582628173828126, 1.55932470703125, 1.559943115234375, 1.55940966796875, 1.55860986328125, 1.558519775390625, 1.5587215576171876, 1.558623291015625, 1.5588004150390624, 1.5584306640625, 1.5585311279296874, 1.559140380859375, 1.5590625, 1.5583037109375, 1.558941650390625, 1.5583519287109375, 1.5587593994140625, 3.236095947265625, 1.55803955078125, 1.5580579833984376, 1.5585648193359376, 1.55922119140625, 1.5585577392578125, 1.5581224365234374, 1.5580743408203126, 1.557939208984375, 1.558950927734375, 1.5590543212890624, 1.5589171142578124, 1.55820751953125, 1.5580906982421876, 1.558582275390625, 1.5586478271484374, 1.5581624755859376, 1.5583251953125, 1.558139892578125, 1.558404052734375, 1.558762451171875, 1.558740966796875, 1.55846044921875, 1.55859765625, 1.5587103271484375, 1.55846044921875, 1.55847265625, 1.55835595703125, 1.5592816162109375, 1.558283203125, 1.5583631591796876, 1.558256591796875, 1.5584962158203124, 1.5584859619140625, 1.5586282958984374, 1.5587747802734375, 1.5586324462890624, 1.558761474609375, 1.558920166015625, 1.5590062255859376, 1.559319580078125, 1.5589990234375, 1.5587880859375, 1.5590902099609374, 1.55905126953125, 1.559146484375, 1.5588126220703125, 1.5589180908203124, 1.5586734619140625, 1.5591004638671875, 1.5590809326171875, 1.5590645751953125, 1.55970458984375, 1.5590850830078125, 1.5590697021484374, 1.558794189453125, 1.558703125, 1.5587318115234374, 1.5590830078125, 1.5591229248046874, 1.5588321533203124, 1.5586334228515626, 1.5587808837890624, 3.23734619140625, 1.558002685546875, 1.5577149658203124, 1.558254638671875, 1.5578726806640626, 1.55822998046875, 1.558177734375, 1.5585648193359376, 1.558667236328125, 1.5586529541015626, 1.5583426513671874, 1.55926123046875, 1.5578367919921876, 1.55795458984375, 1.558508544921875, 1.5586611328125, 1.5580989990234375, 1.5586651611328124, 1.5579781494140625, 1.5578511962890624, 1.558193115234375, 1.558066162109375, 1.5584921875, 1.5580631103515625, 1.558329345703125, 1.5580068359375, 1.5581522216796875, 1.5584962158203124, 1.5587593994140625, 1.558128662109375, 1.558140869140625, 1.558129638671875, 1.5582259521484374, 1.5581961669921875, 1.55856591796875, 1.5580845947265625, 1.558054931640625, 1.5582054443359374, 1.558171630859375, 1.5583519287109375, 1.55859765625, 1.5583262939453124, 1.5581573486328124, 1.558824951171875, 1.558509521484375, 1.5589549560546876, 1.558813720703125, 1.5588546142578126, 1.55884130859375, 1.558962158203125, 1.5589754638671875, 1.5583538818359375, 1.5587542724609376, 1.5585946044921875, 1.5591341552734375, 1.5585167236328126, 1.55884130859375, 1.5582105712890626, 1.5585382080078125, 1.558287353515625, 1.559066650390625, 1.558328369140625, 1.5585638427734374, 3.238383544921875, 1.558488037109375, 1.557611572265625, 1.5580323486328125, 1.5576668701171874, 1.5577364501953126, 1.5578460693359375, 1.557897216796875, 1.5580999755859375, 1.558709228515625, 1.557866455078125, 1.5580303955078125, 1.5580068359375, 1.5578204345703126, 1.5581685791015625, 1.5583262939453124, 1.5580938720703126, 1.558171630859375, 1.55803857421875, 1.5583016357421875, 1.558519775390625, 1.557992431640625, 1.5580426025390626, 1.5578306884765625, 1.5581573486328124, 1.5579320068359375, 1.558286376953125, 1.5582371826171875, 1.5583016357421875, 1.5584952392578124, 1.5585279541015624, 1.558201416015625, 1.558108154296875, 1.558107177734375, 1.558592529296875, 1.558244384765625, 1.558054931640625, 1.5581644287109375, 1.55880859375, 1.5584910888671875, 1.558899658203125, 1.5585997314453126, 1.55806103515625, 1.5583375244140625, 1.5583109130859376, 1.55829345703125, 1.5588638916015625, 1.5589119873046875, 1.5587071533203125, 1.5580262451171876, 1.558403076171875, 1.5584798583984374, 1.558330322265625, 1.55858642578125, 1.558856689453125, 1.558193115234375, 1.558345703125, 1.558108154296875, 1.5583251953125, 1.5581982421875, 1.5610501708984375, 1.5583887939453125, 1.5587952880859375, 3.235346435546875, 1.5581163330078125, 1.55756640625, 1.5580068359375, 1.55763916015625, 1.55790234375, 1.5576688232421876, 1.557738525390625, 1.5576319580078124, 1.558244384765625, 1.557791748046875, 1.5579586181640626, 1.5577528076171876, 1.557613525390625, 1.5579515380859374, 1.5582166748046875, 1.5581358642578125, 1.55793505859375, 1.55818603515625, 1.5580927734375, 1.55803857421875, 1.558433837890625, 1.55839697265625, 1.5587225341796875, 1.5587174072265626, 1.5583846435546875, 1.5585064697265625, 1.5582259521484374, 1.558518798828125, 1.5581593017578126, 1.5583385009765625, 1.5581470947265625, 1.5582484130859375, 1.5581358642578125, 1.5583436279296874, 1.558077392578125, 1.5579207763671874, 1.55822900390625, 1.55804052734375, 1.5581890869140624, 1.558372314453125, 1.5585648193359376, 1.558033447265625, 1.5585955810546874, 1.55846142578125, 1.5585228271484375, 1.558578125, 1.5584296875, 1.55850244140625, 1.558202392578125, 1.55873486328125, 1.5583662109375, 1.55852490234375, 1.558560791015625, 1.5590738525390626, 1.55888330078125, 1.5588905029296876, 1.55881982421875, 1.558825927734375, 1.5586263427734375, 1.5591884765625, 1.558414306640625, 1.5586529541015626, 3.238762451171875, 1.557859375, 1.557813232421875, 1.55837744140625, 1.558393798828125, 1.55814404296875, 1.55791259765625, 1.55789208984375, 1.5579832763671875, 1.5583538818359375, 1.558372314453125, 1.5582945556640626, 1.557918701171875, 1.5579627685546875, 1.5581337890625, 1.558581298828125, 1.5580999755859375, 1.557992431640625, 1.5592130126953125, 1.5587860107421876, 1.5587532958984376, 1.559041015625, 1.5587696533203126, 1.559415771484375, 1.5595980224609376, 1.559413818359375, 1.5599595947265625, 1.559562255859375, 1.5584573974609375, 1.55867236328125, 1.5585638427734374, 1.558118408203125, 1.5581470947265625, 1.5581961669921875, 1.558635498046875, 1.558296630859375, 1.558118408203125, 1.558240234375, 1.5587225341796875, 1.558730712890625, 1.5587952880859375, 1.558772705078125, 1.55820849609375, 1.558361083984375, 1.558244384765625, 1.5583170166015625, 1.558265869140625, 1.55871337890625, 1.5584215087890625, 1.558140869140625, 1.5588372802734376, 1.5583487548828125, 1.5584635009765626, 1.5586375732421875, 1.5585433349609374, 1.558372314453125, 1.5584256591796875, 1.5581634521484375, 1.5582484130859375, 1.558240234375, 1.5586221923828125, 1.5586898193359375, 1.5584942626953124]",tokens/s,0.6318916739865195,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-13b,facebook/opt-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-13b,huggyllama/llama-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -45322,17 +45360,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2-large,openai-community/gpt2-large,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.42.3,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,1263.828992,2645.03296,0.0,1998.585856,1692.386816,s,10,0.1855360298156738,0.018553602981567382,0.00043875123267479884,0.018496671676635743,0.018861865425109862,0.019271300983428954,0.019598849430084227,"[0.019680736541748046, 0.018462047576904297, 0.018017887115478515, 0.018770879745483398, 0.01853129577636719, 0.018288383483886717, 0.018085119247436523, 0.018451072692871093, 0.018648672103881835, 0.01859993553161621]",tokens/s,13797.859114174787,kWh,2.114928848604586e-07,1.1588762332417353e-07,6.19279465806741e-07,9.46659973991373e-07,tokens/kWh,270424447.03839666,MB,1264.156672,2645.03296,0.0,1998.585856,1714.454528,s,10,11.12458154296875,1.1124581542968752,0.01406764968643287,1.1127079467773437,1.1250791748046873,1.1330105346679686,1.1393556225585937,"[1.14094189453125, 1.0845853271484376, 1.10562890625, 1.1158067626953125, 1.1171712646484375, 1.101681884765625, 1.123316650390625, 1.1187562255859376, 1.109609130859375, 1.10708349609375]",tokens/s,56.63134362102716,kWh,1.3564222330478142e-05,7.43279469964388e-06,2.677221466959136e-05,4.776923169971338e-05,tokens/kWh,1318840.5540208428,,s,629,11.272059902191153,0.017920603978046363,0.0022541365398613443,0.01777663993835449,0.018067455291748045,0.018251570892333986,0.03606495193481445,"[0.01827123260498047, 0.018265087127685545, 0.01800396728515625, 0.0180633602142334, 0.018020351409912108, 0.017958911895751953, 0.017951744079589844, 0.018018304824829103, 0.01802342414855957, 0.017916927337646483, 0.01800601577758789, 0.018231296539306642, 0.017929216384887696, 0.01817804718017578, 0.01799782371520996, 0.018084863662719726, 0.01784832000732422, 0.01869824028015137, 0.019519487380981446, 0.019140607833862306, 0.018869247436523438, 0.018712575912475587, 0.018748416900634765, 0.018544639587402344, 0.018654207229614257, 0.019080192565917968, 0.018343936920166014, 0.018095104217529297, 0.018095104217529297, 0.018199552536010744, 0.018050048828125, 0.01787494468688965, 0.017922048568725587, 0.017927167892456054, 0.017872896194458008, 0.017913856506347657, 0.017844224929809572, 0.017917951583862304, 0.017910783767700195, 0.017952768325805665, 0.017810432434082032, 0.018069503784179687, 0.01785139274597168, 0.017900543212890627, 0.01786675262451172, 0.01785139274597168, 0.017785856246948242, 0.017811456680297853, 0.017880064010620117, 0.01778483200073242, 0.01782374382019043, 0.017967103958129883, 0.017938432693481447, 0.017829887390136717, 0.017932287216186525, 0.018110464096069336, 0.0179814395904541, 0.01801625633239746, 0.018017280578613282, 0.017952768325805665, 0.018096128463745118, 0.017328128814697266, 0.03599564743041992, 0.017175552368164062, 0.01725132751464844, 0.017185792922973633, 0.017250303268432618, 0.01722060775756836, 0.01719193649291992, 0.017125375747680666, 0.017138687133789063, 0.01719705581665039, 0.01806438446044922, 0.01765990447998047, 0.01723084831237793, 0.017154048919677735, 0.017120256423950195, 0.01719398307800293, 0.017345535278320313, 0.017192960739135742, 0.017192960739135742, 0.017153024673461914, 0.017183744430541992, 0.017127424240112304, 0.017128448486328125, 0.017132543563842775, 0.017188863754272463, 0.017141759872436522, 0.017131519317626954, 0.017175552368164062, 0.017119232177734374, 0.01718988800048828, 0.01719705581665039, 0.01716223907470703, 0.017142784118652343, 0.017192960739135742, 0.01719808006286621, 0.017147903442382813, 0.017124351501464845, 0.017116159439086915, 0.017127424240112304, 0.017111040115356444, 0.017142784118652343, 0.01779302406311035, 0.01723904037475586, 0.017245183944702147, 0.017126399993896483, 0.01740185546875, 0.01724928092956543, 0.017155071258544922, 0.01721036720275879, 0.017176576614379883, 0.01716223907470703, 0.017187839508056642, 0.017137664794921875, 0.017185792922973633, 0.017144832611083984, 0.01717862319946289, 0.01720217514038086, 0.017183744430541992, 0.017167360305786132, 0.01720729637145996, 0.017152000427246093, 0.01714995193481445, 0.017188863754272463, 0.035544063568115236, 0.01720729637145996, 0.017348608016967772, 0.017148960113525392, 0.01784623908996582, 0.017950719833374023, 0.018066432952880858, 0.017897472381591797, 0.01788313674926758, 0.017346559524536134, 0.01720217514038086, 0.017344512939453126, 0.018008064270019532, 0.01804287910461426, 0.018095104217529297, 0.017966079711914062, 0.017930240631103517, 0.017811456680297853, 0.01784217643737793, 0.01785241508483887, 0.01826918411254883, 0.017861631393432616, 0.017954816818237306, 0.017864704132080078, 0.017854463577270507, 0.01786777687072754, 0.017949695587158202, 0.017916927337646483, 0.017961984634399415, 0.018075647354125975, 0.017930240631103517, 0.01799782371520996, 0.01720012855529785, 0.01722163200378418, 0.017177600860595704, 0.017258495330810548, 0.01720217514038086, 0.01723187255859375, 0.017426431655883787, 0.01724415969848633, 0.017171455383300782, 0.0171428165435791, 0.01711510467529297, 0.017171455383300782, 0.017632255554199217, 0.017307647705078123, 0.01725132751464844, 0.017209344863891602, 0.01720012855529785, 0.01724928092956543, 0.017460224151611328, 0.017337343215942384, 0.01716739273071289, 0.017188863754272463, 0.0171048641204834, 0.017150976181030272, 0.017136640548706054, 0.01721343994140625, 0.017156095504760743, 0.017252351760864256, 0.01720729637145996, 0.017108991622924806, 0.018921472549438476, 0.03711283111572266, 0.017960960388183594, 0.01794047927856445, 0.017308671951293944, 0.0172677116394043, 0.01714995193481445, 0.01721548843383789, 0.01720729637145996, 0.01716531181335449, 0.017163263320922852, 0.017517568588256836, 0.017304576873779298, 0.018160640716552736, 0.018274303436279296, 0.017976320266723633, 0.017821695327758787, 0.01784012794494629, 0.017701887130737306, 0.017527807235717775, 0.017163263320922852, 0.01739571189880371, 0.017712127685546874, 0.017694719314575197, 0.01780838394165039, 0.017533952713012696, 0.01719603157043457, 0.017132543563842775, 0.01741004753112793, 0.017710079193115236, 0.017952768325805665, 0.01789952087402344, 0.017967103958129883, 0.018033664703369142, 0.017896448135375977, 0.017869823455810546, 0.017712127685546874, 0.017709056854248048, 0.01777561569213867, 0.017909759521484374, 0.017778688430786133, 0.017898496627807618, 0.017753087997436523, 0.01782067108154297, 0.017892351150512697, 0.017910783767700195, 0.01777663993835449, 0.017760255813598632, 0.017971200942993162, 0.017833984375, 0.017648639678955077, 0.017754112243652344, 0.017796096801757814, 0.017781759262084963, 0.017777664184570312, 0.017855487823486327, 0.01795686340332031, 0.01784832000732422, 0.017781759262084963, 0.017789951324462892, 0.017721343994140625, 0.01779302406311035, 0.017879039764404296, 0.017757183074951173, 0.03669913482666016, 0.017513471603393553, 0.01776742362976074, 0.01776639938354492, 0.017827840805053712, 0.01779097557067871, 0.01787494468688965, 0.01782579231262207, 0.017917951583862304, 0.017985536575317384, 0.017950719833374023, 0.017716224670410157, 0.017673215866088866, 0.01776639938354492, 0.017821695327758787, 0.017810432434082032, 0.01782579231262207, 0.018156543731689453, 0.01783305549621582, 0.017725343704223632, 0.017736703872680663, 0.017726463317871095, 0.017276927947998046, 0.017566719055175782, 0.017895423889160156, 0.017763328552246094, 0.01784217643737793, 0.017838079452514647, 0.01784524726867676, 0.017864704132080078, 0.017789951324462892, 0.01780531120300293, 0.017785856246948242, 0.017544191360473634, 0.01722572708129883, 0.01796505546569824, 0.017736703872680663, 0.017722368240356445, 0.018108415603637695, 0.017870847702026366, 0.01782579231262207, 0.01781760025024414, 0.017765375137329103, 0.01779916763305664, 0.017942527770996093, 0.01783705520629883, 0.017838079452514647, 0.017971200942993162, 0.017773567199707033, 0.017757183074951173, 0.017721343994140625, 0.017209344863891602, 0.017476640701293945, 0.017805280685424803, 0.01741414451599121, 0.017085439682006837, 0.01697177505493164, 0.01739263916015625, 0.017143808364868163, 0.01762099266052246, 0.017771520614624024, 0.017876991271972655, 0.017740800857543947, 0.036397056579589845, 0.017701887130737306, 0.017744895935058593, 0.017725439071655275, 0.017699840545654297, 0.01720012855529785, 0.019172351837158205, 0.01902387237548828, 0.018176000595092775, 0.017833984375, 0.01785036849975586, 0.017771520614624024, 0.0178606071472168, 0.017293312072753905, 0.017302528381347656, 0.01785651206970215, 0.01821388816833496, 0.017930240631103517, 0.01722675132751465, 0.017116159439086915, 0.01722060775756836, 0.017083391189575196, 0.017130495071411133, 0.017120256423950195, 0.017187839508056642, 0.01747148895263672, 0.017762304306030274, 0.017780736923217775, 0.017702911376953127, 0.01777459144592285, 0.017750015258789064, 0.01780633544921875, 0.017605632781982423, 0.017183744430541992, 0.017228799819946287, 0.01721855926513672, 0.017169408798217774, 0.01724723243713379, 0.017786880493164063, 0.01722470474243164, 0.017300479888916014, 0.01742438316345215, 0.017140735626220704, 0.01724006462097168, 0.01720627212524414, 0.017283071517944337, 0.017316864013671874, 0.01748684883117676, 0.01722060775756836, 0.01726361656188965, 0.01724006462097168, 0.01721855926513672, 0.01725644874572754, 0.017179647445678712, 0.0171909122467041, 0.01718272018432617, 0.01720012855529785, 0.01717350387573242, 0.017169408798217774, 0.01717043113708496, 0.017176576614379883, 0.01721036720275879, 0.01722777557373047, 0.03609190368652344, 0.018330623626708984, 0.01841971206665039, 0.01794047927856445, 0.017928192138671875, 0.017904640197753906, 0.017781759262084963, 0.01782067108154297, 0.017748992919921876, 0.01779097557067871, 0.0178155517578125, 0.01762713623046875, 0.01741004753112793, 0.0172359676361084, 0.01724928092956543, 0.017926143646240233, 0.01780531120300293, 0.017581056594848633, 0.01721446418762207, 0.017269760131835937, 0.01724825668334961, 0.017524768829345703, 0.017801183700561524, 0.018189311981201172, 0.01789132881164551, 0.017922048568725587, 0.01785139274597168, 0.017810432434082032, 0.01783296012878418, 0.01780019187927246, 0.017740800857543947, 0.017821695327758787, 0.01780735969543457, 0.017889280319213868, 0.017743871688842772, 0.017833984375, 0.017904640197753906, 0.01785036849975586, 0.017888256072998047, 0.018562047958374024, 0.018885631561279297, 0.018080799102783204, 0.017959903717041016, 0.01780940818786621, 0.01804595184326172, 0.017960960388183594, 0.01778179168701172, 0.017766368865966796, 0.01782374382019043, 0.017957887649536132, 0.01789132881164551, 0.017932287216186525, 0.01779916763305664, 0.01784012794494629, 0.017949695587158202, 0.018008064270019532, 0.017871871948242187, 0.017836032867431642, 0.01779916763305664, 0.0178606071472168, 0.01785036849975586, 0.01765376091003418, 0.017263647079467773, 0.03623728179931641, 0.01822412872314453, 0.018000896453857423, 0.017853439331054686, 0.01784832000732422, 0.017847295761108398, 0.017924095153808595, 0.01782681655883789, 0.017847295761108398, 0.017869823455810546, 0.017503231048583985, 0.017280000686645508, 0.017565696716308594, 0.017952768325805665, 0.017887231826782226, 0.017903615951538086, 0.018059263229370116, 0.017936384201049805, 0.017829887390136717, 0.017869823455810546, 0.017743871688842772, 0.017771520614624024, 0.017746944427490235, 0.01781657600402832, 0.017921024322509766, 0.017885183334350584, 0.01783705520629883, 0.01779097557067871, 0.017946624755859376, 0.017881120681762695, 0.017975263595581055, 0.01784320068359375, 0.017888256072998047, 0.01746329689025879, 0.017374208450317383, 0.0176312313079834, 0.01767731285095215, 0.01780531120300293, 0.017738752365112305, 0.017762304306030274, 0.017156095504760743, 0.01746227264404297, 0.017780736923217775, 0.017772544860839845, 0.017268735885620116, 0.01719910430908203, 0.017176576614379883, 0.017605632781982423, 0.01780531120300293, 0.017844224929809572, 0.017950719833374023, 0.017886207580566405, 0.017855487823486327, 0.017879039764404296, 0.01777459144592285, 0.017949695587158202, 0.01784012794494629, 0.017901567459106444, 0.017992704391479493, 0.017946624755859376, 0.017821695327758787, 0.017325056076049804, 0.01728102493286133, 0.036772865295410156, 0.01763020706176758, 0.017847295761108398, 0.017917951583862304, 0.017923072814941408, 0.017935359954833984, 0.01785241508483887, 0.017862655639648437, 0.017925119400024413, 0.01788313674926758, 0.017318912506103516, 0.017284095764160155, 0.01722572708129883, 0.017179647445678712, 0.01747865676879883, 0.017236991882324217, 0.017275903701782228, 0.01717350387573242, 0.017317888259887695, 0.017160192489624023, 0.01720729637145996, 0.017201152801513672, 0.017261568069458007, 0.01717452812194824, 0.017154048919677735, 0.01721651268005371, 0.017131519317626954, 0.017114112854003907, 0.017138687133789063, 0.01740083122253418, 0.01738444709777832, 0.017150976181030272, 0.017217567443847656, 0.01723798370361328, 0.01720524787902832, 0.017177600860595704, 0.017168384552001953, 0.01715814399719238, 0.017143808364868163, 0.018020351409912108, 0.018546688079833985, 0.019092479705810548, 0.018093055725097656, 0.017953792572021485, 0.01799065589904785, 0.017950719833374023, 0.017655839920043947, 0.017588191986083985, 0.01784524726867676, 0.017939456939697264, 0.017925119400024413, 0.01807155227661133, 0.017925119400024413, 0.01785958480834961, 0.017993728637695314, 0.017932287216186525, 0.017968128204345703, 0.017968128204345703, 0.017861631393432616, 0.017893375396728514, 0.017958911895751953, 0.017920000076293945, 0.017286144256591796, 0.036160511016845705, 0.017304576873779298, 0.017262592315673828, 0.01722470474243164, 0.01724928092956543, 0.01740287971496582, 0.017313823699951172, 0.0172205753326416, 0.017254400253295898, 0.0172728328704834, 0.01722470474243164, 0.017352703094482422, 0.017209344863891602, 0.017320959091186524, 0.0172728328704834, 0.017324031829833983, 0.017306623458862306, 0.017386495590209963, 0.01739571189880371, 0.01725542449951172, 0.017260543823242186, 0.017144832611083984, 0.01720627212524414, 0.017313791275024415, 0.0172359676361084, 0.0172677116394043, 0.018152448654174806, 0.018092031478881835, 0.01797324752807617, 0.01804595184326172, 0.018120704650878908, 0.018067455291748045, 0.018136064529418947, 0.01801113510131836, 0.017984512329101563, 0.01804287910461426, 0.017991680145263672, 0.01822003173828125, 0.01803264045715332, 0.018051071166992186, 0.018081792831420897, 0.017947647094726564, 0.01801420783996582, 0.018067455291748045, 0.018125823974609375, 0.01804083251953125, 0.017975296020507812, 0.01802137565612793, 0.018163711547851562, 0.018093055725097656, 0.017265663146972657, 0.01704140853881836, 0.017209344863891602, 0.01724723243713379, 0.01724415969848633, 0.01721139144897461, 0.017262592315673828, 0.017277952194213866, 0.017246208190917968, 0.017375232696533204, 0.017257471084594727, 0.017229824066162108, 0.017253376007080077]",tokens/s,55.80169068102002,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-72B,Qwen/Qwen1.5-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-7b-hf,meta-llama/Llama-2-7b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -45352,29 +45395,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,M,M,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,-,-,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -45382,42 +45418,13 @@ torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GP File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/M/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948fbc-5279434b0e6d0b71590daf18;8565f670-b3dc-4f33-a208-f0c718e5b7f6) - -Repository Not Found for url: https://huggingface.co/M/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 106, in _inner_fn + validate_repo_id(arg_value) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 160, in validate_repo_id + raise HFValidationError( +huggingface_hub.errors.HFValidationError: Repo id must use alphanumeric chars or '-', '_', '.', '--' and '..' are forbidden, '-' and '.' cannot start or end the name, max length is 96: '-'. The above exception was the direct cause of the following exception: @@ -45438,13 +45445,12 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 466, in cached_file raise EnvironmentError( -OSError: M is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` +OSError: Incorrect path_or_model_id: '-'. Please provide either the path to a local folder or the repo_id of a model on the Hub. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-7b,google/gemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-410m,EleutherAI/pythia-410m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -45452,76 +45458,34 @@ If this is a private repository, make sure to pass a token having permission to File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/gemma-7b/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status - raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66948164-47fd127e05a4356c2ec574b8;c3061e5b-3558-4fd8-8cfe-a7ee51ad94f2) - -403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/google/gemma-7b/resolve/main/config.json. -If you are trying to create or update content,make sure you have a token with the `write` role. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error - raise LocalEntryNotFoundError( -huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file - raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/gemma-7b is not the path to a directory containing a file named config.json. -Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-2.7b,EleutherAI/pythia-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.42.3,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,2265.694208,3330.801664,0.0,2684.35456,2448.256,s,10,2.319208984375,0.2319208984375,0.0009696989948218854,0.2316784973144531,0.23303465728759767,0.23331750717163086,0.23354378707885742,"[0.23360035705566407, 0.23106300354003906, 0.23155523681640625, 0.23113821411132812, 0.23119439697265626, 0.23046585083007812, 0.2318017578125, 0.2329718017578125, 0.23292591857910155, 0.23249244689941406]",tokens/s,1103.824630400822,kWh,2.7226702056147833e-06,1.491899283576025e-06,1.2428040245455892e-05,1.66426097346467e-05,tokens/kWh,15382202.916592907,MB,2265.694208,3330.801664,0.0,2684.35456,2572.686848,s,10,135.717251953125,13.571725195312501,0.01175719247352948,13.5685810546875,13.5886708984375,13.58988818359375,13.59086201171875,"[13.588400390625, 13.583669921875, 13.59110546875, 13.5705322265625, 13.5677392578125, 13.5600986328125, 13.5679013671875, 13.5521083984375, 13.5692607421875, 13.566435546875]",tokens/s,4.642003805216995,kWh,0.000160095536988793,8.774532296239601e-05,0.0007202301292139377,0.0009680709891651268,tokens/kWh,65077.872082843605,,s,629,137.58601713562004,0.21873770609796522,0.027557412902918375,0.21539942932128905,0.2159298553466797,0.2160373779296875,0.4467827087402344,"[0.21633331298828126, 0.21582643127441406, 0.21582028198242187, 0.21581414794921874, 0.21571174621582032, 0.21592576599121094, 0.21572607421875, 0.2158233642578125, 0.2159646759033203, 0.21584690856933594, 0.21583155822753905, 0.2158192596435547, 0.21583155822753905, 0.2157424621582031, 0.21579161071777345, 0.2158305206298828, 0.2159831085205078, 0.2154168395996094, 0.2150440979003906, 0.21582949829101564, 0.2148853759765625, 0.21520895385742186, 0.21547520446777343, 0.21552435302734374, 0.2149591064453125, 0.21545164489746094, 0.21503077697753906, 0.21568716430664062, 0.21583769226074218, 0.21579776000976564, 0.21587968444824218, 0.21599845886230468, 0.21593702697753905, 0.21590733337402343, 0.215088134765625, 0.21520077514648436, 0.21582847595214844, 0.21543833923339845, 0.21507891845703125, 0.21532672119140625, 0.2152755126953125, 0.21532365417480467, 0.21506355285644532, 0.2150564422607422, 0.21531129455566406, 0.21545164489746094, 0.21539430236816406, 0.21608857727050781, 0.21539021301269531, 0.21621043395996092, 0.21590322875976561, 0.21593087768554686, 0.21835877990722657, 0.21600668334960937, 0.21558575439453126, 0.2158970947265625, 0.21553152465820313, 0.21525401306152345, 0.21598208618164064, 0.21550387573242188, 0.2158039093017578, 0.21546188354492188, 0.446887939453125, 0.21535130310058595, 0.21620838928222658, 0.21549568176269532, 0.21547007751464844, 0.21541375732421875, 0.21529087829589844, 0.2152929229736328, 0.2151884765625, 0.2157445068359375, 0.21559091186523438, 0.2155878448486328, 0.21526937866210938, 0.21540966796875, 0.21536972045898437, 0.2159861755371094, 0.21592576599121094, 0.21588890075683595, 0.21573939514160156, 0.21593702697753905, 0.215689208984375, 0.21498162841796875, 0.21494374084472656, 0.21587353515625, 0.21586944580078124, 0.21577932739257813, 0.2158233642578125, 0.21595135498046875, 0.21583973693847655, 0.2160025634765625, 0.2159482879638672, 0.2154659881591797, 0.2158223419189453, 0.2156021728515625, 0.21595545959472656, 0.21571891784667968, 0.215193603515625, 0.21557760620117186, 0.21547520446777343, 0.21582643127441406, 0.21502873229980468, 0.21543014526367188, 0.21531135559082032, 0.2156943359375, 0.21508607482910155, 0.21500416564941408, 0.21636607360839843, 0.21551615905761717, 0.21563497924804687, 0.21572502136230468, 0.21526629638671874, 0.21593600463867188, 0.21595852661132814, 0.21549465942382812, 0.21517926025390624, 0.21620530700683593, 0.21590428161621095, 0.21612130737304688, 0.2151557159423828, 0.21511474609375, 0.21573631286621095, 0.21598719787597656, 0.21551206970214845, 0.44768972778320315, 0.2158203125, 0.21590115356445314, 0.21540249633789063, 0.21497549438476563, 0.21565235900878907, 0.21590118408203124, 0.21540045166015626, 0.21506661987304687, 0.21498982238769532, 0.21571481323242186, 0.21585101318359376, 0.21577728271484375, 0.21612850952148438, 0.2159298553466797, 0.21592268371582032, 0.21620121765136718, 0.2161960906982422, 0.2159800262451172, 0.21565951538085937, 0.21559500122070313, 0.2160394287109375, 0.21583769226074218, 0.21571174621582032, 0.21562162780761718, 0.21567897033691405, 0.2152356414794922, 0.21511981201171876, 0.21545062255859376, 0.21512191772460937, 0.21599845886230468, 0.2161397705078125, 0.21597698974609375, 0.2159718017578125, 0.21596365356445313, 0.2159298553466797, 0.21534310913085938, 0.2151700439453125, 0.21528985595703126, 0.21561856079101563, 0.2161786804199219, 0.2158970947265625, 0.21545062255859376, 0.21527655029296874, 0.21559706115722657, 0.21529702758789063, 0.21561138916015626, 0.21627903747558594, 0.21585714721679689, 0.21586842346191407, 0.21587251281738282, 0.21545574951171875, 0.2160875549316406, 0.2159861755371094, 0.21609368896484374, 0.21604556274414063, 0.21556019592285156, 0.21616026306152344, 0.21599948120117188, 0.21599436950683593, 0.2158745574951172, 0.21579263305664062, 0.21546290588378905, 0.44716851806640623, 0.21555917358398438, 0.2155397186279297, 0.2155018310546875, 0.2152489013671875, 0.21502362060546876, 0.2149601287841797, 0.21482188415527342, 0.2149959716796875, 0.2149283905029297, 0.2150338592529297, 0.2149365692138672, 0.21536358642578124, 0.21536460876464844, 0.21503488159179687, 0.21504512023925781, 0.21507481384277344, 0.21493145751953124, 0.21513523864746092, 0.21498880004882812, 0.21514239501953125, 0.2149949493408203, 0.21579986572265625, 0.2155232696533203, 0.21519258117675782, 0.2149427185058594, 0.21537689208984376, 0.21551615905761717, 0.21563288879394532, 0.21554585266113283, 0.2156093444824219, 0.21598719787597656, 0.2151751708984375, 0.2150102996826172, 0.2150768585205078, 0.21530624389648437, 0.2157660217285156, 0.2154649658203125, 0.21526016235351564, 0.2152314910888672, 0.21540045166015626, 0.21582028198242187, 0.21547520446777343, 0.21540045166015626, 0.2159267883300781, 0.2155018310546875, 0.21591448974609376, 0.2159093780517578, 0.21571484375, 0.21552432250976564, 0.21575372314453126, 0.21584077453613282, 0.21572096252441406, 0.21551615905761717, 0.21536665344238282, 0.2152294464111328, 0.21520384216308594, 0.21572402954101563, 0.21532261657714843, 0.2156615753173828, 0.2162319641113281, 0.21567280578613282, 0.21569638061523438, 0.4465121154785156, 0.21505946350097657, 0.21545677185058593, 0.21541990661621094, 0.2153912353515625, 0.21536665344238282, 0.21509735107421876, 0.2148976593017578, 0.2151024627685547, 0.21509120178222657, 0.215077880859375, 0.2149539794921875, 0.21517312622070311, 0.21521408081054688, 0.21557862854003906, 0.21550079345703124, 0.21530419921875, 0.21543629455566407, 0.21542095947265624, 0.21531336975097656, 0.21564927673339843, 0.21517926025390624, 0.21539840698242188, 0.21542501831054686, 0.2159093780517578, 0.21566566467285156, 0.21548236083984376, 0.21582131958007814, 0.21588275146484376, 0.21536563110351561, 0.21543014526367188, 0.21510450744628906, 0.21565338134765624, 0.21574758911132813, 0.21577317810058594, 0.21563186645507812, 0.21567079162597655, 0.21509017944335937, 0.21550079345703124, 0.2151557159423828, 0.2153717803955078, 0.2156748809814453, 0.21599845886230468, 0.21545677185058593, 0.21524684143066405, 0.21534104919433594, 0.21523968505859375, 0.2151628875732422, 0.21509837341308594, 0.21517208862304688, 0.21517208862304688, 0.21549465942382812, 0.21532159423828126, 0.2152069091796875, 0.215046142578125, 0.21507276916503906, 0.21522125244140625, 0.21588172912597656, 0.21516390991210937, 0.2150471649169922, 0.21543632507324217, 0.2151259765625, 0.2151065673828125, 0.44579736328125, 0.21483929443359376, 0.2148730926513672, 0.2152079315185547, 0.21503077697753906, 0.21551309204101562, 0.2150502471923828, 0.2148833312988281, 0.21498265075683592, 0.21487103271484376, 0.21547007751464844, 0.2154659881591797, 0.21506661987304687, 0.21501849365234374, 0.2155335693359375, 0.2150645751953125, 0.21493760681152344, 0.2147799072265625, 0.21493247985839845, 0.2154977264404297, 0.21500723266601562, 0.21548748779296875, 0.21595852661132814, 0.21516493225097658, 0.21515469360351563, 0.21548133850097656, 0.21518438720703126, 0.21511885070800782, 0.21515058898925782, 0.21548236083984376, 0.21548851013183593, 0.2151690216064453, 0.21543218994140625, 0.2160343017578125, 0.2168115234375, 0.2152611846923828, 0.21511576843261718, 0.21507891845703125, 0.21598104858398437, 0.21516595458984375, 0.21504512023925781, 0.21502464294433593, 0.21505126953125, 0.21498573303222657, 0.2150328369140625, 0.21487411499023437, 0.21494476318359376, 0.21496730041503906, 0.2148341827392578, 0.2150154266357422, 0.21492735290527343, 0.2149713897705078, 0.21527346801757813, 0.21523046875, 0.21507994079589843, 0.2151321563720703, 0.2151208953857422, 0.2154649658203125, 0.2155888671875, 0.21542912292480468, 0.21538406372070312, 0.21596774291992188, 0.21570252990722658, 0.44732620239257814, 0.21537075805664063, 0.21517721557617187, 0.21511065673828125, 0.215103515625, 0.21524374389648437, 0.21536972045898437, 0.21551615905761717, 0.21560012817382812, 0.21542912292480468, 0.21540658569335938, 0.21546394348144532, 0.21541990661621094, 0.21530213928222655, 0.21526629638671874, 0.21543218994140625, 0.21605477905273437, 0.21546086120605468, 0.2154659881591797, 0.21551206970214845, 0.21547212219238282, 0.215625732421875, 0.2154967041015625, 0.216195068359375, 0.21548646545410155, 0.21552333068847657, 0.2154967041015625, 0.2153861083984375, 0.21542604064941406, 0.21543321228027343, 0.21539532470703124, 0.21550592041015626, 0.21550694274902343, 0.21522431945800782, 0.21558067321777344, 0.2154598388671875, 0.21512406921386718, 0.215048095703125, 0.21526220703125, 0.21552024841308592, 0.2155284423828125, 0.21525299072265625, 0.21515058898925782, 0.21556224060058593, 0.21533798217773437, 0.21522023010253907, 0.21514137268066405, 0.21528985595703126, 0.2151065673828125, 0.21532774353027342, 0.21517312622070311, 0.2152191925048828, 0.21511885070800782, 0.21542604064941406, 0.2152048645019531, 0.21541171264648437, 0.21514649963378907, 0.21522738647460937, 0.2151372833251953, 0.2150758361816406, 0.21504103088378906, 0.21516390991210937, 0.21526527404785156, 0.44842291259765626, 0.21500210571289063, 0.21490789794921875, 0.21482496643066407, 0.21479629516601562, 0.21486489868164063, 0.21486489868164063, 0.2146826171875, 0.21485977172851561, 0.2147430419921875, 0.21485055541992187, 0.21492941284179687, 0.21493043518066407, 0.21505229187011718, 0.2149775390625, 0.21499699401855468, 0.21503897094726562, 0.21547929382324219, 0.2150185546875, 0.21497132873535157, 0.21505545043945312, 0.21503683471679688, 0.21546394348144532, 0.2150584259033203, 0.21507891845703125, 0.215046142578125, 0.21530015563964844, 0.2150174102783203, 0.2149171142578125, 0.21496319580078124, 0.21530009460449218, 0.21537689208984376, 0.215151611328125, 0.21528370666503907, 0.21522329711914062, 0.21498367309570313, 0.215446533203125, 0.2151331787109375, 0.21521817016601563, 0.21534413146972656, 0.21516493225097658, 0.21511167907714843, 0.21506048583984375, 0.21544038391113282, 0.215046142578125, 0.21523353576660156, 0.21546394348144532, 0.21502975463867188, 0.21504920959472656, 0.21524479675292968, 0.2151137237548828, 0.2151761932373047, 0.21516082763671876, 0.21502053833007811, 0.21518130493164062, 0.2151751708984375, 0.21505740356445313, 0.21551309204101562, 0.21542501831054686, 0.21525196838378907, 0.21533183288574217, 0.21515776062011718, 0.21511270141601563, 0.4488437805175781, 0.2157373504638672, 0.2151874542236328, 0.21487820434570312, 0.21577113342285156, 0.21489152526855468, 0.21497445678710939, 0.21525605773925782, 0.21551820373535155, 0.2153973693847656, 0.21515776062011718, 0.21496421813964844, 0.21516390991210937, 0.21532159423828126, 0.21534002685546874, 0.21517312622070311, 0.21535845947265625, 0.21573324584960937, 0.21572813415527345, 0.2155530242919922, 0.21528985595703126, 0.21548133850097656, 0.21529087829589844, 0.2149427185058594, 0.2152611846923828, 0.21510552978515626, 0.21537791442871093, 0.21573017883300782, 0.21560525512695314, 0.21562879943847657, 0.21569024658203126, 0.21543014526367188, 0.21560421752929687, 0.21551820373535155, 0.2155847625732422, 0.21509120178222657, 0.21532261657714843, 0.21509939575195314, 0.21506866455078125, 0.2148659210205078, 0.21519667053222657, 0.21552639770507812, 0.21548442077636717, 0.21555097961425781, 0.21562982177734374, 0.21557656860351562, 0.21573529052734375, 0.21503488159179687, 0.21537901306152343, 0.21511468505859374, 0.21543122863769532, 0.21568914794921876, 0.2155816955566406, 0.2152079315185547, 0.21553152465820313, 0.21579571533203126, 0.21550387573242188, 0.21552537536621094, 0.21557554626464845, 0.21545779418945313, 0.21514854431152344, 0.215267333984375, 0.21534104919433594, 0.4483246154785156, 0.21480960083007813, 0.21498265075683592, 0.21514035034179688, 0.2153871307373047, 0.21542604064941406, 0.21523558044433594, 0.21539942932128905, 0.21512602233886718, 0.21509529113769532, 0.21506866455078125, 0.21571994018554688, 0.2154219512939453, 0.21556941223144532, 0.2156195831298828, 0.21523968505859375, 0.21513523864746092, 0.21531033325195312, 0.21538099670410157, 0.21558988952636718, 0.21519667053222657, 0.21521408081054688, 0.21537382507324218, 0.2153605194091797, 0.21499699401855468, 0.21518438720703126, 0.21542912292480468, 0.21530316162109375, 0.21570661926269533, 0.21574143981933594, 0.21519052124023438, 0.21519769287109375, 0.21536058044433593, 0.21544338989257814, 0.21525503540039062, 0.2153164825439453, 0.21523762512207031, 0.2154691162109375, 0.2154884490966797, 0.21557862854003906, 0.215119873046875, 0.21551615905761717, 0.21561447143554688, 0.21519769287109375, 0.21527142333984375, 0.2151526336669922, 0.21513420104980469, 0.21525196838378907, 0.21509120178222657, 0.21508607482910155, 0.21538201904296875, 0.21560012817382812, 0.2152427520751953, 0.21532467651367188, 0.2155294647216797, 0.21564006042480469, 0.21551309204101562, 0.21564723205566405, 0.21547314453125, 0.21527244567871093, 0.21549568176269532, 0.21515673828125, 0.21521612548828126]",tokens/s,4.571685503331254,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-7B,Qwen/Qwen1.5-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2805.69856,8389.132288,0.0,7742.685184,7007.0144,s,10,5.757144287109376,0.5757144287109376,0.0011485729711129637,0.5757064819335938,0.5769704406738282,0.5771491607666016,0.5772921368408204,"[0.5760953979492187, 0.5769307250976563, 0.574836669921875, 0.5745257568359375, 0.574697998046875, 0.5738778076171875, 0.5753175659179688, 0.5767816162109375, 0.577327880859375, 0.5767528686523438]",tokens/s,444.66490196050984,kWh,6.783310471125591e-06,3.7157116531489013e-06,3.30976653669996e-05,4.3596687491274095e-05,tokens/kWh,5872005.758493431,MB,2805.69856,8389.132288,0.0,7742.685184,7283.984384,s,10,336.2841484375,33.62841484375,0.0041773861216769514,33.62973046875,33.63291328125,33.63334921875,33.63369796875,"[33.62066796875, 33.6314140625, 33.6304453125, 33.62453125, 33.627359375, 33.629015625, 33.63378515625, 33.63111328125, 33.623, 33.63281640625]",tokens/s,1.873415690056198,kWh,0.0003969375698617947,0.00021755745967517217,0.0019112099178555991,0.0025257049473925665,tokens/kWh,24943.531137727943,,s,629,340.93043640136693,0.5420197717032864,0.06847421137969394,0.5337415771484375,0.53422822265625,0.5344366455078124,1.1091660595703123,"[0.5336361083984374, 0.5341531982421875, 0.533359619140625, 0.5337293090820312, 0.53304931640625, 0.5336708984375, 0.5331292114257813, 0.5338419189453125, 0.5331640625, 0.5335398559570312, 0.53309033203125, 0.5335951538085938, 0.5331834716796875, 0.5338798217773437, 0.5333298950195312, 0.5336842041015625, 0.5331845092773437, 0.5336678466796875, 0.533411865234375, 0.53406103515625, 0.5336094970703125, 0.5338388671875, 0.5332828369140625, 0.5337896728515625, 0.5332971801757812, 0.533770263671875, 0.5334599609375, 0.5337487182617188, 0.5331834716796875, 0.5339166870117188, 0.5336627197265625, 0.5344092407226563, 0.5335090942382813, 0.5339432983398438, 0.533738525390625, 0.5342853393554687, 0.5333934326171875, 0.5340252075195312, 0.53340771484375, 0.534096923828125, 0.5334374389648437, 0.5337191162109375, 0.5333012084960937, 0.5337835693359375, 0.5332633666992187, 0.53411328125, 0.533443603515625, 0.5338327026367188, 0.5333759765625, 0.5339893798828125, 0.5333831787109375, 0.5338306274414063, 0.5334395141601562, 0.5340466918945312, 0.5333514404296875, 0.5337937622070312, 0.5338665161132813, 0.5344153442382813, 0.5337047119140625, 0.5338112182617187, 0.5332122192382812, 0.5337702026367187, 1.1116871337890626, 0.5333892822265625, 0.53395556640625, 0.5335818481445312, 0.534329345703125, 0.53378662109375, 0.533939208984375, 0.533485595703125, 0.5340098266601563, 0.533265380859375, 0.5337507934570312, 0.5338316650390625, 0.53416552734375, 0.533770263671875, 0.5342669067382813, 0.5334896850585937, 0.5339904174804687, 0.5334537963867187, 0.5338736572265625, 0.5339002685546875, 0.5341122436523438, 0.5333739624023438, 0.5337057495117188, 0.5331763305664062, 0.5336084594726562, 0.5334323120117187, 0.5338009643554688, 0.5331425170898437, 0.5337620239257812, 0.5331527709960937, 0.5337323608398438, 0.5339801635742187, 0.5345730590820312, 0.53325927734375, 0.5336207275390625, 0.53326953125, 0.5340211791992188, 0.5333349609375, 0.5338777465820312, 0.53340673828125, 0.5337753295898438, 0.533338134765625, 0.533880859375, 0.533570556640625, 0.5340579833984375, 0.5336616821289063, 0.5373572998046875, 0.5339514770507813, 0.53390234375, 0.5336719360351563, 0.5342648315429688, 0.5339279174804688, 0.5340426025390625, 0.5336504516601562, 0.5338839721679688, 0.53328173828125, 0.534540283203125, 0.5336729736328125, 0.5342125854492188, 0.5336329956054687, 0.53383984375, 0.5335726318359375, 0.5343897705078124, 1.10948046875, 0.5335797729492188, 0.5341194458007813, 0.5339064331054687, 0.5345751342773437, 0.5335787353515625, 0.533949462890625, 0.5334251708984376, 0.5337794799804687, 0.5332059936523438, 0.5337763671875, 0.5334661254882812, 0.533986328125, 0.5332305908203125, 0.5337221069335938, 0.5334609985351563, 0.53401904296875, 0.5335316772460937, 0.5339371337890625, 0.53347021484375, 0.5337108764648437, 0.5331456298828126, 0.5338245239257813, 0.5349140625, 0.5346262817382812, 0.5334579467773437, 0.5338726196289062, 0.533796875, 0.5340897216796875, 0.5336565551757813, 0.5343047485351563, 0.5332715454101562, 0.534076416015625, 0.533580810546875, 0.5337415771484375, 0.5334824829101562, 0.53382861328125, 0.53319677734375, 0.5336668090820312, 0.5332664184570313, 0.5337743530273438, 0.5335418701171875, 0.5340856323242188, 0.5335429077148437, 0.53378662109375, 0.5334508056640626, 0.5341675415039062, 0.5349437255859375, 0.5338644409179687, 0.5339566040039062, 0.5342269287109375, 0.5335900268554687, 0.5341214599609375, 0.53355419921875, 0.5342976684570313, 0.5334230346679687, 0.5340139770507812, 0.5335992431640625, 0.5341634521484375, 0.5334210815429687, 0.5340436401367188, 0.5337569580078125, 0.5342617797851562, 1.1091947021484374, 0.5332183227539062, 0.5337579345703125, 0.533496826171875, 0.5339699096679688, 0.53334326171875, 0.5339320068359374, 0.5333401489257813, 0.533749755859375, 0.533454833984375, 0.533738525390625, 0.5335623779296875, 0.5348157348632813, 0.5332367553710937, 0.5340784301757813, 0.5337159423828125, 0.5338306274414063, 0.5333944091796875, 0.5338828735351563, 0.533201904296875, 0.5338593139648438, 0.53323681640625, 0.5340261840820313, 0.5336555786132813, 0.5336821899414063, 0.5331660766601563, 0.5336535034179688, 0.5331763305664062, 0.5336637573242188, 0.5330974731445313, 0.5336381225585938, 0.5332664184570313, 0.5338818359375, 0.533327880859375, 0.53427099609375, 0.5336790771484375, 0.5338746948242188, 0.533159912109375, 0.5337006225585937, 0.5332623291015625, 0.5337293090820312, 0.5337589721679687, 0.533981201171875, 0.533370849609375, 0.5360977783203125, 0.5334261474609375, 0.5341010131835937, 0.5335623779296875, 0.5340078125, 0.5334896850585937, 0.5340006103515625, 0.5336053466796875, 0.5344645385742187, 0.53421875, 0.5342853393554687, 0.5334138793945312, 0.5337979125976563, 0.53326953125, 0.533792724609375, 0.5334814453125, 0.5338665161132813, 0.5334456176757812, 0.53382861328125, 1.1090924072265624, 0.5336094970703125, 0.5341419677734375, 0.5334814453125, 0.5340355224609376, 0.53357666015625, 0.53401904296875, 0.5336771240234375, 0.5337230834960938, 0.5334425048828125, 0.5336268920898437, 0.5331640625, 0.5335726318359375, 0.533123046875, 0.5340631103515625, 0.5331763305664062, 0.5340078125, 0.5347676391601562, 0.5339586791992188, 0.5332183227539062, 0.5338541870117187, 0.5333883056640625, 0.53372314453125, 0.5331834716796875, 0.5336309814453125, 0.5334537963867187, 0.534108154296875, 0.5333411865234375, 0.5341143188476563, 0.5333524780273438, 0.5335510864257812, 0.5337293090820312, 0.5341480712890625, 0.5335869140625, 0.5337671508789062, 0.533243896484375, 0.5338193969726562, 0.5337169799804687, 0.5342074584960937, 0.533265380859375, 0.5335838623046875, 0.533375, 0.5341593627929687, 0.5334948120117188, 0.5341030883789063, 0.5336299438476563, 0.5339105224609375, 0.5335091552734375, 0.5336759643554687, 0.5331793823242188, 0.5338460083007812, 0.5332551879882812, 0.5341522216796875, 0.5335869140625, 0.53411328125, 0.5335480346679687, 0.53422802734375, 0.5365042724609375, 0.5340682373046876, 0.533644287109375, 0.5340825805664062, 0.533528564453125, 0.5341306762695313, 1.1086192626953124, 0.5332972412109375, 0.534067138671875, 0.5337210693359375, 0.5342228393554688, 0.53347021484375, 0.53422900390625, 0.5334702758789063, 0.5339790649414062, 0.5337579345703125, 0.5341173706054687, 0.5335818481445312, 0.534245361328125, 0.5336678466796875, 0.5341265869140625, 0.5333944091796875, 0.5336135864257813, 0.5332551879882812, 0.5341911010742187, 0.533359619140625, 0.5341552734375, 0.5331834716796875, 0.53369140625, 0.5332572021484375, 0.53432421875, 0.533712890625, 0.5336708984375, 0.533106689453125, 0.533802001953125, 0.5334364013671875, 0.53359716796875, 0.5331845092773437, 0.53380810546875, 0.5332346801757812, 0.5336627197265625, 0.5332254638671875, 0.5337774047851562, 0.5336309814453125, 0.537302001953125, 0.5335510864257812, 0.5340999755859375, 0.5334763793945313, 0.5337241821289063, 0.5331824340820313, 0.5339197387695312, 0.53344970703125, 0.533875732421875, 0.53338623046875, 0.5339381713867187, 0.5334395141601562, 0.5338777465820312, 0.5334159545898437, 0.534012939453125, 0.5338378295898437, 0.5343323974609375, 0.534024169921875, 0.534361083984375, 0.5335521240234375, 0.5342996826171875, 0.5335305786132812, 0.533734375, 0.5334640502929687, 0.5342750854492188, 1.1099852294921875, 0.533232666015625, 0.5340067749023437, 0.5332183227539062, 0.5340108642578125, 0.5337364501953125, 0.534192138671875, 0.533570556640625, 0.5341460571289063, 0.533876708984375, 0.53406005859375, 0.5334681396484375, 0.5340528564453125, 0.5333984985351562, 0.53374462890625, 0.5331937255859375, 0.5337579345703125, 0.533475341796875, 0.5339535522460938, 0.533396484375, 0.53382861328125, 0.5333401489257813, 0.5337302856445313, 0.535394287109375, 0.5337927856445313, 0.5334507446289063, 0.5339443359375, 0.5337825317382813, 0.5344010009765625, 0.533728271484375, 0.5337845458984375, 0.5336329956054687, 0.5338839111328125, 0.5333759765625, 0.5338009643554688, 0.533201904296875, 0.5340794677734375, 0.5336320190429688, 0.5339146118164062, 0.53344873046875, 0.5339638061523437, 0.5336893310546875, 0.5338931274414063, 0.5337426147460937, 0.5341430053710937, 0.5335347290039063, 0.5341624145507813, 0.5345700073242188, 0.5347133178710938, 0.5338163452148438, 0.53465087890625, 0.5338040161132812, 0.5341941528320312, 0.533674072265625, 0.5342606811523437, 0.5343539428710937, 0.5342125854492188, 0.5335050048828125, 0.5339566040039062, 0.533570556640625, 0.5341276245117188, 0.5338695678710937, 0.5341880493164063, 1.111352294921875, 0.533518310546875, 0.534761474609375, 0.5335090942382813, 0.5338511352539063, 0.5336331176757813, 0.5341572265625, 0.5336279296875, 0.5341102294921874, 0.5339033813476562, 0.53374462890625, 0.5332838134765625, 0.5336801147460938, 0.5332142333984375, 0.5337333984375, 0.5331947631835937, 0.534908935546875, 0.533190673828125, 0.5336279296875, 0.5330892944335938, 0.5340794677734375, 0.5336063842773437, 0.5338890380859375, 0.5336463623046875, 0.5338880004882812, 0.5336104736328126, 0.533712890625, 0.5332838134765625, 0.5341624145507813, 0.5335418701171875, 0.5341460571289063, 0.53351220703125, 0.5338890380859375, 0.533243896484375, 0.5342177124023437, 0.5337088012695312, 0.5343447265625, 0.533712890625, 0.5340774536132813, 0.5339156494140626, 0.5344481201171875, 0.5336882934570313, 0.5341992797851562, 0.5336084594726562, 0.533676025390625, 0.5333197021484375, 0.5338849487304688, 0.533917724609375, 0.53441943359375, 0.5336135864257813, 0.5341010131835937, 0.5335132446289063, 0.5340897216796875, 0.5336616821289063, 0.5339934692382813, 0.5337794799804687, 0.5340200805664063, 0.5335142211914062, 0.5342648315429688, 0.533865478515625, 0.5339801635742187, 0.5338695678710937, 0.534255615234375, 1.112015869140625, 0.5335879516601563, 0.534097900390625, 0.5332183227539062, 0.5336187133789062, 0.5332059936523438, 0.5337405395507813, 0.5333309326171874, 0.5338091430664063, 0.533423095703125, 0.5338306274414063, 0.533191650390625, 0.5339586791992188, 0.5338961791992187, 0.5337569580078125, 0.5333165893554688, 0.534349853515625, 0.5343836059570313, 0.5336043701171875, 0.5334517822265625, 0.5338685913085938, 0.5332326049804688, 0.5336350708007812, 0.5330892944335938, 0.5336309814453125, 0.5331548461914063, 0.5336053466796875, 0.5331824340820313, 0.5337999267578125, 0.5332408447265625, 0.533622802734375, 0.5338716430664062, 0.5345494995117187, 0.53351220703125, 0.5343057861328125, 0.5334180297851563, 0.5338480224609375, 0.53349169921875, 0.5338357543945312, 0.533622802734375, 0.533875732421875, 0.5334579467773437, 0.5337610473632812, 0.5334579467773437, 0.5340170288085937, 0.5332745971679688, 0.534091796875, 0.5333995361328125, 0.5338532104492187, 0.5333872680664062, 0.5340620727539063, 0.533886962890625, 0.5340108642578125, 0.5335654296875, 0.533928955078125, 0.5333514404296875, 0.533950439453125, 0.5334404907226562, 0.5343201293945312, 0.5335582885742187, 0.5337221069335938, 0.5335408935546875, 0.5341378784179688, 1.111615478515625, 0.5335418701171875, 0.534171630859375, 0.5334824829101562, 0.533771240234375, 0.5340958862304688, 0.5341583251953125, 0.5335234375, 0.5342811889648438, 0.5338716430664062, 0.53395556640625, 0.533296142578125, 0.5340877075195313, 0.53382861328125, 0.5342125854492188, 0.5335961303710938, 0.5341245727539062, 0.5336575927734375, 0.5344921875, 0.5339248657226563, 0.5340242309570312, 0.533560302734375, 0.5341531982421875, 0.5337302856445313, 0.5339627685546875, 0.5335162963867187, 0.535699462890625, 0.5336187133789062, 0.5340529174804688, 0.5334834594726563, 0.5338634033203125, 0.5333811645507812, 0.5340415649414062, 0.5334630126953125, 0.53372314453125, 0.5333606567382813, 0.5338726196289062, 0.5338736572265625, 0.5340108642578125, 0.5332828369140625, 0.5338992919921876, 0.5332766723632812, 0.5340753784179687, 0.5338142700195313, 0.5339904174804687, 0.5335613403320313, 0.5342269287109375, 0.533306396484375, 0.5340200805664063, 0.5333984985351562, 0.5338890380859375, 0.5335675048828125, 0.5339054565429687, 0.5333565063476563, 0.5340200805664063, 0.5336309814453125, 0.5339617309570313, 0.5336258544921875, 0.5341859741210937, 0.5334886474609375, 0.5339893798828125, 0.53378662109375, 0.534213623046875]",tokens/s,1.8449511479212646,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,-,-,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,/,/,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -45529,17 +45493,6 @@ Checkout your internet connection or see how to run the library in offline mode File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 106, in _inner_fn - validate_repo_id(arg_value) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 160, in validate_repo_id - raise HFValidationError( -huggingface_hub.errors.HFValidationError: Repo id must use alphanumeric chars or '-', '_', '.', '--' and '..' are forbidden, '-' and '.' cannot start or end the name, max length is 96: '-'. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run @@ -45556,12 +45509,12 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 466, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 373, in cached_file raise EnvironmentError( -OSError: Incorrect path_or_model_id: '-'. Please provide either the path to a local folder or the repo_id of a model on the Hub. +OSError: / does not appear to have a file named config.json. Checkout 'https://huggingface.co///tree/None' for available files. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-125m,facebook/opt-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-13b,facebook/opt-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -45581,17 +45534,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-6.7b,EleutherAI/pythia-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.42.3,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,1333.67808,6189.21984,0.0,5542.772736,5293.671424,s,10,5.586684448242187,0.5586684448242187,0.0019338580518860281,0.557967041015625,0.5590516418457031,0.5617419464111328,0.5638941900634765,"[0.5644322509765625, 0.5579137573242188, 0.5582323608398437, 0.5579798583984374, 0.5582894897460937, 0.5578035888671875, 0.557934814453125, 0.5584537963867188, 0.5579542236328126, 0.5576903076171875]",tokens/s,458.2324317253119,kWh,6.598755781665261e-06,3.6146258023682546e-06,3.063834241189155e-05,4.0851723995925066e-05,tokens/kWh,6266565.396983879,MB,1333.67808,6189.21984,0.0,5542.772736,5479.282176,s,10,326.859033203125,32.685903320312505,0.005888375643590895,32.6845341796875,32.69453828125,32.6956421875,32.6965253125,"[32.69429296875, 32.679224609375, 32.67916015625, 32.6882421875, 32.69674609375, 32.680171875, 32.68275, 32.683013671875, 32.689376953125, 32.6860546875]",tokens/s,1.9274364053095923,kWh,0.0003859057358256829,0.0002115092267264069,0.0017882986127365009,0.0023857135752885904,tokens/kWh,26407.19349236177,,s,629,331.3625651855466,0.5268085297067517,0.06627334687586009,0.518781982421875,0.519246826171875,0.5193795776367187,1.0766735449218752,"[0.5185361938476563, 0.5187901611328125, 0.518645751953125, 0.5193123779296875, 0.5184696044921875, 0.5191024780273438, 0.518635498046875, 0.5193840942382812, 0.5187215576171875, 0.5188474731445313, 0.518709228515625, 0.519257080078125, 0.5185044555664062, 0.5190707397460937, 0.5185781860351563, 0.5189417114257813, 0.5188659057617188, 0.5192376098632813, 0.5188485107421875, 0.5194188842773437, 0.519056396484375, 0.518424560546875, 0.518950927734375, 0.5194536743164062, 0.5195530395507812, 0.5194168090820312, 0.5195950317382813, 0.5193717651367188, 0.519319580078125, 0.5192949829101563, 0.5195980834960937, 0.5190328369140625, 0.5191741333007812, 0.5190369262695312, 0.5188321533203125, 0.5186027221679688, 0.5188935546875, 0.5191608276367188, 0.5192755126953125, 0.519130126953125, 0.5184635009765625, 0.519088134765625, 0.5189284057617187, 0.5190697021484375, 0.5194506225585938, 0.5187174682617187, 0.5190379638671875, 0.5189365844726562, 0.5185945434570313, 0.519277587890625, 0.51884033203125, 0.518724609375, 0.5184901123046874, 0.5186467895507813, 0.5185494995117188, 0.5188372192382813, 0.5189785766601562, 0.5190338745117188, 0.5186253051757812, 0.5187225341796875, 0.5185259399414063, 0.5186826171875, 1.0767308349609375, 0.518603759765625, 0.5190625, 0.5183805541992188, 0.5184440307617187, 0.5186907958984375, 0.5187993774414063, 0.5184624633789062, 0.5187317504882812, 0.5186785278320313, 0.5184757690429688, 0.518877197265625, 0.518561767578125, 0.5186365356445313, 0.5187368774414063, 0.5185228881835937, 0.518455322265625, 0.5188290405273438, 0.5190287475585937, 0.5186846923828125, 0.5185863647460938, 0.5187174682617187, 0.5186549682617188, 0.5183989868164063, 0.5184993286132813, 0.5187389526367188, 0.5186990356445312, 0.5186856689453125, 0.5186365356445313, 0.518687744140625, 0.5187051391601563, 0.5185955810546875, 0.5186806030273438, 0.5186826171875, 0.518709228515625, 0.5183426513671875, 0.51865087890625, 0.5188116455078124, 0.5186478271484375, 0.5184890747070312, 0.5186887817382813, 0.5187451171875, 0.518697998046875, 0.5185700073242188, 0.5188802490234375, 0.518781982421875, 0.5189662475585938, 0.5188433837890625, 0.5189642333984374, 0.5188710327148438, 0.5188710327148438, 0.5186898193359375, 0.5191925659179687, 0.5188259887695312, 0.5187809448242188, 0.5187225341796875, 0.5192509155273437, 0.5187993774414063, 0.5188997192382813, 0.5185228881835937, 0.5187072143554687, 0.5188116455078124, 0.5190584106445313, 1.07681689453125, 0.518445068359375, 0.5185474853515625, 0.5183795166015625, 0.5183733520507813, 0.5183323974609375, 0.5183467407226563, 0.5184655151367188, 0.5187625122070313, 0.5183334350585938, 0.5183016967773437, 0.5186815795898437, 0.5184327392578125, 0.5188362426757812, 0.5188045043945313, 0.5185730590820312, 0.5185095825195313, 0.5186785278320313, 0.51854541015625, 0.5186232299804687, 0.5184225463867187, 0.5185321044921875, 0.5186078491210937, 0.51862939453125, 0.5188853759765625, 0.5187942504882812, 0.5186447143554688, 0.5191956176757813, 0.5188433837890625, 0.518813720703125, 0.5189417114257813, 0.5186007080078125, 0.5189970092773437, 0.5184686279296875, 0.5187051391601563, 0.5187737426757812, 0.5187123413085938, 0.5185546264648437, 0.518793212890625, 0.5184378662109375, 0.51846142578125, 0.518530029296875, 0.5188843383789062, 0.5189683227539063, 0.5190963134765625, 0.5188731079101563, 0.5191423950195313, 0.5188699951171875, 0.518888427734375, 0.5187901611328125, 0.5192191772460938, 0.5189222412109376, 0.519203857421875, 0.5190103149414063, 0.5189519653320313, 0.5185955810546875, 0.5187174682617187, 0.5186375732421875, 0.5187215576171875, 0.5186795654296875, 0.5185198364257813, 0.5191956176757813, 0.5194281005859375, 1.076896728515625, 0.5189867553710937, 0.5189898071289063, 0.5190768432617188, 0.5188546752929688, 0.5190164184570313, 0.5189293823242187, 0.5191588134765625, 0.5189990234375, 0.5190471801757812, 0.5190215454101562, 0.518962158203125, 0.5189324951171875, 0.51877783203125, 0.5185863647460938, 0.5187440795898437, 0.5187747802734375, 0.5186703491210938, 0.518961181640625, 0.5189631958007812, 0.5189263305664062, 0.5191065673828125, 0.5191270141601563, 0.5187266845703125, 0.5191536865234375, 0.519077880859375, 0.5192693481445313, 0.5188792114257812, 0.5185464477539062, 0.5187072143554687, 0.5185413208007813, 0.5187113037109375, 0.5186324462890625, 0.518445068359375, 0.5185331420898438, 0.5186416625976562, 0.5187133178710938, 0.5184675903320313, 0.5186703491210938, 0.5187870483398438, 0.5187645263671875, 0.518656005859375, 0.5186129760742187, 0.5190205688476562, 0.5188474731445313, 0.5192632446289063, 0.5188905029296875, 0.5194403686523438, 0.518930419921875, 0.518666259765625, 0.518709228515625, 0.51875634765625, 0.5189447631835937, 0.5187727661132813, 0.5188259887695312, 0.518593505859375, 0.518830078125, 0.5188218994140625, 0.5188679809570312, 0.51879833984375, 0.5195130615234375, 0.5187696533203126, 0.5189273681640625, 1.07702783203125, 0.5185310668945312, 0.5188526000976562, 0.5185443725585938, 0.5186529541015625, 0.518382568359375, 0.519151611328125, 0.5186047973632812, 0.5189119873046875, 0.5184778442382812, 0.5184440307617187, 0.5187522583007812, 0.5190369262695312, 0.5186365356445313, 0.5191597900390625, 0.5186221923828125, 0.518540283203125, 0.518592529296875, 0.5189119873046875, 0.5189498901367188, 0.519520263671875, 0.5188690185546875, 0.51934619140625, 0.51949462890625, 0.5199288330078125, 0.5197547607421875, 0.5190215454101562, 0.519573486328125, 0.51902978515625, 0.5193554077148438, 0.5189078979492188, 0.519035888671875, 0.5191505737304688, 0.5188290405273438, 0.5192693481445313, 0.51888330078125, 0.5190390014648437, 0.519245849609375, 0.5186898193359375, 0.518709228515625, 0.5188157348632813, 0.519352294921875, 0.5192120361328125, 0.5192796020507813, 0.5196503295898437, 0.5190942993164063, 0.5189181518554687, 0.5189027709960937, 0.5193912353515625, 0.518920166015625, 0.5193021240234375, 0.5193011474609375, 0.5194506225585938, 0.519583740234375, 0.5188864135742187, 0.51835595703125, 0.5188598022460937, 0.51863037109375, 0.519320556640625, 0.5186631469726563, 0.51905126953125, 0.51867236328125, 0.5190215454101562, 1.07663671875, 0.5183795166015625, 0.5187102661132813, 0.5184112548828125, 0.51833447265625, 0.518308837890625, 0.5185689697265625, 0.5185751342773437, 0.5183692626953125, 0.5185904541015625, 0.5186160888671875, 0.51839794921875, 0.5187020874023438, 0.5187880859375, 0.5187522583007812, 0.5184368896484375, 0.5183836059570313, 0.5184163818359375, 0.5189284057617187, 0.5189427490234375, 0.51874609375, 0.5188782348632812, 0.5188167724609375, 0.5184901123046874, 0.518456298828125, 0.518635498046875, 0.5184102172851562, 0.5184757690429688, 0.5186948852539063, 0.5186232299804687, 0.5188280029296874, 0.5191874389648438, 0.5189837036132813, 0.5192386474609375, 0.5191004028320313, 0.5192028198242188, 0.5189232788085938, 0.5189160766601563, 0.5194721069335938, 0.5189151000976563, 0.5193482055664063, 0.5185126342773437, 0.5188956298828125, 0.5184440307617187, 0.5189990234375, 0.5186549682617188, 0.5188690185546875, 0.5187522583007812, 0.5186150512695312, 0.5184461059570312, 0.518830078125, 0.5186386108398438, 0.5191874389648438, 0.5188556518554688, 0.518888427734375, 0.51888330078125, 0.5187235717773437, 0.5187593994140625, 0.5187850341796875, 0.518666259765625, 0.518687744140625, 0.5185423583984375, 0.5187799072265625, 1.0766878662109376, 0.5186375732421875, 0.51905126953125, 0.5188710327148438, 0.5187266845703125, 0.5190973510742187, 0.518908935546875, 0.519141357421875, 0.518550537109375, 0.51863037109375, 0.5190062255859375, 0.5185525512695313, 0.51875634765625, 0.5187799072265625, 0.5186754760742187, 0.5188382568359375, 0.5187758178710937, 0.5184686279296875, 0.5186815795898437, 0.5187430419921875, 0.5186959228515625, 0.5186918334960937, 0.518940673828125, 0.5187666015625, 0.5187389526367188, 0.5188382568359375, 0.5186969604492188, 0.519372802734375, 0.518697998046875, 0.5186570434570312, 0.518687744140625, 0.5187123413085938, 0.5190942993164063, 0.5186478271484375, 0.5185515747070313, 0.5185474853515625, 0.5187676391601562, 0.5185812377929687, 0.5186754760742187, 0.5185700073242188, 0.5187891235351563, 0.5189447631835937, 0.5187184448242188, 0.5186047973632812, 0.519151611328125, 0.5186170654296876, 0.519161865234375, 0.5193031616210938, 0.51903076171875, 0.5185638427734375, 0.518667236328125, 0.5188187866210937, 0.5187286987304688, 0.5185003662109375, 0.5187952880859374, 0.518740966796875, 0.5187061767578125, 0.51859765625, 0.5187737426757812, 0.518634521484375, 0.5188270263671875, 0.5187686157226562, 0.5187706909179688, 1.077518310546875, 0.519056396484375, 0.5192898559570313, 0.518782958984375, 0.5186785278320313, 0.5184204711914062, 0.518846435546875, 0.5187430419921875, 0.5183098754882812, 0.5186918334960937, 0.5189222412109376, 0.5187593994140625, 0.5184962768554687, 0.5186631469726563, 0.5185730590820312, 0.5183323974609375, 0.5187102661132813, 0.518709228515625, 0.5189539794921875, 0.5187809448242188, 0.5188690185546875, 0.51852392578125, 0.5184266357421875, 0.5183641357421875, 0.5185474853515625, 0.5188229370117188, 0.5187440795898437, 0.518898681640625, 0.5188075561523438, 0.51873486328125, 0.5186150512695312, 0.5191997680664062, 0.5190574340820312, 0.5186181030273438, 0.5190830078125, 0.5190287475585937, 0.5187225341796875, 0.5189335327148438, 0.5190482177734375, 0.5184522094726562, 0.5187962646484375, 0.51858740234375, 0.518666259765625, 0.5187286987304688, 0.518603759765625, 0.51892431640625, 0.51871435546875, 0.5185014038085938, 0.5187501831054687, 0.5184440307617187, 0.5187451171875, 0.5186990356445312, 0.5186201782226563, 0.5188607788085937, 0.518729736328125, 0.5189560546875, 0.51917822265625, 0.5189519653320313, 0.5190205688476562, 0.5188720703125, 0.51892431640625, 0.51957861328125, 0.5188966674804687, 1.076885498046875, 0.5183836059570313, 0.5186785278320313, 0.5183488159179688, 0.5187010498046875, 0.5182863159179687, 0.5183037719726562, 0.51867138671875, 0.518687744140625, 0.5185167236328125, 0.5187676391601562, 0.5192069091796875, 0.5190737915039062, 0.5186611328125, 0.5192294311523438, 0.51938818359375, 0.5191044921875, 0.5192960205078125, 0.5188782348632812, 0.519246826171875, 0.5190031127929687, 0.51922021484375, 0.5191762084960938, 0.5192765502929687, 0.519278564453125, 0.519098388671875, 0.5190123291015625, 0.5186641845703125, 0.518856689453125, 0.5190707397460937, 0.5187973022460938, 0.518856689453125, 0.5186119384765625, 0.5186283569335938, 0.5187225341796875, 0.5189908447265625, 0.518697998046875, 0.5184389038085937, 0.5185259399414063, 0.51919873046875, 0.5189703979492187, 0.519035888671875, 0.5190819702148437, 0.5187225341796875, 0.519246826171875, 0.5188905029296875, 0.518962158203125, 0.5187327880859375, 0.5190523071289063, 0.5186856689453125, 0.5186232299804687, 0.5190911865234376, 0.5190225830078125, 0.5187317504882812, 0.5193215942382813, 0.5191966552734375, 0.5187368774414063, 0.5185955810546875, 0.5188178100585937, 0.5188208618164063, 0.518950927734375, 0.5186027221679688, 0.5190328369140625, 1.076612060546875, 0.5185167236328125, 0.5186959228515625, 0.5188966674804687, 0.5188515625, 0.5189232788085938, 0.5192007446289062, 0.5189017333984375, 0.5191997680664062, 0.5190430908203125, 0.5188444213867187, 0.5187010498046875, 0.5188218994140625, 0.51884033203125, 0.5189693603515625, 0.5187215576171875, 0.5187696533203126, 0.5189519653320313, 0.5188106079101562, 0.5188607788085937, 0.5188280029296874, 0.5186395874023437, 0.5188167724609375, 0.519056396484375, 0.5189109497070312, 0.5193502807617187, 0.5190021362304688, 0.5187338256835937, 0.5190707397460937, 0.5186467895507813, 0.5187655639648437, 0.51856689453125, 0.519203857421875, 0.5186898193359375, 0.5186150512695312, 0.51852392578125, 0.5187666015625, 0.5183876953125, 0.5183733520507813, 0.5182986450195313, 0.518972412109375, 0.5184624633789062, 0.5188782348632812, 0.5185863647460938, 0.5192232666015625, 0.51877685546875, 0.519309326171875, 0.5186734008789062, 0.5190625, 0.5192662963867187, 0.5189734497070313, 0.5185115966796875, 0.5190062255859375, 0.5187492065429687, 0.51869287109375, 0.5187256469726562, 0.518729736328125, 0.5186365356445313, 0.5189970092773437, 0.5185853271484375, 0.5187051391601563, 0.5185106201171875, 0.5193687133789062]",tokens/s,1.898222871517761,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-14B,Qwen/Qwen-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.4b,EleutherAI/pythia-1.4b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -45609,20 +45567,24 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained - model_class = get_class_from_dynamic_module( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module - final_module = get_cached_module_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file - modules_needed = check_imports(resolved_module_file) - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports - raise ImportError( -ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-12b,stabilityai/stablelm-2-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2286.108672,9584.508928,0.0,8938.061824,8628.937728,s,10,10.131530883789061,1.0131530883789062,0.001088448228780468,1.0127930908203124,1.0144804138183594,1.0150706817626953,1.015542896118164,"[1.0156609497070312, 1.0116715698242187, 1.0127140502929688, 1.012624267578125, 1.0126713256835937, 1.0143492431640626, 1.0128721313476563, 1.0132860717773438, 1.013524658203125, 1.0121566162109374]",tokens/s,252.6765233570105,kWh,1.1963782442940607e-05,6.5549710930463335e-06,5.5387488754404804e-05,7.390624229039174e-05,tokens/kWh,3463848.1414618148,MB,2286.108672,9584.508928,0.0,8938.061824,8715.664896,s,10,592.3277656249999,59.232776562499986,0.006289011500180114,59.23276171875,59.24203125,59.24248828125,59.24285390625,"[59.23234765625, 59.22259375, 59.2419296875, 59.22881640625, 59.23756640625, 59.22535546875, 59.22958984375, 59.23317578125, 59.2429453125, 59.2334453125]",tokens/s,1.0636003182043137,kWh,0.0006992366234295897,0.00038324170626838165,0.0032439279284735946,0.004326406258171565,tokens/kWh,14561.739291359381,,s,629,600.5023488159183,0.9546937183082955,0.12033659124895162,0.9401558837890625,0.9410275512695312,0.9412470825195313,1.95283546875,"[0.94150146484375, 0.940000244140625, 0.9400443115234375, 0.9407887573242187, 0.9415792846679687, 0.9401016235351562, 0.9407989501953125, 0.939236328125, 0.939652099609375, 0.9404119262695313, 0.9412341918945313, 0.9400452880859375, 0.940031982421875, 0.9407703247070313, 0.9399039916992188, 0.9399715576171875, 0.9395128173828124, 0.9409924926757812, 0.9403135986328125, 0.939736083984375, 0.9405081787109375, 0.940558349609375, 0.9399757080078125, 0.9390223388671874, 0.9397933959960938, 0.9407989501953125, 0.9399931030273437, 0.9401292724609375, 0.9413304443359375, 0.9404334106445312, 0.9403258666992188, 0.9405870361328125, 0.9406074829101563, 0.9403986206054687, 0.9400125732421875, 0.941048828125, 0.9410816040039063, 0.9399193725585937, 0.94055322265625, 0.9405183715820312, 0.9404334106445312, 0.9397545166015625, 0.940400634765625, 0.9393602294921874, 0.94025830078125, 0.94036376953125, 0.9395015869140625, 0.9403494262695312, 0.9393715209960938, 0.9401753540039063, 0.939345947265625, 0.9394923706054688, 0.9394974975585938, 0.940368896484375, 0.9394483032226563, 0.939377685546875, 0.9410477905273438, 0.9396592407226563, 0.9396121826171875, 0.9394268188476562, 0.940126220703125, 0.939109375, 1.9525693359375, 0.9394636840820313, 0.9393213500976563, 0.9392977905273437, 0.9397432250976563, 0.940037109375, 0.9395179443359375, 0.9403463745117188, 0.9393008422851562, 0.93964697265625, 0.9392588500976562, 0.9400934448242187, 0.9392957153320313, 0.9392506713867188, 0.9399244995117187, 0.9402685546875, 0.9394237670898438, 0.9390971069335937, 0.940157958984375, 0.9403064575195312, 0.9402173461914063, 0.939841552734375, 0.9407047729492187, 0.939747314453125, 0.9393909912109375, 0.9412290649414062, 0.940248046875, 0.9398323364257812, 0.9403709716796875, 0.9403074340820312, 0.9406505126953125, 0.940516357421875, 0.9410795288085938, 0.9408665771484375, 0.94008935546875, 0.940015625, 0.940010498046875, 0.9404405517578125, 0.94000537109375, 0.9402777709960938, 0.9398855590820312, 0.9399234619140625, 0.9397626953125, 0.9402910766601562, 0.9401549072265625, 0.940037109375, 0.9408952026367188, 0.9404805297851563, 0.9399664916992188, 0.9401907348632812, 0.94055322265625, 0.9397831420898437, 0.93945751953125, 0.9397196655273438, 0.9400934448242187, 0.9397329711914062, 0.9398640747070313, 0.94013232421875, 0.9406156616210938, 0.9400360717773437, 0.9403074340820312, 0.9402255249023438, 0.9400115356445312, 1.95331689453125, 0.9401005859375, 0.93952099609375, 0.939863037109375, 0.9400064086914063, 0.9403811645507812, 0.9397329711914062, 0.9406719970703125, 0.94033203125, 0.9403596801757812, 0.9412177734375, 0.9406023559570312, 0.9398558959960938, 0.94081640625, 0.9405286254882812, 0.9401968383789062, 0.9398538208007813, 0.9395271606445312, 0.940263427734375, 0.9397442626953125, 0.9402941284179688, 0.941149169921875, 0.9406617431640625, 0.9412741088867187, 0.940669921875, 0.9410816040039063, 0.9408839721679687, 0.939631591796875, 0.9415341796875, 0.9398968505859375, 0.9399746704101563, 0.940179443359375, 0.9405819091796875, 0.9400064086914063, 0.9398374633789063, 0.9410344848632812, 0.9401630859375, 0.9402439575195313, 0.9399183349609375, 0.9410057983398438, 0.9402869873046875, 0.9402777709960938, 0.9403402099609375, 0.941686767578125, 0.9396182861328125, 0.9397001953125, 0.9402654418945312, 0.9400330200195313, 0.940537841796875, 0.9406842651367188, 0.9406279907226562, 0.9398609619140625, 0.9404866333007813, 0.9411369018554687, 0.9399429321289062, 0.939873291015625, 0.9398394775390625, 0.9408798828125, 0.9406709594726562, 0.94021630859375, 0.9408256225585937, 0.940242919921875, 0.9397821655273437, 1.95401318359375, 0.9401282348632812, 0.9397453002929688, 0.9401876220703125, 0.9404436645507812, 0.9402992553710937, 0.9395773315429687, 0.9403228149414062, 0.939809814453125, 0.939509765625, 0.9397462768554687, 0.9422510375976563, 0.9400678100585937, 0.9396019287109375, 0.9398917236328125, 0.9403330688476562, 0.9396807861328125, 0.9395588989257813, 0.9399459838867188, 0.9394462890625, 0.939831298828125, 0.9402726440429687, 0.9402921142578125, 0.9396920166015625, 0.939767822265625, 0.9400340576171875, 0.9404702758789063, 0.9402992553710937, 0.9400657958984375, 0.93994189453125, 0.9394892578125, 0.9398200073242188, 0.9408123168945313, 0.9402921142578125, 0.9403504638671875, 0.940864501953125, 0.9403279418945313, 0.9399326782226562, 0.940169189453125, 0.9409740600585937, 0.9400985717773438, 0.9403341064453125, 0.9408727416992188, 0.9405614013671875, 0.940031005859375, 0.9394452514648437, 0.9399480590820313, 0.9405870361328125, 0.9398425903320312, 0.9403135986328125, 0.9397453002929688, 0.939378662109375, 0.9397616577148438, 0.9410897827148438, 0.9408286743164063, 0.9397012329101563, 0.9395425415039063, 0.9402388305664062, 0.9399132080078125, 0.94078564453125, 0.9406279907226562, 0.9397565307617187, 0.9397637329101562, 1.9536650390625, 0.9407723388671875, 0.939578369140625, 0.9401507568359375, 0.940353515625, 0.9400514526367187, 0.9401712646484375, 0.9398651123046875, 0.9396582641601563, 0.9398251342773437, 0.9404794921875, 0.9411246337890625, 0.9405941772460937, 0.940052490234375, 0.9404395751953125, 0.941676513671875, 0.9395343627929688, 0.9395845336914063, 0.939747314453125, 0.9404139404296875, 0.9399725952148438, 0.9405081787109375, 0.940210205078125, 0.9395486450195313, 0.9399818115234375, 0.94059521484375, 0.9396868896484375, 0.9403258666992188, 0.9402019653320313, 0.93954150390625, 0.9396776733398438, 0.9398087768554687, 0.9410938720703125, 0.9401641235351562, 0.939953125, 0.9407017211914063, 0.940769287109375, 0.9399070434570312, 0.9406832885742188, 0.9408511962890626, 0.93992041015625, 0.93991015625, 0.9406443481445312, 0.9401129150390625, 0.9394769897460937, 0.9398220825195313, 0.940062744140625, 0.9406146850585938, 0.9397760009765626, 0.94078466796875, 0.9406842651367188, 0.9410416870117188, 0.9400278930664062, 0.9406760864257813, 0.9400023193359375, 0.9400360717773437, 0.9401005859375, 0.9414287109375, 0.9405501708984375, 0.940611572265625, 0.9412608032226563, 0.9403648071289062, 0.94048974609375, 1.9550003662109374, 0.9402306518554687, 0.9403934936523437, 0.9403607177734375, 0.9412402954101563, 0.9396428833007813, 0.9399511108398437, 0.939725830078125, 0.939884521484375, 0.9398927612304687, 0.940263427734375, 0.9413529663085938, 0.940885986328125, 0.9410529174804687, 0.9415485229492188, 0.9412464599609375, 0.940295166015625, 0.939989013671875, 0.9397749633789062, 0.9401620483398437, 0.9402521362304688, 0.940422119140625, 0.9397033081054688, 0.9398681640625, 0.94054296875, 0.9411123046875, 0.9401774291992188, 0.9401016235351562, 0.9397852172851563, 0.9397985229492187, 0.9396900024414062, 0.939810791015625, 0.93952001953125, 0.9393899536132813, 0.9396654052734374, 0.941065185546875, 0.9407026977539062, 0.9396029663085937, 0.9407150268554687, 0.9401466674804687, 0.9398435668945313, 0.9395322875976563, 0.9403463745117188, 0.9394933471679687, 0.9393858642578125, 0.939447265625, 0.9401026611328125, 0.9395661010742188, 0.939377685546875, 0.9397606201171875, 0.939526123046875, 0.9393858642578125, 0.9394186401367187, 0.9398968505859375, 0.9392496337890625, 0.9398272094726563, 0.9395732421875, 0.9405542602539062, 0.93991015625, 0.940548095703125, 0.9398589477539062, 0.9403648071289062, 0.939809814453125, 1.95293896484375, 0.93994189453125, 0.9393387451171875, 0.9408471069335937, 0.9404620971679688, 0.9404794921875, 0.9408706665039063, 0.9407283325195313, 0.9402695922851563, 0.940379150390625, 0.9420646362304688, 0.9404036865234375, 0.9405603637695312, 0.9400238037109375, 0.94124853515625, 0.9406914672851563, 0.9400872802734375, 0.9396541137695312, 0.9395056762695313, 0.9401641235351562, 0.94051123046875, 0.9398302612304688, 0.9397872924804688, 0.939341796875, 0.9398619995117188, 0.9404784545898438, 0.9394800415039063, 0.9401866455078125, 0.93954150390625, 0.9394053344726563, 0.940663818359375, 0.941427734375, 0.9398405151367187, 0.9396613159179688, 0.939568115234375, 0.94137548828125, 0.9404170532226562, 0.93991015625, 0.9405634765625, 0.9408040771484375, 0.9399254760742187, 0.9397933959960938, 0.9401558837890625, 0.9402664794921874, 0.9399244995117187, 0.9395875854492187, 0.9407119140625, 0.9401763916015625, 0.9404497680664062, 0.9396480712890625, 0.939274169921875, 0.9396900024414062, 0.9406156616210938, 0.9394974975585938, 0.9394503784179687, 0.9392230224609375, 0.939916259765625, 0.9409976196289063, 0.939694091796875, 0.9403258666992188, 0.9398446044921875, 0.9401170043945313, 0.9398978271484375, 1.9538472900390624, 0.9399326782226562, 0.9398046875, 0.9415096435546875, 0.9401118774414062, 0.9396039428710937, 0.9404282836914063, 0.9398599853515625, 0.9395968017578125, 0.9396162719726563, 0.9403279418945313, 0.9400186767578125, 0.9399378051757813, 0.939483154296875, 0.9413427124023438, 0.939953125, 0.9398405151367187, 0.9391646728515625, 0.9401661376953125, 0.9404569702148438, 0.9409935302734375, 0.9405778198242187, 0.9403176879882813, 0.9402091674804688, 0.9410509033203125, 0.9403566284179687, 0.9398660888671875, 0.9406289672851562, 0.9398743286132812, 0.9399254760742187, 0.9395353393554687, 0.9404968872070313, 0.9400115966796875, 0.93969091796875, 0.940168212890625, 0.9411409912109375, 0.940242919921875, 0.9399797973632813, 0.9398435668945313, 0.9398876342773438, 0.939953125, 0.94072216796875, 0.940315673828125, 0.9397380981445312, 0.9401937866210938, 0.9397545166015625, 0.9420257568359375, 0.9404149780273438, 0.94042626953125, 0.94061669921875, 0.9402767333984375, 0.9410713500976563, 0.9403862915039063, 0.9398855590820312, 0.9397760009765626, 0.940189697265625, 0.9404805297851563, 0.9394237670898438, 0.9399490356445312, 0.9412474975585937, 0.93998388671875, 0.939931640625, 0.9399439086914062, 1.9538431396484375, 0.940669921875, 0.939863037109375, 0.9412310791015625, 0.939705322265625, 0.9403146362304687, 0.9399193725585937, 0.9399849243164062, 0.940326904296875, 0.9404139404296875, 0.9400852661132812, 0.9402255249023438, 0.9408552856445312, 0.940031005859375, 0.9410283813476562, 0.940389404296875, 0.940705810546875, 0.9393633422851563, 0.9402235107421875, 0.9409392700195313, 0.941180908203125, 0.9399746704101563, 0.9405009765625, 0.9404282836914063, 0.940821533203125, 0.9403033447265625, 0.9397268676757813, 0.94030029296875, 0.9399244995117187, 0.9394667358398437, 0.9398067016601562, 0.941180908203125, 0.9402276000976563, 0.9401077880859375, 0.940368896484375, 0.9423933715820313, 0.940284912109375, 0.9403238525390625, 0.9398333740234375, 0.9402501220703126, 0.9403607177734375, 0.9407989501953125, 0.9403515014648437, 0.9402286376953125, 0.9402235107421875, 0.9409075317382812, 0.940410888671875, 0.9398958129882813, 0.9406812133789062, 0.940147705078125, 0.9399982299804688, 0.9407620849609375, 0.9411195068359375, 0.940062744140625, 0.9402501220703126, 0.9403064575195312, 0.9409515380859375, 0.939799560546875, 0.9402296142578125, 0.940310546875, 0.9400381469726562, 0.94015283203125, 0.9409638671875, 1.952026611328125, 0.9399254760742187, 0.9394933471679687, 0.9416345825195312, 0.9399859008789062, 0.9406945190429687, 0.9396664428710938, 0.940632080078125, 0.9401558837890625, 0.940590087890625, 0.94102734375, 0.940400634765625, 0.940221435546875, 0.9404784545898438, 0.940031982421875, 0.9396961059570312, 0.9399644165039063, 0.9391165161132813, 0.9401170043945313, 0.9396141967773437, 0.9402808227539062, 0.9396408081054688, 0.94097509765625, 0.9396275024414062, 0.9407098999023438, 0.939484130859375, 0.9403135986328125, 0.940037109375, 0.9396387939453125, 0.9410057983398438, 0.940732421875, 0.9403883666992188, 0.9400033569335937, 0.9398814697265625, 0.9403955078125, 0.9411707153320312, 0.940169189453125, 0.9412464599609375, 0.939968505859375, 0.9397186279296875, 0.9395138549804688, 0.9404170532226562, 0.94005859375, 0.940073974609375, 0.940353515625, 0.9408685913085938, 0.9408317260742187, 0.9399654541015625, 0.9402081298828125, 0.9396746215820313, 0.9398169555664062, 0.939715576171875, 0.9401446533203125, 0.9400780639648437, 0.9395189819335937, 0.9397626953125, 0.9406863403320312, 0.9393438720703124, 0.9411901245117188, 0.941717529296875, 0.9408173828125, 0.9400023193359375, 0.94002685546875]",tokens/s,1.0474563525692686,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-30b,huggyllama/llama-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,6397.865984,20902.838272,0.0,20256.391168,19273.711616,s,10,26.880439941406248,2.6880439941406253,0.0033477874655363365,2.6871883544921875,2.692009619140625,2.6933998291015624,2.6945119970703124,"[2.685803955078125, 2.6947900390625, 2.683811767578125, 2.686383544921875, 2.68633642578125, 2.68401416015625, 2.6879931640625, 2.68876318359375, 2.69170068359375, 2.690843017578125]",tokens/s,95.23653651429312,kWh,3.17124683658282e-05,1.7378374240543054e-05,0.0001501383978884052,0.00019922924049477648,tokens/kWh,1284951.9446253772,MB,6401.134592,20902.838272,0.0,20256.391168,19862.692352,s,10,1586.032109375,158.60321093750002,0.015321928299545614,158.5981796875,158.6242765625,158.62938828125,158.63347765625,"[158.6345, 158.613953125, 158.592734375, 158.623140625, 158.5865, 158.597484375, 158.605109375, 158.59528125, 158.598875, 158.58453125]",tokens/s,0.3972176832209664,kWh,0.0018724184694555073,0.0010262522225316024,0.008901508065645191,0.0118001787576323,tokens/kWh,5338.902172075308,,s,629,1607.7030268554693,2.555966656367995,0.3193652798169538,2.51726953125,2.51903720703125,2.519619970703125,5.2035773632812505,"[2.5194208984375, 2.518276123046875, 2.516651123046875, 2.517525390625, 2.51843896484375, 2.517624755859375, 2.52004150390625, 2.52022265625, 2.521489501953125, 2.5164267578125, 2.5175634765625, 2.517775390625, 2.519953369140625, 2.51852197265625, 2.5173544921875, 2.519920654296875, 2.52021044921875, 2.516950927734375, 2.5166611328125, 2.518200439453125, 2.52010693359375, 2.518486083984375, 2.519525390625, 2.516905029296875, 2.517927001953125, 2.5164677734375, 2.517693359375, 2.518721435546875, 2.518928466796875, 2.51907470703125, 2.519510986328125, 2.518275146484375, 2.517242919921875, 2.516676513671875, 2.5165732421875, 2.5177783203125, 2.517148681640625, 2.51657421875, 2.516912109375, 2.518000732421875, 2.517034912109375, 2.516802490234375, 2.51715185546875, 2.51765966796875, 2.517441650390625, 2.51902783203125, 2.518970458984375, 2.5190830078125, 2.518890380859375, 2.51803857421875, 2.518179931640625, 2.51873486328125, 2.517571533203125, 2.517244873046875, 2.516959228515625, 2.516928466796875, 2.5168681640625, 2.5169306640625, 2.517191650390625, 2.517224365234375, 2.517115966796875, 2.516737060546875, 5.213111328125, 2.516869140625, 2.517271484375, 2.516408203125, 2.51673486328125, 2.51637255859375, 2.5162373046875, 2.516429931640625, 2.5193134765625, 2.518941650390625, 2.519627685546875, 2.5193779296875, 2.51966064453125, 2.51765966796875, 2.51892333984375, 2.516537353515625, 2.517127197265625, 2.519396240234375, 2.5196083984375, 2.518447021484375, 2.51694091796875, 2.517104736328125, 2.516771728515625, 2.51951318359375, 2.519360595703125, 2.519175048828125, 2.5198193359375, 2.5188720703125, 2.516715576171875, 2.51652001953125, 2.516981689453125, 2.51901025390625, 2.517675048828125, 2.516708251953125, 2.51647998046875, 2.51678515625, 2.517172119140625, 2.516953125, 2.51710986328125, 2.517333984375, 2.5174814453125, 2.517621826171875, 2.5172724609375, 2.517373046875, 2.5174833984375, 2.517396484375, 2.51939111328125, 2.517060546875, 2.5173310546875, 2.517473388671875, 2.51749169921875, 2.517325927734375, 2.517126220703125, 2.517371826171875, 2.517205078125, 2.51726953125, 2.51808056640625, 2.517114990234375, 2.51685986328125, 2.516756591796875, 2.517073974609375, 2.51732275390625, 2.51730224609375, 5.20315478515625, 2.5170166015625, 2.517244873046875, 2.517020751953125, 2.517108642578125, 2.51638671875, 2.51642578125, 2.517214111328125, 2.516769775390625, 2.51730029296875, 2.51892529296875, 2.519654296875, 2.518119384765625, 2.5167421875, 2.51654150390625, 2.5173125, 2.51736669921875, 2.51793310546875, 2.5171240234375, 2.51818603515625, 2.51892431640625, 2.5187666015625, 2.51812353515625, 2.51782763671875, 2.5180478515625, 2.517296142578125, 2.516853759765625, 2.517425048828125, 2.5174833984375, 2.5169951171875, 2.516545654296875, 2.517794921875, 2.5171640625, 2.51698388671875, 2.51639501953125, 2.51702685546875, 2.516306884765625, 2.5166806640625, 2.51652001953125, 2.517170166015625, 2.516893798828125, 2.516665283203125, 2.516609130859375, 2.516989013671875, 2.51647998046875, 2.516822021484375, 2.51631201171875, 2.51747216796875, 2.517741455078125, 2.518084716796875, 2.517223388671875, 2.51799951171875, 2.51795654296875, 2.518109130859375, 2.51673388671875, 2.517454833984375, 2.51732177734375, 2.51715283203125, 2.516638671875, 2.517203857421875, 2.516884521484375, 2.51759912109375, 2.519858154296875, 5.20646044921875, 2.519667724609375, 2.520236083984375, 2.519354248046875, 2.519604248046875, 2.51765771484375, 2.518856689453125, 2.5197373046875, 2.51866015625, 2.51622802734375, 2.517433349609375, 2.517887939453125, 2.517296142578125, 2.519244873046875, 2.51947509765625, 2.51691015625, 2.517485595703125, 2.51801708984375, 2.51822998046875, 2.518202392578125, 2.518054931640625, 2.517960693359375, 2.518828125, 2.517103515625, 2.516676513671875, 2.51656494140625, 2.5168916015625, 2.516701171875, 2.51679541015625, 2.516830322265625, 2.517245849609375, 2.51702685546875, 2.517789794921875, 2.5177548828125, 2.517986328125, 2.519099365234375, 2.51782666015625, 2.517256103515625, 2.51816845703125, 2.5177353515625, 2.517129150390625, 2.517339111328125, 2.51709130859375, 2.517085205078125, 2.51757568359375, 2.517266357421875, 2.51751123046875, 2.518306884765625, 2.518222900390625, 2.51692236328125, 2.517740478515625, 2.517210205078125, 2.5171865234375, 2.51708935546875, 2.517200927734375, 2.51718359375, 2.51808349609375, 2.517579833984375, 2.517981201171875, 2.518381591796875, 2.517424072265625, 2.517716064453125, 2.517458984375, 5.20374169921875, 2.517011474609375, 2.51717333984375, 2.51589111328125, 2.516104248046875, 2.51622705078125, 2.51666748046875, 2.51635400390625, 2.516790283203125, 2.516591552734375, 2.517108642578125, 2.5161943359375, 2.516461669921875, 2.515986328125, 2.516514892578125, 2.51587890625, 2.516221923828125, 2.516361328125, 2.517339111328125, 2.51677490234375, 2.517726318359375, 2.519022705078125, 2.518340576171875, 2.516381591796875, 2.5166611328125, 2.5175654296875, 2.51858544921875, 2.518182861328125, 2.519140380859375, 2.516368408203125, 2.5173974609375, 2.516633544921875, 2.51689990234375, 2.516451416015625, 2.51803759765625, 2.519834716796875, 2.518279052734375, 2.516961181640625, 2.5182822265625, 2.51641748046875, 2.51694482421875, 2.5169111328125, 2.51719580078125, 2.5168271484375, 2.516947998046875, 2.5164697265625, 2.5166357421875, 2.51717724609375, 2.516738037109375, 2.5174794921875, 2.5177138671875, 2.51707080078125, 2.517907470703125, 2.51693359375, 2.518024169921875, 2.51669921875, 2.517652587890625, 2.51960009765625, 2.51852294921875, 2.5182841796875, 2.517738525390625, 2.518305908203125, 2.51839794921875, 5.20286328125, 2.518064208984375, 2.5179228515625, 2.51654052734375, 2.517392333984375, 2.517768310546875, 2.517991455078125, 2.516991943359375, 2.51664697265625, 2.516994140625, 2.516967529296875, 2.51681689453125, 2.516999267578125, 2.517242919921875, 2.51738427734375, 2.5165751953125, 2.516220947265625, 2.516633544921875, 2.516949951171875, 2.517053466796875, 2.5165966796875, 2.51759716796875, 2.516681640625, 2.516168701171875, 2.5164677734375, 2.51702978515625, 2.5176904296875, 2.5161298828125, 2.51717333984375, 2.518159423828125, 2.51761962890625, 2.5179013671875, 2.517589111328125, 2.5173984375, 2.516906005859375, 2.516503662109375, 2.516475830078125, 2.51711279296875, 2.519480224609375, 2.5183896484375, 2.5181982421875, 2.518749267578125, 2.518531005859375, 2.518134765625, 2.51865087890625, 2.518466552734375, 2.5166396484375, 2.516759521484375, 2.516642822265625, 2.518162353515625, 2.517697509765625, 2.516461669921875, 2.516862060546875, 2.5173310546875, 2.517142578125, 2.516802490234375, 2.51664599609375, 2.51910546875, 2.520224853515625, 2.518654052734375, 2.517782470703125, 2.517315673828125, 2.517593017578125, 5.2058564453125, 2.517256103515625, 2.516883544921875, 2.516770751953125, 2.517991455078125, 2.51818505859375, 2.517248046875, 2.517381103515625, 2.517410888671875, 2.518013916015625, 2.51770263671875, 2.517663818359375, 2.51745068359375, 2.5174189453125, 2.5167841796875, 2.51723779296875, 2.5164462890625, 2.517445556640625, 2.516367431640625, 2.5164462890625, 2.51627734375, 2.51877685546875, 2.517401611328125, 2.51765771484375, 2.516915283203125, 2.517138427734375, 2.516568115234375, 2.516221923828125, 2.516367431640625, 2.517359619140625, 2.519510986328125, 2.51938720703125, 2.518856689453125, 2.519548828125, 2.51677392578125, 2.5177978515625, 2.517477294921875, 2.518878173828125, 2.5189775390625, 2.518950927734375, 2.518413330078125, 2.5166806640625, 2.516497314453125, 2.517235595703125, 2.518279052734375, 2.5198427734375, 2.51673486328125, 2.516912109375, 2.516906005859375, 2.51755517578125, 2.517419921875, 2.517097412109375, 2.516971435546875, 2.51842138671875, 2.517538818359375, 2.5178203125, 2.5180068359375, 2.517959716796875, 2.517367919921875, 2.517199951171875, 2.5175673828125, 2.517475341796875, 2.51647998046875, 5.206263671875, 2.51768212890625, 2.518013916015625, 2.51671240234375, 2.516947021484375, 2.51635302734375, 2.5160029296875, 2.516082763671875, 2.5166357421875, 2.519185302734375, 2.520660888671875, 2.520238037109375, 2.518698974609375, 2.5163837890625, 2.516863037109375, 2.51846142578125, 2.518802490234375, 2.518381591796875, 2.516673583984375, 2.516651123046875, 2.517413818359375, 2.51720703125, 2.516526123046875, 2.516347900390625, 2.516926513671875, 2.51696630859375, 2.516371337890625, 2.51662548828125, 2.517037109375, 2.518067138671875, 2.51704833984375, 2.517189697265625, 2.516686767578125, 2.516638671875, 2.516578369140625, 2.51708935546875, 2.517098388671875, 2.5169755859375, 2.5169140625, 2.51700830078125, 2.517178466796875, 2.51765771484375, 2.517274658203125, 2.516906982421875, 2.51740576171875, 2.51774462890625, 2.51700830078125, 2.517297119140625, 2.51739453125, 2.518012939453125, 2.516905029296875, 2.51756640625, 2.51799853515625, 2.51736669921875, 2.517075927734375, 2.51706982421875, 2.517170166015625, 2.51795556640625, 2.516641845703125, 2.5179892578125, 2.519339111328125, 2.519236572265625, 2.517425048828125, 5.20979345703125, 2.516677734375, 2.51662939453125, 2.516441162109375, 2.51880029296875, 2.516022216796875, 2.51607763671875, 2.516926513671875, 2.5178603515625, 2.516306884765625, 2.5163828125, 2.51637353515625, 2.517161865234375, 2.516613037109375, 2.516834228515625, 2.51662548828125, 2.517593994140625, 2.515980224609375, 2.5162177734375, 2.516642822265625, 2.517887939453125, 2.51702587890625, 2.517031005859375, 2.517222412109375, 2.517981201171875, 2.517895263671875, 2.51740576171875, 2.517854248046875, 2.5180498046875, 2.51757373046875, 2.518212646484375, 2.517984375, 2.518205322265625, 2.51793408203125, 2.51681689453125, 2.5167216796875, 2.517544921875, 2.516486083984375, 2.5170185546875, 2.517210205078125, 2.517508056640625, 2.51639697265625, 2.516465576171875, 2.517015625, 2.5180283203125, 2.51659375, 2.516681640625, 2.51827099609375, 2.518345703125, 2.5169111328125, 2.51719580078125, 2.51778759765625, 2.520734619140625, 2.519320556640625, 2.5171875, 2.517358642578125, 2.51997900390625, 2.518500244140625, 2.516546630859375, 2.517432373046875, 2.5194833984375, 2.519772216796875, 2.519079833984375, 5.2087294921875, 2.517329833984375, 2.5174794921875, 2.516798583984375, 2.51810302734375, 2.5172890625, 2.51738818359375, 2.5166357421875, 2.51726953125, 2.516717529296875, 2.5166181640625, 2.517689453125, 2.51707177734375, 2.516453369140625, 2.516779052734375, 2.516828125, 2.516937744140625, 2.517130126953125, 2.516748291015625, 2.516958251953125, 2.517098388671875, 2.517117919921875, 2.516738037109375, 2.51713330078125, 2.516843505859375, 2.516346923828125, 2.516989013671875, 2.517284912109375, 2.516630615234375, 2.516404296875, 2.516778076171875, 2.51865185546875, 2.518513671875, 2.51744677734375, 2.517791748046875, 2.51757470703125, 2.516971435546875, 2.51658740234375, 2.51664794921875, 2.5177119140625, 2.517885986328125, 2.51691015625, 2.51734326171875, 2.516971435546875, 2.517379150390625, 2.5163837890625, 2.516974609375, 2.516904052734375, 2.517392333984375, 2.51668798828125, 2.517559326171875, 2.51702587890625, 2.517056396484375, 2.5166611328125, 2.517138427734375, 2.517266357421875, 2.517547119140625, 2.51685693359375, 2.517096435546875, 2.5175234375, 2.51769140625, 2.51662744140625, 2.51719580078125]",tokens/s,0.3912414105671436,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-2-1_6b,stabilityai/stablelm-2-1_6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -45642,17 +45604,55 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-rw-1b,tiiuae/falcon-rw-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code + answer = input( +EOFError: EOF when reading a line + +During handling of the above exception, another exception occurred: + +Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights + self.create_no_weights_model() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model + meta_model = self.automodel_class.from_config(self.pretrained_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config + trust_remote_code = resolve_trust_remote_code( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code raise ValueError( -ValueError: GPTNeoForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` +ValueError: The repository for tiiuae/falcon-rw-1b contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/tiiuae/falcon-rw-1b. +Please pass the argument `trust_remote_code=True` to allow custom code to be run. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-8B,meta-llama/Meta-Llama-3-8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1618.886656,7600.603136,0.0,6954.156032,6314.17344,s,10,6.225003845214843,0.6225003845214843,0.0013149278084200315,0.6224861450195311,0.623799609375,0.6241176086425781,0.6243720080566406,"[0.6244356079101563, 0.620072998046875, 0.6223452758789062, 0.620931640625, 0.6226270141601562, 0.6217324829101563, 0.6218421630859375, 0.6236920776367187, 0.6237289428710937, 0.6235956420898437]",tokens/s,411.2447258916749,kWh,7.3330029845237736e-06,4.018192916897961e-06,3.395321343706048e-05,4.530440933848221e-05,tokens/kWh,5650664.112787582,MB,1618.886656,7600.603136,0.0,6954.156032,6464.046592,s,10,368.56716015625,36.856716015625,0.026041797027344372,36.850578125,36.898916796875,36.9004232421875,36.9016283984375,"[36.86497265625, 36.8430390625, 36.9019296875, 36.8581171875, 36.89858203125, 36.87110546875, 36.828984375, 36.82765625, 36.830046875, 36.8427265625]",tokens/s,1.7093221211920195,kWh,0.0004354530184467634,0.00023866611181760483,0.001976968700854742,0.00265108783111911,tokens/kWh,23763.829798655013,,s,629,373.5824957885741,0.5939308359118828,0.07397669449852429,0.58480126953125,0.5863296997070312,0.586693212890625,1.20664294921875,"[0.5845360717773438, 0.585296875, 0.5849774169921875, 0.5846087646484375, 0.5850286254882813, 0.584748046875, 0.584322021484375, 0.5847828369140625, 0.584279052734375, 0.58402099609375, 0.584068115234375, 0.5846630249023438, 0.584384521484375, 0.5846179809570312, 0.584816650390625, 0.584005615234375, 0.58421142578125, 0.5841326293945313, 0.584958984375, 0.5861488647460937, 0.584427490234375, 0.5843035888671875, 0.5846282348632813, 0.5846927490234375, 0.5846661376953125, 0.5845155639648437, 0.5843814697265625, 0.5843046264648437, 0.5848248291015625, 0.5849682006835938, 0.5866096801757813, 0.5847296142578124, 0.5858385620117188, 0.5855538940429688, 0.58547607421875, 0.5869332275390625, 0.5866168212890625, 0.584468505859375, 0.5869219970703125, 0.5864007568359375, 0.5853429565429688, 0.5859860229492188, 0.5848975219726562, 0.5843538208007812, 0.584753173828125, 0.5861519165039063, 0.585596923828125, 0.5861099243164063, 0.5845759887695312, 0.5846599731445312, 0.5848914184570313, 0.584426513671875, 0.5851033325195313, 0.5860843505859376, 0.5848597412109375, 0.5849896240234375, 0.5867396850585938, 0.586756103515625, 0.5865123901367187, 0.586208251953125, 0.5867110595703126, 0.585744384765625, 1.206224853515625, 0.5858980102539062, 0.5855364990234375, 0.5844613037109375, 0.584605712890625, 0.5844961547851563, 0.5850460205078125, 0.58532861328125, 0.5840045776367188, 0.5837639770507812, 0.5838192749023438, 0.5844100952148438, 0.585660400390625, 0.5845892944335938, 0.5847992553710938, 0.5843865356445312, 0.585439208984375, 0.5858754272460938, 0.5853839111328125, 0.5851627807617188, 0.5849927978515626, 0.5848330078125, 0.58598193359375, 0.58480126953125, 0.5861355590820313, 0.5848627319335937, 0.5850623779296875, 0.5845616455078125, 0.584658935546875, 0.5841868896484375, 0.5848627319335937, 0.5841438598632812, 0.584394775390625, 0.5841991577148438, 0.5862697143554687, 0.5853613891601562, 0.584890380859375, 0.584838134765625, 0.5842606201171875, 0.5844306030273437, 0.5846517944335937, 0.5859328002929688, 0.5848330078125, 0.5846046752929688, 0.58459033203125, 0.5843906860351562, 0.5847449340820312, 0.5849129028320312, 0.58431591796875, 0.5842001953125, 0.58471728515625, 0.5849159545898438, 0.5853143310546876, 0.584321044921875, 0.5845770263671874, 0.58439990234375, 0.584537109375, 0.5842237548828125, 0.5845657348632812, 0.5844357299804688, 0.5841551513671875, 0.5848032836914062, 0.584511474609375, 1.20827490234375, 0.5846036376953125, 0.5843558349609375, 0.5847777099609375, 0.585406494140625, 0.5854955444335938, 0.5848872680664062, 0.58439990234375, 0.5842575073242188, 0.5842974853515625, 0.5841448974609375, 0.5848606567382812, 0.5855733642578125, 0.5853153076171875, 0.5855313720703125, 0.5857454223632812, 0.58644482421875, 0.586587158203125, 0.5863075561523438, 0.5864365844726562, 0.586102783203125, 0.5866045532226563, 0.5849364624023438, 0.587236328125, 0.586629150390625, 0.5864550170898437, 0.5869383544921875, 0.5851351318359375, 0.5868165283203125, 0.5862113037109375, 0.586013671875, 0.5854505004882813, 0.5856593627929687, 0.5856215209960938, 0.5870980834960937, 0.5859666137695313, 0.5857300415039063, 0.585511962890625, 0.5861007080078126, 0.586576904296875, 0.5868328857421875, 0.5858846435546875, 0.5864171752929688, 0.585228271484375, 0.58509521484375, 0.5863771362304687, 0.5851309814453125, 0.5850357666015625, 0.5855375366210938, 0.5851135864257813, 0.585407470703125, 0.5852764282226562, 0.5863362426757812, 0.5863567504882813, 0.5862123413085938, 0.5860802612304687, 0.5851658325195312, 0.5870366821289063, 0.5865308227539062, 0.5864335327148438, 0.5844910278320312, 0.58482275390625, 0.5869608764648437, 1.205981201171875, 0.58442138671875, 0.5845964965820313, 0.58412646484375, 0.5846712036132813, 0.584859619140625, 0.584500244140625, 0.5844193115234375, 0.5846005859375, 0.584226806640625, 0.5847767333984375, 0.5847193603515625, 0.5840773315429687, 0.5841602783203125, 0.5838458862304687, 0.5849825439453125, 0.5842872314453125, 0.5852507934570312, 0.58406298828125, 0.5844735717773437, 0.5843538208007812, 0.5846784057617187, 0.5847019653320312, 0.5851156616210937, 0.5848043823242187, 0.5851064453125, 0.5846159057617187, 0.5852262573242187, 0.5848002319335938, 0.5843343505859375, 0.5843394775390625, 0.5842994995117188, 0.584975341796875, 0.5844992065429687, 0.58461083984375, 0.5840097045898438, 0.5850368041992188, 0.5848576049804688, 0.5844039916992188, 0.5848340454101563, 0.5848616943359375, 0.584585205078125, 0.585101318359375, 0.5855078125, 0.5868196411132812, 0.5852261962890625, 0.5863843994140625, 0.586692626953125, 0.5863259887695312, 0.5871114501953125, 0.5859533081054688, 0.5858959350585937, 0.585849853515625, 0.5871841430664062, 0.5864273681640625, 0.5860311279296875, 0.586377197265625, 0.5844725952148437, 0.5856563720703125, 0.5858579711914063, 0.5854105834960938, 0.5857003784179687, 0.5850337524414062, 1.2078602294921874, 0.5852139282226563, 0.585723876953125, 0.586250244140625, 0.586271728515625, 0.5863413696289063, 0.586808349609375, 0.5861898193359375, 0.5845196533203125, 0.5865604858398438, 0.5842206420898437, 0.58428515625, 0.5850715942382813, 0.5856091918945312, 0.5868994750976563, 0.5851893920898438, 0.585296875, 0.5864417114257813, 0.5843292236328125, 0.5858539428710937, 0.5862738037109375, 0.5860853881835938, 0.5861775512695313, 0.5855631103515625, 0.5856204833984375, 0.5868216552734375, 0.5872056274414063, 0.584875, 0.5847664794921875, 0.5854320678710937, 0.5869844360351563, 0.5866485595703125, 0.5866680297851562, 0.5851105346679687, 0.5844152221679687, 0.5853849487304688, 0.5857136840820313, 0.5857628173828126, 0.5850736694335937, 0.5865482177734375, 0.5847275390625, 0.5847992553710938, 0.5843517456054688, 0.586081298828125, 0.5863280639648437, 0.5844951171875, 0.5858427124023438, 0.5852047119140625, 0.585734130859375, 0.586134521484375, 0.5850726318359375, 0.585660400390625, 0.584953857421875, 0.5860597534179688, 0.586693603515625, 0.5868861694335937, 0.5861458129882813, 0.5863157958984375, 0.5857095947265625, 0.5846128540039063, 0.5858980102539062, 0.5863372802734375, 0.5851473999023438, 1.208574951171875, 0.5858948974609375, 0.5860034790039063, 0.5858488159179688, 0.5846507568359375, 0.5853051147460937, 0.5856901245117188, 0.585691162109375, 0.584543212890625, 0.5852897338867188, 0.5849733276367187, 0.5857167358398437, 0.5865441284179688, 0.585660400390625, 0.5851954956054688, 0.586119140625, 0.58567578125, 0.5863833618164063, 0.5861325073242187, 0.5857044677734375, 0.585565185546875, 0.5863946533203125, 0.585654296875, 0.5863167724609375, 0.5854157104492187, 0.5853399047851563, 0.5847070922851563, 0.5861939086914062, 0.58540234375, 0.5899376831054688, 0.5855396118164062, 0.5845524291992188, 0.5847060546875, 0.584268798828125, 0.5851054077148438, 0.5849722900390625, 0.5850357666015625, 0.5842964477539062, 0.5849876708984375, 0.5849682006835938, 0.5848822021484374, 0.585654296875, 0.584900634765625, 0.5849497680664062, 0.5853214721679687, 0.5848350830078125, 0.5849169921875, 0.5852866821289062, 0.58450537109375, 0.58450537109375, 0.5844418334960938, 0.5846466674804688, 0.584453125, 0.5847265014648437, 0.5847725830078125, 0.5843486938476562, 0.5844705200195313, 0.5843916625976563, 0.5847930908203125, 0.5845043334960938, 0.5840936889648437, 0.5843517456054688, 0.58418994140625, 1.2068055419921875, 0.5848176879882813, 0.5846128540039063, 0.5843087158203125, 0.5846333618164062, 0.5844971313476562, 0.5846210327148438, 0.58439990234375, 0.5845780639648438, 0.585080810546875, 0.5844469604492187, 0.58540234375, 0.5848923950195313, 0.5850890502929688, 0.5851924438476562, 0.5849088134765625, 0.5848033447265625, 0.5851453247070313, 0.5851412353515625, 0.5849180297851563, 0.5844786987304688, 0.5851146240234375, 0.5842401123046875, 0.5852006225585937, 0.5848944702148438, 0.5846077270507812, 0.5847623901367187, 0.5846937866210937, 0.5855672607421875, 0.5844490356445312, 0.584658935546875, 0.584933349609375, 0.5843896484375, 0.5846292724609375, 0.5843240966796875, 0.5845176391601562, 0.5844623413085938, 0.5843394775390625, 0.584595458984375, 0.58416845703125, 0.5841622924804688, 0.5841520385742187, 0.5843251342773438, 0.58414697265625, 0.5844735717773437, 0.5843404541015625, 0.5842247924804688, 0.5839093627929688, 0.5843087158203125, 0.5839298706054687, 0.5844920043945312, 0.5843517456054688, 0.5847521362304687, 0.5843599243164063, 0.5843937377929688, 0.584721435546875, 0.58444287109375, 0.5844132080078125, 0.5843599243164063, 0.58385205078125, 0.5841694946289062, 0.5840465698242188, 0.5851791381835938, 1.2095078125, 0.5847941284179687, 0.5849180297851563, 0.5843486938476562, 0.5844295654296875, 0.5849845581054688, 0.5841305541992188, 0.5846712036132813, 0.58494873046875, 0.584680419921875, 0.585617431640625, 0.5844520874023438, 0.5843486938476562, 0.5840803833007813, 0.5843619995117187, 0.5847122192382812, 0.5845555419921875, 0.5846507568359375, 0.5844510498046875, 0.584573974609375, 0.5840926513671875, 0.5843978271484375, 0.584416259765625, 0.584521728515625, 0.5843097534179688, 0.5844971313476562, 0.5846302490234375, 0.5850009765625, 0.5847193603515625, 0.58450537109375, 0.5842810668945313, 0.5842012329101562, 0.5845913696289062, 0.5843363647460937, 0.5843660888671875, 0.584268798828125, 0.5849375, 0.5842759399414063, 0.5846517944335937, 0.5850183715820313, 0.58439990234375, 0.5842298583984376, 0.5847930908203125, 0.5849313354492187, 0.5852579956054688, 0.58459033203125, 0.5851351318359375, 0.5841787109375, 0.5843189697265625, 0.5841643676757813, 0.5844838256835938, 0.5843446044921875, 0.5842411499023438, 0.5844346923828125, 0.584469482421875, 0.5841571655273438, 0.5850153198242187, 0.5845196533203125, 0.5843230590820313, 0.5843446044921875, 0.5848402099609376, 0.584669189453125, 0.584326171875, 1.2087510986328125, 0.5850153198242187, 0.5850787963867188, 0.5847817993164063, 0.5849047241210937, 0.5845442504882813, 0.5847285766601562, 0.5845186767578125, 0.5842227172851563, 0.5838796997070312, 0.5849476928710937, 0.584469482421875, 0.584501220703125, 0.5847080688476562, 0.5847900390625, 0.5847060546875, 0.5841131591796875, 0.5844295654296875, 0.5843087158203125, 0.5849825439453125, 0.584447998046875, 0.5852078247070313, 0.5841234130859375, 0.5847500610351563, 0.5847091064453125, 0.584690673828125, 0.58425244140625, 0.5844613037109375, 0.584374267578125, 0.5843394775390625, 0.5849129028320312, 0.584479736328125, 0.5842227172851563, 0.5842257690429687, 0.5848576049804688, 0.5845330200195312, 0.5844653930664062, 0.58503271484375, 0.584975341796875, 0.5848627319335937, 0.5849794311523437, 0.5842933959960938, 0.58421044921875, 0.5843302612304687, 0.584958984375, 0.5844111328125, 0.58435888671875, 0.5848289184570312, 0.584627197265625, 0.5843753051757813, 0.5846619873046875, 0.584248291015625, 0.5846046752929688, 0.5841663818359375, 0.5857310791015625, 0.58428515625, 0.5845514526367187, 0.584437744140625, 0.5845524291992188, 0.5843087158203125, 0.584700927734375, 0.5854146728515625, 0.5844777221679688, 1.2091043701171875, 0.5852241821289063, 0.5847367553710937, 0.5846507568359375, 0.5843937377929688, 0.5844100952148438, 0.584079345703125, 0.5851975708007813, 0.5844152221679687, 0.5847306518554688, 0.5847654418945313, 0.5844561767578125, 0.584437744140625, 0.5841787109375, 0.5849343872070313, 0.5845084228515625, 0.5842759399414063, 0.58461181640625, 0.5846661376953125, 0.5853173828125, 0.5845933837890624, 0.5847725830078125, 0.5848923950195313, 0.5846435546875, 0.5854658813476562, 0.5842360229492187, 0.5851566162109375, 0.5853972778320312, 0.5851463623046875, 0.5845339965820312, 0.5844100952148438, 0.5846067504882813, 0.584648681640625, 0.5843169555664063, 0.5846702270507812, 0.5859276733398437, 0.5848790893554687, 0.5843026123046875, 0.584543212890625, 0.5850736694335937, 0.5842780151367187, 0.5850654907226562, 0.5847388305664063, 0.5847439575195312, 0.5851463623046875, 0.5845985107421875, 0.5845514526367187, 0.584332275390625, 0.58463232421875, 0.5850685424804688, 0.5847633666992188, 0.5853829345703125, 0.5849159545898438, 0.585486328125, 0.5849415893554688, 0.584775634765625, 0.5854443359375, 0.5850316772460937, 0.5853870239257812, 0.5852672119140625, 0.5847562255859375, 0.5845729370117188, 0.5851094970703125]",tokens/s,1.6836977296601632,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,x,x,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-2b,google/gemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -45664,21 +45664,11 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/x/resolve/main/config.json +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/gemma-2b/resolve/main/config.json The above exception was the direct cause of the following exception: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn @@ -45689,13 +45679,28 @@ Traceback (most recent call last): response = _request_wrapper( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669492bf-47ca378751a51202361d0c4e;efa62947-c698-40da-8752-a7596e8054bd) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status + raise HfHubHTTPError(message, response=response) from e +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66948106-7eae8abf35688f2e537398ea;ddb9b4a1-0682-4438-b0ca-b68ec49fe82a) -Repository Not Found for url: https://huggingface.co/x/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. +403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. +Cannot access content at: https://huggingface.co/google/gemma-2b/resolve/main/config.json. +If you are trying to create or update content,make sure you have a token with the `write` role. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error + raise LocalEntryNotFoundError( +huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. The above exception was the direct cause of the following exception: @@ -45716,13 +45721,81 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file raise EnvironmentError( -OSError: x is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/gemma-2b is not the path to a directory containing a file named config.json. +Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-7b,tiiuae/falcon-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code + answer = input( +EOFError: EOF when reading a line + +During handling of the above exception, another exception occurred: + +Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights + self.create_no_weights_model() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model + meta_model = self.automodel_class.from_config(self.pretrained_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config + trust_remote_code = resolve_trust_remote_code( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code + raise ValueError( +ValueError: The repository for tiiuae/falcon-7b contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/tiiuae/falcon-7b. +Please pass the argument `trust_remote_code=True` to allow custom code to be run. + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-12b,EleutherAI/pythia-12b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,i,i,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-180B,tiiuae/falcon-180B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -45734,21 +45807,11 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/i/resolve/main/config.json +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json The above exception was the direct cause of the following exception: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn @@ -45759,13 +45822,28 @@ Traceback (most recent call last): response = _request_wrapper( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949012-71fdb0513e56e188783c67f0;b428a105-cecc-4e0c-8b16-5d7a038347de) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status + raise HfHubHTTPError(message, response=response) from e +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-6694991a-41428bd0086501fc7eb2e428;368fb4cb-1f2b-4e77-a5bf-224e96afc204) -Repository Not Found for url: https://huggingface.co/i/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. +403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. +Cannot access content at: https://huggingface.co/tiiuae/falcon-180B/resolve/main/config.json. +If you are trying to create or update content,make sure you have a token with the `write` role. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error + raise LocalEntryNotFoundError( +huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. The above exception was the direct cause of the following exception: @@ -45786,45 +45864,13 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file raise EnvironmentError( -OSError: i is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-72B,Qwen/Qwen-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained - model_class = get_class_from_dynamic_module( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module - final_module = get_cached_module_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file - modules_needed = check_imports(resolved_module_file) - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports - raise ImportError( -ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like tiiuae/falcon-180B is not the path to a directory containing a file named config.json. +Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.4b,EleutherAI/pythia-1.4b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.42.3,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,1610.30144,2204.63104,0.0,1558.183936,1460.94592,s,10,1.21095556640625,0.12109555664062499,0.0010641547634299327,0.12088590621948242,0.12162080078125001,0.1228196014404297,0.12377864196777344,"[0.12401840209960938, 0.12120333099365234, 0.120457763671875, 0.12045849609375, 0.12041088104248047, 0.12001967620849609, 0.12061344146728516, 0.12115837097167968, 0.12126080322265625, 0.12135440063476563]",tokens/s,2114.032976120921,kWh,1.4179196839452421e-06,7.768791417479628e-07,6.063890433118708e-06,8.258689258811912e-06,tokens/kWh,30997654.951946687,MB,1610.30144,2204.63104,0.0,1558.183936,1532.626432,s,10,69.89488818359375,6.989488818359375,0.004243103217668666,6.988570068359375,6.994356689453125,6.996513305664062,6.998238598632812,"[6.9874970703125, 6.99032666015625, 6.998669921875, 6.98964306640625, 6.98713720703125, 6.99221142578125, 6.99387744140625, 6.98657861328125, 6.9846640625, 6.98428271484375]",tokens/s,9.01353470006521,kWh,8.264319939233324e-05,4.5294450197869364e-05,0.00034850786544628274,0.0004764455150364854,tokens/kWh,132229.18048703967,,s,629,70.86934743499755,0.11266986873608516,0.014351668547378101,0.11087564849853515,0.11130736846923828,0.11157073669433594,0.2314320635986328,"[0.11316531372070313, 0.11251097869873047, 0.11209014129638672, 0.1110199966430664, 0.11069747161865234, 0.11074562835693359, 0.11080188751220703, 0.11064524841308594, 0.11066162872314453, 0.11064832305908204, 0.11070259094238281, 0.11060224151611328, 0.11069235229492187, 0.11098521423339844, 0.11078963470458984, 0.11066470336914062, 0.11059200286865234, 0.1106851806640625, 0.11073945617675782, 0.11071590423583984, 0.11070976257324219, 0.11080191802978516, 0.11061965179443359, 0.11073126220703125, 0.1108305892944336, 0.11098111724853515, 0.11077222442626954, 0.11084595489501953, 0.1107240982055664, 0.11080294036865235, 0.11078144073486328, 0.1107988510131836, 0.11058589172363281, 0.1108244171142578, 0.11086029052734375, 0.11067801666259766, 0.11069136047363282, 0.11075682830810547, 0.11072306823730468, 0.11083468627929688, 0.11062067413330078, 0.1107927017211914, 0.11077324676513672, 0.1107435531616211, 0.11105484771728516, 0.11073535919189453, 0.11071078491210938, 0.11087257385253907, 0.1108848648071289, 0.11094322967529296, 0.11104768371582031, 0.11100262451171874, 0.11098623657226563, 0.11090943908691406, 0.11087564849853515, 0.110814208984375, 0.11086438751220704, 0.11091763305664062, 0.11087155151367188, 0.11090636444091796, 0.11095859527587891, 0.11091661071777344, 0.232015869140625, 0.1105264663696289, 0.11075379180908203, 0.11073433685302735, 0.11063603210449219, 0.11060736083984375, 0.1107957763671875, 0.11059814453125, 0.1106513900756836, 0.1106165771484375, 0.11049267578125, 0.11155967712402344, 0.11085414123535156, 0.11077120208740235, 0.11081728363037109, 0.11089510345458985, 0.11144294738769531, 0.11074559783935548, 0.11073126220703125, 0.11089100646972656, 0.11055308532714844, 0.11082546997070312, 0.11138662719726562, 0.11091353607177734, 0.11087462615966796, 0.11142348480224609, 0.11084697723388671, 0.11085517120361328, 0.11074253082275391, 0.11189965057373047, 0.11119615936279297, 0.11109990692138672, 0.11119411468505859, 0.11075379180908203, 0.11090431976318359, 0.11084697723388671, 0.1111357421875, 0.11090739440917968, 0.11068109130859374, 0.11095552062988281, 0.11090841674804687, 0.11090636444091796, 0.11058073425292969, 0.11056639862060547, 0.11075788879394531, 0.1106534423828125, 0.11183309173583984, 0.11085107421875, 0.11081318664550781, 0.11086335754394532, 0.11153305816650391, 0.11171635437011719, 0.11179724884033203, 0.11118284606933594, 0.11113676452636718, 0.11101900482177735, 0.11095142364501953, 0.1110282211303711, 0.11115731048583985, 0.11110700988769531, 0.11107020568847656, 0.11094425964355469, 0.11104051208496094, 0.23170252990722656, 0.11086438751220704, 0.11075379180908203, 0.11077324676513672, 0.11128524780273437, 0.11143679809570313, 0.11095244598388672, 0.11065650939941406, 0.11109990692138672, 0.1110149154663086, 0.1110282211303711, 0.11082240295410156, 0.11086847686767579, 0.11093196868896485, 0.11128832244873046, 0.11095040130615234, 0.11104972839355469, 0.11132723236083984, 0.11132621002197265, 0.11095244598388672, 0.11086233520507813, 0.11052748870849609, 0.11109990692138672, 0.11152793884277344, 0.11081523132324218, 0.11071488189697265, 0.11085209655761719, 0.1112074203491211, 0.11076710510253907, 0.11094220733642578, 0.11125657653808593, 0.11104153442382812, 0.11101593780517578, 0.1107589111328125, 0.1108828125, 0.11091865539550781, 0.11094118499755859, 0.11155353546142578, 0.11141836547851562, 0.11086131286621094, 0.11138457489013671, 0.11153817749023437, 0.11202867126464844, 0.11150035095214844, 0.11127289581298828, 0.110814208984375, 0.11091455841064453, 0.11140914916992188, 0.11102617645263672, 0.11109072113037109, 0.11095037078857421, 0.1117276153564453, 0.11129241943359375, 0.11085517120361328, 0.11174604797363281, 0.11111321258544922, 0.11094118499755859, 0.11088076782226562, 0.11153305816650391, 0.11111219024658203, 0.11100364685058593, 0.11089612579345703, 0.11108659362792969, 0.23120793151855468, 0.11064934539794923, 0.11062374114990234, 0.11083673858642579, 0.11067494201660157, 0.11077836608886718, 0.11070771026611329, 0.11060428619384766, 0.11080601501464844, 0.11074969482421874, 0.11075379180908203, 0.11072819519042969, 0.11140505981445313, 0.11159654235839844, 0.11136716461181641, 0.11071282958984376, 0.1108705291748047, 0.11113164520263671, 0.11083161926269532, 0.11081830596923828, 0.11085721588134766, 0.1109719009399414, 0.1109401626586914, 0.11103539276123046, 0.1110149154663086, 0.11100057220458984, 0.11097395324707031, 0.11096781158447265, 0.110993408203125, 0.11080806732177734, 0.11181362915039063, 0.11124121856689453, 0.11092582702636719, 0.11085517120361328, 0.11085311889648437, 0.11080294036865235, 0.11073638153076172, 0.11090431976318359, 0.110919677734375, 0.11091558074951172, 0.11097395324707031, 0.11094528198242187, 0.11098316955566406, 0.11123609924316406, 0.11135488128662109, 0.11103846740722656, 0.11125350189208984, 0.11107635498046875, 0.11111219024658203, 0.11118284606933594, 0.11092479705810547, 0.11090431976318359, 0.11093401336669922, 0.1108111343383789, 0.11092070770263672, 0.11098214721679688, 0.11090943908691406, 0.11086847686767579, 0.11084595489501953, 0.11083980560302735, 0.1109381103515625, 0.11087462615966796, 0.11084185791015624, 0.23191654968261718, 0.11074253082275391, 0.1107558364868164, 0.11099954986572266, 0.11119821166992187, 0.11085721588134766, 0.11090022277832032, 0.1106175994873047, 0.11069951629638672, 0.11075174713134765, 0.11111014556884766, 0.11087564849853515, 0.11088384246826172, 0.11175116729736329, 0.11096575927734376, 0.11088896179199219, 0.11072512054443359, 0.1114224624633789, 0.11089100646972656, 0.11084390258789062, 0.11089408111572266, 0.11085004425048828, 0.1106012191772461, 0.11063295745849609, 0.11075276947021484, 0.11079065704345703, 0.11080397033691407, 0.11073945617675782, 0.11084902191162109, 0.11068621063232421, 0.11091661071777344, 0.11076300811767578, 0.11077638244628907, 0.11071379089355468, 0.11078246307373046, 0.11075276947021484, 0.11077120208740235, 0.11068621063232421, 0.11095654296875, 0.11124121856689453, 0.11106816101074218, 0.11082854461669922, 0.11157810974121093, 0.11099852752685548, 0.11090943908691406, 0.11087564849853515, 0.11085926055908203, 0.11091251373291015, 0.11085823822021484, 0.11085517120361328, 0.11084390258789062, 0.11089920043945313, 0.110887939453125, 0.1107927017211914, 0.11096883392333984, 0.11088697814941406, 0.11091756439208984, 0.11122278594970703, 0.11093606567382812, 0.1109227523803711, 0.11093094635009766, 0.1110118408203125, 0.11085721588134766, 0.23100518798828126, 0.11085721588134766, 0.11103437042236328, 0.11103846740722656, 0.11079373168945313, 0.11100672149658203, 0.11120025634765625, 0.11079373168945313, 0.11077632141113282, 0.11078246307373046, 0.11091251373291015, 0.111067138671875, 0.11082035064697265, 0.11113983917236328, 0.11079167938232422, 0.11095449829101563, 0.11072921752929688, 0.11073945617675782, 0.111098876953125, 0.11083161926269532, 0.11117874908447266, 0.1109964828491211, 0.11097702026367187, 0.11084185791015624, 0.11079475402832031, 0.11084902191162109, 0.11168972778320313, 0.11109683227539062, 0.111351806640625, 0.11110707092285156, 0.11155865478515625, 0.11136409759521484, 0.11103641510009765, 0.1109381103515625, 0.11078348541259765, 0.11093299102783204, 0.11105177307128906, 0.11092684936523438, 0.11187814331054688, 0.11165286254882813, 0.11094220733642578, 0.11094630432128906, 0.11073843383789063, 0.11088690948486328, 0.110993408203125, 0.11093299102783204, 0.11133235168457031, 0.11102003479003907, 0.1108674545288086, 0.11093196868896485, 0.11087974548339843, 0.11092377471923828, 0.11084390258789062, 0.11086029052734375, 0.11091865539550781, 0.11089202880859375, 0.11088384246826172, 0.11085619354248047, 0.1107988510131836, 0.1108674545288086, 0.11078041839599609, 0.11094834899902344, 0.11084390258789062, 0.23151922607421874, 0.11238092803955078, 0.11110195159912109, 0.11081215667724609, 0.11071180725097657, 0.11068927764892578, 0.11093196868896485, 0.1107957763671875, 0.11103743743896484, 0.11083062744140625, 0.11077935791015625, 0.11092377471923828, 0.1107988510131836, 0.11103437042236328, 0.11119308471679687, 0.11070873260498047, 0.11073433685302735, 0.11069439697265625, 0.11098623657226563, 0.11105382537841797, 0.11100466918945312, 0.11083468627929688, 0.11070259094238281, 0.1114286117553711, 0.11100672149658203, 0.11114701080322266, 0.11124531555175782, 0.11091558074951172, 0.11108659362792969, 0.11109785461425781, 0.11102003479003907, 0.11099033355712891, 0.11115113830566406, 0.11081520080566407, 0.11091558074951172, 0.1108695068359375, 0.11087974548339843, 0.11102719879150391, 0.11108147430419922, 0.11098009490966797, 0.11090227508544923, 0.11093094635009766, 0.11104467010498047, 0.11085004425048828, 0.11133433532714844, 0.11109785461425781, 0.11109273529052735, 0.1115494384765625, 0.11117158508300781, 0.11097395324707031, 0.11107430267333984, 0.11089510345458985, 0.11159347534179688, 0.11095654296875, 0.11123916625976563, 0.11102003479003907, 0.11120950317382812, 0.11099440002441406, 0.1108479995727539, 0.11085107421875, 0.11095040130615234, 0.11082444763183594, 0.1111900177001953, 0.23210704040527344, 0.11165692901611328, 0.11079167938232422, 0.11076812744140625, 0.11082649230957031, 0.11084902191162109, 0.11091149139404297, 0.11082137298583984, 0.11113267517089843, 0.11084697723388671, 0.11103641510009765, 0.11080089569091797, 0.1109227523803711, 0.11097087860107421, 0.11118284606933594, 0.11100569915771484, 0.11142144012451172, 0.11084902191162109, 0.11086233520507813, 0.11098419189453125, 0.11085517120361328, 0.11071590423583984, 0.11084595489501953, 0.11079065704345703, 0.11075788879394531, 0.11074969482421874, 0.11114905548095703, 0.11111116790771484, 0.11128524780273437, 0.11088896179199219, 0.11084185791015624, 0.11085414123535156, 0.11084083557128906, 0.11082649230957031, 0.11088076782226562, 0.11086847686767579, 0.11084902191162109, 0.11075379180908203, 0.11080703735351563, 0.1108326416015625, 0.11081625366210937, 0.11082854461669922, 0.1107988510131836, 0.11076300811767578, 0.11106098937988282, 0.11079065704345703, 0.11085107421875, 0.11082752227783203, 0.11089715576171875, 0.11078041839599609, 0.11082240295410156, 0.11080294036865235, 0.11087462615966796, 0.11081625366210937, 0.11089202880859375, 0.11096883392333984, 0.11079475402832031, 0.11079167938232422, 0.1108695068359375, 0.11085517120361328, 0.1108848648071289, 0.11083878326416016, 0.1109012451171875, 0.23219711303710938, 0.11054796600341797, 0.11063091278076172, 0.11097907257080078, 0.1107220458984375, 0.11073228454589844, 0.11069644927978516, 0.11064835357666016, 0.1108274917602539, 0.11064934539794923, 0.11062783813476562, 0.11064729309082032, 0.11074867248535156, 0.11066880035400391, 0.11075686645507812, 0.11128934478759765, 0.11109171295166016, 0.1118392333984375, 0.11117874908447266, 0.11070054626464844, 0.11073843383789063, 0.11083673858642579, 0.11082240295410156, 0.11079475402832031, 0.11125965118408203, 0.11074662780761718, 0.11078041839599609, 0.11130265808105469, 0.11090227508544923, 0.11071590423583984, 0.11079065704345703, 0.1107589111328125, 0.1107589111328125, 0.11080908966064452, 0.11087974548339843, 0.11083366394042969, 0.11086847686767579, 0.11106816101074218, 0.11083673858642579, 0.11082444763183594, 0.11081932830810547, 0.11074559783935548, 0.11097805023193359, 0.11082854461669922, 0.11081830596923828, 0.11076403045654297, 0.11080191802978516, 0.1108111343383789, 0.1107619857788086, 0.11075379180908203, 0.11113471984863281, 0.11089510345458985, 0.1109964828491211, 0.1112616958618164, 0.11135692596435547, 0.11087667083740234, 0.11085209655761719, 0.11084902191162109, 0.11087564849853515, 0.11095756530761719, 0.11090022277832032, 0.11075174713134765, 0.11066777801513672, 0.23221554565429686, 0.11071282958984376, 0.11071078491210938, 0.11081011199951171, 0.11064627075195313, 0.11077938842773437, 0.11075587463378907, 0.11070563507080078, 0.11075174713134765, 0.11071692657470703, 0.11072819519042969, 0.11062989044189453, 0.11059712219238281, 0.11076300811767578, 0.11081932830810547, 0.11082035064697265, 0.11069747161865234, 0.11060018920898437, 0.11116134643554687, 0.11085107421875, 0.1106175994873047, 0.11080191802978516, 0.11060838317871094, 0.11082956695556641, 0.1108674545288086, 0.1106851806640625, 0.11128422546386718, 0.11070361328125, 0.11062579345703125, 0.11066880035400391, 0.11061248016357422, 0.11078656005859375, 0.11088902282714844, 0.11059398651123047, 0.11090943908691406, 0.11082956695556641, 0.11072614288330078, 0.11071488189697265, 0.11071180725097657, 0.11069747161865234, 0.11098419189453125, 0.1116354522705078, 0.11094118499755859, 0.11096781158447265, 0.11192729949951172, 0.11095654296875, 0.11084390258789062, 0.11088384246826172, 0.1108326416015625, 0.11087155151367188, 0.11092070770263672, 0.11140300750732422, 0.11090022277832032, 0.11150950622558593, 0.11123712158203125, 0.11087872314453125, 0.11086438751220704, 0.11093094635009766, 0.11086029052734375, 0.11086438751220704, 0.11089817810058594, 0.1110292510986328, 0.11088896179199219]",tokens/s,8.875487397099688,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-3B-v1,togethercomputer/RedPajama-INCITE-Base-3B-v1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.42.3,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,2296.311808,3364.356096,0.0,2717.908992,2483.907584,s,10,2.330847946166992,0.23308479461669923,0.0010429138193785155,0.2329587631225586,0.23404432983398438,0.23490374908447265,0.2355912844848633,"[0.23576316833496094, 0.23205392456054688, 0.23257113647460936, 0.2332529296875, 0.2331095733642578, 0.23302418518066406, 0.2328933410644531, 0.23385334777832031, 0.23206883239746093, 0.23225750732421874]",tokens/s,1098.3127424548827,kWh,2.741206621732375e-06,1.5020620704274751e-06,1.2330117187320244e-05,1.6573385879480095e-05,tokens/kWh,15446451.428911682,MB,2296.311808,3364.356096,0.0,2717.908992,2606.770688,s,10,135.49141015625,13.549141015625,0.005470597609210756,13.5478662109375,13.555178515625,13.558332910156249,13.56085642578125,"[13.5614873046875, 13.552251953125, 13.5473681640625, 13.545138671875, 13.5483642578125, 13.5429267578125, 13.5468681640625, 13.5424833984375, 13.5544775390625, 13.5500439453125]",tokens/s,4.649741258678155,kWh,0.00015991536231278774,8.764646752289069e-05,0.0007088255708478708,0.0009563874006835494,tokens/kWh,65872.8878642406,,s,629,137.37170133972162,0.21839698146219663,0.027667917542091323,0.21500723266601562,0.2154588165283203,0.21557268676757813,0.4473833142089844,"[0.21505740356445313, 0.21482188415527342, 0.21486285400390626, 0.2151321563720703, 0.21520384216308594, 0.21484442138671875, 0.21472972106933594, 0.21478707885742188, 0.21523762512207031, 0.21543218994140625, 0.21555404663085936, 0.21550694274902343, 0.21547418212890626, 0.21545574951171875, 0.2153861083984375, 0.21541888427734374, 0.21541786193847656, 0.21550694274902343, 0.21546803283691407, 0.2156584930419922, 0.2156134338378906, 0.21551411437988283, 0.215841796875, 0.2154475555419922, 0.21554278564453125, 0.2155478973388672, 0.21656781005859374, 0.21537075805664063, 0.21570559692382812, 0.2151690216064453, 0.21536972045898437, 0.21519155883789062, 0.21519155883789062, 0.21512191772460937, 0.2151700439453125, 0.21511680603027344, 0.21506355285644532, 0.2149959716796875, 0.21488128662109374, 0.21483724975585938, 0.21492735290527343, 0.21484646606445312, 0.21488946533203124, 0.21494989013671875, 0.21493145751953124, 0.21494989013671875, 0.21496934509277343, 0.21540966796875, 0.21525914001464844, 0.21563699340820314, 0.21598924255371094, 0.21502156066894532, 0.214908935546875, 0.2154967041015625, 0.2151526336669922, 0.21541375732421875, 0.21517312622070311, 0.21497549438476563, 0.2161397705078125, 0.21507891845703125, 0.215046142578125, 0.21498880004882812, 0.44725146484375, 0.2148833312988281, 0.21473587036132813, 0.2147010498046875, 0.21467135620117186, 0.21518130493164062, 0.21532159423828126, 0.2151383056640625, 0.21513420104980469, 0.21499699401855468, 0.21491506958007814, 0.21502259826660156, 0.21509529113769532, 0.21496524047851562, 0.21494886779785155, 0.21502464294433593, 0.21508709716796875, 0.21516697692871095, 0.21509426879882812, 0.21518949890136718, 0.21508403015136718, 0.2151690216064453, 0.21495706176757812, 0.21509529113769532, 0.21498162841796875, 0.21510450744628906, 0.21498675537109374, 0.215088134765625, 0.21520999145507813, 0.21500518798828125, 0.2154455108642578, 0.21509222412109374, 0.21493760681152344, 0.21534208679199218, 0.21548851013183593, 0.21525811767578126, 0.2152263641357422, 0.21541171264648437, 0.21565644836425782, 0.21525401306152345, 0.21511885070800782, 0.21525709533691406, 0.2151137237548828, 0.2153912353515625, 0.215267333984375, 0.21513011169433593, 0.21617152404785156, 0.21516697692871095, 0.21517721557617187, 0.21505740356445313, 0.21518643188476563, 0.21504818725585936, 0.21551309204101562, 0.21518336486816406, 0.21493145751953124, 0.21510861206054688, 0.21479629516601562, 0.21501235961914061, 0.2149160919189453, 0.21480447387695312, 0.21480242919921874, 0.214935546875, 0.2149222412109375, 0.4477112426757813, 0.21476658630371093, 0.21471026611328126, 0.21476658630371093, 0.21468569946289062, 0.21475942993164063, 0.2149099578857422, 0.21478604125976564, 0.2147553253173828, 0.21471641540527345, 0.2147993621826172, 0.21482290649414063, 0.21487615966796875, 0.21483724975585938, 0.2148311004638672, 0.2148546600341797, 0.2154239959716797, 0.2151372833251953, 0.21490278625488282, 0.214866943359375, 0.21509426879882812, 0.21517318725585938, 0.21492115783691407, 0.21483314514160157, 0.21508607482910155, 0.2149591064453125, 0.2149160919189453, 0.21490278625488282, 0.21483212280273437, 0.21489254760742188, 0.21492428588867188, 0.2148863983154297, 0.21489971923828124, 0.21498162841796875, 0.21520895385742186, 0.21496524047851562, 0.21491302490234376, 0.21487615966796875, 0.2147921905517578, 0.2149601287841797, 0.2154270782470703, 0.21498573303222657, 0.21499699401855468, 0.2154915771484375, 0.21557760620117186, 0.21522329711914062, 0.21523968505859375, 0.2152806396484375, 0.2152929229736328, 0.21521612548828126, 0.2151874542236328, 0.21568409729003907, 0.21566566467285156, 0.21509120178222657, 0.21514035034179688, 0.21538508605957032, 0.21533900451660157, 0.21524581909179688, 0.21518130493164062, 0.21530111694335938, 0.2149529571533203, 0.21484646606445312, 0.215267333984375, 0.44860928344726564, 0.21496835327148436, 0.21504917907714843, 0.21519564819335937, 0.2147788848876953, 0.21473075866699218, 0.214687744140625, 0.21470924377441405, 0.21483622741699218, 0.21488230895996094, 0.21480551147460938, 0.21480447387695312, 0.21488230895996094, 0.2148167724609375, 0.2148423614501953, 0.21475840759277343, 0.21480755615234376, 0.21527244567871093, 0.21494374084472656, 0.2148546600341797, 0.21478604125976564, 0.21492735290527343, 0.21485977172851561, 0.21493452453613282, 0.2148853759765625, 0.21484442138671875, 0.2148116455078125, 0.21499699401855468, 0.21483827209472656, 0.21479731750488282, 0.21485772705078124, 0.21503590393066407, 0.21506048583984375, 0.2151700439453125, 0.21510552978515626, 0.2148853759765625, 0.21489459228515626, 0.21496115112304687, 0.21505229187011718, 0.214935546875, 0.21529087829589844, 0.21523558044433594, 0.21490687561035157, 0.21502873229980468, 0.2155325469970703, 0.21607321166992188, 0.21525914001464844, 0.21513420104980469, 0.21531852722167968, 0.21525914001464844, 0.21559706115722657, 0.21499699401855468, 0.21491302490234376, 0.21523968505859375, 0.21506661987304687, 0.21505946350097657, 0.21485772705078124, 0.21504205322265624, 0.21495603942871094, 0.21500927734375, 0.21486898803710938, 0.21491917419433593, 0.21499699401855468, 0.44823040771484374, 0.2147502136230469, 0.2149713897705078, 0.21477682495117187, 0.21464883422851563, 0.21478604125976564, 0.2148853759765625, 0.21474610900878907, 0.21475430297851564, 0.21482905578613282, 0.21484544372558595, 0.21471641540527345, 0.21488742065429686, 0.21481266784667968, 0.21496524047851562, 0.21491200256347656, 0.21484339904785157, 0.21479014587402342, 0.21488844299316406, 0.2148730926513672, 0.21482598876953124, 0.21536563110351561, 0.2149959716796875, 0.2149160919189453, 0.21479525756835938, 0.214793212890625, 0.21489561462402343, 0.215225341796875, 0.215546875, 0.214830078125, 0.214908935546875, 0.21495808410644532, 0.21555917358398438, 0.21512602233886718, 0.21494682312011718, 0.21519564819335937, 0.2150645751953125, 0.21502975463867188, 0.215077880859375, 0.2150707244873047, 0.21511167907714843, 0.21507994079589843, 0.21511065673828125, 0.2151004180908203, 0.21502566528320313, 0.215046142578125, 0.2153052215576172, 0.2151751708984375, 0.2151628875732422, 0.21534002685546874, 0.21526220703125, 0.21523968505859375, 0.21514239501953125, 0.2150768585205078, 0.21670297241210937, 0.21517414855957032, 0.215046142578125, 0.21518028259277344, 0.21528883361816406, 0.21511270141601563, 0.21514854431152344, 0.21511576843261718, 0.21554585266113283, 0.4488406982421875, 0.21551922607421875, 0.2154485778808594, 0.21546290588378905, 0.21549363708496094, 0.2155397186279297, 0.21553868103027343, 0.2150266876220703, 0.21493760681152344, 0.21507379150390624, 0.21545779418945313, 0.2150645751953125, 0.21477171325683594, 0.21473587036132813, 0.214866943359375, 0.21483827209472656, 0.21489152526855468, 0.2148239288330078, 0.21499903869628906, 0.21492019653320313, 0.2147758026123047, 0.2147368927001953, 0.21461094665527344, 0.21467546081542968, 0.2146693115234375, 0.21468467712402345, 0.21476966857910157, 0.21510552978515626, 0.21500210571289063, 0.21482803344726562, 0.2148116455078125, 0.2148341827392578, 0.21464678955078126, 0.21472154235839844, 0.21472767639160156, 0.21471334838867187, 0.21464781188964843, 0.21483929443359376, 0.21563084411621095, 0.21475634765625, 0.21471026611328126, 0.2149529571533203, 0.21496934509277343, 0.21485261535644531, 0.21489356994628905, 0.21480447387695312, 0.21493145751953124, 0.2149160919189453, 0.21494682312011718, 0.21486285400390626, 0.21494374084472656, 0.21482496643066407, 0.21480140686035157, 0.21474919128417969, 0.21488844299316406, 0.21515058898925782, 0.21508505249023438, 0.21536972045898437, 0.2150338592529297, 0.21493145751953124, 0.21476966857910157, 0.2151946258544922, 0.21496627807617188, 0.44795391845703125, 0.21470413208007813, 0.21475942993164063, 0.21475123596191406, 0.21471334838867187, 0.21477171325683594, 0.21476864624023437, 0.21473893737792968, 0.21490074157714845, 0.21492019653320313, 0.2151065673828125, 0.2153482208251953, 0.21520179748535156, 0.21504920959472656, 0.21515367126464843, 0.21496421813964844, 0.21530726623535157, 0.21506866455078125, 0.21519973754882812, 0.2150830078125, 0.2149283905029297, 0.2150697021484375, 0.2151321563720703, 0.21533798217773437, 0.21507891845703125, 0.21498367309570313, 0.2149591064453125, 0.21478707885742188, 0.2149222412109375, 0.2149959716796875, 0.21502156066894532, 0.21526835632324218, 0.21528985595703126, 0.2153482208251953, 0.21506253051757812, 0.2151014404296875, 0.21500927734375, 0.21537075805664063, 0.21537689208984376, 0.21548851013183593, 0.21524172973632813, 0.2149713897705078, 0.2150440979003906, 0.21492633056640625, 0.21498675537109374, 0.2149396514892578, 0.2149591064453125, 0.21508607482910155, 0.21496730041503906, 0.2149048309326172, 0.21501235961914061, 0.21492326354980468, 0.21479833984375, 0.21476966857910157, 0.2149181365966797, 0.2150502471923828, 0.21507994079589843, 0.2152632293701172, 0.21494682312011718, 0.21491506958007814, 0.21495808410644532, 0.2151751708984375, 0.21494886779785155, 0.4489482116699219, 0.2149918670654297, 0.2148720703125, 0.21471128845214843, 0.21480242919921874, 0.21478092956542968, 0.214908935546875, 0.21469798278808594, 0.21487513732910157, 0.21486285400390626, 0.21475942993164063, 0.2147799072265625, 0.21480140686035157, 0.214972412109375, 0.21482701110839844, 0.21487718200683595, 0.21489254760742188, 0.21487411499023437, 0.21485874938964844, 0.2148536376953125, 0.21483622741699218, 0.21512498474121095, 0.21538201904296875, 0.21494578552246094, 0.21469081115722657, 0.21478297424316406, 0.215546875, 0.21490789794921875, 0.21481369018554688, 0.21466828918457032, 0.21494169616699219, 0.21496217346191407, 0.21491200256347656, 0.21501132202148437, 0.21527757263183595, 0.21506150817871095, 0.2150697021484375, 0.21487001037597656, 0.21500210571289063, 0.2153052215576172, 0.21515980529785156, 0.21500723266601562, 0.21494989013671875, 0.215119873046875, 0.21500006103515626, 0.2150963134765625, 0.21494169616699219, 0.2148720703125, 0.21486079406738282, 0.2149365692138672, 0.21491200256347656, 0.21484646606445312, 0.2148802490234375, 0.21486898803710938, 0.214835205078125, 0.21502156066894532, 0.21651455688476562, 0.214908935546875, 0.21484544372558595, 0.21495706176757812, 0.214898681640625, 0.21494784545898438, 0.21494886779785155, 0.4472668151855469, 0.21480345153808594, 0.21471437072753907, 0.21508403015136718, 0.21481575012207033, 0.2151884765625, 0.21496730041503906, 0.21489663696289063, 0.21552230834960937, 0.2148239288330078, 0.2148863983154297, 0.21482188415527342, 0.215014404296875, 0.21478501892089844, 0.21531852722167968, 0.21555097961425781, 0.21537689208984376, 0.21539430236816406, 0.21550592041015626, 0.2155653076171875, 0.21540045166015626, 0.21561036682128906, 0.21547929382324219, 0.21502156066894532, 0.21487922668457032, 0.21480960083007813, 0.21484133911132813, 0.21497549438476563, 0.21494682312011718, 0.21494989013671875, 0.21501849365234374, 0.2149949493408203, 0.21500825500488283, 0.21494374084472656, 0.21490278625488282, 0.21512294006347657, 0.21492941284179687, 0.21512294006347657, 0.21499699401855468, 0.214972412109375, 0.21519258117675782, 0.21501849365234374, 0.21505126953125, 0.21520384216308594, 0.21509324645996095, 0.21525811767578126, 0.21514035034179688, 0.21502259826660156, 0.2150819854736328, 0.2148536376953125, 0.21539942932128905, 0.21545164489746094, 0.21515980529785156, 0.215193603515625, 0.21507994079589843, 0.2156083221435547, 0.21530726623535157, 0.21668658447265626, 0.2153543701171875, 0.21537791442871093, 0.21531954956054689, 0.21511270141601563, 0.21529702758789063, 0.44742861938476564, 0.21477786254882814, 0.21499903869628906, 0.21493145751953124, 0.21511782836914062, 0.21525299072265625, 0.2149396514892578, 0.21481881713867187, 0.2147573699951172, 0.2147440643310547, 0.21501132202148437, 0.2149396514892578, 0.21487411499023437, 0.21493145751953124, 0.21482598876953124, 0.21519667053222657, 0.21500927734375, 0.21553765869140626, 0.21521714782714843, 0.21505126953125, 0.2152499237060547, 0.21514035034179688, 0.2150440979003906, 0.21515776062011718, 0.21496421813964844, 0.21498880004882812, 0.2155284423828125, 0.21523558044433594, 0.2150697021484375, 0.21503488159179687, 0.21502464294433593, 0.215119873046875, 0.21567385864257813, 0.21532569885253905, 0.2156134338378906, 0.21530624389648437, 0.215046142578125, 0.215510009765625, 0.21509324645996095, 0.21478912353515625, 0.2147440643310547, 0.21493350219726562, 0.21496524047851562, 0.21494374084472656, 0.21493043518066407, 0.21487820434570312, 0.21496319580078124, 0.215119873046875, 0.21509324645996095, 0.21507994079589843, 0.21511474609375, 0.21518028259277344, 0.2149365692138672, 0.2149918670654297, 0.21517721557617187, 0.21499801635742188, 0.2149918670654297, 0.21517721557617187, 0.2150645751953125, 0.21535334777832033, 0.21510552978515626, 0.21535130310058595, 0.21503794860839845]",tokens/s,4.578817863254647,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-0.5B,Qwen/Qwen1.5-0.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1441.677312,1709.703168,0.0,1063.256064,942.605312,s,10,0.8730960388183594,0.08730960388183594,0.002035304872210584,0.08713673782348633,0.08910322875976563,0.09054942092895508,0.09170637466430664,"[0.09199561309814454, 0.0843604507446289, 0.08696444702148437, 0.08719612884521484, 0.08721517181396485, 0.08707734680175781, 0.08465267181396484, 0.0866138916015625, 0.08823846435546875, 0.08878185272216797]",tokens/s,2932.0943930345643,kWh,1.0099359104323139e-06,5.533989598310048e-07,2.5805410008034e-06,4.143875871066718e-06,tokens/kWh,61777912.265045814,MB,1441.677312,1709.703168,0.0,1063.256064,942.607872,s,10,53.98236181640625,5.398236181640624,0.0409841937132303,5.390563720703125,5.449904833984375,5.452959252929687,5.455402788085937,"[5.38043359375, 5.40069384765625, 5.41887353515625, 5.44691552734375, 5.456013671875, 5.44922607421875, 5.37513134765625, 5.35530859375, 5.36842431640625, 5.33134130859375]",tokens/s,11.670478630457612,kWh,6.202919682701882e-05,3.3993588802392576e-05,0.00015045469253839705,0.00024647747816780845,tokens/kWh,255601.4467054386,,s,629,54.67969024658198,0.08693114506610816,0.010438416792585154,0.08622489929199219,0.08683417816162109,0.08736747589111328,0.17189485961914075,"[0.08353689575195312, 0.08669286346435547, 0.08684236907958984, 0.08664883422851563, 0.08732160186767578, 0.0871107177734375, 0.08675321960449218, 0.08646348571777343, 0.08578867340087891, 0.08561151885986328, 0.08533920288085937, 0.08318355560302734, 0.08327986907958984, 0.08331366729736328, 0.08347750091552734, 0.08323891448974609, 0.08337407684326172, 0.08320102691650391, 0.08308223724365234, 0.08320921325683593, 0.08336589050292968, 0.08362290954589843, 0.08334028625488281, 0.08379084777832031, 0.08326246643066407, 0.08351641845703126, 0.08637849426269531, 0.0860948486328125, 0.08636211395263672, 0.0862208023071289, 0.0863825912475586, 0.08643379211425781, 0.08343961334228515, 0.08492339324951172, 0.08729497528076172, 0.08630579376220703, 0.08625049591064453, 0.08637340545654297, 0.08612451171875, 0.08631295776367187, 0.0867215347290039, 0.08637235260009765, 0.08630169677734376, 0.08631193542480468, 0.08447795104980468, 0.08495410919189453, 0.08645938873291016, 0.08668978881835937, 0.08635699462890625, 0.08412057495117188, 0.0861143035888672, 0.08629350280761719, 0.08610099029541016, 0.0859535369873047, 0.086508544921875, 0.08645426940917969, 0.0861286392211914, 0.08638976287841797, 0.08641228485107422, 0.08600883483886719, 0.08566067504882813, 0.08624947357177734, 0.16856166076660156, 0.08411341094970703, 0.0832890853881836, 0.08320819091796874, 0.08320409393310547, 0.08308633422851562, 0.08329011535644532, 0.08373766326904297, 0.08319993591308594, 0.08375193786621093, 0.08421683502197265, 0.08632524871826172, 0.0862371826171875, 0.08634674835205078, 0.08365670776367187, 0.0833986587524414, 0.08349798583984375, 0.08350003051757812, 0.08335769653320313, 0.08395059204101563, 0.0839208984375, 0.08677375793457032, 0.0867154541015625, 0.08665900421142578, 0.0864194564819336, 0.08657305908203125, 0.08616550445556641, 0.08598429107666015, 0.08726729583740235, 0.08673792266845703, 0.08624230194091796, 0.0869222412109375, 0.08644096374511719, 0.0866344985961914, 0.08689356994628906, 0.08668672180175781, 0.08644608306884766, 0.08659046173095702, 0.08682291412353516, 0.08598323059082032, 0.08748851013183594, 0.08676249694824219, 0.08683213043212891, 0.08647679901123047, 0.08678195190429687, 0.08769843292236328, 0.08739942169189453, 0.08640614318847656, 0.08639897918701171, 0.08644403076171875, 0.08633344268798829, 0.08639488220214844, 0.08622694396972656, 0.0867215347290039, 0.0865638427734375, 0.08646451568603515, 0.08639078521728516, 0.08660889434814453, 0.08628224182128906, 0.08633753967285156, 0.08671437072753906, 0.08621875, 0.08635084533691406, 0.17366220092773438, 0.08666828918457031, 0.08657817840576172, 0.08662118530273437, 0.08642969512939454, 0.08634265899658203, 0.0862525405883789, 0.08606208038330078, 0.08631501007080078, 0.08632012939453125, 0.08620851135253907, 0.08628530883789062, 0.08648499298095703, 0.08680038452148438, 0.08667135620117188, 0.08662732696533203, 0.08640409851074218, 0.08657817840576172, 0.08667033386230469, 0.08634060668945312, 0.08654131317138672, 0.08610816192626954, 0.08561766052246093, 0.08718950653076171, 0.08702668762207032, 0.08669388580322265, 0.08728883361816406, 0.08666214752197265, 0.08715264129638672, 0.08645017242431641, 0.08640409851074218, 0.08617984008789062, 0.08535756683349609, 0.0866324462890625, 0.08659967803955078, 0.08661299133300782, 0.08663346862792969, 0.08641843414306641, 0.08643379211425781, 0.08636006164550782, 0.08653209686279296, 0.0865771484375, 0.08655257415771485, 0.08642047882080078, 0.08629657745361329, 0.08657100677490234, 0.0862955551147461, 0.08327884674072265, 0.08376831817626954, 0.08357273864746094, 0.08349286651611328, 0.08337715148925781, 0.0860549087524414, 0.08430796813964844, 0.08347443389892578, 0.08344064331054687, 0.08356454467773437, 0.08309248352050781, 0.08637235260009765, 0.08680242919921875, 0.0863078384399414, 0.08653311920166015, 0.08646041870117188, 0.1741107177734375, 0.08636214447021484, 0.08619312286376953, 0.08634162902832031, 0.08638976287841797, 0.08647885131835938, 0.08649215698242188, 0.08664064025878906, 0.08642771148681641, 0.08624428558349609, 0.08617369842529297, 0.08573542022705079, 0.08636109161376954, 0.08620134735107422, 0.086329345703125, 0.08637644958496093, 0.08652902221679687, 0.08682086181640625, 0.08738508605957031, 0.0865249252319336, 0.0863815689086914, 0.0862894058227539, 0.08674918365478515, 0.08637337493896484, 0.08735027313232421, 0.08632422637939453, 0.08617984008789062, 0.08628428649902344, 0.08778956604003907, 0.08680754852294922, 0.08660582733154297, 0.08646348571777343, 0.08672358703613281, 0.0874486083984375, 0.08708297729492187, 0.08639078521728516, 0.08637337493896484, 0.08624742126464843, 0.08626278686523438, 0.08637651062011718, 0.08677881622314453, 0.08631501007080078, 0.08682803344726563, 0.0861112289428711, 0.08643583679199218, 0.08626380920410157, 0.08634572601318359, 0.086181884765625, 0.08633036804199219, 0.08633856201171874, 0.08504627227783203, 0.08628121948242187, 0.08638771057128906, 0.08684748840332031, 0.0863825912475586, 0.08656588745117187, 0.08662528228759765, 0.08654131317138672, 0.08605388641357421, 0.08622694396972656, 0.0862955551147461, 0.08632524871826172, 0.08606412506103515, 0.1738434600830078, 0.0866170883178711, 0.08668978881835937, 0.0868823013305664, 0.08633548736572266, 0.08676761627197266, 0.08665599822998046, 0.08651468658447266, 0.08632012939453125, 0.08640306854248046, 0.08641433715820312, 0.0875315170288086, 0.08692838287353516, 0.0863477783203125, 0.0873861083984375, 0.08702054595947266, 0.08652390289306641, 0.08673382568359375, 0.08648191833496094, 0.0868485107421875, 0.08659967803955078, 0.0865249252319336, 0.08798515319824218, 0.08668672180175781, 0.0869713897705078, 0.08641024017333984, 0.08619417572021484, 0.08626278686523438, 0.08664371490478516, 0.0865577621459961, 0.08645420837402344, 0.08650342559814453, 0.08614502716064452, 0.0860057601928711, 0.08658636474609376, 0.08687513732910156, 0.08634572601318359, 0.08673484802246094, 0.086614013671875, 0.08654745483398438, 0.08647782135009766, 0.08652288055419922, 0.08698777770996094, 0.08646348571777343, 0.08669286346435547, 0.08713728332519531, 0.08633344268798829, 0.08693965148925781, 0.0867000961303711, 0.08665286254882812, 0.08626483154296875, 0.0867430419921875, 0.08634982299804687, 0.08623616027832032, 0.0861685791015625, 0.08641228485107422, 0.08606719970703125, 0.08660889434814453, 0.08628736114501953, 0.08668057250976563, 0.08639794921875, 0.08680242919921875, 0.08641741180419922, 0.1737769012451172, 0.08605696105957031, 0.08600371551513672, 0.08643071746826173, 0.08781107330322266, 0.0866519012451172, 0.08646246337890626, 0.08642668914794922, 0.08613164520263672, 0.08653823852539062, 0.08642047882080078, 0.0866324462890625, 0.08596377563476562, 0.0863815689086914, 0.08631398773193359, 0.08695295715332031, 0.08793907165527344, 0.08786227416992187, 0.08662630462646484, 0.08779571533203125, 0.08724275207519532, 0.08729190063476562, 0.0877844467163086, 0.08636006164550782, 0.0858818588256836, 0.08638771057128906, 0.086949951171875, 0.08719251251220703, 0.08616550445556641, 0.08660377502441406, 0.08642457580566407, 0.08629452514648438, 0.0865054702758789, 0.08606105804443359, 0.08653311920166015, 0.08622796630859375, 0.0860200958251953, 0.08642253112792969, 0.08642355346679688, 0.0863641586303711, 0.08620851135253907, 0.0867583999633789, 0.08634880065917969, 0.08620851135253907, 0.08670003509521484, 0.08732057952880859, 0.08644608306884766, 0.08616960144042969, 0.08388813018798828, 0.08584806060791016, 0.08618905639648437, 0.0861788787841797, 0.0874474868774414, 0.08617574310302735, 0.08607027435302735, 0.0862064666748047, 0.08648703765869141, 0.08633241271972657, 0.08608153533935547, 0.08628838348388672, 0.08599142456054687, 0.08555622100830078, 0.08707379150390625, 0.1688248291015625, 0.08354815673828125, 0.08360345458984375, 0.08642150115966797, 0.08649830627441406, 0.0861808624267578, 0.08627609252929687, 0.08619622039794922, 0.0862033920288086, 0.08743424224853516, 0.08643276977539062, 0.08662425231933593, 0.08616754913330078, 0.08617164611816407, 0.0859135971069336, 0.08686489868164063, 0.08547532653808594, 0.08608972930908203, 0.08635596466064453, 0.08650649261474609, 0.08669593811035156, 0.0856258544921875, 0.08557164764404297, 0.08602413177490234, 0.08610304260253906, 0.08613478088378906, 0.0858818588256836, 0.08467046356201172, 0.08328396606445312, 0.08320614624023437, 0.08348467254638672, 0.0833433609008789, 0.08343142700195312, 0.08517120361328125, 0.08331775665283203, 0.0835225601196289, 0.08325939178466797, 0.0829675521850586, 0.08333618927001953, 0.0835962905883789, 0.08292864227294922, 0.08303923034667969, 0.0840273895263672, 0.08592588806152343, 0.08553369903564453, 0.08563097381591797, 0.08609180450439453, 0.08550192260742187, 0.08622489929199219, 0.08613069152832031, 0.08599961853027344, 0.08535244750976563, 0.0853544921875, 0.08618495941162109, 0.08482406616210937, 0.08524288177490234, 0.08417894744873047, 0.08835072326660157, 0.08645426940917969, 0.08594847869873047, 0.08594425964355469, 0.08639794921875, 0.0862003173828125, 0.17308876037597656, 0.0861470718383789, 0.08535763549804687, 0.08573228454589844, 0.08777318572998047, 0.0860579833984375, 0.08572621154785157, 0.086181884765625, 0.08619213104248047, 0.08773222351074218, 0.08648397064208985, 0.08551526641845703, 0.08338022613525391, 0.08344371032714844, 0.08378880310058594, 0.08320511627197266, 0.08437350463867188, 0.08477490997314453, 0.08600780487060547, 0.08639385223388672, 0.08647065734863281, 0.08623411560058594, 0.08597503662109375, 0.08415744018554687, 0.08344166564941406, 0.08589516448974609, 0.08594534301757813, 0.08557977294921874, 0.08637545776367188, 0.08613065338134765, 0.08599756622314453, 0.08644300842285156, 0.08653823852539062, 0.08349593353271484, 0.08332083129882813, 0.08336589050292968, 0.08353075408935547, 0.08340172576904296, 0.08323072052001954, 0.08343756866455078, 0.08349286651611328, 0.0832890853881836, 0.0835041275024414, 0.08353897857666015, 0.08367203521728515, 0.08369664001464844, 0.08330963134765625, 0.08333510589599609, 0.08366182708740234, 0.08354617309570313, 0.08324396514892578, 0.08303308868408203, 0.08764422607421875, 0.084233154296875, 0.08548761749267578, 0.08656588745117187, 0.08594841766357422, 0.08611126708984375, 0.08648700714111328, 0.08606719970703125, 0.08635289764404297, 0.08466329956054687, 0.08477286529541016, 0.17457868957519532, 0.08449132537841797, 0.08596371459960937, 0.08606515502929687, 0.08642355346679688, 0.08605696105957031, 0.08621673583984375, 0.08608969879150391, 0.08441241455078125, 0.08336179351806641, 0.08336179351806641, 0.08567501068115234, 0.08582860565185547, 0.083346435546875, 0.08477388763427735, 0.0841707534790039, 0.08664268493652344, 0.08617881774902343, 0.0860057601928711, 0.08586239624023438, 0.08551219177246094, 0.08600678253173828, 0.08574361419677734, 0.08587980651855469, 0.0835389404296875, 0.08575692749023438, 0.08598118591308594, 0.085970947265625, 0.08765235137939453, 0.08452095794677734, 0.08327577972412109, 0.08366387176513672, 0.08551423645019532, 0.08583475494384765, 0.08568831634521484, 0.08532889556884765, 0.0860057601928711, 0.08593408203125, 0.08623308563232422, 0.08616754913330078, 0.08630989074707031, 0.08582454681396484, 0.08615420532226563, 0.08506265258789063, 0.08292249298095702, 0.08326246643066407, 0.08425062561035156, 0.08737894439697266, 0.08324813079833984, 0.08346521759033203, 0.08319385528564453, 0.08310169219970703, 0.08324198150634765, 0.08323072052001954, 0.08317030334472657, 0.08586962890625, 0.08609273529052734, 0.08769741058349609, 0.08657305908203125, 0.08599244689941406, 0.08583679962158203, 0.08583782196044921, 0.08327680206298828, 0.17533644104003906, 0.08587776184082031, 0.08605081939697265, 0.0857548828125, 0.08574873352050781, 0.0859535369873047, 0.08613581085205078, 0.08587161254882812, 0.08592998504638671, 0.08673795318603515, 0.08629654693603515, 0.08595455932617188, 0.08510157012939454, 0.08576204681396485, 0.08615424346923828, 0.08628736114501953, 0.08378880310058594, 0.08452607727050782, 0.08607129669189453, 0.0862586898803711, 0.08617062377929688, 0.08422502136230468, 0.08376422119140625, 0.0832890853881836, 0.08342630767822265, 0.0846397476196289, 0.08346630096435546, 0.08343545532226562, 0.08319590759277344, 0.08344371032714844, 0.08367001342773438, 0.0833259506225586, 0.0832511978149414, 0.08327372741699218, 0.0835389404296875, 0.0833966064453125, 0.08333004760742188, 0.0835758056640625, 0.08591462707519532, 0.08338739013671875, 0.08385945892333985, 0.08679219055175781, 0.0835594253540039, 0.08360345458984375, 0.08362598419189453, 0.08332288360595703, 0.08334137725830078, 0.08309037017822266, 0.08337209320068359, 0.08316102600097657, 0.08313855743408204, 0.08323993682861328, 0.08327168273925781, 0.08664064025878906, 0.08615526580810547, 0.08606719970703125, 0.08610099029541016, 0.08608665466308593, 0.08620543670654297, 0.0832573471069336, 0.08329011535644532, 0.08356147003173828, 0.08407449340820312]",tokens/s,11.50335704469939,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-7B,Qwen/Qwen-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,TencentARC/Mistral_Pro_8B_v0.1,TencentARC/Mistral_Pro_8B_v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -45842,19 +45888,24 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 551, in from_pretrained - model_class = get_class_from_dynamic_module( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 502, in get_class_from_dynamic_module - final_module = get_cached_module_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 327, in get_cached_module_file - modules_needed = check_imports(resolved_module_file) - File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 182, in check_imports - raise ImportError( -ImportError: This modeling file requires the following packages that were not found in your environment: transformers_stream_generator. Run `pip install transformers_stream_generator` + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-14B,Qwen/Qwen2-beta-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,3934.998528,12732.33408,0.0,12085.886976,11337.370624,s,10,10.913714233398439,1.0913714233398437,0.0019187724556758634,1.0909278564453126,1.0936456420898437,1.0942043518066407,1.0946513195800782,"[1.0947630615234376, 1.093521484375, 1.0894732666015625, 1.0895545654296874, 1.089643798828125, 1.0893114013671874, 1.0899912109375, 1.091864501953125, 1.093216552734375, 1.0923743896484375]",tokens/s,234.56725595451456,kWh,1.2859468128946092e-05,7.046563530275307e-06,6.250710556117145e-05,8.241313722039284e-05,tokens/kWh,3106300.871854854,MB,3934.998528,12732.33408,0.0,12085.886976,11686.804992,s,10,636.61697265625,63.661697265625,0.007269593222884917,63.66015234375,63.672558203125,63.6732771484375,63.6738523046875,"[63.6561171875, 63.66687109375, 63.65788671875, 63.66241796875, 63.65402734375, 63.67399609375, 63.6723984375, 63.656875, 63.65174609375, 63.66463671875]",tokens/s,0.9896060379467405,kWh,0.0007518513685133722,0.0004120810364553653,0.003630345543163038,0.004794277948131776,tokens/kWh,13140.664909624129,,s,629,645.425664550782,1.0261139341029908,0.12959104210993952,1.0104422607421875,1.0109677490234374,1.0113603271484375,2.100010478515625,"[1.0103787231445311, 1.0104750366210937, 1.010914306640625, 1.0098585815429688, 1.0104279174804687, 1.010324462890625, 1.0105446166992187, 1.010070556640625, 1.0100776977539063, 1.0105692138671876, 1.0102251586914062, 1.0103941040039062, 1.0105692138671876, 1.0099476318359375, 1.010234375, 1.0106050415039063, 1.0103367919921875, 1.0100828247070313, 1.0105968627929687, 1.0105446166992187, 1.0105169677734376, 1.0106787719726562, 1.0105886840820313, 1.0103572387695312, 1.0107811889648437, 1.010609130859375, 1.010071533203125, 1.0102784423828124, 1.0099865112304687, 1.010282470703125, 1.0107012939453126, 1.0107606811523437, 1.0109655151367187, 1.0103797607421876, 1.0103644409179688, 1.0103593139648437, 1.0102118530273438, 1.0102118530273438, 1.0101124877929688, 1.0109286499023438, 1.0103910522460937, 1.0106552124023438, 1.011262451171875, 1.0107944946289062, 1.0104873046875, 1.0106204223632813, 1.0099425048828126, 1.0105272216796874, 1.00997119140625, 1.0104494018554688, 1.0101258544921874, 1.010229248046875, 1.0103654174804688, 1.0102947998046874, 1.0099885864257812, 1.0105845947265626, 1.0102702026367187, 1.0102896728515625, 1.0102702026367187, 1.0103797607421876, 1.0103336791992188, 1.0109767456054688, 2.1042431640625, 1.0108385009765626, 1.0106071166992188, 1.0101176147460937, 1.0099619750976563, 1.01039306640625, 1.0101083984375, 1.0104063720703125, 1.0112655639648438, 1.0104002685546876, 1.0102466430664063, 1.0105128784179687, 1.0102671508789063, 1.0101801147460938, 1.0101739501953124, 1.0103828735351563, 1.0103910522460937, 1.0109398803710938, 1.0110330810546875, 1.0103602905273437, 1.0109020385742187, 1.0112982788085938, 1.010745361328125, 1.0104309692382814, 1.0102783813476564, 1.010271240234375, 1.0101309204101563, 1.0107698974609376, 1.0114027709960938, 1.01064501953125, 1.0102230834960937, 1.0105385131835938, 1.0106644287109374, 1.0104248046875, 1.0108897094726563, 1.010545654296875, 1.0105814819335937, 1.0107955322265625, 1.0110156860351562, 1.0106214599609376, 1.01065625, 1.01066650390625, 1.0106920776367188, 1.0103101196289062, 1.0108272705078125, 1.0104053955078125, 1.0105886840820313, 1.010440185546875, 1.0111314086914063, 1.010808837890625, 1.0105968627929687, 1.010450439453125, 1.0106644287109374, 1.010177001953125, 1.0106286010742187, 1.01064599609375, 1.01049853515625, 1.0107146606445312, 1.0105742797851562, 1.0107597045898438, 1.0104780883789062, 1.01089794921875, 1.0108590087890625, 2.10035302734375, 1.0105681762695313, 1.0103634033203126, 1.0108939819335938, 1.0105936279296874, 1.01033984375, 1.0102159423828125, 1.0105128784179687, 1.0100869140625, 1.0100756225585938, 1.0101299438476563, 1.0103162841796876, 1.0100142211914063, 1.010387939453125, 1.0102691650390625, 1.0100736083984374, 1.0103839111328126, 1.0102691650390625, 1.0101923828125, 1.0100633544921875, 1.0100695190429687, 1.0103623657226561, 1.0100408325195311, 1.0103367919921875, 1.0102200317382812, 1.0101944580078126, 1.0105272216796874, 1.0104760131835937, 1.010466796875, 1.0102435913085936, 1.010566162109375, 1.010461669921875, 1.0103326416015626, 1.0106859741210938, 1.0104954833984374, 1.0103705444335938, 1.0109921264648438, 1.0105057373046875, 1.0102046508789062, 1.01007666015625, 1.0101852416992188, 1.0097950439453125, 1.0098770141601563, 1.0107269287109375, 1.0103705444335938, 1.0104033203125, 1.0112020263671875, 1.0103848876953125, 1.0109419555664063, 1.0105897216796875, 1.0109766845703125, 1.010745361328125, 1.0108344116210937, 1.011294189453125, 1.0108703002929686, 1.0104647827148439, 1.0111211547851562, 1.010250732421875, 1.0104473876953124, 1.0103490600585938, 1.0106961669921875, 1.010408447265625, 1.0106736450195313, 2.09991064453125, 1.0102855834960938, 1.010808837890625, 1.0101883544921875, 1.0098963623046875, 1.0099046630859374, 1.0102015380859375, 1.0112860107421875, 1.0114365234375, 1.0114171142578126, 1.011398681640625, 1.0108375854492186, 1.011353515625, 1.0101831665039063, 1.0099578857421876, 1.0098401489257813, 1.0104351806640626, 1.0098911743164063, 1.01047705078125, 1.0109163818359375, 1.0101514282226562, 1.0102528076171875, 1.0105303344726562, 1.010460693359375, 1.0104515380859376, 1.0105640258789061, 1.0108231811523438, 1.0104279174804687, 1.0102528076171875, 1.0102149047851563, 1.0106552124023438, 1.0108037109375, 1.0104227905273437, 1.010044921875, 1.0103521118164063, 1.0104022827148438, 1.0106019897460938, 1.0105252075195312, 1.0107361450195314, 1.0110341186523437, 1.0109389038085939, 1.0102589721679687, 1.0107658081054687, 1.01032958984375, 1.0109112548828125, 1.0104422607421875, 1.0104935302734375, 1.0104278564453124, 1.0109645385742188, 1.0107493896484374, 1.01064501953125, 1.0110023803710937, 1.0106593017578125, 1.0102763671875, 1.01026611328125, 1.0103255004882812, 1.0103726196289062, 1.010171875, 1.0105169677734376, 1.0103091430664062, 1.0100910034179686, 1.0103613891601562, 1.010420654296875, 2.10003857421875, 1.0099517211914062, 1.010044921875, 1.0100490112304688, 1.010212890625, 1.0100838623046875, 1.0100510864257812, 1.0103336791992188, 1.0101473388671875, 1.0099937133789063, 1.0099507446289062, 1.0100213623046874, 1.0101913452148437, 1.010255859375, 1.0110208129882812, 1.0101217041015624, 1.0101422119140624, 1.0106214599609376, 1.0106583251953125, 1.0105067749023438, 1.0107003173828124, 1.0106572875976563, 1.0101596069335939, 1.0103726196289062, 1.0107791137695312, 1.0102958374023439, 1.0105692138671876, 1.010567138671875, 1.0101862182617187, 1.0100357055664062, 1.0101422119140624, 1.0100562133789062, 1.0101636962890626, 1.0102886352539062, 1.0103009033203125, 1.0100858764648437, 1.0102108154296876, 1.0106234741210938, 1.0103255004882812, 1.0102271728515626, 1.0103224487304687, 1.0102650756835938, 1.0104852294921876, 1.0101156005859375, 1.0108948364257813, 1.0105333862304688, 1.0106009521484376, 1.010366455078125, 1.0103654174804688, 1.0105374755859375, 1.0105303344726562, 1.010418701171875, 1.0103674926757813, 1.0106214599609376, 1.0106808471679687, 1.0101104736328126, 1.0104002685546876, 1.010713623046875, 1.010361328125, 1.0107811889648437, 1.0112348022460937, 1.0109830322265625, 1.010874267578125, 2.099938232421875, 1.0099097900390626, 1.010356201171875, 1.0107750244140625, 1.0106531982421876, 1.0112010498046875, 1.0109235229492188, 1.0112593994140624, 1.011103759765625, 1.0114088745117187, 1.0117509155273436, 1.0115809326171874, 1.0110750732421876, 1.0116761474609375, 1.0117703857421876, 1.01070849609375, 1.0111211547851562, 1.0108140869140625, 1.010822021484375, 1.0101463012695313, 1.010524169921875, 1.010092041015625, 1.0108528442382811, 1.0102384643554687, 1.0105374755859375, 1.0103961791992186, 1.0102907104492187, 1.0105763549804687, 1.0101422119140624, 1.0106972045898437, 1.010524169921875, 1.0101381225585937, 1.01081396484375, 1.0101923828125, 1.010398193359375, 1.0102046508789062, 1.0100275268554688, 1.0102159423828125, 1.01076171875, 1.0107730102539063, 1.0104595947265624, 1.0105743408203125, 1.0107811889648437, 1.0105466918945312, 1.010503662109375, 1.0107811889648437, 1.0115594482421875, 1.0113648681640626, 1.0109235229492188, 1.0113966064453126, 1.0115973510742187, 1.0105558471679688, 1.0106337280273439, 1.0101053466796874, 1.0102333374023438, 1.0100643920898438, 1.0104063720703125, 1.0102118530273438, 1.0105886840820313, 1.0109163818359375, 1.01098291015625, 1.0103121948242189, 1.0104627075195312, 2.1005556640625, 1.0100828247070313, 1.0103214111328125, 1.0101217041015624, 1.0104524536132813, 1.0106480712890624, 1.009934326171875, 1.0109644775390625, 1.01163427734375, 1.011917724609375, 1.0118707275390626, 1.0117642211914062, 1.0120970458984375, 1.0110791625976563, 1.0113136596679688, 1.0106326904296874, 1.010629638671875, 1.0110320434570312, 1.0109531860351562, 1.0102200317382812, 1.0101647338867188, 1.01035107421875, 1.0101319580078125, 1.0104688720703126, 1.0105006103515626, 1.01138330078125, 1.010892822265625, 1.0108292846679687, 1.0109214477539064, 1.0098134765625, 1.0101145629882813, 1.0102262573242187, 1.0102721557617187, 1.010165771484375, 1.0108426513671875, 1.0108047485351563, 1.010640869140625, 1.0113280029296876, 1.0108528442382811, 1.010176025390625, 1.0101810913085938, 1.0100869140625, 1.0103460083007811, 1.010440185546875, 1.0107904052734376, 1.0101801147460938, 1.0104586181640625, 1.0103050537109375, 1.0111918334960937, 1.0107914428710938, 1.0108416137695313, 1.0108283081054688, 1.0106810302734375, 1.0106591186523437, 1.0115072021484375, 1.0104279174804687, 1.0108436279296875, 1.0108283081054688, 1.01055078125, 1.0102097778320311, 1.010460693359375, 1.0103121948242189, 1.0103951416015624, 2.102578125, 1.0104268798828124, 1.0102036743164062, 1.010355224609375, 1.0103173217773438, 1.0101637573242188, 1.01056201171875, 1.0103060302734375, 1.0101749877929687, 1.0104330444335938, 1.0104094848632812, 1.0101801147460938, 1.0102282104492188, 1.0102640380859376, 1.0102354125976563, 1.01035107421875, 1.0101268310546876, 1.01020263671875, 1.0103245849609375, 1.010389892578125, 1.0105927734375, 1.0102783813476564, 1.0102159423828125, 1.0109481201171875, 1.0104248046875, 1.0102097778320311, 1.0102999267578125, 1.0106634521484374, 1.01051904296875, 1.0106911010742188, 1.0106603393554687, 1.0103428955078124, 1.010208740234375, 1.0103828735351563, 1.0103501586914063, 1.0101267700195313, 1.010428955078125, 1.0099415283203126, 1.0103070678710937, 1.010746337890625, 1.0105733032226563, 1.0100193481445312, 1.0105620727539062, 1.0108969116210937, 1.010830322265625, 1.010567138671875, 1.0105261840820312, 1.0104903564453125, 1.010502685546875, 1.010763916015625, 1.0106510009765626, 1.01055078125, 1.010597900390625, 1.010534423828125, 1.01037158203125, 1.0100613403320313, 1.0104227905273437, 1.0101196899414062, 1.0103214111328125, 1.0106286010742187, 1.0109337768554687, 1.0104739990234375, 1.0107742309570313, 2.104293212890625, 1.010323486328125, 1.0104320068359376, 1.0102138671875, 1.0099435424804688, 1.0105354614257813, 1.0101022338867187, 1.0104801025390624, 1.0105220947265625, 1.0102742919921874, 1.0100582275390626, 1.0102661743164063, 1.0102158813476563, 1.0104473876953124, 1.0102271728515626, 1.0102630615234376, 1.0100213623046874, 1.0100828247070313, 1.0104155883789063, 1.01005517578125, 1.010208740234375, 1.0101239013671874, 1.0102445068359376, 1.0100910034179686, 1.0104801025390624, 1.0102210693359375, 1.0102210693359375, 1.0105426025390625, 1.0104248046875, 1.0105814819335937, 1.0103746337890624, 1.0100991821289063, 1.0102630615234376, 1.0103203735351562, 1.0105231323242188, 1.0105108642578124, 1.0102191162109375, 1.0101605224609376, 1.0104053955078125, 1.0104586181640625, 1.0102518920898438, 1.0101390380859374, 1.0103285522460939, 1.0101493530273438, 1.0104166259765626, 1.0106941528320312, 1.0107689208984374, 1.0102313232421876, 1.0105620727539062, 1.01051708984375, 1.0104871826171875, 1.01003369140625, 1.0101371459960937, 1.0099342651367187, 1.0106521606445313, 1.0104391479492187, 1.0105620727539062, 1.010513916015625, 1.010798583984375, 1.0104074096679687, 1.0103634033203126, 1.0103224487304687, 1.010681884765625, 2.103435302734375, 1.010229248046875, 1.0106736450195313, 1.0107843017578124, 1.0107432861328125, 1.0110986328125, 1.0106265869140625, 1.010587646484375, 1.0101248168945312, 1.0100542602539062, 1.0107769775390625, 1.0108426513671875, 1.0104627075195312, 1.0106603393554687, 1.0108734741210939, 1.01037255859375, 1.0107083740234375, 1.0104166259765626, 1.0103275756835937, 1.0101319580078125, 1.0107750244140625, 1.0107258911132813, 1.0107606811523437, 1.0102907104492187, 1.0104279174804687, 1.0105446166992187, 1.0105364379882813, 1.0103009643554688, 1.010494384765625, 1.0100807495117188, 1.0106644287109374, 1.0108026733398439, 1.0108375244140626, 1.010492431640625, 1.0103746337890624, 1.0101227416992187, 1.0101484375, 1.0099373168945311, 1.0103756713867187, 1.0104944458007812, 1.0109050903320314, 1.0101473388671875, 1.0104903564453125, 1.0099251098632813, 1.0105374755859375, 1.010134033203125, 1.0101810913085938, 1.0101248168945312, 1.0104063720703125, 1.0102702026367187, 1.0105569458007813, 1.0107965698242187, 1.01083544921875, 1.0107893676757813, 1.01082421875, 1.0101309204101563, 1.0103572387695312, 1.010207763671875, 1.010361328125, 1.0107053833007813, 1.0118082275390625, 1.01166796875, 1.01172021484375]",tokens/s,0.9745506485828798,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-7b,google/recurrentgemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,m,m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -45866,7 +45917,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/google/recurrentgemma-7b/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/m/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -45893,9 +45944,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694823c-4a01c9f6502a3b8f674a2972;1e80b430-396a-45fa-abde-c723cebba1ac) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948c3e-42f750de74e57e6a47d2fa67;42b55cee-8651-4cc8-aa87-b8b5bc58be2c) -Repository Not Found for url: https://huggingface.co/google/recurrentgemma-7b/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/m/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -45920,40 +45971,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: google/recurrentgemma-7b is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: m is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-rw-1b,tiiuae/falcon-rw-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: FalconForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Meta-Llama-3-70B,meta-llama/Meta-Llama-3-70B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-72B,Qwen/Qwen1.5-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -45992,10 +46014,10 @@ ChildProcessError: Traceback (most recent call last): self._buffers[key] = fn(buf) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-65b,huggyllama/llama-65b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-70b-hf,meta-llama/Llama-2-70b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -46034,10 +46056,113 @@ ChildProcessError: Traceback (most recent call last): self._buffers[key] = fn(buf) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 86.00 MiB. GPU +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 112.00 MiB. GPU + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-13b-hf,meta-llama/Llama-2-13b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-7b,stabilityai/stablelm-base-alpha-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined + +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-72B,Qwen/Qwen-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code + answer = input( +EOFError: EOF when reading a line + +During handling of the above exception, another exception occurred: + +Traceback (most recent call last): + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights + self.create_no_weights_model() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model + meta_model = self.automodel_class.from_config(self.pretrained_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config + trust_remote_code = resolve_trust_remote_code( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code + raise ValueError( +ValueError: The repository for Qwen/Qwen-72B contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/Qwen/Qwen-72B. +Please pass the argument `trust_remote_code=True` to allow custom code to be run. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,l,l,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,0,0,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -46049,7 +46174,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/l/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/0/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -46076,9 +46201,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669491b7-2bf1ab347b750d2438fd14f1;18e55136-c679-4eb8-bde6-b738d756fd72) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669494d9-3ed6ff7a2f4e451a0832c5e7;9f50bcbd-7e2c-4c3d-a291-f640c0ad5763) -Repository Not Found for url: https://huggingface.co/l/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/0/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -46103,82 +46228,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: l is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: 0 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-4.5B,facebook/xglm-4.5B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: XGLMForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-110B,Qwen/Qwen1.5-110B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): - File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch - benchmark_report = Benchmark.launch(benchmark_config) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch - report = launcher.launch(worker=cls.run, worker_args=[config]) - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch - raise ChildProcessError(response[""traceback""]) -ChildProcessError: Traceback (most recent call last): - File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target - report = worker(*worker_args) - File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run - backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ - self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained - dispatch_model(model, **device_map_kwargs) - File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model - model.to(device) - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to - return super().to(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to - return self._apply(convert) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply - module._apply(fn) - [Previous line repeated 2 more times] - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply - self._buffers[key] = fn(buf) - File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert - return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 32.00 MiB. GPU - -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,8,8,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/gemma-7b,google/gemma-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -46190,21 +46244,11 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/8/resolve/main/config.json +requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/gemma-7b/resolve/main/config.json The above exception was the direct cause of the following exception: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn @@ -46215,13 +46259,28 @@ Traceback (most recent call last): response = _request_wrapper( File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694926b-61c0edd86fea58b017c2a7b0;691613a5-611a-4574-b8a7-5493f400792d) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status + raise HfHubHTTPError(message, response=response) from e +huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-6694815d-5e017f6503242c5c374369e3;94556fa9-f33c-44da-82ef-c749cdb3c7b3) -Repository Not Found for url: https://huggingface.co/8/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. +403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. +Cannot access content at: https://huggingface.co/google/gemma-7b/resolve/main/config.json. +If you are trying to create or update content,make sure you have a token with the `write` role. + +The above exception was the direct cause of the following exception: + +Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file + resolved_file = hf_hub_download( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn + return fn(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download + return _hf_hub_download_to_cache_dir( + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error + raise LocalEntryNotFoundError( +huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. The above exception was the direct cause of the following exception: @@ -46242,18 +46301,13 @@ Traceback (most recent call last): config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file + File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file raise EnvironmentError( -OSError: 8 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` +OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/gemma-7b is not the path to a directory containing a file named config.json. +Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/rho-math-1b-v0.1,microsoft/rho-math-1b-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1416.183808,1705.508864,0.0,1059.06176,901.251072,s,10,1.2556827774047852,0.12556827774047852,0.0020066947239277956,0.12461985778808593,0.12691755523681642,0.12903935165405273,0.13073678878784178,"[0.13116114807128906, 0.1245798110961914, 0.12455474853515625, 0.12628569793701172, 0.126446044921875, 0.12463142395019532, 0.12460829162597656, 0.12491244506835937, 0.12422150421142578, 0.12428166198730468]",tokens/s,2038.731474274853,kWh,1.4767323517137103e-06,8.091788095589435e-07,5.457882838524886e-06,7.74379399979754e-06,tokens/kWh,33058730.64375074,MB,1416.47872,1705.508864,0.0,1059.06176,931.976704,s,10,75.24034423828124,7.524034423828125,0.018117587645973928,7.51759228515625,7.546301123046875,7.555124682617188,7.562183530273438,"[7.5639482421875, 7.54434033203125, 7.51252392578125, 7.5294287109375, 7.5317822265625, 7.49836865234375, 7.51694482421875, 7.50782275390625, 7.51704736328125, 7.51813720703125]",tokens/s,8.373167432685198,kWh,8.920738770729968e-05,4.889187051034242e-05,0.00032243887947867866,0.0004605381376963208,tokens/kWh,136796.48837582752,,s,629,76.24045568847656,0.12120899155560659,0.014857766034498806,0.119236572265625,0.12046213073730469,0.121122216796875,0.24360714599609376,"[0.12457164764404297, 0.12292813110351562, 0.12142694091796875, 0.12034457397460938, 0.12029849243164062, 0.12040806579589844, 0.12176793670654297, 0.12074700927734375, 0.11929190063476562, 0.11991244506835938, 0.11920486450195313, 0.12124877166748046, 0.12120063781738281, 0.120416259765625, 0.12205363464355469, 0.1201418228149414, 0.11985100555419922, 0.1191731185913086, 0.12010905456542968, 0.12073577880859375, 0.11977008056640626, 0.1192069091796875, 0.11915058898925782, 0.11936870574951172, 0.11920281219482422, 0.11884953308105468, 0.11897650909423828, 0.11890380859375, 0.11936460876464844, 0.11948953247070312, 0.11988787078857421, 0.11970662689208984, 0.11927040100097656, 0.11931136322021485, 0.11918540954589844, 0.11902054595947266, 0.11925606536865234, 0.11928268432617188, 0.1189775390625, 0.12040608215332031, 0.12145555114746094, 0.12119859313964844, 0.11934515380859376, 0.11921715545654298, 0.11957453155517578, 0.11955404663085938, 0.12047564697265625, 0.1195704345703125, 0.11987558746337891, 0.11963187408447265, 0.12172492980957031, 0.12081664276123047, 0.1199636459350586, 0.11969638061523437, 0.119478271484375, 0.11919974517822265, 0.11901952362060547, 0.11969843292236328, 0.11932466888427734, 0.11939430236816406, 0.11932160186767578, 0.11914035034179687, 0.2437795867919922, 0.11910451507568359, 0.11929497528076172, 0.11924992370605468, 0.11924582672119141, 0.1191229476928711, 0.1206702117919922, 0.12058009338378907, 0.11906559753417968, 0.11979878234863281, 0.1204142074584961, 0.120774658203125, 0.12038349151611329, 0.12099174499511718, 0.12017356872558593, 0.12051148986816407, 0.11986022186279296, 0.11982848358154297, 0.12144435119628906, 0.1197875213623047, 0.12066099548339844, 0.11986022186279296, 0.11963085174560546, 0.12066918182373047, 0.12106034851074218, 0.11989606475830078, 0.11947724914550781, 0.12219084930419923, 0.12116684722900391, 0.1208616943359375, 0.12017459106445312, 0.1197844467163086, 0.11975885009765624, 0.11948544311523437, 0.1193359375, 0.11977318572998047, 0.11921920013427735, 0.11890995025634765, 0.11913420867919922, 0.11896729278564454, 0.11922943878173828, 0.11928575897216796, 0.11888127899169922, 0.11916902160644531, 0.11918438720703126, 0.11927756500244141, 0.11924889373779297, 0.11915980529785156, 0.11925708770751953, 0.1192959976196289, 0.11954688262939453, 0.11891097259521484, 0.11927654266357422, 0.11913215637207031, 0.11925504302978515, 0.1196943359375, 0.11949980926513672, 0.11920687866210937, 0.11947622680664062, 0.11929190063476562, 0.11921920013427735, 0.12117094421386719, 0.11926937866210938, 0.24365055847167968, 0.1189969940185547, 0.11894374084472656, 0.11909529876708984, 0.11894271850585937, 0.11864473724365235, 0.11887718200683593, 0.11882701110839844, 0.11909324645996094, 0.11965235137939453, 0.11938406372070312, 0.11919974517822265, 0.11909120178222657, 0.11923046112060547, 0.11929708862304687, 0.11920992279052735, 0.11922946929931641, 0.11920687866210937, 0.11895603179931641, 0.11921510314941407, 0.11924070739746094, 0.11940147399902344, 0.11908505249023438, 0.11927961730957032, 0.11908505249023438, 0.11922227478027343, 0.11948748779296875, 0.11879219055175781, 0.11928473663330078, 0.11918438720703126, 0.11904819488525391, 0.1194260482788086, 0.11940147399902344, 0.11873382568359375, 0.11902361297607422, 0.12077056121826171, 0.11962060546875, 0.11954380798339843, 0.11931648254394531, 0.11892121887207031, 0.11890585327148437, 0.11919769287109375, 0.11923865509033203, 0.11895500946044922, 0.11905228424072266, 0.11905433654785157, 0.11923967742919922, 0.12057087707519532, 0.11927552032470704, 0.11903180694580077, 0.11901952362060547, 0.11904819488525391, 0.11917005157470703, 0.11913728332519531, 0.119225341796875, 0.12148429107666016, 0.11932569885253906, 0.11935846710205078, 0.1191720962524414, 0.1192273941040039, 0.11932876586914062, 0.11924992370605468, 0.11925606536865234, 0.24569036865234375, 0.11900313568115234, 0.11910758209228516, 0.1191229476928711, 0.11929503631591797, 0.11934611511230468, 0.11907071685791015, 0.11920281219482422, 0.11885465240478515, 0.11900006103515624, 0.11911885070800782, 0.1191546859741211, 0.11912806701660156, 0.11937484741210938, 0.1194434585571289, 0.11925606536865234, 0.12019712066650391, 0.12117810821533204, 0.12110336303710938, 0.11963801574707031, 0.11959193420410157, 0.11896627044677735, 0.11922329711914062, 0.11913420867919922, 0.11982438659667968, 0.11933491516113282, 0.11925094604492187, 0.1192959976196289, 0.11907071685791015, 0.1207193603515625, 0.12125491333007812, 0.11938508605957031, 0.1194076156616211, 0.1193338851928711, 0.11934719848632812, 0.11946189117431641, 0.1193482208251953, 0.11920492553710937, 0.11926624298095703, 0.11927142333984375, 0.11934207916259766, 0.11924992370605468, 0.11892121887207031, 0.11940863800048829, 0.119046142578125, 0.12049715423583984, 0.11979878234863281, 0.11931954956054687, 0.11911270141601563, 0.11936768341064453, 0.11907891082763672, 0.11921715545654298, 0.11925094604492187, 0.11922124481201171, 0.11953971099853515, 0.12125491333007812, 0.12110749053955078, 0.1192232666015625, 0.11931136322021485, 0.11899903869628906, 0.12022374725341797, 0.11995238494873046, 0.12026982116699218, 0.247546875, 0.11950592041015624, 0.12091497802734374, 0.12060975646972656, 0.12113203430175781, 0.12091596984863281, 0.12082688140869141, 0.12083404541015624, 0.1219061737060547, 0.12209458923339844, 0.12265574645996094, 0.12046131134033203, 0.11928371429443359, 0.11902365112304687, 0.11975062561035156, 0.11916390228271484, 0.11981926727294921, 0.11897856140136719, 0.11971686553955078, 0.11893145751953126, 0.11913318634033203, 0.11891302490234375, 0.11906358337402344, 0.11885667419433593, 0.11948134613037109, 0.11907788848876953, 0.11915366363525391, 0.1191884765625, 0.11917619323730469, 0.11935641479492187, 0.11914035034179687, 0.11885260772705078, 0.11923353576660156, 0.11925504302978515, 0.11878912353515625, 0.11872665405273437, 0.11999334716796875, 0.11964211273193359, 0.11909737396240234, 0.11932262420654297, 0.119236572265625, 0.11907481384277344, 0.1190799331665039, 0.1189908447265625, 0.11900211334228515, 0.1191956787109375, 0.1193440933227539, 0.1192652816772461, 0.11916185760498046, 0.1206671371459961, 0.11945881652832031, 0.11904307556152344, 0.11939942169189453, 0.11916287994384765, 0.119119873046875, 0.11886386871337891, 0.11886386871337891, 0.11877785491943359, 0.11952845001220704, 0.11905228424072266, 0.11897344207763672, 0.11872563171386719, 0.11880754852294922, 0.24371711730957032, 0.11878604888916015, 0.11898675537109375, 0.11895603179931641, 0.1188629150390625, 0.11867436981201172, 0.11919667053222656, 0.11875635528564453, 0.11883110046386719, 0.11889871978759765, 0.1191341781616211, 0.11897241973876953, 0.11877581024169923, 0.11888025665283203, 0.11885772705078125, 0.11877273559570313, 0.11894477081298828, 0.11868057250976563, 0.11871231842041016, 0.11883929443359376, 0.11886080169677735, 0.11869900512695312, 0.12047666931152344, 0.11934515380859376, 0.11869798278808594, 0.11880044555664063, 0.11878803253173828, 0.1189969940185547, 0.11894886779785156, 0.11878399658203125, 0.12051967620849609, 0.11952333068847656, 0.11878399658203125, 0.11913420867919922, 0.11862118530273437, 0.118830078125, 0.11917721557617188, 0.11974451446533203, 0.11991756439208984, 0.119119873046875, 0.118866943359375, 0.11871743774414062, 0.11889663696289063, 0.11874201965332032, 0.11896115112304688, 0.11909734344482421, 0.11934003448486329, 0.11873280334472656, 0.11927859497070313, 0.1189017562866211, 0.1192652816772461, 0.11888742065429687, 0.11881472015380859, 0.11897138977050781, 0.11900927734375, 0.11879116821289062, 0.11915366363525391, 0.11920281219482422, 0.11915058898925782, 0.1191178207397461, 0.11896422576904297, 0.1189959716796875, 0.1191546859741211, 0.24360858154296874, 0.1190860824584961, 0.11949056243896485, 0.11932466888427734, 0.11897856140136719, 0.12082278442382813, 0.11958783721923828, 0.11911065673828125, 0.11961862182617188, 0.11913311767578125, 0.11897548675537109, 0.11908403015136719, 0.11890585327148437, 0.11893145751953126, 0.11908403015136719, 0.11909324645996094, 0.1192959976196289, 0.119299072265625, 0.11905023956298828, 0.11916390228271484, 0.1194229736328125, 0.11900006103515624, 0.11926016235351562, 0.11916902160644531, 0.1189027862548828, 0.11916185760498046, 0.11893452453613282, 0.11966259002685548, 0.11899494171142579, 0.1189570541381836, 0.11962777709960938, 0.1197875213623047, 0.11925196838378906, 0.11938201904296875, 0.1193338851928711, 0.11967692565917969, 0.11944652557373046, 0.11901542663574219, 0.11911577606201172, 0.11922022247314454, 0.11908710479736329, 0.1187583999633789, 0.12030668640136719, 0.11964620971679688, 0.11896729278564454, 0.1190860824584961, 0.11880140686035157, 0.1189969940185547, 0.11937484741210938, 0.11919155120849609, 0.12108595275878906, 0.12014591979980468, 0.11927244567871094, 0.11913113403320312, 0.11914857482910156, 0.11933999633789062, 0.11990835571289063, 0.11933081817626953, 0.12017356872558593, 0.11968000030517578, 0.11910553741455078, 0.11916902160644531, 0.11892530822753906, 0.24451583862304688, 0.11914854431152344, 0.1193175048828125, 0.11939225769042969, 0.11916492462158203, 0.11957759857177734, 0.1194229736328125, 0.11930931091308594, 0.11903488159179687, 0.11910451507568359, 0.11907584381103516, 0.1191751708984375, 0.12042444610595703, 0.11948851013183594, 0.11933491516113282, 0.11932364654541015, 0.118940673828125, 0.11926220703125, 0.11912397003173827, 0.11893862152099609, 0.1188116455078125, 0.11887615966796874, 0.119299072265625, 0.1189591064453125, 0.11873792266845704, 0.12033638763427734, 0.11966361236572266, 0.11939635467529297, 0.11916799926757812, 0.11972914886474609, 0.11923046112060547, 0.11913420867919922, 0.11927347564697266, 0.11905843353271485, 0.11928371429443359, 0.11918950653076171, 0.11906867218017578, 0.11889049530029297, 0.11908403015136719, 0.11913011169433593, 0.11903385925292968, 0.11906150054931641, 0.11886386871337891, 0.11895807647705078, 0.11882189178466797, 0.11912908935546875, 0.11897856140136719, 0.11894477081298828, 0.11876557159423828, 0.11893965148925781, 0.11924172973632813, 0.11886386871337891, 0.11928883361816406, 0.11904307556152344, 0.11900723266601562, 0.11878195190429687, 0.11875635528564453, 0.11862322998046874, 0.11873996734619141, 0.11917005157470703, 0.1189570541381836, 0.11894579315185547, 0.12027187347412109, 0.24360345458984375, 0.11901952362060547, 0.1191014404296875, 0.11927244567871094, 0.11907481384277344, 0.11987353515625, 0.12033126068115234, 0.11920384216308594, 0.1190287322998047, 0.11961650848388672, 0.11970867156982422, 0.11927961730957032, 0.11992371368408203, 0.1196933135986328, 0.11933695983886719, 0.1192959976196289, 0.11914444732666016, 0.11929804992675781, 0.11933286285400391, 0.11891404724121094, 0.11937894439697265, 0.11968409729003907, 0.11939020538330078, 0.11924992370605468, 0.11931136322021485, 0.11917005157470703, 0.11934207916259766, 0.11891814422607422, 0.11906559753417968, 0.11898982238769532, 0.1191352310180664, 0.1193543701171875, 0.12004045104980468, 0.11920496368408204, 0.11923343658447266, 0.11935132598876953, 0.11902460479736328, 0.1189222412109375, 0.11926732635498047, 0.11971788787841797, 0.11941683197021484, 0.11968409729003907, 0.1194424285888672, 0.11935743713378906, 0.11975987243652343, 0.120447998046875, 0.11971788787841797, 0.11959603118896485, 0.12046540832519531, 0.11941375732421874, 0.11895500946044922, 0.11876659393310547, 0.11868262481689452, 0.1189222412109375, 0.11881267547607421, 0.11860889434814453, 0.1187430419921875, 0.11915058898925782, 0.11882086181640625, 0.11895603179931641, 0.11968102264404297, 0.11917721557617188, 0.11907686614990234, 0.24344166564941405, 0.11888742065429687, 0.1188853759765625, 0.11914854431152344, 0.11891506958007812, 0.11891404724121094, 0.11905023956298828, 0.1190113296508789, 0.11885772705078125, 0.11911065673828125, 0.11948134613037109, 0.11934617614746093, 0.11914956665039063, 0.11941273498535156, 0.11947315216064452, 0.1198571548461914, 0.11957350158691406, 0.12054937744140624, 0.12015001678466797, 0.11967180633544922, 0.1200865249633789, 0.1194434585571289, 0.11917005157470703, 0.11993395233154297, 0.11950182342529297, 0.12140646362304687, 0.1204111328125, 0.11936262512207031, 0.11944236755371093, 0.11988172912597657, 0.11939839935302735, 0.1193912353515625, 0.11940249633789063, 0.1190297622680664, 0.11965542602539063, 0.11903897857666015, 0.11946701049804688, 0.11888540649414063, 0.1192386245727539, 0.1189591064453125, 0.11945471954345703, 0.11889868927001954, 0.1190287322998047, 0.11890380859375, 0.11901644897460938, 0.11902259063720703, 0.11903794860839843, 0.11907481384277344, 0.11954585266113281, 0.11895097351074219, 0.11885465240478515, 0.1198826904296875, 0.11971379089355469, 0.11895398712158203, 0.11973734283447265, 0.11900313568115234, 0.11912397003173827, 0.11940966033935548, 0.11896524810791016, 0.11901952362060547, 0.11930623626708985, 0.118687744140625, 0.11891506958007812]",tokens/s,8.250213017746573,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-7b-hf,meta-llama/Llama-2-7b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1984.512,5480.382464,0.0,4833.93536,4503.282688,s,10,5.704772033691406,0.5704772033691407,0.0012601125399919193,0.5702384033203125,0.5718997436523438,0.5722093933105469,0.5724571130371093,"[0.5703561401367188, 0.57251904296875, 0.5679871215820312, 0.569779052734375, 0.569513427734375, 0.5698793334960938, 0.5701206665039062, 0.571189208984375, 0.5718309326171875, 0.5715971069335938]",tokens/s,448.7471164283303,kWh,6.715062223834757e-06,3.6795454622733808e-06,3.136956213266472e-05,4.1764169818772856e-05,tokens/kWh,6129656.140918401,MB,1986.158592,5480.382464,0.0,4833.93536,4688.699392,s,10,334.56283984375,33.456283984375,0.0052644785154184115,33.45499609375,33.46062109375,33.46519140625,33.46884765625,"[33.4560859375, 33.4513203125, 33.45960546875, 33.45390625, 33.45316015625, 33.46976171875, 33.4577109375, 33.45030078125, 33.45712109375, 33.4538671875]",tokens/s,1.883054317371969,kWh,0.0003949493847824173,0.00021646648750867824,0.0018252696453997421,0.0024366855176908373,tokens/kWh,25854.793137073728,,s,629,339.16590026855516,0.5392144678355401,0.06782032837407061,0.5309541625976563,0.5315696655273437,0.5319477294921875,1.101242978515625,"[0.5305211181640626, 0.5310648193359375, 0.5307863159179688, 0.53155224609375, 0.5311129760742187, 0.5313126220703125, 0.5308641357421875, 0.5310208129882813, 0.530787353515625, 0.5312348022460938, 0.5306480712890626, 0.5307863159179688, 0.5306419067382813, 0.5310637817382813, 0.530830322265625, 0.5309419555664062, 0.5309429931640625, 0.531325927734375, 0.5308753662109374, 0.5309122314453125, 0.5310187377929687, 0.5310218505859375, 0.5317243041992188, 0.5311610717773437, 0.5310167236328125, 0.5312348022460938, 0.530935791015625, 0.5312266235351563, 0.53100439453125, 0.5311580200195313, 0.5308682250976563, 0.5309685668945312, 0.5309716186523438, 0.5314590454101562, 0.5310986328125, 0.53151025390625, 0.5308231811523437, 0.5309214477539063, 0.5307422485351563, 0.5312634887695312, 0.5309501342773437, 0.5314273071289063, 0.530819091796875, 0.53110986328125, 0.5307781372070313, 0.53089892578125, 0.5306757202148438, 0.53097265625, 0.5308671875, 0.530881591796875, 0.5306766967773437, 0.53083544921875, 0.5309061279296875, 0.5309368286132813, 0.531083251953125, 0.5310986328125, 0.531441650390625, 0.531240966796875, 0.5315379028320313, 0.5314641723632813, 0.5310187377929687, 0.5314037475585938, 1.103942626953125, 0.5305426025390625, 0.5309706420898438, 0.530461669921875, 0.5309747314453125, 0.530756591796875, 0.5311068115234375, 0.5308692626953125, 0.5308150024414062, 0.5308845825195313, 0.5310484619140625, 0.5306859741210938, 0.5307606811523438, 0.5305077514648437, 0.5314058227539062, 0.53094091796875, 0.5307955322265625, 0.5311867065429687, 0.53100341796875, 0.5308580322265625, 0.5310903930664063, 0.5308118896484375, 0.5307975463867187, 0.5306583251953125, 0.5308969116210938, 0.530861083984375, 0.5308999633789062, 0.5306531982421875, 0.5309398803710937, 0.5309183959960937, 0.5308845825195313, 0.530808837890625, 0.5309910888671875, 0.5313074951171874, 0.5310607299804687, 0.530740234375, 0.5311702880859375, 0.53077197265625, 0.5312318115234375, 0.5309869384765625, 0.5307576293945313, 0.5307412719726563, 0.5308344116210938, 0.5307822265625, 0.5309531860351563, 0.5305784301757812, 0.5323253784179688, 0.5312071533203125, 0.5312880859375, 0.5308795166015625, 0.5310740356445313, 0.5312593994140625, 0.5309235229492187, 0.531114990234375, 0.5311170654296875, 0.5312634887695312, 0.5309481201171875, 0.5309020385742188, 0.5311262817382812, 0.5310023803710937, 0.5309122924804688, 0.5308917236328125, 0.5311027221679687, 1.100294189453125, 0.5306101684570312, 0.530904052734375, 0.5310392456054688, 0.5307822265625, 0.530640869140625, 0.5311344604492187, 0.5307207641601562, 0.531220458984375, 0.5305763549804687, 0.530935791015625, 0.5307678833007813, 0.5314918212890625, 0.5320335083007812, 0.5323519897460938, 0.5317181396484375, 0.5310802001953125, 0.5309747314453125, 0.5312337646484375, 0.5312235717773437, 0.5314109497070313, 0.5310474243164063, 0.5315625, 0.5313208618164063, 0.5311416015625, 0.531430419921875, 0.5316690063476562, 0.5314365234375, 0.531483642578125, 0.530713623046875, 0.5309296875, 0.5309389038085938, 0.5307412719726563, 0.5305579223632813, 0.530681884765625, 0.5306705932617187, 0.5307053833007812, 0.5305855712890625, 0.5307422485351563, 0.53066650390625, 0.5308958740234375, 0.532068359375, 0.532295654296875, 0.5322301635742187, 0.5322598266601563, 0.5318870849609375, 0.5309050903320313, 0.5312890625, 0.5309685668945312, 0.5306531982421875, 0.5310576782226563, 0.530798583984375, 0.5307260131835938, 0.5306234130859375, 0.5307207641601562, 0.5306265869140625, 0.5307678833007813, 0.530714599609375, 0.5308375244140625, 0.53097265625, 0.5309849853515625, 0.5310422973632812, 0.5310628051757813, 1.1018045654296875, 0.5307658081054687, 0.5312337646484375, 0.5306675415039063, 0.5308784790039063, 0.5308600463867188, 0.5310167236328125, 0.531009521484375, 0.5312532348632812, 0.5308733520507812, 0.5311190795898437, 0.5311856689453125, 0.5314058227539062, 0.5310842895507812, 0.5315277099609375, 0.5310382080078125, 0.5311743774414063, 0.5315983276367188, 0.5321942749023437, 0.5316853637695312, 0.5308467407226563, 0.5309767456054687, 0.530850830078125, 0.5307125854492187, 0.5308641357421875, 0.5307555541992187, 0.5308436279296875, 0.5307218017578125, 0.5308006591796876, 0.5305630493164063, 0.5307371215820312, 0.530661376953125, 0.5308436889648438, 0.5309583129882812, 0.5307883911132812, 0.5307330322265625, 0.5312798461914062, 0.5310320434570313, 0.5316075439453125, 0.5309869995117188, 0.5313341674804688, 0.5305620727539062, 0.5311702880859375, 0.5308067626953125, 0.5318553466796875, 0.5307586669921875, 0.5308836059570312, 0.5307012939453125, 0.5307760620117188, 0.5307177124023438, 0.5308969116210938, 0.530735107421875, 0.5311006469726562, 0.5306951904296875, 0.5307473754882812, 0.5309122314453125, 0.5312890625, 0.5314263305664062, 0.530976806640625, 0.530935791015625, 0.530862060546875, 0.530808837890625, 0.5308170166015626, 1.100686279296875, 0.5305743408203125, 0.5307484130859375, 0.53056103515625, 0.5306112060546875, 0.5306911010742188, 0.5307637939453125, 0.5306419067382813, 0.5308395385742187, 0.530756591796875, 0.5308426513671874, 0.5308016357421875, 0.5311057739257813, 0.5309327392578125, 0.5313269653320313, 0.5308795166015625, 0.531177490234375, 0.5310422973632812, 0.53136279296875, 0.5311201171875, 0.5312051391601562, 0.53100439453125, 0.5311467895507812, 0.5310556030273438, 0.531061767578125, 0.5310576782226563, 0.5312481079101562, 0.5311692504882812, 0.5314559936523438, 0.5308375244140625, 0.5311375122070312, 0.5306767578125, 0.530946044921875, 0.53065625, 0.5307238159179688, 0.5309081420898437, 0.5308159790039062, 0.5306972045898437, 0.53074951171875, 0.5306746215820313, 0.5307698974609375, 0.5306572875976563, 0.530976806640625, 0.5309541625976563, 0.5310791625976562, 0.531009521484375, 0.5310802001953125, 0.5311498413085938, 0.5309020385742188, 0.5308917846679687, 0.5309102172851563, 0.5309030151367188, 0.5314529418945313, 0.5309439697265625, 0.5307105102539063, 0.5309010009765625, 0.5310361328125, 0.5321871337890625, 0.5309573364257812, 0.5309470825195313, 0.5312696533203125, 0.5320478515625, 0.5322874755859375, 1.10145947265625, 0.5313740844726562, 0.5319639282226563, 0.53125732421875, 0.5318215942382812, 0.5319761962890625, 0.5323817138671875, 0.5318543090820312, 0.5324503173828125, 0.53193115234375, 0.53076171875, 0.5305753784179688, 0.5308323974609375, 0.530567138671875, 0.5308436279296875, 0.5306286010742187, 0.5307053833007812, 0.5305753784179688, 0.53100341796875, 0.5306358032226562, 0.5310361328125, 0.5309552612304688, 0.5309389038085938, 0.53064501953125, 0.53108837890625, 0.5308590087890624, 0.5309389038085938, 0.5310259399414062, 0.5312952270507812, 0.5310709838867187, 0.5311764526367188, 0.5312491455078125, 0.5314150390625, 0.5312532348632812, 0.531252197265625, 0.5313546142578125, 0.531367919921875, 0.5319331665039062, 0.5335838623046875, 0.5311641845703124, 0.531441650390625, 0.5313925170898437, 0.5322434692382813, 0.5322864379882812, 0.5321441040039062, 0.532115478515625, 0.531388427734375, 0.5306961669921875, 0.53096240234375, 0.5312880859375, 0.53085693359375, 0.5306890869140625, 0.5307586059570313, 0.53071875, 0.5307207641601562, 0.53096240234375, 0.5315604248046875, 0.5309337768554687, 0.5310587158203125, 0.5309173583984375, 0.53144677734375, 0.530819091796875, 0.5310504760742187, 1.1015126953125, 0.5308446655273438, 0.53172021484375, 0.5307381591796875, 0.5307678833007813, 0.5306972045898437, 0.5308292846679687, 0.5307166748046875, 0.530808837890625, 0.5306388549804687, 0.5306736450195313, 0.5309235229492187, 0.5309235229492187, 0.53070849609375, 0.5309276123046875, 0.5306429443359375, 0.5307852783203125, 0.5307914428710937, 0.5309736938476562, 0.5309429931640625, 0.5308538818359375, 0.530862060546875, 0.530893798828125, 0.5308037109375, 0.530777099609375, 0.5308395385742187, 0.5308600463867188, 0.5307258911132813, 0.5308436279296875, 0.530629638671875, 0.531146728515625, 0.5308661499023437, 0.531294189453125, 0.5314826049804687, 0.5312481079101562, 0.53166796875, 0.5312839965820313, 0.53075048828125, 0.530819091796875, 0.5311170654296875, 0.5316137084960938, 0.5317027587890625, 0.5319608154296875, 0.5318799438476562, 0.5317857055664063, 0.531937255859375, 0.5316761474609375, 0.5316976928710937, 0.5317744750976563, 0.5308323974609375, 0.531051513671875, 0.5311907958984375, 0.5314478149414062, 0.531346435546875, 0.5310218505859375, 0.5310238647460938, 0.5312337646484375, 0.5313167114257813, 0.5308651733398437, 0.530703369140625, 0.5307924194335938, 0.5308026733398438, 0.5309132690429688, 1.1025264892578126, 0.53065625, 0.5309061279296875, 0.5318810424804687, 0.5307862548828125, 0.530639892578125, 0.53081396484375, 0.5309368286132813, 0.53110888671875, 0.5308538818359375, 0.5307095336914063, 0.5305200805664062, 0.5307893676757812, 0.5306808471679687, 0.530820068359375, 0.5304883422851563, 0.5308170166015626, 0.5304985961914063, 0.5307473754882812, 0.5305302734375, 0.5306531982421875, 0.530513916015625, 0.5310648193359375, 0.5307095336914063, 0.5307955322265625, 0.5309153442382812, 0.5314549560546875, 0.5309439697265625, 0.5312911376953126, 0.5316034545898437, 0.5309531860351563, 0.5309869995117188, 0.5310361328125, 0.5308016357421875, 0.5307443237304688, 0.5306705932617187, 0.5307801513671875, 0.530608154296875, 0.530639892578125, 0.5306634521484375, 0.5308221435546875, 0.5308283081054688, 0.5309696044921876, 0.5313065185546875, 0.5313300170898437, 0.5313269653320313, 0.5309522094726562, 0.531056640625, 0.5314488525390625, 0.5310975952148438, 0.5314590454101562, 0.53098291015625, 0.5310863647460937, 0.5309696044921876, 0.53103515625, 0.5311734008789063, 0.530808837890625, 0.530746337890625, 0.53139453125, 0.5307208251953125, 0.5316126708984374, 0.5313197631835938, 0.5314866943359375, 1.1037603759765624, 0.531114013671875, 0.5313157348632812, 0.5316669311523438, 0.5312061157226563, 0.5314129638671875, 0.5316454467773437, 0.531177490234375, 0.5316536865234375, 0.530905029296875, 0.5309481201171875, 0.5308477172851562, 0.5310320434570313, 0.5309378662109375, 0.5309757690429687, 0.5313228759765625, 0.5311948852539062, 0.5310637817382813, 0.5309552612304688, 0.5314559936523438, 0.5309481201171875, 0.5310003051757812, 0.5309910888671875, 0.5306224365234375, 0.5306593017578125, 0.5306255493164063, 0.5308753662109374, 0.5307627563476562, 0.5307576293945313, 0.530713623046875, 0.53089892578125, 0.530850830078125, 0.5307238159179688, 0.5306982421875, 0.5311590576171875, 0.530724853515625, 0.5312921752929688, 0.5312542724609375, 0.5312317504882812, 0.5316403198242188, 0.5309900512695312, 0.5310330810546875, 0.5311273193359375, 0.5309204711914063, 0.53094091796875, 0.5306009521484375, 0.530967529296875, 0.5310392456054688, 0.5308815307617187, 0.5307689208984375, 0.5308272705078125, 0.5306911010742188, 0.5308804931640625, 0.5311528930664062, 0.5310679321289062, 0.5312716674804687, 0.531794921875, 0.531114013671875, 0.5313935546875, 0.5312348022460938, 0.5312020263671875, 0.5310812377929688, 0.5309931640625, 1.102993408203125, 0.5305927124023437, 0.53087744140625, 0.530703369140625, 0.5310504760742187, 0.5310187377929687, 0.5312553100585937, 0.5311918334960938, 0.5312839965820313, 0.5307781372070313, 0.5309859619140626, 0.5311580200195313, 0.5308999633789062, 0.5308969116210938, 0.5311795043945312, 0.5306071166992188, 0.5307647705078125, 0.5309890747070313, 0.5307586669921875, 0.5306500854492188, 0.530893798828125, 0.530766845703125, 0.5308999633789062, 0.5307760620117188, 0.5306542358398437, 0.530555908203125, 0.5319547119140625, 0.53079345703125, 0.5315061645507813, 0.5311846313476563, 0.5316218872070313, 0.5312348022460938, 0.5321912231445313, 0.5312000122070313, 0.531431396484375, 0.5311488037109375, 0.5308743896484375, 0.530819091796875, 0.5310812377929688, 0.5307105102539063, 0.53081396484375, 0.5309736938476562, 0.53100439453125, 0.5308211059570312, 0.5308876953125, 0.5309081420898437, 0.5309849853515625, 0.5307340698242188, 0.53097265625, 0.5311795043945312, 0.5309010009765625, 0.5311529541015625, 0.5311456909179687, 0.5306522216796875, 0.5312962036132812, 0.5308641357421875, 0.5309163818359375, 0.5308590087890624, 0.5311928100585938, 0.5311190795898437, 0.5309706420898438, 0.530935791015625, 0.531294189453125]",tokens/s,1.8545496451794004,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-13b-hf,meta-llama/Llama-2-13b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2986.500096,9259.450368,0.0,8613.003264,8211.364864,s,10,10.947190917968749,1.094719091796875,0.002010850578895603,1.0950899047851563,1.0971980224609374,1.0974085205078123,1.0975769189453124,"[1.0976190185546875, 1.096309326171875, 1.0916474609375, 1.09289697265625, 1.0933328857421876, 1.0920892333984376, 1.0948057861328124, 1.0953740234375, 1.0959649658203126, 1.0971512451171874]",tokens/s,233.8499455415552,kWh,1.291276744670338e-05,7.073689176177139e-06,6.076365972199904e-05,8.075011634487956e-05,tokens/kWh,3170274.070029042,MB,2986.500096,9330.753536,0.0,8684.306432,8503.627264,s,10,640.9193046874999,64.09193046875,0.016181839642145233,64.08713867187501,64.11070859375,64.119698046875,64.126889609375,"[64.0750625, 64.08454296875, 64.0822421875, 64.076171875, 64.07810546875, 64.09387890625, 64.10216796875, 64.089734375, 64.1087109375, 64.1286875]",tokens/s,0.9829630585197867,kWh,0.0007566528167658381,0.00041471410911453853,0.003539824637413,0.004711191563293376,tokens/kWh,13372.413147208052,,s,629,649.7487822875972,1.0329869352743999,0.1300160071749506,1.0172456665039062,1.0179758178710938,1.0183352172851563,2.110224638671875,"[1.016637451171875, 1.0170296020507812, 1.017143310546875, 1.0172344360351562, 1.0165718994140625, 1.016827880859375, 1.0167459716796876, 1.0169722900390625, 1.0170675048828124, 1.01732861328125, 1.0169548950195313, 1.0172835693359374, 1.0170890502929688, 1.01718017578125, 1.016700927734375, 1.0168627319335937, 1.016974365234375, 1.01762353515625, 1.0176194458007812, 1.0171002807617187, 1.0172579956054688, 1.0172610473632813, 1.01688525390625, 1.0172958984375, 1.016853515625, 1.0170009765625, 1.0169313354492187, 1.0170941162109375, 1.0171217651367188, 1.0168176879882813, 1.016890380859375, 1.0176798706054688, 1.0172395629882813, 1.017396240234375, 1.0169989013671874, 1.0170675048828124, 1.0171791381835937, 1.0177362060546875, 1.0171443481445313, 1.0171986083984375, 1.017133056640625, 1.0175907592773437, 1.01686376953125, 1.0169241333007812, 1.0167664794921876, 1.0166435546875, 1.0166865844726563, 1.01715966796875, 1.0166220703125, 1.0169251708984375, 1.0169763793945312, 1.0173429565429688, 1.016700927734375, 1.0169528198242188, 1.016858642578125, 1.0169600219726562, 1.0173624267578125, 1.0173972778320313, 1.0168811645507811, 1.0170654907226562, 1.0171514892578124, 1.0170183715820313, 2.113563720703125, 1.0165084228515624, 1.0165995483398438, 1.01704296875, 1.0168893432617188, 1.0168678588867188, 1.0165933837890626, 1.01682275390625, 1.0167122192382811, 1.0169712524414063, 1.017650146484375, 1.0175662231445313, 1.0175538940429687, 1.0177986450195313, 1.0178928833007812, 1.016896484375, 1.0167449340820311, 1.0172692260742187, 1.0168688354492188, 1.0166507568359375, 1.0167510986328125, 1.0167859497070313, 1.0173839111328125, 1.0172303466796875, 1.0169999389648436, 1.0167675170898438, 1.0172876586914064, 1.0169815063476562, 1.0168299560546874, 1.0169784545898437, 1.0168616943359374, 1.0168115234375, 1.0175344848632812, 1.0173378295898436, 1.0172190551757812, 1.017038818359375, 1.0170572509765625, 1.01707568359375, 1.0168831787109376, 1.0171309814453124, 1.01711669921875, 1.01686376953125, 1.017228271484375, 1.0172507934570312, 1.01673779296875, 1.0168883056640625, 1.0183065795898438, 1.0170347290039063, 1.0172979125976562, 1.0179051513671875, 1.0176614379882813, 1.017459716796875, 1.017312255859375, 1.0175733642578124, 1.01785498046875, 1.0175313720703125, 1.0179799194335937, 1.0179594116210937, 1.01766552734375, 1.017586669921875, 1.017523193359375, 1.0172456665039062, 1.0174935302734376, 2.110212158203125, 1.01697021484375, 1.0170562744140625, 1.0166824951171876, 1.017027587890625, 1.0168463134765624, 1.0169794311523437, 1.0168719482421875, 1.0174310302734375, 1.0172272338867188, 1.0172548828125, 1.0166978759765626, 1.0173173828125, 1.0170009765625, 1.0174668579101562, 1.0170675048828124, 1.0172139282226562, 1.017228271484375, 1.0174627685546875, 1.0169548950195313, 1.0171443481445313, 1.0174464111328125, 1.0173347778320312, 1.0173265991210938, 1.0174474487304688, 1.0170040283203126, 1.0171893920898438, 1.0172518310546874, 1.0172119140625, 1.0169682006835938, 1.0171197509765626, 1.0175057983398437, 1.017186279296875, 1.017196533203125, 1.0173778076171875, 1.016795166015625, 1.0170050659179688, 1.0167817993164063, 1.017259033203125, 1.0169620361328124, 1.0171812133789062, 1.0173296508789063, 1.0171238403320313, 1.0170531616210938, 1.0173737182617189, 1.0171729736328126, 1.0174576416015626, 1.01732861328125, 1.0171401977539063, 1.0170521850585938, 1.0174976196289063, 1.017228271484375, 1.0171412353515625, 1.0169722900390625, 1.0173092041015626, 1.0171893920898438, 1.0174105834960938, 1.0172794799804687, 1.0174299926757813, 1.0173112182617188, 1.017143310546875, 1.0173870239257812, 1.0169405517578125, 2.1099970703125, 1.0165718994140625, 1.0168822021484376, 1.0171340942382812, 1.0167890014648437, 1.0165309448242188, 1.0165729370117187, 1.0171259155273438, 1.0168145751953126, 1.0167357177734375, 1.0166978759765626, 1.0165995483398438, 1.017038818359375, 1.017069580078125, 1.0168657836914063, 1.0166671142578125, 1.0169508056640626, 1.0168002319335938, 1.0168309936523436, 1.01686376953125, 1.0169978637695312, 1.0169108276367187, 1.0175303955078125, 1.017259033203125, 1.0170203857421876, 1.017275390625, 1.0176215209960937, 1.0172620849609375, 1.0172682495117187, 1.0177730712890625, 1.017175048828125, 1.0169896850585938, 1.0171904296875, 1.0173450317382813, 1.0171514892578124, 1.017196533203125, 1.0175733642578124, 1.0169241333007812, 1.0169774169921875, 1.016858642578125, 1.0170009765625, 1.01692724609375, 1.0172477416992187, 1.0172241821289063, 1.0172979125976562, 1.017185302734375, 1.0175098876953126, 1.0170951538085937, 1.0170142822265624, 1.016974365234375, 1.0171340942382812, 1.0168934326171875, 1.0171658325195312, 1.0174044189453124, 1.0170419311523438, 1.0170009765625, 1.01764404296875, 1.017259033203125, 1.0177556762695312, 1.0170634155273437, 1.0172395629882813, 1.0169517822265626, 1.0172119140625, 2.11085009765625, 1.0167725830078125, 1.017186279296875, 1.0167930908203124, 1.0171504516601562, 1.0169845581054688, 1.0168934326171875, 1.0167664794921876, 1.0167285766601561, 1.016658935546875, 1.0167992553710938, 1.0168207397460938, 1.0168862915039063, 1.016806396484375, 1.0169343872070313, 1.01682177734375, 1.0170880126953126, 1.0174935302734376, 1.0173870239257812, 1.0168729858398438, 1.016933349609375, 1.0174105834960938, 1.0178846435546876, 1.0173112182617188, 1.017037841796875, 1.0165770263671876, 1.0169405517578125, 1.0169047241210938, 1.0172682495117187, 1.017038818359375, 1.0169456787109374, 1.0170654907226562, 1.0172426147460938, 1.01705419921875, 1.0172129516601562, 1.0170951538085937, 1.0170245361328125, 1.017217041015625, 1.0174197998046874, 1.016669189453125, 1.016816650390625, 1.0169917602539063, 1.0169262084960937, 1.0170654907226562, 1.0176153564453125, 1.0173839111328125, 1.0169313354492187, 1.017007080078125, 1.0170951538085937, 1.0168402099609375, 1.0171781005859375, 1.0170706176757813, 1.017101318359375, 1.0171300048828125, 1.0170357666015626, 1.016890380859375, 1.0173296508789063, 1.0192701416015626, 1.0171207885742188, 1.0169364624023438, 1.0173163452148437, 1.0173982543945312, 1.0175610961914063, 2.1102294921875, 1.0168330078125, 1.0173009643554687, 1.0168422241210937, 1.0167633666992189, 1.016748046875, 1.017270263671875, 1.0175191040039062, 1.0172374877929689, 1.0172579956054688, 1.0169036865234375, 1.01722314453125, 1.0172927856445313, 1.0177249145507812, 1.01745458984375, 1.0174157104492187, 1.0179625244140624, 1.0174013671875, 1.017365478515625, 1.0170818481445312, 1.016953857421875, 1.0169129028320312, 1.01753857421875, 1.0170408935546875, 1.017248779296875, 1.01697021484375, 1.0176993408203125, 1.0169528198242188, 1.0168002319335938, 1.0170091552734375, 1.0168760375976562, 1.0173685913085937, 1.0181334838867186, 1.0179051513671875, 1.0173931274414063, 1.0176051025390624, 1.0173521728515624, 1.0176522216796875, 1.0186475219726563, 1.017776123046875, 1.0168862915039063, 1.0169896850585938, 1.0183987426757812, 1.01768603515625, 1.018186767578125, 1.017185302734375, 1.0171566162109376, 1.0170480346679687, 1.0171371459960938, 1.0170992431640624, 1.0172692260742187, 1.0174402465820314, 1.0176215209960937, 1.0168811645507811, 1.0169937744140625, 1.017322509765625, 1.0178201904296875, 1.0176041259765625, 1.0179737548828125, 1.017111572265625, 1.017365478515625, 1.0178099365234374, 1.0178980102539064, 2.113080322265625, 1.0174884033203124, 1.0172631225585937, 1.0174566650390624, 1.0172620849609375, 1.0167183227539063, 1.0171514892578124, 1.017007080078125, 1.017343994140625, 1.0170880126953126, 1.016985595703125, 1.0176143188476563, 1.0176163940429688, 1.0170951538085937, 1.0172026977539061, 1.0171873168945313, 1.0176123046875, 1.017691162109375, 1.0170316772460937, 1.0167756958007812, 1.0169569091796875, 1.0173972778320313, 1.0178017578125, 1.0174781494140626, 1.0178662109375, 1.0171248779296875, 1.017670654296875, 1.0176788330078126, 1.0176256103515624, 1.0175354614257812, 1.0175897827148437, 1.0182471923828125, 1.01829736328125, 1.0176644897460938, 1.018271728515625, 1.0174146728515625, 1.0175713500976562, 1.0185062255859374, 1.0173245239257813, 1.0170501098632811, 1.0175221557617187, 1.0181396484375, 1.01762353515625, 1.0171248779296875, 1.0179276733398437, 1.0172764282226563, 1.0176091918945311, 1.0178416748046875, 1.0178385620117187, 1.0172415771484375, 1.0178160400390626, 1.0175958862304688, 1.0175139770507813, 1.0184058837890626, 1.0174474487304688, 1.0172610473632813, 1.0176348266601563, 1.0172989501953125, 1.0170726318359375, 1.0170726318359375, 1.0176849975585938, 1.0169343872070313, 1.0174033813476562, 2.112878662109375, 1.016953857421875, 1.0167767333984374, 1.0172262573242188, 1.017343994140625, 1.0176256103515624, 1.017802734375, 1.0175139770507813, 1.0169364624023438, 1.0173214721679686, 1.0175713500976562, 1.0171924438476563, 1.0175733642578124, 1.01711767578125, 1.0170449829101562, 1.0170040283203126, 1.0178385620117187, 1.0171453247070312, 1.0173972778320313, 1.0172129516601562, 1.0172528686523437, 1.0171781005859375, 1.0176245727539062, 1.01760205078125, 1.0175027465820312, 1.01718017578125, 1.017638916015625, 1.017111572265625, 1.0172241821289063, 1.0173060913085938, 1.017427978515625, 1.0172743530273438, 1.0173153076171875, 1.0171094970703125, 1.0171586303710938, 1.0175293579101563, 1.0171494140625, 1.0172057495117188, 1.0173634643554688, 1.0171945190429688, 1.0169733276367188, 1.0171525268554686, 1.0175272827148438, 1.0170572509765625, 1.0170685424804689, 1.0172467041015625, 1.01697021484375, 1.0168197021484375, 1.0174822387695313, 1.0170521850585938, 1.0171043701171876, 1.0171340942382812, 1.0171760864257813, 1.0169978637695312, 1.01732763671875, 1.0172794799804687, 1.0176839599609375, 1.017469970703125, 1.0180280151367187, 1.0174791870117188, 1.017849853515625, 1.0173368530273437, 1.01711669921875, 2.113290283203125, 1.017007080078125, 1.0168678588867188, 1.01684326171875, 1.0171268920898437, 1.016648681640625, 1.0167285766601561, 1.0171514892578124, 1.0172190551757812, 1.0169129028320312, 1.0168606567382812, 1.0169886474609375, 1.0172241821289063, 1.0173921508789063, 1.0177730712890625, 1.016896484375, 1.0171392211914063, 1.0172139282226562, 1.0171043701171876, 1.0171217651367188, 1.0177310791015626, 1.01746484375, 1.017628662109375, 1.017260009765625, 1.0183670043945312, 1.0173040771484374, 1.0178580322265625, 1.0175846557617187, 1.01725390625, 1.01791845703125, 1.0185062255859374, 1.0173634643554688, 1.0173931274414063, 1.0182645874023437, 1.0179307250976561, 1.0173163452148437, 1.0178989868164063, 1.0175098876953126, 1.0173235473632813, 1.0175590209960939, 1.01777099609375, 1.0175580444335937, 1.0173604125976563, 1.0171300048828125, 1.0181734619140625, 1.0173685913085937, 1.0175887451171874, 1.01719140625, 1.017218017578125, 1.0171586303710938, 1.0180546264648438, 1.0181591186523438, 1.0179061889648438, 1.0179747924804687, 1.0184212646484374, 1.0185728149414062, 1.0190858154296876, 1.0186967163085938, 1.0185779418945313, 1.0188789672851561, 1.0184888305664062, 1.0182215576171876, 1.01819189453125, 2.114828369140625, 1.0173347778320312, 1.0177095947265624, 1.0177669067382813, 1.0172406005859376, 1.0176143188476563, 1.017554931640625, 1.0172661743164062, 1.0174033813476562, 1.0175989990234375, 1.0177607421875, 1.0175191040039062, 1.0183218994140626, 1.0180669555664061, 1.0179829711914063, 1.0176931762695312, 1.0172927856445313, 1.0174801635742188, 1.0174003295898437, 1.0175467529296875, 1.0174320678710937, 1.0178211669921875, 1.0185543823242187, 1.0174586791992188, 1.0178580322265625, 1.0182103271484375, 1.0180054931640625, 1.0179921875, 1.0187222900390625, 1.0177330932617188, 1.0182236328125, 1.0179921875, 1.0184345703125, 1.0186956787109376, 1.018313720703125, 1.0182072143554688, 1.0180147094726562, 1.0174085083007813, 1.01800244140625, 1.0174351196289062, 1.0173193969726562, 1.0178539428710938, 1.0183413696289063, 1.0178672485351563, 1.0183229370117188, 1.0190479125976561, 1.01767578125, 1.0170265502929687, 1.0175949096679688, 1.0170900268554688, 1.0174924926757813, 1.0183259887695313, 1.0185646362304688, 1.0176317138671875, 1.0183250122070313, 1.0178457641601562, 1.018119140625, 1.01793994140625, 1.0190244140625, 1.0184181518554687, 1.0175703125, 1.0174607543945313, 1.0177362060546875]",tokens/s,0.9680664545233214,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistralai/Mistral-7B-v0.1,mistralai/Mistral-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2055.856128,6201.802752,0.0,5555.355648,5273.986048,s,10,6.166099914550782,0.6166099914550782,0.001805187295356428,0.6164970397949219,0.6192070678710938,0.619502490234375,0.619738828125,"[0.6174358520507812, 0.6152646484375, 0.6157444458007812, 0.6149035034179687, 0.615364013671875, 0.6138878173828125, 0.6173106689453125, 0.6197979125976563, 0.6172496337890625, 0.6191414184570313]",tokens/s,415.1732919472978,kWh,7.25516759687e-06,3.97553441218727e-06,3.4973328632232774e-05,4.6204030641290036e-05,tokens/kWh,5540642.157120091,MB,2055.856128,6201.802752,0.0,5555.355648,5324.908032,s,10,365.7995859375,36.57995859374999,0.035939708288129694,36.562037109375,36.625498828125,36.6277962890625,36.6296342578125,"[36.623765625, 36.5703828125, 36.55220703125, 36.541484375, 36.54166015625, 36.54937890625, 36.62498828125, 36.55369140625, 36.61193359375, 36.63009375]",tokens/s,1.7222545465309549,kWh,0.0004313527007732127,0.00023641881037992466,0.002030578407141164,0.002698349918294301,tokens/kWh,23347.602018875292,,s,629,370.76827941894544,0.5894567240364791,0.07322585165475656,0.5803335571289062,0.5820514404296875,0.5823793212890626,1.195406015625,"[0.5803048706054688, 0.5797140502929687, 0.5794703369140625, 0.5797222290039062, 0.57939453125, 0.5800867919921875, 0.5797529296875, 0.5800857543945312, 0.5802291259765625, 0.5800048828125, 0.5795665893554688, 0.5795399780273438, 0.580042724609375, 0.5822300415039062, 0.5817169799804688, 0.5822146606445312, 0.5819473876953125, 0.5820886840820313, 0.5811210327148437, 0.582023193359375, 0.5814353637695312, 0.581949462890625, 0.580401123046875, 0.5816944580078125, 0.5808414916992187, 0.5820006103515625, 0.5810022583007812, 0.5814302978515625, 0.581444580078125, 0.5812797241210937, 0.5823364868164063, 0.5824470825195313, 0.5824716796875, 0.5824655151367187, 0.581918701171875, 0.5819730224609375, 0.58178662109375, 0.5807022094726563, 0.5815429077148437, 0.5823539428710938, 0.5825064697265625, 0.5821757202148438, 0.5818603515625, 0.5820498046875, 0.582350830078125, 0.5819617919921874, 0.5816124877929687, 0.5811609497070312, 0.5808312377929687, 0.582739990234375, 0.5819484252929688, 0.5809541015625, 0.5825567016601563, 0.5805885620117187, 0.5814404907226562, 0.581485595703125, 0.581022705078125, 0.5828966674804688, 0.5815776977539062, 0.5818429565429688, 0.5819647827148438, 0.5811875610351562, 1.1957647705078125, 0.5814425659179687, 0.5816586303710938, 0.5816115112304687, 0.5822146606445312, 0.5820579833984375, 0.5818347778320313, 0.5802680053710938, 0.5797498779296875, 0.5799751586914063, 0.5797396240234375, 0.5802352905273438, 0.5802066040039062, 0.580453369140625, 0.5803786010742188, 0.5806100463867188, 0.5803131103515625, 0.5797007446289062, 0.5798512573242187, 0.5799127197265626, 0.5799597778320312, 0.5807144775390625, 0.5798113403320313, 0.579999755859375, 0.5794037475585937, 0.5798748168945312, 0.5804503173828125, 0.5799270629882812, 0.5803120727539063, 0.5800960083007812, 0.5797396240234375, 0.5799884643554688, 0.5807646484375, 0.5804298095703125, 0.5802833862304687, 0.5804861450195312, 0.5813104858398438, 0.5805506591796875, 0.581159912109375, 0.5806080932617188, 0.5819862670898438, 0.5803499755859375, 0.5799393310546875, 0.5800376586914062, 0.5834240112304687, 0.5802772216796875, 0.5810247802734375, 0.5808568115234375, 0.58094287109375, 0.5806510009765625, 0.580552734375, 0.580220947265625, 0.5798553466796875, 0.5802045288085937, 0.5803714599609375, 0.5809602661132812, 0.5803591918945312, 0.5802659912109375, 0.5799219360351563, 0.5800376586914062, 0.57982568359375, 0.5798696899414062, 0.579905517578125, 1.19632080078125, 0.5800499267578125, 0.5804564208984375, 0.5798563842773438, 0.5799393310546875, 0.57995263671875, 0.5803939819335937, 0.5799925537109375, 0.5806735229492187, 0.5805301513671876, 0.5799966430664063, 0.5798082275390625, 0.5798707275390625, 0.5796608276367188, 0.579547119140625, 0.5798369140625, 0.5801513061523438, 0.57986767578125, 0.5802199096679688, 0.5796167602539063, 0.5794580688476563, 0.5797939453125, 0.5794334716796875, 0.5804932861328125, 0.5801594848632813, 0.5801451416015625, 0.5808414916992187, 0.5797929077148437, 0.5807810668945312, 0.5800017700195312, 0.5802393798828125, 0.5800509643554688, 0.5801564331054687, 0.5809776611328125, 0.579979248046875, 0.580262939453125, 0.5801871337890625, 0.58008984375, 0.58040625, 0.5803786010742188, 0.5804656372070313, 0.5801768798828125, 0.5805813598632813, 0.5812029418945313, 0.5800724487304687, 0.5806858520507813, 0.5798379516601563, 0.580527099609375, 0.5803837280273437, 0.5800488891601563, 0.5802803344726563, 0.5804451904296875, 0.5802803344726563, 0.58022607421875, 0.580389892578125, 0.5802311401367187, 0.580168701171875, 0.5799096069335937, 0.580010986328125, 0.5800120239257812, 0.5806653442382812, 0.5806591796875, 0.5803489379882812, 1.1951103515625, 0.5797929077148437, 0.579947509765625, 0.579768310546875, 0.5811712036132812, 0.5812357177734375, 0.58012060546875, 0.5796597900390625, 0.5797007446289062, 0.5796484985351562, 0.5794017333984375, 0.580021240234375, 0.5799884643554688, 0.5799659423828125, 0.5805444946289062, 0.5804830932617188, 0.5801144409179687, 0.5799618530273437, 0.5795880737304687, 0.579757080078125, 0.579483642578125, 0.5798082275390625, 0.5797939453125, 0.5796690063476563, 0.5802239990234375, 0.57957275390625, 0.5796597900390625, 0.5793659057617188, 0.5799301147460938, 0.579904541015625, 0.5796874389648438, 0.580485107421875, 0.5801973876953125, 0.5806879272460937, 0.5800631713867187, 0.579857421875, 0.5803335571289062, 0.5799208984375, 0.5803970336914063, 0.5798604736328125, 0.5801195678710938, 0.5799127197265626, 0.5803151245117187, 0.5800714111328125, 0.5800929565429688, 0.5801134033203125, 0.579852294921875, 0.580485107421875, 0.5806182250976563, 0.5799198608398437, 0.5808701171875, 0.5802598266601563, 0.5800806274414062, 0.5799147338867188, 0.5800150756835938, 0.5798461303710938, 0.5798594360351562, 0.5798338623046875, 0.5796372680664063, 0.5799874267578125, 0.5799168090820312, 0.57957373046875, 0.580232177734375, 1.19552099609375, 0.5814528198242187, 0.5798369140625, 0.5804021606445312, 0.579589111328125, 0.5795419921875, 0.5797027587890625, 0.5801830444335937, 0.5802567749023437, 0.5800621948242187, 0.57980517578125, 0.5795338134765625, 0.5802721557617188, 0.5796618041992188, 0.5800499267578125, 0.57969970703125, 0.5798021240234374, 0.58012158203125, 0.581080078125, 0.5802280883789063, 0.5805322265625, 0.5801748657226562, 0.57978369140625, 0.5796332397460937, 0.57942626953125, 0.5793402709960938, 0.5803540649414063, 0.5799547119140624, 0.579684326171875, 0.5799802856445313, 0.5798615112304687, 0.5798123779296875, 0.579684326171875, 0.5798983764648438, 0.5798276977539063, 0.579751953125, 0.58046875, 0.5798799438476563, 0.5800233154296875, 0.5798615112304687, 0.5794273071289062, 0.5798963012695313, 0.5797560424804687, 0.5802567749023437, 0.5799588012695313, 0.5798819580078125, 0.5800070190429687, 0.5797190551757813, 0.5804554443359375, 0.5799905395507813, 0.58028955078125, 0.5803919067382812, 0.5802905883789062, 0.5805660400390625, 0.579968994140625, 0.5803079833984375, 0.5797980346679688, 0.580832275390625, 0.580274169921875, 0.5802926025390625, 0.58039501953125, 0.57959423828125, 0.5799966430664063, 1.19406689453125, 0.579810302734375, 0.5797396240234375, 0.5796720581054687, 0.5796259765625, 0.5796741333007812, 0.5809397583007813, 0.5795031127929687, 0.5802731323242187, 0.5795594482421875, 0.5797140502929687, 0.579177490234375, 0.5797734375, 0.5801287841796875, 0.5797498779296875, 0.5798656005859375, 0.5796587524414063, 0.5798328247070312, 0.5797969970703125, 0.5797437744140626, 0.5796495361328124, 0.5797191772460938, 0.5803560791015625, 0.5800233154296875, 0.5815418701171875, 0.5802926025390625, 0.5799188232421875, 0.5799495849609375, 0.5795277099609375, 0.5796403198242187, 0.5796351928710938, 0.5801963500976562, 0.5797037963867188, 0.5795000610351563, 0.5798338623046875, 0.5798881225585938, 0.5797590942382812, 0.5800130615234375, 0.58073193359375, 0.5800908813476563, 0.5806469116210937, 0.5811783447265625, 0.5802403564453125, 0.5803519897460937, 0.58052197265625, 0.5798973388671875, 0.5800233154296875, 0.5798533325195312, 0.5805916137695313, 0.5798184814453125, 0.5794979858398438, 0.579715087890625, 0.5797007446289062, 0.5794171142578125, 0.5801093139648438, 0.58170166015625, 0.5814415283203125, 0.5815838623046875, 0.5820006103515625, 0.57984716796875, 0.5823866577148438, 0.5812367553710938, 0.5812715454101562, 1.19872412109375, 0.5820743408203125, 0.5816565551757813, 0.582371337890625, 0.5821552734375, 0.5816156005859375, 0.5810933837890625, 0.5808988037109375, 0.5822463989257812, 0.5805066528320313, 0.5815418701171875, 0.5819443359375, 0.5820221557617188, 0.5824573364257812, 0.58057421875, 0.5815746459960938, 0.5819218139648438, 0.581970947265625, 0.5814149169921875, 0.58176513671875, 0.5813401489257812, 0.5796444091796875, 0.5797304077148437, 0.57986767578125, 0.57969970703125, 0.5803519897460937, 0.581917724609375, 0.5818121948242188, 0.5813934326171875, 0.5819647827148438, 0.5817763671875, 0.5821880493164062, 0.5812572021484375, 0.5817692260742188, 0.58166064453125, 0.5815797729492187, 0.5820784912109375, 0.5817958374023438, 0.5818296508789063, 0.581411865234375, 0.58090087890625, 0.5812305908203125, 0.5817753295898438, 0.581781494140625, 0.5817088012695313, 0.5801287841796875, 0.5828178100585938, 0.5812131958007812, 0.5801339111328125, 0.5819945068359375, 0.5805414428710938, 0.5801564331054687, 0.58094384765625, 0.5817108764648438, 0.5819852905273437, 0.5817589721679688, 0.5808824462890625, 0.580969482421875, 0.5814876098632813, 0.5799014282226562, 0.5799772338867187, 0.5808035888671875, 0.5819320068359375, 1.200752685546875, 0.5804697875976562, 0.5798113403320313, 0.5795338134765625, 0.57959423828125, 0.5793955688476562, 0.5800294189453125, 0.579673095703125, 0.5795379028320312, 0.5792747802734375, 0.57942529296875, 0.5792655639648437, 0.579324951171875, 0.5791590576171874, 0.579515380859375, 0.5797427368164062, 0.5802495727539062, 0.5797744750976562, 0.58040625, 0.5798430786132812, 0.5793853149414062, 0.5796864013671875, 0.5795184936523438, 0.5801082763671875, 0.5802659912109375, 0.5800826416015625, 0.5807779541015625, 0.5820303344726563, 0.5817589721679688, 0.5796484985351562, 0.5796925659179688, 0.580094970703125, 0.5802587890625, 0.5804124145507813, 0.5822156982421876, 0.5799669799804688, 0.5799188232421875, 0.5803817138671875, 0.5797427368164062, 0.5796126708984375, 0.5807124633789063, 0.5810831298828125, 0.5797539672851563, 0.579541015625, 0.5795164184570313, 0.5796055297851562, 0.5795983276367187, 0.5792973022460938, 0.5793689575195312, 0.5794713745117187, 0.5795768432617188, 0.5799382934570313, 0.5819227905273437, 0.5818388671875, 0.581307373046875, 0.5798348999023437, 0.5799434204101562, 0.5802772216796875, 0.5826939086914062, 0.5821061401367188, 0.582097900390625, 0.5818736572265625, 0.5818245239257812, 1.197048828125, 0.5797693481445313, 0.5795419921875, 0.579435546875, 0.5806448364257812, 0.580769775390625, 0.5797642211914062, 0.5793648681640625, 0.5799239501953125, 0.579820556640625, 0.5798553466796875, 0.5799976806640625, 0.5800867919921875, 0.5793955688476562, 0.579800048828125, 0.5796505737304688, 0.5797386474609375, 0.5797744750976562, 0.5809653930664063, 0.58010009765625, 0.5795747680664063, 0.5806735229492187, 0.5816740112304688, 0.5815050048828125, 0.5816995849609375, 0.581855224609375, 0.5821460571289062, 0.5816473388671874, 0.5822300415039062, 0.5816422119140625, 0.5811865844726563, 0.58155517578125, 0.5818736572265625, 0.5809817504882813, 0.5813842163085937, 0.5811926879882813, 0.5820927734375, 0.5812623291015625, 0.5827706909179687, 0.582930419921875, 0.5829867553710938, 0.58191259765625, 0.5821531982421875, 0.5811548461914062, 0.5818746948242187, 0.5817907104492187, 0.5817804565429687, 0.5819412231445312, 0.5816668090820313, 0.5811885986328125, 0.5814149169921875, 0.5814466552734375, 0.5809336547851562, 0.581085205078125, 0.5813053588867187, 0.581718017578125, 0.5829119873046875, 0.582118408203125, 0.5821614379882812, 0.5819883422851563, 0.5823518676757813, 0.5817088012695313, 0.5822545776367187, 1.201244140625, 0.580126708984375, 0.5799127197265626, 0.5811712036132812, 0.5819514770507812, 0.5811456298828125, 0.5812008666992188, 0.5814640502929688, 0.5819463500976563, 0.5820886840820313, 0.5823846435546876, 0.580305908203125, 0.5809714965820313, 0.5801236572265625, 0.5817006225585938, 0.5822177124023438, 0.5816535034179687, 0.5801830444335937, 0.58051171875, 0.5805444946289062, 0.5798604736328125, 0.5808660278320312, 0.5804462280273438, 0.5811814575195312, 0.5804677124023437, 0.581433349609375, 0.5835038452148438, 0.5813534545898438, 0.5819402465820313, 0.5816535034179687, 0.58176513671875, 0.5820324096679688, 0.5815357666015625, 0.5827686157226563, 0.582540283203125, 0.5820057373046875, 0.5823068237304687, 0.58144970703125, 0.5820303344726563, 0.5807462158203125, 0.5822003173828125, 0.5823150024414062, 0.5814906616210938, 0.5829560546875, 0.5828761596679688, 0.5815275268554687, 0.5806663818359376, 0.5816873168945312, 0.5818255615234375, 0.58170166015625, 0.5825853271484375, 0.5802014770507813, 0.5799505615234375, 0.5799178466796875, 0.581676025390625, 0.5818982543945312, 0.5817825317382812, 0.5805660400390625, 0.581728271484375, 0.581496826171875, 0.5820068359375, 0.5809755859375, 0.5805465087890626]",tokens/s,1.6964773820072907,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-32B,Qwen/Qwen1.5-32B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,4461.907968,24111.480832,0.0,23465.033728,21690.932224,s,10,26.134937744140625,2.6134937744140623,0.002110944060506743,2.6131138916015626,2.6165289794921875,2.616893395996094,2.617184929199219,"[2.61349365234375, 2.615531005859375, 2.611662353515625, 2.612973388671875, 2.612295654296875, 2.611193115234375, 2.61325439453125, 2.616447998046875, 2.6172578125, 2.610828369140625]",tokens/s,97.95317000798843,kWh,3.0828719950384564e-05,1.6895240036155882e-05,0.0001496905919745939,0.00019741455196113433,tokens/kWh,1296763.5741989252,MB,4461.907968,24111.480832,0.0,23465.033728,21890.217984,s,10,1550.2514375,155.02514375,0.01758597574684522,155.027953125,155.04441406249998,155.04866796875,155.05207109375002,"[155.040484375, 155.052921875, 155.004375, 155.03190625, 155.025, 155.03090625, 155.00465625, 154.996828125, 155.020890625, 155.04346875]",tokens/s,0.4063856899342497,kWh,0.0018302277258535225,0.001003126846851137,0.008909165071770808,0.01174251964447547,tokens/kWh,5365.117701092351,,s,629,1571.3079760742191,2.498104890420062,0.3103664945461323,2.460632080078125,2.46187294921875,2.4623572265625002,5.0725159374999995,"[2.460918701171875, 2.46082666015625, 2.461980712890625, 2.4610048828125, 2.460906494140625, 2.46040576171875, 2.46205126953125, 2.4613447265625, 2.461484130859375, 2.4613662109375, 2.461151123046875, 2.461115478515625, 2.460440673828125, 2.460030029296875, 2.461190185546875, 2.460876708984375, 2.460451904296875, 2.460170166015625, 2.463140869140625, 2.46112060546875, 2.46163671875, 2.46084814453125, 2.463774658203125, 2.461010986328125, 2.4610498046875, 2.46070263671875, 2.461833251953125, 2.460528564453125, 2.4617880859375, 2.46072021484375, 2.461929443359375, 2.4613662109375, 2.46120849609375, 2.46112060546875, 2.4614892578125, 2.459990966796875, 2.461517822265625, 2.4609638671875, 2.46169189453125, 2.460205078125, 2.460928955078125, 2.461189208984375, 2.459634765625, 2.45965625, 2.45981396484375, 2.459525146484375, 2.459683837890625, 2.46053369140625, 2.46042529296875, 2.459734130859375, 2.461192138671875, 2.46074072265625, 2.46057470703125, 2.46108154296875, 2.46078564453125, 2.46036474609375, 2.461035400390625, 2.4617646484375, 2.460655517578125, 2.461253662109375, 2.461116455078125, 2.46118505859375, 5.0779052734375, 2.461738037109375, 2.461781982421875, 2.461154296875, 2.463372314453125, 2.462037109375, 2.462613525390625, 2.462189453125, 2.46213427734375, 2.46221923828125, 2.462265380859375, 2.462834716796875, 2.461442138671875, 2.460442626953125, 2.460788818359375, 2.460884033203125, 2.46097509765625, 2.461346923828125, 2.46034130859375, 2.460333984375, 2.46076318359375, 2.461075439453125, 2.460369873046875, 2.459978759765625, 2.4613203125, 2.461739013671875, 2.460712890625, 2.461740966796875, 2.46230322265625, 2.462064697265625, 2.4611767578125, 2.4604365234375, 2.46226318359375, 2.46073046875, 2.461908935546875, 2.4604140625, 2.4613857421875, 2.460633056640625, 2.46066796875, 2.459797607421875, 2.460780517578125, 2.46072119140625, 2.46026025390625, 2.4598271484375, 2.46049169921875, 2.46009765625, 2.460492919921875, 2.46042529296875, 2.461200439453125, 2.461295654296875, 2.460458984375, 2.461582275390625, 2.46042822265625, 2.460832763671875, 2.461412353515625, 2.460978271484375, 2.460579833984375, 2.4606044921875, 2.460789794921875, 2.460420166015625, 2.4605654296875, 2.461767578125, 2.46121875, 5.0727412109375, 2.4607958984375, 2.46120751953125, 2.4612392578125, 2.460706787109375, 2.46135595703125, 2.46187109375, 2.461371337890625, 2.4605634765625, 2.46158642578125, 2.46133251953125, 2.46209326171875, 2.46131103515625, 2.461284423828125, 2.46093212890625, 2.46143798828125, 2.460158935546875, 2.460937255859375, 2.459987060546875, 2.4602919921875, 2.460261474609375, 2.460375, 2.460521484375, 2.461273193359375, 2.46073046875, 2.46131396484375, 2.460286865234375, 2.46070263671875, 2.459401123046875, 2.460560302734375, 2.460210205078125, 2.4605859375, 2.459334716796875, 2.46042822265625, 2.460444580078125, 2.460652587890625, 2.4594482421875, 2.459885498046875, 2.459210693359375, 2.459854736328125, 2.45916162109375, 2.459714599609375, 2.45982421875, 2.45997265625, 2.460665771484375, 2.461526123046875, 2.459255859375, 2.4603525390625, 2.460240966796875, 2.460114990234375, 2.459881591796875, 2.46009765625, 2.459779052734375, 2.45985791015625, 2.459809814453125, 2.459896728515625, 2.459599853515625, 2.459850830078125, 2.459740234375, 2.459671630859375, 2.459470947265625, 2.45933984375, 2.4605419921875, 5.07296044921875, 2.459979736328125, 2.460074951171875, 2.460875732421875, 2.46111328125, 2.461024169921875, 2.4617041015625, 2.45998583984375, 2.461939697265625, 2.4617861328125, 2.46111328125, 2.460988525390625, 2.460284912109375, 2.460103759765625, 2.4607939453125, 2.461890625, 2.46074072265625, 2.4606279296875, 2.46205224609375, 2.46086865234375, 2.461393798828125, 2.461231201171875, 2.462035888671875, 2.4613251953125, 2.462630859375, 2.460718017578125, 2.46099853515625, 2.460675048828125, 2.4612158203125, 2.460883056640625, 2.461149169921875, 2.461590576171875, 2.4607939453125, 2.460654541015625, 2.460872802734375, 2.461231201171875, 2.46080712890625, 2.461241455078125, 2.46087158203125, 2.459632568359375, 2.460600341796875, 2.460632080078125, 2.46099365234375, 2.460303466796875, 2.46082568359375, 2.462000244140625, 2.461948974609375, 2.4596806640625, 2.460571533203125, 2.460125244140625, 2.46019677734375, 2.45987841796875, 2.46080810546875, 2.460212158203125, 2.460813232421875, 2.45957421875, 2.46019384765625, 2.460409912109375, 2.459958251953125, 2.45973095703125, 2.460412841796875, 2.46169384765625, 2.46048046875, 5.07272607421875, 2.461116455078125, 2.460166259765625, 2.461013916015625, 2.460505126953125, 2.46078662109375, 2.461305908203125, 2.4609658203125, 2.460851318359375, 2.461484130859375, 2.4605869140625, 2.4610498046875, 2.4601630859375, 2.46051318359375, 2.4606064453125, 2.461643798828125, 2.461190185546875, 2.461765625, 2.46075390625, 2.4614091796875, 2.460251220703125, 2.4604609375, 2.460229736328125, 2.460904541015625, 2.46035546875, 2.460232666015625, 2.46175439453125, 2.462803955078125, 2.4607958984375, 2.461580322265625, 2.461107177734375, 2.461393798828125, 2.460929931640625, 2.460676025390625, 2.461404052734375, 2.460982177734375, 2.460367919921875, 2.4600791015625, 2.4596552734375, 2.460010498046875, 2.45901318359375, 2.4592802734375, 2.46055224609375, 2.460517333984375, 2.459428955078125, 2.46019384765625, 2.460880859375, 2.4609208984375, 2.459928466796875, 2.46034423828125, 2.460252197265625, 2.460788818359375, 2.460273681640625, 2.45994287109375, 2.460907470703125, 2.4596796875, 2.460264404296875, 2.460949462890625, 2.460282958984375, 2.4613427734375, 2.462763916015625, 2.461613037109375, 2.460632080078125, 5.0719755859375, 2.462064697265625, 2.46147998046875, 2.46153515625, 2.461073486328125, 2.460905517578125, 2.461240234375, 2.460853271484375, 2.461421630859375, 2.462041015625, 2.46237890625, 2.46096484375, 2.461697998046875, 2.4613037109375, 2.461698974609375, 2.460219482421875, 2.462074951171875, 2.460283935546875, 2.459872314453125, 2.46007080078125, 2.45981689453125, 2.460726318359375, 2.459724853515625, 2.45985888671875, 2.460906494140625, 2.46042822265625, 2.46017626953125, 2.460051513671875, 2.46018359375, 2.46103759765625, 2.460602294921875, 2.46068212890625, 2.461318115234375, 2.460810302734375, 2.4603740234375, 2.46188037109375, 2.462437255859375, 2.460948486328125, 2.460538818359375, 2.460599365234375, 2.461042724609375, 2.46105712890625, 2.45985595703125, 2.46139697265625, 2.46086865234375, 2.460706787109375, 2.46046826171875, 2.4603740234375, 2.461024169921875, 2.4599951171875, 2.460008544921875, 2.460411865234375, 2.4604580078125, 2.460127197265625, 2.4596591796875, 2.460818359375, 2.461365234375, 2.460373046875, 2.46135302734375, 2.461212646484375, 2.4607734375, 2.460324951171875, 2.46021728515625, 5.07445458984375, 2.4605234375, 2.461729736328125, 2.461869140625, 2.461232177734375, 2.461845458984375, 2.463498291015625, 2.460968994140625, 2.46013232421875, 2.460211181640625, 2.45943603515625, 2.460124267578125, 2.46013037109375, 2.460103759765625, 2.461614013671875, 2.46322900390625, 2.461684814453125, 2.4606064453125, 2.4600556640625, 2.45979345703125, 2.459621337890625, 2.460230712890625, 2.459693115234375, 2.460508056640625, 2.460240966796875, 2.460556396484375, 2.459707275390625, 2.459610107421875, 2.459715576171875, 2.460527587890625, 2.459706298828125, 2.45965625, 2.45981591796875, 2.45966845703125, 2.4598037109375, 2.459366455078125, 2.4594267578125, 2.45954052734375, 2.46019580078125, 2.459505615234375, 2.4598701171875, 2.4605830078125, 2.46051953125, 2.4611103515625, 2.460297119140625, 2.45998388671875, 2.459361328125, 2.460695556640625, 2.46107958984375, 2.46091162109375, 2.45956494140625, 2.460255126953125, 2.460651611328125, 2.460200927734375, 2.45922314453125, 2.460324951171875, 2.460303466796875, 2.46060546875, 2.460147705078125, 2.459874267578125, 2.459558837890625, 2.460209228515625, 2.46225927734375, 5.07727880859375, 2.46051953125, 2.459748291015625, 2.460139404296875, 2.459675537109375, 2.460464111328125, 2.45935400390625, 2.460265380859375, 2.460979248046875, 2.46025927734375, 2.460180419921875, 2.45945654296875, 2.45956396484375, 2.4599091796875, 2.459864990234375, 2.459249755859375, 2.459658203125, 2.45960693359375, 2.4602666015625, 2.463476806640625, 2.46247314453125, 2.461254638671875, 2.4606064453125, 2.46013134765625, 2.4603095703125, 2.46048046875, 2.460453857421875, 2.460747802734375, 2.4610087890625, 2.45964501953125, 2.460734375, 2.460478515625, 2.460600341796875, 2.460285888671875, 2.460894287109375, 2.460316650390625, 2.460169189453125, 2.460146728515625, 2.459640869140625, 2.459826171875, 2.459534423828125, 2.46048876953125, 2.459629638671875, 2.459568115234375, 2.459454345703125, 2.46009765625, 2.46054296875, 2.46160693359375, 2.459303955078125, 2.459570068359375, 2.460251220703125, 2.459474853515625, 2.45965625, 2.460379150390625, 2.45972900390625, 2.459229248046875, 2.459660400390625, 2.45932958984375, 2.464058349609375, 2.461569091796875, 2.45967041015625, 2.459884521484375, 2.460506103515625, 5.07673388671875, 2.459622314453125, 2.462644287109375, 2.4620205078125, 2.461388916015625, 2.460607421875, 2.461044677734375, 2.461013916015625, 2.461294677734375, 2.460347412109375, 2.46035546875, 2.4605205078125, 2.460373046875, 2.459558837890625, 2.46158740234375, 2.462236572265625, 2.462750732421875, 2.46039453125, 2.459875244140625, 2.460180419921875, 2.459242431640625, 2.461361083984375, 2.461865966796875, 2.4626064453125, 2.46232470703125, 2.462096435546875, 2.460041259765625, 2.4603125, 2.460031005859375, 2.460012451171875, 2.460483642578125, 2.46249365234375, 2.460971923828125, 2.460064697265625, 2.460525634765625, 2.4618515625, 2.461947998046875, 2.46048046875, 2.460482666015625, 2.459716552734375, 2.46003515625, 2.45914111328125, 2.459892822265625, 2.4607099609375, 2.461216796875, 2.45960693359375, 2.459496337890625, 2.459989013671875, 2.46011181640625, 2.461148193359375, 2.459788330078125, 2.459845703125, 2.45964501953125, 2.45973291015625, 2.459387939453125, 2.460958740234375, 2.4599326171875, 2.459988037109375, 2.459134033203125, 2.4599716796875, 2.459010009765625, 2.4597216796875, 2.466093017578125, 5.07026025390625, 2.459715576171875, 2.459428955078125, 2.460008544921875, 2.45975244140625, 2.460271728515625, 2.4604365234375, 2.46042724609375, 2.46135595703125, 2.460927001953125, 2.460580810546875, 2.46221826171875, 2.461213623046875, 2.461199462890625, 2.460501953125, 2.461664306640625, 2.46034423828125, 2.460695556640625, 2.460241943359375, 2.46086865234375, 2.4613837890625, 2.4614892578125, 2.460771240234375, 2.461020263671875, 2.462573486328125, 2.461728759765625, 2.461054931640625, 2.46047021484375, 2.46080712890625, 2.46276806640625, 2.46089306640625, 2.461909912109375, 2.46152392578125, 2.4612607421875, 2.460707763671875, 2.461158447265625, 2.46102734375, 2.46084716796875, 2.460749755859375, 2.460251220703125, 2.460735595703125, 2.46051220703125, 2.461053955078125, 2.4607548828125, 2.46175244140625, 2.460388427734375, 2.46027880859375, 2.4614501953125, 2.461758544921875, 2.461529052734375, 2.460019775390625, 2.4599306640625, 2.460873779296875, 2.460814453125, 2.460541015625, 2.460760009765625, 2.46168994140625, 2.460673095703125, 2.46126806640625, 2.460421142578125, 2.462738525390625, 2.46156689453125, 2.461497314453125]",tokens/s,0.4003034475593408,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,r,r,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,x,x,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -46265,7 +46319,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/r/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/x/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -46292,9 +46346,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949111-525794a369858c23485e6ee4;e7a63d89-e585-4e10-9bbe-707be6547645) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669492b8-634e3ca77eb48b2270e617dd;be4e9d7c-7209-43ab-a2d1-ffd9eb9a74d5) -Repository Not Found for url: https://huggingface.co/r/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/x/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -46319,11 +46373,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: r is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: x is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-564M,facebook/xglm-564M,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm2-20b,internlm/internlm2-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -46331,28 +46385,32 @@ If this is a private repository, make sure to pass a token having permission to File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code + answer = input( +EOFError: EOF when reading a line + +During handling of the above exception, another exception occurred: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights + self.create_no_weights_model() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model + meta_model = self.automodel_class.from_config(self.pretrained_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config + trust_remote_code = resolve_trust_remote_code( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code raise ValueError( -ValueError: XGLMForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` +ValueError: The repository for internlm/internlm2-20b contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/internlm/internlm2-20b. +Please pass the argument `trust_remote_code=True` to allow custom code to be run. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-2.7B,EleutherAI/gpt-neo-2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -46372,17 +46430,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: GPTNeoForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-410m,EleutherAI/pythia-410m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.42.3,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,1357.860864,1315.438592,0.0,668.991488,598.701056,s,10,0.5735699539184571,0.0573569953918457,0.002323365932403844,0.05641374397277832,0.058685475921630856,0.06142336158752441,0.06361367012023926,"[0.06416124725341797, 0.05632092666625976, 0.05633155059814453, 0.05636393737792969, 0.056450401306152344, 0.056666881561279296, 0.058077056884765624, 0.05637046432495117, 0.05638243103027344, 0.056445056915283204]",tokens/s,4463.274239717147,kWh,6.797899288692694e-07,3.7245412829627415e-07,1.967943783804529e-06,3.0201878409700728e-06,tokens/kWh,84762939.75071888,MB,1357.860864,1315.438592,0.0,668.991488,634.11968,s,10,35.55266552734375,3.5552665527343748,0.02725806586268354,3.5483658447265625,3.5879743408203124,3.6048503295898437,3.618351120605469,"[3.621726318359375, 3.58422412109375, 3.529068603515625, 3.540139892578125, 3.558736572265625, 3.5575546875, 3.537781982421875, 3.52670166015625, 3.551919189453125, 3.5448125]",tokens/s,17.720190333280737,kWh,4.28260003378565e-05,2.3470953370349246e-05,0.00011588945605759889,0.00018218640976580466,tokens/kWh,345799.66793892405,,s,629,36.002755603790305,0.05723808522065227,0.006780702818673421,0.05590220642089844,0.05774848175048828,0.0580835319519043,0.11218710388183593,"[0.05981695938110351, 0.059014144897460936, 0.05988351821899414, 0.05948825454711914, 0.060007423400878904, 0.05807923126220703, 0.05880831909179687, 0.057845760345458984, 0.0577259521484375, 0.057599998474121096, 0.05738905715942383, 0.0576255989074707, 0.058726398468017575, 0.05784064102172851, 0.05770240020751953, 0.05808639907836914, 0.05745971298217773, 0.05741670227050781, 0.05756415939331055, 0.05732454299926758, 0.057987071990966796, 0.057485313415527345, 0.05737472152709961, 0.05715967941284179, 0.05847347259521484, 0.057591808319091796, 0.05679206466674805, 0.055755775451660154, 0.057815040588378906, 0.05788467025756836, 0.05797785568237305, 0.0564029426574707, 0.05548031997680664, 0.05780889511108398, 0.05739724731445312, 0.05749657440185547, 0.0573306884765625, 0.05792768096923828, 0.05750271987915039, 0.057316352844238284, 0.05745459365844727, 0.05743212890625, 0.057356224060058594, 0.05757440185546875, 0.05759692764282227, 0.05739110565185547, 0.05764198303222656, 0.057611263275146485, 0.05741363143920898, 0.057322494506835936, 0.05822566223144531, 0.05762047958374023, 0.057299968719482425, 0.056842239379882815, 0.05561244964599609, 0.05575369644165039, 0.05556838226318359, 0.05557759857177735, 0.05566566467285156, 0.055512065887451174, 0.055686145782470706, 0.05557145690917969, 0.11211571502685547, 0.055414783477783204, 0.05548953628540039, 0.05547315216064453, 0.05559296035766602, 0.057166847229003906, 0.057384960174560545, 0.05738905715942383, 0.057421886444091796, 0.05794604873657227, 0.058033153533935546, 0.05751910400390625, 0.05744128036499024, 0.05772697448730469, 0.057409534454345705, 0.057847808837890625, 0.05756108856201172, 0.05777407836914063, 0.05831167984008789, 0.05800960159301758, 0.05741875076293945, 0.058001407623291014, 0.05816524887084961, 0.057565185546875, 0.05741875076293945, 0.057442302703857424, 0.057466880798339844, 0.05788671875, 0.05794508743286133, 0.0575283203125, 0.05696921539306641, 0.0558919677734375, 0.055634944915771485, 0.055400447845458986, 0.055548927307128904, 0.055624702453613284, 0.055608318328857424, 0.05552742385864258, 0.055711742401123046, 0.05558169555664062, 0.05681459045410156, 0.05732147216796875, 0.057388031005859375, 0.056796161651611325, 0.05560627365112305, 0.056886272430419924, 0.057524223327636716, 0.05738393783569336, 0.058218494415283206, 0.05722009658813477, 0.05792051315307617, 0.057490432739257816, 0.057455615997314455, 0.05738700866699219, 0.0573941764831543, 0.05738598251342773, 0.05712793731689453, 0.05570560073852539, 0.055634944915771485, 0.05566566467285156, 0.05554073715209961, 0.0556492805480957, 0.05571072006225586, 0.11216793823242187, 0.0556124153137207, 0.055382015228271485, 0.05562572860717773, 0.05556531143188476, 0.05569232177734375, 0.05575062561035156, 0.055859233856201174, 0.05676950454711914, 0.05582950210571289, 0.05629542541503906, 0.055761985778808594, 0.055734207153320316, 0.05566361618041992, 0.055640064239501956, 0.055725055694580077, 0.0556308479309082, 0.05583363342285156, 0.05553353500366211, 0.05562777709960937, 0.05568307113647461, 0.05573222351074219, 0.05753241729736328, 0.05677260971069336, 0.055640064239501956, 0.05561548614501953, 0.056256511688232425, 0.05657395172119141, 0.05638662338256836, 0.05741254425048828, 0.05741881561279297, 0.056707008361816406, 0.05665075302124024, 0.055992321014404295, 0.05728665542602539, 0.05752524948120117, 0.05733171081542969, 0.055621631622314455, 0.05572403335571289, 0.05564723205566406, 0.05570150375366211, 0.055398399353027344, 0.055771137237548826, 0.055638015747070314, 0.05562572860717773, 0.055556095123291016, 0.05568102264404297, 0.055702529907226565, 0.05575987243652344, 0.05575680160522461, 0.055605247497558595, 0.05553664016723633, 0.05570560073852539, 0.055798782348632815, 0.05559910583496094, 0.05567180633544922, 0.05573222351074219, 0.05629337692260742, 0.05749555206298828, 0.0559370231628418, 0.055578624725341794, 0.05670809555053711, 0.055962623596191405, 0.11224575805664062, 0.05556224060058594, 0.05563904190063477, 0.055656448364257816, 0.0557127685546875, 0.05569228744506836, 0.05559910583496094, 0.05550592041015625, 0.05555302429199219, 0.055739391326904295, 0.055537662506103515, 0.05554995346069336, 0.057543678283691405, 0.057662464141845705, 0.05759692764282227, 0.05869772720336914, 0.058270721435546874, 0.057540607452392575, 0.05582131195068359, 0.055779327392578126, 0.055809024810791016, 0.05575987243652344, 0.0556492805480957, 0.055632896423339843, 0.05597491073608398, 0.055795711517333986, 0.05575065612792969, 0.05567488098144531, 0.05572710418701172, 0.05697843170166016, 0.057621505737304686, 0.05626777648925781, 0.05568716812133789, 0.05771468734741211, 0.05757747268676758, 0.057265151977539064, 0.05681151962280274, 0.05754982376098633, 0.057534465789794924, 0.057024513244628906, 0.05558169555664062, 0.05570457458496094, 0.055833694458007815, 0.05585500717163086, 0.05577011108398437, 0.05586739349365234, 0.05599129486083984, 0.05690777587890625, 0.05552025604248047, 0.055673854827880856, 0.05572915267944336, 0.05587865447998047, 0.05573529434204102, 0.05586841583251953, 0.05573017501831055, 0.055760894775390625, 0.055874561309814455, 0.05571891021728516, 0.05576499176025391, 0.05579264068603516, 0.05576192092895508, 0.05572198486328125, 0.055793663024902344, 0.11247821044921875, 0.055947265625, 0.055580673217773435, 0.05587353515625, 0.05770240020751953, 0.057093120574951174, 0.0557762565612793, 0.05583564758300781, 0.055890945434570315, 0.05565542221069336, 0.05675110244750976, 0.05625753784179687, 0.05588479995727539, 0.0562718734741211, 0.05585100936889648, 0.05575884628295898, 0.05576499176025391, 0.05688934326171875, 0.05688422393798828, 0.05730924987792969, 0.05688927841186524, 0.05672345733642578, 0.05574758529663086, 0.0558919677734375, 0.05698358535766602, 0.05571683120727539, 0.05599846267700195, 0.05756825637817383, 0.057455615997314455, 0.05779865646362305, 0.05597491073608398, 0.05708697509765625, 0.056840190887451174, 0.055809024810791016, 0.055806976318359375, 0.05576192092895508, 0.05717708969116211, 0.056443904876708986, 0.05544857788085938, 0.05571686553955078, 0.055669761657714846, 0.05571686553955078, 0.05590425491333008, 0.05589100646972656, 0.05568508911132813, 0.05578953552246094, 0.055803905487060546, 0.056334400177001955, 0.055878593444824216, 0.055670783996582034, 0.05734195327758789, 0.05783039855957031, 0.05769420623779297, 0.057328704833984376, 0.057484222412109376, 0.057388031005859375, 0.05765836715698242, 0.05777920150756836, 0.057540607452392575, 0.05716889572143555, 0.05852671813964844, 0.056840190887451174, 0.05597695922851562, 0.11283148956298829, 0.05591756820678711, 0.056292350769042966, 0.05755392074584961, 0.057414657592773435, 0.056551422119140625, 0.05571583938598633, 0.055984127044677735, 0.05593907165527344, 0.05541580963134766, 0.05567897415161133, 0.05571379089355469, 0.05580083084106445, 0.055672832489013675, 0.05564211273193359, 0.055809024810791016, 0.055736320495605465, 0.055839744567871094, 0.05565235137939453, 0.05571583938598633, 0.05600153732299805, 0.055823360443115234, 0.055818241119384764, 0.05570457458496094, 0.056213504791259764, 0.055795711517333986, 0.055673854827880856, 0.055744510650634765, 0.05580492782592773, 0.05590323257446289, 0.05576396942138672, 0.055449600219726565, 0.055818241119384764, 0.055979007720947264, 0.05598310470581055, 0.055825439453125, 0.05578236770629883, 0.05567795181274414, 0.056638465881347654, 0.05652070236206055, 0.0575098876953125, 0.057299968719482425, 0.0576808967590332, 0.05792563247680664, 0.057729022979736325, 0.05774848175048828, 0.058654720306396485, 0.058905601501464844, 0.05799935913085937, 0.0573941764831543, 0.05648793411254883, 0.056785919189453124, 0.05599027252197265, 0.057333759307861325, 0.05748121643066406, 0.057452545166015626, 0.057862144470214844, 0.056509441375732425, 0.055695358276367186, 0.05770240020751953, 0.056632320404052736, 0.057633857727050784, 0.05701318359375, 0.11698483276367187, 0.058790912628173826, 0.0565667839050293, 0.056400894165039066, 0.05603839874267578, 0.055823360443115234, 0.056051712036132816, 0.055597057342529295, 0.05556121444702149, 0.057240577697753904, 0.05742489624023438, 0.05738700866699219, 0.057365505218505856, 0.057353214263916014, 0.05783039855957031, 0.05734400177001953, 0.056095745086669924, 0.05565951919555664, 0.055653377532958986, 0.05596979141235352, 0.05557555389404297, 0.055583744049072265, 0.05551923370361328, 0.05565951919555664, 0.05549977493286133, 0.05557350540161133, 0.055498752593994144, 0.05578342437744141, 0.0557127685546875, 0.05554380798339844, 0.055572479248046876, 0.05547212982177734, 0.05575884628295898, 0.055569408416748046, 0.05546700668334961, 0.055634944915771485, 0.05568415832519531, 0.0554956169128418, 0.05561139297485351, 0.05549465560913086, 0.0555417594909668, 0.0557916145324707, 0.055653377532958986, 0.05557452774047852, 0.05553561782836914, 0.05562265777587891, 0.05569843292236328, 0.05557145690917969, 0.0568268814086914, 0.05713510513305664, 0.0576993293762207, 0.057264129638671876, 0.05562268829345703, 0.058207199096679686, 0.057929729461669924, 0.05596672058105469, 0.05567692947387695, 0.0556124153137207, 0.05563187026977539, 0.055662593841552734, 0.055618560791015625, 0.05551411056518555, 0.05571993637084961, 0.11230207824707031, 0.05556531143188476, 0.055583744049072265, 0.05559603118896484, 0.055820289611816405, 0.05559603118896484, 0.05586127853393555, 0.055710689544677734, 0.05566054534912109, 0.05534515380859375, 0.055344127655029295, 0.05557555389404297, 0.055825408935546876, 0.05577830505371094, 0.055521278381347655, 0.0557916145324707, 0.05571379089355469, 0.055702529907226565, 0.05556838226318359, 0.05560115051269531, 0.05558272171020508, 0.05557555389404297, 0.05774848175048828, 0.057299968719482425, 0.05733785629272461, 0.05655865478515625, 0.055502784729003905, 0.05562265777587891, 0.05769420623779297, 0.05662412643432617, 0.05678694534301758, 0.05764505767822266, 0.05634355163574219, 0.05650841522216797, 0.05620121765136719, 0.055725055694580077, 0.055766014099121096, 0.055537662506103515, 0.05568819046020508, 0.05545062255859375, 0.05575065612792969, 0.055580673217773435, 0.05566873550415039, 0.05554073715209961, 0.05567795181274414, 0.05562060928344727, 0.05770444869995117, 0.056671230316162106, 0.055934974670410156, 0.05575065612792969, 0.055629825592041014, 0.05556224060058594, 0.05587046432495117, 0.05570867156982422, 0.0557209587097168, 0.05575065612792969, 0.05553561782836914, 0.05629030227661133, 0.05745356750488281, 0.05623295974731445, 0.05563596725463867, 0.055613441467285155, 0.05556633758544922, 0.11219455718994141, 0.05558272171020508, 0.055465023040771486, 0.055540672302246095, 0.05531955337524414, 0.05546393585205078, 0.055548927307128904, 0.05548441696166992, 0.055616512298583984, 0.056395774841308595, 0.05721395111083984, 0.05674905776977539, 0.05730508804321289, 0.05730201721191406, 0.05641113662719727, 0.0557209587097168, 0.055585792541503906, 0.05566566467285156, 0.05559091186523438, 0.05565951919555664, 0.05544963073730469, 0.05593494415283203, 0.05556224060058594, 0.05557145690917969, 0.056120319366455076, 0.057458686828613284, 0.05740236663818359, 0.05729894256591797, 0.057373695373535157, 0.057766910552978515, 0.05665075302124024, 0.05573324966430664, 0.05637017440795898, 0.05809971237182617, 0.05586943817138672, 0.05620019149780273, 0.05695590209960937, 0.0555643196105957, 0.056606689453125, 0.057219070434570314, 0.05642649459838867, 0.05731020736694336, 0.05765119934082031, 0.05748121643066406, 0.056667137145996097, 0.05717708969116211, 0.057823230743408206, 0.05779046249389649, 0.05644291305541992, 0.056858592987060544, 0.056856575012207033, 0.058813438415527344, 0.05755289459228516, 0.05608345413208008, 0.05555302429199219, 0.05563907241821289, 0.05571273422241211, 0.05554278564453125, 0.05552537536621094, 0.05555507278442383, 0.0555233268737793, 0.05571072006225586, 0.0556124153137207, 0.11335577392578125, 0.0570880012512207, 0.05586636734008789, 0.055672832489013675, 0.056136798858642575, 0.0563342399597168, 0.05568511962890625, 0.056820735931396485, 0.05746278381347656, 0.05724262237548828, 0.05761228942871094, 0.05586431884765625, 0.05590220642089844, 0.05682995223999023, 0.057353214263916014, 0.05627699279785156, 0.055877632141113284, 0.05574655914306641, 0.057248767852783204, 0.05563391876220703, 0.05559500885009765, 0.05561859130859375, 0.055626720428466794, 0.055660575866699216, 0.055686111450195315, 0.056011775970458984, 0.05731737518310547, 0.05745459365844727, 0.057132064819335936, 0.05569123077392578, 0.056584190368652344, 0.056736766815185545, 0.05771366500854492, 0.05775974273681641, 0.05750579071044922, 0.05729075241088867, 0.05755187225341797, 0.05558476638793945, 0.05566054534912109, 0.05850931167602539, 0.05686476898193359, 0.05549363327026367, 0.05560422515869141, 0.055569408416748046, 0.05578649520874023, 0.05595852661132812, 0.05572403335571289, 0.05566054534912109, 0.055621631622314455, 0.055591934204101565, 0.05563699340820313, 0.05550899124145508, 0.05629132843017578, 0.05575065612792969, 0.05558476638793945, 0.05610086441040039, 0.05598003387451172, 0.05551308822631836, 0.05563904190063477, 0.05569945526123047, 0.05555302429199219, 0.05561446380615234, 0.05581107330322266]",tokens/s,17.470884921202547,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,0,0,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-6.7b,facebook/opt-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -46390,69 +46453,34 @@ ValueError: GPTNeoForCausalLM does not support an attention implementation throu File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/0/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669494e0-06a5921e10bc036224ba3991;86ec66b0-7d04-4792-b49c-193cdbfcdaca) - -Repository Not Found for url: https://huggingface.co/0/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file - raise EnvironmentError( -OSError: 0 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-6B-nl,Salesforce/codegen-6B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-14B,Qwen/Qwen2-beta-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -46472,16 +46500,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: CodeGenForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,meta-llama/Llama-2-70b-hf,meta-llama/Llama-2-70b-hf,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-110B,Qwen/Qwen1.5-110B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -46520,10 +46554,10 @@ ChildProcessError: Traceback (most recent call last): self._buffers[key] = fn(buf) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert return t.to( -torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 112.00 MiB. GPU +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 32.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,2,2,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/xglm-564M,facebook/xglm-564M,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -46531,69 +46565,34 @@ torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 112.00 MiB. G File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/2/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694936a-288a55e40de5c44b1da06344;1cede1ef-bb3c-4e10-9a2c-3a5a69e45696) - -Repository Not Found for url: https://huggingface.co/2/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file - raise EnvironmentError( -OSError: 2 is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,a,a,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,t,t,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -46605,7 +46604,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/a/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/t/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -46632,9 +46631,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66949163-5d9eaf703842b2f37ec12ad1;d45172c5-9d7a-47f4-bd58-7ca59a85dbc5) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669490b9-22be1ff2055a4add6d74494d;8b5ceaee-3d79-4d05-8ed7-97d8bf434133) -Repository Not Found for url: https://huggingface.co/a/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/t/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -46659,11 +46658,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: a is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: t is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-350m,facebook/opt-350m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neox-20b,EleutherAI/gpt-neox-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -46683,17 +46682,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,microsoft/phi-1_5,microsoft/phi-1_5,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1485.733888,2103.967744,0.0,1457.52064,1272.750592,s,10,1.3342720336914062,0.13342720336914063,0.0017667378558565091,0.1333674545288086,0.13440001983642577,0.13625353012084962,0.13773633834838866,"[0.13810704040527344, 0.13359715270996095, 0.13159478759765625, 0.13398812866210938, 0.13163987731933594, 0.132114013671875, 0.13270646667480468, 0.1334988098144531, 0.13378965759277345, 0.13323609924316407]",tokens/s,1918.6492224658912,kWh,1.5465521064155546e-06,8.474274160367454e-07,6.439467633532405e-06,8.833447155984705e-06,tokens/kWh,28980758.641495775,MB,1485.733888,2103.967744,0.0,1457.52064,1369.423872,s,10,77.59171484375001,7.759171484375001,0.021550685509445954,7.750958740234375,7.78698193359375,7.79351220703125,7.798736425781249,"[7.7519140625, 7.7428955078125, 7.78553076171875, 7.781552734375, 7.80004248046875, 7.76520556640625, 7.75000341796875, 7.7375029296875, 7.73547216796875, 7.74159521484375]",tokens/s,8.119423591406116,kWh,9.154879443379708e-05,5.017541917467626e-05,0.00037131786234986455,0.0005130420759583379,tokens/kWh,122796.94581057319,,s,629,78.66502353668211,0.12506363042397795,0.0158250884711649,0.12294553375244141,0.1240623077392578,0.1244600341796875,0.2556754669189453,"[0.12330188751220703, 0.12316671752929688, 0.12365106964111328, 0.12313600158691407, 0.12294246673583985, 0.12248063659667968, 0.12371660614013671, 0.12260147094726563, 0.12286566162109375, 0.12282879638671874, 0.12315750122070312, 0.12320972442626953, 0.12280012512207031, 0.12268236541748047, 0.122640380859375, 0.12257997131347656, 0.12299161529541015, 0.1229834213256836, 0.12259737396240235, 0.12290866851806641, 0.12273561859130859, 0.12333164978027343, 0.12384864044189453, 0.12324454498291015, 0.12292301177978515, 0.12274278259277344, 0.1227489242553711, 0.12272640228271485, 0.12298239898681641, 0.12477235412597656, 0.12357427215576172, 0.12362035369873046, 0.12306233978271484, 0.12299974060058594, 0.12285030364990235, 0.12300287628173828, 0.12316060638427734, 0.1231595230102539, 0.12301516723632812, 0.12314726257324218, 0.12401152038574219, 0.12320358276367188, 0.12276121520996094, 0.12288307189941407, 0.12321382141113281, 0.12264653015136719, 0.12301721954345703, 0.12259737396240235, 0.12273664093017578, 0.122893310546875, 0.12342066955566407, 0.1232015380859375, 0.12298239898681641, 0.12279090881347657, 0.1230448989868164, 0.12328444671630859, 0.12287181091308594, 0.12288511657714844, 0.12308684539794922, 0.1227540512084961, 0.12283084869384765, 0.12267212677001953, 0.25649664306640624, 0.1227540512084961, 0.12280220794677735, 0.12263113403320312, 0.12264345550537109, 0.12267417907714843, 0.1228400650024414, 0.12283596801757812, 0.12282470703125, 0.12279603576660156, 0.12281446075439453, 0.12269875335693359, 0.12270694732666015, 0.12278681945800782, 0.12276121520996094, 0.12260044860839844, 0.12260659027099609, 0.12257791900634765, 0.12294041442871094, 0.1228779525756836, 0.12287999725341797, 0.12280831909179687, 0.12294451141357422, 0.12248985290527344, 0.12257484436035156, 0.1226055679321289, 0.12298137664794923, 0.12271308898925781, 0.12264447784423828, 0.12263935852050781, 0.12252365112304688, 0.12261990356445313, 0.12269977569580078, 0.12264345550537109, 0.12255129241943359, 0.12263833618164062, 0.12267212677001953, 0.12288102722167969, 0.12292915344238281, 0.12263935852050781, 0.12389888000488282, 0.12297216033935547, 0.12294553375244141, 0.12293427276611328, 0.12263526153564454, 0.12274585723876953, 0.12553011322021485, 0.12401561737060547, 0.12355072021484376, 0.12335718536376954, 0.12291584014892579, 0.12288819122314452, 0.12369510650634766, 0.12324147033691406, 0.12273667144775391, 0.12291478729248047, 0.12294758605957032, 0.12287385559082031, 0.12286669158935547, 0.12300697326660157, 0.12317391967773438, 0.12299874877929687, 0.1229271011352539, 0.25462066650390625, 0.12265164947509766, 0.1226270751953125, 0.12303667449951172, 0.12276227569580078, 0.12365821075439454, 0.12293939208984375, 0.12266496276855468, 0.12368895721435547, 0.12677529907226562, 0.12441395568847656, 0.12445696258544922, 0.12463513946533203, 0.12443033599853516, 0.12438224029541016, 0.12425520324707032, 0.12467916870117188, 0.12446310424804688, 0.12442931365966797, 0.12455731201171875, 0.12458188629150391, 0.12372480010986328, 0.12267417907714843, 0.12398899078369141, 0.12292813110351562, 0.12310527801513672, 0.12295891571044922, 0.12267308807373047, 0.12258099365234375, 0.12275609588623047, 0.12290764617919922, 0.12266086578369141, 0.12255948638916016, 0.12306329345703125, 0.12263116455078125, 0.12326604461669922, 0.12354764556884766, 0.12335718536376954, 0.12372691345214844, 0.12280210876464843, 0.12289638519287109, 0.12269055938720703, 0.12372787475585938, 0.124010498046875, 0.12365824127197265, 0.12331314849853516, 0.12313497924804688, 0.12537753295898438, 0.12376166534423828, 0.12374527740478515, 0.12372582244873047, 0.1231278076171875, 0.12385382080078125, 0.12404633331298828, 0.12378214263916015, 0.12360908508300782, 0.12295782470703125, 0.12494950103759765, 0.12373811340332032, 0.12298035430908204, 0.12348416137695313, 0.12417740631103516, 0.12380774688720703, 0.2588282775878906, 0.12419481658935547, 0.12356505584716797, 0.12310323333740235, 0.12305203247070312, 0.12337971496582031, 0.12367977905273438, 0.12359062194824219, 0.12260147094726563, 0.12353740692138672, 0.12354354858398438, 0.1232701416015625, 0.12446720123291016, 0.12432588958740234, 0.1239582748413086, 0.12362137603759765, 0.12360499572753907, 0.12407295989990234, 0.12389170837402344, 0.12347392272949219, 0.1235968017578125, 0.12413645172119141, 0.12480512237548828, 0.12312678527832031, 0.12333670043945312, 0.12412928009033203, 0.12416000366210937, 0.12297113800048828, 0.12327529907226563, 0.12358857727050782, 0.12392755126953126, 0.1234176025390625, 0.12362649536132812, 0.12375859069824219, 0.12381183624267578, 0.12392758178710937, 0.12367868804931641, 0.12318924713134766, 0.12382310485839844, 0.12388658905029297, 0.12348006439208985, 0.12391423797607422, 0.12419583892822265, 0.12329676818847657, 0.12479590606689453, 0.12373197174072266, 0.12389478302001954, 0.12393472290039062, 0.12317702484130859, 0.12292499542236328, 0.12298649597167968, 0.12279808044433593, 0.12290457916259766, 0.1228584976196289, 0.12289842987060547, 0.1226424331665039, 0.12311244964599609, 0.12252780914306641, 0.12262598419189454, 0.12282470703125, 0.12261888122558594, 0.12280217742919922, 0.12272025299072266, 0.25568666076660157, 0.1239900131225586, 0.12271616363525391, 0.12272128295898438, 0.1237401580810547, 0.12348108673095703, 0.12270182037353515, 0.12281241607666016, 0.12259839630126954, 0.12345139312744141, 0.12484710693359374, 0.123040771484375, 0.12316671752929688, 0.12355583953857421, 0.12351078033447266, 0.12384358215332031, 0.12355174255371094, 0.12602265930175782, 0.12446208190917969, 0.12428800201416015, 0.12392345428466797, 0.12333055877685548, 0.12432588958740234, 0.12359986877441406, 0.12368793487548828, 0.12390502166748046, 0.12386921691894531, 0.1236797103881836, 0.12345037078857422, 0.12340735626220703, 0.12414361572265625, 0.12356301116943359, 0.12358767700195313, 0.12459613037109375, 0.12439347076416016, 0.12301107025146485, 0.12367359924316407, 0.12390092468261718, 0.12395724487304688, 0.12516966247558595, 0.12354662322998047, 0.12346470642089843, 0.123863037109375, 0.12409139251708984, 0.12322509002685547, 0.12475084686279297, 0.12426445007324219, 0.12396953582763671, 0.12330086517333984, 0.12360908508300782, 0.12444057464599609, 0.12403609466552734, 0.12382208251953125, 0.1240606689453125, 0.12347494506835938, 0.12344012451171875, 0.12362751770019531, 0.1256468505859375, 0.12401663970947266, 0.12414873504638672, 0.12401868438720703, 0.12380364990234374, 0.12371561431884766, 0.25564668273925784, 0.12369203186035156, 0.12362137603759765, 0.12392345428466797, 0.12388044738769531, 0.12370022583007813, 0.12369715118408203, 0.12311347198486328, 0.12364492797851563, 0.123863037109375, 0.12393574523925781, 0.12324249267578125, 0.12262403106689453, 0.12281238555908203, 0.12295372772216796, 0.12290764617919922, 0.12269363403320313, 0.12262297821044922, 0.1231677474975586, 0.12281446075439453, 0.12263526153564454, 0.122714111328125, 0.12280524444580078, 0.12276838684082031, 0.1227110366821289, 0.12276735687255859, 0.12391014099121093, 0.12351795196533204, 0.12277555084228516, 0.12253388977050782, 0.12272025299072266, 0.12271622467041016, 0.12318611145019531, 0.12313190460205078, 0.12436070251464844, 0.12357734680175782, 0.12378726196289062, 0.12353024291992187, 0.12572364807128905, 0.12379545593261719, 0.12325888061523438, 0.12332441711425782, 0.12372991943359375, 0.12286566162109375, 0.1225134048461914, 0.12262400054931641, 0.12326297760009766, 0.12308582305908203, 0.12292403411865234, 0.1229148178100586, 0.12318924713134766, 0.12364492797851563, 0.12364291381835937, 0.12278781127929687, 0.12316159820556641, 0.12317593383789062, 0.12396851348876953, 0.12279193878173827, 0.12260761260986328, 0.12462694549560546, 0.12346470642089843, 0.12266598510742187, 0.1229148178100586, 0.2559385528564453, 0.12347289276123047, 0.12349951934814453, 0.12279500579833984, 0.12253695678710938, 0.1227325439453125, 0.12260454559326171, 0.12274380493164062, 0.12233113861083984, 0.12244992065429687, 0.12274790191650391, 0.12282572937011718, 0.12250214385986329, 0.12254208374023437, 0.12273458862304687, 0.12241919708251953, 0.12272844696044923, 0.1226250228881836, 0.12303974151611329, 0.1227663345336914, 0.12259839630126954, 0.12243353271484375, 0.12274380493164062, 0.12401561737060547, 0.12277452850341797, 0.1226844482421875, 0.12271612548828124, 0.12248268890380859, 0.12263935852050781, 0.12302540588378906, 0.12259327697753906, 0.1225697250366211, 0.12243456268310547, 0.12261273956298828, 0.12260352325439453, 0.12275507354736329, 0.12261068725585937, 0.12276428985595703, 0.12263942718505859, 0.12258604431152344, 0.12272230529785157, 0.12245708465576172, 0.12246527862548828, 0.12284928131103516, 0.12406886291503906, 0.12364492797851563, 0.12372889709472656, 0.12372480010986328, 0.1236131820678711, 0.12349132537841796, 0.12373094177246094, 0.12433715057373047, 0.12420198059082031, 0.12350566101074219, 0.12349030303955078, 0.12351795196533204, 0.1237022705078125, 0.12365004730224609, 0.12362035369873046, 0.12419891357421875, 0.12375347137451172, 0.12319641876220704, 0.12275917053222657, 0.2567250061035156, 0.1229854736328125, 0.12295680236816406, 0.1226270751953125, 0.12288614654541016, 0.12259225463867188, 0.12339711761474609, 0.1230387191772461, 0.12344627380371094, 0.12426547241210938, 0.12386918640136718, 0.12261785888671875, 0.12307660675048829, 0.1229639663696289, 0.12252467346191406, 0.12267314910888671, 0.12372172546386719, 0.12260659027099609, 0.12311961364746093, 0.1224427490234375, 0.12306841278076172, 0.12283699035644531, 0.12256665802001954, 0.12251955413818359, 0.12265580749511719, 0.12248262023925781, 0.12276019287109376, 0.12253388977050782, 0.12335411071777344, 0.12312371063232422, 0.12290866851806641, 0.12254515075683593, 0.12248780822753906, 0.122534912109375, 0.12261682891845703, 0.12288716888427734, 0.12256460571289063, 0.12276838684082031, 0.12297830200195313, 0.1227694091796875, 0.12250418853759766, 0.12257279968261718, 0.1226977310180664, 0.12254617309570312, 0.12250009918212891, 0.122787841796875, 0.122461181640625, 0.12268748474121094, 0.12251545715332031, 0.12266802978515624, 0.1225871353149414, 0.1227623062133789, 0.12271507263183594, 0.12253900909423829, 0.12249292755126953, 0.12263219451904298, 0.12244684600830077, 0.12256870269775391, 0.12278272247314453, 0.12261170959472656, 0.1223895034790039, 0.12428390502929687, 0.12278988647460938, 0.2565724182128906, 0.12282470703125, 0.12249190521240234, 0.12308480072021484, 0.12364595031738282, 0.1230540771484375, 0.12276640319824218, 0.12278163146972657, 0.12248473358154296, 0.12251136016845703, 0.12247654724121093, 0.12248678588867187, 0.12250009918212891, 0.12251955413818359, 0.12259839630126954, 0.12254617309570312, 0.12253593444824219, 0.1236684799194336, 0.12317388916015624, 0.12310221099853516, 0.12281139373779297, 0.12291379547119141, 0.12274483489990234, 0.12282572937011718, 0.12260765075683594, 0.12258812713623046, 0.12272946929931641, 0.12461772918701172, 0.12312989044189453, 0.12266185760498047, 0.12315033721923828, 0.12284620666503906, 0.1230540771484375, 0.122640380859375, 0.12250624084472657, 0.12265676879882813, 0.12255538940429687, 0.12278272247314453, 0.12277555084228516, 0.12254003143310546, 0.12262400054931641, 0.12318208312988281, 0.12256050872802735, 0.12256153869628907, 0.1224816665649414, 0.12287999725341797, 0.12276326751708984, 0.12258406066894531, 0.12270182037353515, 0.12269465637207032, 0.12290150451660156, 0.12344525146484375, 0.12252265930175782, 0.12313801574707031, 0.12258406066894531, 0.12265471649169922, 0.12261888122558594, 0.12246323394775391, 0.12254924774169922, 0.12281753540039063, 0.12254617309570312, 0.12263526153564454, 0.12243353271484375, 0.2562088928222656, 0.12256050872802735, 0.12245913696289062, 0.12246221160888672, 0.122461181640625, 0.12328652954101563, 0.12252774047851563, 0.12238028717041016, 0.12253183746337891, 0.12281037139892578, 0.12281651306152344, 0.12248678588867187, 0.12256358337402344, 0.1226792984008789, 0.12369407653808594, 0.12281958770751954, 0.12281549072265625, 0.12272742462158204, 0.12273356628417968, 0.12324864196777344, 0.12265676879882813, 0.12252365112304688, 0.12428800201416015, 0.12306227111816406, 0.12254208374023437, 0.12252979278564453, 0.12400844573974609, 0.12299775695800781, 0.12261376190185547, 0.12311654663085937, 0.12299980926513672, 0.12294143676757813, 0.12260044860839844, 0.12261682891845703, 0.12266700744628906, 0.1231677474975586, 0.12294656372070313, 0.12281651306152344, 0.12273766326904297, 0.12263731384277343, 0.12283084869384765, 0.12253900909423829, 0.12256768035888672, 0.12280937957763671, 0.12265058898925782, 0.12437811279296875, 0.12318822479248047, 0.12397875213623047, 0.12310733032226563, 0.12303462219238281, 0.12267314910888671, 0.12365312194824218, 0.12290662384033203, 0.12257689666748046, 0.12280012512207031, 0.12264447784423828, 0.12267110443115234, 0.1226455078125, 0.12263731384277343, 0.12309503936767578, 0.12316057586669922, 0.12300800323486329, 0.12256265258789062]",tokens/s,7.995929724812099,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-2.7b,facebook/opt-2.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -46713,17 +46717,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-13b,huggyllama/llama-13b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2981.855232,9259.450368,0.0,8613.003264,8211.364864,s,10,10.951241455078126,1.0951241455078125,0.002069112877122291,1.0949886474609376,1.0979957763671875,1.0981948486328124,1.0983541064453124,"[1.0979515380859375, 1.0983939208984375, 1.0932901611328125, 1.0924078369140624, 1.0937889404296874, 1.092544677734375, 1.0941727294921875, 1.0958045654296875, 1.096221435546875, 1.0966656494140625]",tokens/s,233.76345143161097,kWh,1.2900002946456276e-05,7.068370924207557e-06,5.9710658879597037e-05,7.967903275026086e-05,tokens/kWh,3212890.4074724964,MB,2986.262528,9330.753536,0.0,8684.306432,8503.627264,s,10,640.8562343749999,64.0856234375,0.007507663361876726,64.08716796875,64.093946875,64.09397148437499,64.09399117187499,"[64.08627734375, 64.0873125, 64.09369921875, 64.09394140625, 64.0870234375, 64.09399609375, 64.08822265625, 64.078796875, 64.0717890625, 64.07517578125]",tokens/s,0.9830597975135754,kWh,0.000756652800159322,0.0004147102533278666,0.0034761336142379974,0.004647496667725186,tokens/kWh,13555.684813613145,,s,629,649.691616149902,1.0328960511127223,0.130104123840355,1.0171883544921876,1.0177021728515625,1.01789716796875,2.1117173046874997,"[1.0174935302734376, 1.0171514892578124, 1.0171883544921876, 1.017997314453125, 1.0175242309570312, 1.0175477905273438, 1.0175784912109376, 1.017881591796875, 1.0172057495117188, 1.0168115234375, 1.0167367553710938, 1.0173132934570313, 1.0168719482421875, 1.0171760864257813, 1.0166824951171876, 1.0168237915039062, 1.0169927978515625, 1.0175252685546874, 1.0170921020507813, 1.0169978637695312, 1.0169354248046876, 1.0170029907226563, 1.0173900756835939, 1.017280517578125, 1.016859619140625, 1.0172426147460938, 1.016791015625, 1.0168565673828125, 1.0172825317382812, 1.01675927734375, 1.0171392211914063, 1.0170572509765625, 1.0173419799804688, 1.0176777954101563, 1.0177576904296874, 1.0170183715820313, 1.0177105712890624, 1.0174996337890625, 1.0173941650390625, 1.0173890380859374, 1.017080810546875, 1.0169651489257812, 1.0173880615234374, 1.0172467041015625, 1.0171791381835937, 1.016754150390625, 1.0172498168945312, 1.0174290161132813, 1.0169159545898439, 1.0170194091796876, 1.016964111328125, 1.0168411865234375, 1.0170531616210938, 1.0171678466796874, 1.0177003784179688, 1.0177116088867189, 1.0175713500976562, 1.0176112670898438, 1.01741259765625, 1.01737060546875, 1.0172507934570312, 1.0171494140625, 2.116391845703125, 1.01690673828125, 1.0169548950195313, 1.0181068725585938, 1.0178170776367188, 1.0172692260742187, 1.0174985961914063, 1.017291748046875, 1.0175293579101563, 1.0175150146484375, 1.016748046875, 1.0170767211914062, 1.0172333984375, 1.0175641479492188, 1.0175477905273438, 1.0169292602539062, 1.016869873046875, 1.0169712524414063, 1.0170634155273437, 1.0173245239257813, 1.0168094482421874, 1.016943603515625, 1.0171064453125, 1.0171781005859375, 1.017275390625, 1.0166548461914062, 1.017407470703125, 1.0169978637695312, 1.016574951171875, 1.0173306884765625, 1.0168370971679688, 1.016875, 1.0170009765625, 1.0174505004882812, 1.0167992553710938, 1.0171494140625, 1.0171607055664063, 1.0168944702148437, 1.0170101928710937, 1.017059326171875, 1.017080810546875, 1.0172037353515626, 1.0174771118164063, 1.0174095458984376, 1.0170245361328125, 1.019852783203125, 1.0168125610351562, 1.0170029907226563, 1.0175538940429687, 1.0178017578125, 1.0176777954101563, 1.016995849609375, 1.0182564086914063, 1.0176224975585937, 1.0173235473632813, 1.01770751953125, 1.0170552368164063, 1.01711669921875, 1.0171351318359374, 1.0170449829101562, 1.016859619140625, 1.0170890502929688, 1.0175088500976563, 2.11154345703125, 1.0170613403320312, 1.0173931274414063, 1.0170582885742188, 1.01701123046875, 1.01686474609375, 1.0172272338867188, 1.0170921020507813, 1.0172078247070313, 1.0167490844726563, 1.0166835327148438, 1.0169088134765625, 1.0174351196289062, 1.0175641479492188, 1.017354248046875, 1.0168699340820313, 1.0168974609375, 1.0171945190429688, 1.0176737670898437, 1.0177105102539064, 1.017945068359375, 1.0175324096679688, 1.0171945190429688, 1.0176880493164062, 1.0172406005859376, 1.0171146240234374, 1.0182410278320313, 1.0179573974609375, 1.0179983520507812, 1.0176327514648438, 1.0174893798828124, 1.0176010131835938, 1.0182543334960938, 1.0177720336914062, 1.0173716430664062, 1.017248779296875, 1.016859619140625, 1.0170859375, 1.0173767700195313, 1.0172733154296876, 1.0168115234375, 1.0170787963867187, 1.0168923950195312, 1.0172713012695314, 1.0172866821289062, 1.0175477905273438, 1.0167623901367187, 1.0171729736328126, 1.0170921020507813, 1.0174443359375, 1.0174791870117188, 1.017380859375, 1.0176481323242188, 1.0177054443359375, 1.0170101928710937, 1.01709619140625, 1.0171812133789062, 1.0176399536132812, 1.0173388671875, 1.017680908203125, 1.0173245239257813, 1.0175344848632812, 1.016958984375, 2.111784912109375, 1.0173778076171875, 1.0168678588867188, 1.0177362060546875, 1.01760205078125, 1.0175693359375, 1.0170152587890624, 1.0167971801757814, 1.0172047119140626, 1.0175958862304688, 1.016896484375, 1.0167449340820311, 1.017417724609375, 1.0172200927734374, 1.016796142578125, 1.0171340942382812, 1.016943603515625, 1.01682177734375, 1.0168862915039063, 1.0173562622070313, 1.017080810546875, 1.0174678955078125, 1.0173972778320313, 1.0175897827148437, 1.017354248046875, 1.0172293090820312, 1.0175057983398437, 1.0172456665039062, 1.0170859375, 1.0177197875976562, 1.017154541015625, 1.0173880615234374, 1.0175590209960939, 1.01743408203125, 1.016933349609375, 1.0172835693359374, 1.017112548828125, 1.0172262573242188, 1.0170572509765625, 1.017354248046875, 1.01725390625, 1.0173184204101562, 1.018461181640625, 1.0179942626953125, 1.0194544677734374, 1.0179215087890625, 1.0178590698242187, 1.0177402954101562, 1.017133056640625, 1.0170347290039063, 1.0172620849609375, 1.0173992919921875, 1.0176665649414063, 1.01707470703125, 1.0167613525390624, 1.0173092041015626, 1.0173604125976563, 1.0174525146484374, 1.017565185546875, 1.0170890502929688, 1.01747509765625, 1.017607177734375, 1.0175682373046875, 2.112203857421875, 1.017459716796875, 1.0166384887695312, 1.0169661865234374, 1.0174985961914063, 1.0174044189453124, 1.016933349609375, 1.0176819458007813, 1.0176041259765625, 1.0174843139648437, 1.017217041015625, 1.0171586303710938, 1.01719140625, 1.017375732421875, 1.0171525268554686, 1.0169210815429688, 1.017154541015625, 1.0176266479492186, 1.0178191528320313, 1.0170921020507813, 1.0168934326171875, 1.0171627807617187, 1.0176942138671874, 1.017333740234375, 1.0175324096679688, 1.0170572509765625, 1.0169077758789062, 1.017111572265625, 1.0173767700195313, 1.0171566162109376, 1.0170460205078125, 1.0172252197265625, 1.0173870239257812, 1.0172252197265625, 1.0171300048828125, 1.0168084716796875, 1.017064453125, 1.0177720336914062, 1.016975341796875, 1.0169774169921875, 1.0169395141601563, 1.0170787963867187, 1.0171217651367188, 1.0177638549804688, 1.0169712524414063, 1.016958984375, 1.01680126953125, 1.0175764770507814, 1.0173480834960937, 1.0168197021484375, 1.017017333984375, 1.0169978637695312, 1.0169896850585938, 1.0174003295898437, 1.0170214233398438, 1.01707568359375, 1.0175559692382812, 1.01893017578125, 1.0172241821289063, 1.0170316772460937, 1.01722216796875, 1.0172119140625, 1.0173163452148437, 2.1100595703125, 1.0167705688476563, 1.0177894287109375, 1.0171873168945313, 1.0167449340820311, 1.0167142333984376, 1.016875, 1.0168862915039063, 1.0167982177734376, 1.0173235473632813, 1.0169313354492187, 1.0169343872070313, 1.0175621337890626, 1.017955322265625, 1.0172938232421875, 1.0173009643554687, 1.017554931640625, 1.0171617431640625, 1.0173388671875, 1.0177402954101562, 1.0175774536132813, 1.0175682373046875, 1.0177136840820313, 1.0181427001953125, 1.0177576904296874, 1.0176788330078126, 1.017692138671875, 1.017617431640625, 1.0178262939453124, 1.0180515747070313, 1.0169354248046876, 1.0168514404296876, 1.0176296997070313, 1.0172395629882813, 1.0167859497070313, 1.0172784423828125, 1.0170859375, 1.0170224609375, 1.0186465454101563, 1.0175170288085937, 1.0169405517578125, 1.0179154052734376, 1.0179379272460938, 1.01726318359375, 1.0171544799804688, 1.0171340942382812, 1.0169609985351562, 1.0169047241210938, 1.017776123046875, 1.017396240234375, 1.0173921508789063, 1.0171002807617187, 1.0185277709960938, 1.017439208984375, 1.017312255859375, 1.017007080078125, 1.0172160034179687, 1.0172160034179687, 1.017218017578125, 1.0172958984375, 1.0172764282226563, 1.0170203857421876, 1.017691162109375, 2.111909912109375, 1.0176123046875, 1.0175139770507813, 1.0174228515625, 1.0174617309570313, 1.0175221557617187, 1.0169579467773437, 1.0177576904296874, 1.0171986083984375, 1.0168289184570312, 1.0170685424804689, 1.0173532104492187, 1.0175938720703126, 1.017185302734375, 1.01743408203125, 1.0171443481445313, 1.016764404296875, 1.0172661743164062, 1.0177013549804688, 1.0171986083984375, 1.017049072265625, 1.0170828857421874, 1.0174166870117187, 1.0170664672851562, 1.0174453735351563, 1.0168790893554687, 1.0178897705078125, 1.0175170288085937, 1.0171791381835937, 1.0170726928710938, 1.0169456176757812, 1.0167869262695313, 1.0170419311523438, 1.0173788452148438, 1.017333740234375, 1.0175242309570312, 1.018076171875, 1.01758056640625, 1.0170736694335938, 1.0170521850585938, 1.0168186645507813, 1.0173572998046876, 1.0176532592773437, 1.01709619140625, 1.0169476928710937, 1.0168115844726562, 1.0169046630859375, 1.0173613891601563, 1.0177177734375, 1.0168975219726561, 1.016826904296875, 1.0167296142578126, 1.017049072265625, 1.0175293579101563, 1.0174402465820314, 1.0174054565429687, 1.0173552856445311, 1.017469970703125, 1.0172620849609375, 1.0167603149414062, 1.0176635131835938, 1.0175570068359374, 1.0175396118164062, 2.113271728515625, 1.0164520874023437, 1.0175570068359374, 1.0175221557617187, 1.0169467163085937, 1.01684326171875, 1.01673779296875, 1.0166527709960937, 1.016406005859375, 1.01699072265625, 1.0166343383789063, 1.0166343383789063, 1.016573974609375, 1.0167418823242187, 1.0167675170898438, 1.0167920532226562, 1.0167357177734375, 1.0169302978515624, 1.0171954956054687, 1.0174054565429687, 1.0170368041992188, 1.0171791381835937, 1.0176737060546874, 1.0177310791015626, 1.0174033813476562, 1.0174044189453124, 1.017459716796875, 1.0175098876953126, 1.0173675537109375, 1.0176378784179687, 1.017259033203125, 1.0173460693359375, 1.0176511840820313, 1.0174822387695313, 1.0173767700195313, 1.0175150146484375, 1.0174218139648437, 1.0178508911132813, 1.0178406372070312, 1.0176204833984375, 1.0173767700195313, 1.0178017578125, 1.0179000244140626, 1.0172119140625, 1.0165678100585938, 1.0165330200195313, 1.0163292236328125, 1.0167285766601561, 1.0169968872070312, 1.0166988525390626, 1.0169210815429688, 1.0170480346679687, 1.0171238403320313, 1.0167817993164063, 1.0167633666992189, 1.0170337524414061, 1.0168043823242188, 1.0171392211914063, 1.017153564453125, 1.0167838745117188, 1.0169251708984375, 1.0174423217773438, 1.01701220703125, 2.113585205078125, 1.0164449462890626, 1.016585205078125, 1.0164551391601562, 1.01684326171875, 1.016680419921875, 1.016753173828125, 1.0173470458984375, 1.0173030395507812, 1.0169528198242188, 1.0168330078125, 1.0170194091796876, 1.01732763671875, 1.0167736206054687, 1.0168514404296876, 1.0169835815429686, 1.0166835327148438, 1.01719140625, 1.0171043701171876, 1.0166845703125, 1.017260009765625, 1.0176849975585938, 1.0174935302734376, 1.017529296875, 1.0172733154296876, 1.0169231567382813, 1.0173982543945312, 1.0170020141601563, 1.016616943359375, 1.0167767333984374, 1.0169467163085937, 1.0172088623046875, 1.01715966796875, 1.016932373046875, 1.0170357666015626, 1.0171320190429687, 1.01718017578125, 1.0174566650390624, 1.0167255249023437, 1.0167971801757814, 1.0167633666992189, 1.0170337524414061, 1.0170050659179688, 1.0170439453125, 1.01673779296875, 1.0168330078125, 1.0170828857421874, 1.017059326171875, 1.0168739624023437, 1.0171300048828125, 1.0171238403320313, 1.016974365234375, 1.0169026489257813, 1.0171504516601562, 1.0168207397460938, 1.0168319702148438, 1.0172692260742187, 1.0173624877929688, 1.016796142578125, 1.0168391723632813, 1.0171893920898438, 1.017365478515625, 1.016943603515625, 2.1139599609375, 1.0168893432617188, 1.0171945190429688, 1.016859619140625, 1.0165811157226563, 1.0167500610351563, 1.01697021484375, 1.016826904296875, 1.0168453369140624, 1.0170132446289062, 1.0168053588867187, 1.0173511962890625, 1.01734912109375, 1.0167859497070313, 1.0169036865234375, 1.0171238403320313, 1.0169866333007813, 1.0171996459960937, 1.0168934326171875, 1.0169763793945312, 1.0167183227539063, 1.0170234985351563, 1.0178928833007812, 1.0167654418945313, 1.0169620361328124, 1.0170040283203126, 1.0167449340820311, 1.0173562622070313, 1.016680419921875, 1.0172979125976562, 1.0165924072265624, 1.017101318359375, 1.0172999877929687, 1.0170224609375, 1.0172262573242188, 1.0168402099609375, 1.0170101928710937, 1.0167879638671875, 1.01705419921875, 1.0175529174804687, 1.0173265991210938, 1.01718017578125, 1.0174719848632812, 1.0170245361328125, 1.0174248657226563, 1.016958984375, 1.0166087646484374, 1.0166466674804688, 1.0171975708007812, 1.01707470703125, 1.0169210815429688, 1.0175795288085938, 1.0173245239257813, 1.0168084716796875, 1.0169722900390625, 1.0170470581054687, 1.0169948120117187, 1.0169896850585938, 1.0172006225585937, 1.0173716430664062, 1.0176337890625, 1.0176676025390625, 1.0172323608398437]",tokens/s,0.9681516343515072,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-7b,tiiuae/falcon-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen2-beta-72B,Qwen/Qwen2-beta-72B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -46741,18 +46750,31 @@ ChildProcessError: Traceback (most recent call last): self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 559, in from_pretrained + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: FalconForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3904, in from_pretrained + dispatch_model(model, **device_map_kwargs) + File ""/usr/local/lib/python3.10/dist-packages/accelerate/big_modeling.py"", line 489, in dispatch_model + model.to(device) + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 2796, in to + return super().to(*args, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1173, in to + return self._apply(convert) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 779, in _apply + module._apply(fn) + [Previous line repeated 2 more times] + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 853, in _apply + self._buffers[key] = fn(buf) + File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1159, in convert + return t.to( +torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 96.00 MiB. GPU -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-MoE-A2.7B,Qwen/Qwen1.5-MoE-A2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-7B,Qwen/Qwen1.5-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -46772,29 +46794,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3724, in from_pretrained - hf_quantizer.preprocess_model( - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 182, in preprocess_model - return self._process_model_before_weight_loading(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 85, in _process_model_before_weight_loading - model, has_been_replaced = replace_with_awq_linear( - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear - _, has_been_replaced = replace_with_awq_linear( - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear - _, has_been_replaced = replace_with_awq_linear( - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 179, in replace_with_awq_linear - _, has_been_replaced = replace_with_awq_linear( - [Previous line repeated 1 more time] - File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 166, in replace_with_awq_linear - model._modules[name] = target_cls( - File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemm.py"", line 102, in __init__ - assert out_features % (32 // self.w_bit) == 0 -AssertionError + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,huggyllama/llama-7b,huggyllama/llama-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2013.822976,5480.382464,0.0,4833.93536,4503.282688,s,10,5.711301574707031,0.5711301574707031,0.0015604684158887843,0.5710088500976562,0.5724867248535156,0.573356430053711,0.5740521942138671,"[0.5715228271484375, 0.5742261352539062, 0.5684718017578125, 0.5703966064453125, 0.570494873046875, 0.5693699340820313, 0.5704375610351563, 0.5720609130859375, 0.57229345703125, 0.5720274658203125]",tokens/s,448.2340787846278,kWh,6.721677934681928e-06,3.683185084507083e-06,3.147118258432934e-05,4.187604560351835e-05,tokens/kWh,6113280.189438215,MB,2014.928896,5480.382464,0.0,4833.93536,4688.699392,s,10,334.74296874999993,33.474296875,0.0037315247196552594,33.473017578124995,33.479158984375,33.4801732421875,33.4809846484375,"[33.47309765625, 33.47263671875, 33.4715390625, 33.4729375, 33.47534765625, 33.47058984375, 33.47893359375, 33.4811875, 33.4778203125, 33.46887890625]",tokens/s,1.8820410249468458,kWh,0.00039524016447641235,0.00021662581418956808,0.0018242358853134645,0.002436101863979445,tokens/kWh,25860.987560301615,,s,629,339.3508396606445,0.5395084891266209,0.06790528508400501,0.531294189453125,0.5317521484375,0.5319190551757812,1.1017576318359374,"[0.5316085815429688, 0.5315625, 0.5310873413085937, 0.5312276611328125, 0.5310341186523437, 0.5311795043945312, 0.5312860107421875, 0.53180517578125, 0.5313863525390625, 0.5315205078125, 0.5309071655273437, 0.5309808349609375, 0.5307955322265625, 0.5312429809570313, 0.530924560546875, 0.5313556518554687, 0.5308876953125, 0.531230712890625, 0.5310802001953125, 0.5317345581054688, 0.5312921752929688, 0.5313382568359375, 0.5308221435546875, 0.5310607299804687, 0.5308549194335938, 0.5315635375976563, 0.5311006469726562, 0.5312788696289062, 0.5312388916015625, 0.5312849731445313, 0.5308907470703125, 0.5311416015625, 0.5308528442382813, 0.5311743774414063, 0.531367919921875, 0.5315932006835937, 0.5311682739257813, 0.5317539672851562, 0.5317908325195313, 0.531473388671875, 0.53108837890625, 0.53146728515625, 0.531220458984375, 0.5315338134765625, 0.5310525512695312, 0.531900390625, 0.5317529296875, 0.5317069091796875, 0.53103515625, 0.53153076171875, 0.5311344604492187, 0.5311918334960938, 0.5308630981445313, 0.5311641845703124, 0.5309531860351563, 0.531577880859375, 0.5316065063476563, 0.5314017333984375, 0.5316864013671875, 0.5318963012695312, 0.5315604248046875, 0.53161279296875, 1.1062353515625, 0.5315419921875, 0.5316771850585937, 0.5312737426757812, 0.5311528930664062, 0.5314109497070313, 0.5312112426757812, 0.5310986328125, 0.5311057739257813, 0.53089892578125, 0.5317980346679687, 0.531167236328125, 0.53102490234375, 0.5308078002929687, 0.5314508666992187, 0.5309224853515625, 0.5310689086914062, 0.5308067626953125, 0.5315430297851562, 0.5309972534179688, 0.5317294311523437, 0.5312696533203125, 0.5314498291015625, 0.5310535888671875, 0.5314406127929687, 0.5309706420898438, 0.5315850219726562, 0.5310156860351563, 0.5313699951171875, 0.5310637817382813, 0.5316474609375, 0.5311948852539062, 0.53110888671875, 0.53115185546875, 0.531330078125, 0.5310965576171875, 0.5311754150390625, 0.5309706420898438, 0.5319178466796874, 0.532337646484375, 0.5315972900390625, 0.531103759765625, 0.5311692504882812, 0.5309296875, 0.5313453979492188, 0.53089794921875, 0.532917236328125, 0.5309666137695312, 0.5310463256835938, 0.5309081420898437, 0.5315809326171875, 0.5311968994140625, 0.5312440185546875, 0.5310320434570313, 0.5312368774414062, 0.5308692626953125, 0.5317509155273438, 0.5314529418945313, 0.5314232177734375, 0.5311610717773437, 0.531356689453125, 0.5314232177734375, 0.5313045043945313, 1.1011102294921875, 0.5311477661132813, 0.5314263305664062, 0.531145751953125, 0.5313720092773437, 0.5311477661132813, 0.5315952758789062, 0.5309235229492187, 0.5311928100585938, 0.531162109375, 0.5311211547851562, 0.53140478515625, 0.5317939453125, 0.53121435546875, 0.5318656005859375, 0.531483642578125, 0.5315000610351562, 0.5312716674804687, 0.5315645141601563, 0.531324951171875, 0.5316557006835938, 0.5313607788085938, 0.5315901489257813, 0.5309573364257812, 0.5312061157226563, 0.5308528442382813, 0.5311078491210938, 0.5310279541015624, 0.5312245483398438, 0.5308385009765625, 0.5313310546875, 0.53131982421875, 0.5318225708007812, 0.5312051391601562, 0.5311702880859375, 0.5310709838867187, 0.5313167114257813, 0.5311600341796875, 0.5312184448242188, 0.531252197265625, 0.5313607788085938, 0.5311314086914063, 0.5312163696289063, 0.5310596923828125, 0.531451904296875, 0.5310115966796874, 0.5313280029296875, 0.53153076171875, 0.5314334716796875, 0.5314508666992187, 0.5315317993164063, 0.5316935424804687, 0.5310279541015624, 0.5312266235351563, 0.5312102661132813, 0.531051513671875, 0.5313505249023438, 0.5309439697265625, 0.53108837890625, 0.5311426391601562, 0.5314908447265625, 0.5311590576171875, 0.5316188354492187, 1.1020093994140625, 0.5310126342773438, 0.5312286987304687, 0.5310289916992188, 0.531694580078125, 0.5315460815429688, 0.5315625, 0.5309337768554687, 0.5313526000976563, 0.5313218383789062, 0.5313914794921875, 0.53136279296875, 0.5317498779296875, 0.5313587036132813, 0.5314078979492187, 0.531162109375, 0.5312286987304687, 0.531251220703125, 0.5314600830078124, 0.5311160278320313, 0.53119384765625, 0.5310310668945313, 0.5316546630859375, 0.531409912109375, 0.531567626953125, 0.5313894653320312, 0.5315020751953125, 0.531135498046875, 0.5310525512695312, 0.5308528442382813, 0.5313935546875, 0.5313812255859375, 0.5312890625, 0.530966552734375, 0.531019775390625, 0.5310494995117188, 0.5313024291992188, 0.5313894653320312, 0.531294189453125, 0.5311016845703125, 0.5310525512695312, 0.5311856689453125, 0.531736572265625, 0.531641357421875, 0.5321881713867187, 0.5313126220703125, 0.5313751220703125, 0.5310965576171875, 0.531794921875, 0.5309716186523438, 0.5311610717773437, 0.5310167236328125, 0.5313290405273438, 0.5308538818359375, 0.5310453491210938, 0.5313873901367188, 0.5312819213867187, 0.5309849853515625, 0.531398681640625, 0.5310084838867187, 0.5321144409179688, 0.531578857421875, 0.5316700439453125, 1.10214453125, 0.530830322265625, 0.5315020751953125, 0.5308692626953125, 0.5310894165039063, 0.5316024169921875, 0.5316566772460938, 0.5311129760742187, 0.5313003540039063, 0.5309224853515625, 0.5312870483398437, 0.5310771484375, 0.5316566772460938, 0.5308528442382813, 0.5312696533203125, 0.5311334228515625, 0.5315010375976562, 0.5314529418945313, 0.5316433715820312, 0.5310289916992188, 0.5314703369140625, 0.5313914794921875, 0.5314805908203125, 0.5312102661132813, 0.5313157348632812, 0.5312808837890625, 0.5316044921875, 0.5312051391601562, 0.5314078979492187, 0.5316720581054688, 0.5313822631835937, 0.5311006469726562, 0.53110888671875, 0.5308703002929688, 0.5316167602539063, 0.5314221801757812, 0.531800048828125, 0.5311160278320313, 0.5314561157226563, 0.531411865234375, 0.5317734375, 0.5317805786132812, 0.5310750732421875, 0.5310975952148438, 0.53131982421875, 0.53121435546875, 0.531240966796875, 0.530924560546875, 0.5315112915039063, 0.5309634399414063, 0.53119384765625, 0.5311242065429688, 0.5314119873046875, 0.5314744262695312, 0.5316505737304688, 0.5320745239257813, 0.531435546875, 0.53260595703125, 0.5313802490234375, 0.5314990234375, 0.531493896484375, 0.531061767578125, 0.5313065185546875, 1.1010294189453125, 0.5310013427734375, 0.53124609375, 0.5309849853515625, 0.5314959106445313, 0.5311447143554687, 0.531198974609375, 0.531135498046875, 0.5317611694335938, 0.5310453491210938, 0.5312368774414062, 0.5310105590820312, 0.5315205688476563, 0.5312000122070313, 0.531442626953125, 0.5309010009765625, 0.53104638671875, 0.5309081420898437, 0.5313760986328125, 0.5308211059570312, 0.5312214965820312, 0.5310167236328125, 0.5315963134765626, 0.531188720703125, 0.5312471313476562, 0.5308661499023437, 0.5318123779296875, 0.5314027709960938, 0.5315277099609375, 0.5311959228515625, 0.5315491943359375, 0.5311867065429687, 0.5311385498046876, 0.5308538818359375, 0.5313402709960937, 0.5308897094726562, 0.53110888671875, 0.5310873413085937, 0.532853759765625, 0.5313351440429688, 0.531751953125, 0.5309685668945312, 0.5313668823242188, 0.5309788208007813, 0.5314406127929687, 0.5319198608398438, 0.5315972900390625, 0.5316341552734375, 0.531399658203125, 0.5313290405273438, 0.5312604370117188, 0.531052490234375, 0.5311856689453125, 0.5311262817382812, 0.5311273193359375, 0.5309450073242188, 0.5313003540039063, 0.5310310668945313, 0.531162109375, 0.5316484985351563, 0.5313546142578125, 0.531051513671875, 0.5314641723632813, 1.10335595703125, 0.5312788696289062, 0.5317376098632812, 0.5317816162109374, 0.5310443725585937, 0.5310945434570312, 0.531515380859375, 0.5312010498046875, 0.5312890625, 0.5315604248046875, 0.5310709838867187, 0.5312757568359375, 0.5313177490234375, 0.5313668823242188, 0.5315430297851562, 0.5313382568359375, 0.531462158203125, 0.5310822143554688, 0.5318031616210938, 0.5317324829101563, 0.5316137084960938, 0.5309522094726562, 0.5314713745117188, 0.531346435546875, 0.5311826171875, 0.5308856201171875, 0.5316904907226563, 0.5310525512695312, 0.5313648681640625, 0.5309481201171875, 0.5315020751953125, 0.5309798583984375, 0.5310975952148438, 0.5311068115234375, 0.53123583984375, 0.5308887329101563, 0.5311610717773437, 0.5312593994140625, 0.5315113525390625, 0.5320181274414062, 0.53134130859375, 0.5311498413085938, 0.5313812255859375, 0.5318276977539063, 0.5313341674804688, 0.5315061645507813, 0.5313771362304688, 0.5312665405273438, 0.53157373046875, 0.5311734008789063, 0.5318348999023438, 0.5309931640625, 0.5319618530273438, 0.5310545654296875, 0.531431396484375, 0.5314805908203125, 0.5322670288085938, 0.5313526000976563, 0.5318143920898437, 0.5314058227539062, 0.5316392822265625, 0.5314242553710937, 0.5316956176757812, 1.1039549560546875, 0.5310596923828125, 0.531430419921875, 0.5309603881835937, 0.5313013916015625, 0.5310545654296875, 0.5314334716796875, 0.5311129760742187, 0.5314866943359375, 0.5309327392578125, 0.5313535766601563, 0.5317621459960937, 0.5320017700195312, 0.5313474731445312, 0.5321390380859375, 0.5313034057617188, 0.5315491943359375, 0.5315614624023437, 0.5321195678710937, 0.5317386474609375, 0.531430419921875, 0.53125732421875, 0.5315266723632812, 0.5314437255859376, 0.5318656005859375, 0.5314652099609375, 0.5318246459960938, 0.5309419555664062, 0.5313320922851562, 0.5310873413085937, 0.5319567260742187, 0.5315020751953125, 0.5317171020507813, 0.5314866943359375, 0.531135498046875, 0.5316986694335938, 0.5315419921875, 0.531198974609375, 0.5315286865234375, 0.5312481079101562, 0.53157373046875, 0.5313710327148438, 0.531556396484375, 0.5311170043945312, 0.5320908813476563, 0.5312860107421875, 0.5311273193359375, 0.53108837890625, 0.5317069091796875, 0.5314140014648437, 0.5318666381835937, 0.5313013916015625, 0.5315419921875, 0.5312225341796875, 0.531567626953125, 0.5311692504882812, 0.53146728515625, 0.5312901000976562, 0.5316116333007812, 0.5311057739257813, 0.5314898071289063, 0.5310587158203125, 0.5314539794921875, 1.1042969970703125, 0.5312860107421875, 0.5315072021484375, 0.5316034545898437, 0.5322137451171876, 0.5317847290039063, 0.5316690063476562, 0.5311959228515625, 0.531631103515625, 0.5317171020507813, 0.531820556640625, 0.5314273071289063, 0.5316249389648438, 0.5310904541015625, 0.531863525390625, 0.5312501831054688, 0.53151025390625, 0.531252197265625, 0.5320970458984375, 0.5310699462890625, 0.5312184448242188, 0.5309183959960937, 0.5319987182617187, 0.531577880859375, 0.5319649047851562, 0.5313546142578125, 0.53127783203125, 0.5312000122070313, 0.5314058227539062, 0.5309552612304688, 0.5314765014648437, 0.5311477661132813, 0.5315399780273438, 0.5311395874023438, 0.5313935546875, 0.5317590942382813, 0.531430419921875, 0.5314949340820313, 0.53096240234375, 0.5309450073242188, 0.5312819213867187, 0.5316137084960938, 0.5311641845703124, 0.5311508178710938, 0.5317099609375, 0.531009521484375, 0.5310576782226563, 0.530977783203125, 0.5313966064453125, 0.531272705078125, 0.531178466796875, 0.53085693359375, 0.5311764526367188, 0.5310115966796874, 0.531294189453125, 0.5309757690429687, 0.5316322021484375, 0.5310668334960937, 0.531282958984375, 0.531072021484375, 0.5319813232421875, 0.5315072021484375, 0.5314345092773437, 1.1038515625, 0.5315747680664062, 0.5315563354492188, 0.5314283447265625, 0.5311314086914063, 0.5308887329101563, 0.5313218383789062, 0.5309593505859375, 0.5309398803710937, 0.5308262329101563, 0.5310136108398438, 0.5309296875, 0.5314590454101562, 0.5310699462890625, 0.5316587524414063, 0.5311928100585938, 0.5312696533203125, 0.5310955810546875, 0.5310802001953125, 0.5312481079101562, 0.5316751098632813, 0.5312921752929688, 0.5321625366210937, 0.531294189453125, 0.5315594482421875, 0.5310873413085937, 0.5322465209960937, 0.5310218505859375, 0.5312512817382813, 0.5308609619140625, 0.531178466796875, 0.5309429931640625, 0.5310105590820312, 0.5310392456054688, 0.5313372192382813, 0.5314283447265625, 0.5313710327148438, 0.5309235229492187, 0.5312706298828125, 0.5308815307617187, 0.5310955810546875, 0.5310003051757812, 0.5311764526367188, 0.5315164184570312, 0.53134130859375, 0.5313402709960937, 0.5311385498046876, 0.5311682739257813, 0.53187890625, 0.5310679321289062, 0.5314652099609375, 0.5309286499023438, 0.5317437744140625, 0.5314334716796875, 0.5315911865234375, 0.5309706420898438, 0.5311815795898438, 0.5312235717773437, 0.5312030639648437, 0.5309204711914063, 0.5312102661132813, 0.5308764038085938, 0.5311703491210937]",tokens/s,1.853538952869569,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-34B,,cuda,0,42,,,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,MB,1721.061376,22129.672192,0.0,21483.225088,20799.036928,s,10,27.921223388671876,2.7921223388671876,0.002873024218980136,2.791891357421875,2.7956688476562497,2.7963155029296876,2.7968328271484375,"[2.793120361328125, 2.796962158203125, 2.790662353515625, 2.790180419921875, 2.7901220703125, 2.787002685546875, 2.79004345703125, 2.793321533203125, 2.795525146484375, 2.794283203125]",tokens/s,91.68652692484228,kWh,3.2928969429598913e-05,1.8046407099463975e-05,0.00015823184880759956,0.00020920722533666246,tokens/kWh,1223667.1060860218,MB,1726.52544,22129.672192,0.0,21483.225088,20902.142976,s,10,1662.0463125,166.20463124999998,0.013890741352160448,166.199171875,166.2239140625,166.22626953125,166.22815390625,"[166.211921875, 166.223390625, 166.191390625, 166.191359375, 166.191640625, 166.203515625, 166.194828125, 166.2176875, 166.191953125, 166.228625]",tokens/s,0.3790508093919315,kWh,0.0019620591764814327,0.001075380349219922,0.009375421333664404,0.012412860859365755,tokens/kWh,5075.381148131151,,s,629,1684.5351452636726,2.678116288177539,0.33164961442268687,2.637888427734375,2.63990244140625,2.640667578125,5.42840712890625,"[2.638138427734375, 2.638636962890625, 2.638865478515625, 2.6390283203125, 2.6389248046875, 2.63697509765625, 2.6374482421875, 2.637588623046875, 2.6383994140625, 2.637781982421875, 2.63811181640625, 2.639296630859375, 2.6380380859375, 2.637068359375, 2.638099365234375, 2.637255615234375, 2.637476806640625, 2.63743798828125, 2.637467529296875, 2.63781787109375, 2.637115478515625, 2.637315185546875, 2.63943896484375, 2.639993896484375, 2.6398291015625, 2.63933349609375, 2.63897802734375, 2.639859619140625, 2.63980126953125, 2.639171630859375, 2.637111328125, 2.63720556640625, 2.636434326171875, 2.63687158203125, 2.63707958984375, 2.639266845703125, 2.63845263671875, 2.637464599609375, 2.638060546875, 2.64020263671875, 2.638950439453125, 2.63784033203125, 2.63769091796875, 2.6381884765625, 2.639057861328125, 2.637621337890625, 2.638141357421875, 2.63823876953125, 2.639244384765625, 2.63790283203125, 2.6387138671875, 2.6390537109375, 2.638361572265625, 2.637244384765625, 2.639206298828125, 2.638740478515625, 2.639088623046875, 2.638509033203125, 2.637013916015625, 2.637980712890625, 2.637846435546875, 2.638864501953125, 5.43535302734375, 2.63853662109375, 2.63802978515625, 2.63697607421875, 2.637854736328125, 2.638664794921875, 2.63739794921875, 2.637233154296875, 2.637539306640625, 2.637358154296875, 2.637158447265625, 2.637360107421875, 2.63921875, 2.63846923828125, 2.638044189453125, 2.639015869140625, 2.636918701171875, 2.637613037109375, 2.637201416015625, 2.63785888671875, 2.6367763671875, 2.637592529296875, 2.63693310546875, 2.6386318359375, 2.63771337890625, 2.638298095703125, 2.637001708984375, 2.6378701171875, 2.6421064453125, 2.6414111328125, 2.641197021484375, 2.64100146484375, 2.63889111328125, 2.6406533203125, 2.6406552734375, 2.637020263671875, 2.637322265625, 2.63722900390625, 2.63769091796875, 2.6369853515625, 2.63765185546875, 2.63745751953125, 2.638650390625, 2.638825439453125, 2.637306884765625, 2.64330859375, 2.641152099609375, 2.6409931640625, 2.63775244140625, 2.639099853515625, 2.638685302734375, 2.6388388671875, 2.637993896484375, 2.639129638671875, 2.638023681640625, 2.638602294921875, 2.63790283203125, 2.63815380859375, 2.637550537109375, 2.63849169921875, 2.639201171875, 2.6400400390625, 2.638790771484375, 5.4299453125, 2.63796826171875, 2.638594970703125, 2.637592529296875, 2.6385439453125, 2.637388916015625, 2.638464111328125, 2.637737060546875, 2.63819775390625, 2.63681005859375, 2.637154296875, 2.63805224609375, 2.638739501953125, 2.63828173828125, 2.638024658203125, 2.637736083984375, 2.637816650390625, 2.63781884765625, 2.63653466796875, 2.637263916015625, 2.637474853515625, 2.63747998046875, 2.636569580078125, 2.64140478515625, 2.637125732421875, 2.638499755859375, 2.6369833984375, 2.637737060546875, 2.636338134765625, 2.63744921875, 2.637201416015625, 2.638740478515625, 2.638299072265625, 2.63929150390625, 2.637087646484375, 2.637667236328125, 2.6377021484375, 2.636683349609375, 2.637559814453125, 2.637581298828125, 2.6383564453125, 2.636505126953125, 2.63706005859375, 2.636032958984375, 2.6379765625, 2.637094970703125, 2.63819775390625, 2.64007568359375, 2.6376611328125, 2.6375966796875, 2.6389228515625, 2.63778515625, 2.639754150390625, 2.6381884765625, 2.63853466796875, 2.63933642578125, 2.639509521484375, 2.639793212890625, 2.640154541015625, 2.63959033203125, 2.636541015625, 2.6371533203125, 2.63670068359375, 5.43085791015625, 2.64038818359375, 2.640405517578125, 2.63921875, 2.638604248046875, 2.638392333984375, 2.63703857421875, 2.638612548828125, 2.638138427734375, 2.637631591796875, 2.637518798828125, 2.636412841796875, 2.639814697265625, 2.63709912109375, 2.638194580078125, 2.636851318359375, 2.637906982421875, 2.636904541015625, 2.63757421875, 2.637557861328125, 2.637801513671875, 2.637253662109375, 2.638193603515625, 2.63731396484375, 2.63754345703125, 2.637656005859375, 2.638063720703125, 2.6375537109375, 2.63655517578125, 2.636990478515625, 2.6373427734375, 2.638109619140625, 2.637427734375, 2.637330322265625, 2.63708154296875, 2.63813232421875, 2.636632080078125, 2.638185546875, 2.636789794921875, 2.6382294921875, 2.636559326171875, 2.63756494140625, 2.6364814453125, 2.637990966796875, 2.64270947265625, 2.63874755859375, 2.640064453125, 2.638127197265625, 2.637509521484375, 2.637388916015625, 2.637737060546875, 2.63737353515625, 2.639585205078125, 2.637530029296875, 2.638297119140625, 2.63809423828125, 2.637974609375, 2.63773583984375, 2.637834228515625, 2.63741552734375, 2.637762451171875, 2.637958251953125, 2.63785791015625, 5.428443359375, 2.63807275390625, 2.6370693359375, 2.638107666015625, 2.637665283203125, 2.63819677734375, 2.6379326171875, 2.63821923828125, 2.6370078125, 2.63802685546875, 2.638180419921875, 2.63954443359375, 2.6387373046875, 2.638023681640625, 2.636853271484375, 2.637129638671875, 2.637197265625, 2.636950439453125, 2.63758544921875, 2.638212158203125, 2.63828076171875, 2.6365849609375, 2.6370908203125, 2.638017578125, 2.63769384765625, 2.636833740234375, 2.638193603515625, 2.638341064453125, 2.640734130859375, 2.63990576171875, 2.639550537109375, 2.638340087890625, 2.63885107421875, 2.63923095703125, 2.6383955078125, 2.636854248046875, 2.636768310546875, 2.6369443359375, 2.637570068359375, 2.637836181640625, 2.63730078125, 2.63779541015625, 2.63750244140625, 2.637592529296875, 2.6366474609375, 2.638162841796875, 2.636866455078125, 2.6375146484375, 2.636231689453125, 2.6370693359375, 2.637305908203125, 2.63849169921875, 2.636894287109375, 2.636900390625, 2.637894775390625, 2.637490234375, 2.6377666015625, 2.64785107421875, 2.6376591796875, 2.637158447265625, 2.637832275390625, 2.63720849609375, 2.639467529296875, 5.425724609375, 2.637199462890625, 2.63809130859375, 2.638032958984375, 2.637854736328125, 2.638718017578125, 2.63857861328125, 2.637035400390625, 2.63773583984375, 2.638855224609375, 2.63739892578125, 2.638341064453125, 2.63885205078125, 2.639034423828125, 2.63807177734375, 2.637761474609375, 2.639326171875, 2.639801513671875, 2.639014892578125, 2.639296630859375, 2.637675537109375, 2.63769287109375, 2.637137939453125, 2.637119384765625, 2.6383955078125, 2.63736328125, 2.637094970703125, 2.637177734375, 2.6371953125, 2.637066162109375, 2.637592529296875, 2.639177734375, 2.637533203125, 2.6364169921875, 2.636937255859375, 2.6390283203125, 2.63927294921875, 2.63655126953125, 2.64357373046875, 2.637197265625, 2.637576171875, 2.638668701171875, 2.639214599609375, 2.639289306640625, 2.639532958984375, 2.638011474609375, 2.63690234375, 2.63817626953125, 2.636898193359375, 2.637287353515625, 2.637656982421875, 2.637981689453125, 2.636938232421875, 2.63751171875, 2.6373232421875, 2.63774609375, 2.637768798828125, 2.63883056640625, 2.639134765625, 2.641203125, 2.639278076171875, 2.638201904296875, 2.637488037109375, 5.42831396484375, 2.637304931640625, 2.638138427734375, 2.636865478515625, 2.639958984375, 2.63714404296875, 2.638241943359375, 2.63680810546875, 2.638630859375, 2.638310302734375, 2.640628662109375, 2.639406982421875, 2.63910302734375, 2.6390712890625, 2.640678955078125, 2.640310302734375, 2.63718701171875, 2.637646728515625, 2.637350830078125, 2.638884765625, 2.6375947265625, 2.637400146484375, 2.6368818359375, 2.642212890625, 2.637052978515625, 2.637252685546875, 2.636802001953125, 2.64029296875, 2.6377216796875, 2.6375556640625, 2.6366923828125, 2.63757421875, 2.638635009765625, 2.637696044921875, 2.637308837890625, 2.637477783203125, 2.637402099609375, 2.6365869140625, 2.637488037109375, 2.638253173828125, 2.6386328125, 2.637402099609375, 2.63834716796875, 2.6377451171875, 2.637392822265625, 2.636634033203125, 2.637593505859375, 2.637182861328125, 2.637476806640625, 2.6378896484375, 2.637464599609375, 2.639731689453125, 2.637717529296875, 2.63756591796875, 2.638674072265625, 2.63798974609375, 2.638200927734375, 2.63733251953125, 2.63752197265625, 2.63793359375, 2.636739501953125, 2.63832470703125, 2.637581298828125, 5.43222705078125, 2.638201904296875, 2.63801025390625, 2.639353759765625, 2.63851513671875, 2.637308837890625, 2.637641845703125, 2.6370263671875, 2.636823486328125, 2.638310302734375, 2.637739990234375, 2.636812255859375, 2.637005859375, 2.63739794921875, 2.637341796875, 2.636630126953125, 2.64057861328125, 2.638487548828125, 2.6377880859375, 2.63784033203125, 2.637433837890625, 2.638781494140625, 2.638268310546875, 2.63773486328125, 2.63734375, 2.64085302734375, 2.637772705078125, 2.63678369140625, 2.636781494140625, 2.637518798828125, 2.637106201171875, 2.636708984375, 2.63695166015625, 2.63906103515625, 2.6390087890625, 2.639414306640625, 2.63884912109375, 2.638530517578125, 2.639602783203125, 2.639301513671875, 2.638671875, 2.6394306640625, 2.640407470703125, 2.63750244140625, 2.640359375, 2.640257080078125, 2.641056884765625, 2.639901611328125, 2.64020263671875, 2.640825439453125, 2.637892578125, 2.63866357421875, 2.63870166015625, 2.638103515625, 2.641052734375, 2.639697998046875, 2.639138916015625, 2.63690234375, 2.63733447265625, 2.637642822265625, 2.63709912109375, 2.6370068359375, 2.638327880859375, 5.4337607421875, 2.63835546875, 2.638138427734375, 2.637888427734375, 2.63785986328125, 2.63816796875, 2.637724609375, 2.63817431640625, 2.63734375, 2.637358154296875, 2.637413330078125, 2.63850390625, 2.63788134765625, 2.638455810546875, 2.63848046875, 2.637498291015625, 2.637077392578125, 2.640005126953125, 2.638171142578125, 2.63721875, 2.638088134765625, 2.637340576171875, 2.637073486328125, 2.637824951171875, 2.63834619140625, 2.63819580078125, 2.63836474609375, 2.63822021484375, 2.637216796875, 2.63757421875, 2.63648046875, 2.6365439453125, 2.63712255859375, 2.63768994140625, 2.636919921875, 2.637600830078125, 2.637790283203125, 2.63785986328125, 2.636936279296875, 2.637821044921875, 2.637937744140625, 2.638752685546875, 2.63861767578125, 2.637978515625, 2.63923291015625, 2.639403076171875, 2.63928515625, 2.63895751953125, 2.63758447265625, 2.637350830078125, 2.63724853515625, 2.6378095703125, 2.638350341796875, 2.637401123046875, 2.636908447265625, 2.63790478515625, 2.638477294921875, 2.638087158203125, 2.639475830078125, 2.639469482421875, 2.640037841796875, 2.637907958984375, 2.636857421875, 5.4322666015625, 2.640575439453125, 2.641816650390625, 2.640384033203125, 2.639365234375, 2.639097900390625, 2.6402724609375, 2.638215087890625, 2.638160888671875, 2.637603759765625, 2.637083740234375, 2.6377421875, 2.637223876953125, 2.6389013671875, 2.638928955078125, 2.637473876953125, 2.637214599609375, 2.636859375, 2.637595703125, 2.63667822265625, 2.6370498046875, 2.638342041015625, 2.63901904296875, 2.637927490234375, 2.63882958984375, 2.640554931640625, 2.64306884765625, 2.639297607421875, 2.6393896484375, 2.64045166015625, 2.63986376953125, 2.639677490234375, 2.64067578125, 2.64060009765625, 2.640331787109375, 2.640183349609375, 2.639626220703125, 2.640194580078125, 2.63760498046875, 2.639280029296875, 2.6397255859375, 2.641039306640625, 2.6397880859375, 2.6377646484375, 2.639326171875, 2.63863916015625, 2.636462158203125, 2.637134765625, 2.6374892578125, 2.637487060546875, 2.63678466796875, 2.63695361328125, 2.636927978515625, 2.636856201171875, 2.63660546875, 2.637761474609375, 2.637675537109375, 2.6367119140625, 2.637622314453125, 2.6384404296875, 2.637370361328125, 2.63602880859375, 2.636900390625]",tokens/s,0.37339678057090686,,,,,,main,False,False -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,google/recurrentgemma-2b,google/recurrentgemma-2b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-32B,Qwen/Qwen1.5-32B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -46802,74 +46817,67 @@ AssertionError File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 367, in hf_raise_for_status - raise HfHubHTTPError(message, response=response) from e -huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-669481ce-544eb32470307c7c2118975a;f8b13f50-216d-4c20-873f-b5e2fce96257) - -403 Forbidden: Please enable access to public gated repositories in your fine-grained token settings to view this repository.. -Cannot access content at: https://huggingface.co/google/recurrentgemma-2b/resolve/main/config.json. -If you are trying to create or update content,make sure you have a token with the `write` role. - -The above exception was the direct cause of the following exception: + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target + report = worker(*worker_args) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run + backend: Backend = backend_factory(backend_config) + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1826, in _raise_on_head_call_error - raise LocalEntryNotFoundError( -huggingface_hub.utils._errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on. +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,tiiuae/falcon-40b,tiiuae/falcon-40b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): + File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch + benchmark_report = Benchmark.launch(benchmark_config) + File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch + report = launcher.launch(worker=cls.run, worker_args=[config]) + File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch + raise ChildProcessError(response[""traceback""]) +ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code + answer = input( +EOFError: EOF when reading a line -The above exception was the direct cause of the following exception: +During handling of the above exception, another exception occurred: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 445, in cached_file - raise EnvironmentError( -OSError: We couldn't connect to 'https://huggingface.co' to load this file, couldn't find it in the cached files and it looks like google/recurrentgemma-2b is not the path to a directory containing a file named config.json. -Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/transformers/installation#offline-mode'. + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights + self.create_no_weights_model() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model + meta_model = self.automodel_class.from_config(self.pretrained_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config + trust_remote_code = resolve_trust_remote_code( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code + raise ValueError( +ValueError: The repository for tiiuae/falcon-40b contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/tiiuae/falcon-40b. +Please pass the argument `trust_remote_code=True` to allow custom code to be run. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-30b,facebook/opt-30b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-160m,EleutherAI/pythia-160m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -46889,18 +46897,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-160m,EleutherAI/pythia-160m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.42.3,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,1298.558976,1030.22592,0.0,383.778816,312.459776,s,10,0.28084687995910645,0.028084687995910646,0.000728285740183105,0.028046159744262694,0.02834249210357666,0.029145854473114012,0.029788544368743897,"[0.029949216842651366, 0.026798112869262695, 0.028019840240478516, 0.028072479248046876, 0.02816396713256836, 0.02801126480102539, 0.027853151321411133, 0.028088735580444335, 0.02812339210510254, 0.027766719818115234]",tokens/s,9115.28730663754,kWh,3.2420572125929855e-07,1.7764934109754204e-07,7.379792814026657e-07,1.2398343437595062e-06,tokens/kWh,206479197.23189807,MB,1298.886656,1030.22592,0.0,383.778816,321.513984,s,10,17.335703369140624,1.7335703369140625,0.018391524502804384,1.7369953002929686,1.742456408691406,1.7499957214355468,1.7560271716308595,"[1.7575350341796876, 1.681819580078125, 1.740781005859375, 1.7369793701171874, 1.7387105712890625, 1.7344283447265625, 1.73701123046875, 1.7378514404296874, 1.7365494384765625, 1.734037353515625]",tokens/s,36.3411848129258,kWh,1.964119326918637e-05,1.0763519540993226e-05,4.278783331700238e-05,7.319254612718198e-05,tokens/kWh,860743.386225818,,s,629,17.55748351097106,0.0279133283163292,0.003379444288478559,0.027531295776367187,0.027742361068725588,0.028291072082519533,0.05581565963745117,"[0.028317695617675782, 0.02860339164733887, 0.02758246421813965, 0.02776268768310547, 0.02735206413269043, 0.027414560317993164, 0.029547487258911133, 0.029131776809692384, 0.028694528579711914, 0.02916659164428711, 0.028453887939453124, 0.029784063339233398, 0.028712959289550782, 0.028251136779785156, 0.028046335220336914, 0.02874675178527832, 0.028438528060913085, 0.02809343910217285, 0.027811840057373048, 0.02775142478942871, 0.027683839797973633, 0.027563007354736328, 0.02790399932861328, 0.028857343673706053, 0.027925567626953127, 0.027547584533691407, 0.027509759902954102, 0.027442176818847655, 0.027610111236572265, 0.027423744201660157, 0.027511808395385744, 0.027613183975219727, 0.02750873565673828, 0.02756710433959961, 0.027622400283813478, 0.027445247650146484, 0.027481088638305663, 0.027496448516845705, 0.0275230712890625, 0.027481088638305663, 0.027518976211547853, 0.027886592864990234, 0.027596799850463868, 0.02754150390625, 0.027484159469604492, 0.02752102470397949, 0.028536832809448243, 0.02763065528869629, 0.027487167358398436, 0.027603967666625977, 0.027572223663330078, 0.027682815551757813, 0.0275281925201416, 0.02760601615905762, 0.02755788803100586, 0.02758143997192383, 0.027496448516845705, 0.02754969596862793, 0.027570175170898437, 0.02755788803100586, 0.027470848083496095, 0.02771455955505371, 0.053613601684570314, 0.026470367431640624, 0.02636595153808594, 0.026263551712036134, 0.02627174377441406, 0.026299455642700195, 0.026310592651367187, 0.026295295715332033, 0.026380287170410157, 0.02631679916381836, 0.0263055362701416, 0.026335231781005858, 0.02631884765625, 0.026300416946411134, 0.026315776824951172, 0.02655232048034668, 0.0263874568939209, 0.02620217514038086, 0.026357696533203124, 0.026232831954956053, 0.02629631996154785, 0.026489856719970704, 0.02635468864440918, 0.026232831954956053, 0.026274816513061523, 0.02629734420776367, 0.026294271469116212, 0.026457088470458984, 0.02629734420776367, 0.026300479888916015, 0.026314687728881837, 0.026302463531494142, 0.02631270408630371, 0.02627276802062988, 0.026286079406738282, 0.026284032821655274, 0.026343423843383788, 0.02628505516052246, 0.026261503219604493, 0.026417152404785156, 0.02631782341003418, 0.02631270408630371, 0.026234880447387695, 0.026270719528198243, 0.026549247741699217, 0.026566656112670898, 0.02839756774902344, 0.027612159729003907, 0.027510784149169923, 0.027592704772949218, 0.027596799850463868, 0.027694080352783205, 0.027495424270629884, 0.02771865653991699, 0.027663360595703124, 0.02756915283203125, 0.027561983108520507, 0.027578367233276366, 0.02747395133972168, 0.027514848709106445, 0.02759884834289551, 0.027471872329711915, 0.028064767837524415, 0.056030208587646485, 0.02760704040527344, 0.027583488464355467, 0.027578367233276366, 0.02775654411315918, 0.028622848510742187, 0.027812864303588865, 0.027684864044189454, 0.027510784149169923, 0.027461631774902344, 0.02760601615905762, 0.027608064651489257, 0.02754867172241211, 0.02752921676635742, 0.02752204895019531, 0.027511808395385744, 0.02756608009338379, 0.027468799591064453, 0.02755788803100586, 0.0274913272857666, 0.02753638458251953, 0.02757734489440918, 0.02771046447753906, 0.027622400283813478, 0.02751283264160156, 0.02773401641845703, 0.027615232467651366, 0.02750873565673828, 0.027470848083496095, 0.027609088897705077, 0.027501567840576172, 0.02777907180786133, 0.028403711318969727, 0.02777292823791504, 0.027587583541870117, 0.02750668716430664, 0.027579456329345702, 0.027569087982177734, 0.02763270378112793, 0.027585472106933594, 0.027682815551757813, 0.027551744461059572, 0.02751590347290039, 0.027671552658081053, 0.02746678352355957, 0.027465696334838866, 0.027436031341552734, 0.028864511489868162, 0.028021760940551758, 0.027624448776245116, 0.027682815551757813, 0.027538431167602538, 0.02750054359436035, 0.02753023910522461, 0.027807743072509765, 0.02757734489440918, 0.027533376693725586, 0.02744108772277832, 0.02753126335144043, 0.02757529640197754, 0.02715443229675293, 0.027251712799072264, 0.02756403160095215, 0.05607014465332031, 0.02755583953857422, 0.02754969596862793, 0.02751283264160156, 0.02752511978149414, 0.027572223663330078, 0.0277708797454834, 0.027670528411865233, 0.027527168273925783, 0.02756096076965332, 0.02754867172241211, 0.027609088897705077, 0.0275732479095459, 0.027600896835327147, 0.02759065628051758, 0.027572223663330078, 0.02736128044128418, 0.027046911239624022, 0.02754047966003418, 0.027603967666625977, 0.027709440231323244, 0.02751283264160156, 0.027527168273925783, 0.02753331184387207, 0.02752409553527832, 0.027594751358032226, 0.027517951965332032, 0.02754867172241211, 0.027425792694091795, 0.027488256454467775, 0.027443199157714843, 0.02752102470397949, 0.027471872329711915, 0.027583488464355467, 0.02768076705932617, 0.02755891227722168, 0.027622400283813478, 0.02753023910522461, 0.02752511978149414, 0.027724800109863282, 0.027668479919433595, 0.027583488464355467, 0.02753433609008789, 0.02749849510192871, 0.027623424530029295, 0.027578367233276366, 0.027611135482788086, 0.02755583953857422, 0.027643903732299805, 0.027620351791381836, 0.027622400283813478, 0.02753331184387207, 0.027634687423706054, 0.027686912536621092, 0.02753331184387207, 0.027626495361328125, 0.027732992172241212, 0.027653120040893556, 0.027572223663330078, 0.02752409553527832, 0.02753331184387207, 0.02752409553527832, 0.027592704772949218, 0.05624319839477539, 0.02752204895019531, 0.02755583953857422, 0.02752511978149414, 0.02756608009338379, 0.027511808395385744, 0.027465728759765624, 0.027692031860351563, 0.027672576904296874, 0.02756403160095215, 0.027501567840576172, 0.027494400024414063, 0.027615232467651366, 0.027682815551757813, 0.02757529640197754, 0.027893760681152343, 0.027642879486083984, 0.027618303298950195, 0.027651071548461914, 0.027568128585815428, 0.0275599365234375, 0.02747494316101074, 0.0274913272857666, 0.027655168533325194, 0.027490304946899413, 0.027633663177490234, 0.027588607788085938, 0.027483200073242186, 0.027740095138549806, 0.027473920822143554, 0.027470848083496095, 0.02750054359436035, 0.027489280700683592, 0.027600896835327147, 0.02753433609008789, 0.02755788803100586, 0.02756915283203125, 0.02751692771911621, 0.027446271896362305, 0.027482112884521483, 0.027601919174194335, 0.027625471115112304, 0.028243967056274414, 0.027845632553100585, 0.027794431686401368, 0.02756710433959961, 0.02755788803100586, 0.02752204895019531, 0.02834022331237793, 0.02766748809814453, 0.027527135848999025, 0.027579391479492187, 0.027465728759765624, 0.027493375778198242, 0.027579391479492187, 0.02758143997192383, 0.027435007095336913, 0.02759884834289551, 0.027570175170898437, 0.027476991653442383, 0.027546623229980468, 0.027464767456054688, 0.027498432159423828, 0.056005630493164066, 0.02768076705932617, 0.02750771141052246, 0.0275732479095459, 0.02750464057922363, 0.027509759902954102, 0.027625471115112304, 0.027531295776367187, 0.02744828796386719, 0.02758246421813965, 0.027446271896362305, 0.027441152572631834, 0.027445247650146484, 0.027586559295654296, 0.02752409553527832, 0.02778726387023926, 0.027593727111816405, 0.027457536697387694, 0.027485183715820313, 0.02754867172241211, 0.027587583541870117, 0.027494400024414063, 0.027488256454467775, 0.027732992172241212, 0.02750873565673828, 0.027494400024414063, 0.027485183715820313, 0.02755891227722168, 0.02750054359436035, 0.027440128326416017, 0.027476991653442383, 0.027836416244506838, 0.02771865653991699, 0.027458560943603515, 0.02756505584716797, 0.027437055587768554, 0.027521087646484376, 0.027642816543579102, 0.027497472763061522, 0.027472896575927733, 0.02746675109863281, 0.027428863525390625, 0.02735820770263672, 0.027463680267333986, 0.02752409553527832, 0.027406335830688477, 0.027373567581176757, 0.027426816940307616, 0.027428863525390625, 0.027460607528686523, 0.027580415725708008, 0.02755276870727539, 0.027471872329711915, 0.027494400024414063, 0.02757529640197754, 0.027485183715820313, 0.027614208221435548, 0.0275599365234375, 0.027497472763061522, 0.027461631774902344, 0.027511808395385744, 0.02752409553527832, 0.02759782409667969, 0.055839744567871094, 0.0275281925201416, 0.02750873565673828, 0.027660287857055665, 0.028719104766845704, 0.02778316879272461, 0.0275599365234375, 0.027455488204956056, 0.02752511978149414, 0.02771865653991699, 0.027613183975219727, 0.02755583953857422, 0.027482112884521483, 0.027511808395385744, 0.02753433609008789, 0.027601919174194335, 0.02753331184387207, 0.027445247650146484, 0.027546623229980468, 0.02753023910522461, 0.027432960510253908, 0.027496448516845705, 0.02749849510192871, 0.027693056106567384, 0.027557952880859375, 0.027495359420776366, 0.02747494316101074, 0.027480064392089845, 0.028631040573120117, 0.02754560089111328, 0.027595775604248047, 0.02737664031982422, 0.02792448043823242, 0.027652095794677735, 0.02755686378479004, 0.027662336349487306, 0.02750873565673828, 0.027588607788085938, 0.027502592086791993, 0.027546623229980468, 0.027509759902954102, 0.027452415466308593, 0.02751590347290039, 0.027535360336303712, 0.027488256454467775, 0.0276112003326416, 0.027622400283813478, 0.027561920166015625, 0.027012096405029298, 0.027158527374267577, 0.027480064392089845, 0.027421695709228516, 0.02754764747619629, 0.027494400024414063, 0.02750771141052246, 0.027603967666625977, 0.027517951965332032, 0.027517951965332032, 0.027443199157714843, 0.027438079833984375, 0.02754252815246582, 0.02751590347290039, 0.02754047966003418, 0.05600460815429688, 0.027443199157714843, 0.027509759902954102, 0.027493375778198242, 0.027511808395385744, 0.027463680267333986, 0.027494400024414063, 0.027637760162353517, 0.027645952224731447, 0.027543552398681642, 0.027459583282470702, 0.027561983108520507, 0.02754457664489746, 0.027441152572631834, 0.027503616333007814, 0.027595775604248047, 0.027561983108520507, 0.02747398376464844, 0.02769811248779297, 0.027451391220092772, 0.027464767456054688, 0.02740838432312012, 0.027423679351806642, 0.027561983108520507, 0.02754150390625, 0.027533376693725586, 0.027514816284179688, 0.027436031341552734, 0.027654144287109376, 0.027490304946899413, 0.027462656021118165, 0.027414527893066407, 0.027724800109863282, 0.027621376037597657, 0.02755583953857422, 0.027533344268798828, 0.027511775970458983, 0.027583488464355467, 0.027473920822143554, 0.027888639450073242, 0.028013568878173828, 0.02753228759765625, 0.027543552398681642, 0.02751590347290039, 0.02752511978149414, 0.02753740882873535, 0.028087295532226563, 0.02811392021179199, 0.02836070442199707, 0.02752102470397949, 0.027493375778198242, 0.027467775344848632, 0.027691007614135742, 0.02755686378479004, 0.027661312103271486, 0.027489280700683592, 0.02771455955505371, 0.027546655654907225, 0.027526111602783204, 0.02749951934814453, 0.027551744461059572, 0.027627519607543945, 0.02756710433959961, 0.05608652877807617, 0.02756713676452637, 0.027494367599487306, 0.027629568099975587, 0.028110847473144532, 0.027906047821044923, 0.02756403160095215, 0.02756608009338379, 0.027489280700683592, 0.027599872589111327, 0.027708415985107423, 0.027561983108520507, 0.02712166404724121, 0.027146240234375, 0.027496448516845705, 0.02754457664489746, 0.027468799591064453, 0.027538431167602538, 0.027464704513549806, 0.027390975952148438, 0.02750668716430664, 0.027625471115112304, 0.027494400024414063, 0.027482112884521483, 0.027444223403930663, 0.027484159469604492, 0.028370943069458008, 0.028468223571777345, 0.02759065628051758, 0.027627519607543945, 0.027520000457763674, 0.02752614402770996, 0.02773708724975586, 0.027485183715820313, 0.02752204895019531, 0.027460607528686523, 0.027480064392089845, 0.027452415466308593, 0.027447296142578126, 0.027441152572631834, 0.027420671463012695, 0.027578367233276366, 0.027652095794677735, 0.02753228759765625, 0.027483200073242186, 0.027545536041259765, 0.027586559295654296, 0.02748313522338867, 0.027475008010864256, 0.027719615936279297, 0.02758143997192383, 0.027448320388793947, 0.027636735916137696, 0.027439104080200196, 0.027476991653442383, 0.02750873565673828, 0.027513856887817382, 0.02750464057922363, 0.0275230712890625, 0.027460607528686523, 0.027479040145874024, 0.027406335830688477, 0.027627519607543945, 0.05575372695922851, 0.02751692771911621, 0.027454463958740235, 0.02752102470397949, 0.027453439712524414, 0.02749545669555664, 0.027481056213378905, 0.027452415466308593, 0.0274913272857666, 0.0275732479095459, 0.02750054359436035, 0.02749951934814453, 0.02753023910522461, 0.02750668716430664, 0.02751487922668457, 0.027486207962036133, 0.027458560943603515, 0.02746063995361328, 0.027542495727539064, 0.027510784149169923, 0.027472896575927733, 0.02773504066467285, 0.027495424270629884, 0.02754867172241211, 0.027433984756469725, 0.027487232208251954, 0.02759884834289551, 0.027445247650146484, 0.027481088638305663, 0.027494400024414063, 0.02754560089111328, 0.027456512451171877, 0.027470848083496095, 0.027430912017822266, 0.02740121650695801, 0.027614240646362306, 0.027687904357910156, 0.02750054359436035, 0.0275230712890625, 0.02754047966003418, 0.027437055587768554, 0.027554815292358398, 0.027576320648193358, 0.027617279052734374, 0.027453439712524414, 0.02751283264160156, 0.027495424270629884, 0.02752204895019531, 0.02755891227722168, 0.02756096076965332, 0.027717632293701173, 0.027488256454467775, 0.02752614402770996, 0.027511808395385744, 0.02754047966003418, 0.02753945541381836, 0.027455488204956056, 0.027632640838623046, 0.027572223663330078, 0.027554815292358398, 0.027497472763061522, 0.027433984756469725, 0.02750873565673828]",tokens/s,35.82517959404373,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-base-alpha-7b,stabilityai/stablelm-base-alpha-7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.42.3,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,1607.868416,8198.291456,0.0,7551.844352,6941.631488,s,10,6.049583618164062,0.6049583618164063,0.00188642846372062,0.6043523254394532,0.6052415832519532,0.6079165069580078,0.6100564459228516,"[0.6105914306640625, 0.6046471557617188, 0.6042630615234375, 0.6042338256835937, 0.6039627075195313, 0.6043169555664063, 0.604395263671875, 0.6042136840820312, 0.6045718383789063, 0.6043876953125]",tokens/s,423.16961985838503,kWh,7.137859198782179e-06,3.9112609274686095e-06,3.3793049910240254e-05,4.484217003649104e-05,tokens/kWh,5708911.94140863,MB,1607.868416,8198.291456,0.0,7551.844352,7068.358144,s,10,357.60694921875006,35.76069492187501,0.005106009215487831,35.758738281250004,35.7667015625,35.76887421875,35.77061234375,"[35.771046875, 35.76394140625, 35.7568125, 35.758265625, 35.75676171875, 35.76621875, 35.7592109375, 35.754734375, 35.75566015625, 35.764296875]",tokens/s,1.7617107312269418,kWh,0.0004221826620896658,0.00023139278631924143,0.0020006029942719558,0.002654178442680863,tokens/kWh,23736.158423608704,,s,629,362.47854425048865,0.5762774948338447,0.07177628984511826,0.5675980834960938,0.567922509765625,0.5680580688476562,1.17174888671875,"[0.5675130615234375, 0.567689208984375, 0.5675007934570313, 0.5676400756835938, 0.5674649658203125, 0.5675069580078125, 0.5678878784179687, 0.567362548828125, 0.5674598388671875, 0.5676318969726563, 0.5675222778320312, 0.5676452026367188, 0.5675714721679688, 0.5676103515625, 0.5676881713867188, 0.5674454956054688, 0.567530517578125, 0.567910400390625, 0.5679451904296875, 0.5677383422851563, 0.5676656494140625, 0.5675929565429687, 0.5674803466796875, 0.5676605224609375, 0.567752685546875, 0.5674424438476563, 0.5676011352539062, 0.5677957153320312, 0.567546875, 0.5675243530273437, 0.5677138061523438, 0.5675284423828125, 0.5678120727539062, 0.5674086303710938, 0.5677987670898438, 0.5677322387695313, 0.5678274536132812, 0.5677987670898438, 0.5678561401367187, 0.5680128173828125, 0.5680640258789063, 0.568237060546875, 0.5680230102539062, 0.56797900390625, 0.5682124633789063, 0.5679288330078125, 0.5680722045898438, 0.5680875244140625, 0.5679697875976563, 0.5680936889648438, 0.5682411499023438, 0.5679902954101562, 0.5680732421875, 0.5680537719726563, 0.5682831420898438, 0.56803125, 0.5680128173828125, 0.5679288330078125, 0.5679288330078125, 0.5681571655273437, 0.5682012329101562, 0.5679349975585938, 1.1725772705078126, 0.5678028564453125, 0.5673922729492188, 0.5673328857421875, 0.5676503295898437, 0.5674823608398437, 0.5677864990234375, 0.5676216430664063, 0.5676328735351562, 0.5674219360351562, 0.5675181884765625, 0.567531494140625, 0.5675028686523438, 0.5675673828125, 0.56765234375, 0.5675458374023438, 0.5677005004882812, 0.5678448486328125, 0.5676810302734375, 0.5675069580078125, 0.5675714721679688, 0.567625732421875, 0.5676769409179687, 0.56762060546875, 0.56759912109375, 0.5676226806640625, 0.567994384765625, 0.5675867919921875, 0.5675130615234375, 0.5675714721679688, 0.5675089721679687, 0.5679052734375, 0.5676492919921875, 0.5678059692382813, 0.56771484375, 0.5675673828125, 0.5678981323242187, 0.5678489379882813, 0.5676195678710938, 0.5676830444335937, 0.5675397338867187, 0.5676615600585937, 0.5679585571289063, 0.567816162109375, 0.5676226806640625, 0.5676912841796875, 0.56768408203125, 0.5677619018554687, 0.5679022216796875, 0.5678663940429688, 0.56771484375, 0.5676287841796875, 0.5677537231445312, 0.5677793579101562, 0.56771484375, 0.5677178955078125, 0.5676318969726563, 0.5678059692382813, 0.5677650146484375, 0.5679185791015625, 0.5677650146484375, 0.5678991088867188, 0.5676861572265625, 1.171936279296875, 0.5674823608398437, 0.56759912109375, 0.5674803466796875, 0.567468017578125, 0.5674844360351563, 0.5675469360351563, 0.5675325317382812, 0.5674557495117187, 0.5675243530273437, 0.56749462890625, 0.5673666381835938, 0.5673912353515626, 0.5676083374023437, 0.5674833984375, 0.5677506713867188, 0.5675888671875, 0.5676615600585937, 0.5675294799804688, 0.5676707763671875, 0.567794677734375, 0.5677701416015625, 0.5675960083007813, 0.5676718139648438, 0.567488525390625, 0.56749365234375, 0.5673687133789063, 0.5673953247070312, 0.5675048828125, 0.5674158325195312, 0.5673799438476562, 0.567678955078125, 0.567593994140625, 0.5675335693359375, 0.5674383544921875, 0.5675346069335937, 0.5674301147460937, 0.5676072998046875, 0.5677158203125, 0.5674608764648438, 0.5674281005859375, 0.5676697387695312, 0.5675172729492187, 0.5675755004882812, 0.567488525390625, 0.5675181884765625, 0.5676513061523437, 0.5677721557617188, 0.5679093627929688, 0.5675867919921875, 0.5678960571289062, 0.5678704833984375, 0.5674854125976563, 0.56757861328125, 0.56753564453125, 0.5677537231445312, 0.567525390625, 0.5675007934570313, 0.567530517578125, 0.5677332763671875, 0.56753662109375, 0.56765234375, 0.5674793090820313, 1.171693603515625, 0.5673564453125, 0.5675079956054687, 0.5678284912109375, 0.56759912109375, 0.5673697509765625, 0.56745166015625, 0.5675796508789063, 0.567320556640625, 0.5678018798828125, 0.5676707763671875, 0.5673635864257812, 0.5676656494140625, 0.5675222778320312, 0.56749462890625, 0.5674741821289062, 0.567573486328125, 0.567699462890625, 0.5673584594726563, 0.5676636352539063, 0.56764208984375, 0.5677854614257812, 0.5675489501953125, 0.5675601806640626, 0.567446533203125, 0.5675335693359375, 0.5677322387695313, 0.567583740234375, 0.5675673828125, 0.5675980834960938, 0.5676871948242187, 0.5675335693359375, 0.567404541015625, 0.5675264282226562, 0.5674711303710938, 0.5676072998046875, 0.5674208984375, 0.5676165161132812, 0.5676124267578125, 0.5678079833984375, 0.5675714721679688, 0.5675264282226562, 0.5675376586914063, 0.5676820678710938, 0.5676615600585937, 0.5676175537109375, 0.5676226806640625, 0.5675980834960938, 0.5676953735351562, 0.567625732421875, 0.56749462890625, 0.5675007934570313, 0.5674485473632812, 0.567520263671875, 0.5676431274414062, 0.5678233642578125, 0.5678878784179687, 0.5677035522460937, 0.5675448608398438, 0.5679554443359375, 0.5675960083007813, 0.5678827514648438, 0.567709716796875, 1.1716024169921875, 0.5677035522460937, 0.56723046875, 0.5673492431640625, 0.5673277587890625, 0.567320556640625, 0.5673185424804688, 0.5673236694335938, 0.5675140991210937, 0.5675294799804688, 0.5676615600585937, 0.5673820190429687, 0.5674485473632812, 0.5675274047851563, 0.5675827026367187, 0.567720947265625, 0.5676400756835938, 0.5675509643554687, 0.5675499267578125, 0.5675950317382813, 0.5675909423828125, 0.5674383544921875, 0.5674721069335937, 0.5676441650390625, 0.5673717651367187, 0.5674035034179687, 0.5676103515625, 0.567657470703125, 0.5675407104492187, 0.5674403686523437, 0.5674895629882812, 0.567446533203125, 0.5674240112304687, 0.5677138061523438, 0.5675427856445312, 0.5676287841796875, 0.5675827026367187, 0.567952392578125, 0.567657470703125, 0.5674956665039063, 0.5674475708007812, 0.5674977416992187, 0.5673901977539062, 0.567546875, 0.5674669799804688, 0.5677168579101562, 0.5674926147460938, 0.56757861328125, 0.5675765991210937, 0.567751708984375, 0.5678325805664063, 0.5675448608398438, 0.5675632934570313, 0.567720947265625, 0.5677639770507813, 0.567773193359375, 0.5677352905273437, 0.56757861328125, 0.5675642700195312, 0.5677168579101562, 0.5677168579101562, 0.5680588989257812, 0.5677189331054687, 1.172095947265625, 0.5675909423828125, 0.5673646240234375, 0.5673492431640625, 0.5674547119140625, 0.5674444580078125, 0.5672734985351563, 0.5673164672851563, 0.5674342651367188, 0.5674281005859375, 0.5676697387695312, 0.5677752075195313, 0.5677977294921875, 0.5678356323242187, 0.5677998046875, 0.5678991088867188, 0.5680814208984375, 0.5678212890625, 0.5678837890625, 0.5678131103515625, 0.5674895629882812, 0.567678955078125, 0.56818994140625, 0.567931884765625, 0.5678868408203125, 0.568015869140625, 0.5680803833007813, 0.5679933471679688, 0.567414794921875, 0.5675847778320312, 0.567510009765625, 0.5673533325195312, 0.5675867919921875, 0.5678397216796875, 0.5681592407226562, 0.5679216918945312, 0.5678868408203125, 0.5680036010742188, 0.5678960571289062, 0.567910400390625, 0.56768408203125, 0.5676759033203125, 0.56764111328125, 0.567841796875, 0.5676144409179688, 0.5677485961914063, 0.5675560913085937, 0.5678561401367187, 0.5677404174804688, 0.5678765869140625, 0.5678756103515625, 0.5678305053710937, 0.5676820678710938, 0.5676103515625, 0.567615478515625, 0.56755712890625, 0.5675775756835938, 0.5678540649414062, 0.5675448608398438, 0.5674608764648438, 0.5675858154296874, 0.5679667358398437, 0.5677393798828125, 1.172157470703125, 0.5676431274414062, 0.5675038452148438, 0.56789404296875, 0.56765234375, 0.567773193359375, 0.5675950317382813, 0.5673973388671875, 0.5673799438476562, 0.5674803466796875, 0.5675591430664062, 0.5674803466796875, 0.5673779296875, 0.56747314453125, 0.5676553955078125, 0.5675550537109375, 0.5675919189453125, 0.5674454956054688, 0.5675775756835938, 0.5674403686523437, 0.5674086303710938, 0.5675755615234375, 0.56759912109375, 0.5675294799804688, 0.56740966796875, 0.5674608764648438, 0.5674270629882813, 0.5675284423828125, 0.5676134643554688, 0.5675919189453125, 0.5675397338867187, 0.5674752197265625, 0.567573486328125, 0.5682390747070313, 0.5677588500976563, 0.5674352416992188, 0.5674403686523437, 0.5675755615234375, 0.5675909423828125, 0.5676226806640625, 0.56793701171875, 0.5677005004882812, 0.5675007934570313, 0.5674823608398437, 0.5673840942382813, 0.567699462890625, 0.5675847778320312, 0.5675458374023438, 0.5675089721679687, 0.5674793090820313, 0.5676072998046875, 0.5675909423828125, 0.5674526977539063, 0.5676298217773438, 0.567678955078125, 0.5677291259765626, 0.5681397705078125, 0.5680568237304687, 0.5680926513671875, 0.5679401245117187, 0.5678806762695312, 0.56757861328125, 0.567404541015625, 1.1717703857421875, 0.56732568359375, 0.567245849609375, 0.5675130615234375, 0.5674526977539063, 0.5675530395507813, 0.5674905395507812, 0.5674536743164063, 0.5673287963867187, 0.5674977416992187, 0.5676021728515624, 0.5677404174804688, 0.5675274047851563, 0.567419921875, 0.5674434814453125, 0.5673963623046875, 0.5674526977539063, 0.56757861328125, 0.5674188842773438, 0.5672969970703124, 0.5674066162109375, 0.5676973876953125, 0.567436279296875, 0.56740966796875, 0.5673236694335938, 0.56744140625, 0.5674004516601563, 0.5676953735351562, 0.5674639282226562, 0.5678069458007813, 0.5674035034179687, 0.5674823608398437, 0.5674240112304687, 0.56744140625, 0.567636962890625, 0.567636962890625, 0.5675264282226562, 0.5676195678710938, 0.5674833984375, 0.5677875366210937, 0.5674434814453125, 0.5675632934570313, 0.5675233154296875, 0.5676011352539062, 0.5673973999023437, 0.5679646606445312, 0.5675233154296875, 0.5678765869140625, 0.56774755859375, 0.5677557983398438, 0.5675827026367187, 0.5676103515625, 0.5677701416015625, 0.5676697387695312, 0.5676113891601563, 0.5676482543945313, 0.5674711303710938, 0.5676072998046875, 0.5674915771484375, 0.5675120849609375, 0.5675172119140625, 0.5675079956054687, 0.5674905395507812, 1.172304931640625, 0.5675038452148438, 0.5672386474609376, 0.5673328857421875, 0.5673697509765625, 0.5676912841796875, 0.567583740234375, 0.5673380126953125, 0.5673441162109375, 0.56738818359375, 0.56747314453125, 0.5674075927734376, 0.567319580078125, 0.5673380126953125, 0.5675089721679687, 0.5675806884765625, 0.567647216796875, 0.5674915771484375, 0.567647216796875, 0.5674557495117187, 0.56743115234375, 0.5675878295898438, 0.5675867919921875, 0.5676287841796875, 0.5674761962890625, 0.567446533203125, 0.5674403686523437, 0.5674004516601563, 0.5676267700195312, 0.5675714721679688, 0.567510009765625, 0.5675950317382813, 0.5674393310546875, 0.5676165161132812, 0.5676932983398437, 0.5677056274414063, 0.5676697387695312, 0.5675755615234375, 0.5675489501953125, 0.5675140991210937, 0.5675038452148438, 0.5677691040039062, 0.5677168579101562, 0.56785302734375, 0.5675059204101562, 0.5676021728515624, 0.5676103515625, 0.5676124267578125, 0.5676318969726563, 0.5675110473632813, 0.5675213012695313, 0.5676707763671875, 0.5675929565429687, 0.5677793579101562, 0.5675653076171875, 0.5676707763671875, 0.5675325317382812, 0.5675663452148437, 0.5677567749023438, 0.56762060546875, 0.567562255859375, 0.5676032104492188, 0.567562255859375, 1.1719853515625, 0.5674874877929688, 0.5673359375, 0.5679820556640625, 0.5675775756835938, 0.567525390625, 0.5675980834960938, 0.5674485473632812, 0.5673912353515626, 0.5674332275390624, 0.567457763671875, 0.567488525390625, 0.5680855102539063, 0.5679380493164062, 0.56792578125, 0.5678489379882813, 0.5679390869140625, 0.5678981323242187, 0.568069091796875, 0.5680824584960937, 0.56776806640625, 0.5675407104492187, 0.5676697387695312, 0.5676544189453125, 0.5677803344726563, 0.56749462890625, 0.5674619140625, 0.567635986328125, 0.5676564331054688, 0.5678848266601563, 0.56764208984375, 0.5677240600585938, 0.5675878295898438, 0.5675458374023438, 0.5677567749023438, 0.5675765991210937, 0.5677138061523438, 0.5677014770507812, 0.5678551025390625, 0.5678653564453126, 0.5678233642578125, 0.5675663452148437, 0.56768408203125, 0.5676195678710938, 0.5673472290039062, 0.567673828125, 0.5675069580078125, 0.5678008422851563, 0.5677434692382812, 0.5677178955078125, 0.5676564331054688, 0.5677291259765626, 0.5676759033203125, 0.5676492919921875, 0.5674803466796875, 0.5675130615234375, 0.567530517578125, 0.5675028686523438, 0.567562255859375, 0.5679052734375, 0.5681500244140625, 0.5680568237304687, 0.5677977294921875]",tokens/s,1.7352751217333675,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,m,m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/pythia-1.3b,EleutherAI/pythia-1.3b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -46908,70 +46920,34 @@ ValueError: OPTForCausalLM does not support an attention implementation through File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 304, in hf_raise_for_status - response.raise_for_status() - File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status - raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/m/resolve/main/config.json - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 402, in cached_file - resolved_file = hf_hub_download( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1221, in hf_hub_download - return _hf_hub_download_to_cache_dir( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1325, in _hf_hub_download_to_cache_dir - _raise_on_head_call_error(head_call_error, force_download, local_files_only) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1823, in _raise_on_head_call_error - raise head_call_error - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1722, in _get_metadata_or_catch_error - metadata = get_hf_file_metadata(url=url, proxies=proxies, timeout=etag_timeout, headers=headers) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py"", line 114, in _inner_fn - return fn(*args, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 1645, in get_hf_file_metadata - r = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 372, in _request_wrapper - response = _request_wrapper( - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py"", line 396, in _request_wrapper - hf_raise_for_status(response) - File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status - raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-66948c45-1493ab1b2b6a2b952f1b01fa;ec323376-0be7-4281-b02e-bb8025b2499f) - -Repository Not Found for url: https://huggingface.co/m/resolve/main/config.json. -Please make sure you specified the correct `repo_id` and `repo_type`. -If you are trying to access a private or gated repo, make sure you are authenticated. - -The above exception was the direct cause of the following exception: - -Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 40, in __init__ - super().__init__(config) - File ""/workspace/optimum_benchmark/backends/base.py"", line 65, in __init__ - self.pretrained_config = get_transformers_pretrained_config(self.config.model, **self.config.model_kwargs) - File ""/workspace/optimum_benchmark/backends/transformers_utils.py"", line 22, in get_transformers_pretrained_config - return AutoConfig.from_pretrained(model, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py"", line 965, in from_pretrained - config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 632, in get_config_dict - config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) - File ""/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py"", line 689, in _get_config_dict - resolved_config_file = cached_file( - File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file - raise EnvironmentError( -OSError: m is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' -If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ + self.load_model_with_no_weights() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights + self.load_model_from_pretrained() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained + self.pretrained_model = self.automodel_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained + return model_class.from_pretrained( + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,stabilityai/stablelm-3b-4e1t,stabilityai/stablelm-3b-4e1t,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.1,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,2104.19712,2911.371264,0.0,2264.92416,2140.72832,s,10,2.4884028778076175,0.2488402877807617,0.0017336823043823078,0.2489057083129883,0.25072755279541015,0.2508263542175293,0.2509053953552246,"[0.2507055969238281, 0.25092515563964846, 0.24757785034179688, 0.24682144165039063, 0.24747581481933595, 0.24631741333007812, 0.24757225036621094, 0.25036245727539064, 0.2504113311767578, 0.2502335662841797]",tokens/s,1028.7723193181093,kWh,2.9072395831265747e-06,1.5930372833037567e-06,1.325819488838971e-05,1.775847175482004e-05,tokens/kWh,14415654.879227767,MB,2104.19712,2911.371264,0.0,2264.92416,2246.907904,s,10,145.7403466796875,14.57403466796875,0.01212453290098591,14.5695126953125,14.590745703125,14.591192187499999,14.591549375,"[14.590646484375, 14.591638671875, 14.582625, 14.5875322265625, 14.570828125, 14.568197265625, 14.5662099609375, 14.56188671875, 14.5592158203125, 14.56156640625]",tokens/s,4.3227562878290176,kWh,0.00017210086691347241,9.432530317883612e-05,0.0007748077688972132,0.001041233938989522,tokens/kWh,60505.13495664491,,s,629,147.744148284912,0.23488735816361225,0.029563076186171044,0.23116493225097656,0.23200419921874998,0.2323472412109375,0.47893525024414063,"[0.23276133728027343, 0.23156428527832032, 0.23250534057617187, 0.23177215576171875, 0.23175167846679687, 0.2316636199951172, 0.23166464233398437, 0.23181925964355468, 0.2317864990234375, 0.2317178955078125, 0.23165542602539063, 0.23199948120117186, 0.2319114227294922, 0.23230770874023438, 0.2314403839111328, 0.23090074157714843, 0.2311679992675781, 0.23108505249023437, 0.23182847595214845, 0.23120793151855468, 0.2317506561279297, 0.23156838989257814, 0.23112498474121093, 0.23156224060058594, 0.23118540954589845, 0.23118438720703124, 0.230614013671875, 0.23102362060546874, 0.2310082550048828, 0.23108607482910157, 0.230908935546875, 0.23087001037597657, 0.23108709716796874, 0.2310952911376953, 0.23200051879882813, 0.2310277099609375, 0.23204249572753907, 0.2310840301513672, 0.230835205078125, 0.23095603942871093, 0.23102668762207032, 0.23113728332519531, 0.23130213928222657, 0.23161343383789063, 0.2317076416015625, 0.23303167724609375, 0.23183871459960936, 0.2320199737548828, 0.23191552734375, 0.23193702697753907, 0.23194009399414062, 0.23124581909179687, 0.23149977111816405, 0.23219200134277343, 0.2310451202392578, 0.23188479614257812, 0.23178752136230468, 0.23196159362792967, 0.23144857788085937, 0.23166770935058595, 0.23165029907226561, 0.23200358581542968, 0.48229580688476564, 0.2318663635253906, 0.23166464233398437, 0.23162367248535157, 0.23172402954101562, 0.23182745361328125, 0.23196876525878907, 0.2318561248779297, 0.23200358581542968, 0.23229849243164064, 0.23214796447753908, 0.2318919677734375, 0.23183360290527344, 0.23185714721679687, 0.23202919006347655, 0.231910400390625, 0.23255039978027345, 0.23172607421875, 0.23201484680175782, 0.23192678833007813, 0.23147724914550782, 0.23117721557617188, 0.23114137268066406, 0.2309345245361328, 0.2317998046875, 0.23216639709472656, 0.23188581848144532, 0.2317004852294922, 0.23109426879882813, 0.23139736938476563, 0.23195648193359375, 0.23148544311523436, 0.23106661987304689, 0.23104920959472655, 0.23114137268066406, 0.23106048583984376, 0.2310031433105469, 0.23155711364746093, 0.2323671112060547, 0.23183564758300781, 0.23187660217285155, 0.2323937225341797, 0.23180697631835936, 0.23087820434570314, 0.2311065673828125, 0.2314956817626953, 0.2341201934814453, 0.23121510314941407, 0.23109735107421875, 0.23107379150390625, 0.23113011169433595, 0.2308290557861328, 0.2309160919189453, 0.2308720703125, 0.23094578552246095, 0.2308229064941406, 0.2311014404296875, 0.23225958251953124, 0.23146803283691406, 0.232700927734375, 0.23182234191894532, 0.23120179748535155, 0.2311956481933594, 0.47941940307617187, 0.231984130859375, 0.23158067321777343, 0.23134104919433593, 0.23164210510253908, 0.23269786071777343, 0.2318868408203125, 0.23200665283203126, 0.23196467590332032, 0.23198822021484375, 0.23132159423828125, 0.23144960021972658, 0.23234970092773438, 0.23229849243164064, 0.2326097869873047, 0.23209368896484375, 0.23207942199707032, 0.23165023803710938, 0.2314403839111328, 0.23190937805175782, 0.23209164428710938, 0.23215309143066407, 0.23194931030273438, 0.23258828735351564, 0.23188890075683594, 0.231699462890625, 0.23152946472167968, 0.23133287048339843, 0.23157452392578126, 0.23149261474609376, 0.23182847595214845, 0.23126322937011717, 0.23139430236816405, 0.23153561401367187, 0.23187046813964843, 0.23149977111816405, 0.23232000732421876, 0.2311393280029297, 0.2319052734375, 0.23080345153808593, 0.23089459228515624, 0.23061196899414063, 0.23088230895996092, 0.23082701110839843, 0.23086898803710937, 0.23073382568359374, 0.23112396240234376, 0.2319974365234375, 0.2311065673828125, 0.23078912353515624, 0.23073587036132812, 0.2308495330810547, 0.23100108337402345, 0.23077580261230468, 0.23094578552246095, 0.23075942993164061, 0.23081983947753906, 0.23078399658203125, 0.23087615966796876, 0.23072665405273438, 0.23087615966796876, 0.2308290557861328, 0.23087615966796876, 0.4795392150878906, 0.23177830505371094, 0.2310133819580078, 0.23141786193847655, 0.23111372375488282, 0.23092633056640624, 0.23101951599121093, 0.23092633056640624, 0.23117619323730468, 0.2310963134765625, 0.23151104736328126, 0.23107174682617188, 0.23176499938964842, 0.23153663635253907, 0.2313123779296875, 0.23081983947753906, 0.23273677062988282, 0.23198104858398438, 0.23182540893554687, 0.2313287658691406, 0.23094989013671874, 0.23091506958007812, 0.23098880004882813, 0.23076454162597657, 0.230761474609375, 0.23085772705078125, 0.23132159423828125, 0.23243980407714843, 0.23207936096191406, 0.23211520385742188, 0.23186534118652344, 0.2317998046875, 0.2313912353515625, 0.23109324645996093, 0.23126527404785155, 0.23119667053222656, 0.23178956604003906, 0.2312058868408203, 0.23166157531738282, 0.23158784484863282, 0.23162060546875, 0.23184281921386718, 0.23122227478027343, 0.2323435516357422, 0.2337822723388672, 0.23145062255859375, 0.2319605712890625, 0.2309754943847656, 0.23164108276367187, 0.23121817016601562, 0.23156736755371093, 0.2316451873779297, 0.2317619171142578, 0.23206605529785157, 0.2315130920410156, 0.23114854431152343, 0.2315274200439453, 0.2312376251220703, 0.23179263305664063, 0.23200358581542968, 0.23266099548339844, 0.23178752136230468, 0.2316636199951172, 0.4785776672363281, 0.23102053833007813, 0.2308526153564453, 0.23079936218261718, 0.230835205078125, 0.2308177947998047, 0.2319779815673828, 0.23094578552246095, 0.23088333129882813, 0.23176089477539064, 0.2309969940185547, 0.23143936157226563, 0.23160627746582033, 0.231478271484375, 0.2311690216064453, 0.2314639434814453, 0.23161958312988282, 0.23254835510253907, 0.23204966735839844, 0.2317864990234375, 0.23187455749511718, 0.23142707824707032, 0.232457275390625, 0.2311648712158203, 0.2321274871826172, 0.23180799865722657, 0.2312376251220703, 0.2311690216064453, 0.23100621032714844, 0.23096115112304688, 0.23099392700195312, 0.23096217346191406, 0.23088742065429688, 0.2309969940185547, 0.23093043518066406, 0.23100210571289062, 0.23089971923828126, 0.23066213989257814, 0.23169740295410157, 0.23114239501953124, 0.23260263061523437, 0.23084646606445314, 0.23156736755371093, 0.23112498474121093, 0.23072972106933592, 0.23080447387695313, 0.23094992065429687, 0.23107376098632812, 0.23089260864257813, 0.23205165100097655, 0.23145266723632812, 0.23087309265136718, 0.23119052124023437, 0.2307184600830078, 0.2308362274169922, 0.23087513732910156, 0.23102566528320312, 0.2333665313720703, 0.23122125244140626, 0.2310635528564453, 0.230940673828125, 0.23090483093261718, 0.23118336486816407, 0.47746356201171875, 0.2322493438720703, 0.2315694122314453, 0.23091404724121095, 0.2314844207763672, 0.231510009765625, 0.23128985595703125, 0.2311628875732422, 0.231077880859375, 0.23118438720703124, 0.23118028259277343, 0.23097445678710937, 0.23111167907714844, 0.23096627807617187, 0.23094784545898436, 0.23088230895996092, 0.23102668762207032, 0.23121714782714844, 0.2314086456298828, 0.23167794799804686, 0.23117721557617188, 0.23124172973632812, 0.2311014404296875, 0.23113113403320312, 0.23106661987304689, 0.23094578552246095, 0.2310102996826172, 0.2310451202392578, 0.23154483032226564, 0.23112704467773437, 0.23111372375488282, 0.2310451202392578, 0.23104716491699218, 0.23118336486816407, 0.2313881530761719, 0.23125094604492188, 0.2312130584716797, 0.23101644897460938, 0.2333429718017578, 0.23087820434570314, 0.2312447967529297, 0.23098573303222655, 0.23105126953125, 0.2310522918701172, 0.23171685791015625, 0.2312447967529297, 0.23110041809082033, 0.23101849365234375, 0.2310399932861328, 0.231014404296875, 0.23103385925292969, 0.23098471069335938, 0.23129804992675781, 0.23095091247558594, 0.23119769287109376, 0.2312857666015625, 0.23109939575195312, 0.2308915252685547, 0.2313236541748047, 0.23161138916015625, 0.23103897094726564, 0.23182643127441407, 0.23234150695800782, 0.4790743103027344, 0.23154176330566406, 0.23141477966308593, 0.23161036682128905, 0.23167897033691406, 0.23150694274902345, 0.2312376251220703, 0.231583740234375, 0.2312970275878906, 0.2310840301513672, 0.23138304138183594, 0.2310635528564453, 0.23118336486816407, 0.23100006103515625, 0.23120793151855468, 0.23087615966796876, 0.2310133819580078, 0.230898681640625, 0.23100723266601564, 0.23108096313476562, 0.23136668395996093, 0.23115977478027344, 0.2310768585205078, 0.231046142578125, 0.23245619201660156, 0.23092428588867187, 0.2311414337158203, 0.2312303924560547, 0.2311260223388672, 0.2310102996826172, 0.2311925811767578, 0.23104920959472655, 0.23100933837890625, 0.2310194549560547, 0.23117926025390625, 0.2311075897216797, 0.23118540954589845, 0.23110348510742187, 0.23108096313476562, 0.23085977172851563, 0.23155711364746093, 0.23233740234375, 0.23105946350097656, 0.2312796173095703, 0.2310062713623047, 0.23090272521972657, 0.23148646545410156, 0.23091098022460937, 0.2309878387451172, 0.23087312316894532, 0.23152015686035157, 0.2321797180175781, 0.23130316162109374, 0.230898681640625, 0.23095295715332032, 0.23084236145019532, 0.2311014404296875, 0.2311331787109375, 0.23123052978515626, 0.2309252471923828, 0.23105740356445312, 0.23117619323730468, 0.23105740356445312, 0.48152984619140626, 0.2311157684326172, 0.23090380859375, 0.23155302429199218, 0.23127449035644532, 0.23103897094726564, 0.23097958374023436, 0.2311710662841797, 0.23115980529785157, 0.23104103088378905, 0.23108198547363282, 0.23097036743164062, 0.23084544372558594, 0.2313185272216797, 0.23110552978515625, 0.23093862915039062, 0.23098060607910156, 0.23100621032714844, 0.23143014526367187, 0.2317823944091797, 0.23226675415039064, 0.2317117462158203, 0.23127757263183593, 0.23153868103027345, 0.2311751708984375, 0.23130726623535156, 0.23114341735839844, 0.23096524047851563, 0.23087103271484374, 0.23130419921875, 0.2320271301269531, 0.23118643188476562, 0.23128370666503906, 0.2312806396484375, 0.23114854431152343, 0.2313799743652344, 0.23123968505859374, 0.23101542663574218, 0.2314403839111328, 0.23084031677246095, 0.23116184997558595, 0.23074099731445313, 0.23112396240234376, 0.23095706176757813, 0.23086592102050782, 0.2307573699951172, 0.23168409729003905, 0.23131033325195313, 0.2311393280029297, 0.2310215606689453, 0.23085977172851563, 0.23086285400390624, 0.2309519348144531, 0.2308239288330078, 0.23091813659667967, 0.23077786254882812, 0.2309222412109375, 0.2310697021484375, 0.2309160919189453, 0.23086592102050782, 0.23115367126464845, 0.2308720703125, 0.23090789794921876, 0.48265728759765625, 0.23116595458984374, 0.23137178039550782, 0.2312478790283203, 0.23101849365234375, 0.23090687561035156, 0.23088333129882813, 0.23087309265136718, 0.23085466003417968, 0.23150079345703126, 0.231151611328125, 0.23109120178222656, 0.231077880859375, 0.23160421752929689, 0.23117926025390625, 0.23098675537109375, 0.23116493225097656, 0.2308157501220703, 0.231014404296875, 0.231046142578125, 0.2309580841064453, 0.23116697692871094, 0.23099903869628907, 0.23071437072753906, 0.23106150817871093, 0.23102566528320312, 0.23100422668457032, 0.23102662658691406, 0.23118028259277343, 0.23100518798828126, 0.23101951599121093, 0.2309969940185547, 0.23098880004882813, 0.23096115112304688, 0.23098162841796874, 0.23114035034179686, 0.23111065673828124, 0.23085157775878906, 0.23094886779785156, 0.23084031677246095, 0.23096832275390625, 0.2307747802734375, 0.23147724914550782, 0.23169024658203125, 0.23177731323242187, 0.23133180236816406, 0.23098675537109375, 0.2309550018310547, 0.23120077514648438, 0.23074815368652343, 0.23088742065429688, 0.23084031677246095, 0.23159091186523437, 0.23110963439941407, 0.2308495330810547, 0.23108096313476562, 0.23082188415527344, 0.23110041809082033, 0.23168614196777343, 0.23109939575195312, 0.23103077697753907, 0.2309160919189453, 0.23111378479003905, 0.481429443359375, 0.2311956481933594, 0.2310645751953125, 0.23094989013671874, 0.23127655029296876, 0.23099186706542968, 0.2309416961669922, 0.23101747131347655, 0.23098880004882813, 0.23092941284179688, 0.23106661987304689, 0.23098060607910156, 0.231046142578125, 0.23074508666992188, 0.23084442138671876, 0.2313000946044922, 0.23091404724121095, 0.23080551147460937, 0.23100416564941406, 0.23077171325683593, 0.23084031677246095, 0.23112908935546875, 0.23205580139160156, 0.231077880859375, 0.23106048583984376, 0.2309580841064453, 0.23238552856445313, 0.23106764221191406, 0.2311690216064453, 0.23111065673828124, 0.23110041809082033, 0.23188890075683594, 0.2314956817626953, 0.23113113403320312, 0.23112908935546875, 0.23114341735839844, 0.23109735107421875, 0.23145062255859375, 0.23099288940429688, 0.231088134765625, 0.2312130584716797, 0.2308526153564453, 0.2309345245361328, 0.23095706176757813, 0.23097138977050782, 0.23116082763671875, 0.23089765930175782, 0.23111167907714844, 0.23134310913085937, 0.23081062316894532, 0.23087411499023439, 0.2307010498046875, 0.2309171142578125, 0.23114547729492188, 0.23143423461914062, 0.2308792266845703, 0.23096934509277345, 0.23170559692382814, 0.2311894989013672, 0.2319667205810547, 0.23111680603027343, 0.23170559692382814, 0.23135232543945314]",tokens/s,4.257359816288809,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-125m,EleutherAI/gpt-neo-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen1.5-1.8B,Qwen/Qwen1.5-1.8B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -46991,17 +46967,22 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: GPTNeoForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2,openai-community/gpt2,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.42.3,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,1242.517504,1002.962944,0.0,356.51584,319.013888,s,24,0.17130540800094604,0.007137725333372751,0.00022311786687976846,0.0071282398700714105,0.007300579309463501,0.007423537635803223,0.007834636788368226,"[0.007951807975769044, 0.0069541120529174804, 0.007165823936462402, 0.007056672096252442, 0.007144512176513672, 0.00713647985458374, 0.007169407844543457, 0.007167103767395019, 0.007114399909973144, 0.007214687824249268, 0.007116288185119629, 0.007130335807800293, 0.006872928142547608, 0.006911136150360107, 0.006938623905181885, 0.00706390380859375, 0.0072626562118530275, 0.006821887969970703, 0.007244128227233887, 0.007442368030548096, 0.006888895988464355, 0.007316832065582275, 0.007094272136688232, 0.007126143932342529]",tokens/s,35865.76788028823,kWh,8.10983955910138e-08,4.4438154296628874e-08,1.700140534975713e-07,2.95550603385214e-07,tokens/kWh,866179926.7800356,MB,1242.517504,1002.962944,0.0,356.51584,319.016448,s,24,9.959905761718751,0.414996073404948,0.006233471890431573,0.41629383850097657,0.4203448516845703,0.42279765014648435,0.42333133697509767,"[0.415234619140625, 0.41458303833007815, 0.4162372741699219, 0.4174971008300781, 0.41968191528320314, 0.41635040283203123, 0.41644073486328126, 0.4139960021972656, 0.41676824951171876, 0.41499542236328124, 0.41386602783203125, 0.4151525268554688, 0.3974216613769531, 0.42062896728515625, 0.4150201416015625, 0.4167072448730469, 0.4132667541503906, 0.40156256103515625, 0.42318035888671873, 0.4192855529785156, 0.40144622802734375, 0.4233764343261719, 0.41931097412109375, 0.4178955688476563]",tokens/s,151.80866527988903,kWh,4.816906560124589e-06,2.6384911088194618e-06,8.122948136426575e-06,1.5578345805370628e-05,tokens/kWh,4044075.0762048676,,s,1511,10.116198400020602,0.006695035340847519,0.0009268447542668934,0.006612927913665772,0.0067041277885437015,0.006775808095932007,0.014021119976043704,"[0.007634943962097168, 0.007476223945617676, 0.007463935852050781, 0.00738918399810791, 0.007346176147460938, 0.0073175039291381834, 0.007235583782196045, 0.00733900785446167, 0.007542784214019775, 0.0065781760215759275, 0.006622208118438721, 0.006672383785247803, 0.006590464115142822, 0.006896639823913574, 0.0068577280044555666, 0.006666240215301514, 0.0066109437942504885, 0.006701087951660157, 0.00667952013015747, 0.006412288188934326, 0.006393856048583985, 0.006409215927124024, 0.006362112045288086, 0.006533120155334473, 0.006343679904937744, 0.006370304107666015, 0.006401023864746094, 0.006310912132263183, 0.006371327877044678, 0.006326272010803223, 0.0063591041564941405, 0.00633132791519165, 0.006340608119964599, 0.006364160060882569, 0.006348800182342529, 0.00637440013885498, 0.006408192157745361, 0.006342656135559082, 0.006371327877044678, 0.006342720031738281, 0.006365119934082031, 0.006333439826965332, 0.00643174409866333, 0.00638156795501709, 0.006400000095367431, 0.0063610877990722655, 0.006308864116668702, 0.006468607902526856, 0.00638156795501709, 0.006362112045288086, 0.0063805441856384275, 0.006326272010803223, 0.006370304107666015, 0.0063836159706115725, 0.006333439826965332, 0.006375423908233643, 0.006348800182342529, 0.006347775936126709, 0.006386688232421875, 0.006316031932830811, 0.006342656135559082, 0.0063211841583251955, 0.013602784156799316, 0.006305791854858398, 0.006337535858154297, 0.006291456222534179, 0.006341631889343262, 0.006328320026397705, 0.00628223991394043, 0.006347775936126709, 0.006299647808074951, 0.006325247764587402, 0.0063017277717590334, 0.006366176128387451, 0.006404096126556396, 0.006366208076477051, 0.006372352123260498, 0.00637440013885498, 0.006460415840148926, 0.006395904064178467, 0.006765567779541016, 0.006776832103729248, 0.0069283838272094726, 0.006744063854217529, 0.00679423999786377, 0.0067952961921691896, 0.006851552009582519, 0.006718463897705078, 0.006633471965789795, 0.006652927875518798, 0.006595583915710449, 0.006665215969085693, 0.006680575847625733, 0.006662144184112549, 0.006667263984680176, 0.006696959972381592, 0.006604800224304199, 0.006696959972381592, 0.006730751991271973, 0.006635519981384277, 0.006675456047058105, 0.0066447358131408694, 0.006719488143920899, 0.006614016056060791, 0.006627327919006347, 0.006595583915710449, 0.006636544227600098, 0.006609920024871826, 0.006592512130737305, 0.006639616012573242, 0.006603775978088379, 0.006661119937896728, 0.006605823993682861, 0.006584320068359375, 0.006621183872222901, 0.006619135856628418, 0.006663167953491211, 0.006627327919006347, 0.00658841609954834, 0.006609920024871826, 0.006628352165222168, 0.0067276802062988285, 0.006615104198455811, 0.006631360054016113, 0.006608895778656006, 0.014178303718566895, 0.006615039825439453, 0.00662937593460083, 0.0066078720092773435, 0.006615039825439453, 0.006625279903411865, 0.006624256134033203, 0.006624256134033203, 0.006604800224304199, 0.006620160102844238, 0.006608895778656006, 0.006621183872222901, 0.006648831844329834, 0.006624256134033203, 0.006626304149627686, 0.006686719894409179, 0.006639616012573242, 0.006585343837738037, 0.006602752208709717, 0.0066119680404663084, 0.006658048152923584, 0.006601727962493896, 0.006615039825439453, 0.006512639999389648, 0.0066641921997070315, 0.0067051520347595215, 0.0066344962120056155, 0.0066078720092773435, 0.006585343837738037, 0.006615039825439453, 0.006620160102844238, 0.006621183872222901, 0.006598656177520752, 0.006598656177520752, 0.0065812478065490725, 0.006618112087249756, 0.006597631931304931, 0.006608895778656006, 0.006660096168518067, 0.006615039825439453, 0.006555647850036621, 0.006604800224304199, 0.006606847763061524, 0.006584320068359375, 0.0065812478065490725, 0.00657919979095459, 0.006617087841033936, 0.006643712043762207, 0.006619135856628418, 0.006556672096252441, 0.006552576065063476, 0.006434815883636475, 0.006490111827850342, 0.006504447937011719, 0.006508543968200684, 0.00657203197479248, 0.006569983959197998, 0.006549503803253174, 0.006557695865631104, 0.0066119680404663084, 0.006565887928009034, 0.006652927875518798, 0.0066109437942504885, 0.013988863945007325, 0.006624256134033203, 0.006592512130737305, 0.006639616012573242, 0.0066375679969787596, 0.006642687797546387, 0.006603775978088379, 0.006667263984680176, 0.006649856090545654, 0.006614016056060791, 0.006626304149627686, 0.006628352165222168, 0.006699007987976074, 0.006639679908752441, 0.006616000175476074, 0.0066375679969787596, 0.006624256134033203, 0.006598656177520752, 0.006624256134033203, 0.006661119937896728, 0.006599679946899414, 0.006597631931304931, 0.006599679946899414, 0.006659071922302246, 0.0067041277885437015, 0.006591487884521485, 0.006616064071655273, 0.00659660816192627, 0.006567935943603515, 0.006624256134033203, 0.006604800224304199, 0.006604800224304199, 0.006601727962493896, 0.0066375679969787596, 0.006586368083953857, 0.0066109437942504885, 0.006624256134033203, 0.006635519981384277, 0.006601727962493896, 0.006585343837738037, 0.006585343837738037, 0.006604800224304199, 0.006619135856628418, 0.006654975891113281, 0.0066375679969787596, 0.006622208118438721, 0.006576128005981445, 0.0066447358131408694, 0.006661119937896728, 0.006622208118438721, 0.006684671878814697, 0.006584320068359375, 0.0066109437942504885, 0.0066078720092773435, 0.006583295822143555, 0.006645760059356689, 0.0066007041931152345, 0.006585343837738037, 0.006651904106140137, 0.006690815925598144, 0.006594560146331787, 0.006615039825439453, 0.006627327919006347, 0.014088191986083985, 0.006567935943603515, 0.0065812478065490725, 0.006626304149627686, 0.006586368083953857, 0.006626304149627686, 0.006603775978088379, 0.006598656177520752, 0.006854656219482422, 0.006645760059356689, 0.006645760059356689, 0.006620160102844238, 0.0066109437942504885, 0.006646783828735352, 0.006623231887817383, 0.006658048152923584, 0.0066416640281677245, 0.006660096168518067, 0.006614016056060791, 0.006606847763061524, 0.006636544227600098, 0.006589439868927002, 0.0066007041931152345, 0.006583295822143555, 0.006616064071655273, 0.006621183872222901, 0.006563839912414551, 0.006594560146331787, 0.006635519981384277, 0.006654975891113281, 0.0066416640281677245, 0.006614016056060791, 0.0065781760215759275, 0.007001088142395019, 0.006724607944488525, 0.006776832103729248, 0.006923264026641846, 0.006908927917480469, 0.007229440212249756, 0.006760447978973389, 0.006677504062652588, 0.0067041277885437015, 0.006633471965789795, 0.006689792156219483, 0.006648831844329834, 0.00660588788986206, 0.006613952159881592, 0.006594560146331787, 0.0066078720092773435, 0.006654975891113281, 0.0066078720092773435, 0.006602752208709717, 0.006626304149627686, 0.00657919979095459, 0.006684671878814697, 0.006621183872222901, 0.006585343837738037, 0.006631455898284912, 0.006635488033294678, 0.006573056221008301, 0.006650879859924317, 0.006606847763061524, 0.006642687797546387, 0.01434931182861328, 0.006706175804138184, 0.006661119937896728, 0.006606847763061524, 0.006617087841033936, 0.006575104236602783, 0.006612991809844971, 0.006605823993682861, 0.006573056221008301, 0.0065177597999572755, 0.006467584133148193, 0.0065075201988220215, 0.006500351905822754, 0.0065781760215759275, 0.006614016056060791, 0.006605823993682861, 0.006686719894409179, 0.006617087841033936, 0.006611008167266846, 0.006617023944854737, 0.006618112087249756, 0.006622208118438721, 0.006604800224304199, 0.006615039825439453, 0.006621183872222901, 0.0066078720092773435, 0.006645760059356689, 0.006660096168518067, 0.006627327919006347, 0.006625279903411865, 0.006633471965789795, 0.006614016056060791, 0.006750207901000976, 0.0066406397819519045, 0.006614016056060791, 0.006614016056060791, 0.006592512130737305, 0.006621183872222901, 0.006646783828735352, 0.006500415802001953, 0.006513599872589111, 0.006481919765472412, 0.006615039825439453, 0.006624256134033203, 0.006639616012573242, 0.00658022403717041, 0.0066119680404663084, 0.006622208118438721, 0.006597631931304931, 0.006621183872222901, 0.006657023906707763, 0.006600736141204834, 0.006635488033294678, 0.006545407772064209, 0.0065443840026855465, 0.006523903846740723, 0.006500351905822754, 0.006523903846740723, 0.006499328136444092, 0.0065484800338745115, 0.006569983959197998, 0.0066641921997070315, 0.006716415882110595, 0.01415782356262207, 0.006632448196411133, 0.006606847763061524, 0.006604800224304199, 0.00658841609954834, 0.006623231887817383, 0.006602752208709717, 0.006601727962493896, 0.006605823993682861, 0.006618112087249756, 0.006612991809844971, 0.0066406397819519045, 0.006635519981384277, 0.006615039825439453, 0.006665215969085693, 0.0066304001808166506, 0.006602752208709717, 0.006648831844329834, 0.006602752208709717, 0.00657203197479248, 0.006553599834442139, 0.006601727962493896, 0.006551551818847656, 0.006707200050354004, 0.006573056221008301, 0.006590496063232422, 0.0066037440299987794, 0.006590464115142822, 0.006642687797546387, 0.006612991809844971, 0.006595583915710449, 0.006689792156219483, 0.00667852783203125, 0.006576128005981445, 0.006612991809844971, 0.006601727962493896, 0.006564864158630371, 0.006606847763061524, 0.0066344962120056155, 0.0065710082054138185, 0.00658841609954834, 0.006599711894989014, 0.00657916784286499, 0.00658022403717041, 0.006684671878814697, 0.006550528049468994, 0.006591487884521485, 0.006593535900115967, 0.006625279903411865, 0.00662937593460083, 0.006553599834442139, 0.0066109437942504885, 0.006631423950195312, 0.006582272052764892, 0.006649856090545654, 0.00659660816192627, 0.006560768127441406, 0.006602752208709717, 0.006618112087249756, 0.006554624080657959, 0.00658739185333252, 0.006608895778656006, 0.006449215888977051, 0.014105536460876466, 0.006559743881225586, 0.006602752208709717, 0.006622208118438721, 0.006557695865631104, 0.006612991809844971, 0.006627327919006347, 0.006625279903411865, 0.006560768127441406, 0.006626304149627686, 0.006623231887817383, 0.006604800224304199, 0.006590464115142822, 0.0066119680404663084, 0.006515711784362793, 0.006474751949310303, 0.006576128005981445, 0.006467584133148193, 0.006466559886932373, 0.006496255874633789, 0.006532095909118653, 0.006472703933715821, 0.006501376152038574, 0.006467584133148193, 0.006494207859039307, 0.0065075201988220215, 0.006481919765472412, 0.006482944011688232, 0.006497280120849609, 0.006467616081237793, 0.0064726719856262206, 0.00648089599609375, 0.006492159843444824, 0.006602752208709717, 0.006665215969085693, 0.006614016056060791, 0.006632448196411133, 0.006595583915710449, 0.006575104236602783, 0.006602752208709717, 0.00659660816192627, 0.006615039825439453, 0.006586368083953857, 0.006584320068359375, 0.006590464115142822, 0.0066078720092773435, 0.006621183872222901, 0.006591487884521485, 0.00658739185333252, 0.00657919979095459, 0.006599679946899414, 0.006576128005981445, 0.00665503978729248, 0.006610879898071289, 0.006606847763061524, 0.00657203197479248, 0.006584320068359375, 0.0066078720092773435, 0.0065894718170166015, 0.006585311889648437, 0.006475776195526123, 0.006569983959197998, 0.006608895778656006, 0.014060544013977052, 0.006614016056060791, 0.006609920024871826, 0.006631423950195312, 0.006593535900115967, 0.006609920024871826, 0.006618112087249756, 0.006598656177520752, 0.006564864158630371, 0.00658739185333252, 0.006601727962493896, 0.006608895778656006, 0.006594560146331787, 0.006595583915710449, 0.006605823993682861, 0.00662937593460083, 0.006681600093841553, 0.0066713600158691405, 0.006608895778656006, 0.006583295822143555, 0.00658739185333252, 0.006583295822143555, 0.006593535900115967, 0.006553599834442139, 0.006652927875518798, 0.006683648109436035, 0.006639616012573242, 0.006656000137329102, 0.006604800224304199, 0.006593535900115967, 0.006597631931304931, 0.0065771517753601075, 0.006597631931304931, 0.00658739185333252, 0.006591487884521485, 0.006598656177520752, 0.006598656177520752, 0.006624256134033203, 0.0066007041931152345, 0.0066007041931152345, 0.006635519981384277, 0.006590464115142822, 0.006689792156219483, 0.006603775978088379, 0.0066078720092773435, 0.006593535900115967, 0.006575104236602783, 0.0066212158203125, 0.006588384151458741, 0.006633471965789795, 0.006592512130737305, 0.006511616230010986, 0.006509568214416504, 0.0064767999649047855, 0.006648831844329834, 0.006685696125030518, 0.0066304001808166506, 0.006681600093841553, 0.0066744318008422855, 0.006615039825439453, 0.006653952121734619, 0.006653952121734619, 0.006643712043762207, 0.014236672401428223, 0.0066447358131408694, 0.006639616012573242, 0.006658048152923584, 0.006650879859924317, 0.006642687797546387, 0.006651904106140137, 0.0066744318008422855, 0.006650879859924317, 0.006643712043762207, 0.0066344962120056155, 0.006614016056060791, 0.006625279903411865, 0.006636544227600098, 0.006662144184112549, 0.006662144184112549, 0.006665215969085693, 0.006599679946899414, 0.006651904106140137, 0.006532127857208252, 0.0065382080078125, 0.0065413122177124024, 0.006599679946899414, 0.006529024124145508, 0.006524928092956543, 0.006496255874633789, 0.006631423950195312, 0.006649856090545654, 0.006647808074951172, 0.006662144184112549, 0.006620160102844238, 0.006645760059356689, 0.006635519981384277, 0.006672383785247803, 0.006624256134033203, 0.006660096168518067, 0.006633471965789795, 0.006516736030578613, 0.0064880638122558594, 0.00663759994506836, 0.0064992961883544925, 0.006536191940307618, 0.006494207859039307, 0.006503424167633057, 0.006509600162506103, 0.006504415988922119, 0.0064542717933654785, 0.006605823993682861, 0.00652185583114624, 0.0065484800338745115, 0.006526976108551025, 0.0065771517753601075, 0.006526976108551025, 0.006481919765472412, 0.006527999877929688, 0.0065177597999572755, 0.006498303890228272, 0.006512639999389648, 0.0065136637687683106, 0.0065669121742248536, 0.0065146880149841305, 0.006498303890228272, 0.006510591983795166, 0.014119935989379882, 0.0066109437942504885, 0.006601727962493896, 0.006649856090545654, 0.006703135967254639, 0.006661087989807129, 0.006651904106140137, 0.006604800224304199, 0.0066406397819519045, 0.006617087841033936, 0.006614016056060791, 0.006648831844329834, 0.006633471965789795, 0.00652185583114624, 0.00653004789352417, 0.006516736030578613, 0.006532095909118653, 0.00652288007736206, 0.006494207859039307, 0.006586368083953857, 0.006556672096252441, 0.006494207859039307, 0.006533120155334473, 0.006512639999389648, 0.00652288007736206, 0.006645760059356689, 0.006689792156219483, 0.006711296081542969, 0.00672051191329956, 0.006668288230895996, 0.0067123198509216305, 0.006601727962493896, 0.00652185583114624, 0.00658739185333252, 0.006556672096252441, 0.006518784046173095, 0.006518784046173095, 0.006492159843444824, 0.00658841609954834, 0.006502399921417237, 0.006502399921417237, 0.006535168170928955, 0.006529024124145508, 0.006554624080657959, 0.006508543968200684, 0.006511616230010986, 0.0064849920272827145, 0.006505504131317139, 0.00649724817276001, 0.006583295822143555, 0.006526976108551025, 0.0064849920272827145, 0.006533120155334473, 0.006525951862335205, 0.006479872226715088, 0.006542335987091064, 0.006512639999389648, 0.0064778242111206055, 0.0065177597999572755, 0.006503424167633057, 0.006551551818847656, 0.006511616230010986, 0.006508543968200684, 0.014226431846618653, 0.0066979842185974124, 0.006638591766357422, 0.006646783828735352, 0.0066007041931152345, 0.006658048152923584, 0.006615039825439453, 0.006631423950195312, 0.006619135856628418, 0.006662144184112549, 0.0065812478065490725, 0.006553599834442139, 0.006510591983795166, 0.00658739185333252, 0.006773759841918945, 0.006754303932189941, 0.006670335769653321, 0.0066979842185974124, 0.006624256134033203, 0.006711296081542969, 0.006715392112731934, 0.006631423950195312, 0.006546432018280029, 0.006619135856628418, 0.006663167953491211, 0.0066406397819519045, 0.006766592025756836, 0.006685696125030518, 0.0066826238632202144, 0.006653952121734619, 0.006616064071655273, 0.00662937593460083, 0.006627327919006347, 0.006665215969085693, 0.006620160102844238, 0.0065833601951599124, 0.00659449577331543, 0.0064839677810668945, 0.006452223777770996, 0.00648089599609375, 0.0064778242111206055, 0.006474751949310303, 0.006462463855743408, 0.006458367824554443, 0.00648089599609375, 0.006453248023986816, 0.006493184089660644, 0.006461440086364746, 0.006519807815551758, 0.006486015796661377, 0.00652288007736206, 0.006569983959197998, 0.006503424167633057, 0.006456319808959961, 0.006512639999389648, 0.006496255874633789, 0.006542335987091064, 0.006493184089660644, 0.006486015796661377, 0.006561791896820069, 0.006503424167633057, 0.006489120006561279, 0.00658735990524292, 0.013493247985839844, 0.006289408206939697, 0.006296576023101807, 0.006315008163452148, 0.006300672054290772, 0.006293504238128662, 0.006275072097778321, 0.0062269439697265625, 0.006235136032104492, 0.006207488059997559, 0.006214655876159668, 0.006227968215942382, 0.006205440044403076, 0.006254591941833496, 0.006221824169158936, 0.006329343795776367, 0.006291456222534179, 0.006296576023101807, 0.006258687973022461, 0.0063283519744873045, 0.006334432125091553, 0.006309887886047363, 0.006434815883636475, 0.006309887886047363, 0.006338560104370118, 0.006328320026397705, 0.006333439826965332, 0.006348800182342529, 0.006306816101074219, 0.006341631889343262, 0.006312960147857666, 0.0063170561790466305, 0.006302720069885254, 0.006285312175750732, 0.006295551776885986, 0.006289472103118896, 0.006285247802734375, 0.0062791681289672855, 0.006329343795776367, 0.0064143362045288085, 0.0063508481979370115, 0.006376448154449463, 0.0063201279640197755, 0.006395904064178467, 0.006427648067474365, 0.006301695823669433, 0.006292479991912842, 0.006301695823669433, 0.006306816101074219, 0.006335487842559814, 0.006315008163452148, 0.0063201279640197755, 0.0062791681289672855, 0.006328320026397705, 0.006266880035400391, 0.006331391811370849, 0.006337535858154297, 0.006280191898345947, 0.006295551776885986, 0.006269951820373535, 0.006280191898345947, 0.006284287929534912, 0.006262784004211426, 0.013628416061401367, 0.006308864116668702, 0.0063211522102355954, 0.0063201279640197755, 0.0062863359451293946, 0.006301695823669433, 0.006296576023101807, 0.006576128005981445, 0.0066447358131408694, 0.006652927875518798, 0.006668288230895996, 0.006708223819732666, 0.006662144184112549, 0.006710271835327148, 0.006683648109436035, 0.006653952121734619, 0.006662144184112549, 0.006675456047058105, 0.0066641921997070315, 0.006755328178405762, 0.006732800006866455, 0.006658048152923584, 0.0067276802062988285, 0.006668288230895996, 0.006662144184112549, 0.0067276802062988285, 0.006647808074951172, 0.007676928043365478, 0.007031807899475098, 0.006772736072540283, 0.0066826238632202144, 0.0067010560035705566, 0.006714367866516113, 0.006654975891113281, 0.006670335769653321, 0.006653952121734619, 0.0066119680404663084, 0.006774784088134766, 0.00667955207824707, 0.006646783828735352, 0.0069621758460998535, 0.006809599876403808, 0.006687744140625, 0.006675456047058105, 0.0069008002281188965, 0.006768576145172119, 0.006726655960083008, 0.006666240215301514, 0.0066416640281677245, 0.006711296081542969, 0.006719488143920899, 0.006622208118438721, 0.006683648109436035, 0.0066744318008422855, 0.006653952121734619, 0.0066744318008422855, 0.006677504062652588, 0.0066406397819519045, 0.00667852783203125, 0.0067338237762451176, 0.0066713600158691405, 0.006665215969085693, 0.006628352165222168, 0.013584383964538574, 0.006291456222534179, 0.006294528007507324, 0.006313983917236328, 0.006647808074951172, 0.006662176132202148, 0.006650911808013916, 0.0066631040573120115, 0.006639616012573242, 0.006676479816436768, 0.006642687797546387, 0.00672051191329956, 0.006683648109436035, 0.0066344962120056155, 0.006663167953491211, 0.006652927875518798, 0.006658048152923584, 0.006625279903411865, 0.0066416640281677245, 0.006654975891113281, 0.0066447358131408694, 0.006648928165435791, 0.006696864128112793, 0.00672156810760498, 0.00659555196762085, 0.006661119937896728, 0.0065474557876586915, 0.006543360233306885, 0.006553599834442139, 0.006553599834442139, 0.006569983959197998, 0.0065484800338745115, 0.0065484800338745115, 0.006510591983795166, 0.006535168170928955, 0.006557695865631104, 0.006568960189819336, 0.006615039825439453, 0.006576128005981445, 0.006526976108551025, 0.0065413122177124024, 0.006532095909118653, 0.006518784046173095, 0.006553599834442139, 0.006540287971496582, 0.0065382399559021, 0.00653926420211792, 0.0065372161865234375, 0.006543360233306885, 0.006755328178405762, 0.006635519981384277, 0.006667263984680176, 0.006663167953491211, 0.006659071922302246, 0.006658048152923584, 0.006626304149627686, 0.00653926420211792, 0.006536191940307618, 0.006534143924713135, 0.006536191940307618, 0.006558720111846924, 0.006525951862335205, 0.006555647850036621, 0.014024703979492188, 0.006663167953491211, 0.0066938881874084475, 0.006687744140625, 0.006643712043762207, 0.0067420158386230465, 0.006636544227600098, 0.006662144184112549, 0.0066304001808166506, 0.006636544227600098, 0.006628352165222168, 0.006694911956787109, 0.006685696125030518, 0.006700032234191895, 0.006662144184112549, 0.006724607944488525, 0.006725632190704346, 0.006654975891113281, 0.00667955207824707, 0.006652927875518798, 0.006609920024871826, 0.006743040084838867, 0.006716415882110595, 0.006688767910003662, 0.006670335769653321, 0.006663167953491211, 0.006626304149627686, 0.006616064071655273, 0.006737919807434082, 0.006636544227600098, 0.006661119937896728, 0.006651904106140137, 0.006619135856628418, 0.006636544227600098, 0.006639616012573242, 0.006668288230895996, 0.006621183872222901, 0.0066375679969787596, 0.006575104236602783, 0.006642687797546387, 0.006590464115142822, 0.006633471965789795, 0.006618112087249756, 0.006599679946899414, 0.006623231887817383, 0.006322175979614258, 0.006309887886047363, 0.006273024082183838, 0.006336512088775635, 0.006567935943603515, 0.0063907837867736815, 0.006482944011688232, 0.006322175979614258, 0.006307839870452881, 0.006502399921417237, 0.006603775978088379, 0.0066119680404663084, 0.006677504062652588, 0.006618112087249756, 0.006677504062652588, 0.006624256134033203, 0.006617087841033936, 0.006584320068359375, 0.01439641571044922, 0.0066304001808166506, 0.006607935905456543, 0.006634431838989258, 0.00667955207824707, 0.006647808074951172, 0.00660588788986206, 0.006608831882476807, 0.006612991809844971, 0.006631487846374511, 0.006518720149993896, 0.006568960189819336, 0.006631423950195312, 0.006667263984680176, 0.0066007041931152345, 0.006632448196411133, 0.006626304149627686, 0.00659660816192627, 0.00658841609954834, 0.006624256134033203, 0.006594560146331787, 0.0066641921997070315, 0.006632448196411133, 0.006619135856628418, 0.006649951934814453, 0.006619040012359619, 0.006639616012573242, 0.0066416640281677245, 0.00674508810043335, 0.006648831844329834, 0.0066344962120056155, 0.006591487884521485, 0.006621183872222901, 0.006604800224304199, 0.006652927875518798, 0.006602784156799316, 0.006627295970916748, 0.006569983959197998, 0.006623231887817383, 0.006626304149627686, 0.006623231887817383, 0.006616064071655273, 0.0066119680404663084, 0.006627327919006347, 0.00662937593460083, 0.006601727962493896, 0.006666240215301514, 0.006606847763061524, 0.006593535900115967, 0.006656000137329102, 0.006329343795776367, 0.0062904319763183595, 0.006337535858154297, 0.006302720069885254, 0.006250495910644531, 0.006260799884796143, 0.006354879856109619, 0.006252543926239014, 0.006238207817077636, 0.006238207817077636, 0.006223872184753418, 0.006252543926239014, 0.006278143882751465, 0.013460479736328124, 0.006302720069885254, 0.006312960147857666, 0.006304768085479737, 0.006268928050994873, 0.006306816101074219, 0.006271999835968017, 0.006340608119964599, 0.006277120113372803, 0.006309887886047363, 0.006330368041992188, 0.006273024082183838, 0.006296576023101807, 0.006294528007507324, 0.006270976066589356, 0.006304768085479737, 0.006306816101074219, 0.006336512088775635, 0.006303743839263916, 0.00628326416015625, 0.006303743839263916, 0.0063211522102355954, 0.00628223991394043, 0.006302720069885254, 0.006285312175750732, 0.0064143362045288085, 0.00633241605758667, 0.006295551776885986, 0.006328320026397705, 0.006300672054290772, 0.006343679904937744, 0.0063211522102355954, 0.006278143882751465, 0.006346752166748047, 0.006318079948425293, 0.006295551776885986, 0.006316031932830811, 0.006299647808074951, 0.006298624038696289, 0.006311935901641846, 0.006319104194641113, 0.006296576023101807, 0.006323200225830078, 0.006259712219238281, 0.006307839870452881, 0.006273024082183838, 0.0062679038047790524, 0.006304800033569336, 0.006276063919067383, 0.006398975849151611, 0.006325247764587402, 0.006411263942718506, 0.00658841609954834, 0.0065443840026855465, 0.0065710082054138185, 0.006657023906707763, 0.0066375679969787596, 0.006677504062652588, 0.006666240215301514, 0.006936575889587402, 0.006621183872222901, 0.006707200050354004, 0.006597631931304931, 0.014204928398132324, 0.006622208118438721, 0.006638591766357422, 0.006658048152923584, 0.006616064071655273, 0.006595583915710449, 0.006636544227600098, 0.006509568214416504, 0.0065064959526062015, 0.0065474557876586915, 0.0064839677810668945, 0.006519807815551758, 0.006601727962493896, 0.006621183872222901, 0.006665215969085693, 0.006653952121734619, 0.006594560146331787, 0.006592512130737305, 0.0066119680404663084, 0.006568960189819336, 0.006620160102844238, 0.006583295822143555, 0.00658841609954834, 0.006656000137329102, 0.006696959972381592, 0.006711296081542969, 0.006905856132507324, 0.006700032234191895, 0.006670335769653321, 0.006672383785247803, 0.006706175804138184, 0.006722559928894043, 0.006874112129211426, 0.0066938881874084475, 0.00675328016281128, 0.006690815925598144, 0.0067010560035705566, 0.006730751991271973, 0.006758399963378906, 0.0066344962120056155, 0.006667263984680176, 0.006636544227600098, 0.006665215969085693, 0.00667852783203125, 0.006659071922302246, 0.0066375679969787596, 0.006654975891113281, 0.006657023906707763, 0.006676479816436768, 0.006707200050354004, 0.0067573761940002445, 0.00667852783203125, 0.00672979211807251, 0.007108543872833252, 0.006815743923187256, 0.006897664070129395, 0.007226367950439453, 0.008385536193847656, 0.006814720153808594, 0.006776832103729248, 0.0067123198509216305, 0.006680575847625733, 0.006706175804138184, 0.014495743751525878, 0.006643712043762207, 0.006730751991271973, 0.006677504062652588, 0.006604800224304199, 0.006708223819732666, 0.0066713600158691405, 0.0067123198509216305, 0.006663167953491211, 0.006658048152923584, 0.006615039825439453, 0.006650879859924317, 0.006648831844329834, 0.006659071922302246, 0.006642687797546387, 0.006676479816436768, 0.006657023906707763, 0.006666240215301514, 0.006651904106140137, 0.006662144184112549, 0.006642687797546387, 0.006657023906707763, 0.0066344962120056155, 0.0066938881874084475, 0.006617087841033936, 0.006643712043762207, 0.006646783828735352, 0.006635519981384277, 0.006748159885406494, 0.006575104236602783, 0.006512639999389648, 0.0065136637687683106, 0.006534143924713135, 0.006594560146331787, 0.00659660816192627, 0.006670335769653321, 0.006673408031463623, 0.0066304001808166506, 0.006646783828735352, 0.00669593620300293, 0.0066416640281677245, 0.006632448196411133, 0.006654975891113281, 0.006638591766357422, 0.006643712043762207, 0.006639616012573242, 0.006602752208709717, 0.0066416640281677245, 0.006799359798431396, 0.006619135856628418, 0.0066202239990234375, 0.006612927913665772, 0.006662144184112549, 0.006647808074951172, 0.0066304001808166506, 0.0066744318008422855, 0.006666240215301514, 0.006662144184112549, 0.00667955207824707, 0.006737919807434082, 0.0067358717918396, 0.006633471965789795, 0.006627327919006347, 0.013528063774108886, 0.006284287929534912, 0.006270976066589356, 0.006296576023101807, 0.00624128007888794, 0.006300672054290772, 0.006276095867156982, 0.006313983917236328, 0.006309887886047363, 0.006268928050994873, 0.006355967998504639, 0.006330368041992188, 0.006269951820373535, 0.006284287929534912, 0.006298624038696289, 0.0063170561790466305, 0.006275072097778321, 0.006264832019805908, 0.0062679038047790524, 0.006275072097778321, 0.006355967998504639, 0.0062679038047790524, 0.006281216144561768, 0.006277120113372803, 0.006293504238128662, 0.006310912132263183, 0.006312960147857666, 0.006310912132263183, 0.0064440321922302245, 0.006316031932830811, 0.006293536186218262, 0.006313951969146728, 0.006285312175750732, 0.006295551776885986, 0.0064245758056640625, 0.006555647850036621, 0.006355967998504639, 0.00633241605758667, 0.006273024082183838, 0.006291456222534179, 0.006294528007507324, 0.006291456222534179, 0.006272031784057617, 0.006305759906768799, 0.006288383960723877, 0.0062863359451293946, 0.006309887886047363, 0.006262784004211426, 0.006276095867156982, 0.006325247764587402, 0.006336512088775635, 0.006355967998504639, 0.006593535900115967, 0.0066979842185974124, 0.006696959972381592, 0.00667955207824707, 0.00658739185333252, 0.006660096168518067, 0.006658048152923584, 0.006604800224304199, 0.006663167953491211, 0.006598656177520752, 0.006688767910003662, 0.014336000442504883, 0.006606847763061524, 0.006635519981384277, 0.0066344962120056155, 0.006615039825439453, 0.006618112087249756, 0.006616064071655273, 0.006873087882995605, 0.007664639949798584, 0.0074065918922424315, 0.006867968082427979, 0.0067338237762451176, 0.006797311782836914, 0.006686719894409179, 0.006696959972381592, 0.006700032234191895, 0.006801407814025879, 0.0066744318008422855, 0.0068280320167541505, 0.007235583782196045, 0.007131135940551757, 0.006710271835327148, 0.0066938881874084475, 0.006676479816436768, 0.006687744140625, 0.006663167953491211, 0.006716415882110595, 0.006707200050354004, 0.006669312000274658, 0.006708223819732666, 0.0066344962120056155, 0.00667955207824707, 0.006959104061126709, 0.006726655960083008, 0.006583295822143555, 0.0066447358131408694, 0.006635519981384277, 0.006618112087249756, 0.006632448196411133, 0.006635519981384277, 0.0066375679969787596, 0.006687744140625, 0.006594560146331787, 0.006642687797546387, 0.006676479816436768, 0.0065812478065490725, 0.006656000137329102, 0.006635519981384277, 0.0064737281799316405, 0.006524928092956543, 0.006605823993682861, 0.006601727962493896, 0.006645760059356689, 0.006675456047058105, 0.006601727962493896, 0.0066488637924194335, 0.00667849588394165, 0.006636544227600098, 0.006590464115142822, 0.006685696125030518, 0.006595583915710449, 0.006690815925598144, 0.006801407814025879, 0.014134271621704102, 0.006654975891113281, 0.006591487884521485, 0.006643712043762207, 0.0066447358131408694, 0.0066375679969787596, 0.006680575847625733, 0.006661119937896728, 0.0066078720092773435, 0.006665215969085693, 0.006608895778656006, 0.006653952121734619, 0.006666240215301514, 0.006605823993682861, 0.006661151885986328, 0.006680543899536133, 0.006620160102844238, 0.0066304001808166506, 0.006690815925598144, 0.006731776237487793, 0.00669593620300293, 0.0066744318008422855, 0.006615039825439453, 0.006669312000274658, 0.0066447358131408694, 0.006638591766357422, 0.006669312000274658, 0.006659071922302246, 0.006611008167266846, 0.006669248104095459, 0.006669312000274658, 0.0066406397819519045, 0.006665215969085693, 0.006619135856628418, 0.006647808074951172, 0.006700032234191895, 0.006636544227600098, 0.006626304149627686, 0.006731776237487793, 0.006645760059356689, 0.006620160102844238, 0.006659071922302246, 0.006632448196411133, 0.006608895778656006, 0.00657919979095459, 0.006495232105255127, 0.006553599834442139, 0.006552576065063476, 0.00659660816192627, 0.006731776237487793, 0.006663167953491211, 0.006635519981384277, 0.006714367866516113, 0.006703104019165039, 0.006657023906707763, 0.006699007987976074, 0.006661119937896728, 0.006847487926483154, 0.006709248065948486, 0.006659071922302246, 0.006594560146331787, 0.006659071922302246, 0.006639616012573242, 0.014132224082946777, 0.006639616012573242, 0.006605823993682861, 0.006700032234191895, 0.0070563840866088865, 0.006667263984680176, 0.006658080101013183, 0.006961120128631592, 0.006503424167633057, 0.006562816143035889, 0.0064880638122558594, 0.006516736030578613, 0.0066304001808166506, 0.0065075201988220215, 0.0065136637687683106, 0.006653952121734619, 0.006619135856628418, 0.006621183872222901, 0.0066375679969787596, 0.006589439868927002, 0.006619135856628418, 0.0066416640281677245, 0.0066007041931152345, 0.0066109437942504885, 0.006642687797546387, 0.0066109437942504885, 0.006598656177520752, 0.006634528160095215, 0.006590432167053223, 0.006624256134033203, 0.006589439868927002, 0.006617087841033936, 0.006636544227600098, 0.006554624080657959, 0.006609920024871826, 0.006616064071655273, 0.006788095951080322, 0.006667263984680176, 0.0066447358131408694, 0.006618112087249756, 0.006668288230895996, 0.00662937593460083, 0.0065710082054138185, 0.006667263984680176, 0.006648831844329834, 0.006560800075531006, 0.006664159774780273, 0.0066344962120056155, 0.006592512130737305, 0.006692863941192627, 0.0066979842185974124, 0.006448128223419189, 0.006543360233306885, 0.006525951862335205, 0.006505472183227539, 0.00658739185333252, 0.006567935943603515, 0.006686719894409179, 0.006691840171813965, 0.006684671878814697, 0.006652927875518798, 0.0066744318008422855, 0.006646783828735352]",tokens/s,149.36440946007178,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-j-6b,EleutherAI/gpt-j-6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-6B-nl,Salesforce/codegen-6B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -47021,16 +47002,23 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: GPTJForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Salesforce/codegen-16B-nl,Salesforce/codegen-16B-nl,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,openai-community/gpt2,openai-community/gpt2,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.0,,0.30.1,,,,1.19.2,,,,0.11.1,,,MB,1235.7632,1005.060096,0.0,358.612992,318.913024,s,20,0.1788675851821899,0.008943379259109496,0.00026419798811655123,0.00887070369720459,0.00916225633621216,0.009274708795547485,0.009786717424392698,"[0.009914719581604003, 0.008858528137207031, 0.008864447593688965, 0.008830816268920898, 0.008876959800720214, 0.009153504371643067, 0.008886079788208007, 0.008735072135925294, 0.009109472274780274, 0.008775872230529785, 0.008850208282470703, 0.00901251220703125, 0.00899942398071289, 0.008742527961730957, 0.009241024017333984, 0.008729375839233399, 0.00890329647064209, 0.008699104309082032, 0.008877599716186523, 0.008807040214538575]",tokens/s,28624.526879953683,kWh,1.0405706355691948e-07,5.701826505582485e-08,2.244287160088168e-07,3.8550404462156115e-07,tokens/kWh,664065665.643815,MB,1235.7632,1005.060096,0.0,358.612992,328.809472,s,20,10.08869351196289,0.5044346755981446,0.005335005585423021,0.503564468383789,0.5124426330566406,0.5136576141357422,0.5166526654052734,"[0.5010412292480468, 0.5011974487304688, 0.4979539489746094, 0.5063039855957031, 0.5047576599121094, 0.5012839050292969, 0.49773388671875, 0.5053358764648438, 0.5038833312988281, 0.51085546875, 0.5134605712890625, 0.5174014282226562, 0.50324560546875, 0.5123295288085937, 0.50199462890625, 0.5043636169433594, 0.4986883239746094, 0.5073371276855468, 0.49996554565429685, 0.49956039428710936]",tokens/s,124.89228644976944,kWh,6.0475178527528624e-06,3.3125900223381058e-06,1.029085747399049e-05,1.9650965349081454e-05,tokens/kWh,3205949.3709780937,,s,1259,10.248980564594259,0.008140572330892985,0.0011351723397017978,0.007914495944976807,0.00819527702331543,0.008268185138702392,0.017085111923217773,"[0.008740960121154785, 0.008759200096130371, 0.00870195198059082, 0.009260031700134277, 0.008202239990234375, 0.00787660789489746, 0.00785203218460083, 0.007820288181304931, 0.00780083179473877, 0.007929855823516846, 0.007827455997467042, 0.007792640209197998, 0.007823359966278077, 0.007840767860412597, 0.007830527782440186, 0.007824384212493896, 0.007812096118927002, 0.007836671829223632, 0.007806975841522217, 0.007794688224792481, 0.007799808025360107, 0.007849984169006348, 0.007786496162414551, 0.007824384212493896, 0.007945216178894043, 0.007836671829223632, 0.007806975841522217, 0.007813119888305664, 0.008041472434997558, 0.007838719844818116, 0.007780352115631104, 0.007794688224792481, 0.007814144134521485, 0.007823359966278077, 0.007830527782440186, 0.00779366397857666, 0.007840767860412597, 0.00790937614440918, 0.008236031532287597, 0.00806604766845703, 0.008050687789916992, 0.008067071914672852, 0.00800972843170166, 0.007974912166595459, 0.00786636781692505, 0.007839744091033935, 0.00782643222808838, 0.007836671829223632, 0.007819263935089112, 0.007831552028656007, 0.007787519931793213, 0.007797760009765625, 0.007813119888305664, 0.007910399913787843, 0.007830527782440186, 0.00781824016571045, 0.007817215919494629, 0.007847936153411865, 0.007822336196899414, 0.00779366397857666, 0.007809088230133056, 0.007972799777984619, 0.017083391189575196, 0.007821311950683594, 0.007833600044250488, 0.007803904056549072, 0.008130559921264649, 0.008444928169250488, 0.008322048187255859, 0.008384511947631837, 0.008393728256225585, 0.008424448013305665, 0.00838144016265869, 0.008119296073913575, 0.008051712036132813, 0.007872511863708496, 0.007865344047546387, 0.007855103969573975, 0.007837696075439453, 0.007867392063140868, 0.007815167903900147, 0.007829504013061523, 0.007813119888305664, 0.007836671829223632, 0.007914495944976807, 0.007887872219085693, 0.00783564805984497, 0.00791756820678711, 0.007890944004058837, 0.007857151985168457, 0.007817215919494629, 0.007907328128814697, 0.007833600044250488, 0.00782643222808838, 0.007804927825927735, 0.007836671829223632, 0.007812096118927002, 0.00781824016571045, 0.007804927825927735, 0.007844863891601562, 0.007870463848114014, 0.00782643222808838, 0.00781004810333252, 0.008635392189025879, 0.008225791931152344, 0.008044544219970704, 0.007888895988464355, 0.007927807807922363, 0.00791756820678711, 0.007895040035247802, 0.007888895988464355, 0.007903232097625732, 0.007906303882598878, 0.007899136066436767, 0.008059904098510743, 0.007930880069732665, 0.00791756820678711, 0.007890944004058837, 0.0078919677734375, 0.007902207851409913, 0.007917632102966308, 0.007903168201446533, 0.007907328128814697, 0.007885824203491211, 0.007904255867004394, 0.017123327255249024, 0.007914495944976807, 0.007899136066436767, 0.007911424160003662, 0.00787660789489746, 0.007897088050842285, 0.007896063804626464, 0.007951392173767089, 0.007910367965698242, 0.00790937614440918, 0.007902207851409913, 0.007904255867004394, 0.007924736022949219, 0.00791756820678711, 0.007886847972869874, 0.007912447929382324, 0.007911424160003662, 0.007878655910491944, 0.007873536109924317, 0.007907328128814697, 0.007894015789031983, 0.00790118408203125, 0.00790118408203125, 0.007882751941680909, 0.007897088050842285, 0.00790937614440918, 0.00790015983581543, 0.007895040035247802, 0.007877632141113282, 0.007913472175598145, 0.007868415832519531, 0.007877632141113282, 0.007882751941680909, 0.007887872219085693, 0.007899136066436767, 0.007874559879302979, 0.00788479995727539, 0.007873536109924317, 0.007944191932678223, 0.007880703926086426, 0.007899136066436767, 0.007952383995056152, 0.007964672088623047, 0.007881728172302246, 0.007886847972869874, 0.007874559879302979, 0.00789299201965332, 0.007895040035247802, 0.00787660789489746, 0.007916543960571289, 0.007904255867004394, 0.007903232097625732, 0.007869440078735352, 0.007903232097625732, 0.007887872219085693, 0.00796675205230713, 0.007912415981292725, 0.00786636781692505, 0.00789299201965332, 0.007875584125518798, 0.007924767971038818, 0.007874527931213378, 0.0078919677734375, 0.017052671432495118, 0.007898111820220948, 0.007918591976165772, 0.007899136066436767, 0.00785923194885254, 0.007882719993591308, 0.007894015789031983, 0.007855103969573975, 0.00787769603729248, 0.007874495983123779, 0.007897088050842285, 0.007960576057434082, 0.007932928085327149, 0.007918591976165772, 0.007887872219085693, 0.007918591976165772, 0.008210432052612305, 0.007874559879302979, 0.007902207851409913, 0.00789299201965332, 0.007839776039123536, 0.007864287853240967, 0.007882751941680909, 0.007897088050842285, 0.007990272045135497, 0.007927807807922363, 0.007896063804626464, 0.007938047885894776, 0.007918591976165772, 0.008033280372619628, 0.008353792190551757, 0.008071167945861817, 0.007939072132110595, 0.007919616222381591, 0.007890944004058837, 0.007920639991760254, 0.008637439727783204, 0.00832921600341797, 0.008156160354614257, 0.00827187156677246, 0.008194047927856446, 0.008177663803100586, 0.008159232139587403, 0.008148032188415527, 0.00825443172454834, 0.008152031898498535, 0.008161279678344726, 0.008157183647155761, 0.008122367858886719, 0.008179712295532226, 0.008135680198669434, 0.008156160354614257, 0.008168448448181152, 0.008136704444885253, 0.008164352416992187, 0.008143872261047362, 0.008163328170776368, 0.008181759834289551, 0.0082227201461792, 0.008193023681640625, 0.007928832054138184, 0.00785920000076294, 0.007887872219085693, 0.017110015869140623, 0.007940095901489258, 0.007927807807922363, 0.007938047885894776, 0.007880703926086426, 0.007928832054138184, 0.007878655910491944, 0.007922688007354736, 0.007928832054138184, 0.007921664237976075, 0.007896063804626464, 0.007921728134155273, 0.007894976139068604, 0.007971839904785156, 0.007922688007354736, 0.007927807807922363, 0.007964672088623047, 0.00813158416748047, 0.008223744392395019, 0.008168448448181152, 0.008158207893371582, 0.008228863716125488, 0.008165375709533691, 0.008120320320129394, 0.00812342357635498, 0.008126432418823243, 0.008164352416992187, 0.008128512382507324, 0.008146944046020508, 0.00789299201965332, 0.007964672088623047, 0.007932928085327149, 0.00788479995727539, 0.007954432010650634, 0.007886847972869874, 0.007877632141113282, 0.007887872219085693, 0.007885824203491211, 0.00790835189819336, 0.00788479995727539, 0.00787660789489746, 0.007916543960571289, 0.007880703926086426, 0.007913472175598145, 0.007856128215789794, 0.007871488094329833, 0.007870463848114014, 0.007887872219085693, 0.007919616222381591, 0.007886847972869874, 0.007913472175598145, 0.008102911949157715, 0.008297472000122071, 0.008225824356079102, 0.008167391777038574, 0.008201215744018555, 0.008158207893371582, 0.008196096420288086, 0.008138751983642578, 0.008178751945495605, 0.008141759872436524, 0.008168448448181152, 0.008168448448181152, 0.017675264358520508, 0.008162303924560547, 0.008164352416992187, 0.008168448448181152, 0.007974912166595459, 0.007903232097625732, 0.007895040035247802, 0.007900191783905029, 0.007922656059265136, 0.007906303882598878, 0.00795136022567749, 0.007872511863708496, 0.008233983993530274, 0.008203264236450195, 0.008174592018127442, 0.007968768119812012, 0.007970816135406494, 0.00800767993927002, 0.007923711776733398, 0.00791756820678711, 0.007895040035247802, 0.007906303882598878, 0.007885824203491211, 0.007902207851409913, 0.007950335979461669, 0.007906303882598878, 0.00800153636932373, 0.008085503578186035, 0.007935999870300293, 0.00807423973083496, 0.007925759792327881, 0.007998464107513427, 0.007912447929382324, 0.007880703926086426, 0.007910431861877442, 0.007928800106048585, 0.007922688007354736, 0.00797388792037964, 0.007903232097625732, 0.007905280113220215, 0.007947264194488525, 0.007898111820220948, 0.007899136066436767, 0.00788479995727539, 0.007897088050842285, 0.007875584125518798, 0.007867392063140868, 0.00787660789489746, 0.007890944004058837, 0.007881728172302246, 0.007879680156707763, 0.007906303882598878, 0.007890944004058837, 0.007894015789031983, 0.0078919677734375, 0.00790835189819336, 0.007898111820220948, 0.007895040035247802, 0.007961631774902344, 0.007899104118347168, 0.00791756820678711, 0.007910399913787843, 0.008005632400512695, 0.017169408798217774, 0.0079267840385437, 0.00794316816329956, 0.007887872219085693, 0.007921664237976075, 0.007984127998352051, 0.00790015983581543, 0.007987199783325195, 0.007899136066436767, 0.007883776187896728, 0.007895040035247802, 0.007885824203491211, 0.007896063804626464, 0.007905344009399413, 0.007891903877258301, 0.007874559879302979, 0.007882751941680909, 0.007895040035247802, 0.007906303882598878, 0.007896063804626464, 0.007887872219085693, 0.007865344047546387, 0.007896063804626464, 0.007923711776733398, 0.007896063804626464, 0.007872511863708496, 0.007886847972869874, 0.007873536109924317, 0.00788479995727539, 0.00788479995727539, 0.007883776187896728, 0.007895040035247802, 0.007899136066436767, 0.007889920234680176, 0.007888895988464355, 0.007883776187896728, 0.007887872219085693, 0.007912447929382324, 0.00789299201965332, 0.007896063804626464, 0.007897088050842285, 0.00789299201965332, 0.007904255867004394, 0.007873536109924317, 0.0078919677734375, 0.007883776187896728, 0.007934016227722168, 0.007873472213745117, 0.007871488094329833, 0.007897088050842285, 0.007870463848114014, 0.007869440078735352, 0.007874559879302979, 0.007904255867004394, 0.007865344047546387, 0.00790835189819336, 0.007881728172302246, 0.007898111820220948, 0.007878655910491944, 0.007904255867004394, 0.007894015789031983, 0.007880703926086426, 0.007881760120391846, 0.016962528228759766, 0.00789299201965332, 0.007874559879302979, 0.007890944004058837, 0.0078919677734375, 0.007897088050842285, 0.007905280113220215, 0.007899136066436767, 0.007896063804626464, 0.0078919677734375, 0.007912447929382324, 0.007894015789031983, 0.007956480026245117, 0.007898176193237304, 0.007912384033203126, 0.007885824203491211, 0.007932928085327149, 0.007882751941680909, 0.007877632141113282, 0.00787660789489746, 0.007870463848114014, 0.00789299201965332, 0.00787660789489746, 0.007877632141113282, 0.007886879920959473, 0.007880671977996826, 0.007911424160003662, 0.007899136066436767, 0.007886847972869874, 0.007935999870300293, 0.007873536109924317, 0.007868415832519531, 0.0078919677734375, 0.007889920234680176, 0.007879680156707763, 0.007983104228973388, 0.007993343830108643, 0.008654848098754882, 0.008453120231628418, 0.008224767684936523, 0.008190976142883302, 0.008196096420288086, 0.008163328170776368, 0.008144895553588867, 0.008160256385803222, 0.0081725435256958, 0.008152064323425292, 0.008176639556884765, 0.008184831619262695, 0.008145919799804687, 0.00812339210510254, 0.008157183647155761, 0.008146944046020508, 0.008195072174072266, 0.0081397762298584, 0.00821555233001709, 0.008168448448181152, 0.0081397762298584, 0.008179743766784668, 0.00813974380493164, 0.00812339210510254, 0.00800767993927002, 0.008005632400512695, 0.017589248657226563, 0.008153087615966797, 0.008118271827697754, 0.00813158416748047, 0.008112128257751466, 0.008121343612670898, 0.008136704444885253, 0.008134655952453614, 0.0081397762298584, 0.008102944374084473, 0.008115167617797852, 0.008144895553588867, 0.008137727737426758, 0.008156160354614257, 0.008138751983642578, 0.008175616264343261, 0.008162303924560547, 0.00818995189666748, 0.00819711971282959, 0.008226816177368163, 0.00820736026763916, 0.007906303882598878, 0.007905280113220215, 0.007881824016571046, 0.007879583835601807, 0.007870463848114014, 0.007897088050842285, 0.007874559879302979, 0.007897088050842285, 0.007871488094329833, 0.007896063804626464, 0.007914495944976807, 0.00790937614440918, 0.007870463848114014, 0.007983104228973388, 0.008044544219970704, 0.008096768379211425, 0.007906303882598878, 0.008112128257751466, 0.007983104228973388, 0.007894015789031983, 0.007897088050842285, 0.007886847972869874, 0.007949312210083008, 0.008068096160888672, 0.007966720104217529, 0.007918591976165772, 0.007911424160003662, 0.007865344047546387, 0.00786742401123047, 0.007906271934509277, 0.007863296031951903, 0.007878687858581543, 0.007874527931213378, 0.007888895988464355, 0.007899136066436767, 0.00789299201965332, 0.007874559879302979, 0.007891007900238037, 0.007904191970825196, 0.007889920234680176, 0.007860223770141601, 0.007889920234680176, 0.016955392837524414, 0.007903232097625732, 0.007902207851409913, 0.007949312210083008, 0.008045568466186523, 0.008096768379211425, 0.008201215744018555, 0.008014847755432129, 0.007928832054138184, 0.007928832054138184, 0.007914495944976807, 0.007942143917083741, 0.00790937614440918, 0.00790835189819336, 0.007902207851409913, 0.007897088050842285, 0.007897119998931884, 0.007896031856536865, 0.00787660789489746, 0.007882751941680909, 0.007858176231384278, 0.008070143699645996, 0.007881728172302246, 0.007886847972869874, 0.008017919540405273, 0.008667136192321777, 0.008648703575134278, 0.009057279586791991, 0.008278016090393067, 0.008357888221740722, 0.008216575622558593, 0.008090656280517578, 0.008072159767150878, 0.008176639556884765, 0.008013824462890624, 0.008032256126403809, 0.008014847755432129, 0.008168448448181152, 0.008040448188781739, 0.008073216438293456, 0.008193023681640625, 0.008168448448181152, 0.008135680198669434, 0.008099840164184571, 0.008014847755432129, 0.008209407806396484, 0.008148991584777832, 0.00819916820526123, 0.008255488395690918, 0.008286208152770995, 0.008129535675048828, 0.008140800476074218, 0.0081397762298584, 0.008138751983642578, 0.008297472000122071, 0.008203264236450195, 0.008134655952453614, 0.008274944305419921, 0.008238080024719239, 0.008150015830993652, 0.008124416351318359, 0.008136768341064454, 0.008249279975891113, 0.017087488174438475, 0.007910399913787843, 0.007920639991760254, 0.008250368118286134, 0.008164352416992187, 0.008233983993530274, 0.008186880111694337, 0.008132608413696289, 0.008143872261047362, 0.008156160354614257, 0.008376352310180664, 0.008221664428710938, 0.008168448448181152, 0.008158207893371582, 0.008151040077209473, 0.008147968292236327, 0.008152064323425292, 0.008318976402282715, 0.008307711601257324, 0.008219648361206054, 0.00800153636932373, 0.008033280372619628, 0.008261631965637208, 0.00818380832672119, 0.008162303924560547, 0.008141823768615723, 0.007873536109924317, 0.007918591976165772, 0.007895040035247802, 0.007880703926086426, 0.008042495727539062, 0.008142848014831543, 0.008126463890075684, 0.008128512382507324, 0.008168448448181152, 0.008210432052612305, 0.008141823768615723, 0.00820736026763916, 0.008134655952453614, 0.00812339210510254, 0.008116224288940429, 0.00813158416748047, 0.008230912208557128, 0.008254464149475099, 0.008152064323425292, 0.008153087615966797, 0.008138751983642578, 0.008230912208557128, 0.008318976402282715, 0.008128512382507324, 0.008023039817810058, 0.008267775535583496, 0.008164352416992187, 0.008136704444885253, 0.008127488136291505, 0.00820736026763916, 0.008120320320129394, 0.008137727737426758, 0.00810905647277832, 0.008242176055908204, 0.00839782428741455, 0.008219648361206054, 0.0081397762298584, 0.017508352279663086, 0.008938495635986327, 0.008742912292480469, 0.00971059226989746, 0.008355839729309082, 0.008208383560180664, 0.008152064323425292, 0.008168448448181152, 0.008190976142883302, 0.008128512382507324, 0.008148991584777832, 0.00819200038909912, 0.008155136108398438, 0.008122367858886719, 0.008112128257751466, 0.00818892765045166, 0.008202239990234375, 0.008152064323425292, 0.008154111862182617, 0.00818995189666748, 0.008156160354614257, 0.008177663803100586, 0.008173567771911621, 0.008204287528991699, 0.008194047927856446, 0.008203264236450195, 0.008143872261047362, 0.00818995189666748, 0.008177663803100586, 0.00820633602142334, 0.008037376403808593, 0.00800972843170166, 0.008042495727539062, 0.008101887702941894, 0.008113151550292968, 0.008145919799804687, 0.008156160354614257, 0.008130559921264649, 0.0081397762298584, 0.008161279678344726, 0.008170495986938477, 0.008151040077209473, 0.008163328170776368, 0.008194047927856446, 0.008196096420288086, 0.008153087615966797, 0.008142848014831543, 0.008136704444885253, 0.008156160354614257, 0.008150015830993652, 0.008145919799804687, 0.008147968292236327, 0.008154111862182617, 0.008148991584777832, 0.008158207893371582, 0.00813158416748047, 0.008259584426879883, 0.008144895553588867, 0.008218624114990235, 0.00830463981628418, 0.008120320320129394, 0.008150015830993652, 0.008175616264343261, 0.017464319229125978, 0.008178688049316407, 0.008190976142883302, 0.0081725435256958, 0.008135680198669434, 0.008138751983642578, 0.0081397762298584, 0.008038399696350097, 0.007894015789031983, 0.007888895988464355, 0.007879680156707763, 0.00788479995727539, 0.007920639991760254, 0.008181759834289551, 0.008130559921264649, 0.008185855865478516, 0.008140800476074218, 0.008155136108398438, 0.00813158416748047, 0.008122367858886719, 0.007890944004058837, 0.007875584125518798, 0.007867392063140868, 0.00787660789489746, 0.007881728172302246, 0.008043519973754883, 0.008003583908081055, 0.00809062385559082, 0.008116224288940429, 0.008218624114990235, 0.008130559921264649, 0.008170495986938477, 0.00818995189666748, 0.008052736282348634, 0.007889920234680176, 0.007963647842407226, 0.00790015983581543, 0.007899136066436767, 0.007959551811218261, 0.00790015983581543, 0.007911424160003662, 0.007858176231384278, 0.0078919677734375, 0.007912447929382324, 0.007858208179473877, 0.007885791778564454, 0.00790118408203125, 0.0079267840385437, 0.007885824203491211, 0.007836671829223632, 0.00790841579437256, 0.00794924783706665, 0.007862271785736084, 0.007860223770141601, 0.007871488094329833, 0.007906303882598878, 0.007912447929382324, 0.007873536109924317, 0.007865344047546387, 0.007861248016357422, 0.007913472175598145, 0.007860223770141601, 0.007880703926086426, 0.01722265625, 0.008181759834289551, 0.008146944046020508, 0.008179712295532226, 0.008160256385803222, 0.008201215744018555, 0.008342592239379883, 0.008229824066162109, 0.008120320320129394, 0.008130559921264649, 0.008120320320129394, 0.00821555233001709, 0.008196096420288086, 0.008161279678344726, 0.008143872261047362, 0.008142848014831543, 0.008159232139587403, 0.008179712295532226, 0.008135680198669434, 0.008193023681640625, 0.008152064323425292, 0.008148991584777832, 0.008143872261047362, 0.00818380832672119, 0.008122367858886719, 0.008177663803100586, 0.00818995189666748, 0.008096768379211425, 0.008077312469482421, 0.008087552070617676, 0.008060928344726562, 0.007846975803375244, 0.007794623851776123, 0.007839744091033935, 0.007877632141113282, 0.007870463848114014, 0.00796569585800171, 0.00821555233001709, 0.008161279678344726, 0.008137727737426758, 0.0081397762298584, 0.008158207893371582, 0.008185855865478516, 0.008094719886779785, 0.008176639556884765, 0.008166399955749512, 0.008152064323425292, 0.008129535675048828, 0.008145919799804687, 0.008144895553588867, 0.008102911949157715, 0.008136704444885253, 0.008160256385803222, 0.008142848014831543, 0.008163328170776368, 0.008125503540039063, 0.00813152027130127, 0.008148991584777832, 0.00818995189666748, 0.008140800476074218, 0.008144895553588867, 0.008143872261047362, 0.008157183647155761, 0.017770496368408203, 0.008144895553588867, 0.008167424201965333, 0.008121343612670898, 0.008127488136291505, 0.008167424201965333, 0.008127488136291505, 0.00813366413116455, 0.008134655952453614, 0.008162272453308106, 0.008150015830993652, 0.008126463890075684, 0.00828006362915039, 0.00813158416748047, 0.00809267234802246, 0.00790118408203125, 0.00790015983581543, 0.007904255867004394, 0.007929855823516846, 0.007919616222381591, 0.007922688007354736, 0.007886847972869874, 0.007990272045135497, 0.007903232097625732, 0.00789299201965332, 0.008048640251159669, 0.007890944004058837, 0.007895040035247802, 0.007911424160003662, 0.007920639991760254, 0.007906303882598878, 0.007864319801330566, 0.007913472175598145, 0.00788479995727539, 0.007877632141113282, 0.007867392063140868, 0.00788479995727539, 0.007886847972869874, 0.00790118408203125, 0.00790118408203125, 0.00790937614440918, 0.007898111820220948, 0.007895040035247802, 0.007885824203491211, 0.007911424160003662, 0.007966720104217529, 0.007956480026245117, 0.007877632141113282, 0.007889920234680176, 0.007912447929382324, 0.007882751941680909, 0.007911424160003662, 0.007864319801330566, 0.007896063804626464, 0.007914527893066407, 0.007879648208618164, 0.00789299201965332, 0.007902207851409913, 0.007905280113220215, 0.007902207851409913, 0.007896063804626464, 0.007899136066436767, 0.00789299201965332, 0.016945152282714843, 0.007976960182189942, 0.007987199783325195, 0.007897088050842285, 0.007890944004058837, 0.007878655910491944, 0.007885824203491211, 0.008117247581481933, 0.008261631965637208, 0.008130592346191406, 0.008142815589904786, 0.00818073558807373, 0.008161279678344726, 0.008145919799804687, 0.008124447822570801, 0.0082390718460083, 0.008175616264343261, 0.008152064323425292, 0.008142848014831543, 0.008135680198669434, 0.008121343612670898, 0.008034303665161132, 0.008308735847473145, 0.008354816436767578, 0.008210432052612305, 0.00818892765045166, 0.00840499210357666, 0.008446975708007813, 0.008169471740722656, 0.00808448028564453, 0.007904255867004394, 0.007879680156707763, 0.007803904056549072, 0.007822336196899414, 0.007821311950683594, 0.007830527782440186, 0.00781824016571045, 0.00783564805984497, 0.007887872219085693, 0.00790937614440918, 0.007906303882598878, 0.007878655910491944, 0.007903232097625732, 0.00790118408203125, 0.007885824203491211, 0.007912447929382324, 0.007875584125518798, 0.007875584125518798, 0.00785920000076294, 0.007907328128814697, 0.007918591976165772, 0.007895040035247802, 0.007977983951568603, 0.007904255867004394, 0.007905280113220215, 0.007886911869049072, 0.007864255905151368, 0.00790118408203125, 0.007961599826812745, 0.007873536109924317, 0.007895040035247802, 0.007902207851409913, 0.007896063804626464, 0.017140735626220704, 0.007910399913787843, 0.007895040035247802, 0.007890944004058837, 0.007916543960571289, 0.007902207851409913, 0.00790937614440918, 0.007895040035247802, 0.007900191783905029, 0.007898079872131347, 0.007911424160003662, 0.007941120147705078, 0.007872511863708496, 0.007905280113220215, 0.007915520191192627, 0.00790835189819336, 0.007896063804626464, 0.007886847972869874, 0.007879744052886963, 0.007878592014312744, 0.007881728172302246, 0.007902207851409913, 0.00787660789489746, 0.007873536109924317, 0.007888895988464355, 0.00790835189819336, 0.007879680156707763, 0.00790118408203125, 0.007902207851409913, 0.00790015983581543, 0.007922688007354736, 0.007886847972869874, 0.007983104228973388, 0.007858176231384278, 0.0077916159629821775, 0.007862271785736084, 0.00781824016571045, 0.007829504013061523, 0.0078438401222229, 0.007886847972869874, 0.00790835189819336, 0.007917600154876709, 0.007915487766265869, 0.007886847972869874, 0.007902207851409913, 0.008055808067321778, 0.008141823768615723, 0.008117247581481933, 0.008110079765319824, 0.008225791931152344, 0.007896063804626464, 0.007907328128814697, 0.007890944004058837, 0.007872511863708496, 0.0078919677734375, 0.007872511863708496, 0.007890944004058837, 0.007888895988464355, 0.00785920000076294, 0.007879680156707763, 0.007883776187896728, 0.007872511863708496, 0.007987199783325195, 0.01689091110229492, 0.007906271934509277, 0.007910399913787843, 0.007885824203491211, 0.007910399913787843, 0.008279040336608886, 0.008184831619262695, 0.008133631706237793, 0.008155136108398438, 0.008173567771911621, 0.008164352416992187, 0.008150015830993652, 0.008140864372253418, 0.008307647705078126, 0.008159232139587403, 0.008154111862182617, 0.00818380832672119, 0.008154111862182617, 0.008138751983642578, 0.008128512382507324, 0.008130559921264649, 0.008145919799804687, 0.008111104011535645, 0.008121343612670898, 0.008159328460693359, 0.008150943756103516, 0.008162303924560547, 0.008224767684936523, 0.008142848014831543, 0.008118271827697754, 0.008174592018127442, 0.008132608413696289, 0.008121343612670898, 0.008136704444885253, 0.008122367858886719, 0.008136735916137696, 0.008140768051147461, 0.008134655952453614, 0.008135680198669434, 0.008136704444885253, 0.008128512382507324, 0.008117247581481933, 0.007903232097625732, 0.007888895988464355, 0.007879680156707763, 0.007862271785736084, 0.007904255867004394, 0.007907328128814697, 0.007888895988464355, 0.007863296031951903, 0.00788479995727539, 0.007880703926086426, 0.007897088050842285, 0.00787660789489746, 0.007877632141113282, 0.007864319801330566, 0.007898111820220948, 0.007869440078735352, 0.008171520233154296, 0.007862271785736084, 0.007905280113220215, 0.00789299201965332, 0.007885824203491211, 0.017105920791625977, 0.007873536109924317, 0.007889920234680176, 0.007930880069732665, 0.00790015983581543, 0.007897088050842285, 0.0078919677734375, 0.007902207851409913, 0.007905280113220215, 0.007921664237976075, 0.007916543960571289, 0.00790015983581543, 0.0078919677734375, 0.007914495944976807, 0.007897088050842285, 0.007927807807922363, 0.007922688007354736, 0.007899136066436767, 0.007882751941680909, 0.007895040035247802, 0.007905280113220215, 0.007902207851409913, 0.007878655910491944, 0.007896063804626464, 0.007888895988464355, 0.007855103969573975, 0.007883776187896728, 0.007883776187896728, 0.007855103969573975, 0.007872511863708496, 0.007853055953979492, 0.007902207851409913, 0.007882751941680909, 0.007883776187896728, 0.007874559879302979, 0.007872511863708496, 0.007898111820220948, 0.007904255867004394, 0.008046591758728027, 0.007898111820220948, 0.007877632141113282, 0.007856192111968995, 0.007872447967529297, 0.00787660789489746, 0.007890944004058837, 0.007873536109924317, 0.007888927936553955, 0.007879648208618164, 0.007868415832519531, 0.007879680156707763, 0.0078919677734375, 0.007882751941680909, 0.007896063804626464, 0.007927807807922363, 0.008242176055908204, 0.008209440231323242, 0.008128479957580566, 0.008130559921264649, 0.008132608413696289, 0.008170495986938477, 0.008165375709533691, 0.008122367858886719, 0.008122367858886719, 0.017102848052978514, 0.007897088050842285, 0.008235008239746093, 0.008123456001281738, 0.00811308765411377, 0.008124416351318359, 0.008163328170776368, 0.008134655952453614, 0.008124416351318359, 0.007883776187896728, 0.007894015789031983, 0.00789299201965332, 0.007903232097625732, 0.007879680156707763, 0.007888895988464355, 0.007906303882598878, 0.007946239948272706, 0.007930880069732665, 0.007925759792327881, 0.00787052822113037, 0.007870399951934814, 0.007874559879302979, 0.007879680156707763, 0.00790118408203125, 0.007874559879302979, 0.007903232097625732, 0.007858176231384278, 0.007882751941680909, 0.00785920000076294, 0.007887872219085693, 0.007886847972869874, 0.007887872219085693, 0.007857151985168457, 0.007988224029541016, 0.007899136066436767, 0.007855103969573975, 0.007875584125518798, 0.007875584125518798, 0.007878655910491944, 0.007942143917083741, 0.007910399913787843, 0.007874591827392578, 0.007892000198364257, 0.007928768157958984, 0.007923711776733398, 0.007873536109924317, 0.007880703926086426, 0.007872511863708496, 0.007953407764434815, 0.007883776187896728, 0.007881728172302246, 0.007890944004058837, 0.007899136066436767, 0.007879680156707763, 0.007898111820220948, 0.007873568058013916, 0.007885791778564454, 0.007894015789031983, 0.00795750379562378, 0.00790835189819336, 0.007937024116516114, 0.007947264194488525, 0.00787667179107666]",tokens/s,122.84148575218228,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-14B,Qwen/Qwen-14B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -47038,28 +47026,32 @@ ValueError: GPTJForCausalLM does not support an attention implementation through File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code + answer = input( +EOFError: EOF when reading a line + +During handling of the above exception, another exception occurred: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights + self.create_no_weights_model() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model + meta_model = self.automodel_class.from_config(self.pretrained_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config + trust_remote_code = resolve_trust_remote_code( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code raise ValueError( -ValueError: CodeGenForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` +ValueError: The repository for Qwen/Qwen-14B contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/Qwen/Qwen-14B. +Please pass the argument `trust_remote_code=True` to allow custom code to be run. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-6.7b,facebook/opt-6.7b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Qwen/Qwen-7B,Qwen/Qwen-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -47067,30 +47059,32 @@ ValueError: CodeGenForCausalLM does not support an attention implementation thro File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 66, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code + answer = input( +EOFError: EOF when reading a line + +During handling of the above exception, another exception occurred: + +Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 102, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 60, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 82, in __init__ self.load_model_with_no_weights() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 258, in load_model_with_no_weights - self.load_model_from_pretrained() - File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 172, in load_model_from_pretrained - self.pretrained_model = self.automodel_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained - return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 231, in load_model_with_no_weights + self.create_no_weights_model() + File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 213, in create_no_weights_model + meta_model = self.automodel_class.from_config(self.pretrained_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 419, in from_config + trust_remote_code = resolve_trust_remote_code( + File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 626, in resolve_trust_remote_code raise ValueError( -ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` +ValueError: The repository for Qwen/Qwen-7B contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/Qwen/Qwen-7B. +Please pass the argument `trust_remote_code=True` to allow custom code to be run. -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,togethercomputer/RedPajama-INCITE-Base-7B-v0.1,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.42.3,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,1384.353792,6237.454336,0.0,5591.007232,5346.100224,s,10,5.621484252929688,0.5621484252929687,0.0006512231383256937,0.5619280090332031,0.5629722900390625,0.5631148376464843,0.5632288757324219,"[0.5632573852539062, 0.5619976196289063, 0.561502197265625, 0.561581787109375, 0.56184912109375, 0.5611882934570313, 0.5618583984375, 0.5625692138671875, 0.5627396240234375, 0.5629406127929687]",tokens/s,455.39574333341466,kWh,6.6308295009312805e-06,3.633394705801994e-06,3.0662030702449045e-05,4.092625490918232e-05,tokens/kWh,6255153.3378287,MB,1385.762816,6237.454336,0.0,5591.007232,5529.622016,s,10,326.683455078125,32.668345507812504,0.005059921734622061,32.669546875,32.673459570312495,32.67500029296875,32.676232871093745,"[32.676541015625, 32.670173828125, 32.662392578125, 32.6731171875, 32.671205078125, 32.66616796875, 32.67228515625, 32.668919921875, 32.66134765625, 32.6613046875]",tokens/s,1.9284723184078545,kWh,0.0003856536088773498,0.00021137137319951726,0.0017394750242949513,0.0023365000063718185,tokens/kWh,26963.406731518968,,s,629,331.22317260742193,0.5265869198846135,0.06676456858509212,0.5185095825195313,0.5189097534179687,0.5190709106445313,1.080322138671875,"[0.5188095703125, 0.5182166748046875, 0.5186017456054688, 0.5188095703125, 0.5184255981445313, 0.5183231811523438, 0.51841943359375, 0.5183098754882812, 0.5187072143554687, 0.5183672485351563, 0.5182525634765625, 0.5186539306640625, 0.5185064697265624, 0.5181951904296875, 0.5179996337890626, 0.5185115966796875, 0.5183805541992188, 0.5186437377929688, 0.5184778442382812, 0.5189140625, 0.5192980346679688, 0.5191638793945312, 0.518930419921875, 0.5191065673828125, 0.518508544921875, 0.5184798583984375, 0.518361083984375, 0.5188628540039063, 0.518540283203125, 0.5188761596679687, 0.5184215087890625, 0.518645751953125, 0.5184061279296875, 0.5188270263671875, 0.5185966186523437, 0.5184757690429688, 0.5186529541015625, 0.5185863647460938, 0.5191638793945312, 0.5191014404296875, 0.5186867065429688, 0.5188812866210938, 0.5187266845703125, 0.5185075073242188, 0.518697998046875, 0.5185228881835937, 0.5184696044921875, 0.5186682739257813, 0.51854541015625, 0.5184461059570312, 0.5185996704101562, 0.5186078491210937, 0.51859765625, 0.5185884399414062, 0.51877685546875, 0.5190922241210938, 0.5191895141601562, 0.5191741333007812, 0.5192550659179688, 0.5191157836914062, 0.5191659545898437, 0.518845458984375, 1.0806650390625, 0.5187543334960938, 0.5186386108398438, 0.518856689453125, 0.5189160766601563, 0.5187870483398438, 0.5190062255859375, 0.5187553100585938, 0.5186437377929688, 0.51831298828125, 0.5186365356445313, 0.5181327514648437, 0.5182822265625, 0.517855224609375, 0.5185443725585938, 0.5185177612304688, 0.5186467895507813, 0.5184409790039063, 0.5186969604492188, 0.5182013549804687, 0.5184624633789062, 0.518456298828125, 0.5188157348632813, 0.518245361328125, 0.5183590698242188, 0.51825048828125, 0.5184716796875, 0.5190277099609375, 0.5182545776367188, 0.5186058349609375, 0.5184737548828126, 0.51859765625, 0.518403076171875, 0.5183590698242188, 0.5187256469726562, 0.5184972534179687, 0.51888232421875, 0.5187758178710937, 0.5185167236328125, 0.5184839477539063, 0.5184092407226563, 0.5188699951171875, 0.5185812377929687, 0.5185095825195313, 0.5184573364257813, 0.5184921875, 0.5184737548828126, 0.5184603881835937, 0.5184911499023438, 0.5186386108398438, 0.5184378662109375, 0.5186990356445312, 0.5184532470703125, 0.5188690185546875, 0.5186221923828125, 0.5189376220703125, 0.5190870971679687, 0.5185853271484375, 0.5185474853515625, 0.5184737548828126, 0.5185966186523437, 0.5188659057617188, 0.5187153930664062, 1.08008544921875, 0.5183876953125, 0.5183805541992188, 0.5181194458007813, 0.5184419555664063, 0.5182669067382812, 0.518513671875, 0.5181430053710937, 0.5185761108398438, 0.51825048828125, 0.5185054931640625, 0.5182116088867188, 0.5189078979492188, 0.5183272705078125, 0.5183908081054688, 0.5181583251953125, 0.5181675415039062, 0.5184737548828126, 0.5183364868164062, 0.51837646484375, 0.5182279663085938, 0.51806005859375, 0.5183364868164062, 0.5183334350585938, 0.5184174194335938, 0.5184747314453125, 0.518287353515625, 0.5188116455078124, 0.5184337768554688, 0.518771728515625, 0.5185095825195313, 0.5183733520507813, 0.5180508422851563, 0.5186058349609375, 0.5183743896484375, 0.5189140625, 0.5184409790039063, 0.5186283569335938, 0.5184163818359375, 0.5185833129882812, 0.5184041137695312, 0.5184071655273438, 0.5186764526367188, 0.5181409301757812, 0.5184235229492188, 0.5182443237304688, 0.5182146606445313, 0.5187942504882812, 0.5187543334960938, 0.5190287475585937, 0.5187266845703125, 0.518451171875, 0.5184706420898437, 0.5183651733398438, 0.5186488037109375, 0.51856689453125, 0.5184808959960937, 0.5186990356445312, 0.5183580322265625, 0.5184839477539063, 0.5183866577148437, 0.5184931640625, 0.5186262817382813, 1.0804141845703126, 0.5185863647460938, 0.5185955810546875, 0.5184798583984375, 0.5184952392578125, 0.5181726684570312, 0.5187952880859374, 0.518445068359375, 0.51839794921875, 0.5184686279296875, 0.5185792236328125, 0.5180999755859375, 0.5182177124023437, 0.5181572875976562, 0.5183170776367187, 0.5185464477539062, 0.5185044555664062, 0.5182678833007812, 0.5184010009765625, 0.5184624633789062, 0.518302734375, 0.518582275390625, 0.5185014038085938, 0.5188433837890625, 0.5185966186523437, 0.519103515625, 0.5185044555664062, 0.5182361450195313, 0.5182843017578125, 0.5184716796875, 0.5183252563476562, 0.5183436889648437, 0.5181808471679688, 0.5183488159179688, 0.5182064819335938, 0.5183488159179688, 0.5181931762695312, 0.5184389038085937, 0.5183406372070313, 0.5183948974609375, 0.5183641357421875, 0.5188024291992187, 0.5191905517578125, 0.5192560424804687, 0.5191629028320313, 0.51881982421875, 0.5188444213867187, 0.518962158203125, 0.5190697021484375, 0.5190154418945313, 0.5188935546875, 0.5190338745117188, 0.518972412109375, 0.5189693603515625, 0.5189816284179688, 0.5191700439453125, 0.5193287963867188, 0.518739990234375, 0.5188853759765625, 0.5185628051757812, 0.5189918823242188, 0.5186201782226563, 0.5191505737304688, 1.0808135986328125, 0.51853515625, 0.5181163330078125, 0.5184470825195312, 0.5182996215820312, 0.518171630859375, 0.5183119506835937, 0.51818701171875, 0.518203369140625, 0.5182802124023438, 0.5185525512695313, 0.5187522583007812, 0.518487060546875, 0.5186611328125, 0.5187286987304688, 0.518908935546875, 0.518830078125, 0.5189468383789062, 0.5185269775390625, 0.5185689697265625, 0.5184174194335938, 0.5183887329101563, 0.518234130859375, 0.5185863647460938, 0.5180579833984374, 0.5184757690429688, 0.5182648315429688, 0.5183539428710937, 0.5185167236328125, 0.5185372314453125, 0.518513671875, 0.51848193359375, 0.5186898193359375, 0.5184696044921875, 0.5185628051757812, 0.51841845703125, 0.5189990234375, 0.5187839965820312, 0.5193861083984375, 0.518898681640625, 0.5187921752929687, 0.5188413696289063, 0.5190901489257812, 0.5189130249023437, 0.5188925170898437, 0.5186703491210938, 0.5184102172851562, 0.5185751342773437, 0.518434814453125, 0.5185751342773437, 0.5184911499023438, 0.5185218505859375, 0.5186570434570312, 0.518592529296875, 0.5186652221679687, 0.5188474731445313, 0.5188054809570313, 0.5184102172851562, 0.5188587646484375, 0.5183876953125, 0.5187327880859375, 0.5192386474609375, 0.518329345703125, 1.0797823486328124, 0.5184645385742187, 0.5180784912109375, 0.5182371826171875, 0.5183170776367187, 0.51822900390625, 0.518414306640625, 0.5182443237304688, 0.5181859741210938, 0.5187860717773437, 0.5186262817382813, 0.5189263305664062, 0.5186529541015625, 0.5186600952148438, 0.518392822265625, 0.51827197265625, 0.5186017456054688, 0.518455322265625, 0.5184215087890625, 0.5184624633789062, 0.5183283081054687, 0.5182945556640625, 0.5183364868164062, 0.5184890747070312, 0.5184890747070312, 0.5183621215820312, 0.5186611328125, 0.5183385620117188, 0.5185679321289063, 0.518445068359375, 0.5188474731445313, 0.5187174682617187, 0.5190717163085937, 0.5187266845703125, 0.5183631591796874, 0.518223876953125, 0.5186600952148438, 0.518667236328125, 0.5187758178710937, 0.518560791015625, 0.51850341796875, 0.5185003662109375, 0.5185853271484375, 0.5183672485351563, 0.5182003173828125, 0.5184706420898437, 0.5184307250976562, 0.5187706909179688, 0.5183969116210938, 0.5187327880859375, 0.5183334350585938, 0.5185341186523438, 0.5186181030273438, 0.5184255981445313, 0.5184542846679687, 0.5187205200195313, 0.518129638671875, 0.5184603881835937, 0.5185167236328125, 0.51881982421875, 0.518624267578125, 0.51871435546875, 0.5189232788085938, 1.0807879638671876, 0.5186129760742187, 0.518371337890625, 0.5185361938476563, 0.518656005859375, 0.5183733520507813, 0.5184470825195312, 0.5185771484375, 0.5185413208007813, 0.5184358520507812, 0.5186365356445313, 0.5184696044921875, 0.5184747314453125, 0.5182965698242188, 0.51846142578125, 0.5183303833007813, 0.5184307250976562, 0.5183743896484375, 0.5185730590820312, 0.518403076171875, 0.5184429931640625, 0.5185464477539062, 0.5187133178710938, 0.518592529296875, 0.5189293823242187, 0.5185494995117188, 0.5188423461914062, 0.5185587158203125, 0.5185433349609375, 0.5187420043945312, 0.5186324462890625, 0.5185761108398438, 0.5185269775390625, 0.5186856689453125, 0.5186160888671875, 0.518697998046875, 0.5186262817382813, 0.5185792236328125, 0.51859765625, 0.5188095703125, 0.5186631469726563, 0.5189130249023437, 0.5186232299804687, 0.51881982421875, 0.5186939086914063, 0.5188731079101563, 0.5187584228515625, 0.5185372314453125, 0.5184962768554687, 0.5189385986328126, 0.5185597534179688, 0.5186795654296875, 0.518572021484375, 0.518687744140625, 0.518813720703125, 0.5186826171875, 0.518513671875, 0.5185904541015625, 0.51853515625, 0.5184655151367188, 0.5187901611328125, 0.5186437377929688, 0.5187153930664062, 1.0812200927734374, 0.5190051879882812, 0.5185259399414063, 0.5182935180664062, 0.51880859375, 0.5185054931640625, 0.5187153930664062, 0.5184440307617187, 0.5183447265625, 0.5185700073242188, 0.5186478271484375, 0.5184255981445313, 0.5183006591796875, 0.5179422607421875, 0.5181675415039062, 0.5181358032226563, 0.5180006103515625, 0.5183467407226563, 0.51862939453125, 0.5185341186523438, 0.5186846923828125, 0.5184655151367188, 0.5186693115234375, 0.518824951171875, 0.5188341674804687, 0.5186990356445312, 0.5188495483398438, 0.51874609375, 0.5188362426757812, 0.518856689453125, 0.5190697021484375, 0.5187962646484375, 0.5187471313476563, 0.518961181640625, 0.5186170654296876, 0.5190113525390625, 0.5188720703125, 0.5186529541015625, 0.5184112548828125, 0.518487060546875, 0.5186253051757812, 0.51827099609375, 0.5185054931640625, 0.5184163818359375, 0.5184174194335938, 0.5182597045898437, 0.5180006103515625, 0.5184583740234375, 0.5184020385742187, 0.518455322265625, 0.5182986450195313, 0.5184798583984375, 0.5184307250976562, 0.5184706420898437, 0.51846142578125, 0.5185208129882812, 0.5186549682617188, 0.51833447265625, 0.5185966186523437, 0.5187051391601563, 0.5184440307617187, 0.5187573852539062, 0.518919189453125, 1.0813255615234374, 0.5182597045898437, 0.5179361572265625, 0.5181696166992188, 0.5183784790039062, 0.5182894287109375, 0.5182791748046875, 0.51852490234375, 0.518408203125, 0.5189385986328126, 0.518445068359375, 0.5186150512695312, 0.518277099609375, 0.5182412719726562, 0.5184952392578125, 0.5183211669921876, 0.5186611328125, 0.518781982421875, 0.5183262939453125, 0.5183580322265625, 0.518451171875, 0.5184849853515625, 0.5184337768554688, 0.51825048828125, 0.5185095825195313, 0.518381591796875, 0.51833447265625, 0.5182853393554687, 0.5183549194335938, 0.5184962768554687, 0.51846142578125, 0.518513671875, 0.5183303833007813, 0.5186969604492188, 0.5186815795898437, 0.5183436889648437, 0.518614013671875, 0.5184727172851562, 0.5183436889648437, 0.5183866577148437, 0.5183252563476562, 0.518297607421875, 0.5183355102539062, 0.5184061279296875, 0.5183549194335938, 0.5184010009765625, 0.5183662109375, 0.5183590698242188, 0.5187440795898437, 0.5185802001953125, 0.5185177612304688, 0.5186570434570312, 0.5183119506835937, 0.5188116455078124, 0.5184276733398437, 0.5184890747070312, 0.5185904541015625, 0.5183037719726562, 0.518476806640625, 0.518213623046875, 0.51850341796875, 0.51825048828125, 0.5185443725585938, 1.0814249267578124, 0.518656005859375, 0.518150146484375, 0.5185014038085938, 0.51856591796875, 0.5186262817382813, 0.5183231811523438, 0.5181675415039062, 0.5183549194335938, 0.5182146606445313, 0.5182986450195313, 0.5185382690429687, 0.5181614379882813, 0.518223876953125, 0.5182249145507812, 0.5183303833007813, 0.5183180541992187, 0.5182515258789062, 0.518128662109375, 0.51858740234375, 0.5183529052734375, 0.5182423095703125, 0.5184102172851562, 0.5182515258789062, 0.5182013549804687, 0.5184522094726562, 0.5184061279296875, 0.5185044555664062, 0.51863037109375, 0.5185700073242188, 0.5186262817382813, 0.5184317626953125, 0.51835595703125, 0.5185781860351563, 0.5184603881835937, 0.5184542846679687, 0.5183364868164062, 0.518434814453125, 0.5183662109375, 0.5183795166015625, 0.51816552734375, 0.5183355102539062, 0.51835595703125, 0.518350830078125, 0.5186395874023437, 0.5182269287109375, 0.5184327392578125, 0.5185730590820312, 0.5184491577148438, 0.5190123291015625, 0.5186806030273438, 0.5186017456054688, 0.5186570434570312, 0.5187604370117187, 0.5186160888671875, 0.518666259765625, 0.518624267578125, 0.5184112548828125, 0.5184635009765625, 0.5184808959960937, 0.5184696044921875, 0.5186734008789062, 0.5181480712890625]",tokens/s,1.8990217231736815,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm/internlm2-20b,internlm/internlm2-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.217-205.860.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.41.2,,0.31.0,,,,1.20.0,,,,0.11.1,,,MB,3088.633856,14093.385728,0.0,13446.938624,13175.804928,s,10,15.872446411132811,1.5872446411132812,0.001977784195727725,1.5869342651367186,1.5899507080078126,1.5901222045898438,1.5902594018554688,"[1.58719189453125, 1.584764892578125, 1.5848123779296874, 1.5860927734375, 1.5866766357421875, 1.5853348388671875, 1.590293701171875, 1.58790966796875, 1.58991259765625, 1.58945703125]",tokens/s,161.28578630477753,kWh,1.8717543135086694e-05,1.0257253674026287e-05,9.112487845540085e-05,0.00012009967526451382,tokens/kWh,2131562.7992846123,MB,3091.492864,14093.385728,0.0,13446.938624,13300.586496,s,10,928.4395625000001,92.84395624999999,0.007570288473903254,92.84323828125,92.8531703125,92.8533390625,92.8534740625,"[92.8279765625, 92.8535078125, 92.8414140625, 92.8458828125, 92.8531328125, 92.853015625, 92.843109375, 92.8433671875, 92.8399140625, 92.8382421875]",tokens/s,0.6785579002079632,kWh,0.0010960241793427203,0.00060071625912522,0.005404193295573401,0.007100933734041341,tokens/kWh,8872.072654048685,,s,629,941.2515487060549,1.4964253556535052,0.1885841806933767,1.4736722412109375,1.4742849609375,1.4745136962890626,3.0601340332031253,"[1.4728734130859376, 1.473666015625, 1.473407958984375, 1.47373974609375, 1.4734244384765625, 1.47390771484375, 1.47325244140625, 1.4737960205078124, 1.4734847412109375, 1.4734468994140626, 1.473364013671875, 1.47363330078125, 1.4732943115234376, 1.47340087890625, 1.4733291015625, 1.47338134765625, 1.473206298828125, 1.473244140625, 1.4738125, 1.473511474609375, 1.4734613037109374, 1.4737889404296876, 1.473449951171875, 1.473580078125, 1.473765380859375, 1.473459228515625, 1.473560546875, 1.47323388671875, 1.474029541015625, 1.4734468994140626, 1.473263671875, 1.4734326171875, 1.47308642578125, 1.4729144287109375, 1.4731171875, 1.47327490234375, 1.473290283203125, 1.4730946044921875, 1.4730894775390626, 1.4733568115234374, 1.4730352783203124, 1.473344482421875, 1.4731263427734376, 1.4731683349609375, 1.4734151611328126, 1.4735421142578125, 1.473369140625, 1.4731141357421875, 1.4733404541015624, 1.47325439453125, 1.4731715087890624, 1.47344384765625, 1.4731990966796875, 1.473396728515625, 1.473218505859375, 1.4735196533203125, 1.4733302001953126, 1.47679638671875, 1.473838134765625, 1.4735543212890625, 1.4735584716796875, 1.473474609375, 3.058888671875, 1.4736353759765626, 1.4734478759765626, 1.47342333984375, 1.4732247314453124, 1.4741309814453125, 1.4735350341796876, 1.4742303466796876, 1.474051025390625, 1.4743828125, 1.4741749267578126, 1.4742200927734375, 1.4739588623046875, 1.4743316650390625, 1.4739302978515625, 1.4737408447265625, 1.474087890625, 1.47405517578125, 1.4743592529296874, 1.4743214111328125, 1.474566162109375, 1.473896484375, 1.47449853515625, 1.4739251708984376, 1.47448828125, 1.473300537109375, 1.4734755859375, 1.4742425537109376, 1.4745487060546876, 1.4744595947265624, 1.47428662109375, 1.4733526611328125, 1.4731519775390625, 1.47367529296875, 1.4740152587890625, 1.4736251220703125, 1.473764404296875, 1.4738944091796875, 1.4733157958984375, 1.473659912109375, 1.4736898193359376, 1.47346826171875, 1.4733157958984375, 1.4738472900390625, 1.4736722412109375, 1.4738759765625, 1.4739302978515625, 1.473797119140625, 1.4737530517578126, 1.47359130859375, 1.4737294921875, 1.4736865234375, 1.4733988037109376, 1.47375, 1.473734619140625, 1.4735994873046876, 1.4738953857421875, 1.47376123046875, 1.4736036376953126, 1.473574951171875, 1.474008056640625, 1.473680419921875, 1.473565673828125, 3.06031005859375, 1.4730966796875, 1.4736650390625, 1.4730096435546876, 1.473244140625, 1.4731519775390625, 1.4736844482421876, 1.4732667236328125, 1.4738687744140626, 1.4742548828125, 1.4740458984375, 1.473471435546875, 1.473302490234375, 1.4735523681640625, 1.473406982421875, 1.473101806640625, 1.47376953125, 1.4739149169921875, 1.4731151123046875, 1.4732298583984376, 1.4734039306640625, 1.4731314697265625, 1.473111083984375, 1.4737376708984375, 1.4738216552734376, 1.4737899169921875, 1.4738800048828125, 1.4739691162109374, 1.4734581298828124, 1.47338134765625, 1.4734776611328124, 1.47355029296875, 1.473333251953125, 1.4734776611328124, 1.4733946533203126, 1.4732882080078125, 1.473912841796875, 1.473892333984375, 1.474216064453125, 1.4738175048828126, 1.47407666015625, 1.4737275390625, 1.473375244140625, 1.4743492431640626, 1.4744185791015625, 1.4742845458984375, 1.4742108154296876, 1.474523193359375, 1.4741842041015625, 1.47373876953125, 1.4740675048828125, 1.474164794921875, 1.474018310546875, 1.473081298828125, 1.474177001953125, 1.4735738525390625, 1.47327587890625, 1.4737294921875, 1.4737100830078125, 1.4734151611328126, 1.4735892333984375, 1.47363330078125, 1.473797119140625, 3.0603828125, 1.4735103759765624, 1.4731171875, 1.4736036376953126, 1.4737879638671876, 1.4736036376953126, 1.47382470703125, 1.4734530029296875, 1.473491943359375, 1.4732840576171875, 1.4735810546875, 1.4739404296875, 1.4733045654296875, 1.4736578369140625, 1.4735308837890626, 1.4735565185546875, 1.4735206298828125, 1.47350830078125, 1.4735667724609376, 1.473364013671875, 1.4735780029296874, 1.473996826171875, 1.4732401123046874, 1.4733731689453125, 1.4740458984375, 1.473659912109375, 1.4739732666015626, 1.4740029296875, 1.47403369140625, 1.4737161865234376, 1.474050048828125, 1.474302978515625, 1.47325439453125, 1.473807373046875, 1.474555908203125, 1.474566162109375, 1.4731663818359375, 1.473481689453125, 1.4736650390625, 1.473850341796875, 1.4740213623046876, 1.4742425537109376, 1.4736527099609376, 1.4736947021484375, 1.473903564453125, 1.4739005126953124, 1.473833984375, 1.4741944580078126, 1.473732666015625, 1.4733824462890626, 1.473692626953125, 1.474039794921875, 1.4735994873046876, 1.4731766357421876, 1.4735155029296876, 1.473933349609375, 1.4738759765625, 1.473734619140625, 1.4740357666015624, 1.47370703125, 1.4738463134765625, 1.4742486572265625, 1.4741298828125, 3.061118896484375, 1.473859619140625, 1.4736097412109375, 1.4739149169921875, 1.4740848388671874, 1.474361328125, 1.4743634033203126, 1.4743951416015626, 1.473876953125, 1.4742210693359374, 1.4737510986328124, 1.473217529296875, 1.4732984619140626, 1.473310791015625, 1.473673095703125, 1.4737142333984374, 1.4734090576171874, 1.4737091064453125, 1.474240478515625, 1.4736937255859375, 1.4738544921875, 1.4743326416015625, 1.4735289306640624, 1.4736065673828125, 1.4740234375, 1.4740274658203125, 1.4741329345703125, 1.473870849609375, 1.4740899658203126, 1.473397705078125, 1.473323974609375, 1.473269775390625, 1.4733096923828124, 1.4737264404296875, 1.473578125, 1.47388916015625, 1.473797119140625, 1.474377685546875, 1.47427734375, 1.4738125, 1.473481689453125, 1.473944580078125, 1.473754150390625, 1.4732686767578125, 1.473934326171875, 1.4739149169921875, 1.4737080078125, 1.47405615234375, 1.4740255126953126, 1.4739588623046875, 1.4738177490234374, 1.4743765869140626, 1.474249755859375, 1.473743896484375, 1.4736650390625, 1.4745087890625, 1.473791015625, 1.473939453125, 1.4738421630859375, 1.4741165771484375, 1.4739957275390625, 1.4737919921875, 1.4739312744140625, 3.059681396484375, 1.4742149658203125, 1.4734141845703126, 1.4730894775390626, 1.4733916015625, 1.473896484375, 1.473638427734375, 1.4734898681640625, 1.4739404296875, 1.47435107421875, 1.47458349609375, 1.474293701171875, 1.4747064208984375, 1.4745426025390624, 1.47485693359375, 1.4739322509765624, 1.4736671142578126, 1.473491943359375, 1.4745078125, 1.474566162109375, 1.47476171875, 1.47451806640625, 1.4742261962890626, 1.4741903076171874, 1.47418115234375, 1.4742999267578125, 1.4743060302734374, 1.4741258544921876, 1.473733642578125, 1.4733138427734376, 1.472933837890625, 1.4730772705078126, 1.47359130859375, 1.473479736328125, 1.4740745849609376, 1.4737479248046874, 1.4733055419921874, 1.4737100830078125, 1.474017333984375, 1.4741851806640625, 1.47333935546875, 1.474234375, 1.4739200439453124, 1.473474609375, 1.47338037109375, 1.4740694580078124, 1.473732666015625, 1.4734735107421875, 1.4738309326171875, 1.4739005126953124, 1.473574951171875, 1.473660888671875, 1.47378076171875, 1.473206298828125, 1.4732236328125, 1.4738565673828126, 1.4739322509765624, 1.4736004638671876, 1.473474609375, 1.4738258056640625, 1.4735831298828126, 1.4737120361328124, 1.4735411376953125, 3.0642236328125, 1.4730126953125, 1.47343359375, 1.4729718017578124, 1.4735728759765625, 1.4736158447265626, 1.4739005126953124, 1.47361279296875, 1.473840087890625, 1.4736087646484375, 1.4734949951171874, 1.47426611328125, 1.47422314453125, 1.4739998779296875, 1.4739046630859376, 1.474639892578125, 1.474404296875, 1.474365478515625, 1.4745169677734375, 1.474093017578125, 1.4741513671875, 1.4736055908203125, 1.47390869140625, 1.47327490234375, 1.473606689453125, 1.473691650390625, 1.47382373046875, 1.473692626953125, 1.4730546875, 1.473733642578125, 1.4736373291015625, 1.47371923828125, 1.473250244140625, 1.473560546875, 1.4734674072265626, 1.473487060546875, 1.4741666259765625, 1.47329638671875, 1.473322021484375, 1.473585205078125, 1.4732359619140625, 1.473195068359375, 1.4736046142578125, 1.4733804931640626, 1.473373046875, 1.4742098388671876, 1.4742425537109376, 1.4739527587890624, 1.4736629638671874, 1.473869873046875, 1.47333935546875, 1.4739404296875, 1.4740797119140625, 1.4739158935546874, 1.47359130859375, 1.4735042724609375, 1.4738052978515626, 1.473397705078125, 1.4735718994140625, 1.473728515625, 1.4734254150390624, 1.473385498046875, 1.4733148193359376, 3.0616728515625, 1.4734571533203125, 1.4732861328125, 1.4731346435546875, 1.473143798828125, 1.4733568115234374, 1.4734940185546874, 1.4731695556640625, 1.4739505615234374, 1.473987548828125, 1.4735789794921874, 1.4733271484375, 1.4738790283203125, 1.4730577392578126, 1.473259521484375, 1.474188232421875, 1.474802734375, 1.4733424072265624, 1.473292236328125, 1.474060302734375, 1.4732933349609374, 1.4734765625, 1.47428662109375, 1.4740941162109376, 1.4739312744140625, 1.4739609375, 1.4747392578125, 1.4735155029296876, 1.47369775390625, 1.4734786376953124, 1.473407958984375, 1.473471435546875, 1.4732052001953124, 1.473833984375, 1.4732821044921875, 1.4737459716796875, 1.4735677490234376, 1.473176513671875, 1.4732420654296876, 1.473311767578125, 1.4738421630859375, 1.4735667724609376, 1.4740521240234374, 1.4739364013671874, 1.4734776611328124, 1.4733291015625, 1.4738514404296874, 1.473481689453125, 1.4737315673828124, 1.473935302734375, 1.4735574951171875, 1.473122314453125, 1.47314892578125, 1.473607666015625, 1.4732789306640626, 1.4734888916015625, 1.47401416015625, 1.47483544921875, 1.4746541748046875, 1.47443603515625, 1.4748702392578126, 1.4743603515625, 1.4745528564453125, 3.064785888671875, 1.4746173095703126, 1.47447607421875, 1.4746685791015626, 1.47447607421875, 1.4743643798828125, 1.4738125, 1.4731048583984374, 1.473474609375, 1.47338134765625, 1.473534912109375, 1.473302490234375, 1.473479736328125, 1.4740050048828126, 1.473471435546875, 1.47342333984375, 1.473850341796875, 1.4732401123046874, 1.4734808349609374, 1.4733658447265625, 1.4733629150390626, 1.473560546875, 1.473197021484375, 1.47348681640625, 1.473091552734375, 1.4735728759765625, 1.47310693359375, 1.473244140625, 1.4730096435546876, 1.4732452392578126, 1.473584228515625, 1.473293212890625, 1.4733302001953126, 1.4733189697265625, 1.473532958984375, 1.473896484375, 1.47376953125, 1.474218994140625, 1.473491943359375, 1.4740469970703125, 1.4737294921875, 1.4742374267578124, 1.4740889892578124, 1.473924072265625, 1.473764404296875, 1.473859619140625, 1.4736947021484375, 1.4739609375, 1.47409716796875, 1.47407763671875, 1.4737705078125, 1.4731356201171875, 1.4733404541015624, 1.473121337890625, 1.4731192626953125, 1.4733465576171876, 1.473375244140625, 1.4740101318359375, 1.4735616455078124, 1.47340087890625, 1.4733568115234374, 1.473385498046875, 1.4738780517578125, 3.063844970703125, 1.4731295166015625, 1.4731304931640625, 1.4736036376953126, 1.473776611328125, 1.47394970703125, 1.4742486572265625, 1.4738533935546876, 1.4738216552734376, 1.4736895751953125, 1.4738575439453125, 1.473681396484375, 1.473460205078125, 1.47378076171875, 1.4738780517578125, 1.4737530517578126, 1.473596435546875, 1.4732513427734375, 1.4733271484375, 1.47356982421875, 1.4737847900390626, 1.47350732421875, 1.473412109375, 1.47346533203125, 1.4734541015625, 1.473197021484375, 1.4740101318359375, 1.47386669921875, 1.4737366943359376, 1.4738145751953124, 1.4737264404296875, 1.47363330078125, 1.4732882080078125, 1.473638427734375, 1.4737899169921875, 1.473912841796875, 1.473796142578125, 1.4733824462890626, 1.473281005859375, 1.473376220703125, 1.473712158203125, 1.47343359375, 1.473532958984375, 1.4734254150390624, 1.4737110595703125, 1.473586181640625, 1.4736097412109375, 1.4738094482421875, 1.47342236328125, 1.473691650390625, 1.4737294921875, 1.4736414794921875, 1.4735841064453126, 1.4735462646484374, 1.4737427978515625, 1.473418212890625, 1.473576904296875, 1.473511474609375, 1.47342333984375, 1.4733507080078125, 1.47335986328125, 1.474207763671875, 1.47342138671875]",tokens/s,0.6682591926299519,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,t,t,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,v,v,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -47102,7 +47096,7 @@ ChildProcessError: Traceback (most recent call last): response.raise_for_status() File ""/usr/local/lib/python3.10/dist-packages/requests/models.py"", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) -requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/t/resolve/main/config.json +requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/v/resolve/main/config.json The above exception was the direct cause of the following exception: @@ -47129,9 +47123,9 @@ Traceback (most recent call last): hf_raise_for_status(response) File ""/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py"", line 352, in hf_raise_for_status raise RepositoryNotFoundError(message, response) from e -huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-669490c0-127c6af3417ed277160f9e7f;5cef989b-7a9b-4aff-8cd8-9e0843e8f847) +huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6694947b-53dbb31c0a7512f03614f0c4;f3e7a548-682a-4605-979e-e6805ddf6104) -Repository Not Found for url: https://huggingface.co/t/resolve/main/config.json. +Repository Not Found for url: https://huggingface.co/v/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. @@ -47156,11 +47150,11 @@ Traceback (most recent call last): resolved_config_file = cached_file( File ""/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py"", line 425, in cached_file raise EnvironmentError( -OSError: t is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' +OSError: v is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=` -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -4bit-awq-gemm-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,facebook/opt-66b,facebook/opt-66b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4bit-awq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-125m,EleutherAI/gpt-neo-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,2,64,1,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, AMD EPYC 7R32,16,66697.293824,Linux,x86_64,Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.3.1,,4.42.4,,0.32.1,,,,1.21.2,,,,0.11.1,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch @@ -47180,12 +47174,18 @@ ChildProcessError: Traceback (most recent call last): self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 564, in from_pretrained return model_class.from_pretrained( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3704, in from_pretrained - config = cls._autoset_attn_implementation( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1490, in _autoset_attn_implementation - config = cls._check_and_enable_sdpa( - File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1656, in _check_and_enable_sdpa - raise ValueError( -ValueError: OPTForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` + File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3907, in from_pretrained + hf_quantizer.postprocess_model(model) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model + return self._process_model_after_weight_loading(model, **kwargs) + File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 107, in _process_model_after_weight_loading + model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) + File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 466, in post_init_awq_exllama_modules + model = exllamav2_post_init( + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init + submodule.post_init(scratch_space=model.scratch_spaces[device]) + File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init + self.q_handle = exlv2_ext.make_q_matrix( +NameError: name 'exlv2_ext' is not defined -",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,